
ALL-TIMES - a European Project on
Integrating Timing Technology

Jan Gustafsson,1 Björn Lisper,1 Markus Schordan,2 Christian Ferdinand,3

Peter Gliwa,4 Marek Jersak,5 Guillem Bernat6

1 School of Innovation, Design, and Engineering, Mälardalen University, 721 23
Väster̊as, Sweden

2 Vienna University of Technology, Argentinierstrasse 8/4/185.1, A-1040 Vienna,
Austria

3 AbsInt Angewandte Informatik GmbH, Science Park 1, 66123 Saarbruecken
Germany

4 Gliwa GmbH, Dollmannstr. 4, D-81541 München, Germany
5 Symtavision GmbH, Frankfurter Str. 3 B, 38122 Braunschweig, Germany

6 Rapita Systems Ltd., IT Centre, York Science Park, York, YO10 5DG United
Kingdom

Abstract. ALL-TIMES is a research project within the EC 7th Frame-
work Programme. The project concerns embedded systems that are sub-
ject to safety, availability, reliability, and performance requirements. In-
creasingly, these requirements relate to correct timing. Consequently,
the need for appropriate timing analysis methods and tools is growing
rapidly. An increasing number of sophisticated and technically mature
timing analysis tools and methods are becoming available commercially
and in academia. However, tools and methods have historically been de-
veloped in isolation, and the potential users are missing a process-related
and continuous tool- and methodology-support. Due to this fragmenta-
tion, the timing analysis tool landscape does not yet fully exploit its
potential.
The ALL-TIMES project aims at: combining independent research re-
sults into a consistent methodology, integrating available timing tools
into a single framework, and developing new timing analysis methods
and tools where appropriate.
ALL-TIMES will enable interoperability of the various tools from leading
commercial vendors and universities alike, and develop integrated tool
chains using as well as creating open tool frameworks and interfaces.
In order to evaluate the tool integrations, a number of industrial case
studies will be performed.
This paper describes the aims of the ALL-TIMES project, the partners,
and the planned work.

This work was supported by the EU FP7 project ALL-TIMES (Integrating Euro-

pean Timing Analysis Technology, grant agreement no. 215068).

1 Introduction

ALL-TIMES (Integrating European Timing Analysis Technology) [1] is a re-
search project within the EC 7th Framework Programme, with focus on correct



timing of real-time embedded systems. The project started in December 2007
and will go on for 2 years and 3 months. The subject of ALL-TIMES has wide
industrial relevance and there is a significant body of European research and
experience in this area including a number of hi-tech SMEs. Timing measure-
ment/analysis is vital for improving the reliability, performance, and efficiency
of embedded systems. It helps to reduce the overall system costs by validating
timing requirements, reducing the cost of development, and reducing unit costs
in production.

Existing tools (commercial and academic) provide a set of powerful analysis
techniques. Nevertheless there is a growing need, addressed in the ALL-TIMES
project, for the integration of existing timing measurement/analysis techniques
with the latest academic results in this area.

1.1 Concept, and General Objectives

A large class of embedded systems have safety, availability, reliability and perfor-
mance requirements. This class spans across several areas, including automotive,
avionics, telecom, and space systems. Common for these systems is the need to
guarantee their correct behaviour as well as the satisfaction of non-functional
requirements, in particular regarding timing.

The cost for delivering products with latent errors is staggering. For example,
warranty costs in the automotive industry run 2% - 5% of sales [2]. Such levels
have tremendous impact on the profitability. Timing is an essential dimension,
notably one of the most difficult to analyze, and one that is generally only
addressed late in the design cycle. In the automotive industry 50% of warranty
costs today can be traced to software and electronics problems [2], for which
about one third are reported to be directly related to timing issues. Current
trends in industry of increased size and complexity of systems make the timing
problem much more difficult, and in the future, consequences could be more dire.

