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Abstract

The Hierarchical Scheduling Framework (HSF) has been ohiced as a design-time framework to
enable compositional schedulability analysis of embedudtivare systems with real-time properties.
In this paper a software system consists of a number of saependent components called subsys-
tems. Subsystems are developed independently and laggrated to form a system. To support this
design process, in the paper, the proposed methods allowintarsive configuration and tuning of
subsystem timing-behaviour via subsystem interfaceselecting scheduling parameters.

This paper considers three methods to handle overruns drestrce sharing between subsystems

in the HSF. For each one of these three overrun methods qureing scheduling algorithms
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and associated schedulability analysis are presentedtiegenith analysis that shows under what
circumstances one or the other is preferred. The analysigeiseralized to allow for both Fixed
Priority Scheduling (FPS) and Earliest Deadline First (Eppscheduling. Also, a further contribution
of the paper is the technique of calculating resource-haidtimes within the framework under
different scheduling algorithms. The resource holdingesnbeing an important parameter in the

global schedulability analysis.

|. Introduction

The Hierarchical Scheduling Framework (HSF) has beendnuirted to support hierarchical resource
sharing among applications under different schedulingises. The hierarchical scheduling framework
can be generally represented as a tree of nodes, where edehremresents an application with its
own scheduler for scheduling internal workloads (e.g.edls), and resources are allocated from a
parent node to its children nodes.

The HSF provides means for decomposing a complex systemwielledefined parts. In essence,
the HSF provides a mechanism for timing-predictabtenpositionof course-grained components
or subsystemdn the HSF a subsystem provides an introspedtiterfacethat specifies the timing
properties of the subsystem precisely [28]. This meanssthfagystems can be independently developed
and tested, and later assembled without introducing uredatémporal behaviour. Also, the HSF
facilitates reusability of subsystems in timing-critical and resource constraiaedronments, since
the well defined interfaces characterize their computatioequirements.

Earlier efforts have been made in supporting compositisnbbystem integration in the HSFs, pre-
serving the independently analyzed schedulability ofviatlial subsystems. One common assumption
shared by earlier studies is that subsystems are indeperid@a paper relaxes this assumption by
addressing the challenge of enabling efficient compostiamtegration for independently developed
semi-independersubsystems interacting through sharing of mutual excfuagzess logical resources.
Here, semi-independence means that subsystems are aliowgdchronize by the sharing of logical
resources.

To enable sharing of logical resources in HSFs, Davis and8proposed a synchronization protocol
implementing theoverrunmechanism, allowing the subsystem to overrun (its budgetptnplete the

execution of a critical section [11]. Two versions of overmechanisms were presented in [11], called



overrun without payback and overrun with payback, and inrémeainder of this paper these overrun
mechanisms are called Basic Overrun (BO), and Basic OveavitmPayback (PO), respectively. The
study presented by Davis and Burns provides schedulalaitiglysis for both overrun mechanisms;
however, the schedulability analysis does not allow indédpat analysis of individual subsystems.
Hence, the presented schedulability analysis does notaligtsupport composability of subsystems.

The schedulability analysis of Davis and Burns’ has beepred¢d assessing composability in [8]
for systems running the Earlier Deadline First (EDF) schiedualgorithm. In addition, in the same
paper a new overrun mechanism has been presented, callesid&thOverrun (EO), that potentially
increases schedulability within a subsystem by providiijJCGallocations more efficiently. Also, in
the paper this new mechanism has been evaluated against PO.

The contributions of this paper are as follows; Firstly, Bi@ second version of overrun mechanism
presented in [11], is included in the comparison betweemramanechanisms presented in [8] and it is
shown under which circumstances where a certain overrumamém is the preferred one among all
three (BO, PO and EO) presented mechanisms. In additiorsetieedulability analysis of local and
global schedulers is generalized by including Fixed Pyjo8cheduling (FPS) in the schedulability
analysis, as the results of [8] were limited to the EDF scheduwalgorithm. Finally, the simplified
equation to calculate resource holding time using the EDfeduling algorithm (presented in [8]) is
proven to be valid also when using the FPS scheduling algoriHence, using the results of this
paper it is possible to use either FPS or EDF.

The outline of the paper is as follows: Section Il presentsied work, while Section Il presents the
system model. In Section IV the schedulability analysistha system model is presented. Section V
presents the three overrun mechanisms (BO, PO and EO), aibrS&| presents their analytical
comparison. In Section VIl it is shown how to calculate theowgrce holding times under both FPS

and EDF, and finally, Section VIII concludes.

1. Related work

This section presents related work in the areas of HSFs dsaweksource sharing protocols.



