
Mälardalen University Press Licentiate Thesis
No.94

Hierarchical Real-Time
Scheduling and
Synchronization

Moris Behnam

October 2008

School of Innovation, Design and Engineering
Mälardalen University

Väster̊as, Sweden

Copyright c© Moris Behnam, 2008
ISSN 1651-9256
ISBN 978-91-86135-09-6
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

The Hierarchical Scheduling Framework (HSF) has been introduced to en-
able compositional schedulability analysis and executionof embedded soft-
ware systems with real-time constraints. In this thesis, weconsider a system
consisting of a number of semi-independent components called subsystems,
and these subsystems are allowed to share logical resources. The HSF provides
CPU-time to the subsystems and it guarantees that the individual subsystems
respect their allocated CPU budgets. However, if subsystems are allowed to
share logical resources, extra complexity with respect to analysis and run-time
mechanisms is introduced.

In this thesis we address three issues related to hierarchical scheduling of
semi-independent subsystems. In the first part, we investigate the feasibility of
implementing the hierarchical scheduling framework in a commercial operat-
ing system, and we present the detailed figures of various keyproperties with
respect to the overhead of the implementation.

In the second part, we studied the problem of supporting shared resources
in a hierarchical scheduling framework and we propose two different solutions
to support resource sharing. The first proposed solution is called SIRAP, a
synchronization protocol for resource sharing in hierarchically scheduled open
real-time systems, and the second solution is anenhanced overrun mechanism.

In the third part, we present a resource efficient approach tominimize sys-
tem load (i.e., the collective CPU requirements to guarantee the schedulability
of hierarchically scheduled subsystems). Our work is motivated from a trade-
off between reducing resource locking times and reducing system load. We
formulate an optimization problem that determines the resource locking times
of each individual subsystem with the goal of minimizing thesystem load sub-
ject to system schedulability. We present linear complexity algorithms to find
an optimal solution to the problem, and we prove their correctness.

i

To the memory of my mother

Acknowledgment

This thesis would not been possible without the help of my supervisors Prof.
Mikael Sjödin and Dr. Thomas Nolte and the collaboration with Dr. Insik
Shin. I would like to thank Mikael Sjödin for his advices andinvaluable input
to my research. Thomas, thank you very much for the supporting, encouraging,
helping and always finding time to guide me.

A special thank goes to Insik for all the intensive discussions and fruitful
cooperation. I would like to say how much I have appreciated working with
Thomas, Insik and Mikael, and I have learned a lot from them.

I want to thank the PROGRESSers; Prof. Hans Hansson for his great
leading of the PROGRESS center, and Prof. Ivica Crnkovic, Prof. Christer
Norström, Prof. Sasikumar Punnekkat, Prof. Paul Pettersson, Dr. Jan Gustafs-
son, Dr. Andreas Ermedahl and Dr. Cristina Seceleanu.

Also, I would like to thank Prophs’ers (PROGRESS PhD students) Hüseyin
Aysan, Andreas Hjertström, Séverine Sentilles, FarhangNemati, Aneta Vul-
garakis, Marcelo Santos, Stefan Bygde, Yue Lu and also the new PhD stu-
dents MikaelÅsberg, Jagadish Suryadevara, Aida Causevic. We had a lot of
fun especially when we arranged the social activities and student surprise for
the PROGRESS trips and also when I participated with some of you in PhD
schools and conferences.

Many thanks go to Dr. Damir Isovic for informing me about the PhD posi-
tion and for the very nice recommendation letter that I received from him when
I applied for that position.

I would also like to thank the my colleagues at the departmentfor the nice
time that I had in the department and special thank goes to theadministrative
staff, in particular Harriet Ekwall and Monica Wasell for their help in practical

v

vi

issues.

I would like to express my special gratitude to Dr. Reinder J.Bril at Eind-
hoven University of Technology, for our collaboration and his constructive
comments and discussions.

During my PhD studies, I have participated in 7 conferences,3 PhD schools
and 3 project trips in 7 different countries. Related to this, I would like to
thank Dr. Johan Fredriksson and Dr. Daniel Sundmark for being great travel
companions.

Finally, my deepest gratitude goes to my wife Rasha and my kids Dany and
Hanna for all their support and love.

This work has been supported by the Swedish Foundation for Strategic
Research (SSF), via the research programme PROGRESS.

Moris Behnam
Västerås, October, 2008

Contents

I Thesis 1

1 Introduction 3
1.1 Contributions . 5
1.2 Outline of thesis . 7

2 Background 9
2.1 Real-time systems . 9
2.2 System model . 10

2.2.1 Subsystem model . 10
2.2.2 Task model . 11
2.2.3 Shared resources . 11

2.3 Scheduling algorithms . 11
2.3.1 Online scheduling 12
2.3.2 Offline scheduling 13

2.4 Logical resource sharing . 13
2.4.1 Stack resource policy 14
2.4.2 Resource holding time 14

3 Real-Time Hierarchical Scheduling Framework 17
3.1 Hierarchical scheduling framework 17
3.2 Virtual processor model . 18
3.3 Schedulability analysis . 19

3.3.1 Local schedulability analysis 19
3.3.2 Global schedulability analysis 20

3.4 Subsystem interface calculation 20

vii

viii Contents

4 Hierarchical Scheduling with Resource Sharing 23
4.1 Problem formulation . 23
4.2 Supporting logical resource sharing 25

4.2.1 BWI . 25
4.2.2 HSRP . 26
4.2.3 BROE . 27
4.2.4 SIRAP . 28

4.3 Subsystem interface and resource sharing 28

5 Conclusions 31
5.1 Summary . 31
5.2 Future work . 32

6 Overview of Papers 35
6.1 Paper A . 35
6.2 Paper B . 36
6.3 Paper C . 36
6.4 Paper D . 37

Bibliography 39

II Included Papers 43

7 Paper A:
Towards Hierarchical Scheduling in VxWorks 45
7.1 Introduction . 47
7.2 Related work . 48
7.3 System model . 49
7.4 VxWorks . 50

7.4.1 Scheduling of time-triggered periodic tasks 51
7.4.2 Supporting arbitrary schedulers 52

7.5 The USR custom VxWorks scheduler 52
7.5.1 Scheduling periodic tasks 52
7.5.2 RM scheduling policy 54
7.5.3 EDF scheduling policy 55
7.5.4 Implementation and overheads of the USR 56

7.6 Hierarchical scheduling . 57
7.6.1 Hierarchical scheduling implementation 58
7.6.2 Example . 63

Contents ix

7.7 Summary . 64
Bibliography . 67

8 Paper B:
SIRAP: A Synchronization Protocol for Hierarchical Resource Shar-
ing in Real-Time Open Systems 71
8.1 Introduction . 73
8.2 Related work . 74
8.3 System model . 76

8.3.1 Hierarchical scheduling framework 76
8.3.2 Shared resources . 77
8.3.3 Virtual processor model 77
8.3.4 Subsystem model . 79

8.4 SIRAP protocol . 80
8.4.1 Terminology . 80
8.4.2 SIRAP protocol description 81

8.5 Schedulability analysis . 83
8.5.1 Local schedulability analysis 83
8.5.2 Global schedulability analysis 85
8.5.3 Local resource sharing 86

8.6 Protocol evaluation . 86
8.6.1 WCET within critical section 87
8.6.2 Task priority . 87
8.6.3 Subsystem period . 89
8.6.4 Multiple critical sections 91
8.6.5 Independent abstraction 91

8.7 Conclusion . 94
Bibliography . 95

9 Paper C:
Scheduling of Semi-Independent Real-Time Components:
Overrun Methods and Resource Holding Times 99
9.1 Introduction . 101
9.2 Related work . 102

9.2.1 Hierarchical scheduling 102
9.2.2 Resource sharing . 102

9.3 System model and background 103
9.3.1 Resource sharing in the HSF 103
9.3.2 Virtual processor models 104

x Contents

9.3.3 Stack resource policy (SRP) 105
9.3.4 System model . 106

9.4 Schedulability analysis . 106
9.4.1 Local schedulability analysis 107
9.4.2 Subsystem interface calculation 107
9.4.3 Global schedulability analysis 107

9.5 Overrun mechanisms . 108
9.5.1 Basic overrun . 108
9.5.2 Enhanced overrun 110

9.6 Comparison between basic and enhanced overrun mechanisms 111
9.6.1 Subsystem-level comparison 112
9.6.2 System-level comparison 113

9.7 Computing resource holding time 114
9.8 Summary . 116
Bibliography . 119

10 Paper D:
Synthesis of Optimal Interfaces for Hierarchical Scheduling with
Resources 123
10.1 Introduction . 125
10.2 Related work . 126
10.3 System model and background 127

10.3.1 Virtual processor models 127
10.3.2 System model . 128
10.3.3 Stack Resource Policy (SRP) 129

10.4 Resource sharing in the HSF 130
10.4.1 Overrun mechanism 130
10.4.2 Schedulability analysis 131

10.5 Problem formulation and solution outline132
10.6 Interface candidate generation 134

10.6.1 ICG algorithm . 138
10.7 Interface selection . 140

10.7.1 Description of the ICS algorithm 140
10.7.2 Correctness of the ICS algorithm 143

10.8 Overrun mechanism with payback 149
10.9 Conclusion . 150
Bibliography . 153

I

Thesis

1

Chapter 1

Introduction

Hierarchical scheduling has shown to be a useful approach insupporting modu-
larity of real-time software [1] by providing temporal partitioning among appli-
cations. In hierarchical scheduling, a system can be hierarchically divided into
a number of subsystems that are scheduled by a global (system-level) sched-
uler. Each subsystem contains a set of tasks that are scheduled by a local
(subsystem-level) scheduler. The Hierarchical Scheduling Framework (HSF)
allows for a subsystem to be developed and analyzed in isolation, with its own
local scheduler. At a later stage, using a global scheduler such as Fixed Prior-
ity Scheduling (FPS), Earlier Deadline First (EDF) or Time Division Multiple
Access (TDMA), it allows for the integration of multiple subsystems without
violating the temporal properties of the individual subsystems. The subsystem
integration involves a system-level schedulability test,verifying that all timing
requirements are met. This approach by isolation of tasks within subsystems,
and allowing for their own scheduler, has several advantages including [2]:

• It allows for the usage of the best scheduler (e.g., FPS, EDF or TDMA)
that fit the requirements of each subsystem.

• By keeping a subsystem isolated from other subsystems, and keeping the
subsystem local scheduler, it is possible to re-use a complete subsystem
in a different application1from where it was originally developed.

1Assuming that the timing parameters of the internal tasks ofthe subsystem will not be changed
when the subsystem is re-used in a different application.

3

4 Chapter 1. Introduction

• Hierarchical scheduling frameworks naturally supportconcurrent devel-
opmentof subsystems.

Over the years, there has been a growing attention to HSFs forreal-time
systems. Deng and Liu [3] proposed a two-level hierarchicalscheduling frame-
work for open systems, where subsystems may be developed andvalidated in-
dependently in different environments. Kuo and Li [4] presented schedulabil-
ity analysis techniques for such a two-level framework withthe fixed-priority
global scheduler. Lipari and Baruah [5, 6] presented schedulability analysis
techniques for the EDF-based global schedulers. Moket al. [7, 8] proposed
the bounded-delay virtual processor model to achieve a clean separation in a
multi-level HSF. In addition, Shin and Lee [1] introduced the periodic virtual
processor model (to characterize the periodic CPU allocation behaviour), and
many studies have been proposed on schedulability analysiswith this model
under fixed-priority scheduling [9, 10, 11] and under EDF scheduling [1, 12].
Being central to this thesis, the virtual periodic resourcemodel is presented
in detail in Chapter 3. More recently, Easwaranet al. [13] introduced Ex-
plicit Deadline Periodic (EDP) virtual processor model. However, a common
assumption shared by all above studies is that tasks are independent.

In this thesis we address the challenges of enabling efficient compositional
integration preserving temporal behavior for independently developed semi-
independent subsystems (i.e., subsystems are allowed to synchronize by the
sharing of logical resources) in open systems where subsystems can be devel-
oped independently. Efficient compositional integration means that the system
should require as little CPU-resources as possible, allowing more subsystems
to be integrated in a single processor. Achieving efficient compositional inte-
gration makes the HSF a cost-efficient approach applicable for a wide domain
of applications, including, automotive, automation, aerospace and consumer
electronics.

There have been studies on supporting resource sharing within subsys-
tems [9, 4] and across subsystems [14, 15, 16] in HSFs. Davis and Burns [14]
proposed the Hierarchical Stack Resource Policy (HSRP) supporting global
resource sharing on the basis of an overrun mechanism. The schedulability
analysis associated with the HSRP does not support independent subsystem
development (i.e., when performing schedulability analysis for internal tasks
of a subsystem using HSRP, information about other subsystems should be
provided). Fisheret al. [16] proposed the BROE server in order to handle
sharing of logical resources in a HSF. A detailed description of these proto-
cols and a comparison between our proposed protocol and these protocols is

1.1 Contributions 5

presented in Chapter 4.
Our overall goal of this thesis is to propose a scheduling framework and

synchronization protocols that are able to fulfill the following requirements;

• With acceptable implementation overhead, it should be possible to im-
plement the HSF in commercial real-time operating systems.

• The framework should support sharing of logical resources between sub-
systems while preserving the timing predictability and thereby allowing
for temporal requirements of the system.

• No knowledge about the parameters of other subsystems is required
when developing a subsystem, even in the case when there are depen-
dencies between subsystems (semi-independent subsystems) inherent in
the sharing of logical resources.

• The HSF should use the CPU-resources efficiently by minimizing the
collective CPU requirement (i.e., system load) necessary to guarantee
the schedulability of an entire framework.

1.1 Contributions

The contributions presented in this thesis can be divided into three parts:

Implementation Over the years, there has been a growing attention to HSFs
for real-time systems. However, up until now, those studieshave mainly worked
on various aspects of HSFs from a theoretical point of view. To our knowledge,
there are very few studies that focus on the implementation of HSF, especially
looking at what can be done with commercial operating systems.

We present our work towards a full implementation of the hierarchical
scheduling framework in the VxWorks commercial operating system without
changing or modifying the kernel of the operating system. Moreover, to show
the efficiency of the implementation, we measure the overheads imposed by the
implementation as a function of number of subsystems and number of tasks for
both FPS and EDF local and global schedulers.

Supporting shared resources Allowing tasks from different subsystems to
share logical resources imposes more complexity for the scheduling of sub-
systems. A proper synchronization protocol should be used to prevent unpre-
dictable timing behavior of the real-time system. Since there are dependencies

6 Chapter 1. Introduction

between subsystems though sharing of logical resources, using the protocol
with the HSF should not require any information from other subsystems when
developing a subsystem in order to not violate the requirement of developing
subsystems independently (support open systems).

We present the SIRAP protocol, a novel approach to allow synchroniza-
tion of semi-independent hierarchically scheduled subsystems. We present the
deduction of bounds on the timing behaviour of SIRAP together with accom-
panying formal proofs and we evaluate the cost of using this protocol in terms
of the extra CPU-resources that is required by the usage of the protocol.

In addition to SIRAP, we extend the schedulability analysisof HSRP [14]
so that it allows for independent analysis of individual semi-independent sub-
systems. And also, we propose an enhanced overrun mechanismthat gives two
benefits (compared with the old version of overrun mechanism): (1) it may in-
crease schedulability within a subsystem by providing CPU allocations more
efficiently, and (2) it can even accept subsystems which developed their timing
requirements without knowing that the proposed modified overrun mechanism
would be employed in the system.

Efficient CPU-resources usage As mentioned previously, one of the require-
ments that the proposed framework should provide, is to minimize the system
load. This can be achieved by finding optimal subsystem timing interfaces
(specifies the collective temporal requirements of a subsystem) that minimize
the system load. Supporting shared resources across subsystems produces in-
terference among subsystems which imposes more CPU demandsfor each sub-
system and makes the problem of minimizing the system load more complex.

We identify a tradeoff between reducing the time that a subsystem can
block other subsystems when accessing a shared resource (locking time which
is a part of subsystem timing interface) and decreasing the system load. Se-
lecting the optimal subsystem interface for a subsystem requires information
from other subsystems that the subsystem will interact with. However, the re-
quired information may not be available during the development stage of the
subsystem and in this case we may not be able to select the optimal interface.
To solve the problem of selecting an optimal interface for each subsystem, we
propose a two-step approach towards the system load minimization problem.
In the first step, a set of interface candidates, that have a potential to produce
an optimal system load, is generated for each subsystem in isolation. In the
second step, one interface will be selected for each subsystem from its own
candidates to find the minimum resulting system load. We provide one algo-
rithm for each step and we also prove the correctness and the optimality of the

1.2 Outline of thesis 7

provided algorithms formally.

1.2 Outline of thesis

The outline of this thesis is as follows: in Chapter 2 we explain and define the
basic concepts for real-time systems and the terms that willbe used throughout
this thesis and in addition we present the system model. In Chpater 3 we de-
scribe the hierarchical scheduling framework and the associated schedulability
analysis assuming that the subsystems are fully independent. In Chapter 4 we
address the problem of allowing dependency through sharinglogical resource
between subsystem and we present some solutions for this problem. In Chapter
5 we present our conclusion and suggestions for future work.We present the
technical overview of the papers that are included in this thesis in Chapter 6
and we present these papers in Chapters 7-10.

Chapter 2

Background

In this chapter we present some basic concepts concerning real-time systems,
as well as some methods that will be used in the next chapters.

2.1 Real-time systems

A real-time system is a computing system whose correctness relies not only on
the functionality, but also on timeliness, i.e., the systemshould produce correct
results at correct instances of time. Real-time systems areusually constructed
using concurrent programs calledtasksand each task is supposed to perform
a certain functionality (for example reading a sensor value, computing output
values, sending output values to other tasks or devices, etc). A real-time task
should complete its execution before a predefined time called deadline.

Real-time tasks can be classified according to their timing constraint to ei-
ther hard real-time tasks orsoft real-time tasks. For hard real-time tasks, all
tasks should complete their execution before their deadlines otherwise a catas-
trophic consequence may occur. However, for soft real-timetasks, it is accept-
able that deadlines are missed which may degrade the system performance, for
example consider a mobile phone where missing some deadlines will decrease
the quality of the sound. Many systems contain a mix of hard and soft real-time
tasks.

A real-time task consists of an infinite sequence of activities called jobs,
and depending on the way of task triggering, real-time tasksare modeled as
either anaperiodic taskor asporadic taskor aperiodic task:

9

10 Chapter 2. Background

• Aperiodic tasks are triggered at arbitrary times, with no known minimum
inter-arrival time.

• Sporadic tasks have known minimum inter-arrival time.

• Periodic tasks have a fixed inter-arrival time called period.

Depending on the task model, each task is characterized by timing parame-
ters including task period (periodic task), worst case execution time, deadline,
etc.

2.2 System model

In this thesis we focus on scheduling of a single node. Each node is modeled
as a systemS which consists of one or more subsystemsSs ∈ S. The schedul-
ing framework is a two-level hierarchical scheduling framework as shown in
Fig 2.1. During run-time, the system level scheduler (Global scheduler) selects
which subsystem that will access the CPU-resources.

Global scheduler

Subsystem1

Local
scheduler

Subsystem2

Local
scheduler

Subsystemn

Local
scheduler

Figure 2.1: Two-level hierarchical scheduling framework with resource shar-
ing.

2.2.1 Subsystem model

A subsystemSs consists of a task set and a scheduler. Once a subsystem is
assigned the processor, the corresponding local schedulerwill select which

2.3 Scheduling algorithms 11

task that will be executed. Each subsystemSs is associated with a periodic
processor model (abstraction)Γs(Ps, Qs), wherePs andQs are the subsys-
tem period and budget respectively. This abstractionΓs(Ps, Qs) specifies the
collective temporal requirements of a subsystem and it is used as an interface
between the subsystem and the global scheduler (we refer to this abstraction as
subsystem timing interface).

2.2.2 Task model

In this thesis, we consider a deadline-constrained sporadic hard real-time task
modelτi(Ti, Ci, Di, {ci,j}) whereTi is a minimum separation time between
its successive jobs,Ci is a worst-case execution time requirement for one job,
Di is a relative deadline (Ci ≤ Di ≤ Ti) by which each job must have finished
its execution. Each task is allowed to access one or more logical resources and
each elementci,j in {ci,j} is a critical section execution timethat represents
a worst-case execution time requirement within a critical section of a global
shared resourceRj .

2.2.3 Shared resources

The presented hierarchical scheduling framework allows sharing of logical re-
source between tasks in a mutually exclusive manner. To access a resource
Rj , a task must first lock the resource, and when the task no longer needs the
resource it is unlocked. The time during which a task holds a lock is called a
critical section time. Only one task at a time may be inside a critical section
corresponding to a specific resource. A resource that is usedby tasks in more
than one subsystem is denoted aglobal shared resource. A resource only used
within a single subsystem is alocal shared resource. We are concerned only
with global shared resources and will simply denote them by shared resources.

2.3 Scheduling algorithms

In a single processor, the CPU can not be assigned to more thanone task to be
executed at the same time. If a set of tasks are ready to execute then a schedul-
ing criterion should be used to define the execution order of these tasks. The
scheduling criterion uses a set of rules defined by a scheduling algorithm to
determine the execution order of the task set. If all tasks complete their execu-
tion before their deadlines then the schedule is called a feasible schedule and

12 Chapter 2. Background

the tasks are said to be schedulable. If the scheduler permitother tasks to inter-
rupt the execution of the running task (task in execution) before completing of
its execution then the scheduling algorithm is called a preemptive algorithm,
otherwise it is called a non-preemptive scheduling algorithm.

Real-time scheduling algorithms fall in two basic categories; online sched-
ule and off-line schedule [17].

2.3.1 Online scheduling

For online scheduling, the order of task execution is determined during run-
time according to task priorities. The priorities of tasks can be static which
means that the priorities of tasks will not change during run-time. This type
of scheduling algorithm is called Fixed Priority Scheduling (FPS) and both
Rate Monotonic (RM) scheduling [18] and Deadline Monotonic(DM) [19]
use this type of scheduling. The task priorities can be dynamic which means
that they can change during run-time, and Earlier Deadline First (EDF) [18] is
an example of such scheduler.

RM and DM scheduling algorithms In RM, the priorities of the tasks are
assigned according to their periods; the priority of a task is proportional to the
inverse of the task period such that the task with shorter period will have higher
priority than the tasks with longer period. The priority of atask is fixed during
the run time. The RM scheduling algorithm assumes that tasksperiods equals
to tasks deadlines. Another FPS algorithm is DM which is similar to RM but
the priority depends on the task relative deadlines insteadof periods.

The schedulability analysis for each task using RM or DM is asfollows [20];

∀τi ∈ Γ, 0 < ∃t ≤ Di dbf(i, t) ≤ t. (2.1)

whereΓ is the set of tasks that will be scheduled andDi is the relative deadline
of the taskτi anddbf(i, t) is evaluated as follows;

dbf(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉
Ck, (2.2)

whereCi is the worst case execution time of the taskτi andTi is the task period
andHP(i) is the set of tasks with priority higher than that ofτi.

2.4 Logical resource sharing 13

EDF scheduling algorithm In this scheduling algorithm, the task that has
earlier deadline among all tasks that are ready to execute, will execute first. The
priority of the task is dynamic and can be changed during run-time depending
on the deadline of the task instant and other released tasks ready for execution.
The schedulability test for a set of tasks that use EDF is shown in Eq. (2.3) [21]
which includes the case when task deadlines are allowed to beless than or equal
to task periods.

∀t > 0,
∑

τi∈Γ

⌊ t + Ti − Di

Ti

⌋
· Ci ≤ t (2.3)

2.3.2 Offline scheduling

In offline scheduling, a schedule is created before run-time. The scheduling
algorithm can take into consideration the timing constrains of real-time tasks
such as execution time, deadline, precedence relation (if atask should execute
always before another task), etc. The resulting execution sequence is stored
in a table and then dispatched during run-time. Finding a feasible schedule
using offline scheduling should be done up to the hyper-period (LCM) of task
periods, and then, during the run-time, this hyper-period is repeated regularly.

2.4 Logical resource sharing

A resourceis any software structure that can be used by a task to advanceits
execution [22]. For example a resource can be a data structure, flash memory,
a memory map of a peripheral device. If more than one task use the same
resource then that resource is calledshared resource. The part of task’s code
that uses a shared resource is called critical section. Whena job enters a criti-
cal section (starts accessing a shred resource) then no other jobs, including the
jobs of higher priority tasks, can access the shared resource until the access-
ing job exits the critical section (mutual exclusion method). The reason is to
guarantee the consistency of the data in the shared resourceand this type of
shared resource is called nonpreemptable resource. For preemptive scheduling
algorithms, sharing logical resources cause a problem calledpriority inversion.
The priority inversion problem happen when a job with high priority wants to
access a shared resource that is currently accessed by another lower priority
job, so the higher priority job will not be able to preempt thelower priority
job. The higher priority job will be blocked until the lower priority job release

14 Chapter 2. Background

the shared resource. The time that the high priority job willbe blocked can be
unbounded since other jobs with intermediate priority thatdo not access the
shared resource can preempt the low priority job while it is executing inside
its critical section. As a result of the priority inversion problem, the higher
priority job may miss its deadline. A proper protocol shouldbe used to syn-
chronize the access to the shared resource in order to bound the waiting time of
the blocked tasks. Several synchronization protocols, such as the Priority In-
heritance Protocol (PIP) [23], the Priority Ceiling Protocol (PCP) [24] and the
Stack Resource Policy (SRP) [25], have been proposed to solve the problem
of priority inversion. We will explain the SRP protocol in details, a protocol
central for this thesis, suitable for RM, DM, and EDF scheduling algorithms.

2.4.1 Stack resource policy

To describe how SRP [25] works, we first define some terms that are used with
SRP.

• Preemption level. Each taskτi has a preemption level which is a static
value and proportional to the inverse of task relative deadlineπi = 1/Di,
whereDi is a relative deadline of taskτi.

• Resource ceiling. Each shared resourceRj is associated with a resource
ceiling which equal to the highest preemption level of all tasks that use
the resourceRj ; rcj = max{πi|τi accessesRj}.

• System ceiling. System ceiling is a dynamic parameter that change dur-
ing execution. The system ceiling is equal to the currently locked highest
resource ceiling in the system. If at any time there is no accessed shared
resource then the system ceiling would be equal to zero.

According to SRP, a jobJi generated by taskτi can preempt the currently
executing jobJk only if Ji is a higher-priority job ofJk and the preemption
level of τi is greater than the current subsystem ceiling.

2.4.2 Resource holding time

For a set of tasks that uses the SRP protocol, the duration of time that a taskτi

locks a shared resource, is calledresource holding time[26, 27] which equals to
the maximum task execution time inside a critical section plus the interference
(preemption inside the critical section) of higher priority tasks that have pre-
emption level greater than the ceiling of locked resource. The resource holding

2.4 Logical resource sharing 15

time can be computed depending on the scheduling algorithm in use, as shown
below;

Under FPS scheduling the resource holding timehj of a shared resource
Rj is [26];

WFPS
j (t) = cxj +

n∑

k=rcj+1

d
t

Tk

e · Ck, (2.4)

wherecxj is the maximum worst-case execution time inside the critical section
of all tasks that access resourceRj andn is the number of tasks.

The resource holding timehj is the smallest positive timet∗ such that

WFPS
j (t∗) = t∗. (2.5)

Under EDF scheduling the resource holding timehj of a shared resource
Rj is [27];

WEDF
j (t) = cxj +

n∑

k=rcj+1

(
min

(⌈ t

Tk

⌉
,
⌊Di − Dk

Tk

⌋
+ 1

))
· Ck, (2.6)

The resource holding timehj is the smallest positive timet∗ such that

WEDF
j (t∗) = t∗. (2.7)

An algorithm to decrease the resource holding time without violating the
schedulability of the system under the same semantics as that of SRP, was pre-
sented in [26, 27]. The algorithm works as follows; it increases the resource
ceiling of each shared resource to the next higher value (higher preemption
level than the ceiling of the resource) in steps and in each step it checks if
the schedule is still feasible or not. If the schedule is feasible then it contin-
ues increasing the ceiling of the resource until either the schedule becomes
infeasible or the ceiling of the task equals to the maximum preemption level.
The minimum resource holding time of a resourceRj is obtained when its
resource ceiling equal to the maximum preemption level of the task set. Note
that the resource holding time is a very important parameterfor the hierarchical
scheduling framework, as will be shown in Chapter 4.

Chapter 3

Real-Time Hierarchical
Scheduling Framework

In this chapter, we will describe the HSF assuming that all tasks are fully inde-
pendent, i.e., tasks are not allowed to share logical resources. While in the next
chapter we will consider the problem of accessing global shared resources.

3.1 Hierarchical scheduling framework

One of the important properties that the HSF can provide is the isolation be-
tween subsystems during design time and run-time such that the subsystems are
separated functionally for fault containment and for compositional verification,
validation and certification. The HSF guarantees independent execution of the
subsystems and it prevents one subsystem from causing a failure of another
subsystem through providing the CPU-resources needed for each subsystem.

Each subsystem specifies the amount of CPU-resources that are required to
schedule all internal tasks through its timing interface. And the global sched-
uler will provide the required CPU-resources for all subsystems as specified by
the timing interfaces of the subsystems.

In the following sections, we will explain how to evaluate the subsystem
timing interface and also show how to verify whether the global scheduler
can supply the subsystems with required resources using global schedulabil-
ity analysis.

Given a subsystem timing interface, it is required to check if the interface

17

18 Chapter 3. Real-Time Hierarchical Scheduling Framework

can guarantee that all hard real-time tasks in the subsystemwill meet their
deadlines using this interface. This check is done by applying local schedula-
bility analysis. But before presenting the local schedulability analysis, we will
explain the virtual processor resource model which will be used in the local
schedulability analysis.

3.2 Virtual processor model

The notion of real-time virtual processor (resource) modelwas first introduced
by Mok et al. [7] to characterize the CPU allocations that a parent node pro-
vides to a child node in a hierarchical scheduling framework. TheCPU supply
of a virtual processor model refers to the amount of CPU allocations that the
virtual processor model can provide. Thesupply bound functionof a virtual
processor model calculates the minimum possible CPU supplyof the virtual
processor model for a time interval lengtht.

