
Usability Aspects of WCET Analysis∗†

Jan Gustafsson
School of Innovation, Design and Engineering, Computer Science Department,

Mälardalen University, Västerås, Sweden
jan.gustafsson@mdh.se

Abstract
Knowing the program timing characteristics is funda-

mental to the successful design and execution of real-time
systems. A critical timing measure is the worst-case execu-
tion time (WCET) of a program. Often, timing analysis in
industry is done by measurements. Recently, tools for de-
riving WCET estimates have reached the market.

With more widespread use of WCET tools in industry,
the usability aspects of these tools will be of growing im-
portance. In this paper we discuss usability using the re-
sults of the WCET Challenge 2006, which was the first event
that compared different WCET tools using the same set of
benchmarks. Another source of input to the discussion are
experiences from industrial case-studies of WCET tools.

Finally, we point out some areas for future research and
development for WCET analysis methods and tools.

1 Introduction
A program timing analysis obtains information about the

execution time characteristics of a program. The worst-case
execution time (WCET) of a program is a key timing mea-
sure. The WCET measure is based on the assumption that
the software is executed in isolation on an undisturbed pro-
cessor. Effects outside of the code that may affect this tim-
ing, e.g., interrupts from the hardware, the operating system
or other tasks, can be accounted for in subsequent analysis
steps, e.g., in scheduling analysis.

Figure 1 shows how measurements relate to the set of
possible program executions and timings. The example pro-
gram has a variable execution time, and the darker curve
shows the probability distribution of its execution time. Its
minimum and maximum are the BCET (best case execution
time) and WCET respectively. The lower gray curve shows
the set of actually observed and measured execution times.
Its minimum and maximum are the minimal measured time
and maximal measured time respectively.

∗ Supported by KK-foundation (www.kks.se), grant 2005/0271.
† ARTIST2 European Network of Excellence

(http://www.artist-embedded.org/artist/-Cluster-

!"
#$
%"&

'$
"(
)*

(+
*$"
,

-#

./012/01

$",-3

#4+-
5(6-%
&(')!

#4+-
'77-%
&(')!

,")",45
,-4#'%-!

$",-

,48",45
,-4#'%-!

$",-

19-*./01*,'#$
&-*+(')!*(%
'77-%*&(')!-!

,-4#'%-!*-8-:'$"()*$",-#
7(##"&5-*-8-:'$"()*$",-#

#4+-*477%(8",4$"()*(+*$",");

Figure 1. Execution time estimates

Reliable safe upper bounds of the WCET are important
when designing and verifying embedded systems and real-
time systems, especially for systems used to control safety
critical products and processes. For less safety-critical sys-
tems, exact WCET estimates are not always required. In
some applications, only limited parts of the system software
are time critical and in need of timing analysis.

Timing and WCET analyses are today performed using
three main methodologies:
• Measurements are done executing the program on the ac-

tual target hardware.
• Static WCET analysis avoids executing the program. It

derives a WCET estimate by static analysis of the pro-
gram and the timing properties of the used hardware.

• Hybrid analysis methods (or measurement-based meth-
ods) combine measurements and static analysis.
The state-of-the-practice in industry is still to use

measurements, but recently commercial static and hybrid
WCET analysis tools have been introduced and are used to
an increasing extent in industry. The goal of these WCET
tools is to provide a WCET estimate for a certain piece of
code that is safe, i.e., equal to or larger than the real WCET1.
To be useful, especially in a system with limited resources,
the estimate should also be tight, i.e., as close to the real
WCET as possible.

Compilers-and-Timing-.html) provided travel support.
1It should be noted, while the static analysis methods aims at giving

an absolute WCET estimate, the hybrid method (RapiTime) gives a prob-
abilistic WCET estimate. See also Section 2.3.



As the rest of this paper will point out, there are a num-
ber of other aspects that concern the practical use of WCET
tools. There is often a lot of work to do before a useful re-
sult is found. Therefore, the usability aspect of these tools
is an important issue.