A. Hierarchical scheduling

The HSF for real-time systems, originating in open systefr®y jn the late 1990's, has been
receiving an increasing research attention. Since Denglaund12] introduced a two-level HSF,
its schedulability has been analyzed under fixed-prioriybgl scheduling [17] and under EDF-
based global scheduling [19], [22]. Moét al. [24] proposed the bounded-delay resource model
SO as to achieve a clean separation in a multi-level HSF, enedsilability analysis techniques [14],
[29] have been introduced for this resource model. In aoldjtShin and Lee [28], [30] introduced
another periodic resource model (to characterize the gierresource allocation behaviour), and many
studies have been proposed on schedulability analysis thishresource model under fixed-priority
scheduling [26], [20], [10] and under EDF scheduling [28]ofd recently, Easwaragt al. [13]
introduced Explicit Deadline Periodic (EDP) resource moHewever, a common assumption shared

by all the studies in this paragraph is that tasks are reguoee independent.
B. Resource sharing

In many real systems, tasks are semi-independent, integaatth each other through mutually
exclusive resource sharing. Many protocols have beenduoted to address the priority inversion
problem for semi-independent tasks, including the Pgidnheritance Protocol (PIP) [27], the Priority
Ceiling Protocol (PCP) [25], and Stack Resource Policy (SBP Recently, Fisheet al. addressed
the problem of minimizing the resource holding time [16] andRP. There have been studies on
extending SRP for HSFs, for sharing of logical resourcesiwitt subsystem [2], [17] and across
subsystems [11], [7], [15]. Davis and Burns [11] proposeel kierarchical Stack Resource Policy
(HSRP) supporting sharing of logical resources on the bafsen overrun mechanism. Behnagh
al. [7] proposed the Subsystem Integration and Resource Aitotdolicy (SIRAP) protocol that
supports subsystem integration in the presence of shagechlaesources, on the basis of skipping.
Fisheret al. [15] proposed the BROE server that extends the Constantviddtid Server (CBS) [1]
in order to handle sharing of logical resources in a HSF. Belet al. [6] compared between SIRAP,
HSRP and BROE and showed that there is no one silver bulletigonlavailable today, providing
an optimal HSF and synchronization protocol for use in opevirenments. Lipariet al. proposed
the BandWidth Inheritance protocol (BWI) [23] which extanithe resource reservation framework to

systems where tasks can share resources. The BWI apprdaabeid on using the CBS algorithm and
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Fig. 1. Two-level HSF with resource sharing.
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a technique that is derived from the Priority Inheritancet&eol (PIP). Particularly, BWI is suitable

for systems where the execution time of a task inside a alisection can not be evaluated.

[11. System model and background
A. Resource sharing in the HSF

The Hierarchical Scheduling Framework (HSF) has beenduoited to support CPU time sharing
among applications (subsystems) under different scheglybolicies. In this paper, a two level-
hierarchical scheduling framework is considered, whiclrksocas follows: a global (system-level)
scheduler allocates CPU time to subsystems, and a locasy(stam-level) scheduler subsequently
allocates CPU time to its internal tasks.

Having such a HSF also allows for the sharing of logical resesi among tasks in a mutually
exclusive manner (see Figure 1). Specifically, tasks caresbeal logical resources within a subsystem
as well asglobal logical resources across (in-between) subsystems. Howeate that this paper
focuses around mechanisms for sharing of global logicabie®s in a HSF while local logical
resources easily can be supported by traditional synckation protocols such as SRP (see, e.g., [2],
[11], [17]).

B. Virtual processor models

The notion of real-time virtual processor (resource) madas first introduced by Molet al. [24]
to characterize the CPU allocations that a parent node geeevio a child node in a HSF. TH&PU



supplyof a virtual processor model refers to the amounts of CPLtatlons that the virtual processor
model can provide. Theupply bound functiof a virtual processor model calculates its minimum
possible CPU supply for any given time interval of length

The periodic virtual processor modE( P, Q) was proposed by Shin and Lee [28] to characterize
periodic resource allocations, wherfe is a period £ > 0) and @) is a periodic allocation time
(0 < @ < P). The capacityUr of a periodic virtual processor modEl P, )) is defined ag)/P.

The supply bound functiorsbf(¢) of the periodic virtual processor modél P, )) was given
in [28] to compute the minimum resource supply during anrirgeof lengtht¢. Further, in this paper,
the periodic virtual processor model is rephrased with aditeshal parameter oBD, where BD
represents its longest possiliéackout durationduring which the periodic virtual processor model

may provide no resource allocation at all.

—(k — — — i (k)
£ 8D) { t—(k—1)0P-Q)—BD ifteW "
(k—1)Q otherwise

wherek = max (((t + (P - Q) - BD)/P], 1) and W®*) denotes an intervd{k — 1)P + BD, (k —
1)P + BD + @)]. Here, first note that the originabfr(¢) in [28] is equivalent tosbfr(¢,BD) when
BD = 2(P—(). Also, note that an interval of lengthmay not begin synchronously with the beginning
of period P; as shown in Figure 2, the interval of lengtltan start in the middle of the period of a
periodic virtual processor modél( P, Q). Figure 2 illustrates the supply bound functiebf(¢) of

the periodic virtual processor model.
C. Stack resource policy (SRP)

To be able to use SRP [3] in the HSF, its associated terms &eaded as follows:

. Preemption levelEach task; has a preemption level equaltp= 1/D;, whereD; is the relative
deadline of the task. Similarly, each subsyst8mhas an associated preemption level equal to
I, = 1/P,, whereP; is the subsystem’s per-period deadline.

« Resource ceilingEach globally shared resourde; is associated with two types of resource
ceilings; oneinternal resource ceiling for local scheduling;; = max{m;|r; accessesl;} and
one externalresource ceiling for global scheduling.

