
Overrun Methods for Semi-Independent Real-Time Hierarchical

Scheduling

Moris Behnam, Thomas Nolte, Mikael Sjödin

Mälardalen Real-Time Research Centre

P.O. Box 883, SE-721 23 V̈aster̊as, Sweden

moris.behnam@mdh.se

Insik Shin

Dept. of Computer Science, KAIST

Daejeon, South Korea 305-701

insik.shin@cs.kaist.ac.kr

Abstract

The Hierarchical Scheduling Framework (HSF) has been introduced as a design-time framework to

enable compositional schedulability analysis of embeddedsoftware systems with real-time properties.

In this paper a software system consists of a number of semi-independent components called subsys-

tems. Subsystems are developed independently and later integrated to form a system. To support this

design process, in the paper, the proposed methods allow non-intrusive configuration and tuning of

subsystem timing-behaviour via subsystem interfaces for selecting scheduling parameters.

This paper considers three methods to handle overruns due toresource sharing between subsystems

in the HSF. For each one of these three overrun methods corresponding scheduling algorithms

The work in this paper is supported by the Swedish Foundationfor Strategic Research (SSF), via the research programme PROGRESS.

and associated schedulability analysis are presented together with analysis that shows under what

circumstances one or the other is preferred. The analysis isgeneralized to allow for both Fixed

Priority Scheduling (FPS) and Earliest Deadline First (EDF) scheduling. Also, a further contribution

of the paper is the technique of calculating resource-holding times within the framework under

different scheduling algorithms. The resource holding times being an important parameter in the

global schedulability analysis.

I. Introduction

The Hierarchical Scheduling Framework (HSF) has been introduced to support hierarchical resource

sharing among applications under different scheduling services. The hierarchical scheduling framework

can be generally represented as a tree of nodes, where each node represents an application with its

own scheduler for scheduling internal workloads (e.g., threads), and resources are allocated from a

parent node to its children nodes.

The HSF provides means for decomposing a complex system intowell-defined parts. In essence,

the HSF provides a mechanism for timing-predictablecompositionof course-grained components

or subsystems. In the HSF a subsystem provides an introspectiveinterface that specifies the timing

properties of the subsystem precisely [28]. This means thatsubsystems can be independently developed

and tested, and later assembled without introducing unwanted temporal behaviour. Also, the HSF

facilitates reusability of subsystems in timing-critical and resource constrainedenvironments, since

the well defined interfaces characterize their computational requirements.

Earlier efforts have been made in supporting compositionalsubsystem integration in the HSFs, pre-

serving the independently analyzed schedulability of individual subsystems. One common assumption

shared by earlier studies is that subsystems are independent. This paper relaxes this assumption by

addressing the challenge of enabling efficient compositional integration for independently developed

semi-independentsubsystems interacting through sharing of mutual exclusion access logical resources.

Here, semi-independence means that subsystems are allowedto synchronize by the sharing of logical

resources.

To enable sharing of logical resources in HSFs, Davis and Burns proposed a synchronization protocol

implementing theoverrunmechanism, allowing the subsystem to overrun (its budget) to complete the

execution of a critical section [11]. Two versions of overrun mechanisms were presented in [11], called

overrun without payback and overrun with payback, and in theremainder of this paper these overrun

mechanisms are called Basic Overrun (BO), and Basic Overrunwith Payback (PO), respectively. The

study presented by Davis and Burns provides schedulabilityanalysis for both overrun mechanisms;

however, the schedulability analysis does not allow independent analysis of individual subsystems.

Hence, the presented schedulability analysis does not naturally support composability of subsystems.

The schedulability analysis of Davis and Burns’ has been extended assessing composability in [8]

for systems running the Earlier Deadline First (EDF) scheduling algorithm. In addition, in the same

paper a new overrun mechanism has been presented, called Enhanced Overrun (EO), that potentially

increases schedulability within a subsystem by providing CPU allocations more efficiently. Also, in

the paper this new mechanism has been evaluated against PO.

The contributions of this paper are as follows; Firstly, BO,the second version of overrun mechanism

presented in [11], is included in the comparison between overrun mechanisms presented in [8] and it is

shown under which circumstances where a certain overrun mechanism is the preferred one among all

three (BO, PO and EO) presented mechanisms. In addition, thesechedulability analysis of local and

global schedulers is generalized by including Fixed Priority Scheduling (FPS) in the schedulability

analysis, as the results of [8] were limited to the EDF scheduling algorithm. Finally, the simplified

equation to calculate resource holding time using the EDF scheduling algorithm (presented in [8]) is

proven to be valid also when using the FPS scheduling algorithm. Hence, using the results of this

paper it is possible to use either FPS or EDF.