The main contributions of this paper are:
• We present a number of important usability aspects of

WCET methods and tools.
• We discuss how these aspects are handled in some of the

current methods and tools.
The rest of this paper is organized as follows: Section 2

gives a short overview of timing analysis methods. Sec-
tion 3 describes the sources of information for this paper.
Section 4 presents usability aspects of WCET tools, and
Section 5 gives some conclusions and ideas for future work.

2 Overview of WCET Analysis
For a more detailed overview of the different methodolo-

gies and references to relevant papers, see, e.g., [6, 28].

2.1 Measurements.
The program is executed on the target hardware with

worst-case input (if it is known), and the execution time is
measured. If the worst-case input is not known, the pro-
gram is executed many times with different inputs, the ex-
ecution time is measured for each test run, and finally, the
longest time is selected. Measurements on the actual hard-
ware avoids the need to construct a hardware model.

Measurement-based methods can be divided into
software-based and hardware-based methods.

Software-based methods can use timing functions pro-
vided by operating systems or programs provided by tool
vendors designed specifically for execution time measure-
ment. These methods often introduce a probe effect, i.e.,
the measurements themselves add to the execution time of
the analysed program. This problem can be alleviated by
simply letting the added measurement code (and thus the
extra execution time) remain in the final program.

An alternative is to use hardware measurement tools with
no or a very small probe effect, e.g., oscilloscopes, logic
analyzers, and in-circuit emulators. The Nexus interface is
sometimes used for timing measurements.

It should be noted that each measurement runs through
only one path of the program. For programs with a sin-
gle path, or a few paths, measurements might be feasible.
However, for most programs, the possible execution paths
are too many to do exhaustive testing, and the worst-case in-
put is not known. This means that the measured times often
underestimate the WCET.

In general, measurements are suitable for less time-
critical software, where an approximate WCET estimate
may be sufficient. If measurements are used for time-
critical software, where a safe WCET must be known, ex-

treme caution must be taken to avoid the problem of under-
estimation mentioned above.

An alternative to do measurements on the actual hard-
ware is to use cycle-accurate simulators. However, these
are scarce, and they also introduce the question of correct-
ness of the results.

2.2 Static WCET analysis.

An alternative technique to determine WCET estimates
is by static WCET analysis. Instead of running the program,
it derives a WCET estimate by statically analysing the tim-
ing properties of the program. Given that inputs and analy-
ses are correct, such a tool will derive a safe estimate, i.e.,
that is larger than or equal to the WCET.

Static WCET analysis is usually divided into three
phases: a flow analysis where information about the possi-
ble program execution paths is derived, a low-level analysis
where the execution time for atomic parts of the code (e.g.,
instructions, basic blocks or larger code sections) is decided
from a model of the target architecture, and a final calcula-
tion phase where the derived flow and timing information
are combined into a resulting WCET estimate.

Loop bounds must be known in order to derive finite
WCET estimates. These bounds can either be given as
manual annotations, or be calculated automatically. Much
of flow analysis research has studied automatic loop bound
calculation. Some flow analysis research has aimed to iden-
tify infeasible paths, i.e., paths which are executable ac-
cording to the control-flow graph structure, but not feasible
when considering the semantics of the program and possi-
ble input data values. Such information can yield a tighter
WCET estimate.

The main issue for low-level analysis is the complex be-
haviour of modern hardware, with features like pipelines,
caches, branch prediction, and out-of-order execution. The
timing behavior of multi-core processors will be the next
big issue for research. Models or simulators of the hardware
are used in the low-level analysis. This eliminates the need
of having the actual hardware available, but a (safe) timing
model of the hardware must be developed, something which
can be very complicated. Some research projects study how
to simplify the process of hardware timing model develop-
ment.

Due to the complexity of today’s software and hard-
ware, both flow- and low-level analysis may yield over-
approximations, e.g., reporting too many paths as feasible
or too large timings to instructions. Thus, the calculation
may give a pessimistic WCET value.