« System/subsystem ceilin@ystem/subsystem ceilings are dynamic parameters thagehduring

runtime. The system/subsystem ceiling is equal to the ntlyrédocked highest external/internal



Fig. 2. The supply bound function of a periodic virtual processor model F(3, 2).

resource ceiling in the system/subsystem.

Following the rules of SRP, a joly that is generated by a taskcan preempt the currently executing
job J,, within a subsystem only if/; has a priority higher than that of jolj, and, at the same time,
the preemption level of; is greater than the current subsystem ceiling. A similasoaang is made

for subsystems from a global scheduling point of view.
D. System model

In this paper a periodic task model7;, C;, D;, {c; ;}) is considered, wher€;, C; and D, represent
the task’s period, worst-case execution time (WCET) andtiked deadline, respectively, whefe <
T;, and{c; ;} is the set of WCETs within critical sections associated wétbk 7;. Each element; ;
in {c; ;} represents the WCET of the taskinside a critical section of the global shared resoukge

Looking at a shared resourde;, the resource holding time,; ; of a taskr; is defined as the time
given by the task’s maximum execution time inside a crit@attion plus the interference (inside the
critical section) of higher priority tasks having preenoptilevel greater than the internal ceiling of
the locked resource.

A subsystemS, € S, whereS is the whole system of subsystems, is characterized by asttsk
7, and a set of internal resource ceilinB<”, inherent from internal tasks using the globally shared

resources. Each subsystetnis assumed to have an EDF or FPS local scheduler, and thestelrsy



are scheduled according to EDF or FPS on a global level. THectiwe resource requirements by
each subsysterfi; is characterized by itmiterface(the subsystem interface) defined (@%, Qs, H,),
whereP; is the subsystem’s period), is it's execution requirement budget, afq is the subsystem’s

maximum resource holding time, i.€4, = max{h;;|; € 7, accesses;}.

IV. Schedulability analysis

This section presents the schedulability analysis of thé-HS$arting with local schedulability
analysis needed to calculate subsystem interfaces, anidly,figlbbal schedulability analysis. The
analysis presented assumes that SRP is used for synchiromipa the local (within subsystems)

level.
A. Local schedulability analysis
Let dbfepe(i, t) denote the demand bound function of a taskinder EDF scheduling [4], i.e.,

t+1;— D
T;
The local schedulability condition under EDF schedulinghisn (by combining the results of [5] and

[28])

dbfepr (i, t) = | |-Ci )

vVt >0 Xn: dbeDF(i, t) + b(t) < Sbf(t), (3)

=1
whereb(t) is the blocking function [5] that represents the longestkilog time during which a job
J; with D; <t may be blocked by a job,, with D, > ¢t when both jobs access the same resource.
For Fixed Priority Scheduling (FPS) [18], lebfp(i,t) denote the request bound function of a

task7;, i.e.,

rofep(i,t) = Ci+ Y. {i]Ck, 4)

T EHP () Ty
whereHP (i) is the set of tasks with higher priorities than thatrafThe local schedulability analysis

under FPS can then easily be extended from the results of[Zd],as follows:

V7,0 < 3t < D;, rbfep(i,t) + b; < sbf(t), (5)



whereb; is the maximumblocking (i.e., extra CPU demand) imposed to a taskvhenr; is blocked
by lower priority tasks that are accessing resources witlngegreater than or equal to the priority

of 7;. Note thatt can be selected within a finite set of scheduling points [21].
B. Subsystem interface calculation

Given a subsystent;, RC,, and P;, let calculateBudget(S;, Ps, RC) denote a function that
calculates the smallest subsystem bud@etthat satisfies Eq. (3) for EDF and Eq. (5) for FPS
scheduling. Hencey); = calculateBudget(S;, Ps, RC;). The function is similar to the one presented

in [28], however, due to space limitations, its details af dut of this paper.
C. Global schedulability analysis

Following Theorem 1 of [5], global schedulability analysisder EDF scheduling is given using

the system load bound functiaBF(¢) as follows:

V¢ >0, LBF(t)=B(t)+ Y DBF(t) <t, (6)
Ss€S
where
DBF, (t) = [%J - Qs (7)

and the system-level blocking functidB(¢) represents the maximum blocking time during which a
subsystent; may be blocked by another subsystém where P, < ¢ and P, > t. B(t) is defined as

B(t) = max{H}, | P, > t}. (8)

Under global FPS scheduling, the subsystem load boundifumis as follows (on the basis of a

similar reasoning of Eq. (4)):
LBF,(t) = RBF4(t) + B, , where 9)

t

RBF.(t) = Qs+ 3. [Pk

S}, €HPS(s)

| @, (10)



whereHPS(s) = {S;|j > s} is the set of subsystems with priority higher than thasofLet B, denote
the maximum blocking (i.e., extra CPU demand) imposed tolsystemS,, when it is blocked by

lower-priority subsystems,

By = max{H;| S; € LPS(Ss)}, (11)

whereLPs(S;) = {S;|j < s}.
A global schedulability condition under FPS is then

VS,,0 < 3t < P,, LBF,(t) <t (12)

V. Overrun mechanisms

This section explains three overrun mechanisms that carsée t@ handle budget expiry during a
critical section in the HSF. Consider a global schedulet sithedules subsystems according to their
periodic interfaces k., Q,, H,). The subsystem budgél, is said toexpireat the point when one or
more internal (to the subsystem) tasks have executed adbta] time units within the subsystem
period P,. Once the budget is expired, no new task within the same stdasycan initiate its execution
until the subsystem’s budget is replenished. This repfenéent takes place in the beginning of each
subsystem period, where the budget is replenished to a @lge.