The outline of the paper is as follows: Section II presents related work, while Section III presents the

system model. In Section IV the schedulability analysis forthe system model is presented. Section V

presents the three overrun mechanisms (BO, PO and EO), and Section VI presents their analytical

comparison. In Section VII it is shown how to calculate the resource holding times under both FPS

and EDF, and finally, Section VIII concludes.

II. Related work

This section presents related work in the areas of HSFs as well as resource sharing protocols.

A. Hierarchical scheduling

The HSF for real-time systems, originating in open systems [12] in the late 1990’s, has been

receiving an increasing research attention. Since Deng andLiu [12] introduced a two-level HSF,

its schedulability has been analyzed under fixed-priority global scheduling [17] and under EDF-

based global scheduling [19], [22]. Moket al. [24] proposed the bounded-delay resource model

so as to achieve a clean separation in a multi-level HSF, and schedulability analysis techniques [14],

[29] have been introduced for this resource model. In addition, Shin and Lee [28], [30] introduced

another periodic resource model (to characterize the periodic resource allocation behaviour), and many

studies have been proposed on schedulability analysis withthis resource model under fixed-priority

scheduling [26], [20], [10] and under EDF scheduling [28]. More recently, Easwaranet al. [13]

introduced Explicit Deadline Periodic (EDP) resource model. However, a common assumption shared

by all the studies in this paragraph is that tasks are required to be independent.

B. Resource sharing

In many real systems, tasks are semi-independent, interacting with each other through mutually

exclusive resource sharing. Many protocols have been introduced to address the priority inversion

problem for semi-independent tasks, including the Priority Inheritance Protocol (PIP) [27], the Priority

Ceiling Protocol (PCP) [25], and Stack Resource Policy (SRP) [3]. Recently, Fisheret al. addressed

the problem of minimizing the resource holding time [16] under SRP. There have been studies on

extending SRP for HSFs, for sharing of logical resources within a subsystem [2], [17] and across

subsystems [11], [7], [15]. Davis and Burns [11] proposed the Hierarchical Stack Resource Policy

(HSRP) supporting sharing of logical resources on the basisof an overrun mechanism. Behnamet

al. [7] proposed the Subsystem Integration and Resource Allocation Policy (SIRAP) protocol that

supports subsystem integration in the presence of shared logical resources, on the basis of skipping.

Fisheret al. [15] proposed the BROE server that extends the Constant Bandwidth Server (CBS) [1]

in order to handle sharing of logical resources in a HSF. Behnamet al. [6] compared between SIRAP,

HSRP and BROE and showed that there is no one silver bullet solution available today, providing

an optimal HSF and synchronization protocol for use in open environments. Lipariet al. proposed

the BandWidth Inheritance protocol (BWI) [23] which extends the resource reservation framework to

systems where tasks can share resources. The BWI approach isbased on using the CBS algorithm and

Subsystem1 Subsystem2

Local
scheduler

Local
scheduler

Subsystemu

R1R1

Local
scheduler

Local
scheduler

Local
scheduler

Local
scheduler

R2R2 RmRm

Global
scheduler

Global
scheduler

Fig. 1. Two-level HSF with resource sharing.

a technique that is derived from the Priority Inheritance Protocol (PIP). Particularly, BWI is suitable

for systems where the execution time of a task inside a critical section can not be evaluated.

III. System model and background

A. Resource sharing in the HSF

The Hierarchical Scheduling Framework (HSF) has been introduced to support CPU time sharing

among applications (subsystems) under different scheduling policies. In this paper, a two level-

hierarchical scheduling framework is considered, which works as follows: a global (system-level)

scheduler allocates CPU time to subsystems, and a local (subsystem-level) scheduler subsequently

allocates CPU time to its internal tasks.

Having such a HSF also allows for the sharing of logical resources among tasks in a mutually

exclusive manner (see Figure 1). Specifically, tasks can share local logical resources within a subsystem

as well asglobal logical resources across (in-between) subsystems. However, note that this paper

focuses around mechanisms for sharing of global logical resources in a HSF while local logical

resources easily can be supported by traditional synchronization protocols such as SRP (see, e.g., [2],

[11], [17]).