Today, two static WCET tools are commercially avail-
able: aiT [1] and Bound-T [26]. Several research prototypes
have been developed, including Chronos [4], the Florida
State University tool [11], Heptane [12], OTAWA [17],
SWEET [10], and TimeBounder [3].



2.3 Hybrid WCET analysis.
Hybrid analysis methods combine measurements and

static analysis. The tools use measurements to extract tim-
ing for smaller program parts, and static analysis to deduce
the final WCET estimate from the program part timings.
Examples of hybrid tools are RapiTime [20], SymTA/P [23]
and MTime [27].

There is a possibility that the hybrid methods underes-
timate the WCET, since the WCET estimate is based on
measurements, and measurements may exclude the worst
case path. The selection of test cases to reach the best path
coverage is therefore crucial when using hybrid methods.
An advantage of the hybrid approach may be that selection
of test cases and control of coverage are well-known tech-
niques in software engineering.

Actually, hybrid methods may also overestimate the
WCET, since measurements from mutually exclusive parts
of the program may be combined in the final WCET.

RapiTime is able to either analyse source code, adding
instrumentation points on the source code level, or, other-
wise use binary readers and instrument the generated code.
In RapiTime, measurements are combined into execution
profiles, from which the probability of an execution to ex-
ceed a certain time budget can be found.

The hybrid approach seems to be suitable for systems
where an absolutely safe WCET is not strictly necessary,
or for complex processors where a processor model is not
available and may be vary hard to develop.

3 Sources of Information
The main inputs to this paper will be presented in more

detail in this section.

WCET Challenge 2006. The WCET Challenge 2006
[8, 24] was the first event that compared different WCET
tools using the same set of benchmarks. The WCET
Tool Challenge used programs from the Mälardalen WCET
benchmark suite [21] and the PapaBench benchmark [18].

The purpose of the WCET Tool Challenge was to be
able to study, compare and discuss the properties of differ-
ent WCET tools and approaches, to define common met-
rics, and to enhance the existing benchmarks. The WCET
Tool Challenge was designed to find a good balance be-
tween openness for a wide range of analysis approaches,
and specific participation guidelines to provide a level play-
ing field. The WCET Tool Challenge concentrated on the
following three aspects of WCET analysis: flow analysis,
user interaction, and performance.

Five WCET tools entered the Challenge. Of these, two
were commercial (aiT [1] and Bound-T [26]) and three
were research prototypes (Chronos [4], MTime2 [27] and

2Since the MTime tool did not support function calls, and all bench-
marks contain such calls, no results from MTime were available this time.

SWEET [10]). There is a short description of each of these
tools in [8].

The main conclusions from the Challenge was:
• The tests were a real challenge to the participating

WCET tools. We had a success range from 76% to 100%
in terms of how many of the benchmark programs that
were analyzable by a certain tool3.

• The main result of the Challenge was not a measure of
the tightness of the WCET results. The results rather
focused on the usability aspects - the trouble connected
with providing inputs and running the tools.

• The tests clearly pointed out problems existing in the
tools, in the benchmarks and the used compilers.

• Several bugs in both the tools and the benchmarks were
corrected during the Challenge.

• Full automation was not reached; the best result were
88% of the benchmarks (the automation rate calculated
as the ratio of the number of automatically analyzed pro-
grams to the number of all analyzable ones).

• Most of the tools found more than half of the loop
bounds automatically. Two tools found infeasible paths
automatically.

• Actual WCET estimates could not be compared since the
tools supported different processors and compilers.

• The quality of WCET estimates was hard to judge for
all tools but aiT, since aiT was the only tool to pro-
vide worst case measurements for some of the bench-
marks. Chronos provided simulated values that indicated
the possible size of overestimation.

