
REMES: A Resource Model for Embedded Systems

Paul Pettersson Cristina Seceleanu Aneta Vulgarakis
MRTC, Mälardalen University, Västerås, Sweden

{paul.pettersson,cristina.seceleanu,aneta.vulgarakis}@mdh.se

Abstract

In this paper, we introduce the modelREMES for formal
modeling and analysis of embedded resources such as stor-
age, power, communication, and computation. The model
is annotated with both discrete and continuous resources. It
is in fact a state-machine based behavioral language with
support for hierarchal modeling, continuous time, and a no-
tion of explicit entry and exit points, making it suitable for
component-based modeling.

The analysis ofREMES-based systems is centered
around a weighted sum in which the variables represent
the amounts of consumed resources. We describe a number
of important resource related analysis problems, including
feasibility, trade-off, and optimal resource-utilization anal-
ysis. To formalize these problems, and to provide a basis for
formal analysis, we show how to analyzeREMESmodels us-
ing the framework of priced timed automata and weighted
CTL. To illustrate the approach, we describe a case study in
which it has been applied to model and analyze resource-
usage of a temperature control system.

1 Introduction

The importance of resource awareness in embedded sys-
tems is growing rapidly [6, 11, 12, 13, 17, 18, 19, 20]. The
limited availability of computing resources is preventingthe
introduction of new product features and applications, es-
pecially in areas where high-performance embedded sys-
tems are required. Resources include energy, computational
power, memory, and hardware components such as buses,
input/output ports, etc.

The systematic analysis of the resource consumption of
an embedded system must include ways of semantic rep-
resentation of various types of resources, be they of con-
tinuous, monotonic type (like energy), of non-monotonic
type (like memory), or of discrete nature (e.g. I/O ports).
A representative analysis goal is to answer thefeasibility
question: does the composition of the worst-case resource
requirements of components stay within the available re-

sources provided by the implementation platform?
In practice, it may often be necessary to replace a compo-

nent with another one having the same functionality, yet us-
ing a more sophisticated control algorithm that requires big-
ger memory resources. Alternatively, if we assume a repos-
itory of models, the designer might need, at some point, a
refined component model, with modified behavior or more
efficiently implementable data structures.

Assume the following scenario: suppose we start build-
ing up an embedded system for which we identify the inter-
connected software components as beingC1, . . . , Cn (see
Figure 1). The dotted lines represent connections to other
possible system components. We also assume that the hard-
ware abstraction provides us with global available resources
R. Consider that the computed resource requirement ofC1

is RC1, of C2, RC2 and so on. In Figure 1, the components
are annotated with this information.

C1

C2

{RC2}

Cn

{RCn}

{RC1}

Figure 1. n-component Embedded System
with resource annotations.

Suppose now that a different designer wants to use some
componentB, from the repository, instead ofC1 (for one
of the reasons mentioned previously). So, we replaceC1

by B, both functionally and resource-wise. However, it so
happens thatB needs more resources thanC1 to perform
its function:RB > RC1. Intuitively, the resource feasibil-
ity test will fail for the new composition, thus preventing us
from accommodatingB. In order to be able to includeB
in the system, we need to “fine-tune”, in the sense of de-
creasing enough, the resource requirements of one or more
components, for instance, by code-optimization. Then, by
rechecking resource feasibility, we should get a positive an-

swer.
A more challenging situation arises if we do not have ac-

cess to the components implementation. How can we then
accommodateB? One could think of trying to change the
communication between components, or maybe the alloca-
tion of components to hardware units. We would be in-
terested to assess, before deployment, how would any of
these design decisions affect the system overall resource
consumption. This amounts to finding an appropriate trade-
off between different configuration requirements and con-
straints.

Performing these kinds of analysis of the embedded sys-
tem’s resource usage, starting at an early stage of design,
and up to an as close to implementation stage as possible,
is extremely desirable. First, it allows for carrying out a
potentially large number of design experiments, without in-
creasing cost. Second, it may guide designers in making
correct decisions, such as selecting the right components
from some repository, choosing among various admissible
architectural designs, or transforming a component model
into one with less resource requirements.

In this paper, we propose a modeling framework and
associated analysis techniques for performing quantitative
analysis such as resource utilization/feasibility, trade-off,
and optimal resource-utilization analysis. The model, called
REMES, is tailored for embedded systems, but it is also suit-
able for reactive systems. It provides support for discrete
and continuous abstract resources characterized further by
the way in which they are consumed and released, and by
whether they can be referred to, or not. A number of generic
resources can be modeled in this way, including memory,
ports, power, CPU, and buses. As such, the characterized
and classified abstract resource types are not tied to any par-
ticular formal semantical interpretation.

In addition, REMES supports modeling of functionality
and timing in a dense time state-based hierarchical mod-
eling language, and we show how the modeling language
and a number of important resource analysis problems can
be analyzed in the framework of multi-priced timed au-
tomata. As such, REMESnarrows the gap between architec-
tural modeling and semantical analysis models. This claim
is demonstrated in a case study, in which a temperature con-
trol systems is modeled and analyzed.