Budget expiration may cause a problem if it happens whilebaJjoof a subsystens, is executing
within a critical section of a global shared resourBe. If another job.J,, belonging to another
subsystem, is waiting for the same resoufte this job must wait untilS; is replenished again s
can continue to execute and finally release the lock on resd@y. This waiting time exposed tdj,
can be potentially very long, causinf to miss its deadline.

In this paper, an overrun mechanism is considered as follaen the budget of subsystef
expires and>; has a jobJ; that is still locking a globally shared resource, jglontinues its execution
until it releases the locked resource. The extra time thateeds to execute after the budgetsaf
expires is denoted asverrun timef. The maximumy occurs whenJ; locks a resource that gives the
longest resource holding time just before the budgef.oéxpires.

Here, two versions of overrun mechanisms [11] are consitjlere
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Fig. 3. Basic and enhanced overrun mechanisms.

1) The overrun mechanism with payback, introduced as PO atet EO, whenever overrun
happens, the subsystet) pays backi in its next execution instant, i.e., the subsystem budget
Q. will be decreased by for the subsystem’s execution instant following the overfiiote that
only the instant following the overrun is affected).

2) The overrun mechanism without payback, introduced as iBQhis version of the overrun
mechanism, no further actions will be taken after the evérmnooverrun.

Hereinafter, the overrun mechanism with payback is call®dahd the overrun mechanism without

payback is called BO. Both are versions of the basic overrechanism. Also, an extended mechanism

with payback is introduced as EO.
A. Basic overrun — overrun mechanism 1 and 2

Daviset al. [11] presented schedulability analysis for both (BO and RP&@%ions of basic overrun,
however, the presented analysis is not suitable for opeirc@maents [12] as it requires detailed
information of all tasks in the system in order to calculdtgbgl schedulability. This section discusses
how to extend the existing schedulability analysis for tlasio overrun mechanisms, making them

suitable for open environments.
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1) Independent analysis with basic overrumhe supply bound function in [28] was developed
under the assumption that the greatest blackout duratidr{ 55— ). PO — basic overrun with
payback — cannot employ this existing supply bound functmnschedulability analysis because its
greatest Blackout Duration (BD) &P — @) + H (as shown in Figure 3a). Taking this into account,
below is the presentation of a modified supply bound functiofy.(¢), that can be used with PO

(using Eq. (1)), as follows:

sbf}(t) = sbfr(t,BD?), whereBD° = 2(P — Q) + H. (13)

The existing schedulability conditions of Eq. (3) can thendxtended by substitutingpfr(¢) with
sbfp(t).

For BO — basic overrun without payback — Eq. (1) can still bedusithout modification to evaluate
the supply bound function since the Blackout DuratioR2(i& — @) (as shown in Figure 3b).

2) Global analysis with basic overrun:

a) PO — basic overrun with paybackEirstly, the demand bound function (and the request bound
function) of a subsystem with the basic overrun mechanisth payback is extended. Looking at
the PO mechanism in a subsystélp the maximum contribution obBF,(t) for EDF scheduling and
RBF,(t) for FPS scheduling i$/;,. WhenS; overruns with its maximum, which i#, the subsystem’s
resource demand within the subsystem perQdwill be increased ta), + H,. Following this, the
budget of the next period will be decreasedxp— H, due to the payback mechanism. Then, suppose
that the subsystem overruns again. Now, during the nextystdrs period, the subsystem’s resource
demand will beQ), — H, + H, = Q),. Here, it is easy to observe that the subsystem’s resouroartk
will be at mostkQ), + H, during & subsystem periods. Hence, the demand bound funoBsg(t) of

a subsystent, with the basic overrun mechanism using EDF scheduling ¢



DBE2(1) = | | - Q2 + 0.(0), (14)

where)? is the subsystem budget when using the PO mechanism and,

{ H, ift>P,
O4(t) = (15)

0 otherwise

The schedulability condition of Eq. (6) can then be extenblgdubstitutingdBF () with DBFS().
When using a global FPS scheduler, the request bound furksief (¢) is

t

REFS(1) = (Qi+Ho)+ Y ([

Sy, €HPS(s)

(@) + Hy) (16)

b) BO — basic overrun without paybacKThis version of overrun does not payback the budget
after overrun happens. This means that the system resoamcandis within the period aP, can be
up to Q. + H, for all periods considering that the maximum overrun wilppan every period, which
is the worst case scenario. Then for EDF global schedulimg,miaximum demand bound function
DBF#(t) using the BO mechanism is

DBFF (1) = | 4| - (@F + H.) 17)

where Q7 is the subsystem budget when using the BO mechanism.
For a global FPS scheduler, the request bound fun@B®y (¢) is

t

RBFY (1) = (QF + H) + S )[Pk

S, €HPS(s

(@ + ) (18)

B. Enhanced overrun — overrun mechanism 3

As seen in Section V-A, the PO mechanism works with a modifiggply bound functionsbf°(t)
that is less efficient in terms of CPU resource usage compaitbdthe originalsbf(t), as illustrated
in Figure 4. While for the BO mechanism, the request/demamaehd function PBF/RBF) will be
increased by, + H, in all periods which may require more resources as well. mfallowing an
enhanced overrun mechanism (EO) is proposed. This newuwwvenechanism makes it possible to

usesbf(t) in Eq. (1) to improve the efficiency of CPU resource utilipatiand at the same time the



request/demand bound functiapB¢/RBF) will be @, + H, for the first instance and then ondy, for
the following periods when applying global schedulabikiyalysis.