WCET Tool Case Studies. Experience reports from the
use of WCET tools in industry are rather scarce. There are
some reports on the use of commercial WCET tools for ana-
lyzing codes for space applications [13, 14, 22], in avionics
software [7, 25], and in automotive software [16].

The WCET group at Mälardalen University have per-
formed a number of case studies [9]. These studies include
WCET analysis of the OSE operating system, code control-
ling welding equipment, communication software in cars,
and transmission code.

The case studies referenced above mainly describe work
with static WCET tools. One interesting exception is the
pair of Master’s theses [5, 29]. In these, the same code was
analysed using both measurements (with different methods)
and static analysis tool (aiT), and results were compared.

To the author’s knowledge, there is yet no experience
report written for hybrid tools. Also, no hybrid tool entered
the WCET Challenge 2006. Therefore, this paper will not
cover experiences of such tools.

The results and experiences from the sources above are
used in the discussion in the rest of the paper. For simplicity,
there will be no references to individual sources in the text.

3MTime excluded.



4 Usability Aspects of WCET Tools

This section gives an overview of usability aspects of
WCET tools. First, some basic considerations are dis-
cussed, followed by a more detailed discussion of usability
aspects for different types of tools.

4.1 Basic Considerations

Facing the task of estimating the WCET of some piece
of code, there is a set of immediate questions that must be
answered. They have to do with type of processor, selec-
tion of code to analyse, requirements of the result, selection
of the most suitable method, etc. Once these questions are
answered, the next step will be to proceed with the analysis
using the chosen methods and tools.

Which processor is used? Not all processors are sup-
ported by the existing tools. An important issue is that a
model of the processor has to be built for static analysis
tools, which means that such models may not be available
for uncommon, new, or very complex processors. For mea-
surements and hybrid methods, no such model is required,
since the timing values are measured on the hardware itself.

How complex is the hardware? Many of today’s pro-
cessors are complex and non-deterministic with pipelines,
caches, out-of order execution, and other advanced features
that speeds up the average execution, but make the timing
behaviour more dynamic and especially the worst case exe-
cution time harder to calculate. The more complex the pro-
cessor is, the more complex is static WCET calculation, and
the larger the risk for large overestimations. For measure-
ments and hybrid methods, the complexity of WCET cal-
culations is mitigated, but the large variations of execution
time may still lead to large overestimations.

Is the hardware available? Sometimes, hardware and
software are developed in parallel, making it impossible to
measure timing on the target hardware. In such cases, static
analysis is advantageous, assuming a model of the proces-
sor to be used is available. However, it is sometimes the
case that accurate simulators of the processor are available
before fully functional silicon is. Measurements and hybrid
methods can then use these simulators.

What timing value is really wanted?
• Is a safe WCET estimate required? If so, then static ana-

lysis probably is the right way to go.
• Is an approximate WCET estimate sufficient? That may

be the case, if the system is a soft real-time system, or
if the system can tolerate occasional overruns. In that
case measurement-based timing values can be sufficient.
Hybrid tools are another option, sometimes giving more
detailed information about the result than just a single
value (see Section 2.3).

• Is more information than just a single WCET wanted?
Today’s static and hybrid tools provide useful extra infor-
mation, for example the timing for individual functions,
identification of bottlenecks, and information about the
longest path. Sometimes, parametrical values are of in-
terest, i.e., the WCET as a function of, e.g., the inputs to
the analysed code. Be aware of that most of today’s tim-
ing analysis methods most often support the calculation
of one value only. On-going research studies how to find
parametrical WCET values.

What is the size of the code? Some static tools may have
long analysis times for large programs. These tools often
support precision level adjustment, and sometimes faster
analysis can be achieved to the price of lower precision,
which may be acceptable at the beginning of a project.

What part of the code should be analysed? Is it the
whole task, or part of it? Do you differ between running
modes, e.g., the start-up phase of the system and the system
during normal operation? Sometimes you want to exclude
some paths since they represent program states which are
not of interest for WCET, but take much longer to execute
than normal operation. Error handling is one such example.
Prepare for more work the more detailed the restrictions are.