Shin and Lee [1] proposed the periodic virtual processor model Γ(P, Q),
whereP is a period (P > 0) andQ is a periodic allocation time (0 < Q ≤ P).
The capacityUΓ of a periodic virtual processor modelΓ(P, Q) is defined as
Q/P . The periodic virtual processor modelΓ(P, Q) is defined to characterize
the following property:

supplyΓ

(
kP, (k + 1)P

)
= Q, wherek = 0, 1, 2, . . . , (3.1)

where the supply functionsupplyRs
(t1, t2) computes the amount of CPU allo-

cations that the virtual processor modelRs provides during the interval[t1, t2).
For the periodic modelΓ(P, Q), its supply bound functionsbfΓ(t) is de-

fined to compute the minimum possible CPU supply for every interval lengtht
as follows:

sbfΓ(t) =






t − (k + 1)(P − Q) if t ∈ [(k + 1)P − 2Q,
(k + 1)P − Q],

(k − 1)Q otherwise,
(3.2)

wherek = max
(⌈(

t − (P − Q)
)
/P

⌉
, 1

)
. Here, we first note that an interval

of lengtht may not begin synchronously with the beginning of periodP . That
is, as shown in Figure 3.1, the interval of lengtht can start in the middle of
the period of a periodic modelΓ(P, Q). We also note that the intuition of
k in Eq. (3.2) basically indicates how many periods of a periodic model can

3.3 Schedulability analysis 19

0 1 2 3 4 5 6 7 8 9 10
t

sb
f(

t)

P

Q

P P P

Q QQ

(k-1)P
BD =
2P-2Q

Figure 3.1: The supply bound function of a periodic virtual processor model
Γ(P, Q) for k = 3.

overlap the interval of lengtht, more precisely speaking, the interval of length
t− (P −Q). Figure 3.1 illustrates the intuition ofk and how the supply bound
functionsbfΓ(t) is defined fork = 3.

3.3 Schedulability analysis

This section presents the schedulability analysis of the HSF, starting with local
schedulability analysis needed to calculate subsystem interfaces, and finally,
global schedulability analysis.

3.3.1 Local schedulability analysis

Let dbfEDF(i, t) denote the demand bound function of a taskτi under EDF
scheduling [28], i.e.,

dbfEDF(i, t) =
⌊ t + Ti − Di

Ti

⌋
· Ci. (3.3)

The local schedulability condition under EDF scheduling isthen ([1])

20 Chapter 3. Real-Time Hierarchical Scheduling Framework

∀t > 0
∑

τi∈Γ

dbfEDF(i, t) ≤ sbf(t), (3.4)

LetdbfFP(i, t) denote the demand bound function of a taskτi under FPS [20],
i.e.,

dbfFP(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉
· Ck, (3.5)

whereHP(i) is the set of tasks with higher priorities than that ofτi. The local
schedulability analysis under FPS can then easily be extended from the results
of [25, 1] as follows:

∀τi, 0 < ∃t ≤ Di dbfFP(i, t) ≤ sbf(t). (3.6)

3.3.2 Global schedulability analysis

The global scheduler schedules subsystems in a similar way as scheduling sim-
ple real-time periodic tasks. The reason is that we are usingthe periodic re-
source model to abstract the collective timing temporal requirements of sub-
systems, so the subsystem can be modeled as a simple periodictask where the
subsystem period is equivalent to the task period and the subsystem budget is
equivalent to the task execution time. Depending on the global scheduler (if it
is EDF, RM or DM), it is possible to use the schedulability analysis methods
used for scheduling periodic tasks (presented in section 2.3) in order to check
the global schedulability.

3.4 Subsystem interface calculation

Using HSF, a subsystemSs is assigned fraction of CPU-resources which equals
to Qs/Ps. It is required to decrease the required CPU-resources fraction for
each subsystem as much as possible without affecting the schedulability of its
internal tasks. By decreasing the required CPU-resources for all subsystems,
the overall CPU demand required to schedule the entire system (system load)
will be decreased, and by doing this, more applications can be integrated in a
single processor.

To evaluate the minimum CPU-resources fraction required for a subsystem
Ss and givenPs, let calculateBudget(Ss, Ps) denote a function that calculates

3.4 Subsystem interface calculation 21

the smallest subsystem budgetQs that satisfies Eq. (3.4) and Eq. (3.6). Hence,
Qs = calculateBudget(Ss, Ps). The function is a searching function simi-
lar to the one presented in [1] and the resulting subsystem timing interface is
(Ps, Qs).

Chapter 4

Hierarchical Scheduling with
Resource Sharing

In this chapter we extend the HSF that was presented in the previous chapter
and allow tasks from different subsystems to share global resources. We are
concerned only with global shared resources while managingof local shared
resources can be done by using several existing synchronization protocols such
as PIP, PCP, and SRP (see [9, 14, 4] for more details).

First, we explain the problem of supporting logical resources followed by
discussing some solutions. Later, we show the effect of supporting sharing
of global shared resources on the system load required to schedule the entire
system.

4.1 Problem formulation

When a task access a shared resource, all other tasks that want to access the
same resource will be blocked until the task that is accessing the resource re-
leases it. To achieve a predictable real-time behaviour, the waiting time of
other tasks that want to access a locked shared resource should be bounded.
The traditional synchronization protocols such as PIP, PCPand SRP that are
used with non-hierarchical scheduling, can not without modification, handle
the problem of sharing global resources in hierarchical scheduling framework.
To explain the reason, suppose a taskτj that belongs to a subsystemSI is hold-
ing a logical resourceR1, the execution of the taskτj can be preempted while

23

24 Chapter 4. Hierarchical Scheduling with Resource Sharing

��� �� ���� �	

��
�
�������� ��������� �� ����

�������� �	 � � !" �	
��
�
���#�$�%$ ��������� ���� �	&'(�()* �(��
��
�
���+�,-.�/, ��������� �0
12 34356789: 8:;8<3 =>1? 34356789: 8:;8<3 =>

Figure 4.1: Task preemption while running inside a criticalsection.

τj is executing inside the critical section of the resourceR1 (see Fig 4.1) due
to the following reasons:

1. Inter subsystem preemption, a higher priority taskτk within the same
subsystem preempts the taskτj .

2. Intra subsystem preemption, a ready taskτc that belongs to a subsys-
tem SP preemptsτj when the priority of subsystemSP is higher than
the priority of subsystemSI .

3. Budget expiry inside a critical section, if the budget of the subsystem
SI expires, the taskτj will not be allowed to execute until the budget of
its subsystem will be replenished at the beginning of the next subsystem
periodPI .

The PIP, PCP and SRP protocols can only solve the problem caused by task
preemption within a subsystem (case number1) since there is a direct relation-
ship between the priorities of tasks within the same subsystem. However, if
tasks are from different subsystems (intra task preemption) then priorities of
tasks belonging to different subsystems are independent ofeach other, which
make these protocols not suitable to be used directly to solve this problem.
One way to solve this problem is by using the protocols PIP, PCP and SRP be-
tween subsystems such that if a task that belongs to a subsystem lock a global
resource, then this subsystem blocks all other subsystems where their internal
tasks want to access the same global shared resource.

4.2 Supporting logical resource sharing 25

Another problem of directly applying PIP, PCP and SRP protocols is that of
budget expiry inside critical section. The subsystem budget QI is said toexpire
at the point when one or more internal (to the subsystem) tasks have executed
a total ofQI time units within the subsystem periodPI . Once the budget is
expired, no new tasks within the same subsystem can initiateexecution until
the subsystem’s budget is replenished. This replenishmenttakes place in the
beginning of each subsystem period, where the budget is replenished to a value
of QI .

Budget expiration can cause a problem, if it happens while a taskτj of a
subsystemSI is executing within the critical section of a global shared resource
R1. If another taskτm, belonging to another subsystem, is waiting for the same
resourceR1, this task must wait untilSI is replenished soτj can continue to
execute and finally release the lock on resourceR1. This waiting time exposed
to τm can be potentially very long, causingτm to miss its deadline.

4.2 Supporting logical resource sharing

Several mechanisms have been proposed to enable resource sharing in hier-
archical scheduling framework. These mechanisms use different methods to
handle the problem of bounding the waiting time of other tasks that are waiting
for a shared resource. Most of them use the SRP protocol to synchronize access
to a shared resource within a subsystem to solve the problem of inter subsystem
preemption, and they also use SRP among subsystems to solve the problem of
intra subsystem preemption. Note that the effect of using SRP with both local
and global scheduling should be considered during the schedulability analysis.

In general, solving the problem of budget expiry inside a critical section is
based on two approaches;

• Adding extra resources to the budget of each subsystem to prevent the
budget expiration inside a critical section.

• Preventing a task from locking a shared resource if its subsystem does
not have enough remaining budget.

The following sections explain these mechanisms in detail.

4.2.1 BWI

The BandWidth Inheritance protocol (BWI) [29] extends the resource reserva-
tion framework to systems where tasks can share resources. The BWI approach

26 Chapter 4. Hierarchical Scheduling with Resource Sharing

uses (but is not limited to) the CBS algorithm together with atechnique that is
derived from the Priority Inheritance Protocol (PIP). According to BWI, each
task is scheduled through a server, and when a task that executed inside lower
priority server blocks another task executed in higher priority server, the block-
ing task will be added to the higher priority server. When thetask releases the
shared resource, then it will be discarded from the high priority server. For
schedulability analysis, each server should be characterized by an interference
time due to adding lower priority tasks in the server. This approach is suitable
for systems where the execution time of a task inside critical section can not
be evaluated. In addition, the scheduling algorithm does not require any prior
knowledge about which shared resources that tasks will access nor the arrival
time of tasks. However, BWI is not suitable for systems that consist of many
hard real-time tasks. The reason is that the interference (that includes the sum-
mation of the execution times inside the critical section) from the lower priority
tasks will be added to the budget of a hard real-time task server to guarantee
that the task will not miss its deadline. Hence, BWI becomes pessimistic in
terms of CPU-resources usage for hard real-time tasks.

4.2.2 HSRP

The Hierarchical Stack Resource Policy (HSRP) [14] extendsthe SRP proto-
col to be appropriate for hierarchical scheduling frameworks with tasks that
access global shared resources. HSRP is based on the overrunmechanism
which works as follows: when the budget of a subsystem expires and the sub-
system has a jobJi that is still locking a global shared resource, the jobJi

continues its execution until it releases the locked resource. When a job access
a global shared resources its priority is increased to the highest local priority to
prevent any preemption during the access of shared resourcefrom other tasks
that belong to the same subsystem. SRP is used in the global level to syn-
chronize the execution of subsystems that have tasks accessing global shared
resources. Each global shared resource has a ceiling equal to the maximum
priority of subsystems that has a task accessing that resource. Two versions of
the overrun mechanisms have been presented; 1) The overrun mechanism with
payback which works as follows, whenever overrun happens ina subsystem
Ss, the budget of the subsystem will be decreased by the amount of the over-
run time in its next execution instant. 2) In the second version which is called
overrun mechanism without payback, no further actions willbe taken after the
event of an overrun. Selecting which of these two mechanismsthat can give
better results in terms of task response times depends on thesystem param-

4.2 Supporting logical resource sharing 27

eters. The presented schedulability analysis does not support composability,
disallowing independent analysis of individual subsystems since information
about other subsystems is needed in order to apply the schedulability analysis
for all tasks. In addition, HSRP does not provide a complete separation be-
tween the local and the global schedulers. The local scheduler should inform
the global scheduler to let the server continue executing when a budget expiry
inside a critical section problem happens and then the localscheduler should
inform the global scheduler when its task releases the global shared resource.

4.2.3 BROE

The Bounded-delay Resource Open Environment (BROE) server[16] extends
the Constant Bandwidth Server (CBS) [30] in order to handle the sharing of
logical resources in a HSF. The BROE server is suitable for open systems
since it allows for each application to be developed and validated indepen-
dently. For each application, the maximum CPU-resources demand is char-
acterized by server speed, delay tolerance (using the bounded-delay resource
partition [7]) and resource holding time. These parameterswill be used as an
interface between the application and the system schedulerso that the system
scheduler will schedule all servers according to their interface parameters. The
interface parameters will also be used during the admissioncontrol of new
applications to check if there is enough CPU-resources to run this new appli-
cation on the processor. The BROE server uses the SRP protocol to arbitrate
access to global shared resources and in order to prevent thebudget expiration
inside critical section problem, the application performsa budget check before
accessing a global shared resource. If the application has sufficient remaining
budget then it allows its task to lock the global resource otherwise it postpones
its current deadline and replenishes its budget (accordingto certain rules that
guarantee the correctness of the CBS servers execution) to be able to lock and
release the global resource safely. Comparing the BROE server with HSRP,
BROE does not need more resources to handle the problem of budget expiry in
the global level while HSRP may require more resources sinceit uses an over-
run mechanism and the overrun time should be taken into account in the global
scheduling. However, the only scheduling algorithm that issuitable for the
presented version of the BROE server is EDF which is one of thelimitations of
this approach. In addition, in [16], the authors didn’t explain how to evaluate
the value of the resource holding time for BROE server (the authors left this
issue to a future submission) and how this value may affect the CPU-resources
usage locally and globally.

28 Chapter 4. Hierarchical Scheduling with Resource Sharing

4.2.4 SIRAP

The Subsystem Integration and Resource Allocation Policy (SIRAP) [15] pro-
tocol supports subsystem integration in the presence of shared logical resources.
SIRAP can be used in an open systems. It uses a periodic resource model to ab-
stract the timing requirements of each subsystem. Each subsystem is character-
ized by its period and budget and resource holding time and itis implemented
as a simple periodic server. SIRAP uses the SRP protocol to synchronize the
access to global shared resources in both local and global scheduling. SIRAP
applies a skipping approach to prevent the budget expiration inside critical sec-
tion which works as follows; when a job wants to enter a critical section, it
enters the critical section at the earliest instant such that it can complete the
critical section before the subsystem budget expires. Thiscan be achieved by
checking the remaining budget before granting the access tothe global shared
resources, if there is sufficient remaining budget then the job enters the critical
section. If there is insufficient remaining budget, the local scheduler delays
the critical section entering of the job until the next subsystem budget replen-
ishment. Comparing SIRAP and BROE, both provide better isolation between
the global and the local schedulers than HSRP since they solve the problem
of budget expiry inside a critical section locally. However, using HSRP, it is
not required to include the resource holding time in the interface of subsystems
during run-time and its required only for schedulability analysis while the re-
source golding times are required during run-time for SIRAPand BROE. Both
SIRAP and BROE do not need extra resources in the global scheduling level.
The SIRAP protocol needs extra resources in the local level scheduling when
it increases the resource demand of the subsystem and for BROE it is not clear
since the way of evaluating resource holding time was not presented. Another
difference between BROE and SIRAP is that the SIRAP protocoluses FPS as
a global scheduling algorithm and can be easily adapted to include local and
global EDF while BROE can only work with EDF as a global scheduler.

4.3 Subsystem interface and resource sharing

Supporting shared resources across subsystems produces interference among
subsystems which imposes more CPU demands for each subsystem. In the
local schedulability analysis and because of using SRP locally, the blocking
times should be added to the maximum resources demand side inEq. (3.4) and
Eq. (3.6) and this will increase the minimum required subsystem budgetQs.
In the global level and because of using SRP between subsystems, the block-

4.3 Subsystem interface and resource sharing 29

ing time (resource holding time1) that a subsystem may block other subsys-
tems should be added to the global schedulability analysis.So for the global
schedulability analysis the subsystem interface should include in addition to
the subsystem period and budget, the maximum resource holding time for each
global shared resource that the internal tasks of the subsystem may access.
One way to decrease the amount of information of subsystem interface needed
for global schedulability analysis, can be by considering that the subsystem
will access all global resources, then it is required to provide the maximum re-
source holding time of all internal tasks that access the global shared resources.
The subsystem timing interface of a subsystemSs for this case is (Ps, Qs, Hs)
whereHs is the maximum resource holding time of all internal tasks ofSs that
access global shared resources. Finally the extra CPU demand that is required
to solve the problem of budget expiry inside the critical section depends on the
used mechanism.

As mentioned previously, a subsystem can be blocked in accessing a global
shared resource, if there is another subsystem locking the resource at the mo-
ment. Such blocking imposes more CPU demands, resulting in an increase of
the system load. Therefore, subsystems can reduce their resource holding time,
for example, using the mechanism presented in [26, 27] by increasing the re-
source ceiling of the global shared resources locally inside the subsystems, in
order to potentially reduce the blocking of other subsystems towards decrease
of the system load. However, we have found that decreasing the value of re-
source holding times may increase the required budget of thesame subsystem
Qs and it may increase the system load.

1In paper D we use the term resource locking time instead of resource holding time to remove
any confusion since the term resource holding time was firstly presented in the context of non-
hierarchical scheduling.

Chapter 5

Conclusions

5.1 Summary

We have implemented a HSF in a commercial operating system (VxWorks)
without changing the kernel of the operating system. Each subsystem has been
implemented using periodic servers. As most commercial real-time operating
system, VxWorks does not support the periodic activation oftasks. In order to
enable periodic activations of tasks and servers, we have used a timer and an
interrupt service rutin. We have measured the overhead of the implementation
and the results shows that a hierarchical scheduling framework can effectively
achieve the clean separation of subsystems in terms of timing interference (i.e.,
without requiring any temporal parameters of other subsystems) with reason-
able implementation overheads.

We have also investigated the problem of supporting sharingof logical re-
sources and we have presented a novel Subsystem Integrationand Resource
Allocation Policy (SIRAP), which is a synchronization protocol providing tem-
poral isolation between subsystems that share logical resources. Furthermore,
we have formally proven key features of SIRAP such as bounds on delays for
accessing shared resources. Also we have provided schedulability analysis for
tasks executing in the subsystems; allowing for use of hard real-time applica-
tions within the SIRAP framework. Naturally, the flexibility and predictability
offered by SIRAP comes with some costs in terms of overhead. We have eval-
uated this overhead through a comprehensive simulation study.

In addition, we have proposed new overrun mechanisms based on the ap-
proach presented in [14], for hierarchical scheduling frameworks, that can be

31

32 Chapter 5. Conclusions

used in the domain of open systems. We have presented both independent
local schedulability analysis as well as global schedulability analysis for the
proposed overrun mechanism as well as the existing basic overrun. We have
presented analysis of when one overrun mechanism is better than the other and
the results indicate that in the general case it is not trivial to evaluate which
overrun mechanism that is better than the other.

We have focused on assigning the CPU-resources to subsystems in an ef-
ficient way such that the resulting system load will be as low as possible. We
introduced a tradeoff between decreasing the resource locking time and the
system load, and we presented a two-step approach to explorethe intra and
inter-subsystem aspects of the tradeoff efficiently, towards determining opti-
mal subsystem interfaces constituting the minimum system load.

5.2 Future work

The work presented in this thesis has left and opened some issues that would
be interesting to be investigated in the future. Some of the issues that will be
presented are general and some others are specific for each paper.

Starting from general issues, in this work we assume that a system is ex-
ecuted in a single processor while many real-time applications are distributed
into several processors that communicate through some communication net-
work. Also, complementing single processor systems, othersystems are exe-
cuted in a multi-processor or multi-core architecture. It will be interesting to
extend the HSF include the distributed systems and multi-processor systems.

We would also like to include the subsystem context-switch in the schedu-
lability analysis and check whether using non-preemptive global scheduling
can be more efficient than preemptive scheduler in terms of CPU-resources
usage. Note that a subsystem context-switch has more overhead than a task
context-switch because if a subsystem gets preempted be another subsystem
then the scheduler should remove the first subsystem and all its associated
tasks and add the higher priority subsystem with all ready tasks that belong
to the second subsystem, which takes longer time and could beexpensive.

Another interesting work will be on supporting shared resources in multi-
level hierarchical scheduling frameworks since we only consider a two-level
hierarchical scheduling framework. Also we would like to consider other re-
source models such as the EDP resource model [13]. Finally itis important to
test our framework with real applications by doing case studies.

5.2 Future work 33

Paper A In the next stage of the implementation of the HSF, we intend to
implement synchronization protocols in hierarchical scheduling frameworks,
e.g., using SIRAP [15] and HSRP [14]. In addition, our futurework includes
supporting sporadic tasks in response to specific events such as external in-
terrupts. We also plan to support soft aperiodic tasks in an efficient way to
increase the quality of service of the soft tasks. Moreover,we intend to ex-
tend the implementation to make it suitable for more advanced architectures
including multi-core processors.

Paper B Future work includes investigating the effect of the context-switch
overhead on subsystem utilization together with the subsystem period and the
maximum value ofhi.

Paper C Future work includes finding the exact schedulability analysis for
the enhanced overrun mechanism, since the presented analysis merely gives
upper bound. We would like to include the development of local and global
schedulability analysis for Fixed Priority Scheduling (FPS), as the current re-
sults only consider Earliest Deadline First (EDF). Anotherinteresting issue is
to compare the implementation of the enhanced overrun mechanism with other
synchronization mechanisms such as BWI [29], BROE server [16] and SIRAP
[15].

Paper C In this paper, we considered only Fixed Priority Scheduling(FPS),
and we plan to extend our work to EDF scheduling. Furthermore, our future
work includes generalizing our framework to other synchronization protocols
such as BROE server [16] and SIRAP [15].

Chapter 6

Overview of Papers

6.1 Paper A

Moris Behnam, Thomas Nolte, Insik Shin, MikaelÅsberg, Reinder J. Bril,
Towards Hierarchical Scheduling on top of VxWorks, In Proceedings of the4th

International Workshop on Operating Systems Platforms forEmbedded Real-
Time Applications (OSPERT’08), pages 63-72, Prague, CzechRepublic, July,
2008.

Summary Over the years, we have worked on hierarchical scheduling frame-
works from a theoretical point of view. In this paper we present our initial
results of the implementation of our hierarchical scheduling framework in a
commercial operating system VxWorks. The purpose of the implementation
is twofold: (1) we would like to demonstrate feasibility of its implementation
in a commercial operating system, without having to modify the kernel source
code, and (2) we would like to present detailed figures of various key properties
with respect to the overhead of the implementation. During the implementation
of the hierarchical scheduler, we have also developed a number of simple task
schedulers. We present details of the implementation of Rate-Monotonic (RM)
and Earliest Deadline First (EDF) schedulers. Finally, we present the design
of our hierarchical scheduling framework, and we discuss our current status in
the project.

35

36 Chapter 6. Overview of Papers

My contribution The results of this paper was based on the results of a mas-
ter project under the supervision of Moris Behnam.

6.2 Paper B

Moris Behnam, Insik Shin, Thomas Nolte, Mikael Nolin,SIRAP: A Synchro-
nization Protocol for Hierarchical Resource Sharing in Real-Time Open Sys-
tems, In Proceedings of the7th ACM & IEEE International Conference on
Embedded Software (EMSOFT’07), pages 279-288, Salzburg, Austria, Octo-
ber, 2007.

Summary This paper presents a protocol for resource sharing in a hierar-
chical real-time scheduling framework. Targeting real-time open systems, the
protocol and the scheduling framework significantly reducethe efforts and er-
rors associated with integrating multiple semi-independent subsystems on a
single processor. Thus, our proposed techniques facilitate modern software de-
velopment processes, where subsystems are developed by independent teams
(or subcontractors) and at a later stage integrated into a single product. Using
our solution, a subsystem need not know, and is not dependenton, the tim-
ing behaviour of other subsystems; even though they share mutually exclusive
resources. In this paper we also prove the correctness of ourapproach and
evaluate its efficiency.

My contribution The basic idea of this paper was suggested by Moris Behnam.
The work was done in cooperation with Moris and Insik Shin, and Moris was
responsible for the evaluation part of the paper and he was also involved in the
schedulability analysis.

6.3 Paper C

Moris Behnam, Insik Shin, Thomas Nolte, Mikael Nolin,Scheduling of Semi-
Independent Real-Time Components: Overrun Methods and Resource Holding
Times, In Proceedings of the13th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA’08), IEEE Industrial Electronics
Society, Hamburg, Germany, September, 2008.

6.4 Paper D 37

Summary The Hierarchical Scheduling Framework (HSF) has been intro-
duced as a design-time framework enabling compositional schedulability anal-
ysis of embedded software systems with real-time properties. In this paper a
system consists of a number of semi-independent componentscalled subsys-
tems. Subsystems are developed independently and later integrated to form
a system. To support this design process, our proposed methods allow non-
intrusive configuration and tuning of subsystem timing behaviour via subsys-
tem interfaces for selecting scheduling parameters. This paper considers two
methods to handle overruns due to resource sharing between subsystems in the
HSF. We present the scheduling algorithms for overruns and their associated
schedulability analysis, together with analysis that shows under what circum-
stances one or the other overrun method is preferred. Furthermore, we show
how to calculate resource-holding times within our framework.

My contribution The paper is based on an idea of Insik Shin but Moris has
done most of the work including the schedulability analysisfor enhanced over-
run mechanism and the comparison between the enhanced and the basic over-
run mechanism, as well as the simplified equation to evaluatethe resource
holding times with the required proofs.

6.4 Paper D

Insik Shin, Moris Behnam, Thomas Nolte, Mikael Nolin,Synthesis of Opti-
mal Interfaces for Hierarchical Scheduling with Resources, In Proceedings of
the29th IEEE International Real-Time Systems Symposium (RTSS08),IEEE
Press, Barcelona, Spain, December, 2008, (to be appear).

Summary This paper presents algorithms that (1) facilitate system indepen-
dent synthesis of timing-interfaces for subsystems and (2)system-level selec-
tion of interfaces to minimize CPU load. The results presented are developed
for hierarchical fixed-priority scheduling of subsystems that may share logical
recourses (i.e., semaphores). We show that the use of sharedresources results
in a tradeoff problem, where resource locking times can be traded for CPU
allocation, complicating the problem of finding the optimalinterface config-
uration subject to schedulability. This paper presents a methodology where
such a tradeoff can be effectively explored. It first synthesizes a bounded set
of interface-candidates for each subsystem, independently of the final system,
such that the set contains the interface that minimizes system load for any given

38 Chapter 6. Overview of Papers

system. Then, integrating subsystems into a system, it findsthe optimal selec-
tion of interfaces. Our algorithms have linear complexity to the number of
tasks involved. Thus, our approach is highly suitable for adaptable and recon-
figurable systems.

My contribution The paper was based on ideas of Moris and Insik. Moris
was responsible for developing the algorithms and prove their correctness and
optimality formally. Moris was also involved in the discussions and witting of
the other parts of the paper.

Bibliography

[1] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. InProceedings of the24th IEEE International Real-Time
Systems Symposium(RTSS’03), pages 2–13, Cancun, Mexico, December
2003.

[2] G. Lipari, P. Gai, M. Trimarchi, G. Guidi, and P. Ancilotti. A hierarchi-
cal framework for component-based real-time systems. InComponent-
Based Software Engineering, volume LNCS-3054/2004, pages 253–266.
Springer Berlin / Heidelberg, May 2005.

[3] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open en-
vironment. InProceedings of the18th IEEE International Real-Time Sys-
tems Symposium (RTSS’97), pages 308–319, San Francisco, CA, USA,
December 1997. IEEE Computer Society.

[4] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for
real-time applications. InProceedings of the20th IEEE International
Real-Time Systems Symposium (RTSS’99), pages 256–267, Phoenix, AZ,
USA, December 1999. IEEE Computer Society.

[5] G. Lipari and S. K. Baruah. Efficient scheduling of real-time multi-task
applications in dynamic systems. InProceedings of the6th IEEE Real-
Time Technology and Applications Symposium (RTAS’00), pages 166–
175, Washington DC, USA, May-June 2000. IEEE Computer Society.

[6] G. Lipari, J. Carpenter, and S. Baruah. A framework for achieving inter-
application isolation in multiprogrammed hard-real-timeenvironments.
In Proceedings of the21th IEEE International Real-Time Systems Sym-
posium(RTSS’00), pages 217–226, Orlando, FL, USA, December 2000.

39

40 Bibliography

[7] A. Mok, X. Feng, and D. Chen. Resource partition for real-time sys-
tems. InProceedings of IEEE Real-Time Technology and Applications
Symposium(RTAS), pages 75–84, Taipei, Taiwan ROC, May 2001.

[8] X. Feng and A. Mok. A model of hierarchical real-time virtual resources.
In Proceedings of the23th IEEE International Real-Time Systems Sym-
posium (RTSS’02), pages 26–35, Austin, TX, USA, December 2002.

[9] L. Almeida and P. Pedreiras. Scheduling within temporalpartitions:
response-time analysis and server design. InProceedings of the 4th ACM
international conference on Embedded software (EMSOFT ’04), pages
95–103, Pisa, Italy, September 2004.

[10] G. Lipari and E. Bini. Resource partitioning among real-time applica-
tions. InProceedings of the15th Euromicro Conference on Real-Time
Systems (ECRTS’03), pages 151–158, Porto, Portugal, July 2003. IEEE
Computer Society.

[11] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive schedul-
ing. In Proceedings of the26th IEEE International Real-Time Systems
Symposium (RTSS’05), pages 389–398, Miami Beach, FL, USA, Decem-
ber 2005.

[12] F. Zhang and A. Burns. Analysis of hierarchical EDF pre-emptive
scheduling. InProceedings of the28th IEEE International Real-Time
Systems Symposium (RTSS’07), pages 423–434, Washington, DC, USA,
December 2007. IEEE Computer Society.

[13] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using edp resource models. InProceedings of the28th IEEE Interna-
tional Real-Time Systems Symposium(RTSS’07), pages 129–138, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[14] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed pri-
ority pre-emptive systems. InProceedings of the27th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’06), pages 389–398, Rio de
Janeiro, Brazil, December 2006.

[15] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A synchroniza-
tion protocol for hierarchical resource sharing in real-time open systems.
In Proceedings of the 7th ACM and IEEE International Conference on
Embedded Software (EMSOFT’07), pages 279–288, Salzburg, Austria,
October 2007.

Bibliography 41

[16] N. Fisher, M. Bertogna, and S. Baruah. The design of an EDF-scheduled
resource-sharing open environment. InProceedings of the28th IEEE
International Real-Time Systems Symposium (RTSS’07), pages 83–92,
Washington, DC, USA, December 2007. IEEE Computer Society.

[17] J. A. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo.Implications
of classical scheduling results for Real-Time Systems. Technical Report
UM-CS-1993-023, University of Massachusetts, Amherst, June 1993.

[18] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment.Journal of the ACM, 20(1):40–61,
January 1973.

[19] J. Y. T. Leung and J. Whitehead. On the Complexity of Fixed-Priority
Scheduling of Periodic, Real-Time Tasks.Performance Evaluation
(Netherlands), 2(4):237–250, December 1982.

[20] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algo-
rithm: exact characterization and average case behavior. In Proceedings
of the20th IEEE International Real-Time Systems Symposium(RTSS’89),
pages 166–171, Santa Monica, CA, USA, December 1989. IEEE Com-
puter Society.

[21] S. Baruah, R. Howell, and L. Rosier. Algorithms and complexity concern-
ing the preemptive scheduling of periodic, real-time taskson one proces-
sor. Journal of Real-Time Systems, 2:301–324, 1990.

[22] G. Buttazzo.Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications,2nd ed. Springer, 2005.

[23] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task schedulingin distributed
real-time systems. InProceedings of the International Conference on In-
dustrial Electronics, Control, and Instrumentation IECON87, pages 909–
916, Cambridge, MA, USA, November 1987.

[24] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization pro-
tocols for multiprocessors. InProceedings of the9th IEEE International
Real-Time Systems Symposium (RTSS’88), pages 259–269, Huntsville,
AL, USA, December 1988. IEEE Computer Society.

[25] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time
Systems, 3(1):67–99, March 1991.