B. Virtual processor models

The notion of real-time virtual processor (resource) modelwas first introduced by Moket al. [24]

to characterize the CPU allocations that a parent node provides to a child node in a HSF. TheCPU

supplyof a virtual processor model refers to the amounts of CPU allocations that the virtual processor

model can provide. Thesupply bound functionof a virtual processor model calculates its minimum

possible CPU supply for any given time interval of lengtht.

The periodic virtual processor modelΓ(P, Q) was proposed by Shin and Lee [28] to characterize

periodic resource allocations, whereP is a period (P > 0) and Q is a periodic allocation time

(0 < Q ≤ P). The capacityUΓ of a periodic virtual processor modelΓ(P, Q) is defined asQ/P .

The supply bound functionsbfΓ(t) of the periodic virtual processor modelΓ(P, Q) was given

in [28] to compute the minimum resource supply during an interval of lengtht. Further, in this paper,

the periodic virtual processor model is rephrased with an additional parameter ofBD, where BD

represents its longest possibleblackout durationduring which the periodic virtual processor model

may provide no resource allocation at all.

sbfΓ(t, BD) =

t − (k − 1)(P − Q) − BD if t ∈ W (k)

(k − 1)Q otherwise,
(1)

wherek = max
(

⌈(t + (P − Q) − BD)/P ⌉, 1
)

andW (k) denotes an interval[(k − 1)P + BD, (k −

1)P + BD + Q]. Here, first note that the originalsbfΓ(t) in [28] is equivalent tosbfΓ(t, BD) when

BD = 2(P−Q). Also, note that an interval of lengtht may not begin synchronously with the beginning

of periodP ; as shown in Figure 2, the interval of lengtht can start in the middle of the period of a

periodic virtual processor modelΓ(P, Q). Figure 2 illustrates the supply bound functionsbfΓ(t) of

the periodic virtual processor model.

C. Stack resource policy (SRP)

To be able to use SRP [3] in the HSF, its associated terms are extended as follows:

• Preemption level. Each taskτi has a preemption level equal toπi = 1/Di, whereDi is the relative

deadline of the task. Similarly, each subsystemSs has an associated preemption level equal to

Πs = 1/Ps, wherePs is the subsystem’s per-period deadline.

• Resource ceiling. Each globally shared resourceRj is associated with two types of resource

ceilings; oneinternal resource ceiling for local schedulingrcj = max{πi|τi accessesRj} and

oneexternalresource ceiling for global scheduling.

• System/subsystem ceilings. System/subsystem ceilings are dynamic parameters that change during

runtime. The system/subsystem ceiling is equal to the currently locked highest external/internal

0 1 2 3 4 5 6 7 8 9 10
t

sb
f(

t)

P

Q

P P P

Q QQ

(k-1)P
BD =
2P-2Q

Fig. 2. The supply bound function of a periodic virtual processor model Γ(3, 2).

resource ceiling in the system/subsystem.

Following the rules of SRP, a jobJi that is generated by a taskτi can preempt the currently executing

job Jk within a subsystem only ifJi has a priority higher than that of jobJk and, at the same time,

the preemption level ofτi is greater than the current subsystem ceiling. A similar reasoning is made

for subsystems from a global scheduling point of view.

D. System model

In this paper a periodic task modelτi(Ti, Ci, Di, {ci,j}) is considered, whereTi, Ci andDi represent

the task’s period, worst-case execution time (WCET) and relative deadline, respectively, whereDi ≤

Ti, and{ci,j} is the set of WCETs within critical sections associated withtask τi. Each elementci,j

in {ci,j} represents the WCET of the taskτi inside a critical section of the global shared resourceRj .

Looking at a shared resourceRj , the resource holding timehj,i of a taskτi is defined as the time

given by the task’s maximum execution time inside a criticalsection plus the interference (inside the

critical section) of higher priority tasks having preemption level greater than the internal ceiling of

the locked resource.

A subsystemSs ∈ S, whereS is the whole system of subsystems, is characterized by a taskset

Ts and a set of internal resource ceilingsRCs inherent from internal tasks using the globally shared

resources. Each subsystemSs is assumed to have an EDF or FPS local scheduler, and the subsystems

are scheduled according to EDF or FPS on a global level. The collective resource requirements by

each subsystemSs is characterized by itsinterface(the subsystem interface) defined as(Ps, Qs, Hs),

wherePs is the subsystem’s period,Qs is it’s execution requirement budget, andHs is the subsystem’s

maximum resource holding time, i.e.,Hs = max{hj,i|τi ∈ Ts accessesRj}.