What is the structure of the system? Does the system
use a real-time operating system (RTOS) or not? Is the code
task-oriented? It might affect the analyzability of a system
when using static or hybrid methods. Systems with many
small and well-defined tasks, scheduled by a strict priority
RTOS or a time-triggered schedule, are typically easier to
analyze than monolithic programs based on an infinite main
loop.

How is the code written? This also matters when us-
ing static or hybrid methods. Simple and straight-forward
code, written with WCET analysis in mind, may impose
less requirements on the WCET analyzer, which makes
them faster to analyze, and yields safer results, than com-
plex code. Examples of complex troublesome constructs
(or even impossible for some WCET tools) to analyze is the
use of loops with complex exit conditions and deep nesting,
recursion, dynamic memory, function pointers, and unstruc-
tured code.

Much code today is generated from model-based tools
like TargetLink, which means that the code available is
often not really readable for the programmer. Adapta-
tion of WCET tools sometimes have to be made for these
tools. On the other hand, the code can be generated so that
WCET analysis is simplified, e.g., complex constructs can
be avoided.

There is a coding style, single path programming [19],
where algorithms are selected so that the resulting program
contains just one path. In this case, flow analysis is triv-
ial, and the WCET can be calculated by doing a low-level



analysis for just one path (or simply run the program and
measure the time).

Is all code available? To do meaningful measurements, a
complete and executing program has to be available. When
using static analysis, not finished parts may be replaced by
stubs to get allow compilation and linking. In aiT, parts of
the program can be excluded from analysis and be assigned
a WCET by manual annotations.

Is the source code available? Measurements do not re-
quire source code. Some static and hybrid tools (e.g., aiT,
Bound-T, and RapiTime) are able to analyse executable
code without having access to the source code. They use
binary readers that decode the executable code and re-
construct the control flow graph of the program. However,
for many actions, things become easier if you have access
to the source code. For example, when using static meth-
ods, adding manual annotations is much more convenient
on source code level.

WCET tools that require source code (e.g., SWEET) are
of course dependent of source code availability. Since low-
level analysis must be made at executable code level, these
tools are, in this case also dependent on the compiler. Li-
braries linked to the code may not be available as source
code, which imposes a problem to such tools.

What programming language is used? WCET tools that
analyse executable code are independent of the language
used. WCET tools that analyse source code or intermedi-
ate code (e.g., SWEET) are dependent of the availability of
the source code, and thus also of the language. Not all lan-
guages are handled by existing WCET tools. Typically, C
and Ada code is explicitly supported.

Which compiler is used? WCET tools that analyse exe-
cutable code (e.g., aiT, Bound-T, and RapiTime) are in prin-
ciple independent of the compiler used. However, decoding
of executable code generated by some compilers have bet-
ter support than others. Often, debug information for the
code is used, which means that there is a dependency to the
compiler.

WCET tools that analyse source code or intermediate
code (e.g., SWEET) are dependent of choice of the com-
piler. The WCET estimates are valid for the target system
only if the same compiler is used both by the WCET analy-
sis and for code generation for the target system.

4.2 Usability Aspects
The three main methodologies are quite different; there-

fore the discussion below will be separated into three sub-
sections, one for each methodology.

Usability aspects of measurements. There are differ-
ent approaches for WCET estimation using measurements.
Typically, you choose one of the following alternatives:

1. Execute the program on the target hardware with
worst-case input and measure the execution time. The
problem here is to find the worst-case input. This is
not trivial for most programs, since it is often hard to
force the program to take a certain path by selecting
correct inputs. There are some ideas how to extend the
test data domain to get closer to the worst case input,
see, e.g., Kirner [15].

2. If the worst-case input is not known, execute the pro-
gram with all inputs, measure the execution time for
each test run, and finally, select the longest time. This
is, for most programs, not possible due to combinato-
rial explosion.

