
Two Camera System for Robot Applications; Navigation

Jörgen Lidholm, Fredrik Ekstrand and Lars Asplund
School of Innovation, Design and Technology

Mälardalen University
Sweden

{jorgen.lidholm,fredrik.ekstrand,lars.asplund}@mdh.se

Abstract

Current approaches to feature detection and matching
in images strive to increase the repeatability of the detec-
tor and minimize the degree of outliers in the matching.
In this paper we present a conflicting approach; we sug-
gest that a lower performance feature detector can pro-
duce a result more than adequate for robot navigation ir-
respectively of the amount of outliers. By using an FPGA
together with two cameras we can remove the need for
descriptors by performing what we call spurious match-
ing and the use of 3D landmarks. The approach bypasses
the problem of outliers and reduces the time consuming
task of data association, which slows many matching al-
gorithms.

1. Introduction

Navigation, object detection and object recognition are
fundamental problems in robotics - all which can be re-
solved with vision. The fundamental task in any of these
applications is the reduction of the image complexity. In
order to reduce the image information we need some sort
of feature extraction such as line, edge or corner detec-
tion, or a combination thereof. Various approaches have
been made on adapting these principle feature detectors
into more complex, high-level detectors with different sets
of descriptors. The idea is to increase the invariant proper-
ties of the detector and thereby increase what is by many
viewed as the most important factor of the detector, the
repeatability. However, in general, the more complex the
detector the more computational heavy it becomes. When
features have been extracted, the next step is to perform
some sort of matching, either by tracking a feature in sub-
sequent images or by matching in two cameras. The gen-
eral idea is that if this is to be performed at a high frame
rate (around 30 frames per second) it requires a high re-
peatability detector and a computationally light matching
algorithm with minimal dynamic properties.

In this paper we present a somewhat divergent ap-
proach. We suggest that it is possible to produce a re-
sult adequate for navigating a mobile robot with a lower

performance feature detector. We use reprogrammable
hardware (FPGA) together with two cameras to generate
a real-time, stereo-vision, feature detector and matching
application. By using the motion of the robot we can re-
duce the problems associated with feature matching. The
advantages of an FPGA is manifold; the parallel proper-
ties of an FPGA makes for a high-throughput, small foot-
print system, and the comparatively low power consump-
tion makes it ideal for mobile applications.

2 Related work

Robot navigation is a well-explored subject with vi-
sion based navigation being where the current focus lies.
The approach of using an FPGA for the system is also
becoming widely adopted as it enables real-time image
processing [1] [6], which is a crucial part in mobile ap-
plications [4]. For certain applications FPGAs are better
suited than desktop computers due to their parallel struc-
ture. In [15] an FPGA implementation outperforms a PC
by one order of magnitude for the SIFT detector [8]. The
power of the FPGA is further shown in [12] where they
are unable to run Harris corner detector in real-time on a
computer with an Opteron processor running at 2.6 GHz.
This advantage over personal computers is likely to re-
main as both technologies are evolving in a similar fashion
performance-wise.

Navigation by vision requires matching of images, or
rather features in separate images. Tracking features in
real-time in subsequent images from a camera is not a triv-
ial task, partially due to the fact that it requires a very sta-
ble feature detector with high repeatability [3]. The cur-
rent feature detectors with the highest repeatability, such
as SIFT [8] and SURF [2], create descriptors for each fea-
ture in order to simplify the matching task. Unfortunately,
the high dimensionality of such a descriptor means that it
is computationally intense [10].

All matching algorithms are faced with the correspon-
dence problem, i.e., how to match corresponding features
in two images without assigning any incorrect matches.
The approaches differ, from cross-correlation to the sum
of squared differences, but there will always be outliers,
features not correctly matched, or not matched at all.



Many have tried to minimize the occurrence of outliers,
and in [14] a comparison, and yet a new approach, is pre-
sented.

3. Experimental platform

We have designed a camera system intended to work
as a general purpose research platform for FPGA based
vision.

3.1. Image sensors
The system uses the MT9P031 5-megapixel CMOS

camera sensor from Micron. The sensor elements are or-
ganized in a bayer pattern, i.e., the first line consists of
green and red pixels and the second line consists of blue
and green pixels, see figure 1.

Figure 1. The Bayer pattern pixel layout
with one row of green (light gray) and red
(medium gray) pixels, and one row of blue
(dark gray) and green pixels.