Engineering timing correctness into a system requires treating timing as a
first-class citizen throughout the software development process, including early
stages: not as a property that is only addressed at the latest stage of this process.
Early stage means before all code is available and all system design decisions have
been made.

1.2 Timing Analysis

Timing analysis can be divided into code-level analysis and system-level analysis.
Worst-case execution time (WCET) analysis and scheduling analysis are two
exemplary techniques for the respective levels. WCET analysis computes an
upper bound to the longest execution time that a fragment of code (e.g., a task)
takes to execute in the worst case. Scheduling analysis determines the end-to-end
execution time of a set of tasks. Code-level analysis thus assumes an isolated
view of a fragment of code, whereas system-level analysis takes the complete
system (one Embedded Control Unit (ECU), or even several ECUs including
their communication interfaces) into consideration.



1.3 The Problem

Industry faces a difficult task to improve the reliability, safety, performance and
resource efficiency of systems with regard to timing. The take up by industry
of research and development in timing analysis is still low. There are several
aspects to this problem; we classify them in the following themes:

– interoperation, scale and automation;
– integration into build process;
– education, and dissemination of knowledge.

Interoperation, scale and automation. Current technologies lack strong in-
teroperability with other timing tools and compilers, making the adoption effort
much more significant. Standard formats for representation and interoperabil-
ity with tools are needed. Early efforts in the ARTIST2 [3] and INTEREST [4]
projects indicate promising technologies.

Furthermore, some of the current analysis techniques have serious scalability
issues relating to the size of the programs to be analyzed. Finally, a major issue
is the full automation of the analysis process (the magic one-button solution)
that is a pre-requisite for integration of timing analysis tools into current build
processes.

Integration into build process. Industries that do need timing analysis tend
to be conservative by nature. The adoption of a new technology implies change,
which demands clear demonstrable benefits in perspective, and may be costly.
Thus, new technology may be slow to deploy and integrate into the end-customer
process. Especially difficult is the integration of a new technology into a project
in progress. Academic prototypes are not usable by large companies that require
commercial quality tools with long-term support guarantees. This results in large
lead times to get these technologies to market, and consequently in the loss of
market opportunity. A second issue is the large number of evolved procedures and
constraints, which can make it difficult to exploit a technology simply because
required input data cannot be obtained, or because parameters yielding the
biggest improvements cannot be changed. This project will address these issues
by targeted pilot studies to demonstrate the added value that investing in timing
analysis tools brings to customers.

Education, and dissemination of knowledge. The timing analysis expertise
is fragmented over universities and small companies, and its ability to reach a
wider audience is limited. Large companies know that they need timing analysis,
and are aware of the risks and consequences of timing errors in their products.
However, few have knowledge of the available solutions, and even fewer have the
capacity and will to take up the technology.

The current level of engineers, as regards knowledge of timing issues, is not
sufficient. A recent example is the failure to establish a timing model in the cur-
rent AUTOSAR [5] standard. An ALL-TIMES partner (Symtavision) is heavily



involved in this activity. On the other hand there have been a good number
of success stories on companies adopting these technologies. Unfortunately, the
dissemination of these results is slow, partially due to restrictive corporate pub-
lishing policies.

The rest of this article is organized as follows: We present the main objectives
of the ALL-TIMES project in Section 2 and its expected results in Section 3.
In Section 4, we list the ALL-TIMES partners and their respective roles in the
project. In Section 5, we describe the work packages. Finally, in Section 6, we
draw some conclusions.

2 Main Project Objectives

The two principal project objectives are:

– to integrate different timing measurement/analysis tools using an open tool
framework, and

– to achieve 25% improvement in the design time pertaining to timing issues.

One of the overall objectives of the project is the provision of new integrated
tool sets for timing measurement and analysis targeted at the embedded real-
time systems market. This relates to the advancement of new analysis techniques
for integrated scheduling analysis, WCET analysis and timing measurement. In
particular, the project will deliver new methods for timing measurement and
analysis at both the system level and the code level in an open framework. An
important aspect is a precise characterization of industrial requirements regard-
ing timing. The project will provide a detailed requirements study in the first
project phase.

