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Abstract

The Hierarchical Scheduling Framework (HSF) has been doited to en-
able compositional schedulability analysis and executibembedded soft-
ware systems with real-time constraints. In this thesiscamsider a system
consisting of a number of semi-independent componentedalibsystems,
and these subsystems are allowed to share logical resotifeesiSF provides
CPU-time to the subsystems and it guarantees that the cha@iVsubsystems
respect their allocated CPU budgets. However, if subsystam allowed to
share logical resources, extra complexity with respechtdyeis and run-time
mechanisms is introduced.

In this thesis we address three issues related to hierat@dheduling of
semi-independent subsystems. In the first part, we invastifpe feasibility of
implementing the hierarchical scheduling framework in enotercial operat-
ing system, and we present the detailed figures of varioupkayerties with
respect to the overhead of the implementation.

In the second part, we studied the problem of supportingesha@sources
in a hierarchical scheduling framework and we propose tiferdint solutions
to support resource sharing. The first proposed solutioralied SIRAP, a
synchronization protocol for resource sharing in hiergxalty scheduled open
real-time systems, and the second solution isr@manced overrun mechanism

In the third part, we present a resource efficient approaahingmize sys-
tem load (i.e., the collective CPU requirements to guasatite schedulability
of hierarchically scheduled subsystems). Our work is naddist from a trade-
off between reducing resource locking times and reducirstesy load. We
formulate an optimization problem that determines theuesmlocking times
of each individual subsystem with the goal of minimizing flystem load sub-
ject to system schedulability. We present linear compyeigorithms to find
an optimal solution to the problem, and we prove their camess.
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Chapter 1

Introduction

Hierarchical scheduling has shown to be a useful approaporting modu-
larity of real-time software [1] by providing temporal piéidning among appli-
cations. In hierarchical scheduling, a system can be lukieally divided into
a number of subsystems that are scheduled by a global (systet sched-
uler. Each subsystem contains a set of tasks that are seldedyla local
(subsystem-level) scheduler. The Hierarchical Scheduiramework (HSF)
allows for a subsystem to be developed and analyzed iniisolatith its own
local scheduler. At a later stage, using a global schedulgr as Fixed Prior-
ity Scheduling (FPS), Earlier Deadline First (EDF) or TimwiBion Multiple
Access (TDMA), it allows for the integration of multiple ssystems without
violating the temporal properties of the individual sutieyss. The subsystem
integration involves a system-level schedulability testjfying that all timing
requirements are met. This approach by isolation of tasksimsubsystems,
and allowing for their own scheduler, has several advastagduding [2]:

¢ |t allows for the usage of the best scheduler (e.g., FPS, BOMDMA)
that fit the requirements of each subsystem.

e By keeping a subsystem isolated from other subsystems eeqing the
subsystem local scheduler, it is possible to re-use a campldsystem
in a different applicatiofrom where it was originally developed.

1Assuming that the timing parameters of the internal taskisegubsystem will not be changed
when the subsystem is re-used in a different application.
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e Hierarchical scheduling frameworks naturally supmatcurrent devel-
opmenbf subsystems.

Over the years, there has been a growing attention to HSHedbtime
systems. Deng and Liu [3] proposed a two-level hierarclsicaéduling frame-
work for open systems, where subsystems may be developed#dated in-
dependently in different environments. Kuo and Li [4] prasel schedulabil-
ity analysis techniques for such a two-level framework wfitl fixed-priority
global scheduler. Lipari and Baruah [5, 6] presented sclabdity analysis
techniques for the EDF-based global schedulers. ktoid. [7, 8] proposed
the bounded-delay virtual processor model to achieve andeparation in a
multi-level HSF. In addition, Shin and Lee [1] introducee theriodic virtual
processor model (to characterize the periodic CPU allocdiehaviour), and
many studies have been proposed on schedulability analytsighis model
under fixed-priority scheduling [9, 10, 11] and under EDFestilling [1, 12].
Being central to this thesis, the virtual periodic resourtedel is presented
in detail in Chapter 3. More recently, Easwaratnal. [13] introduced Ex-
plicit Deadline Periodic (EDP) virtual processor model.vdwer, a common
assumption shared by all above studies is that tasks arpendent.

In this thesis we address the challenges of enabling effic@npositional
integration preserving temporal behavior for indepenigeheveloped semi-
independent subsystems (i.e., subsystems are allowedhthrgnize by the
sharing of logical resources) in open systems where sufrsgstan be devel-
oped independently. Efficient compositional integratiozams that the system
should require as little CPU-resources as possible, atipwiore subsystems
to be integrated in a single processor. Achieving efficiemhpositional inte-
gration makes the HSF a cost-efficient approach applicalbla fvide domain
of applications, including, automotive, automation, apace and consumer
electronics.

There have been studies on supporting resource sharingnveitibsys-
tems [9, 4] and across subsystems [14, 15, 16] in HSFs. Dadi8arns [14]
proposed the Hierarchical Stack Resource Policy (HSRPpatipg global
resource sharing on the basis of an overrun mechanism. THeslgkability
analysis associated with the HSRP does not support indepésdbsystem
development (i.e., when performing schedulability analysr internal tasks
of a subsystem using HSRP, information about other subsgsthould be
provided). Fisheet al. [16] proposed the BROE server in order to handle
sharing of logical resources in a HSF. A detailed descniptibthese proto-
cols and a comparison between our proposed protocol and gresocols is
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presented in Chapter 4.
Our overall goal of this thesis is to propose a schedulinpméaork and
synchronization protocols that are able to fulfill the faliag requirements;

e With acceptable implementation overhead, it should beiplest im-
plement the HSF in commercial real-time operating systems.

e The framework should support sharing of logical resouredsben sub-
systems while preserving the timing predictability and-éiy allowing
for temporal requirements of the system.

e No knowledge about the parameters of other subsystems isreeq
when developing a subsystem, even in the case when therepea-d
dencies between subsystems (semi-independent subsysteerent in
the sharing of logical resources.

e The HSF should use the CPU-resources efficiently by minimgizhe
collective CPU requirement (i.e., system load) necessaguarantee
the schedulability of an entire framework.

1.1 Contributions

The contributions presented in this thesis can be dividedthree parts:

Implementation Over the years, there has been a growing attention to HSFs
for real-time systems. However, up until now, those stuldés mainly worked
on various aspects of HSFs from a theoretical point of viemodr knowledge,
there are very few studies that focus on the implementatibtSé-, especially
looking at what can be done with commercial operating system

We present our work towards a full implementation of the dwiehical
scheduling framework in the VxWorks commercial operatiggtem without
changing or modifying the kernel of the operating systemradoer, to show
the efficiency of the implementation, we measure the ovelhizaposed by the
implementation as a function of number of subsystems andeuof tasks for
both FPS and EDF local and global schedulers.

Supporting shared resources Allowing tasks from different subsystems to
share logical resources imposes more complexity for thediding of sub-
systems. A proper synchronization protocol should be usegulevent unpre-
dictable timing behavior of the real-time system. Sincedlege dependencies
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between subsystems though sharing of logical resourcésy tise protocol
with the HSF should not require any information from othdsststems when
developing a subsystem in order to not violate the requirgredeveloping
subsystems independently (support open systems).

We present the SIRAP protocol, a novel approach to allow lsorgza-
tion of semi-independent hierarchically scheduled sulesys. We present the
deduction of bounds on the timing behaviour of SIRAP togettith accom-
panying formal proofs and we evaluate the cost of using tfagogol in terms
of the extra CPU-resources that is required by the usagesqgfritocol.

In addition to SIRAP, we extend the schedulability analysisISRP [14]
so that it allows for independent analysis of individual sémdependent sub-
systems. And also, we propose an enhanced overrun mechtaisgives two
benefits (compared with the old version of overrun mechani€hy it may in-
crease schedulability within a subsystem by providing CRatations more
efficiently, and (2) it can even accept subsystems whichldpee their timing
requirements without knowing that the proposed modifiedrovemechanism
would be employed in the system.

Efficient CPU-resources usage As mentioned previously, one of the require-
ments that the proposed framework should provide, is tomirg the system
load. This can be achieved by finding optimal subsystem tniirterfaces
(specifies the collective temporal requirements of a subsy)sthat minimize
the system load. Supporting shared resources across sisysroduces in-
terference among subsystems which imposes more CPU deffoaiedsh sub-
system and makes the problem of minimizing the system loa cmmplex.
We identify a tradeoff between reducing the time that a ssiesy can
block other subsystems when accessing a shared resowkm@dime which
is a part of subsystem timing interface) and decreasingytses load. Se-
lecting the optimal subsystem interface for a subsystemiregjinformation
from other subsystems that the subsystem will interact.witbwever, the re-
quired information may not be available during the develeptstage of the
subsystem and in this case we may not be able to select thealtiterface.
To solve the problem of selecting an optimal interface fahesubsystem, we
propose a two-step approach towards the system load matimrizproblem.
In the first step, a set of interface candidates, that haveaenfal to produce
an optimal system load, is generated for each subsystenolatiean. In the
second step, one interface will be selected for each sudraybm its own
candidates to find the minimum resulting system load. We ideogne algo-
rithm for each step and we also prove the correctness angthmaality of the



1.2 Outline of thesis 7

provided algorithms formally.

1.2 Outline of thesis

The outline of this thesis is as follows: in Chapter 2 we ekpénd define the

basic concepts for real-time systems and the terms thabevilised throughout
this thesis and in addition we present the system model. ppath 3 we de-

scribe the hierarchical scheduling framework and the aatatschedulability

analysis assuming that the subsystems are fully indepéniie@hapter 4 we

address the problem of allowing dependency through shéwiigal resource

between subsystem and we present some solutions for thikeproln Chapter

5 we present our conclusion and suggestions for future walk present the
technical overview of the papers that are included in thésithin Chapter 6
and we present these papers in Chapters 7-10.






Chapter 2

Background

In this chapter we present some basic concepts concerrahgjmee systems,
as well as some methods that will be used in the next chapters.

2.1 Real-time systems

A real-time system is a computing system whose correctrdiss not only on
the functionality, but also on timeliness, i.e., the sysstould produce correct
results at correct instances of time. Real-time systemssrally constructed
using concurrent programs calléasksand each task is supposed to perform
a certain functionality (for example reading a sensor vateenputing output
values, sending output values to other tasks or devices, Atreal-time task
should complete its execution before a predefined timeddbadline

Real-time tasks can be classified according to their timomstraint to ei-
ther hard real-time tasks osoft real-time tasks. For hard real-time tasks, all
tasks should complete their execution before their deadlatherwise a catas-
trophic consequence may occur. However, for soft real-tamks, it is accept-
able that deadlines are missed which may degrade the systdonmance, for
example consider a mobile phone where missing some deadlifielecrease
the quality of the sound. Many systems contain a mix of hacisaxit real-time
tasks.

A real-time task consists of an infinite sequence of acéigitalled jobs,
and depending on the way of task triggering, real-time tasksmodeled as
either anaperiodic taskor asporadic taslor aperiodic task
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e Aperiodic tasks are triggered at arbitrary times, with nown minimum
inter-arrival time.

e Sporadic tasks have known minimum inter-arrival time.
e Periodic tasks have a fixed inter-arrival time called period

Depending on the task model, each task is characterizedinygiparame-
ters including task period (periodic task), worst case etien time, deadline,
etc.

2.2 System model

In this thesis we focus on scheduling of a single node. Eade imodeled
as a systen$ which consists of one or more subsystefps= S. The schedul-
ing framework is a two-level hierarchical scheduling framek as shown in
Fig 2.1. During run-time, the system level scheduler (Glgbheduler) selects
which subsystem that will access the CPU-resources.

/ \

}
Local Local Local
scheduler scheduler| """ scheduler

Subsystem, || Subsystem, Subsystem,,
/

Figure 2.1: Two-level hierarchical scheduling frameworkhwesource shar-
ing.

2.2.1 Subsystem model

A subsystemS, consists of a task set and a scheduler. Once a subsystem is
assigned the processor, the corresponding local schedilleselect which
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task that will be executed. Each subsyst8mis associated with a periodic
processor model (abstractioR) (Ps, Qs), whereP; andQ are the subsys-
tem period and budget respectively. This abstradiiofPs, Q) specifies the

collective temporal requirements of a subsystem and itésl @s an interface
between the subsystem and the global scheduler (we ret@stalistraction as
subsystem timing interfare

2.2.2 Task model

In this thesis, we consider a deadline-constrained spotedd real-time task
modelr;(T;, C;, D;,{c; j}) whereT; is a minimum separation time between
its successive jobg;; is a worst-case execution time requirement for one job,
D; is arelative deadlingf; < D, < T;) by which each job must have finished
its execution. Each task is allowed to access one or moredbgisources and
each element; ; in {c; ;} is acritical section execution timthat represents

a worst-case execution time requirement within a critieatiosn of a global
shared resourcgk;.

2.2.3 Shared resources

The presented hierarchical scheduling framework allovasisg of logical re-
source between tasks in a mutually exclusive manner. Tosac@eesource
R;, a task must first lock the resource, and when the task no toregzls the
resource it is unlocked. The time during which a task holdsch Is called a
critical section time. Only one task at a time may be insideitical section
corresponding to a specific resource. A resource that is lmséakks in more
than one subsystem is denoteglabal shared resourceA resource only used
within a single subsystem islacal shared resourceWe are concerned only
with global shared resources and will simply denote themhayexd resources.

2.3 Scheduling algorithms

In a single processor, the CPU can not be assigned to moretieatask to be
executed at the same time. If a set of tasks are ready to exénaut a schedul-
ing criterion should be used to define the execution ordehese tasks. The
scheduling criterion uses a set of rules defined by a scheglalgorithm to

determine the execution order of the task set. If all taskspiete their execu-
tion before their deadlines then the schedule is called sidlaschedule and
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the tasks are said to be schedulable. If the scheduler petimeit tasks to inter-
rupt the execution of the running task (task in executiorfiypteecompleting of
its execution then the scheduling algorithm is called a mE@/e algorithm,
otherwise it is called a non-preemptive scheduling algarit

Real-time scheduling algorithms fall in two basic categsrbnline sched-
ule and off-line schedule [17].

2.3.1 Online scheduling

For online scheduling, the order of task execution is deirsthduring run-
time according to task priorities. The priorities of tasksde static which
means that the priorities of tasks will not change duringtiore. This type
of scheduling algorithm is called Fixed Priority SchedglifFPS) and both
Rate Monotonic (RM) scheduling [18] and Deadline Monotoiv) [19]
use this type of scheduling. The task priorities can be dyoahich means
that they can change during run-time, and Earlier Deadlirst (EDF) [18] is
an example of such scheduler.

RM and DM scheduling algorithms In RM, the priorities of the tasks are
assigned according to their periods; the priority of a tagiroportional to the
inverse of the task period such that the task with shorteéogdevill have higher
priority than the tasks with longer period. The priority afak is fixed during
the run time. The RM scheduling algorithm assumes that tpskieds equals
to tasks deadlines. Another FPS algorithm is DM which is lsinto RM but
the priority depends on the task relative deadlines insbéaériods.

The schedulability analysis for each task using RM or DM ifo#lews [20];

V1, € 1,0 < 3t < D; dbf(i,t) <t. (2.1)

wherel is the set of tasks that will be scheduled dnds the relative deadline
of the taskr; anddbf (i, t) is evaluated as follows;

abf(it) =Ci+ Y [TLWC,C, (2.2)
71, EHP(4) '

whereC; is the worst case execution time of the taskndT; is the task period
andHP(4) is the set of tasks with priority higher than thatef
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EDF scheduling algorithm In this scheduling algorithm, the task that has
earlier deadline among all tasks that are ready to execiltexecute first. The
priority of the task is dynamic and can be changed duringtime-depending
on the deadline of the task instant and other released taakly for execution.
The schedulability test for a set of tasks that use EDF is shovq. (2.3) [21]
whichincludes the case when task deadlines are allowed&sbéhan or equal
to task periods.

t+1T; — D,
vt > 0, — |- C; <t (2.3)
PO

2.3.2 Offline scheduling

In offline scheduling, a schedule is created before run-tifilee scheduling
algorithm can take into consideration the timing conssahreal-time tasks
such as execution time, deadline, precedence relatiortgglashould execute
always before another task), etc. The resulting execuggpence is stored
in a table and then dispatched during run-time. Finding ailidéa schedule
using offline scheduling should be done up to the hyper-pgti€M) of task

periods, and then, during the run-time, this hyper-pesagpeated regularly.

2.4 Logical resource sharing

A resourceis any software structure that can be used by a task to adsnce
execution [22]. For example a resource can be a data steydtash memory,
a memory map of a peripheral device. If more than one task hsesame
resource then that resource is cal&tired resourceThe part of task’s code
that uses a shared resource is called critical section. \&ljeln enters a criti-
cal section (starts accessing a shred resource) then ngaliseincluding the
jobs of higher priority tasks, can access the shared resauntil the access-
ing job exits the critical section (mutual exclusion method@he reason is to
guarantee the consistency of the data in the shared resandcthis type of
shared resource is called nonpreemptable resource. Famptive scheduling
algorithms, sharing logical resources cause a probleradyaiority inversion
The priority inversion problem happen when a job with higlopty wants to
access a shared resource that is currently accessed byeafmtier priority
job, so the higher priority job will not be able to preempt theer priority
job. The higher priority job will be blocked until the loweriprity job release
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the shared resource. The time that the high priority job lpélblocked can be
unbounded since other jobs with intermediate priority th@tot access the
shared resource can preempt the low priority job while itdigoaiting inside

its critical section. As a result of the priority inversionoplem, the higher
priority job may miss its deadline. A proper protocol shob&lused to syn-
chronize the access to the shared resource in order to bloemdhiting time of

the blocked tasks. Several synchronization protocold sscthe Priority In-

heritance Protocol (PIP) [23], the Priority Ceiling Pradd@PCP) [24] and the
Stack Resource Policy (SRP) [25], have been proposed te soévproblem

of priority inversion. We will explain the SRP protocol intdéds, a protocol

central for this thesis, suitable for RM, DM, and EDF schéuyhlgorithms.

2.4.1 Stack resource policy

To describe how SRP [25] works, we first define some terms tieatsed with
SRP.

e Preemption level Each taskr; has a preemption level which is a static
value and proportional to the inverse of task relative deed|, = 1/D;,
whereD; is a relative deadline of task.

¢ Resource ceilingEach shared resourég; is associated with a resource
ceiling which equal to the highest preemption level of adksthat use
the resourc&;; rc; = max{m;|r; accesseR, }.

e System ceilingSystem ceiling is a dynamic parameter that change dur-
ing execution. The system ceiling is equal to the currenttkéd highest
resource ceiling in the system. If at any time there is no ssee shared
resource then the system ceiling would be equal to zero.

According to SRP, a job; generated by task; can preempt the currently
executing jobJ, only if J; is a higher-priority job ofJ; and the preemption
level of 7; is greater than the current subsystem ceiling.

2.4.2 Resource holding time

For a set of tasks that uses the SRP protocol, the duratiamefthat a task;

locks a shared resource, is caltedource holding timg26, 27] which equals to
the maximum task execution time inside a critical sectiarsphe interference
(preemption inside the critical section) of higher pripriasks that have pre-
emption level greater than the ceiling of locked resourd¢® resource holding
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time can be computed depending on the scheduling algorithreg, as shown
below;

Under FPS scheduling the resource holding timeof a shared resource
R; is [26];

WFPS t) = cx; + Z - Ch, (2.4)
k=rc;j+1

wherecz; is the maximum worst-case execution time inside the ctisieation
of all tasks that access resouge andn is the number of tasks.
The resource holding timk; is the smallest positive timg such that

WFPS () =t~ (2.5)

Under EDF scheduling the resource holding tifeof a shared resource
R; is [27];

WER( <ot 3 (min([] |22 1)) -cu 2o

k=rc;+1

The resource holding timk; is the smallest positive timg such that

WPPE(*) =t (2.7)

An algorithm to decrease the resource holding time withdalating the
schedulability of the system under the same semantics esftS8&P, was pre-
sented in [26, 27]. The algorithm works as follows; it ingea the resource
ceiling of each shared resource to the next higher valuehénigreemption
level than the ceiling of the resource) in steps and in eagp tchecks if
the schedule is still feasible or not. If the schedule isifdaghen it contin-
ues increasing the ceiling of the resource until either ttteedule becomes
infeasible or the ceiling of the task equals to the maximugeprption level.
The minimum resource holding time of a resoutgg is obtained when its
resource ceiling equal to the maximum preemption level eftdsk set. Note
that the resource holding time is a very important paranietéhe hierarchical
scheduling framework, as will be shown in Chapter 4.






Chapter 3

Real-Time Hierarchical
Scheduling Framework

In this chapter, we will describe the HSF assuming that akgaare fully inde-
pendent, i.e., tasks are not allowed to share logical ressuiVhile in the next
chapter we will consider the problem of accessing globalesheesources.

3.1 Hierarchical scheduling framework

One of the important properties that the HSF can providedsgblation be-
tween subsystems during design time and run-time suchitbattosystems are
separated functionally for fault containment and for cosifional verification,
validation and certification. The HSF guarantees indepetraecution of the
subsystems and it prevents one subsystem from causingueefail another
subsystem through providing the CPU-resources needeadbrsibsystem.

Each subsystem specifies the amount of CPU-resources ¢hvatcprired to
schedule all internal tasks through its timing interfacedAhe global sched-
uler will provide the required CPU-resources for all subbsyss as specified by
the timing interfaces of the subsystems.

In the following sections, we will explain how to evaluatestbubsystem
timing interface and also show how to verify whether the glokcheduler
can supply the subsystems with required resources usirmgigézhedulabil-
ity analysis.

Given a subsystem timing interface, it is required to ché&tke interface

17
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can guarantee that all hard real-time tasks in the subsysiirmeet their
deadlines using this interface. This check is done by apgliocal schedula-
bility analysis. But before presenting the local schediitglanalysis, we will
explain the virtual processor resource model which will lsediin the local
schedulability analysis.

3.2 Virtual processor model

The notion of real-time virtual processor (resource) meds first introduced
by Mok et al. [7] to characterize the CPU allocations that a parent node pr
vides to a child node in a hierarchical scheduling framewdte CPU supply
of a virtual processor model refers to the amount of CPU atioas that the
virtual processor model can provide. Thepply bound functionf a virtual
processor model calculates the minimum possible CPU sugdfpdye virtual
processor model for a time interval length

Shin and Lee [1] proposed the periodic virtual processorehbdP, Q9),
whereP is a period P > 0) and( is a periodic allocation time)(< @ < P).
The capacityUr of a periodic virtual processor modE[( P, Q) is defined as
Q/P. The periodic virtual processor mod&(P, Q) is defined to characterize
the following property:

supplyr (kP, (k +1)P) =Q, wherek=0,1,2,..., (3.1)

where the supply functiosupply »_(t1,t2) computes the amount of CPU allo-
cations that the virtual processor modg| provides during the intervad, , t).

For the periodic moddl'(P, @), its supply bound functiosbfr(t) is de-
fined to compute the minimum possible CPU supply for evemriral length
as follows:

t—(k+1)(P—-Q) iftel(k+1)P-2Q,
sbfp(t) = { (k+1)P—Q), (3.2)
(k—1)Q otherwise

wherek = max ([(t - (P-Q)/P], 1). Here, we first note that an interval

of lengtht may not begin synchronously with the beginning of perfadrhat
is, as shown in Figure 3.1, the interval of lengthan start in the middle of
the period of a periodic modél(P, Q). We also note that the intuition of
k in Eq. (3.2) basically indicates how many periods of a paciododel can
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o)

Figure 3.1: The supply bound function of a periodic virtuebgessor model
I'(P,Q) for k = 3.

overlap the interval of length more precisely speaking, the interval of length
t— (P — Q). Figure 3.1 illustrates the intuition éfand how the supply bound
functionsbifr(¢) is defined fork = 3.

3.3 Schedulability analysis

This section presents the schedulability analysis of thE, ldtrting with local
schedulability analysis needed to calculate subsysteenfates, and finally,
global schedulability analysis.