The pixels can be read in a number of ways. The read-
out follows that of the bayer pattern, however the order
can be mirrored and pixels skipped for both the row and
column. In skipping mode, a number of row-pairs and/or
column-pairs are not sampled, i.e. skipped, thereby re-
ducing the resolution and increasing the frame rate but
preserving the field of view.

It is possible to combine the adjacent skipped pixels in
order to reduce the effect of aliasing introduced by skip-
ping. This is called binning and results in a more coher-
ent/smooth image, than with solely skipping, but also in
lower performance as all the pixel elements need to be
sampled.

Figure 2. MT9P031 image sensor from
Micron mounted on our carrier board (the
lens is not mounted).

Additionally, one can specify what region of the image
sensor to read, useful when only a limited field of view
is needed and a higher frame rate desired. The imaging
sensor is capable of running at 96 MHz, and the frame
rate is dependent on the clock frequency and the frame
size, i.e., the number of pixels read.

Table 1. Micron MT9P031 CMOS image sen-
sor features [9]

MT9P031 features
Color filter array RGB Bayer pattern
Maximum data rate 96 Mp/s at 96 MHz
Power consumption 381mW at 14 fps

full resolution
Pixel size 2.2µm×2.2µm

Maximum frame rates
2592×1944 14 fps
1280×720 skipping 60 fps
640×480 with binning 53 fps
640×480 with skipping 123 fps

3.2. FPGA board
The FPGA board has a size of 70×55mm and is

equipped with a Xilinx Virtex II XC2V8000 FPGA to-
gether with 256 Mbit flash, 512 Mbit SDRAM and a
CPLD. The purpose of the flash memory is for storing
FPGA configurations and it accommodates 8 different
configurations. At power on the CPLD loads the FPGA
according to the switch settings. The configuration selec-
tor is fitted on the Carrier Board (section 3.3) but may be
overrun by for example a micro controller. See figure 3.

Figure 3. Block diagram of the camera sys-
tem, two additional cameras are connected
for a total of four cameras.

3.3. Carrier board
The carrier board has a size of 110×90mm and have

four camera connections, with all signals, individual to

2



each camera and generated by the FPGA. Additionally,
the carrier board incorporates a program selector, power
supply, an USB controller, serial port and control-IO sig-
nals. It is also fitted with a FireWire connector for future
extension.

4. Feature detectors

A feature can be a corner, line or any salient region
which can be extracted from an image.

One of the first feature detectors was Moravec’s corner
detector [11], from 1977, which Harris et. al. improved in
1988 [7]. Since then, many other feature detectors have
been developed with different qualities [13]. Most de-
tectors are designed with repeatability in mind, although
some are designed for other properties, such as speed [12].
Repeatability, as defined in [13], is an important prop-
erty, however, for our application, localization accuracy
and speed are paramount. Harris is still one of the most
robust detectors available and this together with its speed
when implemented on an FPGA makes it a suitable detec-
tor for this application.

4.1. Stephen and Harris combined corner and edge
detector

In [13] the authors concluded that, among the tested
feature detectors, (Foerstner, Cottier, Heitger, Horaud,
Harris and Improved Harris), the improved version of the
Harris corner detector performed best regarding repeata-
bility and information content. The original implementa-
tion of the same detector was, however, not far behind.

Moravec’s corner detector measures the variation in in-
tensity in an image and looks for low self-similarity in a
point. A corner is defined as a point with low similarity to
the surrounding region in all directions, i.e., a point where
the minimum change in intensity, in any direction, is large
(above a certain threshold) [7].

According to Stephen and Harris, Moravec’s detector,
however, suffers from a number of problems which they
try to correct with their combined corner and edge detec-
tor. In order to remove the anisotropy and noise of the
discrete, rectangular window in which the variation is cal-
culated, they introduce an analytic expansion about the
shift origin together with smoothing with a Gaussian filter.
By also taking into account the direction of shift they can
produce a rotationally invariant detector that is not over-
sensitive to edges.

Stephen and Harris also introduce a response function
in order to select isolated interest points, as opposed to
simply classify the region as containing a potential fea-
ture. This response function, which includes a structure
matrix calculated from image derivatives, indicates the
quality of the detected feature and allows for the filtering
out of less distinctive features with the use of a threshold
similar to Moravec’s.