A demonstrable 25% improvement in design time of embedded systems de-
velopment can be achieved by enabling a quick, safe, automatic and efficient
mechanism for deriving timing data instead of conventional manual and laborious
approaches. The tool integration and analysis development work in ALL-TIMES
aims at this. The fulfilment of the objective will be estimated by interviewing
engineers participating in case studies on the efforts required to obtain timing
estimates, and the quality of the results.

3 Expected Results

The ALL-TIMES project will:

– interface the different analysis techniques (three code-level and two system-
level techniques) that are represented in the project;

– provide an open interface to integrate additional timing measurement/analysis
techniques and tools, aiming at becoming a de-facto standard;

– provide solutions for timing analysis/estimation in early design phases as
part of design-space exploration and architecture optimization.



4 Partners, their Tools, and their Roles

Two partners in ALL-TIMES are university groups:

– The WCET group at Mälardalen University - MDH (coordinator) [6]
– The SATIrE group at Vienna University of Technology - TUV [7]

The other four partners are SMEs. They will contribute to the development,
evaluation and exploitation of different parts of the project:

– AbsInt Angewandte Informatik GmbH - ABS [8]
– Gliwa GmbH - GLI [9]
– Symtavision GmbH - SYM [10]
– Rapita Systems Ltd - RPT [11]

The partners, and the tools they contribute to the project, are shortly de-
scribed below. We also briefly indicate the tool integrations that may be consid-
ered.

4.1 Mälardalen University

The WCET group at Mälardalen University works with methods and tools for
WCET analysis for real-time systems. Specifically, they have developed a tool
(SWEET) for analysis of programs written in C. Its modular tool architecture
consists of three major phases:

1. A flow analysis phase, where bounds on the number of times instructions can
be executed are derived, given the program code and possible input values.

2. A low-level analysis phase, where bounds on time it might take to execute
instructions are derived, given the program object code and the architectural
features of the target hardware.

3. A WCET estimate calculation phase, where the costliest program execution
path is found using information from the first two phases.

The analysis phases communicate their results through well-defined data struc-
tures. The current research topic of the Mälardalen group is flow analysis. An
annotation language can be used to constrain input data values.

4.2 Vienna University of Technology

The researchers involved in this project in the compilers and languages group
at TU Vienna are concerned with the design, implementation, and application
of programming languages, program analysis and optimization, and tools for
embedded systems. Specifically they have developed the Static Analysis Tool
Integration Engine (SATIrE) and integrated components of different program
analysis tools. The design philosophy of SATIrE is the integration of analysis
tools such that the results can always be used by all other integrated tools,
enabling the composition of arbitrary tool chains. A plug-in mechanism for user-
defined components enables connections to other external tools. SATIrE offers
the following integrated base components:



– EDG C/C++ Front End
– LLNL-ROSE C/C++ intermediate representation
– ROSE C++ Unparser
– Program Analysis Generator (PAG) from AbsInt
– Annotation Parser & Mapper
– Annotation Generator
– Generator & Parser for external representation of AST
– Loop Optimizer (part of LLNL-ROSE, ported from Fortran D)

SATIrE currently allows to address all features of C++ with Exceptions being
the only open issue. It supports all features of EC++. For C most features includ-
ing some dialects are supported. The mapping of analysis information through
different intermediate levels is supported by user-defined analysis-information
transformers.

Based on SATIrE, the WCET tool TuBound [12] is being developed for com-
puting the worst-case execution time of C programs by static analysis. The
TuBound approach combines source-level analysis and code-level analysis in the
presence of compiler optimizations.