3. An alternative can be to run all paths through the pro-
gram and select the longest time. This may mean fewer
runs than in the last case, since one path typically cor-
responds to many inputs. However, the number of pos-
sible paths for most programs (containing loops and
selections) is normally enormous. Also, if execution
times are dependent on the inputs, this may not work.

4. A common replacement of the strategies above is to
execute the program many times with different inputs,
and then select the longest time. However, this is in-
herently unsafe, since there is no guarantee that the
longest path has been executed. It is often very hard
to find the real WCET, especially for complex code
and/or systems with complex hardware features.

Beside the basic safety problem with measurements,
mentioned above, there are some other usability problems
that should be mentioned.
• The actual hardware (or a cycle-accurate simulator of

the processor) must be available, and the system must
be correctly set up.

• All code to be executed must be available.
• Often some initial worst-case configuration have to be

made before the measurements, e.g., to guarantee that
the cache is empty.

• Disturbances, like interrupts, during measurements are
not allowed and must be switched off (or, at least, they
have to be accounted for).

• If measurements have probe effects, they do not give the
same timing behaviour as the original code.

• It is possible to identify the executed path when hard-
ware like logical analyzers and in-circuit emulators are
used. However, a lot of work is typically required. It
is therefore very hard to exclude certain paths, like error
handling, from measurements. This often requires deep
knowledge of the code.

Usability aspects of static WCET tools. When using
static tools, a number of things must be done before you
start the actual analysis. They are mainly concerned with
setting up system info, like processor, clock rate etc. Also,
sometimes you will have to supply information about which



code to analyse, address information, etc. If the analysis
tool requires the source code, a compilation step is typi-
cally required before analysis to ensure agreement between
source code and executable code.

One strategy can be to first run the WCET tool with no
loop bounds. This first attempt does automatic calculation
of (some) loop bounds and (some) infeasible paths (differ-
ent amount of automatic calculation for different tools) and
points out the loop bounds that could not be found. This
can be due to mainly two reasons, either the loop bound
is input-dependent, or the loop is so complex that the loop
bound calculation fails.

As a second step, solve the problem with the missing
loop bounds. If the loop bound is input-dependent, provide
input limitations manually using annotations. If a loop is
too complex, the loop bound can be given manually, or con-
sider re-writing the code. Now, WCET estimates should be
found for the program, maybe with some overestimation.

As a third step improve precision by reducing overesti-
mation. If the tool supports input-sensitive flow analysis,
limits of input values may be given to lower loop bounds
and to find infeasible paths. For other tools, manual an-
notations may be provided to set limits of register or vari-
able values to eliminate infeasible paths. Manual annota-
tions can also be used to directly exclude infeasible paths
or other paths, like error handling, from the analysis. Some
tools support low-level annotations that enhance precision
by, e.g., giving addresses of memory accesses. This step
often requires a lot of work for a complex program, and a
deep knowledge of the code.

An important question is on what level manual annota-
tions should be given (source code, intermediate code or ex-
ecutable code level). Different tools allow different levels,
e.g., aiT gives you a choice of source code or executable
code level, Bound-T uses a simplified way to handle ex-
ecutable code level, and SWEET uses intermediate code
code level. As a general rule, source code level annotations
are most convenient to give for the programmer (assuming
this code is available). Also, source code annotations do not
have to be changed after a re-compilation.

Usability aspects of hybrid WCET tools. Since the suc-
cess of the hybrid tool and the safety of the WCET estimate
is based on measurements, basically the same comments
as for measurements are valid for these tools. The key is-
sue how to find inputs (test cases) to give the best cover-
age. Obviously, full path coverage is a, most often, infeasi-
ble goal. RapiTime contains functions to find non-covered
code, which can help. There are also coverage measures
which can be used, which are better than code coverage,
like Modified Condition/Decision Coverage (MC/DC). One
practical approach could be to start from the test inputs that
probably exist for the program to be analysed, and then to
extend the input set.