4.2. FPGA implementation of Harris corner detector
We have a VHDL implementation of the Stephens and

Harris combined corner and edge detector. It was origi-
nally implemented as a undergraduate thesis for an older
vision system. We have adapted it to a new, larger FPGA,
allowing us to increase the parallelism and thus improve
the speed.

Some operations need to be performed sequentially for
practical purposes. One of the most limiting factors of
the FPGA is the number of multipliers available. Cer-
tain steps in the algorithm requires simultaneous multi-
plications, and the need for multipliers would surpass the
available numbers if parallelled to the full extent. In or-
der to save computational resources, the units needs to be
”reused”, i.e., not exclusive to a single task. Due to the
fact that the corner detector measures the intensity in the
image and not the saturation or color values, we need only
measure the contribution in one point of the bayer matrix,
i.e., the green pixel. We chose to use only one value per
color quadrant and thus we only feed the corner detector
with a new pixel every other column every other row. This
leaves room for sequential operations on four clock cycles
for every pixel.

Figure 4. A block diagram of our VHDL im-
plementation of the Harris corner detector.

The corner detector uses 3×3 and 5×5 pixel windows.
This is the only buffering required, all other processing is
performed as the pixel data arrives. In the block diagram
in figure 4 our implementation of Harris corner detector
can be seen. The process consists of 7 major internally
piped blocks. The first block creates a 3×3 sliding win-
dow. When two pixel rows plus one pixel have been ex-
tracted from the camera the first window is passed on to
the ”Derivative Mask” block.

The derivative block calculates the intensity x- and y-
gradients. These values, the first derivatives, are then
passed onto the window generator for the multiplication/-
Gaussian stage, which creates a 5×5 sliding window.

In the multiplication stage, the structure matrix is cal-
culated and then run through a Gaussian filter. The Gaus-
sian filter is constructed using shift operations, as opposed
to multiplications, in order to save multipliers that can
be used for either increased parallelization or multiplier-
heavy postprocessing. The filter is not a true Gaussian
function as the values are selected to enable shifting, but
no performance degradation has been observed for the

3



approximation, which can be supported by [5] that shows
that Gaussian weighting need not be the optimal weight-
ing function.

The filtered value is then used in the response function
and the result is fed to a new window generator. The last
stage of the pipe filters the response value so that only the
local maxima within the 3×3 sliding window generates a
corner response, as long as it exceeds the current thresh-
old.

5. Interest point location

An interest point is, what we call, a stereo matched fea-
ture that can be located in a coordinate system as a land-
mark, that a robot can use for navigation. In this section
we describe how we can calculate the location of a land-
mark from two stereo matched features. The same pro-
cedure, in reverse order, can be followed to calculate the
pixel coordinate at which a landmark should appear, given
the robots current location and attitude.

We use the right-handed coordinate system with pos-
itive X to the right, positive Y in front and positive Z
above.

Figure 5. Right-handed coordinate system

The full definition of the robot absolute vector defines
the position in three dimensions and the attitude in three
dimensions (5.1). The robot center is located at the floor
in the center of the robot in the x, y plane.

R = (Xr, Yr, Zr, αr, βr, γr) (5.1)

Since the robot is moving in a controlled indoor envi-
ronment without slopes, we can consider Zr constant and
zero. The same applies for αr and βr. The stereo cam-
era rig has a fixed location on the robot and the constant
relative vector of each camera is defined in (5.2), where
n marks the camera, left or right. The vector is relative
to the robot center. To simplify the stereo matching the
β̂ factor should be zero and the α̂ should be the same for
both cameras, resulting in that line j in the left camera
corresponds to line j in the right camera.

cn =
(
xn, yn, zn, α̂n, β̂n, γ̂n

)
(5.2)

The absolute vector of each camera can be calculated
by adding the relative camera vector to the absolute robot
vector:

Cn = (Xr + xn, Yr + yn, Zr + zn,

α̂n, β̂n, γr + γ̂n) (5.3)
= (Xn, Yn, Zn, αn, βn, γn) (5.4)

Now we have the absolute position of the cameras and
the direction they are pointing in, the attitude.

Every pixel in an image corresponds to a two dimen-
sional direction which can be calculated from the focal
length of the lens f and the pixel separation on the cam-
era chip Pwidth and Pheight. The two angles θ and φ and
an unknown length r form a polar vector (5.7).

(Xp, Yp) denotes the pixel coordinate, with the camera
center at (0, 0), and Q is the transformation from pixel
coordinates to a polar vector.