Related Work. In [21], we have presented related work
on modeling and analyzing resources in embedded real time
systems, which falls into three categories. First, research
has been devoted to code-level resource modeling and ana-
lyzing, in component assemblies. In Koala [12] and Robo-
cop [11] component frameworks, static memory estimation
has been performed for applications in which the instanti-
ated components in a composition are known before run-
time. In real-world applications, the set of components may

dynamically change, so the estimation will not be necessar-
ily correct. Moreover, low-level code-driven resource esti-
mates can only be used in cases when one has an access to
the component’s implementation. More abstract descrip-
tion on expected resource usage may be needed for not-
yet implemented components or for guiding the selection
of components from the repository. Second, some UML-
based attempts [13, 6] to tackle the analysis of embedded re-
sources have been carried out. Although graphical and intu-
itive, these approaches lack a formal description that could
provide the designer with verified resource usage claims.
Third, higher-level formal approaches [17, 18, 19] encom-
pass a family of process-algebraic formalisms developed to
unify formal modeling and analysis of embedded systems
resources. The framework is theoretically rich, yet the tool
support is not equally mature. Another formal approach,
this time based on timed abstract state machines [20] de-
scribe resources as simple annotations, in the form of real-
valued variable assignments, hence the framework can not
support trade-off analysis of conflicting resource require-
ments.

The rest of this paper is organized as follows: in Sec-
tion 2 we present preliminaries. In Section 3 we present
a taxonomy of resource types, and introduce the REMES

model for modeling resources in embedded systems. Its as-
sociated resource analysis problems are introduced and for-
malized in Section 4. In Section 5 we illustrate our approach
on a temperature control system. Finally, we conclude the
paper and present a line of future work, in section 6.

2 Preliminaries

2.1 Priced Timed Automata

In the following, we recall the model of priced (or
weighted) timed automata [2, 7], an extension of timed au-
tomata [5] with prices/costs on both locations and transi-
tions.

Let X be a finite set of clocks andB(X) the set of for-
mulas obtained as conjunctions of atomic constraints of the
form x ⊲⊳ n, wherex ∈ X , n ∈ N, and⊲⊳ ∈ {<,≤, =
,≥, >}. The elements ofB(X) are calledclock constraints
overX .

Definition 1 A linearly Priced Timed Automaton (PTA)
over clocks X and actions Act is a tuple(L, l0, E, I, P),
whereL is a finite set of locations,l0 is the initial loca-
tion, E ⊆ L × B(X) × Act × P(X) × L is the set of
edges,I : L → B(X) assigns invariants to locations, and
P : (L ∪ E) → N assigns prices (or costs) to both loca-
tions and edges. In the case of(l, g, a, r, l′) ∈ E, we write
l

g,a,r
→ l′.

2

The semantics of a PTA is defined in terms of a timed
transition system over states of the form(l, u), wherel is a
location,u ∈ RRX , and the initial state is(l0, u0), whereu0

assigned all clocks inX to 0. Intuitively, there are two kinds
of transitions: delay transitions and discrete transitions. In
delay transitions,

(l, u)
d,p
→ (l, u ⊕ d)

the assignmentu ⊕ d is the result obtained by increment-
ing all clocks of the automata with the delay amountd, and
p = P (l) ∗ d is the cost of performing the delay. Discrete
transitions

(l, u)
a,p
→ (l′, u′)

correspond to taking an edgel
g,a,r
→ l′ for which the guardg

is satisfied byu. The clock valuationu′ of the target state is
obtained by modifyingu according to updatesr. The cost
p = P ((l, g, a, r, l′)) is the price associated with the edge.

A timed traceσ of a PTA is a sequence of alternating
delays and action transitions

σ = (l0, u0)
a1,p1

→ (l1, u1)
a2,p2

→ . . .
an,pn

→ (ln, un)

and the cost of performingσ is
∑n

i=1
pi. For a given state

(l, u), the minimum cost of reaching(l, u) is the infimum
of the costs of the finite traces ending in(l, u). Dually, the
maximum cost of reaching(l, u) is the supremum of the
costs of the finite traces ending in(l, u).

A network of PTAA1|| . . . ||An overX andAct is de-
fined as the parallel composition ofn PTA overX andAct.
Semantically, a network again describes a timed transition
system obtained from those components, by requiring syn-
chrony on delay transitions and requiring discrete transi-
tions to synchronize on complementary actions (i.e.a? is
complementary toa!).

In order to specify properties of PTA, the logic Weighted
CTL (WCTL) has been introduced [10]. WCTL extends
Timed CTL with resets and testing of cost variables. We re-
fer the reader to [10] for a thorough introduction of WCTL.