[26] M. Bertogna, N. Fisher, and S. Baruah. Static-priorityscheduling and re-
source hold times. InProceedings of the 15th International Workshop on
Parallel and Distributed Real-Time Systems(WPDRTS), pages 1–8, Long
Beach, CA, USA, March 2007.

[27] N. Fisher, M. Bertogna, and S. Baruah. Resource-locking durations in
EDF-scheduled systems. InProceedings of the13th IEEE Real Time and
Embedded Technology and Applications Symposium (RTAS’07), pages
91–100, Bellevue, WA, USA, 2007.

[28] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. InProceedings of the11th IEEE
International Real-Time Systems Symposium(RTSS’90), pages 182–190,
Lake Buena Vista, Florida, USA, December 1990. IEEE Computer Soci-
ety.

[29] G. Lipari, G. Lamastra, and L. Abeni. Task synchronization’ in
reservation-based real-time systems.IEEE Transactions on Computers,
53(12):1591–1601, December 2004.

[30] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard
real-time systems. InProceedings of the19th IEEE International Real-
Time Systems Symposium (RTSS’98), pages 4–13, Madrid, Spain, Decem-
ber 1998. IEEE Computer Society.

II

Included Papers

43

Chapter 7

Paper A:
Towards Hierarchical
Scheduling in VxWorks

Moris Behnam, Thomas Nolte, Insik Shin, MikaelÅsberg and Reinder J. Bril

In Proceedings of the4th International Workshop on Operating Systems Plat-
forms for Embedded Real-Time Applications (OSPERT’08), pages 63-72, Prague,
Czech Republic, July, 2008.

45

46 Paper A

Abstract

Over the years, we have worked on hierarchical scheduling frameworks
from a theoretical point of view. In this paper we present ourinitial results of
the implementation of our hierarchical scheduling framework in a commercial
operating system VxWorks. The purpose of the implementation is twofold: (1)
we would like to demonstrate feasibility of its implementation in a commercial
operating system, without having to modify the kernel source code, and (2) we
would like to present detailed figures of various key properties with respect to
the overhead of the implementation. During the implementation of the hierar-
chical scheduler, we have also developed a number of simple task schedulers.
We present details of the implementation of Rate-Monotonic(RM) and Ear-
liest Deadline First (EDF) schedulers. Finally, we presentthe design of our
hierarchical scheduling framework, and we discuss our current status in the
project.

7.1 Introduction 47

7.1 Introduction

Correctness of today’s embedded software systems generally relies not only on
functional correctness, but also on extra-functional correctness, such as satisfy-
ing timing constraints. System development (including software development)
can be substantially facilitated if (1) the system can be decomposed into a num-
ber of parts such that parts are developed and validated in isolation and (2) the
temporal correctness of the system can be established by composing the cor-
rectness of its individual parts. For large-scale embeddedreal-time systems, in
particular, advanced methodologies and techniques are required for temporal
and spatial isolation all through design, development, andanalysis, simplify-
ing the development and evolution of complex industrial embedded software
systems.

Hierarchical scheduling has shown to be a useful mechanism in supporting
modularity of real-time software by providing temporal partitioning among ap-
plications. In hierarchical scheduling, a system can be hierarchically divided
into a number of subsystems that are scheduled by a global (system-level)
scheduler. Each subsystem contains a set of tasks that are scheduled by a local
(subsystem-level) scheduler. The Hierarchical Scheduling Framework (HSF)
allows for a subsystem to be developed and analyzed in isolation, with its own
local scheduler, and then at a later stage, using an arbitrary global scheduler,
it allows for the integration of multiple subsystems without violating the tem-
poral properties of the individual subsystems analyzed in isolation. The in-
tegration involves a system-level schedulability test, verifying that all timing
requirements are met. Hence, hierarchical scheduling frameworks naturally
supportconcurrent developmentof subsystems. Our overall goal is to make hi-
erarchical scheduling a cost-efficient approach applicable for a wide domain of
applications, including automotive, automation, aerospace and consumer elec-
tronics.

Over the years, there has been a growing attention to HSFs forreal-time
systems. Since a two-level HSF [1] has been introduced for open environments,
many studies have been proposed for its schedulability analysis of HSFs [2, 3].
Various processor models, such as bounded-delay [4] and periodic [5], have
been proposed for multi-level HSFs, and schedulability analysis techniques
have been developed for the proposed processor models [6, 7,8, 9, 10, 5, 11].
Recent studies have been introduced for supporting logicalresource sharing in
HSFs [12, 13, 14].

Up until now, those studies have worked on various aspects ofHSFs from
a theoretical point of view. This paper presents our work towards a full im-

48 Paper A

plementation of a hierarchical scheduling framework . We have chosen to im-
plement it in a commercial operating system already used by several of our
industrial partners. We selected the VxWorks operating system, since there is
plenty of industrial embedded software available, which can run in the hierar-
chical scheduling framework.

The outline of this paper is as follows: Section 7.2 presentsrelated work
on implementations of schedulers. Section 7.3 present our system model. Sec-
tion 7.4 gives an overview of VxWorks, including how it supports the imple-
mentation of arbitrary schedulers. Section 7.5 presents our scheduler for Vx-
Works, including the implementation of Rate Monotonic (RM)and Earliest
Deadline First (EDF) schedulers. Section 7.6 presents the design, implementa-
tion and evaluation of the hierarchical scheduler, and finally Section 7.7 sum-
marizes the paper.

7.2 Related work

Looking at related work, recently a few works have implemented different
schedulers in commercial real-time operating systems, where it is not feasi-
ble to implement the scheduler directly inside the kernel (as the kernel source
code is not available). Also, some work related to efficient implementations of
schedulers are outlined.

Buttazzo and Gai [15] present an implementation of the EDF scheduler
for the ERIKA Enterprise kernel [16]. The paper discusses the effect of time
representation on the efficiency of the scheduler and the required storage. They
use the Implicit Circular Timer’s Overflow Handler (ICTOH) algorithm which
allows for an efficient representation of absolute deadlines in a circular time
model.

Diederichs and Margull [17] present an EDF scheduler plug-in for
OSEK/VDX based real-time operating systems, widely used byautomotive in-
dustry. The EDF scheduling algorithm is implemented by assigning priorities
to tasks according to their relative deadlines. Then, during the execution, a task
is released only if its absolute deadline is less than the oneof the currently run-
ning task. Otherwise, the task will be delayed until the timewhen the running
task finishes its execution.

Kim et al. [18] propose the SPIRIT uKernel that is based on a two-level
hierarchical scheduling framework simplifying integration of real-time appli-
cations. The SPIRIT uKernel provides a separation between real-time appli-
cations by using partitions. Each partition executes an application, and uses

7.3 System model 49

the Fixed Priority Scheduling (FPS) policy as a local scheduler to schedule the
application’s tasks. An offline scheduler (timetable) is used to schedule the
partitions (the applications) on a global level. Each partition provides kernel
services for its application and the execution is in user mode to provide stronger
protection.

Parkinson [19] uses the same principle and describes the VxWorks 653
operating system which was designed to support ARINC653. The architecture
of VxWorks 653 is based on partitions, where a Module OS provides global
resource and scheduling for partitions and a Partition OS implemented using
VxWorks microkernel provides scheduling for application tasks.

The work presented in this paper differs from the last two works in the
sense that it implements a hierarchical scheduling framework in a commercial
operating system without changing the OS kernel. Furthermore, the work dif-
fers from the above approaches in the sense that it implements a hierarchical
scheduling framework intended for open environments [1], where real-time ap-
plications may be developed independently and unaware of each other and still
there should be no problems in the integration of these applications into one
environment. A key here is the use of well definedinterfacesrepresenting the
collective resource requirements by an application, rich enough to allow for
integration with an arbitrary set of other applications without having to redo
any kind of application internal analysis.

7.3 System model

In this paper, we only consider a simple periodic task modelτi(Ti, Ci, Di)
whereTi is the task period,Ci is a worst-case execution time requirement, and
Di is a relative deadline (0 < Ci ≤ Di ≤ Ti). The set of all tasks is denoted
by Γ (Γ = {τi| for all i = 1, .., n} where n is the number of tasks).

We assume that all tasks are independent of each other, i.e.,there is no
sharing of logical resources between tasks and tasks do no suspend themselves.

The HSF schedules subsystemsSs ∈ S, whereS is the set representing the
whole system of subsystems. Each subsystemSs consists of a set of tasks and a
local scheduler (RM or EDF), and the global (system) scheduler (RM or EDF).
The collective real-time requirements ofSs is referred to as atiming-interface.
The subsystem interface is defined as(Ps, Qs), wherePs is a subsystem pe-
riod, andQs is a budget that represents an execution time requirement that will
be provided to the subsystemSs every periodPs.

50 Paper A

7.4 VxWorks

VxWorks is a commercial real-time operating system developed by Wind River
with a focus on performance, scalability and footprint. Many interesting fea-
tures are provided with VxWorks, which make it widely used inindustry, such
as; Wind micro-kernel, efficient task management and multitasking, deter-
ministic context switching, efficient interrupt and exception handling, POSIX
pipes, counting semaphores, message queues, signals, and scheduling, pre-
emptive and round-robin scheduling etc. (see [20] for more details).

The VxWorks micro-kernel supports the priority preemptivescheduling
policy with up to 256 different priority levels and a large number of tasks,
and it also supports the round robin scheduling policy.

VxWorks offers two different modes for application-tasks to execute; either
kernel mode or user mode. In kernel mode, application-taskscan access the
hardware resources directly. In user mode, on the other hand, tasks can not
directly access hardware resources, which provides greater protection (e.g., in
user mode, tasks can not crash the kernel). Kernel mode is provided in all
versions of VxWorks while user mode was provided as a part of the Real Time
Process (RTP) model, and it has been introduced with VxWorksversion 6.0
and beyond.

In this paper, we are considering kernel mode tasks since such a design
would be compatible with all versions of VxWorks and our application do-
mains include systems with a large legacy in terms of existing source codes.
We are also considering fixed priority preemptive scheduling policy for the
kernel scheduler (not the round robin scheduler). A task’s priority should be
set when the task is created, and the task’s priority can be changed during the
execution. Then, during run-time, the highest priority ready task will always
execute. If a task with priority higher than that of the running task becomes
ready to execute, then the scheduler stops the execution of the running task
and instead executes the one with higher priority. When the running task fin-
ishes its execution, the task with the highest priority among the ready tasks will
execute.

When a task is created, an associated Task Control Block (TCB) is created
to save the task’s context (e.g., CPU environment and systemresources, during
the context switch). Then, during the life-cycle of a task the task can be in one
or a combination of the following states [21] (see Figure 7.1):

• Ready state, the task is waiting for CPU resources.

• Suspended state, the task is unavailable for execution but not delayed

7.4 VxWorks 51

Ready

Delayed

Suspended

Pending

Ready

Delayed

Suspended

Pending

Figure 7.1: The application task state.

or pending.

• Pending state, the task is blocked waiting for some resource other than
the CPU.

• Delayed state, the task is sleeping for some time.

Note that the kernel scheduler sorts all tasks that are readyto execute in a
queue called theready queue.

7.4.1 Scheduling of time-triggered periodic tasks

A periodic task is a task that becomes ready for execution periodically once
everyn-th time unit, i.e., a new instant of the task is executed every constant
period of time. Most commercial operating systems, including VxWorks, do
not directly support the periodic task model [22]. To implement a periodic
task, when a task finishes its execution, it sleeps until the beginning of its next
period. Such periodic behaviour can be implemented in the task by the usage
of timers. Note that a task typically does not finish its execution at the same
time always, as execution times and response times vary fromone period to
another. Hence, using timers may not be easy and accurate as the task needs
to evaluate the time for next period relative to the current time, whenever it
finishes its execution. This is because preemption may happen between the
time measurement and calling the sleep function.

52 Paper A

In this project we need to support periodic activation ofserversin order
to implement the hierarchical scheduling framework. The reason for this is
that we base our hierarchical scheduling framework around the periodic re-
source model [5], and a suitable implementation of the periodic resource model
is achieved by the usage of a server based approach similar tothe periodic
servers [23, 24] that replenish their budget every constantperiod, i.e., the
servers behave like periodic tasks.

7.4.2 Supporting arbitrary schedulers

There are two ways to support arbitrary schedulers in VxWorks:

1. Using the VxWorks custom kernel scheduler [25].

2. Using the original kernel scheduler and manipulating theready queue by
changing the priority of tasks and/or activating and suspending tasks.

In this paper, we are using the second approach since implementing the
custom kernel scheduler is a relatively complex task compared with manipu-
lating the ready queue. However, it will be interesting to compare between the
two methods in terms of CPU overhead, and we leave this as a future work.

In the implementation of the second solution, we have used anInterrupt
Service Routine (ISR) to manipulate the tasks in the ready queue. The ISR is
responsible for adding tasks in the ready queue as well as changing their prior-
ities according to the hierarchical scheduling policy in use. In the remainder of
this paper, we refer to the ISR as the User Scheduling Routine(USR). By using
the USR, we can implement any desired scheduling policy, including common
ones such as Rate Monotonic (RM) and Earliest Deadline First(EDF).

7.5 The USR custom VxWorks scheduler

This section presents how to schedule periodic tasks using our scheduler, the
User Scheduling Routine (USR).

7.5.1 Scheduling periodic tasks

When a periodic task finishes its execution, it changes its state to suspended by
explicitly calling the suspend function. Then, to implement a periodic task, a

7.5 The USR custom VxWorks scheduler 53

timer could be used to trigger the USR once every new task activation time to
release the task (to put it in the ready queue).

The solution to use a timer triggering the USR once every new period can
be suitable for systems with a low number of periodic tasks. However, if we
have a system withn periodic tasks such a solution would require the use ofn
timers, which could be very costly or not even possible. In this paper we have
used a scalable way to solve the problem of having to use too many timers. By
multiplexing a single timer, we have used a single timer to serve n periodic
tasks.

The USR stores the next activation time of all tasks (absolute times) in a
sorted (according to the closest time event) queue called Time Event Queue
(TEQ). Then, it sets a timer to invoke the USR at the time equalto the shortest
time among the activation times stored in the TEQ. Also, the USR checks if a
task misses its deadline by inserting the deadline in the TEQ. When the USR
is invoked, it checks all task states to see if any task has missed its deadline.
Hence, an element in the TEQ contains (1) the absolute time, (2) the id of task
that the time belongs to, and (3) the event type (task next activation time or
absolute deadline). Note that the size of the TEQ will be2∗n∗B bytes (where
B is the size in bytes of one element in the TEQ) since we need to save the
task’s next period time and deadline time.

When the USR is triggered, it checks the cause of the triggering. There are
two causes for the USR to be triggered: (1) a task is released,and (2) the USR
will check for deadline misses. For both cases, the USR will do the following:

• Update the next activation and/or the absolute deadline time associated
with the task that caused triggering of the USR in the TEQ and re-insert
it in the TEQ according to the updated times.

• Set the timer equal to the shortest time in the TEQ so that the USR will
be triggered at that time.

• For task release, the USR changes the state of the task to Ready. Also, it
changes priorities of tasks if required depending on the scheduler (EDF
or RM). For deadline miss checking, the USR checks the state of the task
to see if it is Ready. If so, the task missed its deadline, and the deadline
miss function will be activated.

Updating the next activation time and absolute deadline of atask in the
TEQ is done by adding the period of the task that caused the USRinvocation
to the current absolute time. The USR does not use the system time as a time

54 Paper A

reference. Instead it uses a time variable as a time reference. The reason for
using a time variable is that we can, in a flexible manner, select the size of
variables that save absolute time in bits. The benefits of such an approach is
that we can control the size of the TEQ since it saves the absolute times, and
it also minimizes the overhead of implementing 64 bits operations on 32 bit
microprocessor [15], as an example. The reference time variable ts used to
indicate the time of the next activation, is initialized (i.e., ts = 0) at the first
execution of the USR. The value ofts is updated every time that the USR
executes and it will be equal to the time given by the TEQ that triggered the
USR.

When a taskτi is released for the first time, the absolute next activation
time is equal tots + Ti and its absolute deadline is equal tots + Di.

To avoid time consuming operations, e.g., multiplicationsand divisions,
that increase the system overhead inherent in the executionof the USR, all ab-
solute times (task periods and relative deadlines) are saved in system tick unit
(system tick is the interval between two consecutive systemtimer interrupts).
However, depending on the number of bits used to store the absolute times,
there is a maximum value that can be saved safely. Hence, saving absolute
times in the TEQ may cause problems related to overrun of time, i.e., the ab-
solute times become too large such that the value can not be stored using the
available number of bits. To avoid this problem, we apply a wrapping algo-
rithm which wraps the absolute times at some point in time, sothe time will
restart again. Periods and deadlines should not exceed the wrap-around value.

The input of the timer should be in a relative time, so evaluating the time
at which to trigger the USR again (next time) is done byTEQ[1] − ts where
TEQ[1] is the first element in the queue after updating the TEQ as wellas
sorting it, i.e., the closest time in the TEQ. The USR checks to see if there
are more than one task that have the same current activation time and absolute
deadline. If so, the USR serves all these tasks to minimize the unnecessary
overhead of executing the USR several times.

7.5.2 RM scheduling policy

Each task will have a fixed priority during run-time when RateMonotonic
(RM) is used, and the priorities are assigned according to the RM scheduling
policy. If only RM is used in the system, no additional operations are required
to be added to the USR since the kernel scheduler schedules all tasks directly
according to their priorities, and the higher priority tasks can preempt the exe-
cution of the lower priority task. Hence, the implementation overhead for RM

7.5 The USR custom VxWorks scheduler 55

will be limited to the overhead of adding a task in the ready queue and man-
aging the timer for the next period (saving the absolute timeof the new period
and finding the shortest next time in the TEQ) for periodic tasks.

The schedulability analysis for each task is as follows [26];

∀τi ∈ Γ, 0 < ∃t ≤ Ti dbf(i, t) ≤ t. (7.1)

And dbf(i, t) is evaluated as follows

dbf(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉
Ck, (7.2)

whereHP(i) is the set of tasks with priority higher than that ofτi.
Eq. (7.2) can be easily modified to include the effect of usingthe USR on

the schedulability analysis. Note that the USR will be triggered at the begin-
ning of each task to release the task, so it behaves like a periodic task with
priority equal to the maximum possible priority (the USR canpreempt all ap-
plication tasks). Checking the deadlines for tasks by usingthe USR will add
more overhead, however, also this overhead has a periodic nature as the task
release presented previously.

Eq. (7.3) includes the deadline and task release overhead caused by the
USR in the response time analysis,

dbf(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉
Ck +

∑

τj∈Γ

⌈ t

Tj

⌉
XR

+
∑

τj∈Γ

⌈ t + Tj − Dj

Tj

⌉
XD

(7.3)

whereXR is the worst-case execution time of the USR when a task is released
andXD is the worst-case execution time of the USR when it checks fordead-
line misses (currently, in case of deadline misses, the USR will only log this
event into a log file).

7.5.3 EDF scheduling policy

For EDF, the priority of a task changes dynamically during run-time. At any
timet, the task with shorter deadline will execute first, i.e., will have the highest
priority. To implement EDF in the USR, the USR should update the priorities
of all tasks that are in the Ready Queue when a task is added to the Ready

56 Paper A

Queue, which can be costly in terms of overhead. Hence, on onehand, using
EDF on top of commercial operating systems may not be efficient depending
on the number of tasks, due to this sorting. However, the EDF scheduling
policy provides, on other hand, better CPU utilization compared with RM, and
it also has a lower number of context switches which minimizes context switch
related overhead [27].

In the approach presented in this paper, tasks are already sorted in the TEQ
according to their absolute times due to the timer multiplexing explained ear-
lier. Hence, as the TEQ is already sorted according to the absolute deadlines,
the USR can easily decide the priorities of the tasks according to EDF without
causing too much extra overhead for evaluating the proper priority for each
task.

The schedulability test for a set of tasks that use EDF is shown in Eq. (7.4) [28]
which includes the case when task deadlines are allowed to beless than or equal
to task periods.

∀t > 0,
∑

τi∈Γ

⌊ t + Ti − Di

Ti

⌋
· Ci ≤ t (7.4)

The overhead of implementing EDF can also be added to Eq. (7.4). Hence,
Eq. (7.5) includes the overhead of releasing tasks as well asthe overhead of
checking for deadline misses.

∀t > 0,
∑

τi∈Γ

⌊ t + Ti − Di

Ti

⌋
· Ci +

∑

τj∈Γ

⌈ t

Tj

⌉
XR

+
∑

τj∈Γ

⌈ t + Tj − Dj

Tj

⌉
XD ≤ t

(7.5)

7.5.4 Implementation and overheads of the USR

To implement the USR, we have used the following VxWorks service func-
tions;

• Q PUT - insert a node into a multi-way queue (ready queue).

• Q REMOVE - remove a node from a multi-way queue (ready queue).

• taskCreat - create a task.

• taskPrioritySet - set a tasks priority.

7.6 Hierarchical scheduling 57

We present our initial results inherent in the implementation of the USR,
implementing both the Rate Monotonic (RM) scheduler as wellas the Earliest
Deadline First (EDF) scheduler. The implementations were performed on a
ABB robot controller with a Pentium 200 MHz processor running the VxWorks
operating system version5.2. To trigger the USR for periodic tasks, we have
used watchdog timers where the next expiration time is givenin number of
ticks. The watchdog uses the system clock interrupt routineto count the time
to the next expiration. The platform provides system clock with resolution
equal to4500ticks/s. The measurement of the execution time of the USR
is done by reading a timestamp value at the start as well as at the end of the
USR’s execution. Note that the timestamp is connected to a special hardware
timer with resolution12000000ticks/s.

Table 7.1 shows the execution time of the USR when it performsRM and
EDF scheduling, as well as deadline miss checking, as a function of the num-
ber of tasks in the system. The worst case execution time for USR will happen
when USR deletes and then inserts all tasks from and to TEQ andto capture
this, we have selected a same period for all tasks. The table shows the mini-
mum, maximum and average out of50 measured values. Comparing between
the results of the three cases (EDF, RM, deadline miss), we can see that there
is no big difference in the execution time of the USR. The reason for this result
is that the execution of the USR for EDF, RM and deadline miss checking all
includes the overhead of deletion and re-inserting the tasks in the TEQ, which
is the dominating part of the overhead. As expected, EDF causes the largest
overhead because it changes the priority of all tasks in the ready queue dur-
ing run-time. Figures 7.2-7.3 show that EDF imposes between6 − 14% extra
overhead compared with RM.

7.6 Hierarchical scheduling

A Hierarchical Scheduling Framework (HSF) supports CPU sharing among
subsystems under different scheduling policies. Here, we consider a two-level
scheduling framework consisting of a global scheduler and anumber of local
schedulers. Under global scheduling, the operating system(global) scheduler
allocates the CPU to subsystems. Under local scheduling, a local scheduler
inside each subsystem allocates a share of the CPU (given to the subsystem by
the global scheduler) to its own internal tasks (threads).

We consider that each subsystem is capable of exporting its own interface
that specifies its collective real-time CPU requirements. We assume that such a

58 Paper A

Number XR (RM) XR (EDF) XD (Deadline miss check)
of tasks Max Average Min Max Average Min Max Average Min

10 71 65 63 74 70 68 70 60 57

20 119 110 106 131 118 115 111 100 95

30 172 158 155 187 172 169 151 141 137

40 214 202 197 241 228 220 192 180 175

50 266 256 249 296 280 275 236 225 219

60 318 305 299 359 338 331 282 268 262

70 367 352 341 415 396 390 324 309 304

80 422 404 397 476 453 444 371 354 349

90 473 459 453 539 523 515 415 398 393

100 527 516 511 600 589 583 459 442 436

Table 7.1: USR execution time inµs, the maximum, average and minimum
execution time of45 measured values for each case.

subsystem interface is in the form of the periodic resource model(Ps, Qs) [5].
Here, Ps represents aperiod, andQs represents abudget, or an execution
time requirement within the period(Qs < Ps). By using the periodic re-
source model in hierarchical scheduling frameworks, it is guaranteed [5] that
all timing constraints of internal tasks within a subsystemcan be satisfied, if
the global scheduler provides the subsystem with CPU resources according to
the timing requirements imposed by its subsystem interface. We refer inter-
ested readers to [5] for how to derive an interface(Ps, Qs) of a subsystem,
when the subsystem contains a set of internal independent periodic tasks and
the local scheduler follows the RM or EDF scheduling policy.Note that for
the derivation of the subsystem interface(Ps, Qs), we use the demand bound
functions that take into account the overhead imposed by theexecution of USR
(see Eq. (7.3) and (7.5)).

7.6.1 Hierarchical scheduling implementation

Global scheduler: A subsystem is implemented as a periodic server, and pe-
riodic servers can be scheduled in a similar way as scheduling normal periodic
tasks. We can use the same procedure described in Section 7.5with some mod-
ifications in order to schedule servers. Each server should include the following
information to be scheduled: (1) server period, (2) server budget, (3) remaining
budget, (4) pointer to the tasks that belong to this server, and (5) the type of the
local scheduler (RM or EDF) (6) local TEQ. Moreover, to schedule servers we
need:

7.6 Hierarchical scheduling 59

EDF/RM

1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

1,16

10 20 30 40 50 60 70 80 90 100

Number of Tasks

Average

Figure 7.2: EDF normalized against RM, for average USR execution time.

• Server Ready Queueto store all servers that have non zero remaining
budget. When a server is released at the beginning of its period, its
budget will be charged to the maximum budgetQ, and the server will be
added to the Server Ready Queue. When a server executes its internal
tasks for some timex, then the remaining budget of the server will be
deceased withx, i.e., reduced by the time that the server execute. If
the remaining budget becomes zero, then the server will handover the
control to the global scheduler to select and remove the highest priority
server from Server Ready Queue.

• Server TEQ to release the server at its next absolute periodic time since
we are using periodic servers and also track their remainingbudgets.

Figures 7.4 illustrates the implementation of HSF in VxWorks. The Server
Ready Queue is managed by the routine that is responsible forscheduling the
servers. Tracking the remaining budget of a server is solvedas follows; when-
ever a server starts running, it sets an absolute time at which the server budget
expire and it equals to the current time plus its remaining budget. This time
is added to the server event Queue to be used by the timer to trigger an event
when the server budget expires. When a server is preempted byanother server,
it updates the remaining budget by subtracting the time thathas passed since

60 Paper A

EDF/RM

1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

1,16

10 20 30 40 50 60 70 80 90 100

Number of Tasks

Max

Figure 7.3: EDF normalized against RM, for maximum USR execution time.

the last release. When the server executes its internal tasks until the time when
the server budget expiry event triggers, it will set its remaining budget to zero,
and the scheduling routine removes the server from the Server Ready Queue.

Local scheduler: When a server is given the CPU resources, the ready tasks
that belong to the server will be able to execute. We have investigated two
approaches to deal with the tasks in the Ready Queue when a server is given
CPU resources:

• All tasks that belong to the server that was previously running will be
removed from the Ready Queue, and all ready tasks that belongto the
new running server will be added to the Ready Queue, i.e., swapping
of the servers’ task sets. To remove tasks from the Ready Queue, the
state of the tasks is changed to suspend state. However, thiswill cause
a problem since the state of the tasks that finish their execution is also
changed to suspend and when the server run again it will add non-ready
tasks to the Ready Queue. To solve this problem, an additional flag is
used in the task’s TCB to denote whether the task was removed from
Ready Queue and enter to suspend state due to budget expiration of its
server or due to finishing its execution.

7.6 Hierarchical scheduling 61

Server TCB@ABCDCEBFEGHICFEGHICJIKILCJMEIEINIODPLJFEGHICQINPRGQINPRGJIKILC MEIEIBSTIGEUPLHVDUHRNPCTOGIDGUPLIJIKILCJMEIEICDBWJXYZJUPBC
[\]̂ \]_ [\]̂ \]` [\]̂ \]aServer ready queue

[\]̂ \]a [\]̂ \]_ [\]̂ \]`Server event queue

task1
task2
task3
task4
task5
task6

VxWorks task TCB CDBWb CDBWc CDBWdVxworks ready queueCDBWeCDBWfCDBWgCDBWg CDBWf CDBWeCDBWg CDBWf CDBWe Task TCB@AQNPRNPChBCDCEBBCDSWVBPiI
User defined data structures
VxWorks kernel data structures
Task defined data structures

QINPRGJIKILC MEIEIBSTIGEUPLHVDUHRNPCTOGIDGUPLIJIKILCJMEIEICDBWJXYZJUPBC
Figure 7.4: The implementation of HSF in VxWorks.

• The priority of all tasks that belong to the preempted serverwill be set to
a lower (the lowest) priority, and the priority of all tasks that belong to the
new running server will be raised as if they were executing exclusively
on the CPU, scheduled according to the local scheduling policy in use
by the subsystem.

The advantage of the second approach is that it can give the unused CPU
resources to tasks that belong to other servers. However, the disadvantage of
this approach is that the kernel scheduler always sorts the tasks in the Ready
Queue and the number of tasks inside Ready Queue using the second approach
will be higher which may impose more overhead for sorting tasks. In this
paper, we consider the first approach since we support only periodic tasks.
When a server is running, all interrupts that are caused by the local TEQ, e.g.,
releasing tasks and checking deadline misses, can be servedwithout problem.
However, if a task is released or its deadline occurs during the execution of
another server, the server that includes the task, may miss this event. To solve
this problem, when the server starts running after server preemption or when it
finishes its budget, it will check for all past events (including task release and

62 Paper A

tjtk
tl tm tn to

S1

S2

S3

Figure 7.5: Simple servers execution example.

deadline miss check events) in the local TEQ that have absolute time less than
the current time, and serve them.

Note that the time wrapping algorithm described in section 7.5.1 should
take into account all local TEQ’s for all servers and the server event queue,
because all these event queues share the same absolute time.

Figure 7.5 illustrates the implementation of hierarchicalscheduling frame-
work which includes an example with three serversS1, S2, S3 with global and
local RM schedulers, the priority ofS1 is the highest and the priority ofS3 is
the lowest. Suppose a new period ofS3 starts at timet0 with a budget equal
to Q3. Then, the USR will change the state ofS3 to Ready, and since it is the
only server that is ready to execute, the USR will;

• add the time at which the budget will expire, which equals tot0 + Q3,
into the server event queue and also add the next period eventin the
server event queue.

• check all previous events that have occurred while the server was not
active by checking if there are task releases or deadline checks in the
time interval of[t∗, t0], wheret∗ is the latest time at which the budget of
S3 has been expired.

• start the local scheduler.

At time t1 the serverS2 becomes Ready and it has higher priority thanS3.
SoS2 will preemptS3 and in addition to the previously explained action, the

7.6 Hierarchical scheduling 63

USR will remove all tasks that belong toS3 from the ready queue and save the
remaining budget which equals toQ3 − (t1 − t0). Also the USR will remove
the budget expiration event from the server event queue. Note that whenS3

executes next time it will use the remaining budget to calculate the budget
expiration event.