θ = arctan
(

Xp ∗ pwidth

f

)
(5.5)

φ = arctan
(

Yp ∗ pheight

f

)
(5.6)

Q(Xp, Yp) = (r, θ, φ) (5.7)

By using (5.5) and (5.6) we can find the angular dis-
tance between every pixel. The MT9P031 camera chip has
a pixel separation of 2.2µm (table 1) but we are only sam-
pling every second pixel column and row, thus doubling
the pixel separation to 4.4µm. The focal length of the lens
is 4mm. This results in approximately 1.1 milliradians per
sampled pixel in both horizontal and vertical directions.

Lets consider the case where we know which feature in
the left camera corresponds to which feature in the right
camera. By forming a triangle with corners at the two
camera centers and the third corner at the interest point
with angles as seen in figure 6 we can calculate the dis-
tance of the two unknown triangle edges by using the law
of sine, see equation (5.8-5.10). The camera separation is
known and denoted Sc.

λ = π − θl − (π − θr) (5.8)
ϑn

sin(θn)
=

Sc

sin(λ)
(5.9)

ϑn =
Sc ∗ sin(θn)

sin(λ)
(5.10)

Now we have the distance and direction to the inter-
est point from each camera relative to the camera attitude,
(ϑl, θl, φl) and (ϑr, θr, φr). By extracting the camera at-
titude as a polar unit-vector, and rotating it by the relative
interest point vector we get the unit vector from the cam-
era pointing at the interest point. To get the cartesian coor-
dinate of the interest point we multiply the pointing vector
by the length calculated in (5.10), convert it to a cartesian
coordinate and add the absolute cartesian camera coordi-
nate (5.14).

4



Figure 6. The angles from each camera to a
feature point. θ for the left and right cam-
era, the camera separation Sc and φ, which
should be the same for both cameras.

C and P marks the cartesian and polar coordinate sys-
tem respectively or a transformation between the two.
The cartesian location of camera n.

C(Cn) = (Xn, Yn, Zn) (5.11)

The attitude of camera n as a polar unit vector.

P (Cn) = (1, α, γ) (5.12)

The direction and distance to the interest point k.

P (Ik) = (ϑn, φn, θn) (5.13)

The space location of the interest point.

C(Ik) = C(Cn) + C(ϑn ∗ (rotφn,θnP (Cn))) (5.14)

The conversion from polar vector to cartesian coor-
dinate requires the use of sin and cos as seen below.
cos(θ) = sin(π

2 − θ) allowing a sin only implementation
in the FPGA.

x = r ∗ sinφ ∗ cos θ (5.15)

= r ∗ sinφ ∗ sin(
π

2
− θ) (5.16)

y = r ∗ sinφ ∗ sin θ (5.17)
z = r ∗ cos φ (5.18)

= r ∗ sin(
π

2
− φ) (5.19)

5.1. Image sequence feature tracking
To track features in an image sequence is not a triv-

ial problem, feature extractors like Harris corner detector
have minor problems with repeatability resulting in fea-
tures disappearing and reappearing.

Tests has shown that a simple tracker, like nearest
neighbor is not reliable enough [3]. To successfully track
features in an image a more advanced algorithm is re-
quired, possibly where information of the feature neigh-
borhood is known.

A factor which makes it even harder is that we have a
resolution of 1.1milliradians per pixel which at one me-
ters distance corresponds to approximately 1mm, which
can make minor vibrations result in large displacements
of features in the image.

A common method of improving the matching perfor-
mance is to use feature descriptors. Feature descriptors
provide more information about a feature, by including
neighborhood data. The descriptor makes the features
more distinctive and unique. These descriptors simplify
the tracking problem a lot, but require more computation
in the feature extraction state but still does not solve the
problem completely. A good example of how computa-
tionally intensive it can be is the SIFT algorithm [8], SIFT
systems are often not managing more than a few frames
per second.

We choose an approach to the stereo matching prob-
lem which does not require feature tracking in an image
sequence.

In real-time applications, direct matching seems like
the best approach, as it is desirable to match features on
a real-time basis. However, if the frame rate is suffi-
ciently high, intermediate matching can be more than ade-
quate. Statistical approaches for handling outliers by con-
fidence values are well-explored, but they are normally
time-consuming and can be problematic when matching
in a 2D environment [14]. By moving the matching part
onto the 3D coordinates from a stereo-vision camera sys-
tem, it is possible to eliminate the uncertainty of 2D pixel
coordinates.