3.3.1 Local schedulability analysis

Let dbfepr(i, t) denote the demand bound function of a taskinder EDF

scheduling [28], i.e.,

t+1T; — D,
T;

The local schedulability condition under EDF schedulinthisn ([1])

dbfepr(i,t) = L J Nen (3.3)
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Vi>0 ) dbfep(i,t) < sbf(t), (3.4)
T, €l

Letdbfep(i,t) denote the demand bound function of a tasknder FPS [20],
ie.,

dbtrp(ist) = Ci+ 3 [Ti]jck (3.5)

T}, EHP(4)

whereHP(7) is the set of tasks with higher priorities than thatrof The local
schedulability analysis under FPS can then easily be egteftdm the results
of [25, 1] as follows:

V7,0 < 3Jt < D; dbep(i,t) < Sbf(t). (36)

3.3.2 Global schedulability analysis

The global scheduler schedules subsystems in a similar svegheeduling sim-
ple real-time periodic tasks. The reason is that we are ubki@geriodic re-
source model to abstract the collective timing temporalir@ments of sub-
systems, so the subsystem can be modeled as a simple péegisidighere the
subsystem period is equivalent to the task period and theystdm budget is
equivalent to the task execution time. Depending on theallstheduler (if it
is EDF, RM or DM), it is possible to use the schedulability lgses methods
used for scheduling periodic tasks (presented in secti@nir? order to check
the global schedulability.

3.4 Subsystem interface calculation

Using HSF, a subsysteff is assigned fraction of CPU-resources which equals
to Qs/Ps. Itis required to decrease the required CPU-resourcesdrafor
each subsystem as much as possible without affecting tlelskbility of its
internal tasks. By decreasing the required CPU-resouaresllif subsystems,
the overall CPU demand required to schedule the entireray&gstem load)
will be decreased, and by doing this, more applications eaimtegrated in a
single processor.

To evaluate the minimum CPU-resources fraction required Bubsystem
S, and givenpPs, let calculateBudget(Ss, Ps) denote a function that calculates
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the smallest subsystem buddgt that satisfies Eq. (3.4) and Eq. (3.6). Hence,
Qs = calculateBudget(Ss, Ps). The function is a searching function simi-
lar to the one presented in [1] and the resulting subsysteringi interface is

(Ps, Qs)-






Chapter 4

Hierarchical Scheduling with
Resource Sharing

In this chapter we extend the HSF that was presented in thopiechapter
and allow tasks from different subsystems to share glolsaluees. We are
concerned only with global shared resources while managfingcal shared
resources can be done by using several existing synchtmmzaotocols such
as PIP, PCP, and SRP (see [9, 14, 4] for more details).

First, we explain the problem of supporting logical resegrollowed by
discussing some solutions. Later, we show the effect of eujpyy sharing
of global shared resources on the system load required &xatdthe entire
system.

4.1 Problem formulation

When a task access a shared resource, all other tasks thiatonsgtess the
same resource will be blocked until the task that is accgdbia resource re-
leases it. To achieve a predictable real-time behavioerwhiting time of
other tasks that want to access a locked shared resourcle dfbounded.
The traditional synchronization protocols such as PIP, B@# SRP that are
used with non-hierarchical scheduling, can not without ification, handle
the problem of sharing global resources in hierarchicatédahng framework.
To explain the reason, suppose a tasthat belongs to a subsystesi is hold-
ing a logical resourcé;, the execution of the task can be preempted while

23
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[l T; execution inside R,

[] T execution inside R;
Subsystem / i """" T;
(low priority) |

release R,
Subsystem P
(medium priority) ’ 5
4 = P : !
Waiting time
Subsystemn Tm T
(high priority)
Try to lock R, lock R,

Figure 4.1: Task preemption while running inside a crit&adtion.

7; is executing inside the critical section of the resoule(see Fig 4.1) due
to the following reasons:

1. Inter subsystem preemption a higher priority tasky, within the same
subsystem preempts the tasgk

2. Intra subsystem preemption a ready task. that belongs to a subsys-
tem Sp preemptsr; when the priority of subsysterfip is higher than
the priority of subsystens;.

3. Budget expiry inside a critical section if the budget of the subsystem
S1 expires, the task; will not be allowed to execute until the budget of
its subsystem will be replenished at the beginning of the selisystem
period P;.

The PIP, PCP and SRP protocols can only solve the probleneddnystask
preemption within a subsystem (case numbesince there is a direct relation-
ship between the priorities of tasks within the same subgystHowever, if
tasks are from different subsystems (intra task preemptien priorities of
tasks belonging to different subsystems are independesaaf other, which
make these protocols not suitable to be used directly toesthlis problem.
One way to solve this problem is by using the protocols PIF® Bd SRP be-
tween subsystems such that if a task that belongs to a sebsystk a global
resource, then this subsystem blocks all other subsystdrasvtheir internal
tasks want to access the same global shared resource.
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Another problem of directly applying PIP, PCP and SRP proiwis that of
budget expiry inside critical section. The subsystem btgges said toexpire
at the point when one or more internal (to the subsystem}taake executed
a total of Q; time units within the subsystem perid¢f. Once the budget is
expired, no new tasks within the same subsystem can indbegeution until
the subsystem’s budget is replenished. This replenishtakaes place in the
beginning of each subsystem period, where the budget isnispled to a value
of Q;.

Budget expiration can cause a problem, if it happens whikskt; of a
subsystens; is executing within the critical section of a global shareslurce
R,. If another task,,, belonging to another subsystem, is waiting for the same
resourceR;, this task must wait untib; is replenished se; can continue to
execute and finally release the lock on resoutgeThis waiting time exposed
to 7,,, can be potentially very long, causing, to miss its deadline.

4.2 Supporting logical resource sharing

Several mechanisms have been proposed to enable resoargggsh hier-
archical scheduling framework. These mechanisms usereliffenethods to
handle the problem of bounding the waiting time of other sablat are waiting
for a shared resource. Most of them use the SRP protocol thsynize access
to a shared resource within a subsystem to solve the problgneosubsystem
preemption, and they also use SRP among subsystems to lselgeoblem of
intra subsystem preemption. Note that the effect of using &#h both local
and global scheduling should be considered during the sitaleitity analysis.

In general, solving the problem of budget expiry inside &cal section is
based on two approaches;

e Adding extra resources to the budget of each subsystem vemtréhe
budget expiration inside a critical section.

e Preventing a task from locking a shared resource if its sstbay does
not have enough remaining budget.

The following sections explain these mechanisms in detail.

421 BWI

The BandWidth Inheritance protocol (BWI) [29] extends tesaurce reserva-
tion framework to systems where tasks can share resourbe8WI approach
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uses (but is not limited to) the CBS algorithm together witeehnique that is
derived from the Priority Inheritance Protocol (PIP). Aating to BWI, each
task is scheduled through a server, and when a task thatteddaside lower
priority server blocks another task executed in highenfgiserver, the block-
ing task will be added to the higher priority server. Whenttsk releases the
shared resource, then it will be discarded from the highrjtyiserver. For
schedulability analysis, each server should be charaetkhy an interference
time due to adding lower priority tasks in the server. Thigrapch is suitable
for systems where the execution time of a task inside ctieation can not
be evaluated. In addition, the scheduling algorithm doésewguire any prior
knowledge about which shared resources that tasks willsaauer the arrival
time of tasks. However, BWI is not suitable for systems tltatsist of many
hard real-time tasks. The reason is that the interferehegificludes the sum-
mation of the execution times inside the critical sectioaif the lower priority
tasks will be added to the budget of a hard real-time taskes¢ovguarantee
that the task will not miss its deadline. Hence, BWI becomessjmistic in
terms of CPU-resources usage for hard real-time tasks.

4.2.2 HSRP

The Hierarchical Stack Resource Policy (HSRP) [14] extehdsSRP proto-
col to be appropriate for hierarchical scheduling framdwawrith tasks that
access global shared resources. HSRP is based on the owesnlmanism
which works as follows: when the budget of a subsystem eginel the sub-
system has a job; that is still locking a global shared resource, the jfb
continues its execution until it releases the locked resmuVhen a job access
a global shared resources its priority is increased to thledst local priority to
prevent any preemption during the access of shared restrorneother tasks
that belong to the same subsystem. SRP is used in the glolhlttesyn-
chronize the execution of subsystems that have tasks &ugegsbal shared
resources. Each global shared resource has a ceiling eqtis tmaximum
priority of subsystems that has a task accessing that resotiwo versions of
the overrun mechanisms have been presented; 1) The oveethramism with
payback which works as follows, whenever overrun happersssobsystem
Ss, the budget of the subsystem will be decreased by the amdtim¢ @ver-
run time in its next execution instant. 2) In the second wersvhich is called
overrun mechanism without payback, no further actionshéltaken after the
event of an overrun. Selecting which of these two mechantbaiscan give
better results in terms of task response times depends osyttem param-
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eters. The presented schedulability analysis does notosuppmposability,
disallowing independent analysis of individual subsystesimce information
about other subsystems is needed in order to apply the setbddy analysis
for all tasks. In addition, HSRP does not provide a complefmgation be-
tween the local and the global schedulers. The local sceedhbuld inform
the global scheduler to let the server continue executingrvehbudget expiry
inside a critical section problem happens and then the kataduler should
inform the global scheduler when its task releases the gttzaed resource.

4.2.3 BROE

The Bounded-delay Resource Open Environment (BROE) sgr@kextends
the Constant Bandwidth Server (CBS) [30] in order to handégharing of
logical resources in a HSF. The BROE server is suitable f@anogystems
since it allows for each application to be developed anddaetdid indepen-
dently. For each application, the maximum CPU-resourcesate is char-
acterized by server speed, delay tolerance (using the leolidéelay resource
partition [7]) and resource holding time. These parametdide used as an
interface between the application and the system schesailrat the system
scheduler will schedule all servers according to theirfate parameters. The
interface parameters will also be used during the admissomrol of new
applications to check if there is enough CPU-resourcesrdhis new appli-
cation on the processor. The BROE server uses the SRP prtdcadpitrate
access to global shared resources and in order to prevelmitlyet expiration
inside critical section problem, the application perfomrtsudget check before
accessing a global shared resource. If the applicationuféisisnt remaining
budget then it allows its task to lock the global resourcenilise it postpones
its current deadline and replenishes its budget (accondingrtain rules that
guarantee the correctness of the CBS servers executior)dblb to lock and
release the global resource safely. Comparing the BROEs®iith HSRP,
BROE does not need more resources to handle the problem gébexipiry in
the global level while HSRP may require more resources singes an over-
run mechanism and the overrun time should be taken into at@othe global
scheduling. However, the only scheduling algorithm thasugable for the
presented version of the BROE server is EDF which is one dfittitations of
this approach. In addition, in [16], the authors didn’t eiplhow to evaluate
the value of the resource holding time for BROE server (thbas left this
issue to a future submission) and how this value may affecCiAU-resources
usage locally and globally.
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4.2.4 SIRAP

The Subsystem Integration and Resource Allocation Po8tRAP) [15] pro-
tocol supports subsystem integration in the presence oédlagical resources.
SIRAP can be used in an open systems. It uses a periodic cesoodel to ab-
stract the timing requirements of each subsystem. Eaclysids is character-
ized by its period and budget and resource holding time aisdritplemented
as a simple periodic server. SIRAP uses the SRP protocohichsgnize the
access to global shared resources in both local and globatiating. SIRAP
applies a skipping approach to prevent the budget expir&tigide critical sec-
tion which works as follows; when a job wants to enter a aitigection, it
enters the critical section at the earliest instant suchitt@n complete the
critical section before the subsystem budget expires. ddnisbe achieved by
checking the remaining budget before granting the accetggetglobal shared
resources, if there is sufficient remaining budget thendhespters the critical
section. If there is insufficient remaining budget, the Iazheduler delays
the critical section entering of the job until the next sudieyn budget replen-
ishment. Comparing SIRAP and BROE, both provide betteatgm between
the global and the local schedulers than HSRP since theg $bé/problem
of budget expiry inside a critical section locally. Howevesing HSRP, it is
not required to include the resource holding time in therfate of subsystems
during run-time and its required only for schedulabilityalyrsis while the re-
source golding times are required during run-time for SIR¥iE BROE. Both
SIRAP and BROE do not need extra resources in the global athgdevel.
The SIRAP protocol needs extra resources in the local lereduling when
it increases the resource demand of the subsystem and foE BRONot clear
since the way of evaluating resource holding time was nagreed. Another
difference between BROE and SIRAP is that the SIRAP protoses FPS as
a global scheduling algorithm and can be easily adaptedctade local and
global EDF while BROE can only work with EDF as a global scHedu

4.3 Subsystem interface and resource sharing

Supporting shared resources across subsystems prodtexdsreance among
subsystems which imposes more CPU demands for each subsybtethe
local schedulability analysis and because of using SRANp¢he blocking
times should be added to the maximum resources demand dide (8.4) and
Eq. (3.6) and this will increase the minimum required sutesysbudget) ;.
In the global level and because of using SRP between subsystee block-
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ing time (resource holding timgthat a subsystem may block other subsys-
tems should be added to the global schedulability analyisfor the global
schedulability analysis the subsystem interface shoutlide in addition to
the subsystem period and budget, the maximum resourcenlgdldie for each
global shared resource that the internal tasks of the stdrmmymay access.
One way to decrease the amount of information of subsysterface needed
for global schedulability analysis, can be by considerimgf the subsystem
will access all global resources, then it is required to lethe maximum re-
source holding time of all internal tasks that access thieallshared resources.
The subsystem timing interface of a subsystenfor this case isP;, Qs, Hs)
whereH is the maximum resource holding time of all internal tasks ofhat
access global shared resources. Finally the extra CPU dkthahis required
to solve the problem of budget expiry inside the criticaltisgcdepends on the
used mechanism.

As mentioned previously, a subsystem can be blocked in sicgea global
shared resource, if there is another subsystem lockingefmurce at the mo-
ment. Such blocking imposes more CPU demands, resulting incaease of
the system load. Therefore, subsystems can reduce theirroesholding time,
for example, using the mechanism presented in [26, 27] ne&sing the re-
source ceiling of the global shared resources locally engieé subsystems, in
order to potentially reduce the blocking of other subsystémwards decrease
of the system load. However, we have found that decreasmgalue of re-
source holding times may increase the required budget afghee subsystem
Qs and it may increase the system load.

1In paper D we use the term resource locking time instead olres holding time to remove
any confusion since the term resource holding time wasyfigstsented in the context of non-
hierarchical scheduling.






Chapter 5

Conclusions

5.1 Summary

We have implemented a HSF in a commercial operating systexivivks)
without changing the kernel of the operating system. Eabkystem has been
implemented using periodic servers. As most commerciditi@e@ operating
system, VxWorks does not support the periodic activatiotasiks. In order to
enable periodic activations of tasks and servers, we haag aisimer and an
interrupt service rutin. We have measured the overheadedhtplementation
and the results shows that a hierarchical scheduling frariegan effectively
achieve the clean separation of subsystems in terms ofgimiarference (i.e.,
without requiring any temporal parameters of other sulesys) with reason-
able implementation overheads.

We have also investigated the problem of supporting sharimggical re-
sources and we have presented a novel Subsystem IntegaatioResource
Allocation Policy (SIRAP), which is a synchronization pwobl providing tem-
poral isolation between subsystems that share logicalress. Furthermore,
we have formally proven key features of SIRAP such as boundietays for
accessing shared resources. Also we have provided schéitykanalysis for
tasks executing in the subsystems; allowing for use of heatitrme applica-
tions within the SIRAP framework. Naturally, the flexibyliand predictability
offered by SIRAP comes with some costs in terms of overheadh&@Ve eval-
uated this overhead through a comprehensive simulatialy.stu

In addition, we have proposed new overrun mechanisms bastteap-
proach presented in [14], for hierarchical scheduling fauorks, that can be
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used in the domain of open systems. We have presented batpendent
local schedulability analysis as well as global schedlitgtanalysis for the
proposed overrun mechanism as well as the existing basicusveWe have
presented analysis of when one overrun mechanism is bettetie other and
the results indicate that in the general case it is not tridavaluate which
overrun mechanism that is better than the other.

We have focused on assigning the CPU-resources to subsystean ef-
ficient way such that the resulting system load will be as lewassible. We
introduced a tradeoff between decreasing the resourcéniptkne and the
system load, and we presented a two-step approach to expiatra and
inter-subsystem aspects of the tradeoff efficiently, talsatetermining opti-
mal subsystem interfaces constituting the minimum systed.|

5.2 Future work

The work presented in this thesis has left and opened somesiskat would
be interesting to be investigated in the future. Some ofgkeds that will be
presented are general and some others are specific for gaeh pa

Starting from general issues, in this work we assume thasgesyis ex-
ecuted in a single processor while many real-time appboatare distributed
into several processors that communicate through some coication net-
work. Also, complementing single processor systems, aihstems are exe-
cuted in a multi-processor or multi-core architecture. ilt e interesting to
extend the HSF include the distributed systems and mubitgssor systems.

We would also like to include the subsystem context-switctine schedu-
lability analysis and check whether using non-preemptioba scheduling
can be more efficient than preemptive scheduler in terms &f-@RBources
usage. Note that a subsystem context-switch has more @gtthan a task
context-switch because if a subsystem gets preempted hbesirsmbsystem
then the scheduler should remove the first subsystem ants aksociated
tasks and add the higher priority subsystem with all readiggtdhat belong
to the second subsystem, which takes longer time and cowddpEnsive.

Another interesting work will be on supporting shared reses in multi-
level hierarchical scheduling frameworks since we onlysider a two-level
hierarchical scheduling framework. Also we would like tonsmler other re-
source models such as the EDP resource model [13]. Finadlyritportant to
test our framework with real applications by doing caseistid
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Paper A In the next stage of the implementation of the HSF, we intend t
implement synchronization protocols in hierarchical sthimg frameworks,
e.g., using SIRAP [15] and HSRP [14]. In addition, our futwek includes
supporting sporadic tasks in response to specific events asiexternal in-
terrupts. We also plan to support soft aperiodic tasks infacient way to
increase the quality of service of the soft tasks. Moreower,jntend to ex-
tend the implementation to make it suitable for more advdrazehitectures
including multi-core processors.

Paper B Future work includes investigating the effect of the coaxitch
overhead on subsystem utilization together with the subsyperiod and the
maximum value of;.

Paper C Future work includes finding the exact schedulability asislfor
the enhanced overrun mechanism, since the presented iamalyely gives
upper bound. We would like to include the development of leeal global
schedulability analysis for Fixed Priority Scheduling &Pas the current re-
sults only consider Earliest Deadline First (EDF). Anotimeresting issue is
to compare the implementation of the enhanced overrun méshavith other
synchronization mechanisms such as BWI [29], BROE sen&jrdthd SIRAP
[15].

Paper C In this paper, we considered only Fixed Priority Schedu(ifgS),
and we plan to extend our work to EDF scheduling. Furthermaowe future
work includes generalizing our framework to other synclration protocols
such as BROE server [16] and SIRAP [15].






Chapter 6

Overview of Papers

6.1 PaperA

Moris Behnam, Thomas Nolte, Insik Shin, Mikaéi;berg, Reinder J. Bril,
Towards Hierarchical Scheduling on top of VxWarksProceedings of thé¢'"
International Workshop on Operating Systems Platform&fobedded Real-
Time Applications (OSPERT’08), pages 63-72, Prague, CRagbublic, July,
2008.

Summary Over the years, we have worked on hierarchical schedulargdr
works from a theoretical point of view. In this paper we préseur initial
results of the implementation of our hierarchical scheduframework in a
commercial operating system VxWorks. The purpose of thdémpntation
is twofold: (1) we would like to demonstrate feasibility & implementation
in a commercial operating system, without having to modify kernel source
code, and (2) we would like to present detailed figures obwarkey properties
with respect to the overhead of the implementation. Dultiregiinplementation
of the hierarchical scheduler, we have also developed a auoflsimple task
schedulers. We present details of the implementation af-Rainotonic (RM)
and Earliest Deadline First (EDF) schedulers. Finally, wespnt the design
of our hierarchical scheduling framework, and we discusscatrent status in
the project.
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My contribution  The results of this paper was based on the results of a mas-
ter project under the supervision of Moris Behnam.

6.2 PaperB

Moris Behnam, Insik Shin, Thomas Nolte, Mikael NolBIRAP: A Synchro-
nization Protocol for Hierarchical Resource Sharing in R&ane Open Sys-
tems In Proceedings of th&® ACM & IEEE International Conference on
Embedded Software (EMSOFT'07), pages 279-288, Salzbuigtria, Octo-

ber, 2007.

Summary This paper presents a protocol for resource sharing in ahier
chical real-time scheduling framework. Targeting realdiopen systems, the
protocol and the scheduling framework significantly redineeefforts and er-
rors associated with integrating multiple semi-independeibsystems on a
single processor. Thus, our proposed techniques faeiliatdern software de-
velopment processes, where subsystems are developeddpeimdent teams
(or subcontractors) and at a later stage integrated intoghesproduct. Using
our solution, a subsystem need not know, and is not depermderthe tim-
ing behaviour of other subsystems; even though they shareathuexclusive
resources. In this paper we also prove the correctness adppnoach and
evaluate its efficiency.

My contribution  The basic idea of this paper was suggested by Moris Behnam.
The work was done in cooperation with Moris and Insik Shird doris was
responsible for the evaluation part of the paper and he vgasmafolved in the
schedulability analysis.

6.3 PaperC

Moris Behnam, Insik Shin, Thomas Nolte, Mikael Nol®¢heduling of Semi-
Independent Real-Time Components: Overrun Methods aralResHolding
Times In Proceedings of the3t" IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA'08), IEEE Inimlas Electronics
Society, Hamburg, Germany, September, 2008.
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Summary The Hierarchical Scheduling Framework (HSF) has been-intro
duced as a design-time framework enabling compositiomedaability anal-
ysis of embedded software systems with real-time propertie this paper a
system consists of a number of semi-independent componaihsl subsys-
tems. Subsystems are developed independently and ladgrated to form
a system. To support this design process, our proposed deetilow non-
intrusive configuration and tuning of subsystem timing lvéta via subsys-
tem interfaces for selecting scheduling parameters. Tégiepconsiders two
methods to handle overruns due to resource sharing betwbsystems in the
HSF. We present the scheduling algorithms for overruns bhen &ssociated
schedulability analysis, together with analysis that shawder what circum-
stances one or the other overrun method is preferred. Fortdre, we show
how to calculate resource-holding times within our framewo

My contribution  The paper is based on an idea of Insik Shin but Moris has
done most of the work including the schedulability analjsisenhanced over-
run mechanism and the comparison between the enhancedeabddic over-
run mechanism, as well as the simplified equation to evaltieeaesource
holding times with the required proofs.

6.4 PaperD

Insik Shin, Moris Behnam, Thomas Nolte, Mikael Noli@ynthesis of Opti-
mal Interfaces for Hierarchical Scheduling with ResourdasProceedings of
the 29*" IEEE International Real-Time Systems Symposium (RTSSE&BE
Press, Barcelona, Spain, December, 2008, (to be appear).

Summary This paper presents algorithms that (1) facilitate systahepen-
dent synthesis of timing-interfaces for subsystems angy&em-level selec-
tion of interfaces to minimize CPU load. The results presérire developed
for hierarchical fixed-priority scheduling of subsystermattmay share logical
recourses (i.e., semaphores). We show that the use of stesm@arces results
in a tradeoff problem, where resource locking times can aedel for CPU
allocation, complicating the problem of finding the optinmaterface config-
uration subject to schedulability. This paper presents thaumlogy where
such a tradeoff can be effectively explored. It first synidtesa bounded set
of interface-candidates for each subsystem, independeinthe final system,
such that the set contains the interface that minimizegsykiad for any given
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system. Then, integrating subsystems into a system, it fir@eptimal selec-
tion of interfaces. Our algorithms have linear complexiythe number of
tasks involved. Thus, our approach is highly suitable famdble and recon-
figurable systems.

My contribution The paper was based on ideas of Moris and Insik. Moris
was responsible for developing the algorithms and provie toerectness and
optimality formally. Moris was also involved in the disci@ss and witting of
the other parts of the paper.
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Abstract

Over the years, we have worked on hierarchical scheduliagndivorks
from a theoretical point of view. In this paper we presentiaitial results of
the implementation of our hierarchical scheduling framewin a commercial
operating system VxWorks. The purpose of the implemenmtasiowvofold: (1)
we would like to demonstrate feasibility of its implemeidatin a commercial
operating system, without having to modify the kernel sewwade, and (2) we
would like to present detailed figures of various key prapsrivith respect to
the overhead of the implementation. During the impleméotatf the hierar-
chical scheduler, we have also developed a number of siragkestchedulers.
We present details of the implementation of Rate-Monot¢Rigl) and Ear-
liest Deadline First (EDF) schedulers. Finally, we predéetdesign of our
hierarchical scheduling framework, and we discuss ourecurstatus in the
project.



7.1 Introduction 47

7.1 Introduction

Correctness of today’s embedded software systems genesiidis not only on
functional correctness, but also on extra-functionalecmness, such as satisfy-
ing timing constraints. System development (includingwsafe development)
can be substantially facilitated if (1) the system can b@dgmwsed into a num-
ber of parts such that parts are developed and validatedlatiisn and (2) the
temporal correctness of the system can be established bya=ing the cor-
rectness of its individual parts. For large-scale embedeéaldtime systems, in
particular, advanced methodologies and techniques atgregigfor temporal
and spatial isolation all through design, development, amalysis, simplify-
ing the development and evolution of complex industrial edded software
systems.