5 Conclusions, Discussion and Future Work
WCET tools are entering a phase where they are more

commonly used in industry. However, there is yet no ”one-
click” solution; rather, a lot of preparation has to be made
before a safe and tight WCET can be found. Research and
tool development is necessary to automate this process. A
crucial issue for static analysis is to develop powerful and
scalable flow analysis methods able to calculate most loop
bounds and infeasible paths automatically. For hybrid meth-
ods, better methods are required to generate test data.

WCET tools not only calculate WCET estimates. There
are a number of other aspects of the tools that are important
and make them valuable tools for the programmer. Graph-
ical presentation of programs are very useful, and helps
showing the connection between the source code and ex-
ecutable code. By showing WCET of parts of the program,
the identification of worst case path and bottlenecks can be
simplified. Static tools can help reveal program errors, like
dead code and infinite loops. Hybrid tools can enhance the
set of test cases. When WCET tools become a natural and
integrated part of the development environment, they can
assist the programmer in developing reliable software.

Since different WCET analysis methods have different
advantages and disadvantages, they should be combined to
support each other. For example, rough estimates using
measurements or hybrid methods can be used at the begin-
ning of the timing analysis phase, while safe and rigorous
WCET values found by static tools are necessary towards
the end. Measurements and statically found WCET values
limits the real WCET from below and above, and thus we
can both know the possible interval of the real WCET, and
the maximal overestimation made by the statically found
WCET value. Also, knowledge about the (possibly overes-
timated) worst-case path found by static analysis could be
used during measurements to search for the real worst-case
path. Static and hybrid tools can exchange information that
may enhance their respective analyses.

The newly started EU project ”Integrating European
Timing Analysis Technology” (with project acronym ALL-
TIMES) [2] within the EU Frame Program 7 contains
themes for research including interoperation, scalability, au-
tomation, and integration of timing analysis tools. ALL-
TIMES will thus consider many of the issues discussed in
this paper.

References

[1] AbsInt. aiT tool homepage, 2008.
www.absint.com/ait.

[2] Homepage for the ALL-TIMES project, 2008.
www.all-times.org.

[3] HJ. Bang, TH. Kim, and SD. Cha. An iterative re-
finement framework for tighter worst-case execution time



calculation. In The 10th IEEE International Symposium
on Object/component/service-oriented Real-time distributed
Computing (ISORC2007), volume 00, pages 365–372, Los
Alamitos, CA, USA, 2007. IEEE Computer Society.

[4] The Chronos WCET analysis tool homepage, 2006.
www.comp.nus.edu.sg/∼rpembed/chronos.

[5] Ola Eriksson. Evaluation of static time analy-
sis for CC systems. Master’s thesis, Mälardalen
University, Sweden, August 2005. 63 pages,
www.mrtc.mdh.se/publications/0978.pdf.

[6] Andreas Ermedahl and Jakob Engblom. Execution time
analysis for embedded real-time systems. In Insup Lee,
Jospeh Y-T. Leung, and Sang H. Son, editors, Handbook of
Real-Time and Embedded Systems, pages 35.1 – 35.17. CRC
Press, 2007.

[7] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Re-
liable and precise WCET determination for a real-life pro-
cessor. In Proc. 1st International Workshop on Embedded
Systems, (EMSOFT2000), LNCS 2211, Oct 2001.

[8] J. Gustafsson. The worst case execution time tool challenge
2006. In Proc. 2nd International Symposium on Leverag-
ing Applications of Formal Methods (ISOLA’06), November
2006.

[9] Jan Gustafsson and Andreas Ermedahl. Experiences
from applying WCET analysis in industrial set-
tings. In The 10th IEEE International Symposium on
Object/component/service-oriented Real-time distributed
Computing (ISORC2007), Santorini Island, Greece, May
2007.

[10] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and
Björn Lisper. Automatic derivation of loop bounds and infea-
sible paths for WCET analysis using abstract execution. In
Proc. 27th IEEE Real-Time Systems Symposium (RTSS’06),
December 2006.