Number of servers Max Average Min
10 91 89 85
20 149 146 139
30 212 205 189
40 274 267 243
50 344 333 318
60 412 400 388
70 483 466 417
80 548 543 509
90 630 604 525
100 689 667 570

Table 7.2: Maximum, average and minimum execution time of the USR with
100 measured values as a function of the number of servers.

The USR execution time depends on the number of the servers, and the
worst case happens when all servers are released at the same time. In addition,
the execution time of the USR also depends on the number of ready tasks in
both the currently running server to be preempted as well as the server to pre-
empt. The USR removes all ready tasks that belong to the preempted server
from ready queue and adds all ready tasks that belong to the preempting server
with highest priority into the ready queue. Here, the worst case scenario is that
all tasks of both servers are ready at that time. Table 7.2 shows the execution
time of the USR (when a server is released) as a function of thenumber of
servers using RM as a global scheduler at the worst case, where all the servers
are released at the same time, just like the case shown in the previous section.
Here, we consider that each server has a single task in order to purely investi-
gate the effect of the number of servers on the execution timeof the USR.

7.6.2 Example

In this section, we will show the overall effect of implementing the HSF using
a simple example, however, the results from the following example are specific

64 Paper A

for this example because, as we showed in the previous section, the overhead is
a function of many parameters affect the number of preemptions such as num-
ber of servers, number of tasks, servers periods and budgets. In this example
we use RM as both local and global scheduler, and the servers and associated
tasks parameters are shown in Table 7.3. Note thatTi = Di for all tasks.

S1(P1 = 5, Q1 = 1) S2(P2 = 6 ,Q2 = 1) S3(P3 = 70 , Q3 = 20)
τi Ti Ci τi Ti Ci τi Ti Ci

τ1 20 1 τ1 25 1 τ1 140 7
τ2 25 1 τ2 35 1 τ2 150 7
τ3 30 1 τ3 45 1 τ3 300 30
τ4 35 1 τ4 50 1
τ5 40 7 τ5 55 7
- - - τ6 60 7

Table 7.3: System parameters inµs.

The measured overhead utilization is about2.85% and the measured re-
lease jitter for taskτ3 in serverS3 (which is the lowest priority task in the
lowest priority server) is about49ms. The measured worst case response time
is 208.5ms and the finishing time jitter is60ms. These results indicate that
the overhead and performance of the implementation are acceptable for further
development in future project.

7.7 Summary

This paper has presented our work on the implementation of our hierarchical
scheduling framework in a commercial operating system, VxWorks. We have
chosen to implement it in VxWorks so that it can easily be tested in an in-
dustrial setting, as we have a number of industrial partnerswith applications
running on VxWorks and we intend to use them as case studies for an industrial
deployment of the hierarchical scheduling framework.

This paper demonstrates the feasibility of implementing the hierarchical
scheduling framework through its implementation over VxWorks. In partic-
ular, it presents several measurements of overheads that its implementation
imposes. It shows that a hierarchical scheduling frameworkcan effectively
achieve the clean separation of subsystems in terms of timing interference (i.e.,

7.7 Summary 65

without requiring any temporal parameters of other subsystems) with reason-
able implementation overheads.

In the next stage of this implementation project, we intend to implement
synchronization protocols in hierarchical scheduling frameworks, e.g., [12]. In
addition, our future work includes supporting sporadic tasks in response to spe-
cific events such as external interrupts. Instead of allowing them to directly add
their tasks into the ready queue, we consider triggering theUSR to take care of
such additions. We also plan to support aperiodic tasks while bounding their
interference to periodic tasks by the use of some server-based mechanisms.
Moreover, we intend to extend the implementation to make it suitable for more
advanced architectures including multicore processors.

Acknowledgements

The authors wish to express their gratitude to the anonymousreviewers for
their helpful comments, as well as to Clara Maria Otero Pérez for detailed
information regarding the implementation of hierarchicalscheduling as a ded-
icated layer on top of pSoSystem, which is marketed by Wind River (see [29]
for more details) and suggestions for improving our work.

Bibliography

[1] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open en-
vironment. InProceedings of the18th IEEE International Real-Time Sys-
tems Symposium (RTSS’97), pages 308–319, San Francisco, CA, USA,
December 1997. IEEE Computer Society.

[2] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for
real-time applications. InProceedings of the20th IEEE International
Real-Time Systems Symposium (RTSS’99), pages 256–267, Phoenix, AZ,
USA, December 1999. IEEE Computer Society.

[3] G. Lipari and S. K. Baruah. Efficient scheduling of real-time multi-task
applications in dynamic systems. InProceedings of the6th IEEE Real-
Time Technology and Applications Symposium (RTAS’00), pages 166–
175, Washington DC, USA, May-June 2000. IEEE Computer Society.

[4] A. Mok, X. Feng, and D. Chen. Resource partition for real-time sys-
tems. InProceedings of IEEE Real-Time Technology and Applications
Symposium(RTAS), pages 75–84, Taipei, Taiwan ROC, May 2001.

[5] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. InProceedings of the24th IEEE International Real-Time
Systems Symposium(RTSS’03), pages 2–13, Cancun, Mexico, December
2003.

[6] L. Almeida and P. Pedreiras. Scheduling within temporalpartitions:
response-time analysis and server design. InProceedings of the 4th ACM
international conference on Embedded software (EMSOFT ’04), pages
95–103, Pisa, Italy, September 2004.

[7] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive schedul-
ing. In Proceedings of the26th IEEE International Real-Time Systems

67

68 Bibliography

Symposium (RTSS’05), pages 389–398, Miami Beach, FL, USA, Decem-
ber 2005.

[8] X. Feng and A. Mok. A model of hierarchical real-time virtual resources.
In Proceedings of the23th IEEE International Real-Time Systems Sym-
posium (RTSS’02), pages 26–35, Austin, TX, USA, December 2002.

[9] G. Lipari and E. Bini. Resource partitioning among real-time applica-
tions. InProceedings of the15th Euromicro Conference on Real-Time
Systems (ECRTS’03), pages 151–158, Porto, Portugal, July 2003. IEEE
Computer Society.

[10] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein. Analysis
of hierarhical fixed-priority scheduling. InProceedings of the14th Eu-
romicro Conference on Real-Time Systems (ECRTS’02), pages 152–160,
Vienna, Austria, June 2002. IEEE Computer Society.

[11] I. Shin and I. Lee. Compositional real-time schedulingframework. In
Proceedings of the25th IEEE International Real-Time Systems Sympo-
sium(RTSS’04), pages 57–67, Lisbon, Portugal, December 2004. IEEE
Computer Society.

[12] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A synchroniza-
tion protocol for hierarchical resource sharing in real-time open systems.
In Proceedings of the 7th ACM and IEEE International Conference on
Embedded Software (EMSOFT’07), pages 279–288, Salzburg, Austria,
October 2007.

[13] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed pri-
ority pre-emptive systems. InProceedings of the27th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’06), pages 389–398, Rio de
Janeiro, Brazil, December 2006.

[14] N. Fisher, M. Bertogna, and S. Baruah. The design of an EDF-scheduled
resource-sharing open environment. InProceedings of the28th IEEE
International Real-Time Systems Symposium (RTSS’07), pages 83–92,
Washington, DC, USA, December 2007. IEEE Computer Society.

[15] G. Buttazzo and P. Gai. Efficient implementation of an EDF scheduler
for small embedded systems. InProceedings of the2nd International
Workshop Operating System Platforms for Embedded Real-Time Applica-
tions (OSPERT’06) in conjunction with the18th Euromicro International

Bibliography 69

Conference on Real-Time Systems (ECRTS’06), Dresden, Germany, July
2006.

[16] Evidence Srl. ERIKA Enterprise RTOS. URL:
http://www.evidence.eu.com.

[17] F. Slomka G. Wirrer C. Diederichs, U. Margull. An application-based
EDF scheduler for osek/vdx. InDATE ’08: Proceedings of the conference
on Design, automation and test in Europe, pages 87–88, 3001 Leuven,
Belgium, Belgium, 2008. European Design and Automation Association.

[18] D. Kim, Y. Lee, and M. Younis. Spirit-ukernel for strongly partitioned
real-time systems. InProc. 7th International Conference on Real-Time
Computing Systems and Applications (RTCSA 2000), page 73, Cheju Is-
land, South Korea, December 2000. IEEE Computer Society.

[19] L. Kinnan P. Parkinson. Safety critical software development for
integrated modular avionics. InWind River white paper. URL
http://www.windriver.com/whitepapers/, pages 87–88, 3001 Leuven, Bel-
gium, Belgium, 2007. European Design and Automation Association.

[20] Wind River. Wind River VxWorks 5.x. http://www.windriver.com/.

[21] Wind River. VxWorks PROGRAMMERS GUIDE 5.5.

[22] J.W.S. Liu. Real-time systems.Prentice Hall, 2000.

[23] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperiodic respon-
siveness in hard real-time environments. InProceedings of8th IEEE
International Real-Time Systems Symposium (RTSS’87), pages 261–270,
San Jose, California, USA, December 1987. IEEE Computer Society.

[24] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task scheduling for hard
real-time systems.Real-Time Systems, 1(1):27–60, June 1989.

[25] Wind River. VxWorks KERNEL PROGRAMMERS GUIDE 6.2.

[26] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algo-
rithm: exact characterization and average case behavior. In Proceedings
of the20th IEEE International Real-Time Systems Symposium(RTSS’89),
pages 166–171, Santa Monica, CA, USA, December 1989. IEEE Com-
puter Society.

[27] G. C. Buttazzo. Rate Monotonic vs. EDF: Judgment day.Real-Time
Systems, 29(1):5–26, January 2005.

[28] S. Baruah, R. Howell, and L. Rosier. Algorithms and complexity concern-
ing the preemptive scheduling of periodic, real-time taskson one proces-
sor. Journal of Real-Time Systems, 2:301–324, 1990.

[29] C.M. Otero Perez and I. Nitescu. Quality of service resource manage-
ment for consumer terminals: Demonstrating the concepts.Work in
Progress Session of the 14th Euromicro Conference on Real-Time Sys-
tems(ECRTS’02), pages 29–32, June 2002.

Chapter 8

Paper B:
SIRAP: A Synchronization
Protocol for Hierarchical
Resource Sharing in
Real-Time Open Systems

Moris Behnam, Insik Shin, Thomas Nolte, Mikael Nolin

In Proceedings of the7th ACM & IEEE International Conference on Em-
bedded Software (EMSOFT’07), pages 279-288, Salzburg, Austria, October,
2007.

71

72 Paper B

Abstract

This paper presents a protocol for resource sharing in a hierarchical real-
time scheduling framework. Targeting real-time open systems, the protocol
and the scheduling framework significantly reduce the efforts and errors asso-
ciated with integrating multiple semi-independent subsystems on a single pro-
cessor. Thus, our proposed techniques facilitate modern software development
processes, where subsystems are developed by independent teams (or subcon-
tractors) and at a later stage integrated into a single product. Using our solution,
a subsystem need not know, and is not dependent on, the timingbehaviour of
other subsystems; even though they share mutually exclusive resources. In this
paper we also prove the correctness of our approach and evaluate its efficiency.

8.1 Introduction 73

8.1 Introduction

In many industrial sectors integration of electronic and software subsystems
(to form an integrated hardware and software system), is oneof the activities
that is most difficult, time consuming, and error prone [1, 2]. Almost any
system, with some level of complexity, is today developed asa set of semi-
independent subsystems. For example, cars consist of multiple subsystems
such as antilock braking systems, airbag systems and enginecontrol systems.
In the later development stages, these subsystems are integrated to produce
the final product. Product domains where this approach is thenorm include
automotive, aerospace, automation and consumer electronics.

It is not uncommon that these subsystems are more or less dependent on
each other, introducing complications when subsystems areto be integrated.
This is especially apparent when integrating multiple software subsystems on
a single processor. Due to these difficulties inherent in theintegration process,
many projects run over their estimated budget and deadlinesduring the inte-
gration phase. Here, a large source of problems when integrating real-time
systems stems from subsystem interference in the time domain.

To provide remedy to these problems we propose the usage of a real-time
scheduling framework that allows for an easier integrationprocess. The frame-
work will preserve the essential temporal properties of thesubsystem both
when the subsystem is executed in isolation (unit testing) and when it is in-
tegrated together with other subsystems (integration testing and deployment).
Most importantly, the deviation in the temporal behaviour will be bounded,
hence allowing for predictable integration of hard real-time subsystems. This
is traditionally targeted by the philosophy of open systems[3], allowing for the
independent development and validation of subsystems, preserving validated
properties also after integration on a common platform.

In this paper we present the Subsystem Integration and Resource Allocation
Policy (SIRAP), which makes it possible to develop subsystems individually
without knowledge of the temporal behaviour of other subsystems. One key
issue addressed by SIRAP is the resource sharing between subsystems that are
only semi-independent, i.e., they use one or more shared logical resources.

Problem description A software systemS consists of one or more subsys-
tems to be executed on one single processor. Each subsystemSs ∈ S, in turn,
consists of a number of tasks. These subsystems can be developed indepen-
dently and they have their own local scheduler (scheduling the subsystem’s
tasks). This approach by isolation of tasks within subsystems, and allowing for

74 Paper B

their own local scheduler, has several advantages [4]. For example, by keep-
ing a subsystem isolated from other subsystems, and by keeping the subsystem
local scheduler, it is possible to re-use a complete subsystem in a different
application from where it was originally developed.

However, as subsystems are likely to share logical resources, an appropri-
ate resource sharing protocol must be used. In order to facilitate independent
subsystem development, this protocol should not require information from all
other subsystems in the system. It should be enough with onlythe information
of the subsystem under development in isolation.

Contributions The main contributions of this paper include the presentation
of SIRAP, a novel approach to subsystem integration in the presence of shared
resources. Moreover, the paper presents the deduction of bounds on the timing
behaviour of SIRAP together with accompanying formal proofs. In addition,
the cost of using this protocol is thoroughly evaluated. Thecost is investi-
gated as a function of various parameters including: cost asa function of the
length of critical sections, cost depending on the priorityof the task sharing
a resource, and cost depending on the periodicity of the subsystem. Finally,
the cost of having an independent subsystem abstraction, which is suitable for
open systems, is investigated and compared with dependent abstractions.

Organization of the paper Firstly, related work on hierarchical scheduling
and resource sharing is presented in Section 8.2. Then, the system model is
presented in Section 8.3. SIRAP is presented in Section 8.4.In Section 8.5
schedulability analysis is presented, and SIRAP is evaluated in Section 8.6.
Finally, the paper is summarized in Section 8.7.

8.2 Related work

Hierarchical scheduling For real-time systems, there has been a growing
attention to hierarchical scheduling frameworks [5, 6, 3, 7, 8, 9, 10, 11, 12, 13,
14].

Deng and Liu [3] proposed a two-level hierarchical scheduling framework
for open systems, where subsystems may be developed and validated indepen-
dently in different environments. Kuo and Li [8] presented schedulability anal-
ysis techniques for such a two-level framework with the fixed-priority global
scheduler. Lipari and Baruah [9, 15] presented schedulability analysis tech-
niques for the EDF-based global schedulers.

8.2 Related work 75

Mok et al. [16] proposed the bounded-delay resource partition model for
a hierarchical scheduling framework. Their model can specify the real-time
guarantees that a parent component provides to its child components, where
the parent and child components have different schedulers.Feng and Mok [7]
and Shin and Lee [14] presented schedulability analysis techniques for the hi-
erarchical scheduling framework that employs the bounded-delay resource par-
tition model.

There have been studies on the schedulability analysis withthe periodic re-
source model. This periodic resource model can specify the periodic resource
allocation guarantees provided to a component from its parent component [13].
Saewonget al. [12] and Lipari and Bini [10] introduced schedulability condi-
tions for fixed-priority local scheduling, and Shin and Lee [13] presented a
schedulability condition for EDF local scheduling. Davis and Burns [6] evalu-
ated different periodic servers (Polling, Deferrable, andSporadic Servers) for
fixed-priority local scheduling.

Resource sharing When several tasks are sharing a logical resource, typi-
cally only one task is allowed to use the resource at a time. Thus the logical
resource requires mutual exclusion of tasks that uses it. Toachieve this amu-
tual exclusion protocolis used. The protocol provides rules about how to gain
access to the resource, and specifies which tasks should be blocked when trying
to access the resource.

To achieve predictable real-time behaviour, several protocols have been
proposed including the Priority Inheritance Protocol (PIP) [17], the Priority
Ceiling Protocol (PCP) [18], and the Stack Resource Policy (SRP) [19].

When using SRP, a task may not preempt any other tasks until its priority
is the highest among all tasks that are ready to run, and its preemption level is
higher than the system ceiling. The preemption level of a task is a static param-
eter assigned to the task at its creation, and associated with all instances of that
task. A task can only preempt another task if its preemption level is higher than
the task that it is to preempt. Each resource in the system is associated with
a resource ceiling and based on these resource ceilings, a system ceiling can
be calculated. The system ceiling is a dynamic parameter that changes during
system execution.

The duration of time that a task lock a resource, is called Resource Hold-
ing Time (RHT). Fisheret al. [20, 21] proposed algorithms to minimize RHT
for fixed priority and EDF scheduling with SRP as a resource synchronization
protocol. The basic idea of their proposed algorithms is to increase the ceil-
ing of resources as much as possible without violating the schedulability of the

76 Paper B

system under the same semantics of SRP.
Deng and Liu [3] proposed the usage of non-preemptive globalresource

access, which bounds the maximum blocking time that a task might be sub-
ject to. The work by Kuo and Li [8] used SRP and they showed thatit is
very suitable for sharing of local resources in a hierarchical scheduling frame-
work. Almeida and Pedreiras [5] considered the issue of supporting mutually
exclusive resource sharing within a subsystem. Matic and Henzinger [11] con-
sidered supporting interacting tasks with data dependencywithin a subsystem
and between subsystems, respectively.

More recently, Davis and Burns [22] presented the Hierarchical Stack Re-
source Policy (HSRP), allowing their work on hierarchical scheduling [6] to be
extended with sharing of logical resources. However, usingHSRP, information
on all tasks in the system must be available at the time of subsystem integra-
tion, which is not suitable for an open systems development environment, and
this can be avoided by the SIRAP protocol presented in this paper.

8.3 System model

8.3.1 Hierarchical scheduling framework

A hierarchical scheduling framework is introduced to support CPU time shar-
ing among applications (subsystems) under different scheduling services. Hence,
a systemS consists of one or more subsystemsSs ∈ S. The hierarchi-
cal scheduling framework can be generally represented as a two-level tree of
nodes, where each node represents a subsystem with its own scheduler for
scheduling internal tasks (threads), and CPU time is allocated from a parent
node to its children nodes, as illustrated in Figure 8.1.

The hierarchical scheduling framework providespartitioning of the CPU
between different subsystems. Thus, subsystems can be isolated from each
other for, e.g., fault containment, compositional verification, validation and
certification and unit testing.

The hierarchical scheduling framework is also useful in thedomain of open
systems [3], where subsystems may be developed and validated independently
in different environments. For example, the hierarchical scheduling framework
allows a subsystem to be developed with its own scheduling algorithm internal
to the subsystem and then later included in a system that has adifferent global
level scheduler for scheduling subsystems.

8.3 System model 77

Global scheduler

Subsystem1

Local
scheduler

Subsystem2

Local
scheduler

Subsystemn

Local
scheduler

Figure 8.1: Two-level hierarchical scheduling framework.

8.3.2 Shared resources

For the purpose of this paper a shared (logical) resource,ri, is a shared memory
area to which only one task at a time may have access. To accessthe resource a
task must first lock the resource, and when the task no longer needs the resource
it is unlocked. The time during which a task holds a lock is called acritical
section. Only one task at a time may lock each resource.

A resource that is used by tasks in more than one subsystem is denoted a
global shared resource. A resource only used within a single subsystem is a
local shared resource. In this paper we are concerned only with global shared
resources and will simply denote them by shared resources. Management of
local shared resources can be done by using any synchronization protocol such
as PIP, PCP, and SRP.

8.3.3 Virtual processor model

The notion of real-time virtual processor (resource) modelwas first introduced
Mok et al. [16] to characterize the CPU allocations that a parent node provides
to a child node in a hierarchical scheduling framework. TheCPU supplyof
a virtual processor model refers to the amounts of CPU allocations that the
virtual processor model can provide. Thesupply bound functionof a virtual
processor model calculates the minimum possible CPU supplyof the virtual
processor model for a time interval lengtht.

78 Paper B

Shin and Lee [13] proposed the periodic virtual processor modelΓ(Π, Θ),
whereΠ is a period (Π > 0) andΘ is a periodic allocation time (0 < Θ ≤ Π).
The capacityUΓ of a periodic virtual processor modelΓ(Π, Θ) is defined as
Θ/Π. The periodic virtual processor modelΓ(Π, Θ) is defined to characterize
the following property:

supplyΓ

(
kΠ, (k + 1)Π

)
= Θ, wherek = 0, 1, 2, . . . , (8.1)

where the supply functionsupplyRs
(t1, t2) computes the amount of CPU allo-

cations that the virtual processor modelRs provides during the interval[t1, t2).

t

sbf(t)

Π

Φ

0 1 2 3 4 5 6 7 8 9 10

Φ Φ Φ

Π-Φ
Π Π Π
kΠ-Φ

kΠ

Figure 8.2: The supply bound function of a periodic virtual processor model
Γ(Π, Θ) for k = 3.

For the periodic modelΓ(Π, Θ), its supply bound functionsbfΓ(t) is de-
fined to compute the minimum possible CPU supply for every interval lengtht
as follows:

sbfΓ(t) =






t − (k + 1)(Π − Θ) if t ∈ [(k + 1)Π − 2Θ,
(k + 1)Π − Θ],

(k − 1)Θ otherwise,
(8.2)

8.3 System model 79

wherek = max
(⌈(

t − (Π − Θ)
)
/Π

⌉
, 1

)
. Here, we first note that an interval

of lengtht may not begin synchronously with the beginning of periodΠ. That
is, as shown in Figure 8.2, the interval of lengtht can start in the middle of
the period of a periodic modelΓ(Π, Θ). We also note that the intuition of
k in Eq. (8.2) basically indicates how many periods of a periodic model can
overlap the interval of lengtht, more precisely speaking, the interval of length
t− (Π−Θ). Figure 8.2 illustrates the intuition ofk and how the supply bound
functionsbfΓ(t) is defined fork = 3.

8.3.4 Subsystem model

A subsystemSs ∈ S, whereS is the whole system of subsystems, consists
of a task set and a scheduler. Each subsystemSs is associated with a peri-
odic virtual processor model abstractionΓs(Πs, Θs), whereΠs andΘs are the
subsystem period and budget respectively. This abstraction Γs(Πs, Θs) is sup-
posed to specify the collective temporal requirements of a subsystem, in the
presence of global logical resource sharing.

Task model We consider a periodic task modelτi(Ti, Ci,Xi), whereTi and
Ci represent the task’s period and worst-case execution time (WCET) respec-
tively, andXi is the set of WCETs within critical sections belonging toτi.
Each elementxi,j in Xi represents the WCET of a particular critical section
cxi,j executed byτi. Note thatCi includes allxi,j ∈ Xi.

The set of critical sections cover for the following two cases of multiple
critical sections within one job:

1. sequential critical sections, whereXi contains the WCETs of all sequen-
tial critical sections, i.e.Xi = {xi,1, ..., xi,o} whereo is the number of
sequential shared resources that taskτi may lock during its execution.

2. nested critical sections, wherexi,j ∈ X being the length of the outer
critical section.

Note that in the remaining paper, we usexi rather thanxi,j for simplicity
when it is not necessary to indicatej.

Scheduler In this paper, we assume that each subsystem has a fixed-priority
preemptive scheduler for scheduling its internal tasks.

80 Paper B

8.4 SIRAP protocol

8.4.1 Terminology

Before describing the SIRAP protocol, we define the terminology (also de-
picted in Figure 8.3) that are related to hierarchical logical resource sharing.

(Shared) Resource Access Time

Waiting Time Resource Holding Time

Semaphore
Request Instant

Critical Section
Entering Instant

Critical Section
Exiting Instant

Figure 8.3: Shared resource access time.

• Semaphore request instant:an instant at which a job tries to enter a
critical section guarded by a semaphore.

• Critical section entering (exiting) instant:an instant at which a job enters
(exits) a critical section.

• Waiting time: a duration from a semaphore request time to a critical
section entering time.

• Resource holding time:a duration from a critical section entering instant
to a critical section exiting instant. Lethi,j denote the resource holding
time of a critical sectioncxi,j of taskτi.

• (Shared) resource access time:a duration from a semaphore request in-
stant to a critical section exiting time.

In addition, a context switch is referred to astask-level context switchif
it happens between tasks within a subsystem, or assubsystem-level context
switchif it happens between subsystems.

8.4 SIRAP protocol 81

8.4.2 SIRAP protocol description

The subject of this paper is to develop a synchronization protocol that can ad-
dress global resource sharing in hierarchical real-time scheduling frameworks,
while aiming at supporting independent subsystem development and valida-
tion. This section describes our proposed synchronizationprotocol, SIRAP
(Subsystem Integration and Resource Allocation Policy).

Assumption SIRAP relies on the following assumption:

• The system’s global scheduler schedules subsystems according to their
periodic virtual processor abstractionsΓs(Πs, Θs). The subsystem bud-
get is consumed every time when an internal task within a subsystem ex-
ecutes, and the budget is replenished toΘs every subsystem periodΠs.
Similar to traditional server-based scheduling methods [23], the system
provides a run-time mechanism such that each subsystem is able to fig-
ure out at any timet how much its remaining subsystem budgetΘs is,
which will be denoted asΘ′

s(t) in the remaining of this section.

The above assumption is necessary to allow run-time checking whether or
not a job can potentially enter and execute a whole critical section before a
subsystem-budget expire. This is useful particularly for supporting indepen-
dent abstraction of subsystem’s temporal behavior in the presence of global
resource accesses.

In addition to supporting independent subsystem development, SIRAP also
aims at minimizing the resource holding time and bounding the waiting time at
the same time. To achieve this goal, the protocol has two key rules as follows:

R1 When a job enters a critical section, preemptions from other jobs within
the same subsystem should be bounded to keep its resource holding time
as small as possible.

R2 When a job wants to enter a critical section, it enters the critical section
at the earliest instant such that it can complete the critical section before
the subsystem-budget expires.

The first rule R1 aims at minimizing a resource holding time sothat the
waiting time of other jobs, which want to lock the same resource, can be min-
imized as well. The second rule R2 prevents a jobJi from entering a critical
sectioncxi,j at any timet whenΘ′(t) < hi,j . This rule guarantees that when
the budget of a subsystem expires, no task within the subsystem locks a global
shared resource.

82 Paper B

SIRAP : preemption management The SRP [19] is used to enforce the first
rule R1. Each subsystem will have its own system ceiling and resources ceiling
according to its jobs that share global resources. According to SRP, whenever
a job locks a resource, other jobs within the same subsystem can preempt it
if the jobs have higher preemption levels than the locked resource ceiling, so
as to bound the blocking time of higher-priority jobs. However, such task-
level preemptions generally increase resource holding times and can potentially
increase subsystem utilization. One approach to minimizehi,j is to allow no
task-level preemptions, by assigning the ceiling of globalresource equal to
the maximum preemption level. However, increasing the resource ceiling to
the maximum preemption level may affect the schedulabilityof a subsystem.
A good approach is presented in [20], which increases the ceiling of shared
global resources as much as possible while keeping the schedulability of the
subsystem.

SIRAP : self-blocking When a jobJi tries to enter a critical section, SIRAP
requires each local scheduler to perform the following action. Let t0 denote
the semaphore request instant ofJi andΘ′(t0) denote the subsystem’s budget
at timet0.

• If hi,j ≤ Θ′(t0), the local scheduler executes the jobJi. The jobJi

enters a critical section at timet0.

• Otherwise, i.e., ifhi,j > Θ′(t0), the local scheduler delays the critical
section entering of the jobJi until the next subsystem budget replenish-
ment. This is defined asself-blocking. Note that the system ceiling will
be equal to resource ceiling at timet0, which means that the jobs that
have preemption level greater than system ceiling can only execute dur-
ing the self blocking interval1. This guarantees that when the subsystem
of Ji receives the next resource allocation, the subsystem-budget will be
enough to execute jobJi inside the critical section2.

1With simple modifications to the SRP protocol, the executionof tasks can be allowed within
the self blocking interval if they do not access global resources even though their preemption levels
are less than the system ceiling. However this is off the point of this paper.

2The idea of self-blocking has been also considered in different contexts, for example, in CBS-
R [23] and zone based protocol (ZB) [24]. Our work is different from those in the sense that
CBS-R used a similar idea for supporting soft real-time tasks, and ZB used it in a pfair-scheduling
environment, while we use it for hard real-time tasks under hierarchical scheduling. This difference
inherently requires the development of different schedulability analysis, including Eqs. (8.5), (8.6),
and (8.7).

8.5 Schedulability analysis 83

8.5 Schedulability analysis

8.5.1 Local schedulability analysis

Consider a subsystemSs that consists of a periodic task set and a fixed-priority
scheduler and receives CPU allocations from a virtual processor model
Γs(Πs, Θs). According to [13], this subsystem is schedulable if

∀τi, 0 < ∃t ≤ Ti dbfFP(i, t) ≤ sbfΓ(t). (8.3)

The goal of this section is to develop the demand bound functiondbfFP(i, t)
calculation for the SIRAP protocol.dbfFP(i, t) is computed as follows;

dbfFP(i, t) = Ci + IS(i) + IH(i, t) + IL(i), (8.4)

whereCi is the WCET ofτi, IS(i) is the maximum self blocking forτi, IH(i, t)
is the maximum possible interference imposed by a set of higher-priority tasks
to a taskτi during an interval of lengtht, andIL(i) is the maximum possible
interference imposed by a set of lower-priority tasks that share resources with
preemption level (ceiling) greater than or equal to the priority of taskτi.

The following lemmas shows how to computeIS(i), IH(i, t) andIL(i).

Lemma 1. Self-blocking imposes to a jobJi an extra processor demand of at
most

∑o

j=1 hi,j if a job access multiple shared resources.

Proof. When the jobJi self-blocks itself, it consumes the processor of at most
hi,j units being idle. If the job access shared resources then theworst case will
happen when the job block itself whenever it tries to enter a critical section.

Lemma 2. A job Ji can be interfered by a higher-priority jobJj that ac-
cess shared resources, att time units for a duration of at mostd t

Tj
e(Cj +∑o

k=1 hj,k) time units.

Proof. Similar to classical response time analysis [25], we add
∑o

k=1 hj,k to
Cj which is the worst case self blocking from higher priority tasks, the lemma
follows.

Lemma 3. A job Ji can be interfered by only one lower-priority jobJj by at
most2 · max(hj,k), where k=1,...,o.