Hierarchical scheduling has shown to be a useful mechamismgporting
modaularity of real-time software by providing temporalfitisning among ap-
plications. In hierarchical scheduling, a system can beahiically divided
into a number of subsystems that are scheduled by a globstetaylevel)
scheduler. Each subsystem contains a set of tasks thatreduded by a local
(subsystem-level) scheduler. The Hierarchical SchedHimamework (HSF)
allows for a subsystem to be developed and analyzed iniisolatith its own
local scheduler, and then at a later stage, using an apijfabal scheduler,
it allows for the integration of multiple subsystems witheiolating the tem-
poral properties of the individual subsystems analyzedatation. The in-
tegration involves a system-level schedulability testjfying that all timing
requirements are met. Hence, hierarchical schedulingewarks naturally
supportconcurrent developmenf subsystems. Our overall goal is to make hi-
erarchical scheduling a cost-efficient approach applectdsla wide domain of
applications, including automotive, automation, aeres@nd consumer elec-
tronics.

Over the years, there has been a growing attention to HSHzdbtime
systems. Since a two-level HSF [1] has been introduced femepvironments,
many studies have been proposed for its schedulabilitysisadf HSFs [2, 3].
Various processor models, such as bounded-delay [4] anddpef5], have
been proposed for multi-level HSFs, and schedulabilitylysis techniques
have been developed for the proposed processor models§69710, 5, 11].
Recent studies have been introduced for supporting loggsalurce sharing in
HSFs [12, 13, 14].

Up until now, those studies have worked on various aspedt#Séfs from
a theoretical point of view. This paper presents our workaas a full im-



48 Paper A

plementation of a hierarchical scheduling framework . Weehzhosen to im-
plement it in a commercial operating system already usedelsgral of our
industrial partners. We selected the VxWorks operatingesgssince there is
plenty of industrial embedded software available, which e in the hierar-
chical scheduling framework.

The outline of this paper is as follows: Section 7.2 presesieted work
on implementations of schedulers. Section 7.3 presentysters model. Sec-
tion 7.4 gives an overview of VxWorks, including how it supfsothe imple-
mentation of arbitrary schedulers. Section 7.5 presentscheduler for Vx-
Works, including the implementation of Rate Monotonic (R&f)d Earliest
Deadline First (EDF) schedulers. Section 7.6 presentsdhigd, implementa-
tion and evaluation of the hierarchical scheduler, andlfiraéction 7.7 sum-
marizes the paper.

7.2 Related work

Looking at related work, recently a few works have implensendifferent
schedulers in commercial real-time operating systemsraviiés not feasi-
ble to implement the scheduler directly inside the kerngltf@ kernel source
code is not available). Also, some work related to efficiemlementations of
schedulers are outlined.

Buttazzo and Gai [15] present an implementation of the EOtedualer
for the ERIKA Enterprise kernel [16]. The paper discussesdtfiect of time
representation on the efficiency of the scheduler and thenedjstorage. They
use the Implicit Circular Timer’s Overflow Handler (ICTOHparithm which
allows for an efficient representation of absolute deadlinea circular time
model.

Diederichs and Margull [17] present an EDF scheduler piuder
OSEK/VDX based real-time operating systems, widely usedutgmotive in-
dustry. The EDF scheduling algorithm is implemented bygssg priorities
to tasks according to their relative deadlines. Then, duthie execution, a task
is released only if its absolute deadline is less than theobtiee currently run-
ning task. Otherwise, the task will be delayed until the tinken the running
task finishes its execution.

Kim et al. [18] propose the SPIRIT uKernel that is based on a two-level

hierarchical scheduling framework simplifying integaatiof real-time appli-
cations. The SPIRIT uKernel provides a separation betweahtime appli-
cations by using partitions. Each partition executes adiegion, and uses
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the Fixed Priority Scheduling (FPS) policy as a local scledto schedule the
application’s tasks. An offline scheduler (timetable) igdiso schedule the
partitions (the applications) on a global level. Each piartiprovides kernel
services for its application and the execution is in userertogbrovide stronger
protection.

Parkinson [19] uses the same principle and describes theokaN653
operating system which was designed to support ARINC658.arbhitecture
of VxWorks 653 is based on partitions, where a Module OS mlewiglobal
resource and scheduling for partitions and a Partition O8emented using
VxWorks microkernel provides scheduling for applicatiasks.

The work presented in this paper differs from the last twoksadn the
sense that it implements a hierarchical scheduling framlewoca commercial
operating system without changing the OS kernel. Furthesnbe work dif-
fers from the above approaches in the sense that it implenaehierarchical
scheduling framework intended for open environments [higke real-time ap-
plications may be developed independently and unawarechf@her and still
there should be no problems in the integration of these egipdins into one
environment. A key here is the use of well defineterfacesrepresenting the
collective resource requirements by an application, richugh to allow for
integration with an arbitrary set of other applicationshasiiit having to redo
any kind of application internal analysis.

7.3 System model

In this paper, we only consider a simple periodic task madgl;, C;, D;)
whereT; is the task period;); is a worst-case execution time requirement, and
D; is a relative deadlined(< C; < D, < T;). The set of all tasks is denoted
by (I = {r;| for all i = 1,..,n} where n is the number of tasks).

We assume that all tasks are independent of each otherhiege is no
sharing of logical resources between tasks and tasks despesd themselves.

The HSF schedules subsysteffisc S, whereS is the set representing the
whole system of subsystems. Each subsysiewonsists of a set of tasks and a
local scheduler (RM or EDF), and the global (system) schesd@®M or EDF).
The collective real-time requirements8f is referred to as #iming-interface
The subsystem interface is defined(&%, Q)s), whereP; is a subsystem pe-
riod, and@, is a budget that represents an execution time requiremaniit
be provided to the subsystefh every periodP;.
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7.4 VxWorks

VxWorks is a commercial real-time operating system devedidpy Wind River
with a focus on performance, scalability and footprint. IMamteresting fea-
tures are provided with VxWorks, which make it widely usedhidustry, such
as; Wind micro-kernel, efficient task management and nagking, deter-
ministic context switching, efficient interrupt and exdepthandling, POSIX
pipes, counting semaphores, message queues, signalsclaalibng, pre-
emptive and round-robin scheduling etc. (see [20] for metaits).

The VxWorks micro-kernel supports the priority preemptaeheduling
policy with up to 256 different priority levels and a largember of tasks,
and it also supports the round robin scheduling policy.

VxWorks offers two different modes for application-tasigkecute; either
kernel mode or user mode. In kernel mode, application-taaksaccess the
hardware resources directly. In user mode, on the other,haskls can not
directly access hardware resources, which provides greaitection (e.g., in
user mode, tasks can not crash the kernel). Kernel mode sdebin all
versions of VxWorks while user mode was provided as a pah®Real Time
Process (RTP) model, and it has been introduced with VxWeaeksion 6.0
and beyond.

In this paper, we are considering kernel mode tasks sinde audesign
would be compatible with all versions of VxWorks and our apgtion do-
mains include systems with a large legacy in terms of exjstiource codes.
We are also considering fixed priority preemptive schedupolicy for the
kernel scheduler (not the round robin scheduler). A taskrity should be
set when the task is created, and the task’s priority can beggd during the
execution. Then, during run-time, the highest prioritydeask will always
execute. If a task with priority higher than that of the rumpiask becomes
ready to execute, then the scheduler stops the executidreaiuhning task
and instead executes the one with higher priority. Whenuheing task fin-
ishes its execution, the task with the highest priority agibre ready tasks will
execute.

When a task is created, an associated Task Control Block Ji€f8eated
to save the task’s context (e.g., CPU environment and systsources, during
the context switch). Then, during the life-cycle of a task task can be in one
or a combination of the following states [21] (see Figurg:7.1

e Ready state the task is waiting for CPU resources.

e Suspended statethe task is unavailable for execution but not delayed
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Pending Delayed

~ ol

Suspended

Figure 7.1: The application task state.

or pending.

e Pending state the task is blocked waiting for some resource other than
the CPU.

e Delayed state the task is sleeping for some time.

Note that the kernel scheduler sorts all tasks that are rieaelyecute in a
queue called theeady queue

7.4.1 Scheduling of time-triggered periodic tasks

A periodic task is a task that becomes ready for executioiogieally once

everyn-th time unit, i.e., a new instant of the task is executedyeenstant

period of time. Most commercial operating systems, inelgdVxWorks, do

not directly support the periodic task model [22]. To impkha periodic
task, when a task finishes its execution, it sleeps until gggriming of its next
period. Such periodic behaviour can be implemented in tsle iy the usage
of timers. Note that a task typically does not finish its exmruat the same
time always, as execution times and response times vary drenperiod to
another. Hence, using timers may not be easy and accurate #ssk needs
to evaluate the time for next period relative to the curr@anef whenever it
finishes its execution. This is because preemption may mappeveen the
time measurement and calling the sleep function.
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In this project we need to support periodic activatiorsefversin order
to implement the hierarchical scheduling framework. Thesom for this is
that we base our hierarchical scheduling framework arotedperiodic re-
source model [5], and a suitable implementation of the jpiriesource model
is achieved by the usage of a server based approach simithe tperiodic
servers [23, 24] that replenish their budget every congteniod, i.e., the
servers behave like periodic tasks.

7.4.2 Supporting arbitrary schedulers

There are two ways to support arbitrary schedulers in Vx\&fork

1. Using the VxWorks custom kernel scheduler [25].

2. Using the original kernel scheduler and manipulatingdaely queue by
changing the priority of tasks and/or activating and sudpentasks.

In this paper, we are using the second approach since imptéergethe
custom kernel scheduler is a relatively complex task cosgbarth manipu-
lating the ready queue. However, it will be interesting tonpare between the
two methods in terms of CPU overhead, and we leave this asieefuork.

In the implementation of the second solution, we have usebhtanrupt
Service Routine (ISR) to manipulate the tasks in the readyguThe ISR is
responsible for adding tasks in the ready queue as well agyagtheir prior-
ities according to the hierarchical scheduling policy ie.us the remainder of
this paper, we refer to the ISR as the User Scheduling Ro(iS&). By using
the USR, we can implement any desired scheduling policludieg common
ones such as Rate Monotonic (RM) and Earliest Deadline (HI3F).

7.5 The USR custom VxWorks scheduler

This section presents how to schedule periodic tasks usingaheduler, the
User Scheduling Routine (USR).

7.5.1 Scheduling periodic tasks

When a periodic task finishes its execution, it changesate $6 suspended by
explicitly calling the suspend function. Then, to implerharperiodic task, a
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timer could be used to trigger the USR once every new taskadicin time to
release the task (to put it in the ready queue).

The solution to use a timer triggering the USR once every nesiod can
be suitable for systems with a low number of periodic taskeweler, if we
have a system with periodic tasks such a solution would require the use of
timers, which could be very costly or not even possible. Ia faper we have
used a scalable way to solve the problem of having to use toy tiraers. By
multiplexing a single timer, we have used a single timer twvese periodic
tasks.

The USR stores the next activation time of all tasks (absediutes) in a
sorted (according to the closest time event) queue callett Event Queue
(TEQ). Then, it sets a timer to invoke the USR at the time etputiie shortest
time among the activation times stored in the TEQ. Also, tisRlEhecks if a
task misses its deadline by inserting the deadline in the TWEken the USR
is invoked, it checks all task states to see if any task hasedifts deadline.
Hence, an element in the TEQ contains (1) the absolute t)¢hé id of task
that the time belongs to, and (3) the event type (task nekitadicin time or
absolute deadline). Note that the size of the TEQ wilkbe: « B bytes (where
B is the size in bytes of one element in the TEQ) since we needve the
task’s next period time and deadline time.

When the USR is triggered, it checks the cause of the triggefiihere are
two causes for the USR to be triggered: (1) a task is releaseti(2) the USR
will check for deadline misses. For both cases, the USR wille following:

e Update the next activation and/or the absolute deadline &issociated
with the task that caused triggering of the USR in the TEQ anithsert
it in the TEQ according to the updated times.

e Set the timer equal to the shortest time in the TEQ so that i Will
be triggered at that time.

e Fortask release, the USR changes the state of the task tg.Rdad, it
changes priorities of tasks if required depending on thedaler (EDF
or RM). For deadline miss checking, the USR checks the stdfedask
to see if it is Ready. If so, the task missed its deadline, hadieadline
miss function will be activated.

Updating the next activation time and absolute deadline tafs& in the
TEQ is done by adding the period of the task that caused theilb\&RRation
to the current absolute time. The USR does not use the systeras a time
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reference. Instead it uses a time variable as a time referefioe reason for
using a time variable is that we can, in a flexible manner,ctelee size of
variables that save absolute time in bits. The benefits df amcapproach is
that we can control the size of the TEQ since it saves the atestimes, and
it also minimizes the overhead of implementing 64 bits op@na on 32 bit
microprocessor [15], as an example. The reference timabart, used to
indicate the time of the next activation, is initializede(ji.ts = 0) at the first
execution of the USR. The value ¢f is updated every time that the USR
executes and it will be equal to the time given by the TEQ thiggéred the
USR.

When a tasks; is released for the first time, the absolute next activation
time is equal ta; + T; and its absolute deadline is equakto+ D;.

To avoid time consuming operations, e.g., multiplicatiansl! divisions,
that increase the system overhead inherent in the exeaftibe USR, all ab-
solute times (task periods and relative deadlines) aredsaveystem tick unit
(system tick is the interval between two consecutive systerar interrupts).
However, depending on the number of bits used to store thelbgimes,
there is a maximum value that can be saved safely. Henceygsabisolute
times in the TEQ may cause problems related to overrun of, time the ab-
solute times become too large such that the value can nobbedstising the
available number of bits. To avoid this problem, we apply apming algo-
rithm which wraps the absolute times at some point in timethsatime will
restart again. Periods and deadlines should not exceed #peavound value.

The input of the timer should be in a relative time, so evahgathe time
at which to trigger the USR again (next time) is donelb¥Q[1] — t; where
TEQ[1] is the first element in the queue after updating the TEQ as agell
sorting it, i.e., the closest time in the TEQ. The USR checksee if there
are more than one task that have the same current activatierahd absolute
deadline. If so, the USR serves all these tasks to minimieeutinecessary
overhead of executing the USR several times.

7.5.2 RM scheduling policy

Each task will have a fixed priority during run-time when RMenotonic
(RM) is used, and the priorities are assigned accordingddtkl scheduling
policy. If only RM is used in the system, no additional op&nas are required
to be added to the USR since the kernel scheduler schedutasks directly
according to their priorities, and the higher priority taglan preempt the exe-
cution of the lower priority task. Hence, the implementatawverhead for RM



7.5 The USR custom VxWorks scheduler 55

will be limited to the overhead of adding a task in the readguguand man-
aging the timer for the next period (saving the absolute tifithe new period
and finding the shortest next time in the TEQ) for periodiksas

The schedulability analysis for each task is as follows;[26]

Vr; € 0,0 < 3t < Ty dbf(i,t) < t. (7.1)

And dbf (7, t) is evaluated as follows

dbf (i, t) = C; + Z [TiJCk (7.2)

T3, EHP(4)

whereHP (i) is the set of tasks with priority higher than thatrof

Eq. (7.2) can be easily modified to include the effect of usirgUSR on
the schedulability analysis. Note that the USR will be teggd at the begin-
ning of each task to release the task, so it behaves like adietiask with
priority equal to the maximum possible priority (the USR gaaempt all ap-
plication tasks). Checking the deadlines for tasks by uiegUSR will add
more overhead, however, also this overhead has a periotlicenas the task
release presented previously.

Eq. (7.3) includes the deadline and task release overhas®dady the
USR in the response time analysis,

abf(i,t) = Ci + [TiJCk + ) {T%WXR

T €HP(%) T;el
* t+Tj — D, ! (7.3)
> |%p
T;
T_]‘GF

whereXr, is the worst-case execution time of the USR when a task iaseté
and X p is the worst-case execution time of the USR when it checkddand-
line misses (currently, in case of deadline misses, the Usiomly log this
eventinto a log file).

7.5.3 EDF scheduling policy

For EDF, the priority of a task changes dynamically during-time. At any
timet, the task with shorter deadline will execute first, i.e.] Wéve the highest
priority. To implement EDF in the USR, the USR should updageriorities
of all tasks that are in the Ready Queue when a task is adddu: tRéady
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Queue, which can be costly in terms of overhead. Hence, othane, using
EDF on top of commercial operating systems may not be eftidepending
on the number of tasks, due to this sorting. However, the E€ieduling
policy provides, on other hand, better CPU utilization cangg with RM, and
it also has a lower number of context switches which minimizentext switch
related overhead [27].

In the approach presented in this paper, tasks are alreagdy $o the TEQ
according to their absolute times due to the timer multipplg>explained ear-
lier. Hence, as the TEQ is already sorted according to thelatesdeadlines,
the USR can easily decide the priorities of the tasks acongrdi EDF without
causing too much extra overhead for evaluating the progerigyrfor each
task.

The schedulability test for a set of tasks that use EDF is showq. (7.4) [28]
whichincludes the case when task deadlines are allowedé&sbéhan or equal
to task periods.

t+1T; — D;
V> 0, L2 o<y (7.4)
> =

The overhead of implementing EDF can also be added to Eq. Hehce,
Eq. (7.5) includes the overhead of releasing tasks as weélieasverhead of
checking for deadline misses.

Vvt > 0, Z {#J -Cs + Z [TLJ-‘XR

T, el T, €l
‘ J 7.5)
t+Tj —Dj (
_ <
2 { T; WXD =1
T;€l

7.5.4 Implementation and overheads of the USR

To implement the USR, we have used the following VxWorks eerfunc-
tions;

e Q_PUT - insert a node into a multi-way queue (ready queue).
¢ Q_REMOVE - remove a node from a multi-way queue (ready queue).
o taskCreat - create a task.

o taskPrioritySet - set a tasks priority.
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We present our initial results inherent in the implemeotabf the USR,
implementing both the Rate Monotonic (RM) scheduler as athe Earliest
Deadline First (EDF) scheduler. The implementations wendgomed on a
ABB robot controller with a Pentium 200 MHz processor rurgtine VxWorks
operating system versidn2. To trigger the USR for periodic tasks, we have
used watchdog timers where the next expiration time is gimemumber of
ticks. The watchdog uses the system clock interrupt rodtireount the time
to the next expiration. The platform provides system clodgthwesolution
equal to4500ticks/s. The measurement of the execution time of the USR
is done by reading a timestamp value at the start as well deatrtd of the
USR'’s execution. Note that the timestamp is connected teaiaphardware
timer with resolutionl 2000000¢ticks/ s.

Table 7.1 shows the execution time of the USR when it perfdRiisand
EDF scheduling, as well as deadline miss checking, as aiumef the num-
ber of tasks in the system. The worst case execution time $R Will happen
when USR deletes and then inserts all tasks from and to TEQoacapture
this, we have selected a same period for all tasks. The tablessthe mini-
mum, maximum and average out&if measured values. Comparing between
the results of the three cases (EDF, RM, deadline miss), weaea that there
is no big difference in the execution time of the USR. Theoedsr this result
is that the execution of the USR for EDF, RM and deadline miecking all
includes the overhead of deletion and re-inserting thestasthe TEQ, which
is the dominating part of the overhead. As expected, EDFesatie largest
overhead because it changes the priority of all tasks inehdy queue dur-
ing run-time. Figures 7.2-7.3 show that EDF imposes betvéeen 4% extra
overhead compared with RM.

7.6 Hierarchical scheduling

A Hierarchical Scheduling Framework (HSF) supports CPUislgaamong
subsystems under different scheduling policies. Here,amsider a two-level
scheduling framework consisting of a global scheduler andraber of local
schedulers. Under global scheduling, the operating sy&iéwbal) scheduler
allocates the CPU to subsystems. Under local schedulingcad scheduler
inside each subsystem allocates a share of the CPU (givee Bubsystem by
the global scheduler) to its own internal tasks (threads).

We consider that each subsystem is capable of exportingvitsrterface
that specifies its collective real-time CPU requirements.agésume that such a
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Number Xr (RM) Xr (EDF) Xp (Deadline miss check

oftasks || Max | Average | Min Max | Average | Min Max | Average | Min
10 71 65 63 74 70 68 70 60 57
20 119 110 106 131 118 115 111 100 95
30 172 158 155 187 172 169 151 141 137
40 214 202 197 241 228 220 192 180 175
50 266 256 249 296 280 275 236 225 219
60 318 305 299 359 338 331 282 268 262
70 367 352 341 415 396 390 324 309 304
80 422 404 397 476 453 444 371 354 349
90 473 459 453 539 523 515 415 398 393
100 527 516 511 600 589 583 459 442 436

Table 7.1: USR execution time jms, the maximum, average and minimum
execution time oft5 measured values for each case.

subsystem interface is in the form of the periodic resourodet( Ps, Q) [5].
Here, P, represents geriod, and @, represents dudgef or an execution
time requirement within the periof)s < Ps). By using the periodic re-
source model in hierarchical scheduling frameworks, ituargnteed [5] that
all timing constraints of internal tasks within a subsystesn be satisfied, if
the global scheduler provides the subsystem with CPU resswccording to
the timing requirements imposed by its subsystem interflte refer inter-
ested readers to [5] for how to derive an interfdé¢g, ;) of a subsystem,
when the subsystem contains a set of internal independentpetasks and
the local scheduler follows the RM or EDF scheduling politjote that for
the derivation of the subsystem interfade,, @), we use the demand bound
functions that take into account the overhead imposed bgtaeution of USR
(see Eq. (7.3) and (7.5)).

7.6.1 Hierarchical scheduling implementation

Global scheduler: A subsystem is implemented as a periodic server, and pe-
riodic servers can be scheduled in a similar way as scheglnbrmal periodic
tasks. We can use the same procedure described in Sectiwitly sbme mod-
ifications in order to schedule servers. Each server shoaldde the following
information to be scheduled: (1) server period, (2) serueiget, (3) remaining
budget, (4) pointer to the tasks that belong to this server(8) the type of the
local scheduler (RM or EDF) (6) local TEQ. Moreover, to salledservers we
need:
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Figure 7.2: EDF normalized against RM, for average USR aiattime.

e Server Ready Queuego store all servers that have non zero remaining
budget. When a server is released at the beginning of it®geits
budget will be charged to the maximum bud@etand the server will be
added to the Server Ready Queue. When a server executeteitsain
tasks for some time;, then the remaining budget of the server will be
deceased with, i.e., reduced by the time that the server execute. If
the remaining budget becomes zero, then the server will baadthe
control to the global scheduler to select and remove thedsigbriority
server from Server Ready Queue.

e Server TEQ to release the server at its next absolute periodic timesinc
we are using periodic servers and also track their remainiigets.

Figures 7.4 illustrates the implementation of HSF in VxWorkhe Server
Ready Queue is managed by the routine that is responsibéefi@duling the
servers. Tracking the remaining budget of a server is sagddllows; when-
ever a server starts running, it sets an absolute time atwhe&server budget
expire and it equals to the current time plus its remainindgat. This time
is added to the server event Queue to be used by the timeggetran event
when the server budget expires. When a server is preemptauidblyer server,
it updates the remaining budget by subtracting the timehhatpassed since



60 Paper A

EDF/RM
1,16
1,14 .

112 )\\‘//0——‘\0/7
1,1

1,08 /\/

1,06

1,04

1 T T T T T T T T
10 20 30 40 50 60 70 80 90 100

Number of Tasks

Figure 7.3: EDF normalized against RM, for maximum USR eXeaouime.

the last release. When the server executes its internal tetk the time when
the server budget expiry event triggers, it will set its rérreg budget to zero,
and the scheduling routine removes the server from the SReady Queue.

Local scheduler: When a server is given the CPU resources, the ready tasks
that belong to the server will be able to execute. We havestigated two
approaches to deal with the tasks in the Ready Queue whenex §egiven
CPU resources:

e All tasks that belong to the server that was previously rogniill be
removed from the Ready Queue, and all ready tasks that bébotinge
new running server will be added to the Ready Queue, i.e.pging
of the servers’ task sets. To remove tasks from the Ready € e
state of the tasks is changed to suspend state. Howevewithtause
a problem since the state of the tasks that finish their eietig also
changed to suspend and when the server run again it will addeady
tasks to the Ready Queue. To solve this problem, an additilagais
used in the task’s TCB to denote whether the task was remooed f
Ready Queue and enter to suspend state due to budget expivhits
server or due to finishing its execution.
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[ User defined data structures
@ VxWorks kernel data structures
O Task defined data structures

Server ready queue

Vxworks ready queue

period_event queue
scheduling-algorithm
deadline_event_queue
task_TCB_list

VxWorks Jask TCB

y

\,
Server event queue

Figure 7.4: The implementation of HSF in VxWorks.

e The priority of all tasks that belong to the preempted semikbe set to
a lower (the lowest) priority, and the priority of all taskst belong to the
new running server will be raised as if they were executinguestvely
on the CPU, scheduled according to the local schedulingyali use
by the subsystem.