The EO mechanism is based on imposing an offset (delayinigutiget replenishment of subsystem)
equal to the amount of an overrdn to the execution instant that follows a subsystem overru. A
shown in Figure 3c, the execution of the subsystem will baydsd byd, after a new period followed
by overrun even if that subsystem has the highest priorithattime. By this the maximum BD will
be decreased t®(P — Q) compared with PO (basic overrun with payback) shown in Fdgea and
therefore it is possible to use the same supply bound fumgresented in Section IlI-B. One of the
important features that the EO mechanism provides is thatoies the effect of overrun from the
local to the global schedulability analysis, so the sulesysievelopment will not depend on if there is
a specific overrun mechanism enforced or not. This featuveng important in an open environment,
and it allows for the usage of the existing local scheduiybdondition without any modification.

1) Global analysis with enhanced overruiithe effect of overrun is now moved to global schedu-
lability analysis when using the EO mechanism. In the foitayy a demand bound functidyBF: ()
is presented for EDF global scheduling of a subsystenthat upper-bounds the demand requested

by S, under the EO mechanism. NoBBF(¢) includes the offsef; = H, as follows:

t+ Hy
P

whereQ? is the subsystem budget when using the EO mechanism and

DBF (t) = |

|- Qi+ 0:), (19)

H, ift>P, — H,
(t) = { (20)

0 otherwise

The schedulability condition of Eq. (6) can then be extenblgdubstitutingdBF () with DBF ().

Using an FPS global scheduler, the offset imposed by the EChamesm for each subsystef
can be modeled as a release jitfemwith the range of0, H,] so J; = H,. The upper bound of request
bound functionRBF*(¢) calculation is shown below,

" N t+ Ji N
RBF.(H) = (Q1 + H)+ > (=52 [(Qh) + Hy) (21)
Sy EHPS(s) By

Looking at the schedulability analysis then



VS,,0 < 3t < P, — H,, LBF' () <t (22)

where

LBF:(t) = RBF(t) + B , where (23)

VI. Comparison between the three overrun mechanisms

In this section, the efficiency of the three overrun mechagigBO, PO and EO) are compared.
First, the effect of using each one of them locally is showa.,, ion a subsystem level. Then, their

effect globally is shown, i.e., on a system level.
A. Subsystem-level comparison

The following lemma shows that the minimum required sulmysbudget when using the EO
mechanism will be lower than or equal to the minimum requibedget when using the PO mechanism
for both FPS and EDF local schedulers.

Lemma 1:Assuming that the minimum required budget to schedule akgan a subsysteny,
using the PO mechanism {g;, and that the corresponding budget when using the EO mesrhasi
Q:, then@: < Q.

Proof: The proof is split into two parts, proving the case of havimgeeDF local scheduler and
an FPS local scheduler, respectively.

a) EDF local scheduler.:A subsystemS; is exactly schedulable iff in addition to Eq. (3),
S dbfepe(i,t) + b(t) = sbf(t) for 3t s.t. min!'D; <t < LCMg, + max}D; (see Theorem 2.2 in
[13]). This means that if the budgét, is the minimum required budget to guarantee the scheditiabil
of tasks inS,, then there is a set of time§ at which}_!" dbfepr(7,t) + b(t) = sbf(¢). Without loss
of generality, assume that includes one element. If the same subsystem budges used when

running the PO mechanism and the EO mechanism, respectikiely

sbf°(t) = sbf(t — Hy) (24)

wheresbf(t) is used with the EO mechanism and the shift in timeff,” comes from the difference

in BD between the EO and PO mechanisms. From Eq. (1) and E}.t(&te are two cases:



case 1:sbf°(t) = sbf(t) fort € [kP, — Qs+ Hs, (k+1)P; —2Q;] wherek is an integer numbet > 1.
case 2:sbf°(t) < sbf(t) for ¢ out of the range specified in case 1.

If t¢ € [kP;— Qs+ Hg, (k+1)Ps—2Q;] thensbf®(t¢) = sbf(¢¢). In turn,>7 dbfepe(i, 1)+ b(t¢) =
sbf°(t¢), which means thaf);, may be enough to schedule all tasks in a subsysiemsing the PO
mechanism, s@): = : at timet = t°. However, Eq. (3) must be checked if it holds for all other
timest, to be sure that the subsystefn is still schedulable.