4.3 AbsInt Angewandte Informatik GmbH

aiT is AbsInt’s family of WCET analyzer tools. aiT WCET Analyzers statically
compute tight upper bounds for the worst-case execution times (WCET) of
tasks in real-time systems. They directly analyze binary executables without
any need for instrumentation, and take the intrinsic cache and pipeline behavior
into account.

The analyzers employ abstract interpretation to determine estimations for
the WCETs of basic blocks. Integer linear programming (ILP) is used to derive
a worst-case program path and an overall WCET estimation from the basic block
WCET estimations. A graphical user interface supports the visualization of the
worst-case path and the interactive inspection of all pipeline and cache states at
arbitrary program points.

aiT’s results are valid for all inputs and each execution of a task. aiT can
be run interactively via a graphical user interface (GUI). The fields in the GUI
can be filled with appropriate values, which may be stored in a project file.
Alternatively, an existing project file can be loaded. aiT can also be started in
simple batch mode with a project file.

4.4 Gliwa GmbH

Gliwa develops debugGURU, which is a framework for measuring and debugging
timing related aspects of embedded software. The target code gets instrumented
to gather timing information at run-time. This information is either processed
“on the fly” by the target or transferred to and interpreted/visualized by a PC.
Since debugGURU supports various target interfaces such as CAN, Nexus or
KWP2000, measuring is possible not only in a development environment but



also “on the road”.
There are several plug-ins available that are easy to integrate into a system which
supports debugGURU, for example:

timeGURU measures reliable run-time information about tasks, interrupts,
processes, and/or any piece of code.

memGURU monitor memory accesses and consumption
delayGURU examines how much time is left in a task or an interrupt for addi-

tional functionality, useful for example during the development of embedded
systems.

4.5 Symtavision GmbH

SymTA/S, developed by Symtavision, stands for Symbolic Timing Analysis for
Systems. SymTA/S focuses exclusively on system timing and performance. De-
tailed functionality is abstracted, and only those properties that impact timing
are modeled. The main advantages of this approach are: efficient modeling; un-
rivalled analysis speed; applicability in early design phases (when functions have
not even been implemented); flexibility and independence of specific hardware
and software.

SymTA/S is not a single, monolithic tool but rather a flexible and extensi-
ble tool suite. SymTA/S performs scheduling analysis for CPUs with RTOSes,
buses with arbitrating protocols, and systems consisting of multiple resources
(CPUs and buses). SymTA/S calculates resource loads, worst-case response
times for tasks scheduled on CPUs, worst-case transmission times for messages
sent via shared buses, end-to-end latencies and compares these values against
user-specified constraints, e.g., deadlines. Additionally, SymTA/S has powerful
exploration and sensitivity analysis modules for optimization of electronic archi-
tectures and scheduling. SymTA/S can be used early on in architecture definition
and contracting phases, and continuously throughout the design until timing is
verified as part of sign-off.

The core package is the SymTA/S analysis engine. The analysis engine pro-
vides all the basic functions to design and analyze the timing in a system, regard-
less of the internal implementation of the resources. It focuses on the interfaces
between resources, where input-output timing and buffering are of central con-
cern.

For the analysis of individual resources, SymTA/S has an interface to com-
ponent libraries. The analysis engine integrates these local resource performance
models into a global, system-level analysis model, and solves it. The analysis
engine together with one or more component libraries allows quick modeling,
configuration, and analysis of the performance and timing – from a single re-
source all the way to a distributed system including complex functional and
architectural dependencies.



4.6 Rapita Systems Ltd

RapiTime is a software toolkit that provides a unique solution to the problem
of worst-case execution time analysis and performance profiling, a solution that
works for complex software running on advanced embedded microprocessors.
RapiTime is a comprehensive performance analysis and WCET tool. It supports
software written in C and Ada. It is compatible with industrial-scale programs
from a few KBytes to millions of lines of code, and works with virtually every
8, 16, and 32-bit embedded microprocessor on the market, including those with
advanced hardware features.