[11] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. van En-
gelen. Supporting timing analysis by automatic bounding of
loop iterations. Journal of Real-Time Systems, 18(2-3):129–
156, May 2000.

[12] Homepage for the Heptane WCET analysis tool, 2006.
www.irisa.fr/aces/work/heptane-demo.

[13] N. Holsti, T. Långbacka, and S. Saarinen. Worst-case
execution-time analysis for digital signal processors. In Proc.
EUSIPCO 2000 Conference (X European Signal Processing
Conference), 2000.

[14] Niklas Holsti, T. Långbacka, and S. Saarinen. Using a worst-
case execution-time tool for real-time verification of the DE-
BIE software. In Proc. DASIA 2000 Conference (Data Sys-
tems in Aerospace 2000, ESA SP-457), September 2000.

[15] Raimund Kirner, Ingomar Wenzel, Bernhard Rieder, and Pe-
ter Puschner. Using measurements as a complement to static
worst-case execution time analysis. In Intelligent Systems
at the Service of Mankind, volume 2. UBooks Verlag, Dec.
2005.

[16] Pascal Montag, Steffen Goerzig, and Paul Levi. Challenges
of timing verification tools in the automotive domain. In
Proc. 2nd International Symposium on Leveraging Appli-
cations of Formal Methods (ISOLA’06), Paphos, Cyprus,
November 2006.

[17] OTAWA homepage, 2007.
http://www.irit.fr/recherches/ARCHI/MARCH/
rubrique.php3?id rubrique=28.

[18] PapaBench homepage, 2007.
http://www.irit.fr/recherches/ARCHI/MARCH
/rubrique.php3?id rubrique=97.

[19] Peter Puschner. The single-path approach towards WCET-
analysable software. In Proc. IEEE International Conference
on Industrial Technology, pages 699–704, Dec. 2003.

[20] RapiTime WCET tool homepage, 2006.
www.rapitasystems.com.

[21] Mälardalen WCET research group. Mälardalen WCET
benchmarks homepage, 2006.
http://www.mrtc.mdh.se/projects/wcet/
benchmarks.html.

[22] M. Rodriguez, N. Silva, J. Esteves, L. Henriques, D. Costa,
N. Holsti, and K. Hjortnaes. Challenges in calculating the
WCET of a complex on-board satellite application. In Proc.
3rd International Workshop on Worst-Case Execution Time
Analysis, (WCET’2003), 2003.

[23] Jan Staschulat and Rolf Ernst. Worst case timing analysis
of input dependent data cache behavior. ecrts, 0:227–236,
2006.

[24] L. Tan. The worst case execution time tool challenge 2006:
The external test. In Proc. 2nd International Symposium
on Leveraging Applications of Formal Methods (ISOLA’06),
November 2006.

[25] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona,
M. Langenbach, R. Wilhelm, and C. Ferdinand. An ab-
stract interpretation-based timing validation of hard real-time
avionics software. In Proc. of the IEEE Int. Conf. on Depend-
able Systems and Networks (DSN-2003), June 2003.

[26] Tidorum. Bound-T tool homepage, 2006.
www.tidorum.fi/bound-t.

[27] Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Pe-
ter Puschner. Automatic timing model generation by CFG
partitioning and model checking. In Proc. Conference on
Design, Automation, and Test in Europe (DATE), Mar. 2005.

[28] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl,
Niklas Holsti, Stephan Thesing, David Whalley, Guillem
Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika
Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan
Staschulat, and Per Stenström. The worst-case execution
time problem — overview of methods and survey of tools.
Accepted for publication in ACM Transactions on Program-
ming Languages and Systems, 2008.

[29] Yina Zhang. Evaluation of methods for dynamic
time analysis for CC-systems AB. Master’s the-
sis, Mälardalen University, August 2005. 72 pages,
www.mrtc.mdh.se/publications/0977.pdf.