If t¢ is not in the range given for case 1, thest°(t¢) < sbf(t¢). Inturn,sbf°(t¢) < >F dbfepe(s, t€)+
b(t¢) which means that the budg@t will not satisfy the condition in Eq. (3) using the PO meclsamj
hence a higher budget should be provided. In this ¢se Q2.

b) FPS local scheduler.A subsystent, is exactly schedulable iff in addition to Eq. ()5, 0 <
Vt < D;, rbfep(i,t)+ b; > sbf(t) (see Theorem 2.3 in [13]). This means that if the budget
is the minimum required budget to guarantee the scheditlabfl tasks inS,, then there is a set of
timest/ at whichrbfep(i,t) + b; = sbf(¢). Note that Eq. (24) is valid since it is independent on the
type of scheduler used.

If all elements int/ are not in the range given for case 1, thén 0 < Vt < D;, rbfep(i,t)+b; >
sbf(t) which makes the local scheduler . To solve this problem, theégbt when using the PO
mechanism should be increased. In this c@%e< Q.

u

Lemma 2: Assuming that the minimum required budget to schedule akgan a subsysteny,
using the BO mechanism i@#, and that the corresponding budget when using the EO mesthani
is Qf, thenQ: = Q7.

Proof:

Using the EO mechanism or the BO mechanism, the BD time of systémS, equals t® P, —2Q),
see Figure 3. That means thief(¢) for both mechanisms will be the same for alb 0. The demand
bound functiondbfepe (i, t) when using an EDF scheduler locally will not be changed wheingu
either of the EO mechanism or the BO mechanism. The same godhd request bound function
rbfep(i,t) when using FPS locally. Looking at the Eq. (3) and Eq. (5) ttienlocal schedulability
analysis when using the EO mechanism and the BO mechanidrbevhe same, i.eQ* = Q7.



B. System-level comparison

As shown in the previous section, the minimum required buddeen using the EO mechanism is
equal to the minimum required budget when using the BO meshmrand lower than or equal to the
minimum required budget when using the PO mechanism. Hawatvsystem level, it is not easy to
see which one of these three approaches that will requireamam overall system CPU resources in
the general case.

In doing a comparison among the three approachestem loads defined as a quantitative measure
to represent the minimum amount of CPU allocations necgdsaguarantee the schedulability of
the systemS. Then, the impact of each overrun mechanism on the systedhdaa be investigated,
respectively.

When using EDF as a global scheduler, the system load is dech@s follows:

LBF (t)

(25)

loadsys = max

Note thata = load, is the smallest fraction of the CPU that is required to scleedill the
subsystems in the systefh(satisfying Eq. (6)) assuming that the resource supplytfandat system
level) is at.

When using FPS as a global scheduler, the system load is ¢ethpa follows:

loadsys = Vggsagfg{as}. (26)

where
0 LBF,(t) <t 27
s = min, { | LBE(f) < t}. (27)

Looking at Eq. (25) and Eq. (26)ad,,s can be decreased by lowerihgF(¢).

c) EDF global scheduler. Comparing between the three overrun mechanisms, the misaihan
that requires the lowesBF(¢) at the timet whenLBF(¢)/t is at its maximum will require less system
load. Three cases can be distinguished based on the typewtiovnechanism used and its associated
demand bound function:

1) PO vs BO. Comparing Eq. (14) and Eq. (17), it can be concluded bBat(¢) > DBF7 (¢) for
0 <t < 2- P, The reason for this is that according to Lemma 2 and Lemm@°1> Q7.



2)

3)

Whent is in the range of) <t < 2 P, the floor in Eq. (14) and Eq. (17) will equal toor 1,
which makes Eg. (14) and Eqg. (17) identical, and the onlyedgffice is the value of the budget.
If ¢ is not in this range then it is not possible to decide which maaitsm that can give a lower
demand bound function without knowing the full interfacegraeters using both mechanisms.
At a certain time instanc& whent® > 2P,, DBFS(t) < DBF#(¢) for t > ¢°.

BO vs EO. Comparing Eq. (17) and Eq. (19), it can be concluded bBat (¢) > DBF¥(¢) for

0 <t < 2- P, The reason for this is that according to Lemm&)2 = Q#, while the floor
part in Eg. (17) and Eq. (19) is different. Looking at the EOchemnism, the demand bound
function is increased when= P, — H,. For the BO mechanism, the demand bound function
is increased at = P,, which means thabBF:(¢) > DBF¥(t) at P, — H, < t < P,. However, if

t > 2P, then it is not possible to decide which one of the two medmasithat will be better
than the other, as in the first case above.

PO vs EO. Comparing Eg. (14) and Eq. (19), it can be concludediBat(¢) < DBF(¢) whent
isin the ranget P,— H, >t < kP, andDBFS(¢t) > DBF(¢) whentisinkP; >t < (k+1)P,—Hj,
wherek is an integer value greater arkd> 0. Note that, at a certain time instantewhen

t* > 2P, DBF.(t) > DBF:(t) for t > ¢* if Q% < Q.

The example shown in Figure 5 explains the three cases Hedcabove.

Defining the timet! as the time at which the system load is evaluated from Eq, {86, depending

on the value of' and the type of overrun mechanism used, it would be possistimate which one

of the three overrun mechanisms that will require the lovegstem load. For example, if € 2 - P,

and P, is the shortest subsystem period, then the subsystem load wsing the BO mechanism

is less than or equal to the subsystem load when using anyeobttier two overrun mechanisms.