RapiTime contains the following main functions:

Performance Profiling. View high and low water marks, examine how dif-
ferent functions contribute to the average, longest, and shortest execution
times, and locate performance bottlenecks at the root of throughput prob-
lems.

Code Coverage Analysis. Identify code coverage omissions, assess the cov-
erage necessary for WCET analysis, check if the worst-case path has been
followed during testing, and more.

Worst-Case Execution Time Analysis. Determine accurate worst case exe-
cution times, visualize the contribution of each function to the overall worst-
case, examine worst-case execution frequencies, identify code on the worst-
case path, and explore the variability in execution times due to hardware
effects.

Targeted Optimization. Identify worst-case hotspots, select the best oppor-
tunities for optimization via advanced code metrics, see the difference be-
tween code that contributes the most on average, and code that contributes
the most to the worst-case. Assess the headroom available to add new func-
tionality.

Report Viewer. Eclipse-based, interactive access to data. Configurable views
of worst-case, high water mark, and average-case behavior. Code metrics and
comparisons. Search and sort facilities to highlight hotspots. Call-tree views
of program structure and worst-case path. Graphical analysis of execution
time distributions.

4.7 Possible Tool Integrations

Figure 1 indicates the possible integrations between timing analysis tools that
may be considered within ALL-TIMES.

5 Work Packages

The project is divided into four work packages. We now briefly describe these.



Fig. 1. Possible integrations between timing analysis tools.

5.1 Work Package 1: Requirements

The aim of this work package is to identify the particular requirements for ALL-
TIMES. These requirements appear on two different levels:

– requirements on timing analysis tools in general, and
– requirements on interfaces between tools.

The first level requires an identification of relevant use cases. These will
come from (potential) end-users of timing analysis technology, in particular in
the avionics and automotive industry. The SME partners all have customers in
these areas, and representative use cases will be collected from some of these.
In this process, it is possible to apply the “Mälardalen model” (see Section 5.4),
and involve M.Sc. students in the collection and analysis of use cases.

The second level is of a more technical nature, and requires close interaction
between tool experts.

Identification of use cases. The project needs to focus on most promising use
cases. Project partners already have visions and concepts for use cases during
different design stages. These use cases can serve as a starting point for discussion
with end users. In this process, those use cases that are both valuable from the
end users’ perspective, and realistic from the project partners’ perspective, will
be identified, elaborated, and prepared for implementation.



Along with the use cases, an initial evaluation of timing analysis tools will
be conducted. This investigation will elaborate the strengths and weaknesses of
the respective tools, for different use cases, leading to a methodology to decide
on the right tool for a given development phase.

General requirements on timing analysis tools. An initial estimate of
the most important factors influencing the choice/combination of timing analy-
sis/performance verification tools includes:

– Criticality of timing constraints
– Design stage (early estimation vs. late verification)
– Established design flow and hence availability / type / quality of input data

This needs to be verified and refined based on the identified use cases. The
identified use cases need to be refined into technical requirements and design
steps. On system level, one crucial aspect is the availability of input data re-
quired for scheduling analysis. This data will come from the different tools and
techniques present in this project. The combination of test-based, tracing, semi-
formal and formal approaches will enable to identify and demonstrate best fits
for each of these techniques. Aspects to be considered:

– Accuracy of analysis
– Ease of obtaining the required input data
– Refinement from early, abstract models to later, more detailed models
– Roundtrip engineering / product lines / product evolution
– Architecture alternatives
– Different contexts and corresponding system behavior
– Tool interface requirements

The requirements on the code- and system level tools, in order to communi-
cate with each other, need to be examined. For code level tools, the various tool
characteristics result in specific input requirements and possible output. Broad
room in this examination will for example be given to the import of measure-
ment data in analysis tools and the communication of the results of source level
analysis to analyzers working on binary code, to list but a few. The requirements
on the communication of timing estimates from code level to system level will
also be examined.