2.2 Multi Priced Timed Automata

An extension of PTA is the class of Multi Priced Timed
Automata (MPTA) in which a timed automaton is aug-
mented with more than one cost variable [10, 16]. In the
case of two costs associated with a PTA, the minimal cost
reachability problem corresponds to finding a set of mini-
mal cost pairs(p1, p2) reaching a goal state. Note that the
solution is a set of pairs, rather than a single pair, since
the costs contributed from the individual costs can be in-
comparable, i.e., if for two traces(p1, p2) and(p′

1
, p′

2
) e.g.,

p′
1

< p1 andp2 < p′
2
. In this setting, the minimal cost

reachability problem is to find the set of pairs with mini-
mum cost reaching the goal state. Dually, the maximization
problem is defined as finding the set of pairs with maximal

cost reaching the target location, or to conclude(∞,∞)
if the target location is avoidable in a path that is infinite,
deadlocked, or has a location in which it can make an in-
finite delay. A specific problem is the optimal conditional
reachability problem, in which one of the costs should be
optimized, and the other bounded by an upper/lower bound.
We refer the reader to [16] for a thorough description of
optimization problems in MPTA.

3 REMES: Our Resource Model for Embed-
ded Systems

In this section, we define the resources of interest and in-
troduce the model REMES intended for resource modeling
and analysis.

3.1 Classes of resources

We consider resources as global quantities of finite size.
We refer to theconsumptionof a resourcec as the resource
usage that occurs instantaneous in time, whereas theuti-
lization of a resource is the rate of consumption over time,
i.e., the first derivative of consumption denotedċ. Both
consumption and utilization can be ofmonotonicor non-
monotonicnature, and resource consumption can further be
considered asdiscreteor continuous. We also classify re-
sources depending on whether they arereferableor non-
referable. A representative example of a referable resource
is the memory. Memory can be dynamically allocated, deal-
located, addressed, and manipulated during run-time.

Taking all these into consideration, Table 1 shows three
identified resource classes and their characteristics of in-
terest. Resource consumption for resources that belong to
class B or C is continuous, which is in opposition to the dis-
crete resource consumption nature for the resources from
class A. The consumption for the resources from class A
(memory, ports) and the utilization for the resources that
make class C (CPU, bus bandwidth) is a non-monotonically
increasing function, meaning that, e.g., memory or CPU
may be released. In contrary, the resource power of class
B, can not be recovered or released, hence its consumption
is monotonically increasing. Only the resources from class
A are referable and can be dynamically manipulated.

3.2 Introducing REMES

OurREsourceModel forEmbeddedSystems (REMES)
is intended to describe the resource-wise behavior of inter-
acting embedded components. REMES relies heavily on the
modeling language CHARON [4], used for specifying em-
bedded systems as communicating agents. Our main contri-
bution is the addition of resource consumption and utiliza-
tion information, as well as other constructs that facilitate

3

Resource Class Characteristics

A

discreteċ = 0

consumption non-monotonically increasing

(memory, ports) referable

B

continuousċ = n, n ∈ N \ {0}

consumption monotonically increasing

(power) non-referable

C

continuousċ = n, n ∈ N \ {0}

utilization non-monotonically increasing

(CPU, bandwidth) non-referable

Table 1. Resource classes/characteristics

the application of REMES to modeling both functional and
extra-functional behavior of (real-time) component-based
systems.

In REMES, the behavior of a component is described
by a mode. We call a modeatomic if it does not contain
any submode, andcompositeif it contains a number of sub-
modes (see Figure 2). Like in CHARON, the data is trans-
ferred between modes via a well-defineddata interface, that
is, typed global variables, whereas the (discrete) controlis
passed through a well-definedcontrol interfaceconsisting
of entryandexitpoints. Observe, in Figure 2, that the entry
and exit points are drawn as blank and filled circles, respec-
tively. The variables of modeM are partitioned intolocal
variables, (LM), andglobal variables (GM), and can be of
typesboolean, natural, integer, array, or of an extra type
clock that specifies continues variables evolving at rate 1.

Entry

Init

Exit

Mode

Submode 1

Submode 2

Submode n

Figure 2. A REMES Composite Mode.

The atomic modes Submode 1 and Submode n in Fig-

ure 2 are annotated with their respective resource-wise con-
tinuous behavior, assuming that the corresponding compo-
nent is utilizing resources (r1, r2) belonging to class B or
C. Such utilization is expressed by the first derivatives of
the typed resource variablesr1 : TB, r2 : TC , respectively,
which give the rates at which the composite mode consumes
the resources in time, depending on the executing submode.

For a composite mode the execution consists of a se-
quence ofactionsthat connect its control points to the con-
trol points of its submodes. For example, in Figure 2, the
parent mode fires the action labeledA0, in order to exe-
cute Submode 1 after initialization, and similarly, actions
A1, A2, . . . , An, to further execute Submode 1, Submode
2, . . ., Submode n, respectively.

REMES supports two types of actions, adelay/timedac-
tion and adiscreteaction. A delay action describes the con-
tinuous behavior of the mode, and its execution does not
change the mode; on the other hand, executing a discrete
action results in a mode change, via the exit point. Discrete
actions are instantaneous actions. Observe that Submode 2
is decorated with letterU, meaning that such a mode ex-
its right-away after its activation, without any delay. Such
modes are calledurgent.

A discrete actionA = (g, S) is a statement list prefixed
by a boolean expression, withg called theaction guard,
andS the action body, that is, the statement (assignment,
conditional statement etc.) or sequence of statements that
must be executed once the action has been fired. We say that
a discrete actionA is enabled, hence it could be executed, if
its corresponding guardg evaluates toTRUE at some point
in time. A discrete action is calledalways enabledif its
guard always holds, andemptyif its body does not change
any of the mode variables.