IV. Schedulability analysis

This section presents the schedulability analysis of the HSF, starting with local schedulability

analysis needed to calculate subsystem interfaces, and finally, global schedulability analysis. The

analysis presented assumes that SRP is used for synchronization on the local (within subsystems)

level.

A. Local schedulability analysis

Let dbfEDF(i, t) denote the demand bound function of a taskτi under EDF scheduling [4], i.e.,

dbfEDF(i, t) =
⌊t + Ti − Di

Ti

⌋

· Ci. (2)

The local schedulability condition under EDF scheduling isthen (by combining the results of [5] and

[28])

∀t > 0
n

∑

i=1

dbfEDF(i, t) + b(t) ≤ sbf(t), (3)

whereb(t) is the blocking function [5] that represents the longest blocking time during which a job

Ji with Di ≤ t may be blocked by a jobJk with Dk > t when both jobs access the same resource.

For Fixed Priority Scheduling (FPS) [18], letrbfFP(i, t) denote the request bound function of a

taskτi, i.e.,

rbfFP(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉

· Ck, (4)

whereHP(i) is the set of tasks with higher priorities than that ofτi. The local schedulability analysis

under FPS can then easily be extended from the results of [3],[28] as follows:

∀τi, 0 < ∃t ≤ Di, rbfFP(i, t) + bi ≤ sbf(t), (5)

wherebi is the maximumblocking(i.e., extra CPU demand) imposed to a taskτi whenτi is blocked

by lower priority tasks that are accessing resources with ceiling greater than or equal to the priority

of τi. Note thatt can be selected within a finite set of scheduling points [21].

B. Subsystem interface calculation

Given a subsystemSs, RCs, and Ps, let calculateBudget(Ss, Ps,RCs) denote a function that

calculates the smallest subsystem budgetQs that satisfies Eq. (3) for EDF and Eq. (5) for FPS

scheduling. Hence,Qs = calculateBudget(Ss, Ps,RCs). The function is similar to the one presented

in [28], however, due to space limitations, its details are left out of this paper.

C. Global schedulability analysis

Following Theorem 1 of [5], global schedulability analysisunder EDF scheduling is given using

the system load bound functionLBF(t) as follows:

∀t > 0, LBF(t) = B(t) +
∑

Ss∈S

DBFs(t) ≤ t, (6)

where

DBFs(t) =
⌊ t

Ps

⌋

· Qs, (7)

and the system-level blocking functionB(t) represents the maximum blocking time during which a

subsystemSs may be blocked by another subsystemSk, wherePs ≤ t andPk > t. B(t) is defined as

B(t) = max{Hk | Pk > t}. (8)

Under global FPS scheduling, the subsystem load bound function is as follows (on the basis of a

similar reasoning of Eq. (4)):

LBFs(t) = RBFs(t) + Bs , where (9)

RBFs(t) = Qs +
∑

Sk∈HPS(s)

⌈ t

Pk

⌉

Qk, (10)

whereHPS(s) = {Sj |j > s} is the set of subsystems with priority higher than that ofSs. Let Bs denote

the maximum blocking (i.e., extra CPU demand) imposed to a subsystemSs, when it is blocked by

lower-priority subsystems,

Bs = max{Hj| Sj ∈ LPS(Ss)}, (11)

whereLPS(Ss) = {Sj|j < s}.

A global schedulability condition under FPS is then

∀Ss, 0 < ∃t ≤ Ps, LBFs(t) ≤ t (12)

V. Overrun mechanisms

This section explains three overrun mechanisms that can be used to handle budget expiry during a

critical section in the HSF. Consider a global scheduler that schedules subsystems according to their

periodic interfaces (Ps, Qs, Hs). The subsystem budgetQs is said toexpireat the point when one or

more internal (to the subsystem) tasks have executed a totalof Qs time units within the subsystem

periodPs. Once the budget is expired, no new task within the same subsystem can initiate its execution

until the subsystem’s budget is replenished. This replenishment takes place in the beginning of each

subsystem period, where the budget is replenished to a valueof Qs.

Budget expiration may cause a problem if it happens while a job Ji of a subsystemSs is executing

within a critical section of a global shared resourceRj. If another jobJk, belonging to another

subsystem, is waiting for the same resourceRj , this job must wait untilSs is replenished again soJi

can continue to execute and finally release the lock on resource Rj. This waiting time exposed toJk

can be potentially very long, causingJk to miss its deadline.