As a starting point, existing tool integration technologies will be reviewed
(e.g., the XML timing cookies developed in INTEREST [4] or AIR, the ARTIST2
Intermediate program Representation for WCET analysis tools [3]) to assess
these w.r.t. possible adaptation/extension for ALL-TIMES purposes. An appro-
priate solution will be specified.

5.2 Work Package 2: System-level Integration

This work package addresses reliable integration of multiple functions sharing a
processor in a real-time system. For this, system-level analysis takes the com-
plete system into consideration (whereas code-level analysis in Work Package 3



assumes an isolated view of a piece of code). The key to system-level integration
is to assure schedulability of the system under all relevant conditions. The dif-
ferent timing analysis techniques in ALL-TIMES will be combined to determine
system schedulability, with the goal to exploit the strengths of the different tech-
niques, to avoid their weak points, and to overcome their limitations. The work
package consists of three parts: interface, early-stage methodology and late-stage
methodology. Here, early-stage and late-stage refer to design stages of a system
that the user of an integrated tool chain is designing.

Development of the system-level tool interface will start in parallel with de-
velopment of the early-stage system-level analysis methodology. The interface
will then be refined and extended together with the development of the late-
stage system-level analysis methodology. The rationale for this ordering (early
stage before late stage) is the lack of detailed system information at an early
stage. Therefore, a relatively simple interface will be sufficient, and the empha-
sis should be on speed and flexibility of the integrated tool chain. In the second
step, the interface will be enriched to allow exchanging a larger variety of detailed
system data available in later design stages.

System-level interface specification for timing analysis techniques. An
open interface to combine different timing analysis techniques (scheduling analy-
sis, WCET analysis, simulation, test, tracing, . . . ) will be specified. The interface
specification will be rich and flexible enough to allow combining timing analysis
techniques in different ways depending on a specific design situation, to exchange
data between tools at different levels of granularity and detail, and to iterate
between different techniques for refinement of analysis results. Specifically, the
interface must be suited for both early design stages and late design stages.

Early-stage system-level timing analysis methodology. A methodology
for system-level timing analysis will be developed that exploits the strengths of
different timing analysis techniques (scheduling analysis, WCET analysis, simu-
lation, test, tracing, . . . ) during early design stages. The goal is to enable a user
of an integrated-tool chain-specific solution.

The methodology will include execution time estimation for software compo-
nents on alternative processors as well as performance estimation using schedul-
ing analysis and sensitivity analysis. The latter will allow a user to assess how
much room there is for estimation errors and how much flexibility remains for
later changes.

Late-stage system-level timing analysis methodology. A methodology
for system-level timing analysis will be developed that exploits the strengths of
different timing analysis techniques (scheduling analysis, WCET analysis, simu-
lation, test, tracing, . . . ) during late design stages. The goal is to enable a user
of an integrated-tool chain to verify system timing on a level of quality and
reliability not achievable by any single technique.

The methodology will combine the various techniques:



– to determine worst-case response times and response jitter, response time
distributions and other important performance measures of a system

– to obtain tight analysis bounds by considering correlations between functions
and events in different system contexts and scenarios.

5.3 Work Package 3: Code-Level Tool Integration

Code-level analysis assumes an isolated view of a piece of code whereas system-
level analysis takes the complete system into consideration. The ALL-TIMES
project will consider three different approaches to code-level analysis: Measure-
ment of execution time (GLI), measurement-based (or hybrid) analysis (RPT),
and static analysis on binary level (ABS) and source/intermediate level (MDH,
TUV). The focus of this work package is to combine these approaches in an
optimal manner, to exploit the strengths of the different methods, to avoid their
weak points, and to overcome their limitations.

Incorporating time measurement data. The purpose of this work is to
improve static analyzers by using the results of time measurements. This will be
done in the following directions:

– Comparison of the statically computed longest path with measured data to
identify the unwanted inclusion of error cases in the statically computed
longest path. Once identified, the error cases can usually be excluded by a
manual user annotation.