The advantage of the second approach is that it can give theedriCPU
resources to tasks that belong to other servers. Howevedisadvantage of
this approach is that the kernel scheduler always sortsagies tin the Ready
Queue and the number of tasks inside Ready Queue using thredsagproach
will be higher which may impose more overhead for sortindggasin this
paper, we consider the first approach since we support omlpdie tasks.
When a server is running, all interrupts that are caused éyoital TEQ, e.g.,
releasing tasks and checking deadline misses, can be seithedit problem.
However, if a task is released or its deadline occurs dutegetxecution of
another server, the server that includes the task, may hissvent. To solve
this problem, when the server starts running after senagmption or when it
finishes its budget, it will check for all past events (indhgltask release and
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Figure 7.5: Simple servers execution example.

deadline miss check events) in the local TEQ that have atestitne less than
the current time, and serve them.

Note that the time wrapping algorithm described in sectidh17should
take into account all local TEQ's for all servers and the seevent queue,
because all these event queues share the same absolute time.

Figure 7.5 illustrates the implementation of hierarchgmieduling frame-
work which includes an example with three servgysSs, Ss with global and
local RM schedulers, the priority ¢, is the highest and the priority df; is
the lowest. Suppose a new period%f starts at time with a budget equal
to Q3. Then, the USR will change the state$)f to Ready, and since it is the
only server that is ready to execute, the USR will;

e add the time at which the budget will expire, which equalgte- Qs,
into the server event queue and also add the next period evene
server event queue.

e check all previous events that have occurred while the sevas not
active by checking if there are task releases or deadlinekshia the
time interval offt*, ¢y], wheret* is the latest time at which the budget of
S3 has been expired.

e start the local scheduler.

At time t; the serverS; becomes Ready and it has higher priority ti$an
So S, will preemptSs and in addition to the previously explained action, the
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USR will remove all tasks that belong &3 from the ready queue and save the
remaining budget which equals €% — (¢; — to). Also the USR will remove
the budget expiration event from the server event queuee Mait whenSs
executes next time it will use the remaining budget to caleuthe budget
expiration event.

Number of servers| Max | Average| Min
10 91 89 85
20 149 146 139
30 212 205 189
40 274 267 243
50 344 333 318
60 412 400 388
70 483 466 417
80 548 543 509
90 630 604 525

100 689 667 570

Table 7.2: Maximum, average and minimum execution time efUlsR with
100 measured values as a function of the number of servers.

The USR execution time depends on the number of the servadstha
worst case happens when all servers are released at theissmintaddition,
the execution time of the USR also depends on the number df taaks in
both the currently running server to be preempted as wel@server to pre-
empt. The USR removes all ready tasks that belong to the pteehserver
from ready queue and adds all ready tasks that belong to deemqmting server
with highest priority into the ready queue. Here, the woastecscenario is that
all tasks of both servers are ready at that time. Table 7.@slioe execution
time of the USR (when a server is released) as a function oftimeber of
servers using RM as a global scheduler at the worst caseewali¢he servers
are released at the same time, just like the case shown imé¢kimps section.
Here, we consider that each server has a single task in argewréely investi-
gate the effect of the number of servers on the executiondintiege USR.

7.6.2 Example

In this section, we will show the overall effect of implemiaigtthe HSF using
a simple example, however, the results from the followingregle are specific
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for this example because, as we showed in the previous setlimoverhead is
a function of many parameters affect the number of preemgsach as num-
ber of servers, number of tasks, servers periods and budgetsis example
we use RM as both local and global scheduler, and the sermdrassociated
tasks parameters are shown in Table 7.3. Notethat D, for all tasks.

Si(PL=5,Q:1=1) || S2(Po=6,0Q2=1) || S3(P3 =70,Q3 = 20)
Ti Ti Ci T Ti Cl Ti Ti Cl

T1 20 1 T1 25 1 T1 140 7

T2 | 25 1 T2 | 35 1 T2 | 150 7

73 | 30 1 T3 | 45 1 3 | 300 30

T4 35 1 T4 50 1

75 | 40 7 T5 | 5O 7

- - - 76 | 60 7

Table 7.3: System parametersis.

The measured overhead utilization is ab2i®% and the measured re-
lease jitter for tasks in serverSs (which is the lowest priority task in the
lowest priority server) is abod9ms. The measured worst case response time
is 208.5ms and the finishing time jitter i80ms. These results indicate that
the overhead and performance of the implementation argtatde for further
developmentin future project.

7.7 Summary

This paper has presented our work on the implementation ofiewarchical
scheduling framework in a commercial operating system, U4/, We have
chosen to implement it in VxWorks so that it can easily beet#sh an in-
dustrial setting, as we have a number of industrial partnéis applications
running on VxWorks and we intend to use them as case studias fodustrial
deployment of the hierarchical scheduling framework.

This paper demonstrates the feasibility of implementirgy hferarchical
scheduling framework through its implementation over Vxk¢o In partic-
ular, it presents several measurements of overheads shaplementation
imposes. It shows that a hierarchical scheduling frameweark effectively
achieve the clean separation of subsystems in terms ofgimiarference (i.e.,
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without requiring any temporal parameters of other sulesys) with reason-
able implementation overheads.

In the next stage of this implementation project, we intemériplement
synchronization protocols in hierarchical schedulingrfesvorks, e.g., [12]. In
addition, our future work includes supporting sporadi&s$ds response to spe-
cific events such as external interrupts. Instead of allguhem to directly add
their tasks into the ready queue, we consider triggering®R to take care of
such additions. We also plan to support aperiodic tasksewdolinding their
interference to periodic tasks by the use of some servarebamchanisms.
Moreover, we intend to extend the implementation to makeiiable for more
advanced architectures including multicore processors.
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Abstract

This paper presents a protocol for resource sharing in afuieical real-
time scheduling framework. Targeting real-time open systethe protocol
and the scheduling framework significantly reduce the &ffand errors asso-
ciated with integrating multiple semi-independent submys on a single pro-
cessor. Thus, our proposed techniques facilitate modétmas® development
processes, where subsystems are developed by indepesai®ist for subcon-
tractors) and at a later stage integrated into a single mtotising our solution,
a subsystem need not know, and is hot dependent on, the tmeimayiour of
other subsystems; even though they share mutually exelussdources. In this
paper we also prove the correctness of our approach ancagwéisi efficiency.
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8.1 Introduction

In many industrial sectors integration of electronic anfiveare subsystems
(to form an integrated hardware and software system), isobitiee activities
that is most difficult, time consuming, and error prone [1, Zlmost any
system, with some level of complexity, is today developed agt of semi-
independent subsystems. For example, cars consist ofpteuttibsystems
such as antilock braking systems, airbag systems and eogiml| systems.
In the later development stages, these subsystems areait@@do produce
the final product. Product domains where this approach isithm include
automotive, aerospace, automation and consumer elecstoni

It is not uncommon that these subsystems are more or lessidiepeon
each other, introducing complications when subsystemsoabe integrated.
This is especially apparent when integrating multiplewafe subsystems on
a single processor. Due to these difficulties inherent inrttegyration process,
many projects run over their estimated budget and deadiinesg the inte-
gration phase. Here, a large source of problems when irbegreeal-time
systems stems from subsystem interference in the time domai

To provide remedy to these problems we propose the usagecal-ime
scheduling framework that allows for an easier integrapimtess. The frame-
work will preserve the essential temporal properties of shbsystem both
when the subsystem is executed in isolation (unit testimg))\ahen it is in-
tegrated together with other subsystems (integratiomtgsind deployment).
Most importantly, the deviation in the temporal behavioult e bounded,
hence allowing for predictable integration of hard reaidisubsystems. This
is traditionally targeted by the philosophy of open systgBhsallowing for the
independent development and validation of subsystemsgepriag validated
properties also after integration on a common platform.

In this paper we present the Subsystem Integration and ResAlocation
Policy (SIRAP), which makes it possible to develop subsystendividually
without knowledge of the temporal behaviour of other sutesyps. One key
issue addressed by SIRAP is the resource sharing betwesysseins that are
only semi-independent, i.e., they use one or more sharéchlagsources.

Problem description A software systend consists of one or more subsys-
tems to be executed on one single processor. Each subsystens, in turn,
consists of a number of tasks. These subsystems can be pedéfaepen-
dently and they have their own local scheduler (schedulimgsiibsystem’s
tasks). This approach by isolation of tasks within subsygstend allowing for
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their own local scheduler, has several advantages [4]. ¥ample, by keep-
ing a subsystem isolated from other subsystems, and byrkg#pe subsystem
local scheduler, it is possible to re-use a complete subsyat a different
application from where it was originally developed.

However, as subsystems are likely to share logical ressepareappropri-
ate resource sharing protocol must be used. In order tatédeiindependent
subsystem development, this protocol should not requfognmation from all
other subsystems in the system. It should be enough withtbalinformation
of the subsystem under development in isolation.

Contributions  The main contributions of this paper include the preseortati
of SIRAP, a novel approach to subsystem integration in teegarce of shared
resources. Moreover, the paper presents the deductioruofismn the timing
behaviour of SIRAP together with accompanying formal psodh addition,
the cost of using this protocol is thoroughly evaluated. Thst is investi-
gated as a function of various parameters including: costfasction of the
length of critical sections, cost depending on the priooityhe task sharing
a resource, and cost depending on the periodicity of theystdra. Finally,
the cost of having an independent subsystem abstractidohwhsuitable for
open systems, is investigated and compared with depenlstnaeations.

Organization of the paper Firstly, related work on hierarchical scheduling
and resource sharing is presented in Section 8.2. Thenysitens model is
presented in Section 8.3. SIRAP is presented in Sectionl&.&ection 8.5
schedulability analysis is presented, and SIRAP is evaetuat Section 8.6.
Finally, the paper is summarized in Section 8.7.

8.2 Related work

Hierarchical scheduling For real-time systems, there has been a growing
attention to hierarchical scheduling frameworks [5, 6,,8,9, 10, 11, 12, 13,
14].

Deng and Liu [3] proposed a two-level hierarchical schadpframework
for open systems, where subsystems may be developed addtedlindepen-
dently in different environments. Kuo and Li [8] presentededulability anal-
ysis techniques for such a two-level framework with the fixebrity global
scheduler. Lipari and Baruah [9, 15] presented scheditlabihalysis tech-
niques for the EDF-based global schedulers.
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Mok et al.[16] proposed the bounded-delay resource partition mautel f
a hierarchical scheduling framework. Their model can dpdbie real-time
guarantees that a parent component provides to its chilpponents, where
the parent and child components have different schedfersg and Mok [7]
and Shin and Lee [14] presented schedulability analyshrigaes for the hi-
erarchical scheduling framework that employs the bourdkddy resource par-
tition model.

There have been studies on the schedulability analysistigtperiodic re-
source model. This periodic resource model can specify ¢hiegic resource
allocation guarantees provided to a component from itsqt@emponent [13].
Saewonget al.[12] and Lipari and Bini [10] introduced schedulability atin
tions for fixed-priority local scheduling, and Shin and Ld8][ presented a
schedulability condition for EDF local scheduling. DavigdeBurns [6] evalu-
ated different periodic servers (Polling, Deferrable, Sparadic Servers) for
fixed-priority local scheduling.

Resource sharing When several tasks are sharing a logical resource, typi-
cally only one task is allowed to use the resource at a timaisThe logical
resource requires mutual exclusion of tasks that uses iachigeve this anu-
tual exclusion protocak used. The protocol provides rules about how to gain
access to the resource, and specifies which tasks shoulddetlwhen trying
to access the resource.

To achieve predictable real-time behaviour, several pa$ohave been
proposed including the Priority Inheritance Protocol (PIF7], the Priority
Ceiling Protocol (PCP) [18], and the Stack Resource Po&yR) [19].

When using SRP, a task may not preempt any other tasks wnifidrity
is the highest among all tasks that are ready to run, andeéenpption level is
higher than the system ceiling. The preemption level of kitaa static param-
eter assigned to the task at its creation, and associathalvihstances of that
task. A task can only preempt another task if its preempéuallis higher than
the task that it is to preempt. Each resource in the systerssiscaated with
a resource ceiling and based on these resource ceilingstensgeiling can
be calculated. The system ceiling is a dynamic parametechti@nges during
system execution.

The duration of time that a task lock a resource, is calledbBe® Hold-
ing Time (RHT). Fisheet al. [20, 21] proposed algorithms to minimize RHT
for fixed priority and EDF scheduling with SRP as a resourcgbyonization
protocol. The basic idea of their proposed algorithms iswtvaase the ceil-
ing of resources as much as possible without violating thedglability of the
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system under the same semantics of SRP.

Deng and Liu [3] proposed the usage of non-preemptive glodsdurce
access, which bounds the maximum blocking time that a tagktfie sub-
ject to. The work by Kuo and Li [8] used SRP and they showed ithest
very suitable for sharing of local resources in a hieramlgcheduling frame-
work. Almeida and Pedreiras [5] considered the issue of sujyy mutually
exclusive resource sharing within a subsystem. Matic amtzldger [11] con-
sidered supporting interacting tasks with data dependefittyn a subsystem
and between subsystems, respectively.

More recently, Davis and Burns [22] presented the Hieraall$tack Re-
source Policy (HSRP), allowing their work on hierarchicgieduling [6] to be
extended with sharing of logical resources. However, usiB8&P, information
on all tasks in the system must be available at the time ofystéis integra-
tion, which is not suitable for an open systems developmevitenment, and
this can be avoided by the SIRAP protocol presented in ttpepa

8.3 System model

8.3.1 Hierarchical scheduling framework

A hierarchical scheduling framework is introduced to sup@U time shar-
ing among applications (subsystems) under different adivegiservices. Hence,
a systemS consists of one or more subsystetsis € S. The hierarchi-
cal scheduling framework can be generally represented &s-¢etel tree of
nodes, where each node represents a subsystem with its ¢veduder for
scheduling internal tasks (threads), and CPU time is akoc&om a parent
node to its children nodes, as illustrated in Figure 8.1.

The hierarchical scheduling framework provigestitioning of the CPU
between different subsystems. Thus, subsystems can laeiddiom each
other for, e.g., fault containment, compositional verifiza, validation and
certification and unit testing.

The hierarchical scheduling framework is also useful indbmain of open
systems [3], where subsystems may be developed and valigatependently
in different environments. For example, the hierarchichksluling framework
allows a subsystem to be developed with its own schedulopgraéhm internal
to the subsystem and then later included in a system that ¢iéfeent global
level scheduler for scheduling subsystems.
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Figure 8.1: Two-level hierarchical scheduling framework.

8.3.2 Shared resources

For the purpose of this paper a shared (logical) resouycis,a shared memory
area to which only one task at a time may have access. To abeagsource a
task must first lock the resource, and when the task no loregtsthe resource
it is unlocked. The time during which a task holds a lock idezhh critical
section Only one task at a time may lock each resource.

A resource that is used by tasks in more than one subsysteemdget] a
global shared resourceA resource only used within a single subsystem is a
local shared resourceln this paper we are concerned only with global shared
resources and will simply denote them by shared resourcemalyement of
local shared resources can be done by using any synchriomipadtocol such
as PIP, PCP, and SRP.

8.3.3 Virtual processor model

The notion of real-time virtual processor (resource) modss first introduced
Mok et al.[16] to characterize the CPU allocations that a parent nookéges
to a child node in a hierarchical scheduling framework. TRU supplyof
a virtual processor model refers to the amounts of CPU dilmes that the
virtual processor model can provide. Thepply bound functionf a virtual
processor model calculates the minimum possible CPU sugdpdye virtual
processor model for a time interval length
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Shin and Lee [13] proposed the periodic virtual processatehd(11, ©),
wherell is a period [I > 0) and® is a periodic allocation time)(< © < II).
The capacityUr of a periodic virtual processor modg(II, ©) is defined as
©/I1. The periodic virtual processor mode(I1, ©) is defined to characterize
the following property:

supplyr (FIL (k + 1)II) = ©, wherek =0,1,2,..., (8.1)

where the supply functiosupply r_(¢1,t2) computes the amount of CPU allo-
cations that the virtual processor modg| provides during the intervad, , t).

I1 1 I I
[[-D: KI-®

Kl
® $ ® ®

sbf(t) |

| | | | > t
\ \ \ \ >
01 2 3 4 5 6 7 8 9 10

Figure 8.2: The supply bound function of a periodic virtuedgessor model
I'(I1, ©) for k = 3.

For the periodic moddl'(I1, ©), its supply bound functioebfr(t) is de-
fined to compute the minimum possible CPU supply for evemriral length
as follows:

(k+ 1)IT - 0], (8.2)

t—(k+1)(IT—-0©) ifte|(k+1)II-20,
sbfr(t) =
{ (k—1)© otherwise
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wherek = max ([(t - (II-©))/11], 1). Here, we first note that an interval

of lengtht may not begin synchronously with the beginning of pefibdrhat

is, as shown in Figure 8.2, the interval of lengthan start in the middle of
the period of a periodic modél(II, ©). We also note that the intuition of
k in Eqg. (8.2) basically indicates how many periods of a péciadodel can
overlap the interval of length more precisely speaking, the interval of length
t — (I — ©). Figure 8.2 illustrates the intuition &and how the supply bound
functionsbifr(¢) is defined fork = 3.

8.3.4 Subsystem model

A subsystemS, € S, whereS is the whole system of subsystems, consists
of a task set and a scheduler. Each subsysiens associated with a peri-
odic virtual processor model abstractiby(Il,, © ), wherell, and©, are the
subsystem period and budget respectively. This abstrectidI,, O) is sup-
posed to specify the collective temporal requirements aflssgstem, in the
presence of global logical resource sharing.

Task model We consider a periodic task mode(T;, C;, X;), whereT; and
C; represent the task’s period and worst-case execution @HT) respec-
tively, and x; is the set of WCETSs within critical sections belonging#o
Each element; ; in &; represents the WCET of a particular critical section
cx; ; executed by;. Note thatC; includes allz; ; € A;.

The set of critical sections cover for the following two casd multiple
critical sections within one job:

1. sequential critical sections, whetg contains the WCETSs of all sequen-
tial critical sections, i.eX; = {z; 1, ..., %io} Whereo is the number of
sequential shared resources that tgskay lock during its execution.

2. nested critical sections, whetg; € X being the length of the outer
critical section.

Note that in the remaining paper, we ugerather thane; ; for simplicity
when it is not necessary to indicate

Scheduler In this paper, we assume that each subsystem has a fixedyprior
preemptive scheduler for scheduling its internal tasks.
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8.4 SIRAP protocol

8.4.1 Terminology

Before describing the SIRAP protocol, we define the ternagegl(also de-
picted in Figure 8.3) that are related to hierarchical labiesource sharing.

(Shared) Resource Access Time
Waiting Time Resource Holding Time
Semaphore Critical Section Critical Section
Request Instant Entering Instant Exiting Instant

Figure 8.3: Shared resource access time.

e Semaphore request instan&n instant at which a job tries to enter a
critical section guarded by a semaphore.

o Critical section entering (exiting) instan&n instant at which a job enters
(exits) a critical section.

e Waiting time: a duration from a semaphore request time to a critical
section entering time.

¢ Resource holding time duration from a critical section entering instant
to a critical section exiting instant. Lét ; denote the resource holding
time of a critical sectiorz; ; of taskr;.

e (Shared) resource access timgeduration from a semaphore request in-
stant to a critical section exiting time.

In addition, a context switch is referred to task-level context switc
it happens between tasks within a subsystem, osudsystem-level context
switchif it happens between subsystems.
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8.4.2 SIRAP protocol description

The subject of this paper is to develop a synchronizatiotopal that can ad-
dress global resource sharing in hierarchical real-tinnedaling frameworks,
while aiming at supporting independent subsystem devedmprand valida-
tion. This section describes our proposed synchronizairotocol, SIRAP
(Subsystem Integration and Resource Allocation Policy).

Assumption SIRAP relies on the following assumption:

e The system’s global scheduler schedules subsystems &ugadodtheir
periodic virtual processor abstractiongIl, © ). The subsystem bud-
getis consumed every time when an internal task within aysies ex-
ecutes, and the budget is replenishe@®toevery subsystem peridd;.
Similar to traditional server-based scheduling metho@$, the system
provides a run-time mechanism such that each subsystenteisoatig-
ure out at any time how much its remaining subsystem budggtis,
which will be denoted a®’,(¢) in the remaining of this section.

The above assumption is necessary to allow run-time chgeidrether or
not a job can potentially enter and execute a whole critieatisn before a
subsystem-budget expire. This is useful particularly igoporting indepen-
dent abstraction of subsystem’s temporal behavior in tleseirce of global
resource accesses.

In addition to supporting independent subsystem developrB¢éRAP also
aims at minimizing the resource holding time and boundiegthiting time at
the same time. To achieve this goal, the protocol has two leg ias follows:

R1 When a job enters a critical section, preemptions frorargtibs within
the same subsystem should be bounded to keep its resoudiegiiine
as small as possible.

R2 When a job wants to enter a critical section, it enters thieal section
at the earliest instant such that it can complete the crisieetion before
the subsystem-budget expires.

The first rule R1 aims at minimizing a resource holding timelsat the
waiting time of other jobs, which want to lock the same reseucan be min-
imized as well. The second rule R2 prevents a.jplirom entering a critical
sectioncz; ; at any timet when®'(t) < h; ;. This rule guarantees that when
the budget of a subsystem expires, no task within the sulrsysicks a global
shared resource.
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SIRAP : preemption management The SRP [19] is used to enforce the first
rule R1. Each subsystem will have its own system ceiling asdurces ceiling
according to its jobs that share global resources. AccgrirtBRP, whenever
a job locks a resource, other jobs within the same subsys&npieempt it
if the jobs have higher preemption levels than the lockedues ceiling, so
as to bound the blocking time of higher-priority jobs. Howevsuch task-
level preemptions generally increase resource holdinggiamd can potentially
increase subsystem utilization. One approach to minirhjzeis to allow no
task-level preemptions, by assigning the ceiling of glateslource equal to
the maximum preemption level. However, increasing theussoceiling to
the maximum preemption level may affect the schedulabilftg subsystem.
A good approach is presented in [20], which increases tHagesf shared
global resources as much as possible while keeping the sleisiity of the
subsystem.

SIRAP : self-blocking When a jobJ; tries to enter a critical section, SIRAP
requires each local scheduler to perform the followingaactiLett, denote
the semaphore request instantipland©’(t,) denote the subsystem’s budget
at timety.

e If h;; < ©(ty), the local scheduler executes the j@b The job J;
enters a critical section at tinig.

e Otherwise, i.e., ifh; ; > ©'(to), the local scheduler delays the critical
section entering of the jol; until the next subsystem budget replenish-
ment. This is defined aself-blocking Note that the system ceiling will
be equal to resource ceiling at timg which means that the jobs that
have preemption level greater than system ceiling can omyguwge dur-
ing the self blocking interval This guarantees that when the subsystem
of J; receives the next resource allocation, the subsystemebudlbe
enough to execute jol; inside the critical sectich

1with simple modifications to the SRP protocol, the executibtasks can be allowed within
the self blocking interval if they do not access global reses even though their preemption levels
are less than the system ceiling. However this is off thetpmithis paper.

2The idea of self-blocking has been also considered in diffecontexts, for example, in CBS-
R [23] and zone based protocol (ZB) [24]. Our work is diffdrémom those in the sense that
CBS-R used a similar idea for supporting soft real-time$askd ZB used it in a pfair-scheduling
environment, while we use it for hard real-time tasks undenanchical scheduling. This difference
inherently requires the development of different schdullitg analysis, including Egs. (8.5), (8.6),
and (8.7).
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8.5 Schedulability analysis

8.5.1 Local schedulability analysis

Consider a subsysteff) that consists of a periodic task set and a fixed-priority
scheduler and receives CPU allocations from avirtual meme model
I's(I,, ©5). According to [13], this subsystem is schedulable if

V7,0 <3t <T; dbep(i,t) < Sbfr(t). (83)

The goal of this section is to develop the demand bound fanétfgp (4, ¢)
calculation for the SIRAP protocolbfep (i, t) is computed as follows;

dbeP(i,t) = Ci+Is(i)+IH(i,t)+IL(i), (84)

whereC; is the WCET ofr;, Is(i) is the maximum self blocking faf;, (3, t)
is the maximum possible interference imposed by a set ofnighiority tasks
to a taskr; during an interval of length, andiy, (i) is the maximum possible
interference imposed by a set of lower-priority tasks timaire resources with
preemption level (ceiling) greater than or equal to thenisief task7;.