84 Paper B

Proof. A higher-priority jobJi can be interfered by a lower-priority jobJj .
This occurs only ifJi is released afterJj tries to enter a critical section but
beforeJj exits the critical section. WhenJi is released, only one job can try to
enter or be inside a critical section. That is, a higher-priority job Ji can then be
interfered by at most a single lower-priority job. The processor demand ofJj

during a critical section period is bounded by2 ·max(hj,k) for the worst case.
The lemma follows.

From Lemma 1, the self-blockingIS(i) is given by;

IS(i) =
o∑

k=1

hi,k (8.5)

According to Lemma 2 and taking into account the interference from higher
priority tasks,IH(i, t) is computed as follows;

IH(i, t) =

i−1∑

j=1

⌈ t

Tj

⌉
(Cj +

o∑

k=1

hj,k). (8.6)

The maximum interference from lower priority tasks can be evaluated ac-
cording to Lemma 3 according to;

IL(i) = max
j=i+1,...,n

(2 · max
k=1,...,o

(hj,k)). (8.7)

Based on Eq. (8.5) and (8.6) and (8.7), the processor demand bound func-
tion is given by Eq. (8.4).

The resource holding timehi,j of a jobJi that access a global resource is
evaluated as the maximum critical section execution timexi,j+ the maximum
interference from the tasks that have preemption level greater than the ceiling
of the logical resource during the executionxi,j . hi,j is computed [20] using
Wi,j(t) as follows;

Wi,j(t) = xi,j +

u∑

l=ceil(xi,j)+1

d
t

Tl

eCl, (8.8)

whereceil(xi,j) is the ceiling of the logical resource accessed within the crit-
ical sectionxi,j , andCl, Tl are the worst case execution time and the period
of job that have higher preemption level thanceil(xi,j), andu is the maximum
ceiling within the subsystem.

The resource holding timehi,j is the smallest timet∗i such thatWi,j(t
∗
i) =

t∗i .

8.5 Schedulability analysis 85

8.5.2 Global schedulability analysis

Here, issues for global scheduling of multiple subsystems are dealt with. For
a subsystemSs, it is possible to derive a periodic virtual processor model
Γs(Πs, Θs) that guarantees the schedulability of the subsystemSs according
to Eq. (8.3).

The local schedulability analysis presented for subsystems is not depen-
dent on any specific global scheduling policy. The requirements for the global
scheduler, are as follows: i) it should schedule all subsystems according to their
virtual processor modelΓs(Πs, Θs), ii) it should be able to bound the waiting
time of a task in any subsystem that wants to access global resource.

To achieve those global scheduling requirements, preemptive schedulers
such as EDF and RM together with the SRP [19] synchronizationprotocol can
be used. So when a subsystem locks a global resource, it will not be pre-
empted by other subsystems that have preemption level less than or equal to
the locked resource ceiling. Each subsystem, for all globalresources accessed
by tasks within a subsystem, should specify a list of pairs ofall those global re-
sources and their maximum resource holding times{(r1, Hr1

), ..., (rp, Hrp
)}.

However it is possible to minimize the required informationthat should be
provided for each subsystem by assuming that all global resources have the
same ceiling equal to the maximum preemption levelπ̂s among all subsys-
tems. Then for the global scheduling, it is enough to providevirtual processor
modelΓs(Πs, Θs) and the maximum resource holding times among all global
resourcesĤs = max(HR1

, ..., HRp
) for each subsystemSs. On the other

hand, assigning the ceiling of all global resources to the maximum preemption
level of the subsystem that access these resources is not as efficient as using
the original SRP protocol, this since we may have resources with lower ceiling
which permit more preemptions from the higher preemption level subsystems.

Under EDF global scheduling, a set ofn subsystems is schedulable [19] if

∀kk=1,...,n(

k∑

i=1

Θi

Πi

) +
Bk

Πk

≤ 1, (8.9)

whereBk of subsystemSk is the duration of the longest resource holding time
among those belonging to subsystems with preemption level lower thanπk.

For RM global scheduling, the schedulability test based on tasks’ response
time is

86 Paper B

Wi = Θi + Bk +

i−1∑

j=1

⌈Wi

Πj

⌉
(Cj). (8.10)

It is also possible to use a non-preemptive global schedulertogether with
the SIRAP protocol. In this case, no subsystem-level context switch happens
when there is a task inside a critical section. That is, whenever a task tries to
lock a global resource, it is guaranteed that the global resource is not locked by
another task from other subsystems. This way provides a clean separation be-
tween subsystems in accessing global shared resources. Then, we can achieve a
more subsystem abstraction, i.e., subsystems do not have toexport information
about their global shared resource accesses, for example, which global shared
resources they access and the maximum resource holding time. In fact, it will
require more system resources to schedule subsystems undernon-preemptive
global scheduling rather than under preemptive global scheduling. Hence, we
can see a tradeoff between abstraction and efficiency. Exploring this tradeoff
is a topic of our future work.

8.5.3 Local resource sharing

So far, only the problem of sharing global resource between subsystems has
been considered. However, many real time applications may have local re-
source sharing within subsystem as well. Almeida and Pedreiras [5] showed
that some traditional synchronization protocols such as PCP and SRP can be
used for supporting local resource sharing in a hierarchical scheduling frame-
work by including the effect of local resource sharing in thecalculation of
dbfFP. That is, to combine SRP/PCP and the SIRAP protocol for synchro-
nizing both local and global resources sharing, Eq. (8.7) should be modified
to

IL(i) = max(max(2 · xj,k), bi), wherej = i + 1, . . . , n. (8.11)

wherebi is the maximum duration for which a taski can be blocked by its
lower-priority tasks in critical sections from local resource sharing.

8.6 Protocol evaluation

In this section, the cost of using SIRAP is investigated in terms of extra CPU
utilization (UΓ) required for subsystem schedulability guarantees. We assume

8.6 Protocol evaluation 87

that all global resource ceilings can be equal to the maximumpreemption level,
which means that no tasks within a subsystem preempt a task inside a critical
section, and thereforehi,j = xi,j . Supporting logical resource sharing is ex-
pected to increase subsystem utilizationsUΓ. This increment inUΓ depends
on many factors such as the maximum WCET within a critical section xi,j , the
priority of the task sharing a global resource, and the subsystem periodΠs.

Sections 8.6.1, 8.6.2, and 8.6.3 investigate the effect of those factors under
the assumption that taski accesses a single critical section. In Section 8.6.4,
this assumption is relaxed so as to investigate the effect ofthe number of criti-
cal sections. Section 6.5 compares independent and dependent abstractions in
terms of subsystem utilization.

8.6.1 WCET within critical section

One of the main factors that affect the cost of using SIRAP is the value of
xi,j . It is clear from Eqs. (8.4), (8.6), and (8.7) that wheneverxi,j (which
equals tohi,j) increases,dbfFP will increase as well, potentially causingUΓ

to increase in order to satisfy the condition in Eq. (8.3). Figure 8.4 shows the
effect of increasingxi on two different task sets. Task set 1 is sensitive for
small changes inxi whilst task set 2 can tolerate the given range ofxi without
showing a big change inUΓ. The reason behind the difference is that task set
1 has a task with period very close toΠs while the smallest task period in task
set 2 is greater thanΠs by more than 4 times. Hence, SIRAP can be more or
less sensitive toxi depending on the ratio between task and subsystem period.

For the remaining figures (Figure 8.5 and 8.6), simulations are performed
as follows. We randomly generated 100 task sets, each containing 5 tasks.
Each task set has a utilization of 25%, and the period of the generated tasks
range from 40 to 1000. For each task set, a single task accesses a global shared
resource; the task is the highest priority task, the middle priority task, or the
lowest priority task. For each task set, we use 11 different values ofxi ranging
from 10% to 50% of the subsystem period.

8.6.2 Task priority

From Eqs. (8.4), (8.6) and (8.7), looking how tasks sharing global logical re-
sources affect the calculations ofdbfFP, it is clear that task priority for these
tasks is of importance. The contribution of low priority tasks ondbfFP is fixed
to a specific value ofxi (see Eq. (8.7)), while the increase indbfFP by higher
priority tasks depends on many terms such as higher prioritytask periodTk and

88 Paper B

0,25

0,3

0,35

0,4

0,45

0 0,5 1 1,5 2 2,5 3

Xi

S
u

b
sy

st
em

 u
ti

li
za

ti
o

n

task set 1

task set 2

Figure 8.4: UΓ as a function ofxi for two task sets where only the lowest
priority task share a resource.

execution timeCk (see Eq. (8.6)). It is fairly easy to estimate the behaviour of
a subsystem when lower priority tasks share global resources; on one hand, if
the smallest task period in a subsystem is close toΠs, UΓ will be significantly
increased even for small values ofxi. As the value ofsbf is small for time
intervals close toΠs, the subsystem needs a lot of extra resources in order to
fulfil subsystem schedulability. On the other hand, if the smallest task period
is much larger thanΠs thenUΓ will only be affected for large values ofxi, as
shown in Figure 8.4.

Figure 8.5 showsUΓ as a function ofxi for when the highest, middle and
lowest priority task are sharing global resources, respectively, whereΠs =
15. The figure shows that the highest priority task accessing a global shared
resource needs in average more utilization than other taskswith lower priority.
This observation is expected as the interference from higher priority task is
larger than the interference from lower priority tasks (seeEq. (8.6) and (8.7)).
However, note that in the figure this is true forxi within the range of [0,5]. If

8.6 Protocol evaluation 89

0,25

0,3

0,35

0,4

0,45

0,5

0 1 2 3 4 5 6 7

Xi

S
u

b
sy

st
em

 u
ti

li
za

ti
o

n

lowest priority

midle priority

highest priority

Figure 8.5: Average utilization for 100 task sets as a function ofxi, when low,
medium and high priority task share a resource respectively, Πs = 15.

the value ofxi is larger than 5, thenUΓ keeps increasing rapidly without any
difference among the priorities of tasks accessing the global shared resource.
This can be explained as follows. When using SIRAP, the subsystem budget
Θs should be no smaller thanxi to enforce the second rule R2 in Section 8.4.2.
Therefore, whenxi ≥ 5, Θs should also become greater than5 even though
subsystem period is fixed to 15. This essentially results in arapid increase of
UΓ with the speed ofxi/15.

8.6.3 Subsystem period

The subsystem period is one of the most important parameters, both in the con-
text of global scheduling andsbf calculations for a subsystem. AsΠs is used
in thesbf calculations,Πs will have significant effect onUΓ (see Eq. (8.3)).

Figure 8.6 compares average subsystem utilization for different values of
subsystem period, i.e., forΠs = 20 andΠs = 40 for the same task sets. Here,

90 Paper B

0,25

0,3

0,35

0,4

0,45

0,5

0 5 10 15 20

Xi

S
u

b
sy

st
em

 u
ti

li
za

ti
o

n

highest priority ps=40

highest priority ps=20

Figure 8.6: Average utilization for 100 task sets as a function ofxi, when only
the highest priority tasks share a resource and the subsystem period isΠs = 20
andΠs = 40.

only the highest priority task accesses a global shared resource. It is interesting
to see that the lower value ofΠs, i.e, Πs = 20, results in a lower subsystem
utilization whenxi is small, i.e.,xi ≤ 6, and then a higher subsystem utiliza-
tion whenxi gets larger fromxi = 6. That is,xi andΠs are not dominating
factors one to another, but they collectively affect subsystem utilization. It is
also interesting to see in Figure 8.6 that the subsystem utilization ofΠs = 40
behaves in a similar way by increasing rapidly fromxi = 14.

Hence, in general,Πs should be less than the smallest task period in a sub-
system, as in hierarchical scheduling without resource sharing, the lower value
of Πs gives better results (needs less utilization). However, inthe presence of
global resources sharing, the selection of the subsystem period depends also on
the maximum value ofxi in the subsystem.

8.6 Protocol evaluation 91

8.6.4 Multiple critical sections

We compare the case when a taski accesses multiple critical sections (MCS)
with the case when a taskj accesses a single critical section (SCS) within
durationxj =

∑o
k=1 xi,k according to the demand bound function calculations

in Eq. (8.4). The following shows the effect of accessing MCSby a task on
itself and on higher and lower priority tasks;

• Self blocking, Eq. (8.5) shows that both accessing MCS and SCS by a
task gives the same result.

• Higher priority task, the effect from higher priority task accessing MCS
or SCS can be evaluated by Eq. (8.6).IH will be the same for both cases
also.

• Lower priority task, Eq. (8.7) shows thatIL for MCS is less than SCS
case because in MCS the maximum ofxi,j will be less thanxi for SCS.

We can conclude that the required subsystem utilization forMCS case will
be always less than or equal to the case of SCS havingxj =

∑o

k=1 xi,k, which
means that our proposed protocol is scalable in terms of the number of critical
sections.

8.6.5 Independent abstraction

In this paper, we have proposed a synchronization protocol that supports inde-
pendent abstraction of a subsystem, particularly, for opensystems. Indepen-
dent abstraction is desirable since it allows subsystems tobe developed and
validated without knowledge about temporal behavior of other subsystems. In
some cases, subsystems can be abstracteddependentlyof others when some
necessary information about all the other subsystems is available. However,
dependent abstraction has a clear limitation to open systems where such infor-
mation is assumed to be unavailable. In addition, dependentabstraction is not
good for dynamically changing systems, since it may be no longer valid when a
new subsystem is added. Despite of the advantages of independent abstraction
vs. dependent abstraction, however, one may wonder what costs look like in
using independent abstraction in comparison with using dependent abstraction.
In this section, we discuss this issue in terms of resource efficiency (subsystem
resource utilization).

92 Paper B

0,35

0,4

0,45

0,5

0,55

2 4 8 16 32

Task-Subsystem Period Ratio

S
u

b
sy

st
em

 U
ti

li
za

ti
o

n

r=1.0

r=0.75

r=0.5

r=0.25

r=0.0

Figure 8.7: Comparison between independent and dependent abstractions in
terms of subsystem utilization.

One of the key differences between independent and dependent abstrac-
tions is how to model a resource supply provided to a subsystem, more specif-
ically, how to characterize the longestblackout durationduring which no re-
source supply is provided. Under independent abstraction,the longest blackout
duration is assumed to be the worst-case (maximum) one. Whereas, it can be
exactly identified by some techniques [6, 26] under dependent abstraction. This
difference inherently yields different subsystem resource utilizations, as illus-
trated in Figure 8.7. Before explaining this figure, we need to establish some
notions and explain how to obtain this figure.

We first extend the periodic resource modelΓ(Π, Θ) by introducing an ad-
ditional parameter,blackout duration ratio (r). We definer as follows. Let
Lmin andLmax denote the minimum and maximum possible blackout dura-
tion, and

Lmin = Π − Θ andLmax = 2(Π − Θ).

When exactly computed, the longest blackout duration can then be represented
asr · (Lmax −Lmin)+Lmin. We generalize the supply bound function of Eq.

8.6 Protocol evaluation 93

(8.2) with the blackout duration ratior as follows:

sbfΓ(t) =






t − (k + 1)(Π − Θ) if t ∈ [kΠ − Θ
+r(Π − Θ),
kΠ + r(Π − Θ)],

(k − 1)Θ otherwise,

(8.12)

wherek = max
(⌈(

t − (Π − Θ)
)
/Π

⌉
, 1

)
.

We here explain the notion oftask-subsystem period ratio, which is the
x-axis of the figure. Suppose a periodic resource modelΓ1(Π1, Θ1, r1) is an
abstraction that guarantees the schedulability of a subsystemS. According to
Eq. (8.3), there then exists a time instantt∗i , where0 < t∗i ≤ Ti, for each task
τi within the subsystemS such that

∀τi, dbfFP(i, t∗i) ≤ sbfΓ1
(t∗i). (8.13)

In fact, given the values of subsystem periodΠ and blackout duration ratior,
we can find a smallest value ofΘ, denoted asΘ∗

i , that can satisfy Eq. (8.13) at
t∗i for each taskτi. The value of budgetΘ is then finally determined as the max-
imum value among allΘ∗

i . This way makes sure thatΘ is large enough to guar-
antee the timing requirements of all tasks. LetT ∗ denote a time instantt∗k such
thatΘ∗

k is the maximum among the ones. We can see thatT ∗ ∈ [Tmin, Tmax],
whereTmin andTmax denote the minimum and maximum task periods within
subsystem, respectively. We define thetask-subsystem period ratioasT ∗/Π.

Given a periodic abstractionΓ1 of the subsystemS, another periodic re-
source modelΓ2(Π2, Θ2, r2) can be also an abstraction ofS, if

∀τi, sbfΓ1
(t∗i) ≤ sbfΓ2

(t∗i), (8.14)

since Eq. (8.3) can be satisfied withS and Γ2 as well. More specifically,
Γ2(Π2, Θ2, r2) can be an abstraction ofS, if

sbfΓ1
(T ∗) ≤ sbfΓ2

(T ∗). (8.15)

That is, givenΓ1 and the values ofΠ2 andr2, we can find the minimum value
of Θ2 that satisfies Eq. (8.15).

Figure 8.7 shows subsystem utilizations of periodic abstractions under dif-
ferent values of blackout duration ratior, when they have the same subsys-
tem period in abstracting the same subsystem. In general, itshows that de-
pendent abstraction, which can exactly identify the value of r, would pro-

94 Paper B

duce more resource-efficient subsystem abstractions. Specifically, for exam-
ple, whenr = 0, i.e., when the subsystem has the highest priority under fixed-
priority global scheduling, a subsystem can be abstracted with 15% less sub-
system utilization than in the case of independent abstraction (r = 1). The
figure also shows that differences in subsystem utilizationgenerally decrease
when the task-subsystem period ratio increases and/or the blackout duration
ratio increases. For example, whenr = 0.5, i.e., when the system has a mod-
erately high utilization and subsystems have medium or low priorities under
fixed-priority global scheduling or subsystems are scheduled under global EDF
scheduling, differences are shown to be smaller than 8%.

8.7 Conclusion

In this paper we have presented the novel Subsystem Integration and Resource
Allocation Policy (SIRAP), which provides temporal isolation between subsys-
tems that share logical resources. Each subsystem can be developed, tested and
analyzed without knowledge of the temporal behaviour of other subsystems.
Hence, integration of subsystems, in later phases of product development, will
be smooth and seamless.

We have formally proven key features of SIRAP such as bounds on delays
for accessing shared resources. Further, we have provided schedulability anal-
ysis for tasks executing in the subsystems; allowing for useof hard real-time
application within the SIRAP framework.

Naturally, the flexibility and predictability offered by SIRAP comes with
some costs in terms of overhead. We have evaluated this overhead through a
comprehensive simulation study. From the study we can see that the subsystem
period should be chosen as much smaller than the smallest task period in a
subsystem and take into account the maximum value ofhi in the subsystem to
prevent having high subsystem utilization. Future work includes investigating
the effect of context switch overhead on subsystem utilization together with the
subsystem period and the maximum value ofhi.

Bibliography

[1] D. Andrews, I. Bate, T. Nolte, C. M. Otero Pérez, and S. M.Petters.
Impact of embedded systems evolution on RTOS use and design.In
Giuseppe Lipari, editor,Proceedings of the1st International Workshop
Operating System Platforms for Embedded Real-Time Applications (OS-
PERT’05) in conjunction with the17th Euromicro International Confer-
ence on Real-Time Systems (ECRTS’05), pages 13–19, Palma de Mal-
lorca, Balearic Islands, Spain, July 2005.

[2] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri. From a federated to
an integrated architecture for dependable embedded real-time systems.
Technical Report 22, Technische Universität at Wien, Institut für Tech-
nische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2004.

[3] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open en-
vironment. InProceedings of the18th IEEE International Real-Time Sys-
tems Symposium (RTSS’97), pages 308–319, San Francisco, CA, USA,
December 1997. IEEE Computer Society.

[4] G. Lipari, P. Gai, M. Trimarchi, G. Guidi, and P. Ancilotti. A hierarchi-
cal framework for component-based real-time systems. InComponent-
Based Software Engineering, volume LNCS-3054/2004, pages 253–266.
Springer Berlin / Heidelberg, May 2005.

[5] L. Almeida and P. Pedreiras. Scheduling within temporalpartitions:
response-time analysis and server design. InProceedings of the 4th ACM
international conference on Embedded software (EMSOFT ’04), pages
95–103, Pisa, Italy, September 2004.

[6] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive schedul-
ing. In Proceedings of the26th IEEE International Real-Time Systems

95

96 Bibliography

Symposium (RTSS’05), pages 389–398, Miami Beach, FL, USA, Decem-
ber 2005.

[7] X. Feng and A. Mok. A model of hierarchical real-time virtual resources.
In Proceedings of the23th IEEE International Real-Time Systems Sym-
posium (RTSS’02), pages 26–35, Austin, TX, USA, December 2002.

[8] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for
real-time applications. InProceedings of the20th IEEE International
Real-Time Systems Symposium (RTSS’99), pages 256–267, Phoenix, AZ,
USA, December 1999. IEEE Computer Society.

[9] G. Lipari and S. K. Baruah. Efficient scheduling of real-time multi-task
applications in dynamic systems. InProceedings of the6th IEEE Real-
Time Technology and Applications Symposium (RTAS’00), pages 166–
175, Washington DC, USA, May-June 2000. IEEE Computer Society.

[10] G. Lipari and E. Bini. Resource partitioning among real-time applica-
tions. InProceedings of the15th Euromicro Conference on Real-Time
Systems (ECRTS’03), pages 151–158, Porto, Portugal, July 2003. IEEE
Computer Society.

[11] S. Matic and T. A. Henzinger. Trading end-to-end latency for compos-
ability. In Proceedings of the26th IEEE International Real-Time Systems
Symposium(RTSS’05), pages 99–110, Washington, DC, USA, December
2005. IEEE Computer Society.

[12] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein. Analysis
of hierarhical fixed-priority scheduling. InProceedings of the14th Eu-
romicro Conference on Real-Time Systems (ECRTS’02), pages 152–160,
Vienna, Austria, June 2002. IEEE Computer Society.

[13] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. InProceedings of the24th IEEE International Real-Time
Systems Symposium(RTSS’03), pages 2–13, Cancun, Mexico, December
2003.

[14] I. Shin and I. Lee. Compositional real-time schedulingframework. In
Proceedings of the25th IEEE International Real-Time Systems Sympo-
sium(RTSS’04), pages 57–67, Lisbon, Portugal, December 2004. IEEE
Computer Society.

Bibliography 97

[15] G. Lipari, J. Carpenter, and S. Baruah. A framework for achieving inter-
application isolation in multiprogrammed hard-real-timeenvironments.
In Proceedings of the21th IEEE International Real-Time Systems Sym-
posium(RTSS’00), pages 217–226, Orlando, FL, USA, December 2000.

[16] A. Mok, X. Feng, and D. Chen. Resource partition for real-time sys-
tems. InProceedings of IEEE Real-Time Technology and Applications
Symposium(RTAS), pages 75–84, Taipei, Taiwan ROC, May 2001.

[17] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task schedulingin distributed
real-time systems. InProceedings of the International Conference on In-
dustrial Electronics, Control, and Instrumentation IECON87, pages 909–
916, Cambridge, MA, USA, November 1987.

[18] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization pro-
tocols for multiprocessors. InProceedings of the9th IEEE International
Real-Time Systems Symposium (RTSS’88), pages 259–269, Huntsville,
AL, USA, December 1988. IEEE Computer Society.

[19] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time
Systems, 3(1):67–99, March 1991.

[20] M. Bertogna, N. Fisher, and S. Baruah. Static-priorityscheduling and re-
source hold times. InProceedings of the 15th International Workshop on
Parallel and Distributed Real-Time Systems(WPDRTS), pages 1–8, Long
Beach, CA, USA, March 2007.

[21] N. Fisher, M. Bertogna, and S. Baruah. Resource-locking durations in
EDF-scheduled systems. InProceedings of the13th IEEE Real Time and
Embedded Technology and Applications Symposium (RTAS’07), pages
91–100, Bellevue, WA, USA, 2007.

[22] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed pri-
ority pre-emptive systems. InProceedings of the27th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’06), pages 389–398, Rio de
Janeiro, Brazil, December 2006.

[23] Marco Caccamo and Lui Sha. Aperiodic servers with resource con-
straints. InIEEE Real-Time Systems Symposium, pages 161–170, 2001.

[24] Philip Holman and James H. Anderson. Locking under pfair scheduling.
ACM Trans. Comput. Syst., 24(2):140–174, 2006.

[25] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal (British Computer Society), 29(5):390–395, Octo-
ber 1986.

[26] Reinder J. Bril, Wim F. J. Verhaegh, and Clemens C. Wust.A cognac-
glass algorithm for conditionally guaranteed budgets. InRTSS ’06:
Proceedings of the27th IEEE International Real-Time Systems Sympo-
sium(RTSS’06), pages 388–400, Rio de Janeiro, Brazil, December 2006.

Chapter 9

Paper C:
Scheduling of
Semi-Independent Real-Time
Components:
Overrun Methods and
Resource Holding Times

Moris Behnam, Insik Shin, Thomas Nolte, Mikael Nolin

In Proceedings of the13th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA’08), IEEE Industrial Electronics So-
ciety, Hamburg, Germany, September, 2008.

99

100 Paper C

Abstract

The Hierarchical Scheduling Framework (HSF) has been introduced as a
design-time framework enabling compositional schedulability analysis of em-
bedded software systems with real-time properties. In thispaper a system con-
sists of a number of semi-independent components called subsystems. Subsys-
tems are developed independently and later integrated to form a system. To
support this design process, our proposed methods allow non-intrusive config-
uration and tuning of subsystem timing-behaviour via subsystem interfaces for
selecting scheduling parameters.

This paper considers two methods to handle overruns due to resource shar-
ing between subsystems in the HSF. We present the schedulingalgorithms for
overruns and their associated schedulability analysis, together with analysis
that shows under what circumstances one or the other overrunmethod is pre-
ferred. Furthermore, we show how to calculate resource-holding times within
our framework.

9.1 Introduction 101

9.1 Introduction

The Hierarchical Scheduling Framework (HSF) has been introduced to support
hierarchical resource sharing among applications under different scheduling
services. The hierarchical scheduling framework can be generally represented
as a tree of nodes, where each node represents an applicationwith its own
scheduler for scheduling internal workloads (e.g., threads), and resources are
allocated from a parent node to its children nodes.

The HSF provides means for decomposing a complex system intowell-
defined parts. In essence, the HSF provides a mechanism for timing-predictable
compositionof course-grained components orsubsystems. In the HSF a sub-
system provides an introspectiveinterfacethat specifies the timing properties
of the subsystem precisely [1]. This means that subsystems can be indepen-
dently developed and tested, and later assembled without introducing unwanted
temporal behaviour. Also, the HSF facilitatesreusability of subsystems in
timing-critical and resource constrained environments, since the well defined
interfaces characterize their computational requirements.

Earlier efforts have been made in supporting compositionalsubsystem in-
tegration in the HSFs, preserving the independently analyzed schedulability
of individual subsystems. One of the common assumptions shared by earlier
studies is that subsystems are independent. This paper relaxes this assump-
tion by addressing the challenge of enabling efficient compositional integration
for independently developedsemi-independentsubsystems interacting through
sharing of logical resources. Here, semi-independence means that subsystems
are allowed to synchronize by the sharing of logical resources.

To enable sharing of logical resources in HSFs, Davis and Burns proposed
the overrunmechanism that allows the subsystem to overrun (its budget)to
complete the execution of the critical section [2]. The study provided schedu-
lability analysis for this mechanism; however, it does not allow independent
analysis of individual subsystems. Hence, this schedulability analysis does not
support composability of subsystems. For Davis and Burns’ overrun mech-
anism, we have presented schedulability analysis supporting composability
in [3] and in addition, we also presented another overrun mechanism (enhanced
overrun mechanism) that potentially increases schedulability within a subsys-
tem by providing CPU allocations more efficiently.

The main contributions of this paper are twofold. The first contribution
of this paper is the comparison analysis showing under what circumstances
one [2] or the other overrun method [3] is preferred. The second contribution
of this paper is the presentation of, for the periodic virtual processor model that

102 Paper C

is used throughout the paper, how to calculate bounds on theresource holding
time. The resource holding time represents the time during whicha subsystem
may lock a shared resource, and it plays a key role in defining the interface of
a subsystem in this paper.

The outline of the paper is as follows: Section 9.2 presents related work,
while Section 9.3 presents our system model. In Section 9.4 we present the
schedulability analysis for the model. Section 9.5 presents the two overrun
mechanisms and Section 9.6 presents their analytical comparison. In Sec-
tion 9.7 we show how to calculate the resource holding times,and finally,
Section 9.8 concludes.

9.2 Related work

This section presents related work in the areas of HSFs as well as resource
sharing protocols.

9.2.1 Hierarchical scheduling

The HSF for real-time systems, originating in open systems [4] in the late
1990’s, has been receiving an increasing research attention. Since Deng and
Liu [4] introduced a two-level HSF, its schedulability has been analyzed un-
der fixed-priority global scheduling [5] and under EDF-based global schedul-
ing [6, 7]. Mok et al. [8] proposed the bounded-delay resource model so as
to achieve a clean separation in a multi-level HSF, and schedulability analy-
sis techniques [9, 10] have been introduced for this resource model. In addi-
tion, Shin and Lee [1, 11] introduced another periodic resource model (to char-
acterize the periodic resource allocation behaviour), andmany studies have
been proposed on schedulability analysis with this resource model under fixed-
priority scheduling [12, 13, 14] and under EDF scheduling [1]. More recently,
Easwaranet al. [15] introduced Explicit Deadline Periodic (EDP) resource
model. However, a common assumption shared by all the studies in this para-
graph is that tasks are required to be independent.

9.2.2 Resource sharing

In many real systems, tasks are semi-independent, interacting with each other
through mutually exclusive resource sharing. Many protocols have been in-
troduced to address the priority inversion problem for semi-independent tasks,

9.3 System model and background 103

including the Priority Inheritance Protocol (PIP) [16], the Priority Ceiling Pro-
tocol (PCP) [17], and Stack Resource Policy (SRP) [18]. Recently, Fisheret
al. addressed the problem of minimizing the resource holding time [19] un-
der SRP. There have been studies on extending SRP for HSFs, for sharing of
logical resources within a subsystem [20, 5] and across subsystems [2, 21, 22].
Davis and Burns [2] proposed the Hierarchical Stack Resource Policy (HSRP)
supporting sharing of logical resources on the basis of an overrun mechanism.
Behnamet al. [21] proposed the Subsystem Integration and Resource Alloca-
tion Policy (SIRAP) protocol that supports subsystem integration in the pres-
ence of shared logical resources, on the basis of skipping. Fisheret al. [22]
proposed the BROE server that extends the Constant Bandwidth Server (CBS)
[23] in order to handle sharing of logical resources in a HSF.Lipari et al. pro-
posed the BandWidth Inheritance protocol (BWI) [24] which extends the re-
source reservation framework to systems where tasks can share resources. The
BWI approach is based on using the CBS algorithm and a technique that is de-
rived from the Priority Inheritance Protocol (PIP). Particularly, BWI is suitable
for systems where the execution time of a task inside a critical section can not
be evaluated.