In addition, one needs to specify for how long a
(sub)mode is executed, so aninvariant, e.g.,Inv 1,. . . , Inv n,
that is, a predicate over continuous variables, captures such
a timing constraint. Once the invariant stops to hold, the
mode is exited by taking one of the outgoing discrete ac-
tions.

Similar to Statecharts [14], REMES provides acondi-
tional connector(depicted by C in Figure 2), which al-
lows the selection of one discrete action from two or more
possible ones, via the guarding boolean conditions (guards
g1, g2, . . . , gn) on the discrete actions exiting the condi-
tional connector. For a discrete action to be possibly ex-
ecuted, the component must be in the right mode and the
corresponding guard must evaluate toTRUE. If none of
the guards evaluates toTRUE, then no discrete action is
taken and the component remains in its current mode, ex-
ecuting delay actions. If more than one guard areTRUE
then one of the enabled discrete actions could be taken non-
deterministically.

We classify a mode’s discrete actions as follows:

4

• entry discrete actions: connect an entry point of the
composite mode with an entry point of a submode
(e.g.,A0);

• entry conditional top discrete actions: connect an en-
try point of the composite mode with a conditional
connector (e.g,AC);

• entry conditional sub discrete actions: connect a con-
ditional connector with the entry point of a submode;

• exit discrete actions: connect an exit point of a sub-
mode with an exit point of the composite mode (e.g.,
An);

• internal discrete actions: connect an exit point of a
submode with an entry point of another submode (e.g.,
A1, A2).

Note that in REMES, as opposed to CHARON, each
mode describes the behavior of an embedded component,
and a composite mode is a way of encapsulating behavior
and it describes a composite component. As such, there is
no need to flatten the hierarchy.

Formal Definition of a Mode. A mode M =
(SM, V, In, Out, A, RC, Inv) is a tuple where:

• SM : the set of submodes,

• V : the set of variables,

• In : the set of entry control points,

• Out : the set of exit control points,

• A : the set of actions,

• RC: the set of resource constraints that define the ad-
missible values for the utilization (first derivative of
consumption) of the involved resources in class B or
C,

• Inv : the set of invariants.

For the submodes ofM , the following condition should
hold: GSM ⊆ LM ∪ GM , for a local variable of a mode to
be accessible only in its submodes, and not anywhere else.

Mode Execution. The top-level mode, which is activated
when a corresponding event is received, enters execution
for the first time through the specialInit entry point, while
initializing the global variables, accordingly. After that, the
mode is re-entered through control pointEntry.

A mode can execute either adiscrete step, by taking a
discrete action, or acontinuous step, via a delay action,
with such steps alternating as dictated by the urgency of
the mode. When executing a continuous step, the mode fol-
lows a continuous path that satisfies the resource constraints

(RC). When the mode invariant is violated, the mode must
execute an outgoing discrete step. A discrete step of a mode
is a finite sequence of discrete steps of the submodes, that
is, a sequence of executing discrete actions. A discrete step
begins in the current mode and ends either at the entry point
of a submode, or when it reaches the current mode’s exit
point, meaning that the current mode has passed control to
some other mode.

The fact that a mode can pass control is ensured by the
closureconstruction: each exit point of a submode is either
connected to the exit point of the top-level mode, or deter-
ministically connected to an entry point of another mode
that eventually leads to the top-level mode’s exit.

For example, in Figure 2, the execution ofMode pro-
ceeds as follows: after initialization, the discrete step cor-
responding toA0 is executed, after which a sequence of
continuous steps is executed, until the invariantInv 1 fails
to hold; alternatively, in caseA1’s guard evaluates toTRUE,
the mode could take a discrete step and entry Submode n.
Next, a similar sequence follows, while the mode executes
Submode n. WhenInv n does not hold anymore, the mode
takes a new discrete step corresponding to exit discrete ac-
tion An. The next time when the control is passed toMode,
a discrete step corresponding toAC is taken and the se-
lection of a possible path is made through the conditional
connector, etc.

3.3 Composition of REMES models

REMES atomic modes and composite modes can be
composed in parallel with each other. The parallel modes
can execute concurrently, by interleaving actions, whereas
the sub-modes can never execute in parallel; they simply
obey the strict execution order imposed by the control flow.

We say that two REMES models,A andB, arecompati-
ble if GA = GB . In the following, we give the definition of
mode composition.

Definition 2 AssumeA andB are two REMES components
(modes). Then, the compositionD = A ||B is the mode
with the set of local variablesLD = LA ∪ LB, the set of
global variablesGD = GA = GB , and the set of top-level
modesModeD = ModeA ∪ ModeB.