The following lemmas shows how to compui&(i), I (i,t) andIy, ().

Lemma 1. Self-blocking imposes to a joh an extra processor demand of at
mostd_7_, h,; if a job access multiple shared resources.

Proof. When the jobJ; self-blocks itself, it consumes the processor of at most
h; ; units being idle. If the job access shared resources themdhst case will
happenwhen the job block itself whenever it tries to enteiteal section. [

Lemma 2. A job J; can be interfered by a higher-priority job; that ac-
cess shared resources, atime units for a duration of at moq’tTLj](Cj +

>_1 hjx) time units.

Proof. Similar to classical response time analysis [25], we adfl , &, to
C; which is the worst case self blocking from higher prioritgka, the lemma
follows. O

Lemma 3. A job J; can be interfered by only one lower-priority johy by at
most2 - max(h; ), where k=1,...,0.
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Proof. A higher-priority job J; can be interfered by a lower-priority jol;.
This occurs only ifJ; is released aftey; tries to enter a critical section but
beforeJ; exits the critical section. Whey) is released, only one job can try to
enter or be inside a critical section. That is, a higher+sigob .J; can then be
interfered by at most a single lower-priority job. The preser demand of/;
during a critical section period is boundedbymax(h; ) for the worst case.
The lemma follows. O

From Lemma 1, the self-blockin; (¢) is given by;

Is()) = hik (8.5)
k=1

According to Lemma 2 and taking into account the interfeednam higher
priority tasks,/ (i, t) is computed as follows;

i—1

Init) = 3 [ 2] (G + S o) (8.6)
k=1

J

j=1
The maximum interference from lower priority tasks can baleated ac-
cording to Lemma 3 according to;

In(i) = max (2- max (hjx))- (8.7)

Jj=i+1,....n k=1,...,0

Based on Eq. (8.5) and (8.6) and (8.7), the processor dentamtifunc-
tion is given by Eq. (8.4).

The resource holding timk; ; of a jobJ; that access a global resource is
evaluated as the maximum critical section execution tifet the maximum
interference from the tasks that have preemption leveltgréhan the ceiling
of the logical resource during the executieyy. h; ; is computed [20] using
W; ;(t) as follows;

W@ =rig+ > [71C (8.8)
l=ceil(x;,;)+1 !
whereceil(z; ;) is the ceiling of the logical resource accessed within tfite cr
ical sectionz; ;, andCj, T are the worst case execution time and the period
of job that have higher preemption level thal(z; ;), andu is the maximum
ceiling within the subsystem.
The resource holding timk; ; is the smallest timé' such thatV; ;(t}) =
t*

i
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8.5.2 Global schedulability analysis

Here, issues for global scheduling of multiple subsysterasiaalt with. For

a subsystents, it is possible to derive a periodic virtual processor model
I (11, ©;) that guarantees the schedulability of the subsystgraccording

to Eq. (8.3).

The local schedulability analysis presented for subsystismmot depen-
dent on any specific global scheduling policy. The requinetsiéor the global
scheduler, are as follows: i) it should schedule all sulesgstaccording to their
virtual processor moddl, (11, ©,), ii) it should be able to bound the waiting
time of a task in any subsystem that wants to access glohmal mes.

To achieve those global scheduling requirements, pregemptihedulers
such as EDF and RM together with the SRP [19] synchronizatiotocol can
be used. So when a subsystem locks a global resource, it @tilb@ pre-
empted by other subsystems that have preemption levelHassar equal to
the locked resource ceiling. Each subsystem, for all gladsdurces accessed
by tasks within a subsystem, should specify a list of paididhose global re-
sources and their maximum resource holding tifies, .., ), ..., (rp, Hy,)}.
However it is possible to minimize the required informatibvat should be
provided for each subsystem by assuming that all globaluress have the
same ceiling equal to the maximum preemption le¥glamong all subsys-
tems. Then for the global scheduling, it is enough to provideial processor
modell’, (II,, ©4) and the maximum resource holding times among all global
resources, = max(HRg,, ..., Hg,) for each subsysteri;. On the other
hand, assigning the ceiling of all global resources to theimam preemption
level of the subsystem that access these resources is nfficeneas using
the original SRP protocol, this since we may have resourdidower ceiling
which permit more preemptions from the higher preemptioallsubsystems.

Under EDF global scheduling, a setiobubsystems is schedulable [19] if

k

o, B

it (D7) + n_f <1, (8.9)
i=1 " ’

whereB), of subsystens), is the duration of the longest resource holding time
among those belonging to subsystems with preemption lewar thanr.

For RM global scheduling, the schedulability test basechskg’ response
time is
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i—1
Wi=0i+Bi+Y. [HK] (C)). (8.10)
j=1

It is also possible to use a non-preemptive global schedodgther with
the SIRAP protocol. In this case, no subsystem-level carseitch happens
when there is a task inside a critical section. That is, whena task tries to
lock a global resource, it is guaranteed that the globaknesas not locked by
another task from other subsystems. This way provides a cleparation be-
tween subsystems in accessing global shared resources.Wéean achieve a
more subsystem abstraction, i.e., subsystems do not haxpoot information
about their global shared resource accesses, for examipieh @lobal shared
resources they access and the maximum resource holdingltinfect, it will
require more system resources to schedule subsystems noug@reemptive
global scheduling rather than under preemptive globaldulireg. Hence, we
can see a tradeoff between abstraction and efficiency. Erplthis tradeoff
is a topic of our future work.

8.5.3 Local resource sharing

So far, only the problem of sharing global resource betwedisystems has
been considered. However, many real time applications naag tocal re-
source sharing within subsystem as well. Almeida and Pextr¢b] showed
that some traditional synchronization protocols such aB B@d SRP can be
used for supporting local resource sharing in a hierartki@eduling frame-
work by including the effect of local resource sharing in ttedculation of
dbfep. That is, to combine SRP/PCP and the SIRAP protocol for symch
nizing both local and global resources sharing, Eq. (8.8ukhbe modified
to

I1 (i) = max(max(2 - x; ), b;), wherej=i+1,...,n. (8.11)

whereb; is the maximum duration for which a taskcan be blocked by its
lower-priority tasks in critical sections from local resoa sharing.

8.6 Protocol evaluation

In this section, the cost of using SIRAP is investigated rmteof extra CPU
utilization (Ur) required for subsystem schedulability guarantees. Wenass
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that all global resource ceilings can be equal to the maximpreamption level,
which means that no tasks within a subsystem preempt a taileia critical
section, and therefork; ; = z; ;. Supporting logical resource sharing is ex-
pected to increase subsystem utilizatiéfs This increment inUr depends
on many factors such as the maximum WCET within a criticalisae; ;, the
priority of the task sharing a global resource, and the sstesy periodI,.

Sections 8.6.1, 8.6.2, and 8.6.3 investigate the effettasfd factors under
the assumption that tagkaccesses a single critical section. In Section 8.6.4,
this assumption is relaxed so as to investigate the effebisofiumber of criti-
cal sections. Section 6.5 compares independent and depeizractions in
terms of subsystem utilization.

8.6.1 WCET within critical section

One of the main factors that affect the cost of using SIRAFh& \talue of
z;;. Itis clear from Egs. (8.4), (8.6), and (8.7) that whenevgy (which
equals toh; ;) increasesdbfrp Will increase as well, potentially causirig
to increase in order to satisfy the condition in Eq. (8.3pufé 8.4 shows the
effect of increasing:; on two different task sets. Task set 1 is sensitive for
small changes in; whilst task set 2 can tolerate the given range ofvithout
showing a big change ifir. The reason behind the difference is that task set
1 has a task with period very closeliiQ while the smallest task period in task
set 2 is greater thal, by more than 4 times. Hence, SIRAP can be more or
less sensitive te; depending on the ratio between task and subsystem period.
For the remaining figures (Figure 8.5 and 8.6), simulatiaesperformed
as follows. We randomly generated 100 task sets, each oamjab tasks.
Each task set has a utilization of 25%, and the period of tmegded tasks
range from 40 to 1000. For each task set, a single task ascaesggebal shared
resource; the task is the highest priority task, the middierity task, or the
lowest priority task. For each task set, we use 11 differahtes ofx; ranging
from 10% to 50% of the subsystem period.

8.6.2 Task priority

From Egs. (8.4), (8.6) and (8.7), looking how tasks sharilofpa logical re-
sources affect the calculationsdbfep, it is clear that task priority for these
tasks is of importance. The contribution of low priorityka®ndbfep is fixed
to a specific value of; (see Eq. (8.7)), while the increasedbfgp by higher
priority tasks depends on many terms such as higher priastyperiod’;, and
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Figure 8.4: Ur as a function ofr; for two task sets where only the lowest
priority task share a resource.

execution time’}, (see Eg. (8.6)). Itis fairly easy to estimate the behavidur o
a subsystem when lower priority tasks share global ressuoseone hand, if
the smallest task period in a subsystem is clogé tolr will be significantly
increased even for small valuesof As the value ofsbf is small for time
intervals close tdI,, the subsystem needs a lot of extra resources in order to
fulfil subsystem schedulability. On the other hand, if theablest task period
is much larger thail; thenUr will only be affected for large values af;, as
shown in Figure 8.4.

Figure 8.5 show$/r as a function ofc; for when the highest, middle and
lowest priority task are sharing global resources, resgpaygt wherell, =
15. The figure shows that the highest priority task accessinplaatjshared
resource needs in average more utilization than other teiskdower priority.
This observation is expected as the interference from higherity task is
larger than the interference from lower priority tasks (Ege(8.6) and (8.7)).
However, note that in the figure this is true forwithin the range of [0,5]. If
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Figure 8.5: Average utilization for 100 task sets as a fumctif :;, when low,
medium and high priority task share a resource respectidgly= 15.

the value ofx; is larger than 5, theb/r keeps increasing rapidly without any
difference among the priorities of tasks accessing theajlshared resource.
This can be explained as follows. When using SIRAP, the sibsy budget
O, should be no smaller tharn to enforce the second rule R2 in Section 8.4.2.
Therefore, when;; > 5, ©, should also become greater thamrven though
subsystem period is fixed to 15. This essentially resultsrapéd increase of
Ur with the speed of; /15.

8.6.3 Subsystem period

The subsystem period is one of the most important parameétattsin the con-
text of global scheduling ansbf calculations for a subsystem. A, is used
in thesbf calculations]I; will have significant effect ot (see Eq. (8.3)).
Figure 8.6 compares average subsystem utilization foerdifft values of
subsystem period, i.e., féf, = 20 andIl; = 40 for the same task sets. Here,
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Figure 8.6: Average utilization for 100 task sets as a fumctif z;, when only
the highest priority tasks share a resource and the subsys&dod isIT; = 20
andII, = 40.

only the highest priority task accesses a global sharediresolt is interesting
to see that the lower value of;, i.e, II, = 20, results in a lower subsystem
utilization whenz; is small, i.e.,z; < 6, and then a higher subsystem utiliza-
tion whenz; gets larger from:; = 6. That is,z; andIl, are not dominating
factors one to another, but they collectively affect sutmysutilization. It is
also interesting to see in Figure 8.6 that the subsystemattdn of IT, = 40
behaves in a similar way by increasing rapidly fram= 14.

Hence, in general]l, should be less than the smallest task period in a sub-
system, as in hierarchical scheduling without resourcerspghe lower value
of I, gives better results (needs less utilization). Howevethépresence of
global resources sharing, the selection of the subsysteisdmepends also on
the maximum value af; in the subsystem.
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8.6.4 Multiple critical sections

We compare the case when a taskccesses multiple critical sections (MCS)
with the case when a tagkaccesses a single critical section (SCS) within
durationz; = Y, _, x;x according to the demand bound function calculations
in Eqg. (8.4). The following shows the effect of accessing M@&a task on
itself and on higher and lower priority tasks;

e Self blocking, Eqg. (8.5) shows that both accessing MCS an8l BfCa
task gives the same result.

o Higher priority task, the effect from higher priority taskaessing MCS
or SCS can be evaluated by Eq. (8.5). will be the same for both cases
also.

e Lower priority task, Eq. (8.7) shows that for MCS is less than SCS
case because in MCS the maximunegf; will be less than; for SCS.

We can conclude that the required subsystem utilizatioiMiGs case will
be always less than or equal to the case of SCS having Y ;_, z; 5, which
means that our proposed protocol is scalable in terms ofuh#er of critical
sections.

8.6.5 Independent abstraction

In this paper, we have proposed a synchronization protbedltupports inde-
pendent abstraction of a subsystem, particularly, for cgyestems. Indepen-
dent abstraction is desirable since it allows subsystent®tdeveloped and
validated without knowledge about temporal behavior oEoubsystems. In
some cases, subsystems can be abstratgpdndentlyof others when some
necessary information about all the other subsystems itabla However,
dependent abstraction has a clear limitation to open systémere such infor-
mation is assumed to be unavailable. In addition, deperatmsitaction is not
good for dynamically changing systems, since it may be ngdowmalid when a
new subsystem is added. Despite of the advantages of indepesbstraction
vs. dependent abstraction, however, one may wonder wheg loak like in
using independent abstraction in comparison with using@déent abstraction.
In this section, we discuss this issue in terms of resoufaaericy (subsystem
resource utilization).
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Figure 8.7: Comparison between independent and depenbstnaetions in
terms of subsystem utilization.

One of the key differences between independent and depealstiac-
tions is how to model a resource supply provided to a subsystere specif-
ically, how to characterize the longdsaickout durationduring which no re-
source supply is provided. Under independent abstradtieipngest blackout
duration is assumed to be the worst-case (maximum) one. &dbeit can be
exactly identified by some techniques [6, 26] under depetatesiraction. This
difference inherently yields different subsystem reseurtilizations, as illus-
trated in Figure 8.7. Before explaining this figure, we needdtablish some
notions and explain how to obtain this figure.

We first extend the periodic resource moB€I, ©) by introducing an ad-
ditional parameterblackout duration ratio (r) We definer as follows. Let
Lyin and L, ., denote the minimum and maximum possible blackout dura-
tion, and

Lpin =11 —0©andL,,., = 2(II — O).

When exactly computed, the longest blackout duration can e represented
asr - (Lmaz — Lmin) + Lmin. We generalize the supply bound function of Eq.
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(8.2) with the blackout duration ratioas follows:

t—(k+1)(IT—-0©) ifte[kllI—0O
+r(Il — ©),
EIL + r(II — ©)],
(k—1)© otherwise

Sbfr(t) = (812)

wherek = max ([(t - (I -©))/11], 1).

We here explain the notion aésk-subsystem period ratiavhich is the
x-axis of the figure. Suppose a periodic resource mogédll;, ©1,71) is an
abstraction that guarantees the schedulability of a stdrsyS. According to
Eq. (8.3), there then exists a time instahtwhere0 < t; < T;, for each task
7; within the subsysten§' such that

V1, dbep(Z',t:) < sbfr, (t:) (813)

In fact, given the values of subsystem perldécénd blackout duration ratio,
we can find a smallest value 6, denoted a®, that can satisfy Eq. (8.13) at
t7 for each task;. The value of budge® is then finally determined as the max-
imum value among alb;. This way makes sure théXis large enough to guar-
antee the timing requirements of all tasks. L&tdenote a time instanf such
that®; is the maximum among the ones. We can seeftat [T,in, Timaz),
whereT,,;, andT,,,, denote the minimum and maximum task periods within
subsystem, respectively. We define thek-subsystem period rates7* /1.
Given a periodic abstraction; of the subsystent, another periodic re-
source model's(Ilz, ©2, ) can be also an abstraction $f if

V71, sbfp, (t7) < sbfr,(t)), (8.14)

since Eg. (8.3) can be satisfied withandI's as well. More specifically,
I'y(I13, O©2,72) can be an abstraction 6F, if

sbfr, (T*) < sbfp, (). (8.15)

That is, giver’; and the values dfl, andry, we can find the minimum value
of O, that satisfies Eq. (8.15).

Figure 8.7 shows subsystem utilizations of periodic albtras under dif-
ferent values of blackout duration ratio when they have the same subsys-
tem period in abstracting the same subsystem. In genegtioivs that de-
pendent abstraction, which can exactly identify the valtie,owould pro-
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duce more resource-efficient subsystem abstractions. ifiep#g, for exam-
ple, whenr = 0, i.e., when the subsystem has the highest priority undedfixe
priority global scheduling, a subsystem can be abstracted18% less sub-
system utilization than in the case of independent absbra¢t = 1). The
figure also shows that differences in subsystem utilizagienerally decrease
when the task-subsystem period ratio increases and/orldc&dut duration
ratio increases. For example, when= 0.5, i.e., when the system has a mod-
erately high utilization and subsystems have medium or ldarities under
fixed-priority global scheduling or subsystems are schetluhder global EDF
scheduling, differences are shown to be smaller than 8%.

8.7 Conclusion

In this paper we have presented the novel Subsystem Inimgeaid Resource
Allocation Policy (SIRAP), which provides temporal isatat between subsys-
tems that share logical resources. Each subsystem can &lepged, tested and
analyzed without knowledge of the temporal behaviour oEpgubsystems.
Hence, integration of subsystems, in later phases of ptathvelopment, will
be smooth and seamless.

We have formally proven key features of SIRAP such as boundietays
for accessing shared resources. Further, we have provitiedslability anal-
ysis for tasks executing in the subsystems; allowing forafdeard real-time
application within the SIRAP framework.

Naturally, the flexibility and predictability offered by BAP comes with
some costs in terms of overhead. We have evaluated thisea@ithrough a
comprehensive simulation study. From the study we can seehle subsystem
period should be chosen as much smaller than the smalléspéaiod in a
subsystem and take into account the maximum valug of the subsystem to
prevent having high subsystem utilization. Future workudes investigating
the effect of context switch overhead on subsystem utibnabgether with the
subsystem period and the maximum valué.pf
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Abstract

The Hierarchical Scheduling Framework (HSF) has beendiired as a
design-time framework enabling compositional schedlitglzinalysis of em-
bedded software systems with real-time properties. Inghjser a system con-
sists of a number of semi-independent components callexystéms. Subsys-
tems are developed independently and later integratedrito #osystem. To
support this design process, our proposed methods allovwmiarsive config-
uration and tuning of subsystem timing-behaviour via setesy interfaces for
selecting scheduling parameters.

This paper considers two methods to handle overruns dusdoiree shar-
ing between subsystems in the HSF. We present the scheddgjagthms for
overruns and their associated schedulability analysgetteer with analysis
that shows under what circumstances one or the other ovaretimod is pre-
ferred. Furthermore, we show how to calculate resourcdihglimes within
our framework.
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9.1 Introduction

The Hierarchical Scheduling Framework (HSF) has beendlicted to support
hierarchical resource sharing among applications undéesreint scheduling
services. The hierarchical scheduling framework can beigéiy represented
as a tree of nodes, where each node represents an applieatioits own
scheduler for scheduling internal workloads (e.g., thsg@aaind resources are
allocated from a parent node to its children nodes.

The HSF provides means for decomposing a complex systemnialle
defined parts. In essence, the HSF provides a mechanismmfogtipredictable
compositionof course-grained componentssubsystemsin the HSF a sub-
system provides an introspectiigerfacethat specifies the timing properties
of the subsystem precisely [1]. This means that subsystam¥e indepen-
dently developed and tested, and later assembled withinatlincing unwanted
temporal behaviour. Also, the HSF facilitate=usability of subsystems in
timing-critical and resource constrained environmeritssesthe well defined
interfaces characterize their computational requirement

Earlier efforts have been made in supporting compositisabsystem in-
tegration in the HSFs, preserving the independently aedlyschedulability
of individual subsystems. One of the common assumptionsedhay earlier
studies is that subsystems are independent. This papeesetlais assump-
tion by addressing the challenge of enabling efficient cositfmmal integration
for independently developesgtmi-independestubsystems interacting through
sharing of logical resources. Here, semi-independencasibat subsystems
are allowed to synchronize by the sharing of logical resesirc

To enable sharing of logical resources in HSFs, Davis ana8proposed
the overrun mechanism that allows the subsystem to overrun (its budget)
complete the execution of the critical section [2]. The gtpdbvided schedu-
lability analysis for this mechanism; however, it does n@dva independent
analysis of individual subsystems. Hence, this schediitiabinalysis does not
support composability of subsystems. For Davis and Burmstroin mech-
anism, we have presented schedulability analysis sumgodbmposability
in [3] and in addition, we also presented another overruriraeism (enhanced
overrun mechanism) that potentially increases scheditjabithin a subsys-
tem by providing CPU allocations more efficiently.

The main contributions of this paper are twofold. The firshtcitbution
of this paper is the comparison analysis showing under winaetirastances
one [2] or the other overrun method [3] is preferred. The sdamntribution
of this paper is the presentation of, for the periodic virpracessor model that
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is used throughout the paper, how to calculate bounds orefeirce holding
time The resource holding time represents the time during whishbsystem
may lock a shared resource, and it plays a key role in defitiagnterface of
a subsystem in this paper.

The outline of the paper is as follows: Section 9.2 preseptated work,
while Section 9.3 presents our system model. In Section @.$4resent the
schedulability analysis for the model. Section 9.5 preséme two overrun
mechanisms and Section 9.6 presents their analytical cosopa In Sec-
tion 9.7 we show how to calculate the resource holding tinaesl finally,
Section 9.8 concludes.

9.2 Related work

This section presents related work in the areas of HSFs dsaweksource
sharing protocols.

9.2.1 Hierarchical scheduling

The HSF for real-time systems, originating in open systefjdr the late
1990's, has been receiving an increasing research atterimce Deng and
Liu [4] introduced a two-level HSF, its schedulability haselm analyzed un-
der fixed-priority global scheduling [5] and under EDF-laggobal schedul-
ing [6, 7]. Mok et al. [8] proposed the bounded-delay resource model so as
to achieve a clean separation in a multi-level HSF, and sdhbdity analy-
sis techniques [9, 10] have been introduced for this regoomadel. In addi-
tion, Shin and Lee [1, 11] introduced another periodic resemodel (to char-
acterize the periodic resource allocation behaviour), mady studies have
been proposed on schedulability analysis with this resoomadel under fixed-
priority scheduling [12, 13, 14] and under EDF schedulirjg More recently,
Easwararet al. [15] introduced Explicit Deadline Periodic (EDP) resource
model. However, a common assumption shared by all the studihis para-
graph is that tasks are required to be independent.

9.2.2 Resource sharing

In many real systems, tasks are semi-independent, integagith each other
through mutually exclusive resource sharing. Many prdwbave been in-
troduced to address the priority inversion problem for sgrdependent tasks,
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including the Priority Inheritance Protocol (PIP) [16]etRriority Ceiling Pro-
tocol (PCP) [17], and Stack Resource Policy (SRP) [18]. RegeFisheret
al. addressed the problem of minimizing the resource holdimg §i19] un-
der SRP. There have been studies on extending SRP for H3Fhdng of
logical resources within a subsystem [20, 5] and acrossystdrss [2, 21, 22].
Davis and Burns [2] proposed the Hierarchical Stack ResoRaticy (HSRP)
supporting sharing of logical resources on the basis of @&nrom mechanism.
Behnamet al.[21] proposed the Subsystem Integration and Resource &lloc
tion Policy (SIRAP) protocol that supports subsystem irdégn in the pres-
ence of shared logical resources, on the basis of skippirgheFet al. [22]
proposed the BROE server that extends the Constant Barid®édter (CBS)
[23] in order to handle sharing of logical resources in a H3pari et al. pro-
posed the BandWidth Inheritance protocol (BWI) [24] whictiends the re-
source reservation framework to systems where tasks caa dsurces. The
BWI approach is based on using the CBS algorithm and a teabriat is de-
rived from the Priority Inheritance Protocol (PIP). Pautarly, BWI is suitable
for systems where the execution time of a task inside a atisiection can not
be evaluated.

9.3 System model and background

9.3.1 Resource sharing in the HSF

The Hierarchical Scheduling Framework (HSF) has beendluicted to support
CPU time sharing among applications (subsystems) underelift scheduling
policies. In this paper, we consider a two level-hierarahécheduling frame-
work which works as follows: a global (system-level) scHedallocates CPU
time to subsystems, and a local (subsystem-level) scheslutsequently allo-
cates CPU time to its internal tasks.

Having such a HSF also allows for the sharing of logical resesiamong
tasks in a mutually exclusive manner (see Figure 9.1). 8palty, tasks can
sharelocal logical resources within a subsystem as welblsbal logical re-
sources across (in-between) subsystems. However, nothithpaper focuses
around mechanisms for sharing of global logical resournes HSF while
local logical resources easily can be supported by traditisynchronization
protocols such as SRP (see, e.g., [20, 2, 5]).
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Figure 9.1: Two-level HSF with resource sharing.