– Adaptation of the different tools to measurement methods with different
number and position of measurements points in a program. For example,
AbsInt’s aiT can directly handle basic block measurements, but the results
of less fine-grained measurement require some extensions. The result of this
work will include a common format to specify all kinds of timing measure-
ment results.

Source-level analyses. The micro-architecture analysis has to consider the
very details of a processor implementation and therefore works on the binary
program representation. A tool like AbsInt’s aiT also tries to determine auxiliary
information such as upper bounds of loop iterations on the binary level. Yet
better results usually can be expected from source code analyses. One of the
goals of the project is to overcome the limitations of considering only one level.

Examples of analyses that can be promising on source level involve the
determination of loop bounds and recursion depths, possible values of func-
tion pointers, (non-)accessed variables of a function/task, and path exclusions.
Measurement-based WCET analyses can usually do without such analyses. Yet
an important aspect is quality of the measured data. Analyses like the ones enu-
merated above can give hints on the reached coverage of measurements. The
purpose of this work is to create analyses using an industrial strength front-end
for C/C++, to integrate the results of source code analyses as performed by



TUV’s and MDH’s tools into binary-level and measurement-based tools, and to
develop a worst-case execution time estimator for programs in C/C++ source
code. This estimator will use some parameters to configure a virtual processor
so that it resembles real processors.

Code-level timing analysis in early design stages. Code-level timing anal-
ysis currently requires executable code as well as a detailed model of the target
processor for static analysis or actual hardware for measurements. This means
that all current code-level techniques can be applied only relatively late in the
design, when code and hardware (models) are already far developed. Yet tim-
ing problems becoming apparent only in late design stages may require a costly
re-iteration through earlier stages. Thus, we are striving for the possibility to
perform code-level timing analysis already in early design stages.

Choosing a suitable processor configuration (core, memory, peripherals, . . . )
for an automotive project at the beginning of the development is a challenge.
In the high-volume market, choosing a too powerful configuration can lead to a
serious waste of money. Choosing a configuration not powerful enough leads to
severe changes late in the development cycle and might delay the delivery.

Currently, to a great extent this risky decision is taken based on gut feeling
and previous experience. Our goal is to provide a family of tools to assist in the
exploration of alternative system configurations before committing to a specific
solution. Our approach requires that (representative) source code of (represen-
tative) parts of the application is available. This code can come from previous
releases of a product or can be generated from a model within a rapid prototyp-
ing development environment.

To achieve the task, we will extend AbsInt’s family of aiT WCET analyz-
ers. aiT WCET analyzers statically compute tight upper bounds of worst-case
execution times (WCET) of tasks in real-time systems, taking into account the
cache and pipeline behaviour. They operate on binary executables and may take
additional information in the form of user annotations. Through annotations the
user provides information the tool needs to successfully carry out the analysis
(e.g., loop bounds and recursion bounds that cannot be determined automati-
cally, targets of computed calls or branches, etc.) or to improve precision.

aiT supports various cores and support is extended constantly. To be appli-
cable in early design phases, the tool will be extended to make the cache and
memory mapping completely parameterizable so that the user can experiment
with different configurations. Furthermore, since performance guarantees at that
stage are not as important as later in the development process, some precision
will be traded against ease of use, speed and reduced resource needs. For ex-
ample, source-code analysis will be integrated to enable certain information like
unknown loop bounds to be determined from the source code, instead of asking
the user for annotations.

Our early-phase code-level analysis will be integrated into the SymTA/S
system-level architecture exploration analysis. The combination of code-level



and system-level architecture exploration will lead to informed decisions with
respect to which architectures are appropriate for an application.