4 Analyzing REMES-based Systems

4.1 Analysis model for REMES

Assume a set of resourcesR1, . . . , Rn that a set of
REMES components have access to. Our main goal is
to analyze various scenarios of the system’s resource us-
age, and be able to compute, e.g., the maximum or mini-
mum amounts of needed resources for guaranteeing correct

5

resource-wise system behavior. Intuitively, this problemre-
duces to a scalar problem if one constructs a weighted sum
of all resource consumptions, which should then be min-
imized, maximized, or manipulated in order to compute
trade-offs. Consequently, we propose the following func-
tion as the analysis model for REMES:

rtot , w1 × r1 + w2 × r2 + . . . + wn × rn,

where variablertot represents the total consumption of re-
sourcesR1, . . . , Rn, and variablesr1, r2, . . . , rn denote the
consumption ofR1, R2, . . . , Rn, respectively. The con-
stantsw1, . . . , wn (weights), represent the relative impor-
tance ofr1, . . . , rn.

The values of the weights are a subjective matter; the
way they are chosen depends both on the application and
on the analysis goals. For example, if we are designing a
heavily resource-constrained soft real-time ES that might
tolerate lateness at the expense of quality of service, and are
considering trade-offs between memory consumption and
(execution) time, we can assign higher weight to memory
than to time.

Translating REMES into PTA. In order to be able to an-
alyze REMES compositions, formally, we need a semanti-
cal translation of the model. If we consider resource con-
sumptionsr1, r2, . . . , rn as cost variablesc1, c2, . . . , cn, we
can use the framework of Priced Timed Automata as the un-
derlying semantical representation.

Translating REMES into PTA is quite straightforward:
the syntactic REMES element of a discrete action corre-
sponds to an edge in PTA, whereas the REMES seman-
tical discrete step is a transition in PTA’s semantics. An
atomic mode represents a PTA location, and global vari-
ables used for passing control in REMES become synchro-
nization channels in PTA. In the following, we formalize
some of the main analysis goals that we are interested in.

4.2 Feasibility Analysis

Component-wise feasibility analysis with respect to
resource consumption requires (symbolic) algorithms on
PTA, which compute the cost of the most “expensive” trace
that will eventually reach some goal. The respective cost
could then be compared against the allocated resources, per
component, on the target platform. For resources like non-
referrable memory and power, the composition of individ-
ual resource consumptions of REMES components is addi-
tive.

If we consider the PTA model of Definition 1, as our
semantical translation of a REMES model, feasibility goals
can then be formalized as the following WCTL properties:

E Fcost≥n v (1)

AG (q ⇒ E Fcost≥n v) (2)

whereA, andE are the usual CTL universal and existen-
tial path quantifiers, respectively, andG andF are the CTL
temporal operators “always” and “eventually”, respectively.

The properties (1), (2) are in fact reachability and live-
ness properties, respectively, indexed with cost constraints;
the first property states that there exists a path such that,
eventually, some target locationv is reached with a cost
greater or equal then some given valuen; the second prop-
erty states that for all paths it is always the case that once
a location is reached, there exists a way by whichv will be
eventually reached with a cost greater or equal thann. How-
ever, model-checking WCTL formulae is decidable just for
one-clock priced automata with a stopwatch cost (cost with
rates in{0,1}) [9]. For other PTA, one can only verify
reachability properties of the form given by (1).

Such reachability goals require algorithms for synthesiz-
ing maximal reachability costs for PTA, and they have been
proposed by Larsen and Rasmussen [16]. In the cost func-
tion cost = w1 × c1 + . . . + wn × cn, c1, . . . , cn are con-
stants, so the maximization problem reduces to maximizing
a single cost variable representing the accumulated resource
consumption of all resources of interest, regardless of the
class they belong to. Hence, semantically, the various re-
sources become undistinguishable.

The tool used for verifying such properties is UPPAAL

CORA, where one could check, e.g., the relevant reachabil-
ity property,E F v, while the tool calculates the maximum
cost, in terms of resource exemption, “paid” to satisfy the
property.

4.3 Optimal Resource Utilization

The optimal resource utilization problem reduces to min-
imizing the one-cost functioncost = w1×c1+. . .+wn×cn,
such that one of the following WCTL properties is satisfied:

E Fcost≤n v (3)

AG (q ⇒ E Fcost≤n v) (4)

The only difference in properties (3), (4) from properties
(1), (2) is the fact that the cost is bounded from above with
a value that could represent the available resources. Similar
to the feasibility case, only cost-optimal reachability prop-
erties can be verified by a model-checker. Later, we show
how can the minimum cost-trace be actually computed in
the example of section 5.

A considerable verification challenge arises in case some
of the edge prices are negative, so thatcost becomes a
non-monotonically increasing cost function. In such sit-
uations, the usual branch-and-bound symbolic reachabil-
ity algorithms, for PTA, can not be applied as such any-
more, since minimal/maximal reachability analysis requires
a monotonically increasing cost function. The optimal-
cost reachability problem has been theoretically solved even
when negative costs are involved [8].

6

4.4 Trade-off Analysis

Minimization of memory usage plays a major role in
the design of embedded systems. Limited memory is one
of the dominating constraints for many advanced embed-
ded systems. However, while trying to minimize memory
consumption, one might be forced to increase the execution
time of real-time components beyond acceptable limits, that
is, limits that, if exceeded, would make the set unschedula-
ble.

As such, for a given REMES model, we may have more
than one property to satisfy simultaneously, and we want
to know whether it is possible to satisfy all of them, al-
though they might be subjected to apparently conflicting
constraints. In such cases, there should be possible to com-
pute atrade-offbetween the considered resource consump-
tions.