9.3 System model and background

9.3.1 Resource sharing in the HSF

The Hierarchical Scheduling Framework (HSF) has been introduced to support
CPU time sharing among applications (subsystems) under different scheduling
policies. In this paper, we consider a two level-hierarchical scheduling frame-
work which works as follows: a global (system-level) scheduler allocates CPU
time to subsystems, and a local (subsystem-level) scheduler subsequently allo-
cates CPU time to its internal tasks.

Having such a HSF also allows for the sharing of logical resources among
tasks in a mutually exclusive manner (see Figure 9.1). Specifically, tasks can
sharelocal logical resources within a subsystem as well asglobal logical re-
sources across (in-between) subsystems. However, note that this paper focuses
around mechanisms for sharing of global logical resources in a HSF while
local logical resources easily can be supported by traditional synchronization
protocols such as SRP (see, e.g., [20, 2, 5]).

104 Paper C

Subsystem1 Subsystem2

Local
scheduler

Local
scheduler

Subsystemu

R1R1

Local
scheduler

Local
scheduler

Local
scheduler

Local
scheduler

R2R2 RmRm

Global
scheduler

Global
scheduler

Figure 9.1: Two-level HSF with resource sharing.

9.3.2 Virtual processor models

The notion of real-time virtual processor (resource) modelwas first introduced
by Mok et al. [8] to characterize the CPU allocations that a parent node pro-
vides to a child node in a HSF. TheCPU supplyof a virtual processor model
refers to the amounts of CPU allocations that the virtual processor model can
provide. Thesupply bound functionof a virtual processor model calculates its
minimum possible CPU supply for any given time interval of lengtht.

The periodic virtual processor modelΓ(P, Q) was proposed by Shin and
Lee [1] to characterize periodic resource allocations, whereP is a period (P >
0) andQ is a periodic allocation time (0 < Q ≤ P). The capacityUΓ of a
periodic virtual processor modelΓ(P, Q) is defined asQ/P .

Thesupply bound functionsbfΓ(t) of the periodic virtual processor model
Γ(P, Q) was given in [1] to compute the minimum resource supply during an
interval of lengtht. Further, in this paper, we rephrase it with an additional
parameter ofBD, whereBD represents its longest possibleblackout duration
during which the periodic virtual processor model may provide no resource
allocation at all.

sbfΓ(t, BD) =

{
t − (k − 1)(P − Q) − BD if t ∈ W (k)

(k − 1)Q otherwise,
(9.1)

wherek = max
(⌈(

t+(P −Q)−BD
)
/P

⌉
, 1

)
andW (k) denotes an interval

[(k−1)P+BD, (k−1)P+BD+Q]. Here, we first note that the originalsbfΓ(t)

9.3 System model and background 105

0 1 2 3 4 5 6 7 8 9 10
t

sb
f(

t)

P

Q

P P P

Q QQ

(k-1)P
BD =
2P-2Q

Figure 9.2: The supply bound function of a periodic virtual processor model
Γ(3, 2).

in [1] is equivalent tosbfΓ(t, BD) whenBD = 2(P −Q). We also note that an
interval of lengtht may not begin synchronously with the beginning of period
P ; as shown in Figure 9.2, the interval of lengtht can start in the middle of the
period of a periodic virtual processor modelΓ(P, Q). Figure 9.2 illustrates the
supply bound functionsbfΓ(t) of the periodic virtual processor model.

9.3.3 Stack resource policy (SRP)

To be able to use SRP [18] in the HSF, its associated terms are extended as
follows:

• Preemption level. Each taskτi has a preemption level equal toπi =
1/Di, whereDi is the relative deadline of the task. Similarly, each sub-
systemSs has an associated preemption level equal toΠs = 1/Ps, where
Ps is the subsystem’s per-period deadline.

• Resource ceiling. Each globally shared resourceRj is associated with
two types of resource ceilings; oneinternal resource ceiling for local
schedulingrcj = max{πi|τi accessesRj} and oneexternalresource
ceiling for global scheduling.

106 Paper C

• System/subsystem ceilings. System/subsystem ceilings are dynamic pa-
rameters that change during run-time. The system/subsystem ceiling is
equal to the currently locked highest external/internal resource ceiling in
the system/subsystem.

Following the rules of SRP, a jobJi that is generated by a taskτi can
preempt the currently executing jobJk within a subsystem only ifJi has a
priority higher than that of jobJk and, at the same time, the preemption level
of τi is greater than the current subsystem ceiling. A similar reasoning is made
for subsystems from a global scheduling point of view.

9.3.4 System model

In this paper a periodic task modelτi(Ti, Ci, Di, {ci,j}) is considered, where
Ti, Ci andDi represent the task’s period, worst-case execution time (WCET)
and relative deadline, respectively, whereDi ≤ Ti, and{ci,j} is the set of
WCETs within critical sections associated with taskτi. Each elementci,j in
{ci,j} represents the WCET of the taskτi inside a critical section of the global
shared resourceRj .

Looking at a shared resourceRj , the resource holding timehj,i of a task
τi is defined as the time given by the task’s maximum execution time inside
a critical section plus the interference (inside the critical section) of higher
priority tasks having preemption level greater than the internal ceiling of the
locked resource.

A subsystemSs ∈ S, whereS is the whole system of subsystems, is char-
acterized by a task setTs and a set of internal resource ceilingsRCs inherent
from internal tasks using the globally shared resources. Each subsystemSs is
assumed to have an EDF local scheduler, and the subsystems are scheduled ac-
cording to EDF on a global level. The collective resource requirements by each
subsystemSs is characterised by itsinterface(the subsystem interface) defined
as(Ps, Qs, Hs), wherePs is the subsystem’s period,Qs is it’s execution re-
quirement budget, andHs is the subsystem’s maximum resource holding time,
i.e.,Hs = max{hj,i|τi ∈ Ts accessesRj}.

9.4 Schedulability analysis

This section presents the schedulability analysis of the HSF, starting with local
schedulability analysis needed to calculate subsystem interfaces, and finally,

9.4 Schedulability analysis 107

global schedulability analysis. The analysis presented assumes that SRP is
used for synchronization on the local (within subsystems) level.

9.4.1 Local schedulability analysis

Let dbfEDF(i, t) denote the demand bound function of a taskτi under EDF
scheduling [25], i.e.,

dbfEDF(i, t) =
⌊ t + Ti − Di

Ti

⌋
· Ci. (9.2)

The local schedulability condition under EDF scheduling isthen (by combining
the results of [26] and [1])

∀t > 0
n∑

i=1

dbfEDF(i, t) + b(t) ≤ sbf(t), (9.3)

whereb(t) is the blocking function [26] that represents the longest blocking
time during which a jobJi with Di ≤ t may be blocked by a jobJk with
Dk > t when both jobs access the same resource.

9.4.2 Subsystem interface calculation

Given a subsystemSs, RCs, andPs, let calculateBudget(Ss, Ps,RCs) de-
note a function that calculates the smallest subsystem budgetQs that satisfies
Eq. (9.3). Hence,Qs = calculateBudget(Ss, Ps,RCs). The function is simi-
lar to the one presented in [1], however, due to space limitations, its details are
left out of this paper.

9.4.3 Global schedulability analysis

Following Theorem 1 of [26], global schedulability analysis under EDF schedul-
ing is given using the system load bound functionLBF(t) as follows:

∀t > 0 LBF(t) = B(t) +
∑

Ss∈S

DBFs(t) ≤ t, (9.4)

where

DBFs(t) =
⌊ t

Ps

⌋
· Qs, (9.5)

108 Paper C

and the system-level blocking functionB(t) represents the maximum blocking
time during which a subsystemSs may be blocked by another subsystemSk,
wherePs ≤ t andPk > t. B(t) is defined as

B(t) = max{Hk | Pk > t}. (9.6)

9.5 Overrun mechanisms
This section explains two overrun mechanisms that can be used to handle bud-
get expiry during a critical section in the HSF. Consider a global scheduler
that schedules subsystems according to their periodic interfaces (Ps, Qs, Hs).
The subsystem budgetQs is said toexpireat the point when one or more in-
ternal (to the subsystem) tasks have executed a total ofQs time units within
the subsystem periodPs. Once the budget is expired, no new task within the
same subsystem can initiate its execution until the subsystem’s budget is re-
plenished. This replenishment takes place in the beginningof each subsystem
period, where the budget is replenished to a value ofQs.

Budget expiration may cause a problem if it happens while a job Ji of a
subsystemSs is executing within a critical section of a global shared resource
Rj . If another jobJk, belonging to another subsystem, is waiting for the same
resourceRj , this job must wait untilSs is replenished again soJi can con-
tinue to execute and finally release the lock on resourceRj . This waiting time
exposed toJk can be potentially very long, causingJk to miss its deadline.

In this paper, we consider an overrun mechanism as follows; when the bud-
get of subsystemSs expires andSs has a jobJi that is still locking a globally
shared resource, jobJi continues its execution until it releases the locked re-
source. The extra time thatJi needs to execute after the budget ofSs expires
is denoted asoverrun timeθ. The maximumθ occurs whenJi locks a re-
source that gives the longest resource holding time just before the budget of
Ss expires. Here, we consider the payback overrun mechanism [2]. Whenever
overrun happens, the subsystemSs pays backθ in its next execution instant,
i.e., the subsystem budgetQs will be decreased byθ for the subsystem’s ex-
ecution instant following the overrun (note that only the instant following the
overrun is affected). Hereinafter, we call this payback overrun mechanismba-
sic overrun.

9.5.1 Basic overrun

Daviset al. [2] presented schedulability analysis for basic overrun, however, it
is not suitable for open environments [4] as it requires detailed information of

9.5 Overrun mechanisms 109

P P

Q θ QQ-θ
BD = 2P-2Q+θ

P

P P

Q θ QQ-θ
BD = 2P-2Q

P

θ

(a) basic overrun mechanism

(b) enhanced overrun mechanism

Figure 9.3: Basic and enhanced overrun mechanisms.

time

su
pp

ly

H

sbf(t)

sbf (t)*sbf (t)*

Figure 9.4: Comparingsbf(t) with sbf
◦(t).

all tasks in the system in order to calculate global schedulability. This section
discusses how to extend the existing schedulability analysis for basic overrun,
making it suitable for open environments.

Independent analysis with basic overrun

The supply bound function in [1] was developed under the assumption that
the greatest blackout duration is2(P − Q). Basic overrun cannot employ this
existing supply bound function for schedulability analysis because its greatest
Blackout Duration (BD) is2(P − Q) + H (as shown in Figure 9.3a). Taking
this into account, below is the presentation of a modified supply bound function
sbf

◦
Γ(t), that can be used with basic overrun (using Eq. (9.1)), as follows:

110 Paper C

sbf
◦
Γ(t) = sbfΓ(t, BD◦), whereBD◦ = 2(P − Q) + H. (9.7)

The existing schedulability conditions of Eq. (9.3) can then be extended by
substitutingsbfΓ(t) with sbf

◦
Γ(t).

Global analysis with basic overrun

We first discuss how to extend the demand bound function of a subsystem
with the basic overrun mechanism. Looking at basic overrun with payback
in a subsystemSs, the maximum contribution onDBFs(t) is Hs. WhenSs

overruns with its maximum, which isHs, the subsystem’s resource demand
within the subsystem periodPs will be increased toQs + Hs. Following this,
the budget of the next period will be decreased toQs −Hs due to the payback
mechanism. Then, suppose that the subsystem overruns again. Now, during the
next subsystem period, the subsystem’s resource demand will be Qs − Hs +
Hs = Qs. Here, one can easily see that the subsystem’s resource demand will
be at mostkQs + Hs duringk subsystem periods. Hence, the demand bound
functionDBF◦s(t) of a subsystemSs with the basic overrun mechanism is

DBF
◦
s(t) = DBFs(t) + Os(t), (9.8)

where

Os(t) =

{
Hs if t ≥ Ps,
0 otherwise.

(9.9)

The schedulability condition of Eq. (9.4) can then be extended by substituting
DBFs(t) with DBF

◦
s(t).

9.5.2 Enhanced overrun

As seen in Section 9.5.1, the basic overrun mechanism works with a modified
supply bound functionsbf◦(t) that is less efficient in terms of CPU resource
usage compared with the originalsbf(t), as illustrated in Figure 9.4. Now we
propose an enhanced overrun mechanism that makes it possible to usesbf(t)
and overrun to improve the efficiency of CPU resource utilization.

The enhanced overrun mechanism is based on imposing an offset (delaying
the budget replenishment of subsystem) equal to the amount of an overrun
θs to the execution instant that follows a subsystem overrun. As shown in
Figure 9.3b, the execution of the subsystem will be delayed by θs after a new

9.6 Comparison between basic and enhanced overrun mechanisms
111

period followed by overrun even if that subsystem has the highest priority at
that time. By this the maximum BD will be decreased to2(P − Q) compared
with basic overrun shown in Figure 9.3a and therefore it is possible to use the
same supply bound function presented in Section 9.3.2. One of the important
features that the enhanced overrun mechanism provides is that it moves the
effect of overrun from the local to the global schedulability analysis, so the
subsystem development will not depend on if there is an overrun mechanism
or not. This feature is very important in an open environment. We can then
use the existing local EDF schedulability condition of Eq. (9.3) without any
modification.

Global analysis with enhanced overrun

The effect of overrun is now moved to global schedulability analysis in the
enhanced overrun mechanism. Here, we present a demand boundfunction
DBF

∗
s(t) of a subsystemSs that upper-bounds the demand requested bySs

under the enhanced overrun mechanism. Now,DBF
∗
s(t) includes the offsetθs =

Hs as follows:

DBF
∗
s(t) =

⌊ t + Hs

Ps

⌋
· Q∗

s + O∗
s(t), (9.10)

where

O∗
s(t) =

{
Hs if t ≥ Ps − Hs,
0 otherwise.

(9.11)

The schedulability condition of Eq. (9.4) can then be extended by substituting
DBFs(t) with DBF

∗
s(t).

9.6 Comparison between basic and enhanced over-
run mechanisms

In this section, we will compare the efficiency of the two overrun mechanisms.
First, we will show the effect of using each of them locally, i.e., on a subsystem
level. Then, we will show their effect globally, i.e., on a system level.

112 Paper C

9.6.1 Subsystem-level comparison

The following lemma shows that the minimum required subsystem budget
when using enhanced overrun will be lower than or equal to theminimum
required budget when using basic overrun.

Lemma 4. Assuming that the minimum required budget to schedule all tasks in
a subsystemSs using basic overrun isQ◦

s, and that the corresponding budget
using enhanced overrun isQ∗

s, thenQ∗
s ≤ Q◦

s.

Proof. A subsystemSs is exactly schedulable iff in addition to Eq. (9.3),∑n
i dbfEDF(i, t) + b(t) = sbf(t) for ∃t s.t. minn

i Di ≤ t ≤ LCMSs
+

maxn
i Di (see theorem 2.2 in [15]). This means that if the budgetQs is the

minimum required to guarantee the schedulability of tasks in Ss, then there is
a set of timeste at which

∑n

i dbfEDF(i, t) + b(t) = sbf(t). Without loss of
generality, we assume thatte includes one element. If we use same subsystem
budgetQs for both basic and enhanced overrun then

sbf
◦(t) = sbf(t − Hs) (9.12)

wheresbf(t) is used with enhanced overrun and the shift in time “−Hs” comes
from the difference in BD when using enhanced and basic overrun. From
Eq. (9.1) and Eq. (9.12), we have two cases:

case 1:sbf◦(t) = sbf(t) for t ∈ [kPs − Qs + Hs, (k + 1)Ps − 2Qs] wherek
is an integer numberk > 1.

case 2:sbf◦(t) < sbf(t) for t out of the range in case 1.

If te ∈ [kPs − Qs + Hs, (k + 1)Ps − 2Qs] thensbf◦(te) = sbf(te).
And then

∑n

i dbfEDF(i, t
e) + b(te) = sbf

◦(te), which means thatQs may be
enough to schedule all tasks in a subsystemSs using basic overrun, soQ∗

s =
Q◦

s at timet = te. However, Eq. (9.3) must be checked if it holds for all other
timest, to be sure that the subsystemSs is still scheudlable.

If te is not in the range given for case 1, thensbf◦(te) < sbf(te). And
thensbf◦(te) <

∑n
i dbfEDF(i, t

e) + b(te) which means that the budgetQs

will not satisfy the condition in Eq. (9.3) using basic overrun and we should
provide higher budget. In this caseQ∗

s < Q◦
s.

9.6 Comparison between basic and enhanced overrun mechanisms
113

9.6.2 System-level comparison

As shown in the previous section, the minimum required budget when using
enhanced overrun is lower than or equal to the minimum budgetwhen using
basic overrun. However, at system level, it is not easy to seewhich of the two
approaches that will require minimum overall system CPU resources.

Let us definesystem loadas a quantitative measure to represent the mini-
mum amount of CPU allocations necessary to guarantee the schedulability of
the systemS. Then, we will investigate the impact of each overrun mecha-
nism on the system load, respectively. The system loadloadsys is computed as
follows:

loadsys = max
t

LBF(t)

t
. (9.13)

Note thatα = loadsys is the smallest fraction of the CPU that is required
to schedule all the subsystems in the systemS (satisfying Eq. (9.4)) assuming
that the resource supply function (at system level) isαt.

Looking at Eq. (9.13), we can decreaseloadsys by loweringLBF(t). En-
hanced overrun will makeLBF(t) lower compared with basic overrun since
LBF(t) depends on the subsystem budget. However, because of the offset im-
posed in the global scheduling when using enhanced overrun,the resource de-
mand should be provide earlier (see Eq. (9.10)). Comparing Eq. (9.8), which
computesDBF◦s(t) using basic overrun, and Eq. (9.10), which computesDBF

∗
s(t)

using enhanced overrun, we can see that theDBF
◦
s(t) is changed whent =

a × Ps for s = 1, .., m wherem is the number of subsystems anda is an inte-
ger number such thata > 0. While DBF∗s(t) is changed whent = a×Ps −Hs

for s = 1, .., m. Note thatloadsys will be evaluated at times when the demand
bound function changes, so it is not possible to decide if using enhanced over-
run will require lessloadsys compared with basic overrun. However, in some
special cases depending on the parameters of each subsystem, we can decide
which of the two overrun mechanisms that will produce lowerloadsys. For a
subsystemSs, we have two cases:

1. If Q◦
s/PS < Q∗

s/(Ps−Hs), then theloadsys using enhanced overrun will
be greater than or equal to theloadsys with basic overrun. The reason for
this is thatmax(DBF◦s(tba)/tba) < max(DBF∗s(ten)/ten) wheretba =
a × Ps is the time whenDBF◦s(t) is changed, andten = a × Ps − Hs is
the time whenDBF∗s(t) is changed.

2. Otherwise, it will depend on the parameters of the other subsystems to

114 Paper C

decide which of the two overrun mechanisms that will be better in terms
of loadsys.

We will explain the previous two cases by the following threeexamples:

Example 1: For the first case (Q◦
s/PS < Q∗

s/(Ps − Hs)), suppose that a
systemS consists of two subsystemsS1 with parametersP1 = 50, Q◦

1 =
10, Q∗

1 = 10, H1 = 4 andS2 with parametersP2 = 150, Q◦
2 = 15, Q∗

2 =
14.9, H2 = 8. Then using enhanced overrunloadsys = 0, 478 and using basic
overrunloadsys = 0, 44. The basic overrun is better than the enhanced overrun
by about3.8%.

Example 2: For the second case (Q◦
s/PS ≥ Q∗

s/(Ps − Hs)), suppose that
a systemS consists of two subsystemsS1 with parametersP1 = 50, Q◦

1 =
10, Q∗

1 = 9, H1 = 4 andS2 with parametersP2 = 150, Q◦
2 = 15, Q∗

2 =
12, H2 = 8. Then using enhanced overrunloadsys = 0, 456 and using basic
overrunloadsys = 0, 44. The basic overrun is better than the enhanced overrun
by about1.2%.

Example 3: For the second case (Q◦
s/PS ≥ Q∗

s/(Ps − Hs)), suppose that
a systemS consists of two subsystemsS1 with parametersP1 = 20, Q◦

1 =
5, Q∗

1 = 4, H1 = 2 and S2 with parametersP2 = 150, Q◦
2 = 10, Q∗

2 =
9, H2 = 2. Then using enhanced overrunloadsys = 0, 285 and using basic
overrunloadsys = 0, 3. The enhanced overrun is better than the basic overrun
by about11.5%.

9.7 Computing resource holding time

In this section we explain how to compute the resource holding timehj,i. Us-
ing the periodic virtual processor model, each subsystemSs receives CPU re-
sources with allocation timeQs every periodPs. DuringQs, the CPU alloca-
tion is 100 % of the CPU capacity (see Figure 9.2 where the slope in the supply
curve duringQ is one). The mechanism presented in Section 9.5 guarantees
that locking and releasing a critical section of a globally shared resourceRj

will happen within the allocated CPU resourceQs + θ. Thenhj,i will include
the execution time of the taskτi that locksRj inside the critical section as well
as the interference from all tasks within the same subsystemthat can preempt

9.7 Computing resource holding time 115

the execution inside the critical section. The worst case scenario happens when
all tasks that can preempt the execution of the critical section will be released
just after taskτi has entered the critical section of resourceRj . Then, thehj,i

is computed [19] usingWj(t) as follows:

Wj(t) = cxj +
∑

τk∈U

(
min

(⌈ t

Tk

⌉
,
⌊Di − Dk

Tk

⌋
+ 1

))
· Ck, (9.14)

wherecxj = max{ci,j} is the maximum execution time of taskτi inside the
critical section of the resourceRj andU is the set of tasks such thatU =
{τk|πk > rcj}.

The resource holding timehj,i is the smallest positive timet∗ such that

Wj(t
∗) = t∗. (9.15)

Note that we have not counted the preemption inside the critical section
from other subsystems when calculating the resource holding time. However,
we are taking the interference from higher preemption levelsubsystems into
account in the global schedulability analysis. Looking at Eq. (9.4),hj,i may
act as a blocking to other subsystems. Moreover, it is also the extra capacity
required to prevent budget expiry inside critical section.Whenhj,i is consid-
ered as a blocking time for other subsystems, the effect of interference from
higher preemption level subsystems inside the critical section will be included
in the global schedulability of the blocked subsystem (in the summation part of
Eq. (9.4)). Whenhj,i is used to evaluate the overrun, interference from other
subsystems inside the critical section will not be important, as the only impor-
tant part here is that the locked resource should be releasedbefore the end of
the period.

Eq. (9.14) can be simplified to evaluatehj,i as shown below:

hj,i = cxj +
∑

τk∈U

Ck (9.16)

The difference between Eq. (9.16) and Eq. (9.14) is that in Eq. (9.14) we
assume that all tasks that can preempt inside the critical section can execute
only once (we remove the min function from the summation of Eq. (9.14)).
The reason for why it is safe to assume only one execution of each preempting
task inside the critical section is given in the following lemma, showing that
if a task executes more than one time inside the critical section, the subsystem
will become unschedulable.

116 Paper C

Lemma 5. For a subsystem that uses an overrun mechanism to arbitrate ac-
cess to global shared resource under the periodic virtual processor model, each
task that is allowed to preempt the execution of anther task currently inside the
critical section of a globally shared resource can, in the worst case, only exe-
cute (cause interference) once.

Proof. We prove this lemma by considering two cases:
(1) Ps < Tm (whereTm = min(Ti) for all i = 1, ..n), if the task having

periodTm executes 2 or more times inside the critical section, this means that
the resource will be locked during this period, i.e.,hj,i > Tm thenhj,i > PS ,
which in turn means that the CPU utilization required by the subsystemSs will
beUs = (Qs + hj,i)/Ps > 1.

(2) If Ps ≥ Tm , sbfΓ(t) should provide at leastCm at time t = Tm

to ensure the schedulability test in Eq. (9.3). Note thatsbfΓ(t) = 0 during
t ∈ [0, 2Ps − 2Qs] so,2Ps − 2Qs < Tm which meansQs > Ps − Tm/2.

If the task that has periodTm execute 2 times inside the critical section then
hj,i > Tm. Hence,Qs+hj,i > Ps+Tm/2 which meansUs = (Qs+hj,i)/p >
1.

From Lemma (5), we can conclude that ift∗ > Tm then the required CPU
utilization Us will be greater than one. This means that, in turn, all tasks that
can preempt the execution of a critical section should do so maximum one time
in order to keep the utilization of a subsystem less than one.This proves the
correctness of Eq. (9.16) which is based on the assumption that all tasks can
interfere only once as a worst case while a task is in the critical section of the
resourceRj . If the value ofhj,i becomes greater thanmin(Tm, Ps) then we
can conclude that the subsystem will not be schedulable and we do not have to
continue the calculation towards finding a exact value ofhj,i.

9.8 Summary

In this paper we have considered a new overrun mechanism, forhierarchi-
cal scheduling frameworks, that can be used in the domain of open environ-
ments [3]. The main contributions of this paper are twofold:(1) we have pre-
sented analysis of when one overrun mechanism is better thanthe other, and
(2) we have presented how to calculate resource holding times when using the
periodic virtual processor model.

The results indicate that in the general case it is not trivial to evaluate which
overrun method that is better than the other, as their impacton the CPU utiliza-

9.8 Summary 117

tion is highly dependent on global system parameters such assubsystem peri-
ods and budgets. However, for open systems, enhanced overrun is generally
better than basic overrun, as it moves the effect of overrun from the local to the
global schedulability analysis.

Future work includes the development of local and global schedulability
analysis for Fixed Priority Scheduling (FPS), as the current results consider
Earliest Deadline First (EDF). Another interesting issue is to compare the en-
hanced overrun mechanism with other synchronization mechanisms such as
BWI [24], BROE server [22] and SIRAP [21].

Bibliography

[1] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. InProceedings of the24th IEEE International Real-Time
Systems Symposium(RTSS’03), pages 2–13, Cancun, Mexico, December
2003.

[2] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed pri-
ority pre-emptive systems. InProceedings of the27th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’06), pages 389–398, Rio de
Janeiro, Brazil, December 2006.

[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin. An overrun method to sup-
port composition of semi-independent real-time components. Computer
Software and Applications, 2008. COMPSAC ’08. 32nd Annual IEEE In-
ternational, pages 1347–1352, 28 2008-Aug. 1 2008.

[4] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open en-
vironment. InProceedings of the18th IEEE International Real-Time Sys-
tems Symposium (RTSS’97), pages 308–319, San Francisco, CA, USA,
December 1997. IEEE Computer Society.

[5] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for
real-time applications. InProceedings of the20th IEEE International
Real-Time Systems Symposium (RTSS’99), pages 256–267, Phoenix, AZ,
USA, December 1999. IEEE Computer Society.

[6] G. Lipari and S. K. Baruah. Efficient scheduling of real-time multi-task
applications in dynamic systems. InProceedings of the6th IEEE Real-
Time Technology and Applications Symposium (RTAS’00), pages 166–
175, Washington DC, USA, May-June 2000. IEEE Computer Society.

119

120 Bibliography

[7] G. Lipari, J. Carpenter, and S. Baruah. A framework for achieving inter-
application isolation in multiprogrammed hard-real-timeenvironments.
In Proceedings of the21th IEEE International Real-Time Systems Sym-
posium(RTSS’00), pages 217–226, Orlando, FL, USA, December 2000.

[8] A. Mok, X. Feng, and D. Chen. Resource partition for real-time sys-
tems. InProceedings of IEEE Real-Time Technology and Applications
Symposium(RTAS), pages 75–84, Taipei, Taiwan ROC, May 2001.

[9] X. Feng and A. Mok. A model of hierarchical real-time virtual resources.
In Proceedings of the23th IEEE International Real-Time Systems Sym-
posium (RTSS’02), pages 26–35, Austin, TX, USA, December 2002.

[10] I. Shin and I. Lee. Compositional real-time schedulingframework. In
Proceedings of the25th IEEE International Real-Time Systems Sympo-
sium(RTSS’04), pages 57–67, Lisbon, Portugal, December 2004. IEEE
Computer Society.

[11] I. Shin and I. Lee. Compositional real-time schedulingframework with
periodic model. ACM Transactions on Embedded Computing Systems,
7(3):(30)1–39, April 2008.

[12] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein. Analysis
of hierarhical fixed-priority scheduling. InProceedings of the14th Eu-
romicro Conference on Real-Time Systems (ECRTS’02), pages 152–160,
Vienna, Austria, June 2002. IEEE Computer Society.

[13] G. Lipari and E. Bini. Resource partitioning among real-time applica-
tions. InProceedings of the15th Euromicro Conference on Real-Time
Systems (ECRTS’03), pages 151–158, Porto, Portugal, July 2003. IEEE
Computer Society.

[14] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive schedul-
ing. In Proceedings of the26th IEEE International Real-Time Systems
Symposium (RTSS’05), pages 389–398, Miami Beach, FL, USA, Decem-
ber 2005.

[15] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using edp resource models. InProceedings of the28th IEEE Interna-
tional Real-Time Systems Symposium(RTSS’07), pages 129–138, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

Bibliography 121

[16] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task schedulingin distributed
real-time systems. InProceedings of the International Conference on In-
dustrial Electronics, Control, and Instrumentation IECON87, pages 909–
916, Cambridge, MA, USA, November 1987.

[17] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization pro-
tocols for multiprocessors. InProceedings of the9th IEEE International
Real-Time Systems Symposium (RTSS’88), pages 259–269, Huntsville,
AL, USA, December 1988. IEEE Computer Society.

[18] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time
Systems, 3(1):67–99, March 1991.

[19] N. Fisher, M. Bertogna, and S. Baruah. Resource-locking durations in
EDF-scheduled systems. InProceedings of the13th IEEE Real Time and
Embedded Technology and Applications Symposium (RTAS’07), pages
91–100, Bellevue, WA, USA, 2007.

[20] L. Almeida and P. Pedreiras. Scheduling within temporal partitions:
response-time analysis and server design. InProceedings of the 4th ACM
international conference on Embedded software (EMSOFT ’04), pages
95–103, Pisa, Italy, September 2004.

[21] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A synchroniza-
tion protocol for hierarchical resource sharing in real-time open systems.
In Proceedings of the 7th ACM and IEEE International Conference on
Embedded Software (EMSOFT’07), pages 279–288, Salzburg, Austria,
October 2007.

[22] N. Fisher, M. Bertogna, and S. Baruah. The design of an EDF-scheduled
resource-sharing open environment. InProceedings of the28th IEEE
International Real-Time Systems Symposium (RTSS’07), pages 83–92,
Washington, DC, USA, December 2007. IEEE Computer Society.

[23] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard
real-time systems. InProceedings of the19th IEEE International Real-
Time Systems Symposium (RTSS’98), pages 4–13, Madrid, Spain, Decem-
ber 1998. IEEE Computer Society.

[24] G. Lipari, G. Lamastra, and L. Abeni. Task synchronization’ in
reservation-based real-time systems.IEEE Transactions on Computers,
53(12):1591–1601, December 2004.