However, ift! > P, then the possibility of having good results when using the lB&hanism is

very low. Another aspect that can be considered is whgr= Q7 = Q: for all subsystems, then the

system load using the PO mechanism will always be less thagual to the system load when using
the other two mechanisms. Otherwise, all subsystem paessngtould be given in order to evaluate
which one of the three mechanisms that can give better seguterms of lowest system load.

d) FPS global scheduler. Looking at Eq. (27), in order to minimize the system |dz&¥(t)

of the subsystenyd) that generates the maximum should be minimized. The overrun mechanism

that generates the lowest request bound fundtigm (¢) for the subsystens;., will require the lowest

system load. Howevel, may not be the same subsystem when using different overrghanems,
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Fig. 5. Comparing between DBF¢(t), DBFf(t) and DBF(¢).

and also, at a certain time instancehe value ofRBF,(¢) when using one of the overrun mechanisms
will be less than when using another overrun mechanism, andrfother time instancethe value of
RBF;(t) might be less when using the second mechanism. It can beudsttkhat none of the three
overrun mechanisms can perform better than the other twoeirgéneral case, as it depends directly
of the system parameters.
The comparison between the three overrun mechanisms is @rnequest bound function is shown
below;
1) PO vs BO. Comparing Eq. (16) and Eq. (18), it easy to show tRBE(t) > RBF#(t) for
0 <t < P,. The reason is that the interference from other higher pyidasks is always
Qi + Hy for both cases and)° > Q7. If t > P, then the mechanism that require a lower
request bound function is different depending on the sygtamameters. It can be concluded
that if the subsystem periods of all subsystems are equed, ttiie BO mechanism will require
less (or at least equal) system load than using the PO merhaAnother interesting observation
is that if the subsystem that generates maximum Eq. (27) has the highest priority, then the
BO mechanism will require less (or at least equal) systerd than using the PO mechanism.
The reason for this is inherent in the subsystem priorityth@ssubsystem has higher priority,
then there will be no interference from other lower priostybsystems.
2) BO vs EO. Comparing Eq. (18) and Eqg. (21), it is easy to show ®ER:(¢) > RBF¥(t) for
0<t< P, If t > P, then finding the best mechanism that requires the leasémykiad



depends on the system parameters.
3) PO vs EO. Comparing Eq. (16) and Eq. (21), it can be concluded RB&E(¢) < RBF(¢) when
t is in the rangek P, — H, > t < kP, andRBFJ(t) > RBF(t) whent isin (k —1)P; >t <
(k)Ps; — Hs wherek is an integer value greater and> 0.
The following examples show some of the cases discusseceabov
e) Example 1::Suppose that a systefhconsists of three subsystems with parameters as shown

below;

Subsystem Q° | P, | Q:=Q* | H
S1 20 | 5 4 2

Sy 50 | 15 13 4

4

Ss 100 | 20 18

The global scheduler is EDF. Using the PO mechanisiah,, = 0.85 and maximumu is att = 100,
using the BO mechanisiioads,s = 0.86 and maximum is att = 100, and for the EO mechanism
loadsys = 0.755 and maximum is att = 98.

f) Example 2:: Suppose that a systeficonsists of three subsystems with parameters as shown

below;
Subsystem Q° | P, | Q*=Q% | H
S1 12| 2 1.75 1
S5 15| 13 2.9 2
S 60 | 10 9.5 3

The global scheduler is EDF. Using the PO mecharisnh,, . = 0.73 and maximum is att = 15,
using the BO mechanistads,s = 0.8 and maximuma is att = 60, and for the EO mechanism
loads,s = 0.82 and maximunm is at¢ = 13.

g) Example 3::Suppose that a systeficonsists of three subsystems with parameters as shown

below;



Subsystem Q° | P, | Q*=Q*

H | Priority
S 40| 5 4.5 1 | High

1

2

So 40| 2 1.75 Middle
Ss 40 | 3.5 3

Low

The global scheduler is FPS. Using the PO mechatat,s = 0.36 and maximunm is att = 40,
using the BO mechanisoad,,s = 0.33 and maximumu is at¢ = 40, and for the EO mechanism

loads,s = 0.35 and maximunm is att = 38.

VII. Computing resource holding time

This section explains how to compute the resource holdimg ti;;, a very important parameter
in the global analysis. Using the periodic virtual proceéssmdel, each subsyste§) receives CPU
resources with allocation time, every periodP,. During @), the CPU allocation is 100 % of the
CPU capacity (see Figure 2 where the slope in the supply aduvieg () is one). The mechanism
presented in Section V guarantees that locking and relgasiaritical section of a globally shared
resourceR; will happen within the allocated CPU resoui@e+6. Thenh,; will include the execution
time of the taskr; that locksR; inside the critical section as well as the interference fiadhtasks
within the same subsystem that can preempt the executiadeitise critical section. The worst case
scenario happens when all tasks that can preempt the exeaitthe critical section will be released
just after taskr, has entered the critical section of resoufee

The resource holding time can be computed depending on ¢laé doheduling algorithm, as shown
below;

Under FPS scheduling the resource holding timg; ; of a shared resourcg; is [9];

WJ.FPS(t) =crj+ i (Tik} - O, (28)

€U
wherecz;; = max{c; ;} is the maximum execution time of task inside the critical section of the
resourceR; andn is the number of tasks ard is the set of tasks such thét= {7;|m; > rc;}.