9.3.2 Virtual processor models

The notion of real-time virtual processor (resource) mods first introduced
by Mok et al. [8] to characterize the CPU allocations that a parent node pr
vides to a child node in a HSF. TH&PU supplyof a virtual processor model
refers to the amounts of CPU allocations that the virtuatessor model can
provide. Thesupply bound functioof a virtual processor model calculates its
minimum possible CPU supply for any given time interval afdént.

The periodic virtual processor mode( P, Q) was proposed by Shin and
Lee [1] to characterize periodic resource allocations,retieis a period P >
0) and@ is a periodic allocation time0(< @ < P). The capacityUr of a
periodic virtual processor modEl P, Q) is defined as)/ P.

Thesupply bound functioebf(¢) of the periodic virtual processor model
I'(P, Q) was given in [1] to compute the minimum resource supply duan
interval of lengtht. Further, in this paper, we rephrase it with an additional
parameter oBD, whereBD represents its longest possiltliackout duration
during which the periodic virtual processor model may pdeviho resource
allocation at all.

t—(k—1)(P-Q)—BD iftew®

(k—1)Q otherwise (9:1)

sbfr(t,BD) = {

wherek = max ([(t +(P-Q)—-BD)/P], 1) andW(®) denotes an interval
[(k—1)P+BD, (k—1)P+BD+Q)]. Here, we first note that the originsb£ - (¢)
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Figure 9.2: The supply bound function of a periodic virtuebgessor model
I'(3,2).

in [1] is equivalent tasbfr (¢, BD) whenBD = 2(P — Q). We also note that an
interval of lengtht may not begin synchronously with the beginning of period
P; as shown in Figure 9.2, the interval of lengtban start in the middle of the
period of a periodic virtual processor mod&IP, Q). Figure 9.2 illustrates the
supply bound functiosbf(¢) of the periodic virtual processor model.

9.3.3 Stack resource policy (SRP)

To be able to use SRP [18] in the HSF, its associated termsxségaded as
follows:

e Preemption level Each taskr; has a preemption level equal 1¢ =
1/D;, whereD; is the relative deadline of the task. Similarly, each sub-
systemS; has an associated preemption level equHlie= 1/ P;, where
Py is the subsystem'’s per-period deadline.

¢ Resource ceiling Each globally shared resourég is associated with
two types of resource ceilings; omaernal resource ceiling for local
schedulingrc; = max{m;|m; accesse®;} and oneexternalresource
ceiling for global scheduling.
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e System/subsystem ceilingdystem/subsystem ceilings are dynamic pa-
rameters that change during run-time. The system/submystding is
equal to the currently locked highest external/internsbtece ceiling in
the system/subsystem.

Following the rules of SRP, a job; that is generated by a task can
preempt the currently executing joh. within a subsystem only if/; has a
priority higher than that of joly;, and, at the same time, the preemption level
of ; is greater than the current subsystem ceiling. A similassaiag is made
for subsystems from a global scheduling point of view.

9.3.4 System model

In this paper a periodic task model T}, C;, D;, {c; ;}) is considered, where
T;, C; and D; represent the task’s period, worst-case execution timeEWC
and relative deadline, respectively, whdbe < T;, and{c; ;} is the set of
WCETs within critical sections associated with task Each elemeng; ; in
{ci,; } represents the WCET of the taskinside a critical section of the global
shared resourcgk;.

Looking at a shared resourdg;, theresource holding timé; ; of a task
7; is defined as the time given by the task’s maximum executioe inside
a critical section plus the interference (inside the aitisection) of higher
priority tasks having preemption level greater than therimal ceiling of the
locked resource.

A subsystent; € S, whereS is the whole system of subsystems, is char-
acterized by a task s&t and a set of internal resource ceilifB€’s inherent
from internal tasks using the globally shared resourcesh Babsysteny is
assumed to have an EDF local scheduler, and the subsystesthaduled ac-
cording to EDF on a global level. The collective resourceinegnents by each
subsystens; is characterised by iisterface(the subsystem interface) defined
as(Ps,Qs, Hs), whereP; is the subsystem’s period), is it's execution re-
quirement budget, anH, is the subsystem’s maximum resource holding time,
i.e., Hy = max{h;;|r; € T, accesseR,}.

9.4 Schedulability analysis

This section presents the schedulability analysis of thE, ldtarting with local
schedulability analysis needed to calculate subsysteenfates, and finally,
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global schedulability analysis. The analysis presentsdrass that SRP is
used for synchronization on the local (within subsystermgIl

9.4.1 Local schedulability analysis

Let dbfepr(i, t) denote the demand bound function of a taskinder EDF
scheduling [25], i.e.,

t+T1; — D,
T;

The local schedulability condition under EDF schedulintpen (by combining
the results of [26] and [1])

dbteor (i, t) = L J .G (9.2)

Vi >0 > dbfepr(i,t) + b(t) < sbf(t), (9.3)

i=1

wherebd(t) is the blocking function [26] that represents the longestking
time during which a johJ; with D; < t may be blocked by a job, with
Dy, > t when both jobs access the same resource.

9.4.2 Subsystem interface calculation

Given a subsysten§;, RCs, and Ps, let calculateBudget(Ss, Ps, RCy) de-
note a function that calculates the smallest subsystemdbdgigthat satisfies
Eq. (9.3). HenceR); = calculateBudget(Ss, Ps, RCs). The function is simi-
lar to the one presented in [1], however, due to space limoitaf its details are
left out of this paper.

9.4.3 Global schedulability analysis

Following Theorem 1 of [26], global schedulability anak/ander EDF schedul-
ing is given using the system load bound functi®@®(¢) as follows:

Vt>0 LBF(t) = B(t)+ »  DBF.(t) <t, (9.4)
SsE€S

where

DBF, (¢) = L%J 0., (9.5)
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and the system-level blocking functi@(t) represents the maximum blocking
time during which a subsystesy, may be blocked by another subsystém
whereP; < tandP, > t. B(t) is defined as

B(t) = max{Hy, | Py > t}. (9.6)

9.5 Overrun mechanisms

This section explains two overrun mechanisms that can tettodeandle bud-
get expiry during a critical section in the HSF. Consider abgl scheduler
that schedules subsystems according to their periodidaates s, Q,, H).
The subsystem budgél, is said toexpireat the point when one or more in-
ternal (to the subsystem) tasks have executed a tot@l;dfme units within
the subsystem perioB;. Once the budget is expired, no new task within the
same subsystem can initiate its execution until the subsystbudget is re-
plenished. This replenishment takes place in the beginfiegch subsystem
period, where the budget is replenished to a valu@ of

Budget expiration may cause a problem if it happens whilebaJjoof a
subsysteny is executing within a critical section of a global sharecdrese
R;. If another jobJ,, belonging to another subsystem, is waiting for the same
resourceR;, this job must wait untilS; is replenished again sg; can con-
tinue to execute and finally release the lock on resofrcer his waiting time
exposed taJ;, can be potentially very long, causinfg to miss its deadline.

In this paper, we consider an overrun mechanism as follolsywhe bud-
get of subsystens; expires andS; has a johJ; that is still locking a globally
shared resource, jolj continues its execution until it releases the locked re-
source. The extra time that needs to execute after the budgetSgfexpires
is denoted a®verrun timef. The maximumg occurs whenJ; locks a re-
source that gives the longest resource holding time jusirbethe budget of
S, expires. Here, we consider the payback overrun mechanisiM2enever
overrun happens, the subsystémpays bacld in its next execution instant,
i.e., the subsystem budg@t will be decreased by for the subsystem’s ex-
ecution instant following the overrun (note that only thetant following the
overrun is affected). Hereinafter, we call this paybacknwe mechanisnba-
sic overrun

9.5.1 Basic overrun

Daviset al.[2] presented schedulability analysis for basic overrunyéwver, it
is not suitable for open environments [4] as it requiresitegtanformation of
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Figure 9.3: Basic and enhanced overrun mechanisms.
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Figure 9.4: Comparingbf (t) with sbf°(t).

all tasks in the system in order to calculate global schedilitia This section
discusses how to extend the existing schedulability arsafgs basic overrun,
making it suitable for open environments.

Independent analysis with basic overrun

The supply bound function in [1] was developed under the rapsion that
the greatest blackout duration2éP — ). Basic overrun cannot employ this
existing supply bound function for schedulability anadysecause its greatest
Blackout Duration (BD) i2(P — @) + H (as shown in Figure 9.3a). Taking
this into account, below is the presentation of a modifieghsuipound function
sbf?(¢), that can be used with basic overrun (using Eq. (9.1)), dsvist
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sbfp(t) = sbfr(t,BD°), whereBD® = 2(P — Q) + H. 9.7)

The existing schedulability conditions of Eq. (9.3) canrthee extended by
substitutingsbfr(t) with sbfp.(¢).

Global analysis with basic overrun

We first discuss how to extend the demand bound function ofbaystiem
with the basic overrun mechanism. Looking at basic overrith wayback

in a subsystent,, the maximum contribution oDBF,(t) is Hs. WhenS;
overruns with its maximum, which i/, the subsystem’s resource demand
within the subsystem perioH; will be increased t@); + H,. Following this,
the budget of the next period will be decreasedto— H, due to the payback
mechanism. Then, suppose that the subsystem overruns Bigamnduring the
next subsystem period, the subsystem’s resource demahiolewi)l, — H, +

H, = Q. Here, one can easily see that the subsystem’s resourcendemih

be at mosk @, + H, duringk subsystem periods. Hence, the demand bound
functionDBF?(t) of a subsysten$ with the basic overrun mechanism is

DBF;(t) = DBF(t) + O,(t), (9.8)

where

HS If t Z P‘?)
Os(t) = { 0 otherwise

The schedulability condition of Eq. (9.4) can then be exézhbly substituting
DBF,(t) with DBF2(t).

(9.9)

9.5.2 Enhanced overrun

As seen in Section 9.5.1, the basic overrun mechanism watksawnodified
supply bound functiorsb£®(¢) that is less efficient in terms of CPU resource
usage compared with the origingd£ (t), as illustrated in Figure 9.4. Now we
propose an enhanced overrun mechanism that makes it pogsilesbf (t)
and overrun to improve the efficiency of CPU resource utilara

The enhanced overrun mechanism is based on imposing ah(@i#aying
the budget replenishment of subsystem) equal to the amduart @verrun
0, to the execution instant that follows a subsystem overrus. shown in
Figure 9.3b, the execution of the subsystem will be delayeé;after a new
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period followed by overrun even if that subsystem has thédsg priority at
that time. By this the maximum BD will be decrease®{@ — @) compared
with basic overrun shown in Figure 9.3a and therefore it ssfie to use the
same supply bound function presented in Section 9.3.2. ®tieeamportant
features that the enhanced overrun mechanism providestist ttnoves the
effect of overrun from the local to the global schedulapiinalysis, so the
subsystem development will not depend on if there is an awemechanism
or not. This feature is very important in an open environméfie can then
use the existing local EDF schedulability condition of E®.3) without any
modification.

Global analysis with enhanced overrun

The effect of overrun is now moved to global schedulabilibalgsis in the
enhanced overrun mechanism. Here, we present a demand bawiibn
DBFZ(t) of a subsystent, that upper-bounds the demand requestedSby
under the enhanced overrun mechanism. N®®; (¢) includes the offset, =
H, as follows:

t+ H,

DBF (t) = { P,

|-Qi+oi), 9.10)

where

O;

(t) = { H, itt2 P —H, (9.11)

0 otherwise

The schedulability condition of Eq. (9.4) can then be exézhbly substituting
DBF,(¢) with DBFZ(¢).

9.6 Comparison between basic and enhanced over-
run mechanisms
In this section, we will compare the efficiency of the two owermechanisms.

First, we will show the effect of using each of them locallg, j on a subsystem
level. Then, we will show their effect globally, i.e., on astgm level.



112 Paper C

9.6.1 Subsystem-level comparison

The following lemma shows that the minimum required sulesysbudget
when using enhanced overrun will be lower than or equal tonivémum
required budget when using basic overrun.

Lemma 4. Assuming that the minimum required budget to schedulesiktan
a subsystens; using basic overrun i§)¢, and that the corresponding budget
using enhanced overrun g%, thenQ: < Q2.

Proof. A subsystem S, is exactly schedulable iff in addition to Eq. (9.3),
i dbfepr (i, t) + b(t) = sbf(t) for 3¢ s.t. min'D; < t < LCMg, +
maz} D, (see theorem 2.2 in [15]). This means that if the budggts the
minimum required to guarantee the schedulability of taskSi then there is

a set of timeg® at which""" dbfepr (i, t) + b(t) = sbf(t). Without loss of
generality, we assume thétincludes one element. If we use same subsystem
budget; for both basic and enhanced overrun then

sbf°(t) = sbf(t — H,) (9.12)

wheresbf(¢) is used with enhanced overrun and the shift in timé?,” comes
from the difference in BD when using enhanced and basic oxerf=rom
Eq. (9.1) and Eq. (9.12), we have two cases:

case 1:sbf°(t) = sbf(t) fort € [kPs — Qs + Hs, (k + 1)Ps — 2Q,] wherek
is an integer numbeét > 1.

case 2:sbf°(t) < sbf(¢) for ¢ out of the range in case 1.

If t¢ € [kPs — Qs + Hs, (k + 1)Ps — 2Q,] thensb£°(t¢) = sbf(¢°).
And then)"" dbfepr (i, t¢) + b(t¢) = sbf°(t¢), which means thaf, may be
enough to schedule all tasks in a subsystenusing basic overrun, sQ* =
Q: attimet = t°. However, Eq. (9.3) must be checked if it holds for all other
timest, to be sure that the subsysteinis still scheudlable.

If t¢ is not in the range given for case 1, thewt®(¢°) < sbf(¢¢). And
thensbf®(t¢) < > dbfepr(4,t¢) + b(t¢) which means that the budgéx,
will not satisfy the condition in Eq. (9.3) using basic ovwerrand we should
provide higher budget. In this cagg < Q2.

O
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9.6.2 System-level comparison

As shown in the previous section, the minimum required btdgdeen using
enhanced overrun is lower than or equal to the minimum budgen using
basic overrun. However, at system level, it is not easy tordeeh of the two
approaches that will require minimum overall system CPWueces.

Let us definesystem loads a quantitative measure to represent the mini-
mum amount of CPU allocations necessary to guarantee tleelsletbility of
the systemS. Then, we will investigate the impact of each overrun mecha-
nism on the system load, respectively. The system loati,; is computed as
follows:

LBF(t)

(9.13)

loadsys = max
t

Note thata: = loadys is the smallest fraction of the CPU that is required
to schedule all the subsystems in the sysfe(satisfying Eq. (9.4)) assuming
that the resource supply function (at system leved)tis

Looking at Eq. (9.13), we can decredsed,,s by loweringLBF(t). En-
hanced overrun will makeBF(¢) lower compared with basic overrun since
LBF(t) depends on the subsystem budget. However, because of He¢ ioff
posed in the global scheduling when using enhanced ovahemesource de-
mand should be provide earlier (see Eg. (9.10)). ComparqdE8), which
compute®BF? (¢) using basic overrun, and Eq. (9.10), which compDB¥ (¢)
using enhanced overrun, we can see thatDBi (¢) is changed when =
a x Psfors =1,..,m wherem is the number of subsystems amis an inte-
ger number such that> 0. While DBFZ(¢) is changed wheth= a x P; — H,
for s = 1,..,m. Note thatloads,s will be evaluated at times when the demand
bound function changes, so it is not possible to decide ifgienhanced over-
run will require lesdoad,,s compared with basic overrun. However, in some
special cases depending on the parameters of each subsystaran decide
which of the two overrun mechanisms that will produce loteer,,s. For a
subsystents, we have two cases:

1. IfQ2/Ps < Q% /(Ps—H,), then thdoads,s using enhanced overrun will
be greater than or equal to theds,s with basic overrun. The reason for
this is thatmax (DBFS (tba)/tha) < max(DBF:(tep)/ten) Wherety, =
a x Py is the time whemBF(t) is changed, antlL,, = a x Ps — H, is
the time wherDBFz(¢) is changed.

2. Otherwise, it will depend on the parameters of the othbsgstems to
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decide which of the two overrun mechanisms that will be béttéerms
of loadsys.

We will explain the previous two cases by the following thexamples:

Example 1: For the first case(?/Ps < Q%/(Ps — H,)), suppose that a
systemS consists of two subsystentsy with parameters?, = 50,QF =
10,Q; = 10, H; = 4 and S, with parameterd, = 150,Q35 = 15,Q% =
14.9, H, = 8. Then using enhanced overrl#iads,s = 0,478 and using basic
overrunloads,s = 0, 44. The basic overrun is better than the enhanced overrun
by about3.8%.

Example 2: For the second cas€)f/Ps > Q*/(Ps, — Hy)), suppose that

a systemS consists of two subsystent§ with parameters?, = 50,Q% =
10,Q7 = 9,H; = 4 and Sy with parameterd? = 150,Q5 = 15,Q3% =
12, H, = 8. Then using enhanced overritnads,s = 0,456 and using basic
overrunloads,s = 0, 44. The basic overrun is better than the enhanced overrun
by aboutl.2%.

Example 3: For the second cas€(/Ps > Q%/(Ps — Hy)), suppose that

a systemS consists of two subsystents with parameters?, = 20,Q3 =
5,Q7 = 4,H; = 2 and Sy with parameters? = 150,Q5 = 10,Q5 =
9, H, = 2. Then using enhanced overrisads,s = 0,285 and using basic
overrunloadsys = 0,3. The enhanced overrun is better than the basic overrun
by aboutl1.5%.

9.7 Computing resource holding time

In this section we explain how to compute the resource hgltimer; ;. Us-

ing the periodic virtual processor model, each subsysiemeceives CPU re-
sources with allocation timé, every periodP,. During @, the CPU alloca-

tion is 100 % of the CPU capacity (see Figure 9.2 where theeslofhe supply
curve during@ is one). The mechanism presented in Section 9.5 guarantees
that locking and releasing a critical section of a globatpred resourcé;

will happen within the allocated CPU resoui@e + §. Thenh; ; will include

the execution time of the task that locksR; inside the critical section as well

as the interference from all tasks within the same subsy#iatrcan preempt
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the execution inside the critical section. The worst case&do happens when
all tasks that can preempt the execution of the criticalieeatill be released
just after taskr; has entered the critical section of resoufte Then, theh; ;

is computed [19] usingV; (¢) as follows:

Wilt) = oy + 3 (mm([TiJ LD%kD’“J +1)) Ch, (9.14)

TrEU

wherecz; = max{c; ;} is the maximum execution time of taskinside the
critical section of the resourcB; andU is the set of tasks such that =
{Tk|7l'k > TCj}.

The resource holding timi; ; is the smallest positive timg such that

W, () = t. (9.15)

Note that we have not counted the preemption inside thecakisiection
from other subsystems when calculating the resource hplifime. However,
we are taking the interference from higher preemption Isuélsystems into
account in the global schedulability analysis. Looking gt 8.4),h;; may
act as a blocking to other subsystems. Moreover, it is als@#tra capacity
required to prevent budget expiry inside critical sectiévhenh; ; is consid-
ered as a blocking time for other subsystems, the effectteffarence from
higher preemption level subsystems inside the criticai@eavill be included
in the global schedulability of the blocked subsystem (enghmmation part of
Eq. (9.4)). Wherh; ; is used to evaluate the overrun, interference from other
subsystems inside the critical section will not be impartaa the only impor-
tant part here is that the locked resource should be reldafede the end of
the period.

Eqg. (9.14) can be simplified to evaludtg; as shown below:

hji=cxj+ Y Ci (9.16)
TLeU
The difference between Eq. (9.16) and Eq. (9.14) is that in(£44) we
assume that all tasks that can preempt inside the criticsilosecan execute
only once (we remove the min function from the summation of @qL4)).
The reason for why it is safe to assume only one executionalf peeempting
task inside the critical section is given in the followingrima, showing that
if a task executes more than one time inside the critical@®dhe subsystem
will become unschedulable.
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Lemma 5. For a subsystem that uses an overrun mechanism to arbitate a
cess to global shared resource under the periodic virtuatpssor model, each
task that is allowed to preempt the execution of anther tastently inside the
critical section of a globally shared resource can, in therst@ase, only exe-
cute (cause interference) once.

Proof. We prove this lemma by considering two cases:

(1) Ps < T,, (whereT,,, = min(T;) for all i = 1,..n), if the task having
periodT,, executes 2 or more times inside the critical section, thiamaehat
the resource will be locked during this period, i%;; > T, thenh;; > Pg,
which in turn means that the CPU utilization required by thlesystents will
beUs, = (Qs + hj;)/Ps > 1.

(2) If P; > T, , sbfr(¢) should provide at leasf,, at timet = T,
to ensure the schedulability test in Eq. (9.3). Note #taty-(¢) = 0 during
t €[0,2Ps — 2Q4] s0,2Ps — 2Qs < T,, which mean®); > P — T;,,/2.

If the task that has peridfl,, execute 2 times inside the critical section then
hj; > Tp. HenceQs+h;; > Ps+T,,/2whichmeand/, = (Qs+h;;)/p >
1. O

From Lemma (5), we can conclude thatif> T, then the required CPU
utilization U, will be greater than one. This means that, in turn, all tabks t
can preempt the execution of a critical section should doadmum one time
in order to keep the utilization of a subsystem less than diés proves the
correctness of EqQ. (9.16) which is based on the assumptairathtasks can
interfere only once as a worst case while a task is in thecatifection of the
resourceR;. If the value ofh;; becomes greater thanin(7T,,, Ps) then we
can conclude that the subsystem will not be schedulable adbwot have to
continue the calculation towards finding a exact valug gf

9.8 Summary

In this paper we have considered a new overrun mechanisnhidoarchi-
cal scheduling frameworks, that can be used in the domaimpenh @nviron-
ments [3]. The main contributions of this paper are twof¢ld: we have pre-
sented analysis of when one overrun mechanism is betterthieaother, and
(2) we have presented how to calculate resource holdingstiminen using the
periodic virtual processor model.

The results indicate that in the general case it is not trisiavaluate which
overrun method that is better than the other, as their impatite CPU utiliza-
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tion is highly dependent on global system parameters sushtas/stem peri-
ods and budgets. However, for open systems, enhanced pusrgenerally
better than basic overrun, as it moves the effect of ovemam the local to the
global schedulability analysis.

Future work includes the development of local and globakddiebility
analysis for Fixed Priority Scheduling (FPS), as the curresults consider
Earliest Deadline First (EDF). Another interesting isssiéoi compare the en-
hanced overrun mechanism with other synchronization nméshes such as
BWI [24], BROE server [22] and SIRAP [21].
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Abstract

This paper presents algorithms that (1) facilitate sysitesependent syn-
thesis of timing-interfaces for subsystems and (2) sydtamlselection of in-
terfaces to minimize CPU load. The results presented areagd for hierar-
chical fixed-priority scheduling of subsystems that mayshagical recourses
(i.e., semaphores). We show that the use of shared resaestéts in a trade-
off problem, where resource locking times can be traded fold @llocation,
complicating the problem of finding the optimal interfacafiguration subject
to scheduability.

This paper presents a methodology where such a tradeoff eafféc-
tively explored. It first synthesizes a bounded set of imiegfcandidates for
each subsystem, independently of the final system, suchihtbatet contains
the interface that minimizes system load for any given sgsfehen, integrat-
ing subsystems into a system, it finds the optimal selectionterfaces. Our
algorithms have linear complexity to the number of taskslived. Thus, our
approach is also suitable for adaptable and reconfigurgblerss.
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10.1 Introduction

Hierarchical scheduling has emerged as a promising vefoictmplifying the
development of complex real-time software systems. Hofiaal scheduling
frameworks (HSFs) provide an effective mechanism for aghietemporal
partitioning, making it easier to enforce the principle eparation of concerns
in the design and analysis of real-time systems. HSFs allevaichical CPU
sharing among subsystems (applications). The whole CPWaikahle and
shared among subsystems. Subsequently, each subsystiecédeal CPU-
share is divided among its internal tasks by the usage oftamial scheduler.

Substantial studies [1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 12 leen intro-
duced for the schedulability analysis of HSFs, where subsysare indepen-
dent. For dependent subsystems, synchronization pretgbé] 15, 16] have
been proposed for arbitrating accesses to logical ressiee, semaphore)
across subsystems in HSFs. There have been a few studidg drithesys-
tem load minimizatioproblem, which finds the minimum collective CPU re-
quirement (i.e., system load) necessary to guarantee tezlskability of an
entire HSF. However, this problem has not been addressadjtaito account
global (logical) resource sharing (across subsystems).