Computing a trade-off between memory and execution
time, or between any resource belonging to classes A and B,
or A and C of Table 1, could be done in PTA, by employing
a single-cost function. The trade-off could then be achieved
by varying the weightsw1, . . . , wn, accordingly.

In some other cases, e.g., when one needs to compute
trade-offs between consumption of resources belonging to
class B or C, the functioncost = w1 × c1 + . . . + wn × cn

becomes a multi-cost function that lets us distinguish be-
tween various types of resources (e.g., between power and
CPU). This forces us to carry out the analysis on MPTA,
rather than on PTA.

Assuming power and CPU as the resources of inter-
est, we want to determine which are the simultaneously
achievable pairs of costs(cpow, ccpu) such that power con-
sumption is minimized, while CPU consumption remains
bounded from above, or power consumption is maximized
while CPU consumption is bounded from below. In WCTL,
the properties to be satisfied would then be as follows:

E Fcpow≤n v and ccpu ≤ m

or,
E Fcpow≥n v and ccpu ≥ m

Such trade-off analysis can be carried out through condi-
tional reachability verification on MPTA [15], by consider-
ing cpow as the primary cost andccpu as the secondary cost.
Larsen and Rasmussen have proved that such problems are
decidable for MPTA [15].

5 Example: A Temperature Control System

As a case study (taken from [3]) demonstrating the prin-
ciples of our resource modeling and analysis approach, we
consider a temperature control system (TCS) for a heat pro-
ducing reactor, depicted in Figure 3. It has two rods that

can be inserted into the core of the reactor, to control the
heat producing (chain) reaction. If inserted into the core,
the control roads absorb neutrons and consequently the re-
action is slowed down, so the temperature inside the core
starts decreasing. If they are pulled out, the reaction speeds
up again, which in turn increases the core temperature. The
goal of the TCS is to maintain the temperature in the reactor
core betweenθmin andθmax. Whenever the core reaches
temperatureθmax, it has to be cooled with one of the two
rods. After a rod has been used for cooling, it is then un-
available forT time units.

Figure 3. A heat producing reactor.

5.1 A REMES Model of TCS

We model an abstracted version of the internal design
of TCS in the SaveComp component model [1], with three
components:HC controller, Rod selector, andClock as
depicted in Figure 4. The interfaces of the components are
described in terms of ports. SaveComp distinguishes be-
tween input and output ports, which can be of the types:
data for transferring of data,triggering to trigger compo-
nent executions, orcombinedto combine the two.

Figure 4. Component based TCS model.

The componentHC controller activates the heat-
ing/cooling process of the core using trigger portt2. The
Rod selector uses temperature data of the core conveyed
through data porttemp to control whether the core should
continue to heat, or if a rod should be selected for insertion
into the core to slow down the reaction. The latter must

7

Figure 5. The Clock modeled in REMES.

take the availability of rods into consideration, as a rod has
to rest for at leastT time units after its previous use. Fi-
nally, theClock component, periodically generates the trig-
ger eventt1 that activates theHC controller. The temp
value in theHC controller is updated by reading the value
of variabletempROD that is assigned the cooling rate of
the rods within theRod selector component.

Figure 6. The HC Controller modeled in
REMES.

We model the resource usage of the TCS components as
modes in REMES. The modes of theClock, theHC con-
troller, and theRod selector are depicted in Figure 5, 6,
and 7, respectively. The modes communicate data between
each other using the global variables:temp, tempROD, t1,
andt2. The modes ofHC controller and theRod selec-
tor are made up of submodes, conditional connectors, and
discrete actions, as described in Section 3.

In the TCS model, we make use of three resources:
memory, power, andCPU, which belong to the three dif-
ferent classes of the taxonomy presented in Section 3.1. We
assume that every cpu instruction utilizes one cpu unit. We
treat static memory and simple dynamic memory that is al-
located when a mode is entered and released as soon as the
same mode is exited, without memory management.

5.2 A PTA model of TCS

We have analyzed the REMES-based TCS system, as a
network of three PTA models, in UPPAAL CORA1. The
PTA models of theClock, theHC controller, and theRod

1See the web page www.uppaal.org/cora for more information about
the UPPAAL CORA tool.

Figure 7. The Rod selector modeled in
REMES.

selector are shown in Figure 8. The declared variables and
their initial values are shown in Table 2.

The Clock is modeled as a simple PTA that, after ev-
ery P time units, periodically synchronizes on channelt1
with HC controller. TheHC controller PTA has three lo-
cations:Start, Idle, andHeat Cool. The constantC HC
is the execution time of the HC controller. The difference
(temp HC − tempROD), wheretemp HC is the heating
produced by the reactor, andtempROD is the current cool-
ing effect of the rod , is used to update the reactor tempera-
ture.