[25] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. InProceedings of the11th IEEE
International Real-Time Systems Symposium(RTSS’90), pages 182–190,
Lake Buena Vista, Florida, USA, December 1990. IEEE Computer Soci-
ety.

[26] Sanjoy K. Baruah. Resource sharing in EDF-scheduled systems: A closer
look. In Proceedings of the27th IEEE International Real-Time Systems
Symposium (RTSS’06), pages 379–387, Rio de Janeiro, Brazil, December
2006.

Chapter 10

Paper D:
Synthesis of Optimal
Interfaces for Hierarchical
Scheduling with Resources

Insik Shin, Moris Behnam, Thomas Nolte, Mikael Nolin

In Proceedings of the29th IEEE International Real-Time Systems Symposium
(RTSS08), IEEE Press, Barcelona, Spain, December, 2008, (to be appear).

123

124 Paper D

Abstract

This paper presents algorithms that (1) facilitate system-independent syn-
thesis of timing-interfaces for subsystems and (2) system-level selection of in-
terfaces to minimize CPU load. The results presented are developed for hierar-
chical fixed-priority scheduling of subsystems that may share logical recourses
(i.e., semaphores). We show that the use of shared resourcesresults in a trade-
off problem, where resource locking times can be traded for CPU allocation,
complicating the problem of finding the optimal interface configuration subject
to scheduability.

This paper presents a methodology where such a tradeoff can be effec-
tively explored. It first synthesizes a bounded set of interface-candidates for
each subsystem, independently of the final system, such thatthe set contains
the interface that minimizes system load for any given system. Then, integrat-
ing subsystems into a system, it finds the optimal selection of interfaces. Our
algorithms have linear complexity to the number of tasks involved. Thus, our
approach is also suitable for adaptable and reconfigurable systems.

10.1 Introduction 125

10.1 Introduction

Hierarchical scheduling has emerged as a promising vehiclefor simplifying the
development of complex real-time software systems. Hierarchical scheduling
frameworks (HSFs) provide an effective mechanism for achieving temporal
partitioning, making it easier to enforce the principle of separation of concerns
in the design and analysis of real-time systems. HSFs allow hierarchical CPU
sharing among subsystems (applications). The whole CPU is available and
shared among subsystems. Subsequently, each subsystem’s allocated CPU-
share is divided among its internal tasks by the usage of an internal scheduler.

Substantial studies [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] have been intro-
duced for the schedulability analysis of HSFs, where subsystems are indepen-
dent. For dependent subsystems, synchronization protocols [14, 15, 16] have
been proposed for arbitrating accesses to logical resources (i.e., semaphore)
across subsystems in HSFs. There have been a few studies [11,5] on thesys-
tem load minimizationproblem, which finds the minimum collective CPU re-
quirement (i.e., system load) necessary to guarantee the schedulability of an
entire HSF. However, this problem has not been addressed taking into account
global (logical) resource sharing (across subsystems).

The difficulty of finding the minimum system load substantially grows with
the presence of global sharing of logical resources, in comparison to without it.
Without it, it is a straightforward bottom-up process; individual subsystems de-
velop theirtiming-interfaces[11, 17], describing their minimum CPU require-
ments needed to ensure schedulability, and individual subsystem interfaces can
easily be combined to determine the minimum system load thatguarantees the
schedulability of an entire HSF. However, global resource sharing produces in-
terference among subsystems, complicating the process of finding subsystem
interfaces that impose the minimum CPU requirements into the system load.

An inherent feature with global resource sharing is that a subsystem can
be blocked in accessing a global shared resource, if there isanother subsys-
tem locking the resource at the moment. Such blocking imposes more CPU
demands, resulting in an increase of the system load. Therefore, subsystems
can reduce their resource locking time, for example, using the mechanism pre-
sented in [18], in order to potentially reduce the blocking of other subsystems
towards decrease of the system load. However, in doing so, wepresent in
this paper an unexpected consequence of reducing resource locking time; it
can increase the CPU demands of the subsystem itself (locking the resource),
subsequently increasing the system load. Hence, this paperintroduces a po-
tentially contradicting effect of reducing resource locking time on the system

126 Paper D

load, and it entails methods that can effectively explore such a tradeoff.
In this paper, we consider a two-step approach towards the system load

minimization problem. In the first step, each subsystem generates its own in-
terface candidates in isolation, investigating the intra-subsystem aspect of the
tradeoff. In the second step, putting all subsystems together on system-level,
interfaces of all subsystems are selected from their own candidates to find the
minimum resulting system load, examining the inter-subsystem aspect of the
tradeoff. For the first step, we present an algorithm that derives a bounded
number of interface candidates for each subsystem such thatit is guaranteed
to carry an interface candidate that constitutes the minimum system load no
matter which other subsystems it will be later integrated with. The first step
allows the interface candidates of subsystems to be developed independently,
making it also suitable for open environments [3], requiring no knowledge of
other subsystems. For the second step, we present another algorithm that de-
termines optimal interface selection to find the minimum system load. The
complexity of both algorithms is very low (O(n)), making the approach good
for execution during run-time, e.g., suitable for adaptable and reconfigurable
systems.

In the remainder of the paper, Section 10.2 presents relatedwork, fol-
lowed by system model and background in Section 10.3. Section 10.4 presents
schedulability analysis in our HSF, followed by problem formulation and solu-
tion outline in Section 10.5. Section 10.6 addresses the first step of the two-step
approach; efficiently generating interface candidates, and Section 10.7 resolves
the second step finding an optimal solution out of the candidates. Section 10.8
discuss the use of another overrun mechanism which called overrun with pay-
back mechanism and finally, Section 10.9 concludes.

10.2 Related work

This section presents related work in the areas of HSFs as well as synchroniza-
tion protocols.

Hierarchical scheduling. The HSF for real-time systems, originating in
open systems [3] in the late 1990’s, has been receiving an increasing research
attention. Since Deng and Liu [3] introduced a two-level HSF, its schedula-
bility has been analyzed under fixed-priority global scheduling [7] and under
Earliest Deadline First (EDF) based global scheduling [8].Mok et al.[10] pro-
posed the bounded-delay virtual processor model to achievea clean separation
in a multi-level HSF, and schedulability analysis techniques [6, 12] have been

10.3 System model and background 127

introduced for this resource model. In addition, Shin and Lee [11, 17] intro-
duced the periodic virtual processor model (to characterize the periodic CPU
allocation behaviour), and many studies have been proposedon schedulability
analysis with this model under fixed-priority scheduling [1, 9, 2] and under
EDF scheduling [11, 13]. More recently, Easwaranet al. [4] introduced Ex-
plicit Deadline Periodic (EDP) virtual processor model. However, a common
assumption shared by all above studies is that tasks are independent.

Synchronization. Many synchronization protocols have been introduced
for arbitrating accesses to shared logical resources addressing the priority in-
version problem, including Priority Inheritance Protocol(PIP) [19], Priority
Ceiling Protocol (PCP) [20], and Stack Resource Policy (SRP) [21]. There
have been studies on supporting resource sharing within subsystems [1, 7] in
HSFs. For supporting global resource sharing across subsystems, two protocols
have been proposed for periodic virtual processor model (orperiodic server)
based HSFs on the basis of an overrun mechanism [15] and skipping [14], and
another protocol [16] for bounded-delay virtual processormodel based HSFs.
Bertognaet al. [18] addressed the problem of minimizing the resource hold-
ing time under SRP. In summary, compared to the work in this paper, none of
the above approaches have addressed the tradeoff between how long subsys-
tems can lock shared resources and the resulting CPU requirement required in
guaranteeing schedulability.

10.3 System model and background

A Hierarchical Scheduling Framework (HSF) is introduced tosupport CPU
resource sharing among applications (subsystems) under different scheduling
services. In this paper, we are considering a two-level HSF,where the system-
level global scheduler allocates CPU resources to subsystems, and the
subsystem-level local schedulers subsequently schedule CPU resources to their
internal tasks. This framework also allows logical resource sharing between
tasks in a mutually exclusive manner.

10.3.1 Virtual processor models

The notion of real-time virtual processor model was first introduced by Mok
et al. [10] to characterize the CPU allocations that a parent node provides to a
child node in a HSF. TheCPU supplyrefers to the amounts of CPU allocations
that a virtual processor can provide. Shin and Lee [11] proposed the periodic

128 Paper D

processor modelΓ(P, Q) to specify periodic CPU allocations, whereP is a
period (P > 0) and Q is a periodic allocation time (0 < Q ≤ P). The
supply bound functionsbfΓ(t) of Γ(P, Q) was given in [11] that computes the
minimum possible CPU supply for every interval lengtht as follows:

sbfΓ(t) =






t − (k + 1)(P − Q) if t ∈ [(k + 1)P − 2Q,
(k + 1)P − Q],

(k − 1)Q otherwise,

wherek = max
(⌈(

t − (P − Q)
)
/P

⌉
, 1

)
.

10.3.2 System model

We consider a deadline-constrained sporadic task modelτi(Ti, Ci, Di, {ci,j})
whereTi is a minimum separation time between its successive jobs,Ci is a
worst-case execution time requirement,Di is a relative deadline (Ci ≤ Di ≤
Ti), and each elementci,j in {ci,j} is a critical section execution timethat
represents a worst-case execution time requirement withina critical section of
a global shared resourceRj . We assume that all tasks, that belong to same
subsystem, are assigned unique static priorities and are sorted according to
their priorities in the order of increasing priority. Without loss of generality, we
assume that the priority of a task is equal to the task ID number after sorting,
and the greater a task ID number is, the higher its priority is. LetHP(i) returns
the set of tasks with higher priorities than that ofτi.

A subsystemSs ∈ S, whereS is the set representing the whole system of
subsystems, is characterized by〈Ts,RCs〉, whereTs is a task set andRCs is a
set of internal resource ceilings of the global shared logical resources. We will
explain the resource ceilings in Section 10.3.3. We assume that each subsystem
has a unique static priority and subsystems are sorted in an increasing order of
priority, as is the case with tasks. We also assume that each subsystemSs has
a local Fixed-Priority Scheduler (FPS) and the system has a global FPS. Let
HPS(s) returns the set of subsystems with higher priority than thatof Ss.

Let us define atiming-interfaceof a subsystemSs such that it specifies the
collective real-time requirements ofSs. The subsystem interface is defined as
(Ps, Qs, Xs), wherePs is a period,Qs is a budgetthat represents an execu-
tion time requirement, andXs is a maximum critical section execution time
of all global logical resources accessed bySs. We note thatXs is similar to
the concept ofresource holding time (RHT)in [18], however, developed for
a different virtual-processor model. RHT in [18] is developed for a dedicated

10.3 System model and background 129

processor model1 (or a fractional processor model [10]), where subsystems do
not preempt each other. However, our HSF is based on a time-shared (par-
titioned) processor model [11], where subsystem-level preemptions can take
place. Therefore,Xs does not represent RHT in our HSF2, but indicates the
worst-case execution time requirement thatSs demands inside a critical sec-
tion. We will explain later how to derive the values ofPs, Qs andXs for a
given subsystemSs.

10.3.3 Stack Resource Policy (SRP)

In this paper, we consider the SRP protocol [21] for arbitrating accesses to
shared logical resources. Considering that the protocol was developed without
taking hierarchical scheduling into account, we generalize its terminologies for
hierarchical scheduling.
• Resource ceiling. Each global shared resourceRj is associated with two
types of resource ceilings; aninternal resource ceiling (rcj) for local
scheduling and anexternal resource ceiling (RXs) for global schedul-
ing. They are defined asrcj = max{i|τi ∈ Ts accessesRj} and
RXs = max{s|Ss accessesRj}.
• System/subsystem ceiling. The system/subsystem ceilings are dynamic pa-
rameters that change during execution. The system/subsystem ceiling is equal
to the highest external/internal resource ceiling of a currently locked resource
in the system/subsystem.

Under SRP, a taskτk can preempt the currently executing taskτi (even
inside a critical section) within the same subsystem, only if the priority ofτk is
greater than its corresponding subsystem ceiling. The samereasoning can be
made for subsystems from a global scheduling point of view.

Given a subsystemSs, let us consider how to derive the value of its crit-
ical section execution time (Xs). Basically,Xs represents a worst-case CPU
demand that internal tasks ofSs may collectively request inside any critical
section. Note that any taskτi accessing a resourceRj can be preempted by
tasks with priority higher than the internal ceiling ofRj . From the viewpoint
of Ss, let wj denote the maximum collective CPU demand necessary to com-
plete an access of any internal task toRj . Then,wj can be computed through
iterative process as follows (similarly to [18]):

1A processor is said to bededicatedto a subsystem, if the subsystem exclusively utilizes the
processor with no other subsystems.

2As the computation of RHT is not main focus of this paper, we refer to our technical report [22]
for its computation in our HSF.

130 Paper D

w
(m+1)
j = cxj +

n∑

k=rcj+1

d
w

(m)
j

Tk

e · Ck, (10.1)

wherecxj = max{ci,j} for all tasksτi accessing resourceRj andn is the num-
ber of tasks within the subsystem. The recurrence relation given by Eq. (10.1)
starts withw(0)

j = cxj and ends whenw(m+1)
j = w

(m)
j or whenw(m+1)

j > D∗
i ,

whereD∗
i is the smallest deadline of tasksτi accessingRj . If w

(m+1)
j > D∗

i ,
no taskτi is guaranteed to be schedulable, and subsequently neither is its sub-
systemSs.

Then,Xs = max{wj | for all Rj ∈ Rs}, whereRs is a set of global shared
resources accessed bySs.

10.4 Resource sharing in the HSF

10.4.1 Overrun mechanism

This section explains overrun mechanisms that can be used tohandle bud-
get expiry during a critical section in a HSF. Consider a global scheduler that
schedules subsystems according to their periodic interfaces (Ps, Qs, Xs). The
subsystem budgetQs is said toexpireat the point when one or more internal (to
the subsystem) tasks have executed a total ofQs time units within the subsys-
tem periodPs. Once the budget is expired, no new tasks within the same sub-
system can initiate execution until the subsystem’s budgetis replenished. This
replenishment takes place in the beginning of each subsystem period, where
the budget is replenished to a value ofQs.

Budget expiration can cause a problem, if it happens while a taskτi of a
subsystemSs is executing within the critical section of a global shared resource
Rj . If another taskτk, belonging to another subsystem, is waiting for the same
resourceRj , this task must wait untilSs is replenished soτi can continue to
execute and finally release the lock on resourceRj . This waiting time exposed
to τk can be potentially very long, causingτk to miss its deadline.

In this paper, we consider a mechanism based on overrun [15] that works
as follows; when the budget of the subsystemSs expires andSs has a taskτi

that is still locking a global shared resource, the taskτi continues its execution
until it releases the locked resource. The extra time thatτi needs to execute
after the budget ofSs expires is denoted asoverrun timeθs. The maximum

10.4 Resource sharing in the HSF 131

θs occurs whenτi locks a resource such thatSs requests a maximum critical
section execution time (Xs) just before its budget (Qs) expires.

10.4.2 Schedulability analysis

In this paper, we use HSRP [15] for resource synchronizationin HSF. Schedu-
lability analysis under global and local FPS with the overrun mechanism is
presented in [15]. However, the presented approach is not suitable for open
environments because the schedulability analysis of an internal task within a
subsystem requires information of all the other subsystems. Hence, this section
presents the schedulability analysis of local and global FPS using subsystem
interfaces, which is suitable for open environments.

Local schedulability analysis. Let rbfFP(i, t) denote the request bound
function of a taskτi under FPS [23], i.e.,

rbfFP(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉
· Ck, (10.2)

The local schedulability analysis under FPS can be then easily extended
from the results of [21, 11] as follows:

∀τi, 0 < ∃t ≤ Di rbfFP(i, t) + bi ≤ sbf(t), (10.3)

wherebi is the maximumblocking(i.e., extra CPU demand) imposed to a task
τi whenτi is blocked by lower priority tasks that are accessing resources with
ceiling greater than or equal to the priority ofτi, andsbf(t) is the supply
bound function. Note thatt can be selected within a finite set of scheduling
points [24].

Subsystem interface.We now explain how to derive the budgetQs of the
subsystem interface. GivenSs,RCs, andPs, letcalculateBudget(Ss, Ps,RCs)
denote a function that calculates the smallest subsystem budget that satisfies
Eq. (10.3) depending on the local scheduler ofSs. Such a function is similar
to the one in [11]. Then,Qs = calculateBudget(Ss, Ps,RCs).

Global schedulability analysis.Under global FPS scheduling, we present
the subsystem load bound function as follows (on the basis ofa similar reason-
ing of Eq. (10.2)):

LBFs(t) = RBFs(t) + Bs , where (10.4)

132 Paper D

RBFs(t) = (Qs + Os(t)) +
∑

Sk∈HPS(s)

⌈ t

Pk

⌉
(Qk + Ok(t)), (10.5)

where Ok(t) = Xk andOs(t) = Xs for t ≥ 0. Let Bs denote the maxi-
mum blocking (i.e., extra CPU demand) imposed to a subsystemSs, when it is
blocked by lower-priority subsystems,

Bs = max{Xj| Sj ∈ LPS(Ss)}, (10.6)

whereLPS(Ss) = {Sj|j < s}.
A global schedulability condition under FPS is then

∀Ss, 0 < ∃t ≤ Ps LBFs(t) ≤ t (10.7)

System load.As a quantitative measure to represent the minimum amount
of processor allocations necessary to guarantee the schedulability of a subsys-
temSs, let us defineprocessor request bound(αs) as

αs = min
0<t≤Ps

{
LBFs(t)

t
| LBFs(t) ≤ t}. (10.8)

In addition, let us define thesystem loadloadsys of the system under global FPS
as follows:

loadsys = max
∀Ss∈S

{αs}. (10.9)

Note thatαs is the smallest fraction of the CPU resources that is required
to schedule a subsystemSs (satisfying Eq. (10.7)) assuming that the global re-
source supply function isαt. For example, consider a systemS that consists
of two subsystems;S1 that has interface (10, 1, 0.5) andS2 (48, 1, 1). To guar-
antee the schedulability ofS1 andS2 thenα1 = 0.25 andα2 = 0.198. Then
loadsys = α1 = 0.25, which can schedule bothS1 andS2.

10.5 Problem formulation and solution outline

In this paper, we aim at maintaining the system load as low as possible while
satisfying the real-time requirements of all subsystems inthe presence of global
resource sharing. To achieve this, we address the problem ofdeveloping the in-
terfaces (Ps, Qs, Xs) of all subsystemsSs. In particular, assumingPs is given,

10.5 Problem formulation and solution outline 133

we focus on determingQs andXs such that a resulting system load (loadsys) is
minimized subject to the schedulability of all subsystems.It is suggested from
Eqs. (10.4) and (10.9) thatloadsys can be minimized by reducingQs andXs

for all subsystemSs.
A recent study [18] introduced a method to reduceXi. According to

Eq. (10.1), the value ofXs can decrease, when it has less interference (i.e.,
the summation part of Eq. (10.1)) from the tasksτk with priorities greater than
the ceiling of a resourceRj (i.e.,k > rcj). Such interference can be reduced
by allowing fewer tasks to preempt inside the critical section of Rj . As pro-
posed by [18], the ceiling ofRj can be increased to its greatest possible value
in order to allow no preemption inside the critical section.This way,Xs can
be minimized.

In this paper, we show that achieving the minimumXs of all subsystems
Ss does not simply produce the minimum system load, since minimizing Xs

may end up with a largerQs. To explain why this happens, let us assume that
for a resourceRj , its ceilingrcj is i − 1. In this case, a taskτi can preempt
any job that is executing inside the critical section ofRj . Now, supposercj is
increased toi. Then,τi is no longer able to preempt any job that is accessing
Rj , and it needs to be blocked. Then, the blocking (bi) of τi can potentially
increase, and, according to Eq. (10.3), this may require more CPU supply (i.e.,
Qs). Figure 10.1 illustrates a tradeoff between decreasingXs and increasing
Qs with an example subsystemSs, whereSs includes 7 internal tasks and
accesses 3 global resources. In the figure, each point represents a possible pair
of (Xs, Qs), and the line shows the tradeoff.

In addition to such a tradeoff, there is another factor that complicates the
system load minimization problem further. It is not straightforward to deter-
mineQs andXs of Ss such that they contribute toloadsys in a minimal way.
According to Eq. (10.6),Xs can serve as the blocking of its higher-priority
subsystemSk depending on the value ofXj of other lower-priority subsys-
temsSj . Hence, it is impossible to determineXs andQs in an optimal way,
without knowledge of other subsystems’ interfaces.

We consider a two-step approach to the system load minimization prob-
lem. In the first step, each subsystem generates a set of interface candidates
independently (with no information about other subsystems), which is suit-
able for subsystems to be developed in open environments. The second step
is performed when subsystems are integrated to form a system. During this
integration of subsystems, being aware of all interface candidates of all sub-
systems, only one out of all interface candidates for each subsystem is selected
(that will be used by the system-level scheduler later on) such that a resulting

134 Paper D

5

6

7

8

9

10

11

12

8 10 12 14 16 18 20Xs

Q
s

Figure 10.1: Tradeoff betweenQs andXs.

system load can be minimized.

10.6 Interface candidate generation

We define theinterface candidate generationproblem as follows. Given a
subsystemSs and a set of global resources, the problem is to generate a set
of interface candidatesICs such that there must exist an element ofICs that
constitutes an optimal solution to the system load problem.

SupposeSs containsn internal tasks that accessm global shared resources.
Note that as explained in Section 10.5, each global resourcemay have up ton
different internal resource ceilings, and one interface candidate can be gener-
ated from each combination ofm resource ceilings. A brute-force solution to
the interface generation problem is then to generate all possiblemn interface
candidates. However, not all of thesemn candidates have the potential to con-
stitute the optimal solution; those that require more CPU demand and impose
greater blocking on other subsystems can be considered as replicate candidates.

Hence, we present the ICG (Interface Candidate Generation)algorithm that
is not only computationally efficient, but also produces a bounded number of
interface candidates. We first provide some notions and properties on which
our algorithm is based. We then explain our algorithm and illustrate it. Here-
inafter, we assume thatPs is given by the system designer and is fixed during

10.6 Interface candidate generation 135

the whole process of generating a set of interface candidates. Therefore an
interface candidate can be denoted as(Qs,j , Xs,j) wherej indicates interface
candidate index.

Definition 1. An interface candidate(Qs,k, Xs,k) is said to beredundantif
there exists(Qs,i, Xs,i) such thatXs,i ≤ Xs,k andQs,i ≤ Qs,k, wherek < i
(denoted as(Qs,i, Xs,i) ≤ (Qs,k, Xs,k)). In addition,(Qs,i, Xs,i) is said to
benon-redundantif it is not redundant.

Suppose(Q′
s, X

′
s) ≤ (Q∗

s, X
∗
s). Then, the former candidate will never

yield a largerRBFs(t) than the latter does. This immediately follows from
Eqs. (10.4) and (10.5). That is, a subsystemSs will never impose more CPU
requirement to the system load with(Q′

s, X
′
s) than with(Q∗

s , X
∗
s). The fol-

lowing lemma records this property.

Lemma 6. If (Q′
s, X

′
s) ≤ (Q∗

s, X
∗
s), (Q′

s, X
′
s) will never contribute more to

loadsys than(Q∗
s, X

∗
s) does.

Proof. Suppose an interface candidate (Qs,a, Xs,a) is redundant. By defini-
tion, there exists another candidate (Qs,b, Xs,b) such that

• Xs,b ≤ Xs,a andQs,b ≤ Qs,a. So(Qs,b + Xs,b) <= (Qs,a + Xs,a).
Using a redundant interface candidate will never decreaseRBFs(t) (see
Eq. (10.5)) and the blockingBs, respectively, compared to a non
redundant candidate. It means that using a redundant candidate can in-
creasesLBFs(t) and therebyloads (see Eq. (10.8)). That is, a redundant
candidate only has a potential to increaseloadsys (see Eq. (10.9)).

• both interfaces are equivalent then system load for both is the same.

Lemma 6 suggests that redundant candidates be excluded froma solution,
and it reduces the number of interface candidates significantly. However, a
brute-force approach to reduce redundant candidates is still computationally
intractable, since the complexity of an exhaustive search is very highO(mn).
We now present important properties that serve as the basis for the development
of a computationally efficient algorithm.

In order to discuss some subtle properties in detail, let us further refine
some of our notations with additional parameters. Firstly,the maximum block-
ing (bi) imposed to a taskτi can vary depending on which resourceτi accesses.
Hence, letbi,j denote the maximum blocking that a task with priority higher

136 Paper D

thani can experience in accessing a resourceRj , i.e., bi,j = max{ck,j} for
all τk ≤ τi. Secondly, the maximum CPU demand (wj) imposed to any task
accessing a resourceRj can also be different depending on the internal ceiling
(rcj) of Rj . So letwj,k particularly representwj whenrcj = k.

The following two lemmas show the properties of redundant interfaces,
suggesting insights for how to effectively exclude them.

Lemma 7. LetRi denote a set of resources whose resource ceilings arei. Sup-
pose a resourceRk ∈ Ri yields the greatest blocking among all the elements
of Ri. Then, it is the resourceRk that requires the greatest CPU demand to
complete any task’s execution inside a critical section among all elements of
Ri, i.e.,

(
bi,k = max

∀Rj∈Ri
{bi,j}

)
→

(
wk,i = max

∀Rj∈Ri
{wj,i}

)
. (10.10)

Proof. The wj,i depends on two parameters (see Eq. (10.1));cxj , which is
equal to (bi,j) sincercj = i, and the interference from tasks with higher pri-
ority (the summation part denoted asI). Note thatI in invariant to difference
resourcesRj ∈ Ri, since it considers only the tasks with priority greater than i
in the summation. Then, it is clear thatwj,i depends only onbi,j , and it follows
that the resource with the maximumbi,j , will be consequently associated with
the maximumwi,j .

Using Lemma 7, the following lemma particularly shows how wecan ef-
fectively exclude redundant candidates.

Lemma 8. Consider a resourceRy of a ceiling k (rcy = k) and another
resourceRz of a ceiling i (rcz = i), wherek < i. Supposebk,y < bk,z

andrcy < rcz . Then, an interface candidate generated by having the ceiling
rcy = k + 1, .., i is redundant. Hence it is possible to increase the ceiling of
Ry to that ofRz directly (i.e.,rcy = rcz = i).

Proof. Let (Q′, X ′) denote an interface candidate generated whenrcy = k
andrcz = i, wherek < i. Let (Q∗, X∗) denote another interface candidate
generated whenrcy = rcz = i. We wish to show that(Q∗, X∗) ≤ (Q′, X ′),
i.e.,Q∗ ≤ Q′ andX∗ ≤ X ′.

Givenbi,y < bi,z, it follows from Lemma 7 thatwy,i < wz,i. This means
that even though the ceiling ofRy increases toi, it does not change the maxi-
mum blocking (bi) of tasksτi. Therefore, it does not change the request bound
function either. As a result,Q∗ = Q′.

10.6 Interface candidate generation 137

We wish to show thatX∗ ≤ X ′. When the ceiling ofRy increases toi
from k, its resultingwy,i becomes smaller thanwk

y because there will be less
interference from higher priority tasks, (i.e.,wy,i < wy,k). In fact, this is the
only change that occurs to the subsystem critical section execution time of all
shared resources whenrcy increases. Hence, the maximum subsystem critical
section execution timeX can remain the same (ifwy,k < X ′) or decrease (if
wy,k = X ′) afterrcy increases. That is,X∗ ≤ X ′.

- calculateBudget(Ss, Ps,RCs) returns the smallest subsy-
stem budget that satisfies Eq. (10.2).

- increaseCeilingX∗(RCs) returns whether or not the ceil-
ing of the resource associated withX∗ can be increased
by one. If so, it increases the ceiling of the selected
resource as well as the ceiling of all resources that have
the same ceiling as the selected resource (Lemma 8).

- Interface is an array of interface candidates; each candidate
is (Q, X , RC).

- addInterface(Interface, Q∗, X∗,RCs) adds new
interface in the interface list array.

- removeRedundant(Interface) removes all redundant
interfaces from the interface list.

1: RCs = {rc1, · · · , rcm} // rcj=initial ceiling of Rj using SRP
2: num = 0

3: do
4: Q∗ = calculateBudget(Ss, Ps,RCs)
5: X∗ = max{w1,rc1

, · · · , wm,rcm
)}

6: addInterface(Interface, Q∗, X∗,RCs)
7: num=removeRedundant(Interface)
8: while (increaseCeilingX∗(RCs))
9: return (Interface, num)

Figure 10.2: The ICG algorithm.

138 Paper D

T Ci Ti Rj ci,j T Ci Ti Rj ci,j

τ1 8 750 R2 4 τ2 50 650 R1 5
τ3 10 600 - 0 τ4 35 500 R1 10
τ5 1 160 - 0 τ6 2 150 - 0

Table 10.1: Example task set parameters

10.6.1 ICG algorithm

Description. Using Lemmas 6, 7, and 8, we can reduce the complexity of
a search algorithm. The algorithm shown in Figure 10.2 is based on these
lemmas. In the beginning (at line 1), each resource ceilingrcj is set to its initial
ceiling value according to SRP (without applying the technique in [18]). The
algorithm then generates an interface candidate (Q∗, X∗) based on the current
resource ceilings (line 4 and 5). This new interface candidate is added into a
list (line 6). Such addition can make some candidate redundant according to
Lemma 1, and those redundant candidates are removed (line 7). LetR∗ denote
the resource that determinesX∗ in line 5, andv∗ denote the value of the ceiling
(rc∗) of R∗ at that moment. In line 8, the algorithm 1) increases the ceiling rc∗

by one 2) checks the conditions given in Lemma 8 to further increaserc∗ if
possible, and 3) increases the ceiling of all other resources that have the same
ceiling asv∗ + 1, to the current value ofrc∗. This way, we can further reduce
redundant interface candidates.

Example. We illustrate the ICG algorithm with the following example.
Consider a subsystemSs that has six tasks as shown in Table 10.1. The local
scheduler for the subsystemSs is Rate-Monotonic (RM) and we choose sub-
system periodPs = 125. The algorithm works as shown in Table 10.2. The
results from step 1 are(Qs,1 = 51, Xs,1 = 102), at step 2(Qs,1, Xs,1) >
(Qs,2, Xs,2). So(Qs,1, Xs,1) is redundant (see Definition 1). That is, this in-
terface can be removed according to Lemma 6. For the same reason,(Qs,2, Xs,2)
can be removed after step 3. At step 3, therc2 is increased directly to4 ac-
cording to Lemma 8 sincerc1 > rc2 andb2,1 > b2,2. At both steps 4 and 5,
the ceilingrc1 is increased by one sinceXs,i = w1 but we increase the ceiling
of rc2 according to Lemma 8. The algorithm selects the interface candidates
from steps3, 4 and5.

Correctness.The following lemma proves the correctness of the ICG al-
gorithm.