5.4 Work Package 4: Validation and Dissemination

System- and code-level validation. The main purpose of the validation
work is to compare and evaluate the different approaches to timing analysis sub-
problems and to develop a methodology for selecting the optimal method and
tool for the work at hand. One important way to validate the methods developed
within ALL-TIMES is to perform case studies together with industrial partners
on selected problems. In this way, the ALL-TIMES methods and tools will be
tested on industrial-strength systems, valuable feed-back from early users will
be conveyed back to the developers, and end-user awareness will be raised early
to solutions in the area of timing analysis.

The “Mälardalen model”. The main performers of the case studies will be
students on MSc level, supervised by experts at the company and from the ALL-
TIMES project.

During a number of years, Mälardalen University has been performing case
studies to evaluate timing tools in industrial settings. The purposes of the case
studies have been, amongst other things, to evaluate the tools and methods on
“real” code to get feedback for research and development. Results and evalu-
ations made in the reports have resulted in research reports [13] and spawned
new research and development activities. An additional advantage of the model
is that it brings timing analysis into education; the M.Sc. students themselves
become proficient with the latest timing analysis technology. It also helps dis-
seminating the technology: both directly, to companies participating in the case
studies, and indirectly by the students bringing their competence into their re-
spective workplaces after graduation.

The time spent by the MSc student is typically used in the following way:

– introduction to timing analysis (university) – one week
– study of state of the art (MSc student) – a few weeks
– education in the used tool(s) (tool vendor) – one week
– introduction to the company and its code (company) – one week
– applying timing analysis to the code (MSc student) – 2–3 months
– writing report and presenting results to the other partners (MSc student) –

one month

The ALL-TIMES project partners have an extensive network of industrial
partners that will be enrolled during the case studies.

Dissemination. Dissemination and exploitation of the results from ALL-TIMES
is aiming at spreading awareness of timing analysis and knowledge of the solu-
tions (tools and methods) proposed by ALL-TIMES. The targets of dissemina-
tion are professionals working in the area of embedded and real-time computer



systems, the research community (including PhD students), undergraduate stu-
dents at universities, and the interested public.

6 Conclusions

The ALL-TIMES project is an ambitious effort to enable interoperability of
timing tools from leading commercial vendors and universities in the EC. The
project will develop tool chains using open tool frameworks and interfaces. These
integrated tool chains will be evaluated using case studies performed towards in-
dustrial end-user companies. The main goal will be a demonstrable improvement
in the design time of embedded systems development.

References

1. ALL-TIMES: Homepage (2008) www.all-times.org.
2. IBM: News Web page.

http://www.ibm.com/news/be/en/2005/05/3102.html (April 2005)
3. ARTIST2: Timing-Analysis Cluster homepage (2008)

http://www.artist-embedded.org/artist.
4. INTEREST: INTEREST (2008)

http://www.interest-strep.eu/.
5. AUTOSAR: Homepage (2008) http://www.autosar.org/.
6. Mälardalen University: WCET project homepage (2008)

www.mrtc.mdh.se/projects/wcet.
7. SATIrE: SATIrE homepage (2008)

http://www.complang.tuwien.ac.at/markus/satire.
8. AbsInt: aiT tool homepage (2008)

www.absint.com/ait.
9. Gliwa: homepage (2008)

http://www.gliwa.com/e/home.html.
10. Symtavision: homepage (2008)

http://www.symtavision.com/.
11. Rapita: RapiTime WCET tool homepage (2006)

www.rapitasystems.com.
12. Prantl, A., Schordan, M., Knoop, J.: TuBound - a conceptually new tool for worst-

case execution time analysis. In: Proceedings of the 8th International Workshop
on Worst-Case Execution Time Analysis. (July 2008)

13. Gustafsson, J., Ermedahl, A.: Experiences from applying WCET anal-
ysis in industrial settings. In: Proc. 10th IEEE International Sympo-
sium on Object/Component/Service-oriented Real-time Distributed Computing
(ISORC2007), Santorini Island, Greece (May 2007)