The PTA Rod selector has five locations:Start, Se-
lect, Heat, Cool1, andCool2. The execution of the Rod
selector consumes 40 units of static memory. The locations
Start, Heat, Cool1, andCool2 are committed, as their ac-
tions are atomic. The synchronization withHC controller
is modeled using channelt2. The selection of the rods is
controlled by variablerod. From locationHeat, based on
the temperature of the core,temp, and the time since a rod
has been previously used for cooling (i.e.,x1 and x2 for
rod1 and rod2, respectively), an available rod is selected for
insertion into the core, and, consequently, theRod selector

8

(a) The model of the clock
component as a PTA.

(b) The model of the HC controller component as a PTA.

(c) The model of the Rod selector component as a PTA.

Figure 8. TCS modeled with three PTAs.

enters locationCool1 or Cool2, or alternatively jumps back
to locationSelect, provided that no rod needs to be used.

For analysis purposes, we have added the TCS model
with the functionrun() (see Figure 8(c)) that merely stores
the first few selections of rods, in an array of integers.

5.3 Formal Analysis of the PTA model

In the analysis model, we have encoded the relative im-
portance of the resources power, CPU, and memory. We
consider CPU to be the most critical resource, followed by
memory. Power is not as critical, yet it is taken into con-
sideration in order to impose higher energy efficiency in the
system. Therefore, we give highest weight to CPU and low-
est to power. The cost of resource usage is influenced by
the individual weights of each resource, and the consumed
(utilized) resource on each transition (location). Currently
UPPAAL CORA can only handle PTA models where the cost
function is monotonically increasing. This means that in or-
der to keep the cost function monotonically increasing we
have to fine-tune the weights of the resources.

In the TCS system, we consider the following total cost
function

ctot = wcpu× ccpu + wmem × cmem + wpow × cpow

wherewpow = 1, wcpu = 15, andwmem = 2, andccpu,
cmem, andcpow are the consumed amounts of cpu, memory,
and power, respectively.

After having fed UPPAAL CORA with the PTA model of
the TCS, we were able to analyze the minimum cost reach-
ability problem, that is, to compute the lowest cost of sat-
isfying a given reachability property, and a corresponding
trace. In our case, we are interested in finding an execution
order of the system (a cheapest sequence of rod insertions)
that results in the lowest possible total resource cost, that
is, to minimizectot. Such information extracted from the
analysis could be used in the implementation stages of the
TCS system, by resolving existing non-determinism in such
a way that a specific execution trace, the cheapest with re-
spect to total resource usage, is enforced.

To illustrate the technique, we check for an optimal trace
satisfying the property

EF(count == 3)

that is, a trace in which rods are inserted into the reactor
three times. UPPAAL CORA has found that the second rod
should be inserted two times, followed by the first one, the
third time. Table 3 shows the cost of this best trace, and also

9

Scope Declarations

Global

const int wpow = 1, wcpu = 15;
const int wmem = 2;
int temp = 7, tempROD = 0;
chan t1, t2, t;

Clock
const int P = 100;
clock x;

HC controller
const int CHC = 25, tempHC=3
clock x;

Rod selector

const int T = 3, thetamax = 25;
const int thetamin = 6;
const int margin = 5, R1 = 5, R2 = 6;
int rod, count = 0, trace[3];
int x1 = 3, x2 = 3;
clock x;

Table 2. Declarations of the TCS PTA model.

the cost of another more expensive trace where only rod 2
has been used.

Scenario Order of execution Cost
1 P2-P2-P1 253229
2 P2-P2-P2 253239

Table 3. Cost of execution for different rods
insertion scenarios.

For TCS, we can only partially tackle the trade-off re-
source analysis problem, by giving higher weight to the
most critical resource, the CPU, followed by memory and
power. Additionally, we have conducted optimal reacha-
bility resource usage analysis, by minimizing the memory
consumption, while imposing upper bounds on the CPU
consumption, in the TCS. For example, for three sequential
insertions of the rods in the reactor’s core, it might happen
that it is necessary to insert the second rod three times in a
row, in order to satisfy all constraints, even though the total
cost is higher for such a trace than for the best execution
trace.

6 Conclusions and Future Work

In this paper, we have introduced REMES — a formal
language for resource modeling and analysis of embedded
systems. The essence of REMES is a notion of resources
that are characterized by their discrete or continuous nature,
the way they are consumed and released, and whether they
can be referred to, or not. Resources that can be naturally
modeled include memory, ports, power, CPU, and busses
etc.

In order to model usage of resources in a system,
REMES has a behavioral modeling language influenced by
CHARON [4], and is further borrowing ideas from timed
and hybrid automata, and Statecharts [14]. The language
supports hierarchical modeling and has a notion of explicit
entry and exit points, making it suitable as a semantical ba-
sis in component based development frameworks. REMES

has a notion of continuous variables, flows, and progress
constraints (invariants), which makes it a suitable modeling
language for timed behaviors in embedded systems.

In this setting, we have defined three important resource
analysis problems: feasibility analysis, trade-off analysis,
and optimal resource analysis. These problems are all
defined over weighted sums of consumed amounts of re-
sources and their given weights. In this way, the analysis
can result in optimizing the overall resource usage of a sys-
tem, with respect to parameters such as criticality, reliabil-
ity, or costs of the available resources.