The resource holding timg; ; is the smallest positive tim& such that

WIPS(t*) = t*. (29)



Under EDF scheduling the resource holding timg;; of a shared resourc&; accessed by task
7; IS [16];

EDF/p\ _ - ) t D, — Dy,

VVJ (t) = CTj; + Tk;U (mzn([ij, \;T

The resource holding timg; ; is the smallest positive tim& such that

|+1)) ¢, (30)

WEPE() = ¢, (31)

Finally, the resource holding time of a resoutgeis h; = max{h;;} for all 7, access resourcg,.

Note that the preemption inside the critical section frorheotsubsystems has not been counted
when calculating the resource holding time. However, therfarence from higher preemption level
subsystems is taken into account in the global scheduiahitialysis. Looking at Eq. (6) and Eq. (9),
h;; may act as a blocking to other subsystems. Moreover, it is #ie extra capacity required to
prevent budget expiry inside critical section. Wheyy, is considered as a blocking time for other
subsystems, the effect of interference from higher premmgevel subsystems inside the critical
section will be included in the global schedulability of tbéocked subsystem (in the summation
part of Eq. (6) and of Eq. (9)). Wheh;; is used to evaluate the overrun, interference from other
subsystems inside the critical section will not be impditas the only important part here is that the
locked resource should be released before the end of thedperi

Eq. (28) and Eq. (30) can be simplified to evaluate as shown below:

hjﬂ' = CTj, + Z Ck (32)

TLeEU

The difference between the simplified equation Eq. (32) deddriginal equations Eq. (28) and
Eq. (30) is that in Eq. (28) and Eq. (30) all tasks that can ippeinside the critical section are
assumed to be execute only once. The reason for why it is gafesime only one execution of each
preempting task inside the critical section is given in tb#ofving lemma, showing that if a task
executes more than one time inside the critical sectionsthesystem will become unschedulable.

Lemma 3:For a subsystem that uses an overrun mechanism to arbitre#ssato a global shared
resource under the periodic virtual processor model, ezsththat is allowed to preempt the execution
of anther task currently inside the critical section of abgllly shared resource can, in the worst case,

only execute (cause interference) once independent ifabe kcheduler is EDF or FPS.



Proof: This lemma is proven by considering two cases:

(1) P, < T, (WhereT,, = min(T;) for all i = 1,..n), if the task having period’,, executes 2 or
more times inside the critical section, this means that gseurce will be locked during this period,
i.e., h;; > T, thenh;; > Ps, which in turn means that the CPU utilization required by shbsystem
Ss will be Ug = (Qs + hj;)/Ps > 1.

(2) If P, > T,, , sbfr(t) should provide at least),, at timet = T,, to ensure the schedulability
test in Eq. (3) for the EDF scheduler and in Eq. (4) for the FEiseduler. Note thagbf(t) = 0
duringt € [0,2P; — 2Q)] s0,2P; — 2Q; < T,, which means), > P, — T,,,/2.

If the task that has period;, execute 2 times inside the critical section then > 7,,. Hence,
Qs + hj; > Ps +T,,/2 which meand/; = (Qs + hj;)/p > 1. [ |

From Lemma (3), it can be concluded thattif > T, then the required CPU utilizatiofi; will
be greater than one. This means that, in turn, all tasks #matpceempt the execution of a critical
section should do so maximum one time in order to keep thizatiibn of a subsystem less than one.
This proves the correctness of Eq. (32) which is based onghkenaption that all tasks can interfere
only once as a worst case while a task is in the critical seaiicthe resource?;. If the value ofh;;
becomes greater thanin(7,,, P;) then it can be concluded that the subsystem will not be sdalldu

and no further calculation towards finding a exact valué: gfis needed.

VIIl. Summary

This paper presented three different overrun mechanisatsathcan handle the problem of sharing
of logical resources in a hierarchical scheduling framéwaehile at the same time supporting inde-
pendent subsystem development (open environments). Gethpathe previous work [8], the results
have been generalized by also allowing for the FPS schegaligorithm for both local and global
schedulers, which is suitable to open environment. In aidita third overrun mechanism, basic
overrun without payback (BO), is included in the comparibetween the overrun mechanisms. Also,
this comparison is performed considering both FPS and EDEdding algorithms. The results from
comparison showed that it is not trivial to evaluate, in tlemeral case, which overrun method that
is better than the other, as their impact on the CPU utilirais highly dependent on global system
parameters such as subsystem periods and budgets. Fihallyalculation of resource holding times

when using the periodic virtual processor model with botBDF and the FPS scheduling algorithm



is presented, as the resource holding time is a very impop@arameter in the global schedulability
analysis.

Future work includes comparing the enhanced overrun mésmafiO) with other synchronization
mechanisms such as BWI [23], the BROE server [15] and SIRAP {7 addition, implementing
the three overrun mechanisms and comparing the implen@mtaverhead of each mechanism is
important. Finally, as the global schedulability analygises an upper bound for EO, it will be

interesting to find an exact or less pessimistic scheduthalihalysis.
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