The difficulty of finding the minimum system load substaryigkows with
the presence of global sharing of logical resources, in @igspn to without it.
Without it, it is a straightforward bottom-up process; vidual subsystems de-
velop theirtiming-interfaceg11, 17], describing their minimum CPU require-
ments needed to ensure schedulability, and individualstbs interfaces can
easily be combined to determine the minimum system loadgihatantees the
schedulability of an entire HSF. However, global resouhagisg produces in-
terference among subsystems, complicating the processdifid subsystem
interfaces that impose the minimum CPU requirements irgs¥stem load.

An inherent feature with global resource sharing is thatlzsgstem can
be blocked in accessing a global shared resource, if theardther subsys-
tem locking the resource at the moment. Such blocking inposere CPU
demands, resulting in an increase of the system load. Téreregubsystems
can reduce their resource locking time, for example, ugiegriechanism pre-
sented in [18], in order to potentially reduce the blockifigiher subsystems
towards decrease of the system load. However, in doing sgyregent in
this paper an unexpected consequence of reducing resmaldad time; it
can increase the CPU demands of the subsystem itself (ptkénresource),
subsequently increasing the system load. Hence, this pajpeduces a po-
tentially contradicting effect of reducing resource lagakitime on the system
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load, and it entails methods that can effectively explohsutradeoff.

In this paper, we consider a two-step approach towards tsersyload
minimization problem. In the first step, each subsystem geas its own in-
terface candidates in isolation, investigating the irsnsystem aspect of the
tradeoff. In the second step, putting all subsystems tegeth system-level,
interfaces of all subsystems are selected from their owdidates to find the
minimum resulting system load, examining the inter-sutesysaspect of the
tradeoff. For the first step, we present an algorithm thatvdsra bounded
number of interface candidates for each subsystem suclit tkeguaranteed
to carry an interface candidate that constitutes the minminsystem load no
matter which other subsystems it will be later integratethwilhe first step
allows the interface candidates of subsystems to be dexglmplependently,
making it also suitable for open environments [3], reqgjnto knowledge of
other subsystems. For the second step, we present anagbeitrah that de-
termines optimal interface selection to find the minimumteysload. The
complexity of both algorithms is very lowJ(n)), making the approach good
for execution during run-time, e.g., suitable for adapgeadntd reconfigurable
systems.

In the remainder of the paper, Section 10.2 presents relatek, fol-
lowed by system model and background in Section 10.3. Setfol presents
schedulability analysis in our HSF, followed by problenmfardation and solu-
tion outline in Section 10.5. Section 10.6 addresses thestap of the two-step
approach; efficiently generating interface candidates Sattion 10.7 resolves
the second step finding an optimal solution out of the cand&d&ection 10.8
discuss the use of another overrun mechanism which calledwvwith pay-
back mechanism and finally, Section 10.9 concludes.

10.2 Related work

This section presents related work in the areas of HSFs aasvsynchroniza-
tion protocols.

Hierarchical scheduling. The HSF for real-time systems, originating in
open systems [3] in the late 1990’s, has been receiving anasing research
attention. Since Deng and Liu [3] introduced a two-level H&-schedula-
bility has been analyzed under fixed-priority global scHiedu[7] and under
Earliest Deadline First (EDF) based global scheduling {8k et al.[10] pro-
posed the bounded-delay virtual processor model to achielean separation
in a multi-level HSF, and schedulability analysis techmig (6, 12] have been
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introduced for this resource model. In addition, Shin and [, 17] intro-
duced the periodic virtual processor model (to charaadhiz periodic CPU
allocation behaviour), and many studies have been propmssedhedulability
analysis with this model under fixed-priority scheduling ¢ 2] and under
EDF scheduling [11, 13]. More recently, Easwasdral. [4] introduced Ex-
plicit Deadline Periodic (EDP) virtual processor model.vdwer, a common
assumption shared by all above studies is that tasks arpendent.

Synchronization. Many synchronization protocols have been introduced
for arbitrating accesses to shared logical resources ssidgethe priority in-
version problem, including Priority Inheritance Proto¢BIP) [19], Priority
Ceiling Protocol (PCP) [20], and Stack Resource Policy (SRP]. There
have been studies on supporting resource sharing withisystems [1, 7] in
HSFs. For supporting global resource sharing across stémsgstwo protocols
have been proposed for periodic virtual processor modepéoiodic server)
based HSFs on the basis of an overrun mechanism [15] andsgifip!], and
another protocol [16] for bounded-delay virtual processodel based HSFs.
Bertognaet al. [18] addressed the problem of minimizing the resource hold-
ing time under SRP. In summary, compared to the work in thigepanone of
the above approaches have addressed the tradeoff betwedorpsubsys-
tems can lock shared resources and the resulting CPU retgriteequired in
guaranteeing schedulability.

10.3 System model and background

A Hierarchical Scheduling Framework (HSF) is introducedstmport CPU

resource sharing among applications (subsystems) unffieredit scheduling
services. In this paper, we are considering a two-level M®iEre the system-
level global scheduler allocates CPU resources to submgstand the

subsystem-level local schedulers subsequently sched®Uer€sources to their
internal tasks. This framework also allows logical reseusharing between
tasks in a mutually exclusive manner.

10.3.1 Virtual processor models

The notion of real-time virtual processor model was firstadticed by Mok
et al.[10] to characterize the CPU allocations that a parent nodeiges to a
child node in a HSF. ThEPU supplyrefers to the amounts of CPU allocations
that a virtual processor can provide. Shin and Lee [11] pseddhe periodic
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processor moddl'(P, Q) to specify periodic CPU allocations, whefeis a
period P > 0) and (@ is a periodic allocation time0( < @ < P). The
supply bound functiosbf(¢) of I'( P, Q) was given in [11] that computes the
minimum possible CPU supply for every interval lengids follows:

t—(k+1)(P—-Q) ifte|[(k+1)P—2Q,
sbfp(t) = (k+1)P—@QJ,
(k—1)Q otherwise

wherek = max ( [(t - (P - Q))/P].1).

10.3.2 System model

We consider a deadline-constrained sporadic task me@El, C;, D;, {c; ;})
whereT; is a minimum separation time between its successive jobss a
worst-case execution time requiremeht, is a relative deadlinef; < D; <
T;), and each element ; in {c; ;} is acritical section execution timéhat
represents a worst-case execution time requirement watliitical section of
a global shared resourde;. We assume that all tasks, that belong to same
subsystem, are assigned unique static priorities and atedsaccording to
their priorities in the order of increasing priority. Withdoss of generality, we
assume that the priority of a task is equal to the task ID nurafier sorting,
and the greater a task ID number is, the higher its priorit. & HP(¢) returns
the set of tasks with higher priorities than thatof

A subsystent; € S, whereS is the set representing the whole system of
subsystems, is characterized{#y, RC,), whereZ, is a task set an®C is a
set of internal resource ceilings of the global shared kigiesources. We will
explain the resource ceilings in Section 10.3.3. We asshatetch subsystem
has a unique static priority and subsystems are sorted imca@asing order of
priority, as is the case with tasks. We also assume that edxdystemS, has
a local Fixed-Priority Scheduler (FPS) and the system hdslzabFPS. Let
HPS(s) returns the set of subsystems with higher priority than ofi&t, .

Let us define @iming-interfaceof a subsysten$; such that it specifies the
collective real-time requirements 8f. The subsystem interface is defined as
(Ps,Qs, Xs), whereP; is a period,( is abudgetthat represents an execu-
tion time requirement, and’s is a maximum critical section execution time
of all global logical resources accessedfy We note thatX is similar to
the concept ofesource holding time (RHTih [18], however, developed for
a different virtual-processor model. RHT in [18] is devedddfor a dedicated
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processor modélor a fractional processor model [10]), where subsystems do
not preempt each other. However, our HSF is based on a tieredi{par-
titioned) processor model [11], where subsystem-leve¢mgtions can take
place. ThereforeX, does not represent RHT in our HSMut indicates the
worst-case execution time requirement thatdemands inside a critical sec-
tion. We will explain later how to derive the values Bf, Q, and X, for a
given subsystensy.

10.3.3 Stack Resource Policy (SRP)

In this paper, we consider the SRP protocol [21] for arhitigaaccesses to
shared logical resources. Considering that the protocsldeseloped without
taking hierarchical scheduling into account, we genegatizterminologies for
hierarchical scheduling.

¢ Resource ceiling Each global shared resourég is associated with two
types of resource ceilings; anternal resource ceilings(c;) for local
scheduling and anexternal resource ceiling RX;) for global schedul-
ing. They are defined asrc; = max{i|r, € 7, accesse®;} and
RX, = max{s|S, accesseR; }.

e System/subsystem ceilingThe system/subsystem ceilings are dynamic pa-
rameters that change during execution. The system/sasycstiling is equal
to the highest external/internal resource ceiling of aentty locked resource
in the system/subsystem.

Under SRP, a task; can preempt the currently executing task(even
inside a critical section) within the same subsystem, drtlya priority of 7, is
greater than its corresponding subsystem ceiling. The saas®ning can be
made for subsystems from a global scheduling point of view.

Given a subsysterfi,, let us consider how to derive the value of its crit-
ical section execution timeX). Basically, X, represents a worst-case CPU
demand that internal tasks 6t may collectively request inside any critical
section. Note that any task accessing a resourde; can be preempted by
tasks with priority higher than the internal ceiling Bf. From the viewpoint
of S, letw; denote the maximum collective CPU demand necessary to com-
plete an access of any internal taskp Then,w; can be computed through
iterative process as follows (similarly to [18]):

1A processor is said to beedicatedto a subsystem, if the subsystem exclusively utilizes the
processor with no other subsystems.

2As the computation of RHT is not main focus of this paper, vier® our technical report [22]
for its computation in our HSF.
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n (m)
w
W§m+1) = crj + E ’— %k -| . Ck, (101)
k=rc;j+1

wherecz; = max{c; ; } for all tasksr; accessing resourde; andn is the num-
ber of tasks within the subsystem. The recurrence relaii@mngy Eq. (10.1)
starts withw” = cz; and ends whem!" " = w{™ orwhenw{"*" > D,
whereD; is the smallest deadline of tasksaccessing?;. If w§m+1) > Dy,
no taskr; is guaranteed to be schedulable, and subsequently neitigisub-
systems;.

Then, X, = max{w;| forall R; € R,}, whereR, is a set of global shared
resources accessed By.

10.4 Resource sharing in the HSF

10.4.1 Overrun mechanism

This section explains overrun mechanisms that can be usedrtdle bud-
get expiry during a critical section in a HSF. Consider a gladzheduler that
schedules subsystems according to their periodic intesfde, Q, X;). The
subsystem budgé); is said toexpireat the point when one or more internal (to
the subsystem) tasks have executed a totg) ofime units within the subsys-
tem periodP;. Once the budget is expired, no new tasks within the same sub-
system can initiate execution until the subsystem’s buidgeiplenished. This
replenishment takes place in the beginning of each submysé&iod, where
the budget is replenished to a value(pf.

Budget expiration can cause a problem, if it happens whikshk1t; of a
subsystens is executing within the critical section of a global sharesturce
R;. If another tasky,, belonging to another subsystem, is waiting for the same
resourceR;, this task must wait untib, is replenished se; can continue to
execute and finally release the lock on resoutgeThis waiting time exposed
to i, can be potentially very long, causing to miss its deadline.

In this paper, we consider a mechanism based on overruntjabjmorks
as follows; when the budget of the subsystémexpires andS; has a task;
that is still locking a global shared resource, the tgstontinues its execution
until it releases the locked resource. The extra time thakeeds to execute
after the budget of; expires is denoted asverrun timef,. The maximum
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0, occurs whenr; locks a resource such théf requests a maximum critical
section execution timeX;) just before its budgety;) expires.

10.4.2 Schedulability analysis

In this paper, we use HSRP [15] for resource synchronizatiéiSF. Schedu-
lability analysis under global and local FPS with the ovarraechanism is
presented in [15]. However, the presented approach is riatodel for open
environments because the schedulability analysis of amriat task within a
subsystem requires information of all the other subsystétaace, this section
presents the schedulability analysis of local and glob& EBing subsystem
interfaces, which is suitable for open environments.

Local schedulability analysis. Let rbfrp (i, t) denote the request bound
function of a task; under FPS [23], i.e.,

rbrp(ist) = C+ 3 {Tik]ck (10.2)

T}, EHP(4)

The local schedulability analysis under FPS can be theryeaxdiended
from the results of [21, 11] as follows:

V1,0 < dt < D; rbep(i, t) +b; < Sbf(t), (103)

whereb; is the maximunblocking(i.e., extra CPU demand) imposed to a task
7, whenr; is blocked by lower priority tasks that are accessing resegiwith
ceiling greater than or equal to the priority of andsbf(t) is the supply
bound function. Note that can be selected within a finite set of scheduling
points [24].

Subsystem interface We now explain how to derive the budggt of the
subsystem interface. Giveéhy, RC5, andP, letcalculateBudget(Ss, Ps, RC5)
denote a function that calculates the smallest subsystelgetbihat satisfies
Eq. (10.3) depending on the local scheduletSef Such a function is similar
to the one in [11]. Theny; = calculateBudget(Ss, Ps, RCY).

Global schedulability analysis.Under global FPS scheduling, we present
the subsystem load bound function as follows (on the basisohilar reason-
ing of Eg. (10.2)):

LBF,(t) = RBF(t) + Bs , where (10.4)
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REF.(1) = (Qu +0.(0) + Y [5](@u+Ou(0) (10.5)

S) EHPS(s)

where O (t) = Xy andO,(t) = X, fort > 0. Let B, denote the maxi-
mum blocking (i.e., extra CPU demand) imposed to a subsyStemvhen it is
blocked by lower-priority subsystems,

B, = max{X;| S; € LPS(S,)}, (10.6)

whereLPS(S;) = {S;|j < s}.
A global schedulability condition under FPS is then

VSs,0 < 3t < Py LBF,(¢) < t (10.7)

System load.As a quantitative measure to represent the minimum amount
of processor allocations necessary to guarantee the delbdidy of a subsys-
tem S, let us defingorocessor request bourfd ;) as

. LBF4(t)
= _— < . .
g OgtngnPs{ ” | LBF,(t) < t} (10.8)
In addition, let us define thgystem loadbadsys of the system under global FPS

as follows:
loadsys = vr&abe%{as}. (10.9)

Note thato, is the smallest fraction of the CPU resources that is reduire
to schedule a subsyste$fy (satisfying Eq. (10.7)) assuming that the global re-
source supply function iet. For example, consider a systefrthat consists
of two subsystems$; that has interfacel(), 1, 0.5) and.S, (48, 1, 1). To guar-
antee the schedulability ¢f; and.S; thena; = 0.25 andas = 0.198. Then
loadsys = a1 = 0.25, which can schedule boty, andS,.

10.5 Problem formulation and solution outline

In this paper, we aim at maintaining the system load as lowoasible while
satisfying the real-time requirements of all subsystentisérpresence of global
resource sharing. To achieve this, we address the probldevefoping the in-
terfaces P, Qs, X ) of all subsystems;. In particular, assuming is given,
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we focus on determin@, and.X, such that a resulting system loddads,s) is
minimized subject to the schedulability of all subsysteths. suggested from
Egs. (10.4) and (10.9) thédads,s can be minimized by reducin@, and X
for all subsystent.

A recent study [18] introduced a method to redu€g According to
Eqg. (10.1), the value oX, can decrease, when it has less interference (i.e.,
the summation part of Eq. (10.1)) from the taskswith priorities greater than
the ceiling of a resourc®&; (i.e.,k > rc;). Such interference can be reduced
by allowing fewer tasks to preempt inside the critical satwf R;. As pro-
posed by [18], the ceiling of; can be increased to its greatest possible value
in order to allow no preemption inside the critical sectidiis way, X can
be minimized.

In this paper, we show that achieving the minimufn of all subsystems
S does not simply produce the minimum system load, since nimnia X
may end up with a largep,. To explain why this happens, let us assume that
for a resourceR;, its ceilingrc; is ¢ — 1. In this case, a task; can preempt
any job that is executing inside the critical sectionf Now, supposec; is
increased ta. Then,7; is no longer able to preempt any job that is accessing
R;, and it needs to be blocked. Then, the blockibg ¢f 7; can potentially
increase, and, according to Eq. (10.3), this may requireer@&U supply (i.e.,
Q). Figure 10.1 illustrates a tradeoff between decreadipgnd increasing
Qs with an example subsystesi, where S, includes 7 internal tasks and
accesses 3 global resources. In the figure, each point egyises possible pair
of (X, Qs), and the line shows the tradeoff.

In addition to such a tradeoff, there is another factor tloaglicates the
system load minimization problem further. It is not strafghward to deter-
mine Qs and X, of S, such that they contribute tead,,s in a minimal way.
According to Eq. (10.6), X can serve as the blocking of its higher-priority
subsystemS,, depending on the value of; of other lower-priority subsys-
temsS;. Hence, it is impossible to determidé, and (@), in an optimal way,
without knowledge of other subsystems’ interfaces.

We consider a two-step approach to the system load miniiizatrob-
lem. In the first step, each subsystem generates a set darderandidates
independently (with no information about other subsysyemich is suit-
able for subsystems to be developed in open environments.sé&tond step
is performed when subsystems are integrated to form a sysfamring this
integration of subsystems, being aware of all interfacalichates of all sub-
systems, only one out of all interface candidates for eabhysiem is selected
(that will be used by the system-level scheduler later onhghbat a resulting
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Figure 10.1: Tradeoff between, and X .

system load can be minimized.

10.6 Interface candidate generation

We define theinterface candidate generatigoroblem as follows. Given a
subsystent; and a set of global resources, the problem is to generate a set
of interface candidateB”; such that there must exist an element/ 6f, that
constitutes an optimal solution to the system load problem.

SupposeS; containg: internal tasks that accessglobal shared resources.
Note that as explained in Section 10.5, each global resouagehave up to
different internal resource ceilings, and one interfaceditdate can be gener-
ated from each combination @f resource ceilings. A brute-force solution to
the interface generation problem is then to generate afliblesn™ interface
candidates. However, not all of theseé" candidates have the potential to con-
stitute the optimal solution; those that require more CPbhaled and impose
greater blocking on other subsystems can be consideredlasate candidates.

Hence, we present the ICG (Interface Candidate Generaigo)ithm that
is not only computationally efficient, but also produces armed number of
interface candidates. We first provide some notions andguti@s on which
our algorithm is based. We then explain our algorithm anditate it. Here-
inafter, we assume thd, is given by the system designer and is fixed during
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the whole process of generating a set of interface candidaleerefore an
interface candidate can be denoted@s ;, X ;) wherej indicates interface
candidate index.

Definition 1. An interface candidat¢Q », X, i) is said to beredundanif
there existQs,i, Xs,;) such thatX ; < X, andQ,,; < Qs x, Wherek < i
(denoted agQs,i, Xs,i) < (Qs,k, Xsx))- In addition, (Qs;, X; ;) is said to
benon-redundant it is not redundant.

Suppose(@’, X!) < (Q%,X}). Then, the former candidate will never
yield a largerRBF,(¢) than the latter does. This immediately follows from
Egs. (10.4) and (10.5). That is, a subsyst&nwill never impose more CPU
requirement to the system load witty’,, X?) than with (Q%, X¥). The fol-
lowing lemma records this property.

Lemma 6. If (Q,, X!) < (Q%, X¥), (Q%, X.) will never contribute more to
loadsys than(Q%, X) does.

Proof. Suppose an interface candida€g;(,, X, ) is redundant. By defini-
tion, there exists another candidatg,(,, X ;) such that

L4 Xs,b < Xs,a, andQs,b < Qs,a- So (Qs,b + Xs,b) <= (Qs,a + Xs,a,)-
Using a redundant interface candidate will never decreBBg(t) (see
Eg. (10.5)) and the blocking,, respectively, compared to a non
redundant candidate. It means that using a redundant cpdien in-
creased.BF(t) and therebyoad, (see Eq. (10.8)). That is, a redundant
candidate only has a potential to incre&ssl,, (see Eq. (10.9)).

¢ both interfaces are equivalent then system load for botheisame.
O

Lemma 6 suggests that redundant candidates be excludedfsotation,
and it reduces the number of interface candidates signifjicahlowever, a
brute-force approach to reduce redundant candidatedlis@tiputationally
intractable, since the complexity of an exhaustive seaclery highO(m™).

We now presentimportant properties that serve as the hmaghssf development
of a computationally efficient algorithm.

In order to discuss some subtle properties in detail, letuathér refine
some of our notations with additional parameters. Firtitly,maximum block-
ing (b;) imposed to a task; can vary depending on which resourgaccesses.
Hence, leth; ; denote the maximum blocking that a task with priority higher



136 Paper D

thani can experience in accessing a resoukgei.e., b, ; = max{cy ;} for
all 7, < 7;. Secondly, the maximum CPU demand;) imposed to any task
accessing a resourég; can also be different depending on the internal ceiling
(rey) of R;. So letw; ,, particularly represent; whenrc; = k.

The following two lemmas show the properties of redundaterfaces,
suggesting insights for how to effectively exclude them.

Lemma 7. LetR! denote a set of resources whose resource ceilings &ap-
pose a resourc&?,, € R’ yields the greatest blocking among all the elements
of R?. Then, it is the resourc®,, that requires the greatest CPU demand to
complete any task’s execution inside a critical section agnall elements of
R, i.e.,

(e = g, 00)) = (v = g b)) 1029

Proof. The w;; depends on two parameters (see Eq. (104)); which is
equal to b, ;) sincerc; = 4, and the interference from tasks with higher pri-
ority (the summation part denoted Bs Note that! in invariant to difference
resources?; € R', since it considers only the tasks with priority greatentha
in the summation. Then, itis clear tha} ; depends only ob; ;, and it follows
that the resource with the maximuyy;, will be consequently associated with
the maximumuw; ;. O

Using Lemma 7, the following lemma particularly shows how ves ef-
fectively exclude redundant candidates.

Lemma 8. Consider a resource?, of a ceilingk (rc, = k) and another
resourceR, of a ceilingi (rc, = ©), wherek < i. Supposéy, < bk
andrcy < rc,. Then, an interface candidate generated by having thenggili
rcy = k +1,..,4is redundant. Hence it is possible to increase the ceiling of
R, to that of R, directly (i.e.,rc, = rc, = 1).

Proof. Let (Q’, X') denote an interface candidate generated whgn= &
andrc, = i, wherek < i. Let (Q*, X™*) denote another interface candidate
generated whenc, = rc, = i. We wish to show thatQ*, X*) < (Q’, X’),
ie,Q* <@ andX* < X'.

Givenb; , < b; ., it follows from Lemma 7 thatv, ; < w, ;. This means
that even though the ceiling @, increases to, it does not change the maxi-
mum blocking §;) of tasksr;. Therefore, it does not change the request bound
function either. As aresulQ* = Q’.
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We wish to show thaf{* < X’. When the ceiling ofR, increases ta
from £, its resultingw,,; becomes smaller thanl’j because there will be less
interference from higher priority tasks, (i.eu, ; < w, ). In fact, this is the
only change that occurs to the subsystem critical sectiectdion time of all
shared resources whean, increases. Hence, the maximum subsystem critical
section execution tim& can remain the same (i, , < X’) or decrease (if
wy 1, = X') afterre, increases. Thatisy* < X'. O

- calculateBudget(Ss, Ps, RC) returns the smallest subsy-
stem budget that satisfies Eq. (10.2).

- increaseCeilingX*(RC5) returns whether or not the ceil-
ing of the resource associated witi can be increased
by one. If so, it increases the ceiling of the selected
resource as well as the ceiling of all resources that have
the same ceiling as the selected resource (Lemma 8).

- Interface is an array of interface candidates; each caitelid
is (Q, X, RC).

- addInterface(Interface, @*, X*, RC;) adds new
interface in the interface list array.

- removeRedundant(Interface) removes all redundant
interfaces from the interface list.

RC,s ={rci,- - ,rem } I mej=initial ceiling of R; using SRP
num =0
do

Q* = calculateBudget(Ss, Ps, RCS)
X" = maX{wl,r(zu t ;wm,rcm)}
addInterface(Interface, Q*, X*, RC5)
num=removeRedundant(Interface)
whi | e (increaseCeilingX*(RCy))
r et ur n (Interface, num)

eoNORrONR

Figure 10.2: The ICG algorithm.