Lemma 9. Let IC denote a set of up ton interface candidates that are gen-
erated by the ICG algorithm of Figure 10.2. There exists no non-redundant

10.6 Interface candidate generation 139

Step rc1 rc2 w1 w2 Qs,i Xs,i

1 4 1 13 102 51 102
2 4 2 13 52 51 52
3 4 4 13 7 51 13
4 5 5 12 6 52.5 12
5 6 6 10 4 56 10

Table 10.2: Example algorithm

interface candidate(Qs,y, Xs,y) such that(Qs,y, Xs,y) 6∈ IC.

Proof. Assume that(Qs,y, Xs,y) is a non-redundant interface candidate and
thatXs,y = wk,i, i.e., the subsystem critical section execution time ofRk is
the maximum among all global shared resources whenrck = i. Then we shall
prove that

1. There is noRj such thatbi,j > bi,k for all rcj > i. Otherwise we
could change the ceilingrck = rcj according to Lemma 8, and by this
wk,i 6= Xs,y.

2. There is noRj such thatbt,j > bi,k for all rcj < i, t < i. Otherwise
wj,t > wk,i because when we compute thewk andwj , the interference
from higher priority tasks as well as blocking is higher forRj , and then
wk,i 6= Xs,y. If we increase the ceilingrcj = i, it will not give other
non-redundant interface candidates (see Lemma 7 and 8).

We can conclude that there is only one resourceRk that may generate
a non-redundant interface at resource ceilingi, and this is the one that im-
poses the highest blocking at that level. The initial ceiling of Rk is v, where
v ∈ [1, i]. From Lemma 7,bf,k (wheref ∈ [v, i]) is the maximum blocking
at resource ceilingrck ∈ [v, i]. Since the presented algorithm increases the
ceiling of the global resource that generate the maximum subsystem critical
section execution time, it will increase the ceiling ofRk whenrck = v up to
i. Hence, we can guarantee that the algorithm will include theinterface when
Xs,y = wk,i.

The proof of the previous property also shows that the complexity of the
proposed algorithm isO(n) since we haven tasks (which equals to the number
of possible resource ceilings) and there is either 0 or 1 non-redundant interface
for each resource ceiling level, and the algorithm will onlytraverse these non-
redundant interfaces. Moreover, the proposed algorithm thereby produce at
mostn interface candidates.

140 Paper D

Post-processing. The ICG algorithm generates non-redundant interface
candidates on the basis of Lemma 6. The notion of redundant candidate is
so general that the ICG algorithm can be applicable to many synchroniza-
tion protocols. In some cases, however, a set of interface candidates can be
further refined, for instance, when the overrun mechanism described in Sec-
tion 10.4.1 is used. Consider two candidates(Q′

s, X
′
s) and(Q∗

s, X
∗
s) such that

Q′
s + X ′

s <= Q∗
s + X∗

s andX ′
s <= X∗

s . Then,(Q′
s, X

′
s) will never produce

not only a largerRBFs(t) for the subsystemSs itself, but also a larger blocking
Bj for other subsystemsSj , than(Q∗

s, X
∗
s) does. This immediately follows

from Eqs. (10.4)-(10.6). Then, the following lemma directly follows:

Lemma 10. Consider two candidates(Q′
s, X

′
s) and(Q∗

s, X
∗
s) such thatQ′

s +
X ′

s <= Q∗
s + X∗

s andX ′
s <= X∗

s . Then,(Q′
s, X

′
s) will never impose more

CPU requirement toloadsys in any way than(Q∗
s, X

∗
s) does.

Proof. Looking at Eq. (10.4), we can decreaseLBFs(t) to decrease the system
load by decreasing the blockingBs and/orRBFs(t). For the blocking, using
the interfaceQs,i, Xs,i may increase the blocking on the higher priority sub-
systems becauseXs,i > Xs,j . For RBFs(t), it will be increased if we use
Qs,i, Xs,i because(Qs,i + Xs,i) > (Qs,j + Xs,j) see Eq. (10.5). For this
we can conclude that we can remove the interface (Qs,i, Xs,i) since it will not
reduce the system load compared with the other interfaces.

According to Lemma 10, a set of interface candidates generated by the
ICG algorithm goes through its post-processing for furtherrefinement, and this
is very useful for the second step of our approach.

10.7 Interface selection

In this section, we consider a problem, called theoptimal interface selection
problem, that selects asystem configurationconsisting of a set of subsystem
interfaces, one from each subsystem that together minimizethe system load
subject to the schedulability of system. We present the ICS (Interface Candi-
date Selection) algorithm, an algorithm that finds an optimal solution to this
problem through a finite number of iterative steps.

10.7.1 Description of the ICS algorithm

The ICS algorithm assumes that each set of interface candidates(Qs, Xs) is
sorted in a decreasing order ofXs. In other words, each set is sorted in an

10.7 Interface selection 141

1, 1, 1

1, 1, 21, 2, 12, 1, 1

2, 1, 21, 2, 22, 2, 13, 1, 1

2, 2, 23, 2, 13, 1, 2

3, 2, 2

1, 1, 1

1, 1, 21, 2, 12, 1, 1

2, 1, 21, 2, 22, 2, 13, 1, 1

2, 2, 23, 2, 13, 1, 2

3, 2, 2

Figure 10.3: Search space for a system consisting of 3 subsystems.

increasing order of collective demands (Qs + Xs) (see Lemma 10). Then, the
first candidate (Qs,1, Xs,1) has the largest critical section execution time but
the smallest collective demands.

The ICS algorithm generates a finite number of system configurations
through iteration steps. Each configuration is a set of individual interface can-
didates of all subsystems. LetCFi denote aconfigurationthat ICS generates
at ani-th iteration step. For notational convenience, we introduce a variable
f i

k to denote an element ofCFi, i.e., CFi = {f i
1, . . . , f

i
N}. The variablef i

k

represents the interface candidate index of a subsystemSk, indicating that the
configuration in thei-th step includes (Qk,f i

k
, Xk,f i

k
).

Figure 10.3 shows an example to illustrate the ICS algorithm, where the
system contains 3 subsystems such that subsystemS1 has 3 interface candi-
dates, and two other subsystemsS2 andS3 have 2 candidates, respectively.
Each node in the graph represents a possible configuration, and each number
in the node corresponds to an interface candidate index in the order ofS1, S2,
andS3. The arrows show the possible transitions between nodes ati-th itera-
tion step, by increasingf i

k by 1 for each subsystemSk one by one. We describe

142 Paper D

the ICS algorithm with this example.
Initialization. In the beginning, this algorithm generates an initial config-

urationCF0 such that it consists of the first interface candidates of allsubsys-
tems. In Figure 10.3,CF0 = {1, 1, 1} (see line 2 of Figure 10.4).

Iteration step. The ICS algorithm transits from(i− 1)-th step toi-th step,
increasing only one element ofCFi−1 in value by one. In Figure 10.3, the
arrows with bold lines illustrate the path that ICS can take.For instance, ICS
moves from the initialization step (CF0 = {1, 1, 1}) to the first step (CF1 =
{2, 1, 1}). Then, the ICS algorithm excludes the two sibling nodes ofCF1 in
the figure (i.e.,{1, 2, 1} and{1, 1, 2}) from the remaining search space; the
algorithm will never visit those nodes from this step on. This way, ICS can
efficiently explore the search space. Let us describe how ICSbehaves at each
iteration step more formally.

Firstly, letδi denote the only single element whose value increases by one
betweenCFi−1 andCFi, i.e.,

f i
k =

{
f i−1

k + 1 if k = δi,
f i−1

k otherwise.
(10.11)

In the example shown in Figure 10.3,δ1 = 1.
Let us explain how to determineδi at an i-th step. We can potentially

increase every elements ofCFi−1, and thereby we have at mostN candidates
for the value ofδi. Here, we choose one out of at mostN candidates such that
a resultingCFi can cause the system load to be minimized.

Let loadsys(i) denote the value ofloadsys when a configurationCFi is used
as asystem interface. We are now interested in reducing the value ofloadsys(i−
1). Let s∗ denote the subsystemSs∗ that has the largestprocessor request
boundamong all subsystems. That is,loadsys(i−1) = αs∗ (see Eq. (10.9)). We
can find suchSs∗ by evaluating theprocessor request bound’s of all subsystems
(in line 5 of Figure 10.4).

By the definition ofs∗, we can reduce the value ofloadsys(i− 1) by reduc-
ing the value ofLBFs∗(t). There are two potential ways to reduce the value
of LBFs∗(t). From the definition ofLBFs(t) in Eq. (10.4), one is to reduce its
maximum blockingBs∗ and the other is to reduce the subsystem CPU demands
(RBFs∗(t)). A key aspect of this algorithm is that it always reduces theblocking
part, but does not reduce the request bound function part. Anintuition behind
is as follows: this algorithm starts from the interface candidates that have the
smallest demands but the largest subsystem critical section execution times,
respectively. Hence, for each interface candidate, there is no room to further

10.7 Interface selection 143

reduce its demand. However, there is a chance to reduce the maximum block-
ing Bs∗ of Ss∗ . It can be reduced by decreasing theXk∗ of a subsystemSk∗

that imposes the largest blocking to the subsystemSs∗ . We definek∗ in a more
detail.

Let k∗ denote the subsystemsk∗ that imposes the largest blocking to the
subsystemSs∗ , i.e.,Bs∗ = Xk∗ = max{Xj | for allXs ∈ LPS(s∗)}3, where
LPS(i) is a set of lower-priority subsystems ofSs∗ . We can find suchSk∗

easily by looking at the subsystem critical section execution times of all lower-
priority subsystems ofSs∗ (in line 6 of Figure 10.4).

When suchSk∗ is found, it then checks whether theXk∗ can be further
reduced (in line 7 of Figure 10.4). If so, it is reduced (in line 8), andCFi−1

becomes toCFi (in line 9). That is,δi = k∗.
Iteration termination. The above iteration process terminates when the

blockingBs∗ of subsystemSs∗ cannot be reduced further. The algorithm then
finds the smallest value ofloadsys out of the values saved during the iteration,
and it returns a set of interfaces corresponding to the smallest value.

Complexity of the algorithm. During ani-th iteration, the algorithm only
increases the interface candidate index of a subsystemSδi

. Then, it can repeat
O(N ∗ m′) iterations, whereN is the number of subsystems andm′ is the
greatest number of interface candidates of a subsystem among all.

10.7.2 Correctness of the ICS algorithm

In this section, we show that the ICS algorithm produces a setof system con-
figurations that contains an optimal solution. We first present notations that are
useful to prove the correctness of the algorithm.

• AS We consider the entire search space of the optimal interfaceselection
problem. It contains all possible subsystem interfaces comprising a system
configuration, and letAS denote it, i.e.,

AS = IC1 × · · · × ICn. (10.12)

In the example shown in Figure 10.3, the entire solution space (AS) has 12
elements.

We present some notations to denote the properties of the ICSalgorithm at
an arbitraryi-th iteration step.

3If more than one lower priority subsystem impose the same maximum blocking onSs∗, then
we select the one with lowest priority.

144 Paper D

- ICs is an array of interface candidates of subsystemSs,
sorted in a decreasing order ofXs.

- icis is an index toICs of subsystemSs.
- I is a set of interfaces{Is}, each of which indicated byicis.
- subsystemWithMaxLoad() returns the subsystemSs∗

that has the greatestprocessor request boundamong
all subsystems, i.e.,loadsys = αs∗ .

- maxBlockingSubsystemToSysload(s∗) returns a subsystem
Sk∗ that produces the greatest blocking to a subsystemSs∗ .
Note thatSs∗ determines the system load.

1: for all Ss ∈ S
2: icis = 1; Is = ICs[icis]
3: load∗sys = 1.0; I∗ = I
4: do
5: s∗ = subsystemWithMaxLoad()
6: k∗ = maxBlockingSubsystemToSysload(s∗)
7: if (icik∗ can increase by one)
8: icik∗ = icik∗ + 1
9: Ik∗ = ICk∗ [icik∗]
10: computeloadsys according to Eq. (10.9)
11: if (loadsys < load∗sys)
12: load∗sys = loadsys

13: I∗ = I
14: else
15: return I∗ (that determinesload∗sys)
16: until (true)

Figure 10.4: The ICS algorithm.

• ÎC
i

k In the beginning, the ICS algorithm has the entire search space (AS)
to explore. Basically, this algorithm gradually reduces a remaining search
space to explore during iteration. For notation convenience, we introduce a

variable (̂IC
i

k) to indicate the remaining interface candidates of a subsystem

10.7 Interface selection 145

Sk to explore. By definition,f i
k indicates which interface candidate of a sub-

systemSk is selected byCFi. This algorithm continues exploration from the

interface candidate indicated byf i
k from the end of ani-th step. Then,̂IC

i

k is
defined as

ÎC
i

k = {f i
k, . . . , maxk} for all k = 1, . . . , n, (10.13)

wheremaxk is the number of interface. In the example shown in Figure 10.3,

ÎC
1

1 = {2, 3}.
• XPi Let us defineXPi to denote the search space remaining to explore

after the end of ani-th iteration step. Note that such a remaining search space
does not have to include the solution candidateCFi chosen at thei-th step.
Then,XPi is defined as

XPi = (ÎC
i

1 × · · · × ÎC
i

n) \ CFi. (10.14)

• RMi In essence, the ICS algorithm gradually decreases a remaining search
space during iteration. That is, at ani-th step, it keeps reducingXPi−1 to XPi,
whereXPi ⊂ XPi−1. Let RMi denote a set of interface settings that is ex-
cluded fromXPi−1 at thei-th step. Note that at thei-th step, the interface
candidate of a subsystemSδi

changes fromf i−1
δi

to f i
δi

. Then, a subset ofXPi

that contains the value off i−1
δi

, is excluded at thei-th step.RMi is defined as

RMi = (ÎC
(i−1)∗

1 × · · · × ÎC
(i−1)∗

n) \ {CFi−1}, where (10.15)

ÎC
(i−1)∗

k =

{
{f i−1

k } if k = δi,

ÎC
i

k otherwise.
(10.16)

In the example shown in Figure 10.3,RM1 = {{1, 2, 1}, {1, 2, 2}, {1, 1, 2}}.
• AHi Let AHi represent a set of system configurations that the ICS algo-

rithm selects from the first step through to ani-th step, i.e.,

AHi = {CF1, . . . , CFi}. (10.17)

• ARi LetARi represent a set of interface candidates that the ICS algorithm
excludes from the first step through to ani-th step, i.e.,

ARi = RM(i−1) ∪ RMi, whereAR0 = φ. (10.18)

We define partial ordering between interface candidates as follows:

146 Paper D

Definition 2. A interface candidatesc = {c1, . . . , cn} is said to bestrictly
precedentof another interface candidatesc′ = {c′1, . . . , c

′
n} (denoted assc ≺

sc′) if cj < c′j for somej andck ≤ c′k for all k, where1 ≤ (j, k) ≤ n.

As an example,{1, 1, 1} ≺ {1, 2, 1}.
The following lemma states that when the algorithm excludesa set of inter-

face candidates from further exploration at an arbitraryi-th step, a set of such
excluded interface candidates does not contain an optimal solution.

Lemma 11. At an arbitraryi-th iteration step, the ICS algorithm excludes a set
of interface candidates (RMi), and any excluded solution candidater ∈ RMi

does not yield a smaller system load than that byCFi−1.

Proof. As explained in Section 10.7.1, there are two potential waysto reduce
the value ofloadsys(CFi−1) at thei-th step. One is to reduce the CPU resource
demand of the subsystemSs∗

i
(i.e., RBFs∗

i
(t)), and the other is to reduce its

maximum blockingBs∗

i
.

Firstly, we wish to show thatRBFs∗
i
(t) does not decrease when we trans-

form CFi−1 to any interface candidater ∈ RMi. Note that each interface
candidate set is sorted in an increasing order of resource requirement budget
(Q). One can easily see thatCFi−1 ≺ r. Then, it follows thatRBFs∗

i
(t) never

decreases whenCFi−1 changes tor.
Secondly, we wish to show that when we changeCFi−1 to any interface

candidater ∈ RMi, Bs∗

i
does not decrease. As shown in line 6 in Figure 10.4,

the ICS algorithm finds the subsystemSδi
that generates the maximum block-

ing to for subsystemSs∗

i
. Then, the algorithm increasesf i−1

δi
by one, if pos-

sible, to decreaseBs∗

i
. However, by definition, for all elementsr of RMi, the

element for the subsystemSδi
has the value off i−1

δi
, rather than the value of

f i
δi

. This means thatBs∗

i
never decreases when we changeCFi−1 to r.

The following lemma states that when the algorithm terminates at an ar-
bitrary f -th step, a set of remaining interface candidates does not contain an
optimal solution.

Lemma 12. When the ICS algorithm terminates at an arbitraryf -th step, any
remaining interface candidate (xp ∈ XPf) does not yield a smaller system load
thanCFf does.

Proof. As explained in the proof of Lemma 11, there are two ways to reduce
loadsys (i.e.,LBFs∗

f
(t)).

10.7 Interface selection 147

One is to reduceRBFs∗
f
(t) in Eq. (10.5) . However, it does not decrease,

sinceCFf ≺ xp for all xp ∈ XPf .
The other is to reduce the maximum blocking (Bs∗

f
). In fact, the ICS algo-

rithm terminates at thef -th step because there is no way to decreaseBs∗

f
. That

is, Bf does not decrease whenCFf changes to anyxp.

The following lemma states that ati-th step, the remaining search space to
explore decreases by (RMi ∪ {CFi}).

Lemma 13. At an arbitraryi-th iteration step,

XPi = XPi−1 \ (RMi ∪ {CFi}). (10.19)

Proof. The ICS algorithm transformsCFi−1 toCFi at ani-th step by increasing
the value of itsδi-th element. Then, we have

ÎC
i

k =

{
ÎC

i−1

k \ {f i−1
k } if k = δi,

ÎC
i−1

k otherwise.
(10.20)

Without loss of generality, we assume thatδi = 1. For notational convenience,
let XP∗

i = XPi ∪ {CFi}, andRM∗
i = RMi ∪ {CFi}. Then, we have

XP∗
i = ÎC

i

1 × ÎC
i

2 × · · · × ÎC
i

n

=
(
ÎC

i−1

1 \ {f i−1
1 }

)
× ÎC

i

2 × · · · × ÎC
i

n

=
(
ÎC

i−1

1 × ÎC
i−1

2 × · · · × ÎC
i−1

n

)
\

(
{f i−1

1 } × ÎC
i

2 × · · · × ÎC
i

n

)

= XP∗
i−1 \ RM∗

i

=
(
XPi−1 ∪ {CFi−1}

)
\

(
RMi ∪ {CFi−1}

)

= XPi−1 \ RMi . (10.21)

That is, consideringXP ∗
i = XPi ∪ {CFi}, it follows

XPi = XPi−1 \ (RMi ∪ {CFi}) . (10.22)

148 Paper D

The following lemma states that at anyi-th iteration step, the entire search
space can be divided into a set of explored candidates (AHi), a set of excluded
candidates (ARi), and a set of remaining candidates to explore (XPi).

Lemma 14. At an arbitrary i-th step, the sets ofARi, AHi, andXPi include
all possible interface candidates.

ARi ∪ AHi ∪ XPi = AS (10.23)

Proof. We will prove this lemma by using mathematical induction. Asa base
step, we wish to show Eq. (10.23) is true, wheni = 1. Note thatAR0 = φ and
AH0 = {CF0}. In addition,XP0 = AS \ CF0, according to Eq. (10.14). It
follows thatAR0 ∪ AH0 ∪ XP0 = AP .

We assume that Eq. (10.23) is true at thei-th iteration step of the ICS
algorithm. We then wish to prove that it also holds at the(i + 1)-th step, i.e.,

ARi ∪ AHi ∪ XPi = ARi+1 ∪ AHi+1 ∪ XPi+1. (10.24)

According to the definitionsAHi+1, ARi+1, andXPi+1 (see Eq. (10.17),
(10.18) and (10.19)), we can rewrite the right-hand side of Eq. (10.24) as
follows:

ARi+1 ∪ AHi+1 ∪ XPi+1

=
(
ARi ∪ RMi+1

)
∪

(
AHi ∪ {CFi+1}

)
∪

(
XPi \ (RMi+1 ∪ {CFi+1})

)

= ARi ∪ AHi ∪ XPi .

The following theorem states that the ICS algorithm produces a set of sys-
tem configurations, which must contain an optimal solution.

Theorem 15. When the ICS algorithm terminates at thef -th step, a set of
system configurations (AHf) includes an optimal solution.

Proof. Let opt denote an optimal solution. We prove this theorem by contra-
diction, i.e., by showing thatopt 6∈ ARf andopt 6∈ XPf .

Supposeopt ∈ ARf . Then, by definition, there should existRMi such that
opt ∈ RMi for an arbitraryi ≤ f . According to Lemma 11,loadsys(CFi−1) <
loadsys(opt), which contradicts the definition ofopt. Hence,opt 6∈ ARf .

10.8 Overrun mechanism with payback 149

Suppose opt ∈ XPf . Then, according to Lemma 12, it should be
loadsys(CFf) < loadsys(opt), which contradicts the definition ofopt as well.
Hence,opt 6∈ ARf .

According to Lemma 14, it follows thatopt ∈ CFf .

10.8 Overrun mechanism with payback

David and Burns [15] presented another overrun mechanism called overrun
with payback. It works as follows, whenever overrun happens, the subsystem
Ss pays backOs in its next execution instant, i.e., the subsystem budgetQs

will be decreased byOs for the subsystem’s execution instant following the
one affected by overrun (note that only the instant following the overrun is
affected).

In this section we will discuss how we can apply the ICG and ICSalgo-
rithms with a system that uses the overrun with payback mechanism and we
will discuss how this will effect on system load. First, we will briefly explain
how to analyze the local and global schedulability with thistype of overrun
mechanism.

Local schedulability analysis. We can still use Eq. (10.3) for the payback
version of overrun wheredbfFP(i, t) is the same as in the overrun without
payback (presented in Section 10.4.1). However, thesbf(t) will be smaller in
the payback version, compared to the other version of without payback. This is
because the payback version may produce a longerblackout durationbetween
two consecutive periodic processor allocations (see [25] for more details). As a
consequence, the subsystem budget for a system that use overrun with payback
will be greater or equal to the subsystem budget required by the other version
of overrun.

Global schedulability analysis. Eq. (10.7) is valid only if we changeOk(t)
in Eq. (10.5) such thatOk(t) = Xk for 0 ≤ t ≤ Pk. Then Eq. (10.5) using the
overrun with payback mechanism can be rewritten as follows,

DBFs(t) = Qs + Xs +
∑

Sk∈HPS(Ss)

⌈ t

Pk

⌉
· (Qk) + Xk (10.25)

The ICG algorithm presented in Section 10.6.1 can be used without any
problem with the payback version. The reason is that local schedulability for

150 Paper D

both overrun mechanisms is the same and Lemmas 7-9 are based on the local
scheduling. Lemma 6 is based on the global scheduling, and itis valid also
with the payback version of overrun.

For the ICS algorithm, the possibilities to minimizeLBFs(t) using overrun
with payback are as follows; looking at Eq. (10.25), and depending on the val-
ues ofPs, Pk, Qk, Xk, the value ofDBFs(t) can be minimized in some cases
by minimizingQk+Xk and in other cases by minimizing onlyQk. The second
factor that has effect onLBFs(t) is Qs + Xs of the subsystem, and the third
factor isXs. So there is an additional factor that affect onLBFs(t) using the
payback version compared with the other version of the overrun mechanism,
which is minimizingQs. Hence, Lemma 10 may not be correct for all cases
when using the overrun mechanism with payback. We can conclude that the
optimization problem when using overrun with payback is more complex and
the ICS algorithm may not be able to find an optimal solution.

Comparing the two versions of the overrun mechanisms, the overrun mech-
anism without payback is better than the other version in thelocal schedulabil-
ity, and it will require lower subsystem budget. While in theglobal schedulabil-
ity, the payback version will be better than the other version because the inter-
ference from higher priority subsystems onSs is increased byQk every period
Pk (see Eq. (10.25)). On the other hand, when using overrun without payback,
the interference from higher priority subsystems increases byQk + Xk every
periodPk (see Eq. (10.5)). Another difference between the two versions of
overrun mechanisms is that overrun with payback has a restriction inQs ≥ Xs

while there is no such restriction when using overrun without payback.

10.9 Conclusion

When subsystems share logical resources in a hierarchical scheduling frame-
work, they can block each other. In particular, when a budgetexpiry problem
exists, such blocking can impose extra CPU demands. However, simply re-
ducing the blocking of subsystems does not monotonically decrease the sys-
tem load, since imposing less blocking to other subsystems can impose more
CPU requirements of the subsystems themselves. This paper introduced such
a tradeoff and presented a two-step approach to explore the intra- and inter-
subsystem aspects of the tradeoff efficiently, towards determining optimal sub-
system interfaces constituting the minimum system load.

In this paper, we considered only fixed-priority scheduling, and we plan to
extend our framework to EDF scheduling. Furthermore, our future work in-

10.9 Conclusion 151

cludes generalizing our framework to other synchronization protocols. For ex-
ample, this paper considered only the overrun mechanism without payback [15],
and we are extending towards another overrun mechanism (with-payback ver-
sion) [15]. Unlike with the former overrun mechanism, the intra- and inter-
subsystem aspects of the tradeoff are not clearly separatedwith the latter mech-
anism. The latter mechanism changes the way of a subsystem’sown contribut-
ing to the system load (i.e., Eq. (10.5)), and this requires appropriate changes
to the post-processing part of the ICG algorithm. We are investigating how to
make changes to the post-processing part in ways that require less subsequent
changes to the ICS algorithm.

Bibliography

[1] L. Almeida and P. Pedreiras. Scheduling within temporalpartitions:
response-time analysis and server design. InProceedings of the 4th ACM
international conference on Embedded software (EMSOFT ’04), pages
95–103, Pisa, Italy, September 2004.

[2] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive schedul-
ing. In Proceedings of the26th IEEE International Real-Time Systems
Symposium (RTSS’05), pages 389–398, Miami Beach, FL, USA, Decem-
ber 2005.

[3] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open en-
vironment. InProceedings of the18th IEEE International Real-Time Sys-
tems Symposium (RTSS’97), pages 308–319, San Francisco, CA, USA,
December 1997. IEEE Computer Society.

[4] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using edp resource models. InProceedings of the28th IEEE Interna-
tional Real-Time Systems Symposium(RTSS’07), pages 129–138, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[5] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee. Incremental schedulability
analysis of hieararchical real-time components. InProceedings of the 6th
ACM Conference on Embedded Software, September 2006.

[6] X. Feng and A. Mok. A model of hierarchical real-time virtual resources.
In Proceedings of the23th IEEE International Real-Time Systems Sym-
posium (RTSS’02), pages 26–35, Austin, TX, USA, December 2002.

[7] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for
real-time applications. InProceedings of the20th IEEE International

153

154 Bibliography

Real-Time Systems Symposium (RTSS’99), pages 256–267, Phoenix, AZ,
USA, December 1999. IEEE Computer Society.

[8] G. Lipari and S. K. Baruah. Efficient scheduling of real-time multi-task
applications in dynamic systems. InProceedings of the6th IEEE Real-
Time Technology and Applications Symposium (RTAS’00), pages 166–
175, Washington DC, USA, May-June 2000. IEEE Computer Society.

[9] G. Lipari and E. Bini. Resource partitioning among real-time applica-
tions. InProceedings of the15th Euromicro Conference on Real-Time
Systems (ECRTS’03), pages 151–158, Porto, Portugal, July 2003. IEEE
Computer Society.

[10] A. Mok, X. Feng, and D. Chen. Resource partition for real-time sys-
tems. InProceedings of IEEE Real-Time Technology and Applications
Symposium(RTAS), pages 75–84, Taipei, Taiwan ROC, May 2001.

[11] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. InProceedings of the24th IEEE International Real-Time
Systems Symposium(RTSS’03), pages 2–13, Cancun, Mexico, December
2003.

[12] I. Shin and I. Lee. Compositional real-time schedulingframework. In
Proceedings of the25th IEEE International Real-Time Systems Sympo-
sium(RTSS’04), pages 57–67, Lisbon, Portugal, December 2004. IEEE
Computer Society.

[13] F. Zhang and A. Burns. Analysis of hierarchical EDF pre-emptive
scheduling. InProceedings of the28th IEEE International Real-Time
Systems Symposium (RTSS’07), pages 423–434, Washington, DC, USA,
December 2007. IEEE Computer Society.

[14] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A synchroniza-
tion protocol for hierarchical resource sharing in real-time open systems.
In Proceedings of the 7th ACM and IEEE International Conference on
Embedded Software (EMSOFT’07), pages 279–288, Salzburg, Austria,
October 2007.

[15] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed pri-
ority pre-emptive systems. InProceedings of the27th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’06), pages 389–398, Rio de
Janeiro, Brazil, December 2006.

Bibliography 155

[16] N. Fisher, M. Bertogna, and S. Baruah. The design of an EDF-scheduled
resource-sharing open environment. InProceedings of the28th IEEE
International Real-Time Systems Symposium (RTSS’07), pages 83–92,
Washington, DC, USA, December 2007. IEEE Computer Society.

[17] I. Shin and I. Lee. Compositional real-time schedulingframework with
periodic model. ACM Transactions on Embedded Computing Systems,
7(3):(30)1–39, April 2008.

[18] M. Bertogna, N. Fisher, and S. Baruah. Static-priorityscheduling and re-
source hold times. InProceedings of the 15th International Workshop on
Parallel and Distributed Real-Time Systems(WPDRTS), pages 1–8, Long
Beach, CA, USA, March 2007.

[19] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task schedulingin distributed
real-time systems. InProceedings of the International Conference on In-
dustrial Electronics, Control, and Instrumentation IECON87, pages 909–
916, Cambridge, MA, USA, November 1987.

[20] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization pro-
tocols for multiprocessors. InProceedings of the9th IEEE International
Real-Time Systems Symposium (RTSS’88), pages 259–269, Huntsville,
AL, USA, December 1988. IEEE Computer Society.

[21] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time
Systems, 3(1):67–99, March 1991.

[22] Insik Shin, Moris Behnam, Thomas Nolte, and Mikael Nolin. On optimal
hierarchical resource sharing in open environments. Technical report,
2008. Available at http://www.idt.mdh.se/∼tnt/rtss08long.pdf.

[23] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algo-
rithm: exact characterization and average case behavior. In Proceedings
of the20th IEEE International Real-Time Systems Symposium(RTSS’89),
pages 166–171, Santa Monica, CA, USA, December 1989. IEEE Com-
puter Society.

[24] G. Lipari and E. Bini. A methodology for designing hierarchical schedul-
ing systems.J. Embedded Comput., 1(2):257–269, 2005.

[25] Moris Behnam, Insik Shin, Thomas Nolte, and Mikael Nolin. Schedul-
ing of semi-independent real-time components: Overrun methods and re-
source holding times. InProceedings of 13th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA’08).
IEEE Industrial Electronics Society, September 2008.