5.2. Spurious matching and landmark evaluation
To match a feature in the left image with a feature

in the right image is known as the correspondence prob-
lem. A common approach is to use a correlation window
around the features and with a statistical method calculate
a matching score. The score with the highest value is the
most likely to be the correct match. The matching score
can be calculated with methods like, cross-correlation,
sum of squared differences and χ2 for example [14]. To
successfully use statistical methods it is necessary to cal-
culate the matching score for many different matching
pairs to find the match with the highest possible score. It
is also necessary to find the outliers or false matches.

Our approach is adapted for a real-time vision system
where the data is processed as a stream. No image is
stored as a whole, line buffers are however used.

5



A feature appearing at pixel row n in the left camera
must appear, if existing, on row n ± m, where m = 1
under the condition that the camera distortion is corrected
and that the cameras are perfectly aligned. The horizon-
tal limitations can be found by knowing the attitude of the
cameras. The search window denoted Wm(Fi) represents
the maximum area in which a feature in the right image
must be located to correspond to feature Fi in the left im-
age.

By matching every feature Fi in the left image with
every feature within Wm(Fi) in the right image we get a
set of possible landmarks LMK(Fi). Within this set of
3D coordinates there can be only one that corresponds to
the actual landmark, which one is unknown. We call this
spurious matching. Instead of trying to find the correct
stereo correspondences, we try to find which landmarks
in the environment are the correct ones. While moving
the robot, measuring the location of the robot using wheel
based odometry, and continuously calculating the possible
landmark location for every feature Fi, the reappearing
landmarks are then put in a landmark database with an
increasing confidence related to uniqueness and stability
of the landmark location.

To rely on odometry can be risky because it is a relative
measurement system with no point of calibration. Wheel
slip can cause huge faults, which can be hard to recover
from. For shorter distances, less than one meter, the ac-
curacy provided by wheel based odometry should be suf-
ficient. As soon as enough landmarks has been located
with good confidence the odometry system can be used
solely as a support system and is no longer required for
the vision based navigation, which can be used for visual
odometry.

When a number of landmarks has successfully been lo-
cated it is unnecessary to try and relocate them in the man-
ner described above. By predicting the robots location and
attitude before each iteration, using for example a Kalman
filter, we can find the pixel coordinate for each possibly
visible landmark and exclude those features from the im-
ages. This reduces the amount of features in the images
which need to be matched.

Another way of reducing the amount of possible
matches is to adapt the discrimination level according to
how many features was detected in the previous images in
order to have a sufficient amount of features.

The camera system is a resource limited system. A
navigation system like this will collect many landmarks,
requiring large amounts of preferably volatile memory so
that data can be retained during a power down. A robot
always has a computer for controlling the high level strat-
egy, taking actions on sensors and planning future strate-
gies. The vision based navigation system presented here
is supposed to work like an advanced sensor. The vision
system can report all landmarks, confidently located in the
environment, to the main computer which stores them in a
database and sends them back to the vision system when
they will reappear in the visual field. This approach al-

lows the vision system to only keep a minor amount of
landmarks in local storage, like block ram or SDRAM,
which is available on the FPGA board.

Computational requirements.
Calculating the space location of a feature pair, as seen in
(5.5-5.14), requires 25 operations. Harris extracts
approximately 300 corners from a 320×480 pixel frame
without being too cluttered. In average this means less
than one corner per line, the maximum number of corners
possible on a single line is 320

3 = 106, though very
unlikely (see section 4.2).
A pessimistic number of matches per feature could be
around 20, which would render in 6000 landmark
calculations per frame. 25 operations on 6000 landmarks
would result in 150’000 operations per frame, which is
rather low.

6. Results

Our FPGA based stereo vision system is capable of
real-time feature extraction, using the implemented
Stephen and Harris combined corner and edge detector.
To stereo match these features, for landmark location, is
not a trivial problem. We present a novel approach which
we call spurious matching allowing us to validate which
matches correspond to real landmarks by moving the
robot and extracting the features at different viewpoints.
In the current implementation of Stephen and Harris
combined corner and edge detector 75 out of 150
available multipliers are used, this could easily be
reduced to 25 by sharing multipliers in the factorization
step of the Harris algorithm. For performance results of
the corner detector see tables 2 and 3. See table 4 for
frame rates of Harris corner detector on our system.