To support analysis, we have shown in an example how
REMESmodels can be analyzed in the framework of (multi)
priced timed automata. The studied example is a tempera-
ture control system of a reactor that consumes power, CPU,
and memory resources. The system is architecturally mod-
eled in the component modeling language SaveCCM, and
REMES is used to model function, timing, and resource us-
age of the included components. To analyze the optimal
resource usage of the system, we model the system and
the weighted sum of resource costs, as a network of priced
timed automata, and perform the analysis in the UPPAAL

CORA tool.
As future work, we plan to solve the feasibility analy-

sis problem for systems in which the global cost function
is non-monotonically increasing. In such situations, the
usual branch-and-bound symbolic reachability algorithms,
for PTA, cannot be applied as such anymore, since mini-
mal/maximal reachability analysis requires a monotonically
increasing cost function. We also plan to integrate REMES

and its notion of resources in the recently suggested Pro-
Com component model and its associated tools.

Acknowledgments: This work was partially supported
by the Swedish Foundation for Strategic Research via the
strategic research centrePROGRESS.

References

[1] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. Håkansson, A. Möller, P. Pettersson, and M. Tivoli. The
save approach to component-based development of vehicu-
lar systems.Journal of Systems and Software, 80(5):655–
667, May 2007.

[2] R. Alur. Optimal paths in weighted timed automata. InIn
HSCC01: Hybrid Systems: Computation and Control, pages
49–62. Springer, 2001.

10

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H.
Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems.Theoretical Com-
puter Science, 138:3–34, 1995.

[4] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić, V. Kumar,
I. Lee, P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical
modeling and analysis of embedded systems.Proceedings
of the IEEE, 8(3):231–274, 1987.

[5] R. Alur and D. L. Dill. A theory of timed automata.Theo-
retical Computer Science, 126(2):183–235, 1994.

[6] H. H. Ammar, V. Cortellessa, and A. Ibrahim. Modeling re-
sources in a uml-based simulative environment. InAICCSA,
pages 405–410, 2001.

[7] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Petters-
son, J. Romijn, and F. Vaandrager. Minimum-Cost Reach-
ability for Priced Timed Automata. In M. D. D. Benedetto
and A. Sangiovanni-Vincentelli, editors,Proceedings of the
4th International Workshop on Hybris Systems: Computa-
tion and Control, number 2034 in Lecture Notes in Com-
puter Sciences, pages 147–161. Springer–Verlag, 2001.

[8] P. Bouyer, T. Brihaye, V. Bruyère, and J.-F. Raskin. On the
optimal reachability problem.Formal Methods in System
Design, 31(2):135–175, 2007.

[9] P. Bouyer, K. G. Larsen, and N. Markey. Model-checking
one-clock priced timed automata.Logical Methods in Com-
puter Science, 4(2:9):1–28, 2008.

[10] T. Brihaye, V. Bruyère, and J.-F. Raskin. Model-checking
for weighted timed automata. InProc. of FORMATS-
FTRTFT04, number 3253 in Lecture Notes in Computer Sci-
ence, pages 277–292. Springer–Verlag, 2004.

[11] M. de Jonge, J. Muskens, and M. Chaudron. Scenario-
based prediction of run-time resource consumption in
component-based software systems. InProceedings of the
6th ICSE Workshop on Component-based Software Engi-
neering (CBSE6), pages 19–24. IEEE, 2003.

[12] A. V. Fioukov, E. M. Eskenazi, D. K. Hammer, and M. R. V.
Chaudron. Evaluation of static properties for component-
based architectures. InEUROMICRO, pages 33–39, 2002.

[13] O. M. Group. Uml profile for schedulability, perfomance
and time specification.Version 1.1, formal / 05-01-02, 2005.

[14] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 91(1):231–274,
2003.

[15] K. G. Larsen and J. I. Rasmussen. Optimal conditional
reachability for multi-priced timed automata. InProceed-
ings of the 8th International Conference on Foundations of
Software Science and Computational Structures (FOSSACS
2005/ETAPS 2005), number 3441 in Lecture Notes in Com-
puter Sciences, pages 234–249. Springer–Verlag, 2005.

[16] K. G. Larsen and J. I. Rasmussen. Optimal reachability for
multi-priced timed automata.Theor. Comput. Sci., 390(2-
3):197–213, 2008.

[17] I. Lee, J.-Y. Choi, H.-H. Kwak, A. Philippou, and O. Sokol-
sky. A family of resource-bound real-time process algebras.
In FORTE, pages 443–458, 2001.

[18] I. Lee, A. Philippou, and O. Sokolsky. A general resource
framework for real-time systems. InRISSEF, pages 234–
248, 2002.

[19] I. Lee, A. Philippou, and O. Sokolsky. Resources in process
algebra.J. Log. Algebr. Program., 72(1):98–122, 2007.

[20] M. Ouimet, K. Lundqvist, and M. Nolin. The timed ab-
stract state machine language: An executable specification
language for reactive real-time systems. InProceedings of
the 15th International Conference on Real-Time and Net-
work Systems, 2007.

[21] A. Vulgarakis and C. Seceleanu. Embedded systems re-
sources: Views on modeling and analysis. InCOMPSAC,
pages 1321–1328, 2008.

11