T C; T; Rj Cij T C; T; Rj Cij
T1 8 750 | Ra 4 T2 50 | 650 | R 5
73 | 10 | 600 - 0 74 | 35 | 500 | Rp 10
Ts5 1 160 - 0 T6 2 150 - 0

Table 10.1: Example task set parameters

10.6.1 ICG algorithm

Description. Using Lemmas 6, 7, and 8, we can reduce the complexity of
a search algorithm. The algorithm shown in Figure 10.2 ibam these
lemmas. In the beginning (at line 1), each resource ceilifyds set to its initial
ceiling value according to SRP (without applying the tecjueiin [18]). The
algorithm then generates an interface candid@te X *) based on the current
resource ceilings (line 4 and 5). This new interface cartdigmadded into a
list (line 6). Such addition can make some candidate reduratacording to
Lemma 1, and those redundant candidates are removed (lihetZ3* denote
the resource that determin&s in line 5, andv* denote the value of the ceiling
(rc*) of R* atthat moment. In line 8, the algorithm 1) increases thengeil*
by one 2) checks the conditions given in Lemma 8 to furthereaserc* if
possible, and 3) increases the ceiling of all other resauita have the same
ceiling asv* + 1, to the current value afc*. This way, we can further reduce
redundant interface candidates.

Example. We illustrate the ICG algorithm with the following example.
Consider a subsystes), that has six tasks as shown in Table 10.1. The local
scheduler for the subsystefy is Rate-Monotonic (RM) and we choose sub-
system period®; = 125. The algorithm works as shown in Table 10.2. The
results from step 1 aréQs 1 = 51, X1 = 102), at step 2(Qs.1, Xs1) >
(Qs.2, Xs.2). S0(Qs.1, X4.1) is redundant (see Definition 1). That is, this in-
terface can be removed accordingto Lemma 6. For the sam&ges », X o)
can be removed after step 3. At step 3, the is increased directly td ac-
cording to Lemma 8 sincec; > rcy andby ; > b 2. At both steps 4 and 5,
the ceilingre; is increased by one since; ; = w; but we increase the ceiling
of rcy according to Lemma 8. The algorithm selects the interfacelidates
from steps3, 4 and5.

Correctness. The following lemma proves the correctness of the ICG al-
gorithm.

Lemma 9. LetZC denote a set of up ta interface candidates that are gen-
erated by the ICG algorithm of Figure 10.2. There exists no-redundant
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Step | rca1 rcg | wi w2 Qs,i Xsi
1 4 1 13 | 102 51 102
2 4 2 13 52 51 52
3 4 4 13 7 51 13
4 5 5 12 6 52.5 12
5 6 6 10 4 56 10

Table 10.2: Example algorithm

interface candidatéq); ,, X ) such thatQ ,, X, ,) ¢ ZC.

Proof. Assume tha{@,,,, X, ) is a non-redundant interface candidate and
that X, , = w4, i.€., the subsystem critical section execution timepfis

the maximum among all global shared resources whgn= i. Then we shall
prove that

1. There is noR; such thatb; ; > b; for all rc; > 4. Otherwise we
could change the ceilingc,, = rc; according to Lemma 8, and by this
Wk,3 7& Xs,y-

2. There is naR; such that, ; > b, for all rc; < i,¢ < i. Otherwise
wj ¢ > wi,; because when we compute the andw;, the interference
from higher priority tasks as well as blocking is higher foy, and then
wk,; # Xs,y. If we increase the ceilinge; = 4, it will not give other
non-redundant interface candidates (see Lemma 7 and 8).

We can conclude that there is only one resoulgethat may generate

a non-redundant interface at resource ceilingnd this is the one that im-
poses the highest blocking at that level. The initial cgilof Ry is v, where

€ [1,4]. From Lemma 7); ;. (wheref € [v,1]) is the maximum blocking
at resource ceilinge, € [v,i]. Since the presented algorithm increases the
ceiling of the global resource that generate the maximunsysibm critical
section execution time, it will increase the ceiling®f whenrc; = v up to
1. Hence, we can guarantee that the algorithm will includdrtexface when
Xs,y = Wk,i- O

The proof of the previous property also shows that the coxitylef the
proposed algorithm i©(n) since we have tasks (which equals to the number
of possible resource ceilings) and there is either O or 1nediomndant interface
for each resource ceiling level, and the algorithm will otiverse these non-
redundant interfaces. Moreover, the proposed algoritheretty produce at
mostn interface candidates.
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Post-processing. The ICG algorithm generates non-redundant interface

candidates on the basis of Lemma 6. The notion of redundantlidate is

so general that the ICG algorithm can be applicable to manghepniza-
tion protocols. In some cases, however, a set of interfandidates can be
further refined, for instance, when the overrun mechanisserileed in Sec-
tion 10.4.1 is used. Consider two candidai@4, X’) and(Q*, X*) such that
Q)+ X!, <=Q%+ X! andX] <= X¥. Then,(QY, X.) will never produce
not only a largeRBF(¢) for the subsystenS; itself, but also a larger blocking
B, for other subsystems§;, than(Q%, X) does. This immediately follows
from Egs. (10.4)-(10.6). Then, the following lemma dirgdtllows:

Lemma 10. Consider two candidate®)’, X!) and(Q*, X) such thai)’, +
X! <=Qf+ Xrand X, <= X¥. Then,(Q}, X.) will never impose more
CPU requirement tdoadsys in any way thar(@}, X ) does.

Proof. Looking at Eq. (10.4), we can decreds¥,(t) to decrease the system
load by decreasing the blocking, and/orRBF,(¢). For the blocking, using
the interface), ;, Xs; may increase the blocking on the higher priority sub-
systems becaus&,; > X, ;. ForRBF,(t), it will be increased if we use
Qs,i, Xs; becaus€Qs,; + Xs,i) > (Qs; + Xs;) see Eq. (10.5). For this
we can conclude that we can remove the interfage;( X ;) since it will not
reduce the system load compared with the other interfaces. O

According to Lemma 10, a set of interface candidates geeeday the
ICG algorithm goes through its post-processing for furteinement, and this
is very useful for the second step of our approach.

10.7 Interface selection

In this section, we consider a problem, called tpgimal interface selection
problem, that selects system configurationonsisting of a set of subsystem
interfaces, one from each subsystem that together minithezeystem load
subject to the schedulability of system. We present the I8®rface Candi-
date Selection) algorithm, an algorithm that finds an optisaéution to this
problem through a finite number of iterative steps.

10.7.1 Description of the ICS algorithm

The ICS algorithm assumes that each set of interface caedif@,, X,) is
sorted in a decreasing order &f;. In other words, each set is sorted in an
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Figure 10.3: Search space for a system consisting of 3 sigmsgs

increasing order of collective demandg,(+ X;) (see Lemma 10). Then, the
first candidate @ 1, X, 1) has the largest critical section execution time but
the smallest collective demands.

The ICS algorithm generates a finite number of system corigurs
through iteration steps. Each configuration is a set of idd&l interface can-
didates of all subsystems. LEF,; denote aconfigurationthat ICS generates
at ani-th iteration step. For notational convenience, we intueda variable
fi to denote an element &F;, i.e.,CF; = {fi,..., fi}. The variablef;
represents the interface candidate index of a subsySjgmmdicating that the
configuration in thé-th step includes@wi , XM;,).

Figure 10.3 shows an example to illustrate the ICS algoritivimere the
system contains 3 subsystems such that subsyStehas 3 interface candi-
dates, and two other subsystesis and Ss have 2 candidates, respectively.
Each node in the graph represents a possible configuratidreach number
in the node corresponds to an interface candidate indexiottier ofSy, Ss,
and.S3. The arrows show the possible transitions between nodethdtera-
tion step, by increasing by 1 for each subsystes), one by one. We describe
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the ICS algorithm with this example.

Initialization. In the beginning, this algorithm generates an initial config
urationCF( such that it consists of the first interface candidates ddiabsys-
tems. In Figure 10.3Fy = {1, 1,1} (see line 2 of Figure 10.4).

Iteration step. The ICS algorithm transits froifi — 1)-th step toi-th step,
increasing only one element &F,_; in value by one. In Figure 10.3, the
arrows with bold lines illustrate the path that ICS can tdker instance, ICS
moves from the initialization stefCE, = {1, 1, 1}) to the first step(F, =
{2,1,1}). Then, the ICS algorithm excludes the two sibling node€ef in
the figure (i.e.{1,2,1} and{1, 1,2}) from the remaining search space; the
algorithm will never visit those nodes from this step on. sthiay, ICS can
efficiently explore the search space. Let us describe howbkaves at each
iteration step more formally.

Firstly, letd; denote the only single element whose value increases by one
betweerCF;_; andCF;, i.e.,

i—1 :
- y 1 if k=4,
fi= { i otherwise (10.11)

In the example shown in Figure 108,= 1.

Let us explain how to determing at ani-th step. We can potentially
increase every elements 6F;_1, and thereby we have at mast candidates
for the value ofy;. Here, we choose one out of at mé@étcandidates such that
a resultingCF; can cause the system load to be minimized.

Let loadsys(2) denote the value dbads,s when a configuratioQF; is used

as asystem interfacé/WVe are now interested in reducing the valuéatls (i —
1). Let s* denote the subsystesy- that has the largegirocessor request
boundamong all subsystems. Thatlisads,s(i—1) = o~ (See Eq. (10.9)). We
can find sucltts« by evaluating th@rocessor request boutsf all subsystems
(in line 5 of Figure 10.4).

By the definition ofs*, we can reduce the value lohd, (i — 1) by reduc-
ing the value ofLBF-(t). There are two potential ways to reduce the value
of LBFs-(t). From the definition of.BF(t) in Eq. (10.4), one is to reduce its
maximum blockingB,- and the other is to reduce the subsystem CPU demands
(RBF,~ (t)). Akey aspect of this algorithm is that it always reducedtioeking
part, but does not reduce the request bound function parintéition behind
is as follows: this algorithm starts from the interface ddatks that have the
smallest demands but the largest subsystem critical seetiecution times,
respectively. Hence, for each interface candidate, treem®iroom to further
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reduce its demand. However, there is a chance to reduce tkiemoma block-
ing B, of Ss«. It can be reduced by decreasing tkig- of a subsystensd/-
thatimposes the largest blocking to the subsystem We definek* in a more
detail.

Let £* denote the subsystesy- that imposes the largest blocking to the
subsystensts-, i.e., By« = Xj« = max{X; | forallX; € LPS(s*)}3, where
LPS(i) is a set of lower-priority subsystems 6f-. We can find suchb-
easily by looking at the subsystem critical section executiimes of all lower-
priority subsystems af'- (in line 6 of Figure 10.4).

When suchSy- is found, it then checks whether thé,- can be further
reduced (in line 7 of Figure 10.4). If so, it is reduced (ireli@), andCF;_;
becomes t€F; (in line 9). Thatisg; = k*.

Iteration termination. The above iteration process terminates when the
blocking Bs, of subsystent;- cannot be reduced further. The algorithm then
finds the smallest value ®$ad,,s out of the values saved during the iteration,
and it returns a set of interfaces corresponding to the sstalblue.

Complexity of the algorithm. During ani-th iteration, the algorithm only
increases the interface candidate index of a subsyStenThen, it can repeat
O(N * m/) iterations, whereV is the number of subsystems and is the
greatest number of interface candidates of a subsystemgatlon

10.7.2 Correctness of the ICS algorithm

In this section, we show that the ICS algorithm produces afsslstem con-
figurations that contains an optimal solution. We first pp¢setations that are
useful to prove the correctness of the algorithm.

¢ AS We consider the entire search space of the optimal intesiaegtion
problem. It contains all possible subsystem interfacesprmimg a system
configuration, and letlS denote it, i.e.,

AS =1Cy x - x IC,,. (10.12)

In the example shown in Figure 10.3, the entire solution saksS) has 12
elements.

We present some notations to denote the properties of thallfe&ithm at
an arbitraryi-th iteration step.

31f more than one lower priority subsystem impose the samemuan blocking onSs*, then
we select the one with lowest priority.
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- IC, is an array of interface candidates of subsysfgem
sorted in a decreasing order &t,.

- icig is an index tal C, of subsystenb.

- 7 is a set of interface§I, }, each of which indicated bigis.

- subsystemWithMaxLoad() returns the subsystef-
that has the greategtocessor request bourainong
all subsystems, i.eloadsys = cvg-.

- maxBlockingSubsystemToSysload(s*) returns a subsystem
Sk~ that produces the greatest blocking to a subsysigm
Note thatS,« determines the system load.

1: forall S;€8

2: iciy = 1; I, = IC,licis]

3. loady=1.0; 7* =7

4: do

5: s* = subsystemWithMaxLoad()

6: k* = maxBlockingSubsystem ToSysload(s*)
7: i f (icig= canincrease by one)

8: iCig= = icig» + 1

9. I~ = ICk* [icik*]

10: computdoadsys according to Eq. (10.9)
11: i f (loadyys < loadg,)

12: load,, = loadsys

13: I* =7

14: el se

15: returnZ* (that determinelad

16: until (true)

Figure 10.4: The ICS algorithm.

° 1/5; In the beginning, the ICS algorithm has the entire searcbesp&S)
to explore. Basically, this algorithm gradually reduceseaaining search
space to explore during iteration. For notation convereemee introduce a

variable (I/(\J;,) to indicate the remaining interface candidates of a subsys
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Sy, to explore. By definitionf; indicates which interface candidate of a sub-
systemsSy, is selected byCF;. This algorithm continues exploration from the

interface candidate indicated by from the end of an-th step. Then]AC;€ is
defined as

IC, ={fi,...,mazy}forallk =1,...n, (10.13)
wheremax;, is the number of interface. In the example shown in Figur8,10.
—~1
IC, ={2,3}.

e XP; Let us defineXP; to denote the search space remaining to explore
after the end of anrth iteration step. Note that such a remaining search space

does not have to include the solution candid@kg chosen at the-th step.
Then,XP; is defined as

XP; = (IC x -+ x IC) \ CFs. (10.14)

¢ RM; In essence, the ICS algorithm gradually decreases a remgaiearch
space during iteration. That is, at &th step, it keeps reducingP; _, to XP;,
whereXP; C XP,_;. Let RM; denote a set of interface settings that is ex-
cluded fromXP;_; at thei-th step. Note that at theth step, the interface
candidate of a subsystefi3, changes fronfg'i‘1 to fg Then, a subset ofP;

that contains the value 9(1:;;1, is excluded at thé-th step.RM; is defined as

— (i—1)% —~ (i—1)%

RM; = (IC, x - xIC

(=D _ { {fi-'y ifk=4,

IAC;< otherwise

)\ {CF;_1}, where (10.15)

(10.16)

In the example shown in Figure 10BM; = {{1,2,1},{1,2,2},{1,1,2}}.
e AH; Let AH, represent a set of system configurations that the ICS algo-
rithm selects from the first step through todath step, i.e.,
AH; = {CFq,...,CF;}. (10.17)
¢ AR; Let AR, represent a set of interface candidates that the ICS digorit
excludes from the first step through toath step, i.e.,
AR; = RM(;_1) URM;, whereARy = ¢. (10.18)

We define partial ordering between interface candidates!msvs:
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Definition 2. A interface candidatac = {ci,...,c,} is said to bestrictly
precedenbf another interface candidate’ = {¢, ..., } (denoted asc <
sc') if ¢; < ¢ for somej andcy, < ¢, forall k, wherel < (j, k) < n.

As an example{1,1,1} < {1,2,1}.

The following lemma states that when the algorithm excludgst of inter-
face candidates from further exploration at an arbitiatty step, a set of such
excluded interface candidates does not contain an optwhaien.

Lemma 11. At an arbitraryi-th iteration step, the ICS algorithm excludes a set
of interface candidatesR(M;), and any excluded solution candidatec RM;
does not yield a smaller system load than thatlsy_; .

Proof. As explained in Section 10.7.1, there are two potential waysduce
the value ofloads,s(CF;_1) at thei-th step. One is to reduce the CPU resource
demand of the subsystef- (i.e., RBF;:(t)), and the other is to reduce its
maximum blocklngBS

Firstly, we wish to show thaRBF,: +(t) does not decrease when we trans-
form CF;_; to any interface candidate ¢ RM;. Note that each interface
candidate set is sorted in an increasing order of resourgeéresment budget
(Q). One can easily see th@F; _; < r. Then, it follows thaRBF: (t) never
decreases whe@F;_; changes ta.

Secondly, we wish to show that when we chan@E;_; to any interface
candidate: € RM,, B+ does not decrease. As shown in line 6 in Figure 10.4,
the ICS algorithm finds the subsystedy) that generates the maximum block-
ing to for subsysteny;-. Then, the algorithm mcreasg%‘ by one, if pos-
sible, to decreas8,- However by definition, for all elementsof RM;, the
element for the subsysteﬁ‘si has the value of&i , rather than the value of
fg This means thast never decreases when we chalge_; tor. O

The following lemma states that when the algorithm tern@satt an ar-
bitrary f-th step, a set of remaining interface candidates does maaitoan
optimal solution.

Lemma 12. When the ICS algorithm terminates at an arbitragiyth step, any
remaining interface candidate € XP ;) does not yield a smaller system load
thanCF s does.

Proof. As explained in the proof of Lemma 11, there are two ways taced
loadsys (i.e.,LBFs; (t)).
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One is to reduc@BFs:(t) in Eq. (10.5) . However, it does not decrease,
sinceCF; < xp for all xp € XP;.

The other is to reduce the maximum blockir}ggg). In fact, the ICS algo-
rithm terminates at thg-th step because there is no way to decr@ssfe That
is, By does not decrease whelk ; changes to anyp. O

The following lemma states that ath step, the remaining search space to
explore decreases bR, U {CF;}).

Lemma 13. At an arbitraryi-th iteration step,
XP; = XP;—1 \ (RM; U{CF,;}). (10.19)
Proof. The ICS algorithm transfornsF, _; to CF; at ani-th step by increasing

the value of its);-th element. Then, we have

—~1i—1

—~i—1 . .
ol =] 10 AT fh=4 (10.20)
1C, otherwise

Without loss of generality, we assume that= 1. For notational convenience,
let XP; = XP; U {CF;}, andRM; = RM; U {CF;}. Then, we have

= (o7 () x I, x - x 1T,
—~i—1 —~1i—1 —~i—1

= (IC1 xICy x---xIC, )\
(A7 < ICy x -+ x IC,)

= XP,\RM;

- (XPH U {CFH}) \ (RMi U {CFH})
— XP_;\RM,. (10.21)

That is, considerind( P = X P; U {CF,}, it follows

O
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The following lemma states that at afh iteration step, the entire search
space can be divided into a set of explored candiddtds)( a set of excluded
candidatesAR;), and a set of remaining candidates to explot@,.

Lemma 14. At an arbitraryi-th step, the sets &R;, AH;, andXP; include
all possible interface candidates.

AR; U AH; UXP; = AS (10.23)

Proof. We will prove this lemma by using mathematical induction. sflsase
step, we wish to show Eq. (10.23) is true, whiea 1. Note thatARy = ¢ and
AHy = {CFp}. In addition,XP, = AS \ CFy, according to Eq. (10.14). It
follows thatARy U AHg U XPy = AP.

We assume that Eq. (10.23) is true at thih iteration step of the ICS
algorithm. We then wish to prove that it also holds at the 1)-th step, i.e.,

AR; UAH; UXP; = ARrL’+1 U AHrL’+1 U XPi+1. (1024)

According to the definition&\H, 1, AR;+1, andXP,4; (see Eq. (10.17),
(10.18) and (10.19)), we can rewrite the right-hand side @f E£10.24) as
follows:

AR 1 UAH, 1 UXPis
(ARi U RMHl) U (AHi U {CFM}) U

(XPi \ (RM;11 U {CFiJrl}))
AR; U AH; U XP; .

O

The following theorem states that the ICS algorithm progducset of sys-
tem configurations, which must contain an optimal solution.

Theorem 15. When the ICS algorithm terminates at tlieh step, a set of
system configuration&\f ;) includes an optimal solution.

Proof. Let opt denote an optimal solution. We prove this theorem by contra-
diction, i.e., by showing thaipt ¢ ARy andopt & XP.

Supposept € ARy. Then, by definition, there should exBM; such that
opt € RM; for an arbitraryi < f. According to Lemma 11lpads,s(CF;—1) <
loadsys(opt), which contradicts the definition ept. Henceopt ¢ ARy.



10.8 Overrun mechanism with payback 149

Suppose opt € XP;. Then, according to Lemma 12, it should be
loadsys(CF#) < loadsys(opt), which contradicts the definition efpt as well.
Henceopt ¢ ARy.

According to Lemma 14, it follows thaipt € CF;. O

10.8 Overrun mechanism with payback

David and Burns [15] presented another overrun mechanidiedcaverrun
with payback. It works as follows, whenever overrun happéres subsystem
Ss pays backO; in its next execution instant, i.e., the subsystem budget
will be decreased by, for the subsystem’s execution instant following the
one affected by overrun (note that only the instant follaythe overrun is
affected).

In this section we will discuss how we can apply the ICG and &i®-
rithms with a system that uses the overrun with payback nmeshmand we
will discuss how this will effect on system load. First, wdlvairiefly explain
how to analyze the local and global schedulability with tiyise of overrun
mechanism.

Local schedulability analysis. We can still use Eq. (10.3) for the payback
version of overrun wher@bfep(i,t) is the same as in the overrun without
payback (presented in Section 10.4.1). Howeverstt) will be smaller in
the payback version, compared to the other version of withayback. This is
because the payback version may produce a lobigekout duratiorbetween
two consecutive periodic processor allocations (see [@5}iore details). As a
consequence, the subsystem budget for a system that userowgth payback
will be greater or equal to the subsystem budget requireth®pther version
of overrun.

Global schedulability analysis. Eq. (10.7) is valid only if we chang@y(t)
in Eq. (10.5) such thab (t) = X for0 <t < P,. Then Eq. (10.5) using the
overrun with payback mechanism can be rewritten as follows,

t
DBF,(t) = Qs + X, + Z [FJ (Qr) + X (10.25)
Si €HPS(Ss)
The ICG algorithm presented in Section 10.6.1 can be usdibuitany

problem with the payback version. The reason is that loda¢dulability for
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both overrun mechanisms is the same and Lemmas 7-9 are basee local
scheduling. Lemma 6 is based on the global scheduling, aisdvilid also
with the payback version of overrun.

For the ICS algorithm, the possibilities to minimizBF;(¢) using overrun
with payback are as follows; looking at Eq. (10.25), and delieg on the val-
ues of Ps, Py, Qr, X, the value ofD BF,(t) can be minimized in some cases
by minimizingQy + X and in other cases by minimizing or¥;,. The second
factor that has effect oh BF,(t) is Qs + X of the subsystem, and the third
factor is X. So there is an additional factor that affect bB F(¢) using the
payback version compared with the other version of the avemnechanism,
which is minimizing@Q. Hence, Lemma 10 may not be correct for all cases
when using the overrun mechanism with payback. We can cdachat the
optimization problem when using overrun with payback is encomplex and
the ICS algorithm may not be able to find an optimal solution.

Comparing the two versions of the overrun mechanisms, taeror mech-
anism without payback is better than the other version indbal schedulabil-
ity, and it will require lower subsystem budget. While in tiiebal schedulabil-
ity, the payback version will be better than the other veréiecause the inter-
ference from higher priority subsystems 8nis increased by);. every period
Py, (see Eg. (10.25)). On the other hand, when using overrurowitpayback,
the interference from higher priority subsystems incredse?;, + X every
period P, (see Eq. (10.5)). Another difference between the two vassmf
overrun mechanisms is that overrun with payback has acgstrinQ, > X,
while there is no such restriction when using overrun withgayback.

10.9 Conclusion

When subsystems share logical resources in a hierarclticatialing frame-
work, they can block each other. In particular, when a budgpiry problem
exists, such blocking can impose extra CPU demands. Howsweply re-
ducing the blocking of subsystems does not monotonicaltyetese the sys-
tem load, since imposing less blocking to other subsysteansmpose more
CPU requirements of the subsystems themselves. This papeduced such
a tradeoff and presented a two-step approach to explorenttee and inter-
subsystem aspects of the tradeoff efficiently, towardsdeténg optimal sub-
system interfaces constituting the minimum system load.

In this paper, we considered only fixed-priority schedulimgd we plan to
extend our framework to EDF scheduling. Furthermore, oturtuwork in-
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cludes generalizing our framework to other synchronizggimtocols. For ex-
ample, this paper considered only the overrun mechanishowipayback [15],
and we are extending towards another overrun mechanisin-paigback ver-
sion) [15]. Unlike with the former overrun mechanism, th&an and inter-
subsystem aspects of the tradeoff are not clearly sepawdttethe latter mech-
anism. The latter mechanism changes the way of a subsystem’sontribut-
ing to the system load (i.e., Eq. (10.5)), and this requips @priate changes
to the post-processing part of the ICG algorithm. We aredtigating how to
make changes to the post-processing part in ways that eclgss subsequent
changes to the ICS algorithm.
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