Table 2. Computational performance of our
implementation of Harris corner detector.

Op/Block
Calc of
edge mask

Fact. and
Gaussian
filter

Calc. rep-
sons func-
tion

Add 4 120 1
Sub 6 0 2
Shifts 0 75 0
Mul 0 75 3
Total 10 270 6

Table 3. Performance total of Harris corner
detector at different frame rates

pixels/frame fps Instr./pix Cameras MIPS
148’800 27 286 2 2’298
148’800 34 286 2 2’894

6



Table 4. Performance of our implementation
of Harris corner detector.

Frame size Cam freq. FPGA freq. FPS
320×480 96MHz 100MHz 65 fps*
320×480 50MHz 100MHz 34 fps
320×480 40MHz 100MHz 27 fps

* Theoretical value which we have not been able to verify.

7. Future work

The proposed spurious matching algorithm has not been
fully verified yet, there are several performance factors
which need to be evaluated like, camera discrepancy,
odometry precision and landmark localization accuracy.

Acknowledgements

This project is supported by Robotdalen. The authors
would also like to acknowledge Xilinx for their kind
donation of our FPGA’s and design software tools,
Hectronic for the design and manufacturing of our FPGA
boards.

References

[1] P. Arribas and F.-H. Macia. FPGA board for real time
vision development systems. Devices, Circuits and
Systems, 2002. Proceedings of the Fourth IEEE
International Caracas Conference on, pages
T021–1–T021–6, 2002.

[2] H. Bay, T. Tuytelaars, and L. J. V. Gool. Surf: Speeded up
robust features. In A. Leonardis, H. Bischof, and A. Pinz,
editors, ECCV (1), volume 3951 of Lecture Notes in
Computer Science, pages 404–417. Springer, 2006.

[3] A. Bissacco, S. Ghiasi, M. Sarrafzadeh, J. Meltzer, and
S. Soatto. Fast visual feature selection and tracking in a
hybrid reconfigurable architecture. In Proceedings of the
Workshop on Applications of Computer Vision (ACV),
June 2006.

[4] D. Cardon, W. Fife, J. Archibald, and D. Lee. Fast 3d
reconstruction for small autonomous robots. Industrial
Electronics Society, 2005. IECON 2005. 31st Annual
Conference of IEEE, pages 6 pp.–, 6-10 Nov. 2005.

[5] T. Cooke and R. Whatmough. Using learning algorithms
to improve corner detection. In Proceedings of the Digital
Imaging Computing: Techniques and Applications
(DICTA 2005), page 54, December 2005.

[6] T. H. Drayer, J. G. Tront, R. W. Conners, and P. A.
Araman. A development system for creating real-time
machine vision hardware using field programmable gate
arrays. In HICSS ’99: Proceedings of the Thirty-Second
Annual Hawaii International Conference on System
Sciences-Volume 3, page 3046, Washington, DC, USA,
1999. IEEE Computer Society.

[7] C. Harris and M. Stephens. A combined corner and edge
detection. In Proceedings of The Fourth Alvey Vision
Conference, pages 147–151, 1988.

[8] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. Int. J. Comput. Vision,
60(2):91–110, 2004.

[9] Micron, Boise, ID, USA. MT9P031 Image Sensor,
Product Brief, 2006.

[10] K. Mikolajczyk and C. Schmid. A performance
evaluation of local descriptors. IEEE Transactions on
Pattern Analysis & Machine Intelligence,
27(10):1615–1630, 2005.

[11] H. Moravec. Towards automatic visual obstacle
avoidance. In Proceedings of the 5th International Joint
Conference on Artificial Intelligence, page 584, August
1977.

[12] E. Rosten and T. Drummond. Machine learning for
high-speed corner detection. In European Conference on
Computer Vision, volume 1, pages 430–443, May 2006.

[13] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of
interest point detectors. International Journal of
Computer Vision, Vol. 37(2):151–172, June 2000.

[14] P. Smith, D. Sinclair, R. Cipolla, and K. Wood. Effective
corner matching. In J. N. Carter and M. S. Nixon, editors,
BMVC. British Machine Vision Association, 1998.

[15] P. J. T.-J. M. Stephen Se, Ho-Kong Ng. Vision based
modeling and localization for planetary exploration
rovers. In Proceedings of the 55th International
Astronautical Congress 2004, pages 1–11, 2004.

7