In this paper, an overrun mechanism is considered as follows; when the budget of subsystemSs

expires andSs has a jobJi that is still locking a globally shared resource, jobJi continues its execution

until it releases the locked resource. The extra time thatJi needs to execute after the budget ofSs

expires is denoted asoverrun timeθ. The maximumθ occurs whenJi locks a resource that gives the

longest resource holding time just before the budget ofSs expires.

Here, two versions of overrun mechanisms [11] are considered;

P P

Q H QQ-H
BD = 2P-2Q+H

P

(a) basic overrun mechanism with payback (PO)

P P

Q H QQ-H
BD = 2P-2Q

P

H

(c) enhanced overrun mechanism (EO)

P P

Q H QQ
BD = 2P-2Q

P

(b) basic overrun mechanism without payback (BO)

Fig. 3. Basic and enhanced overrun mechanisms.

1) The overrun mechanism with payback, introduced as PO and later EO, whenever overrun

happens, the subsystemSs pays backθ in its next execution instant, i.e., the subsystem budget

Qs will be decreased byθ for the subsystem’s execution instant following the overrun (note that

only the instant following the overrun is affected).

2) The overrun mechanism without payback, introduced as BO,in this version of the overrun

mechanism, no further actions will be taken after the event of an overrun.

Hereinafter, the overrun mechanism with payback is called PO, and the overrun mechanism without

payback is called BO. Both are versions of the basic overrun mechanism. Also, an extended mechanism

with payback is introduced as EO.

A. Basic overrun – overrun mechanism 1 and 2

Davis et al. [11] presented schedulability analysis for both (BO and PO)versions of basic overrun,

however, the presented analysis is not suitable for open environments [12] as it requires detailed

information of all tasks in the system in order to calculate global schedulability. This section discusses

how to extend the existing schedulability analysis for the basic overrun mechanisms, making them

suitable for open environments.

time

su
pp

ly

H

sbf(t)

sbf (t)*sbf (t)*

Fig. 4. Comparing sbf(t) with sbf
◦(t).

1) Independent analysis with basic overrun:The supply bound function in [28] was developed

under the assumption that the greatest blackout duration is2(P − Q). PO – basic overrun with

payback – cannot employ this existing supply bound functionfor schedulability analysis because its

greatest Blackout Duration (BD) is2(P −Q) + H (as shown in Figure 3a). Taking this into account,

below is the presentation of a modified supply bound functionsbf
◦
Γ(t), that can be used with PO

(using Eq. (1)), as follows:

sbf
◦
Γ(t) = sbfΓ(t, BD◦), whereBD◦ = 2(P − Q) + H. (13)

The existing schedulability conditions of Eq. (3) can then be extended by substitutingsbfΓ(t) with

sbf
◦
Γ(t).

For BO – basic overrun without payback – Eq. (1) can still be used without modification to evaluate

the supply bound function since the Blackout Duration is2(P − Q) (as shown in Figure 3b).

2) Global analysis with basic overrun:

a) PO – basic overrun with payback.:Firstly, the demand bound function (and the request bound

function) of a subsystem with the basic overrun mechanism with payback is extended. Looking at

the PO mechanism in a subsystemSs, the maximum contribution onDBFs(t) for EDF scheduling and

RBFs(t) for FPS scheduling isHs. WhenSs overruns with its maximum, which isHs, the subsystem’s

resource demand within the subsystem periodPs will be increased toQs + Hs. Following this, the

budget of the next period will be decreased toQs−Hs due to the payback mechanism. Then, suppose

that the subsystem overruns again. Now, during the next subsystem period, the subsystem’s resource

demand will beQs −Hs +Hs = Qs. Here, it is easy to observe that the subsystem’s resource demand

will be at mostkQs + Hs duringk subsystem periods. Hence, the demand bound functionDBF
◦
s(t) of

a subsystemSs with the basic overrun mechanism using EDF scheduling globally is

DBF
◦
s(t) =

⌊ t

Ps

⌋

· Q◦
s + Os(t), (14)

whereQ◦
s is the subsystem budget when using the PO mechanism and,

Os(t) =

Hs if t ≥ Ps,

0 otherwise.
(15)

The schedulability condition of Eq. (6) can then be extendedby substitutingDBFs(t) with DBF
◦
s(t).

When using a global FPS scheduler, the request bound function RBF
◦
s(t) is

RBF
◦
s(t) = (Q◦

s + Hs) +
∑

Sk∈HPS(s)

(
⌈ t

Pk

⌉

(Q◦
k) + Hk) (16)

b) BO – basic overrun without payback.:This version of overrun does not payback the budget

after overrun happens. This means that the system resource demands within the period ofPs can be

up toQs +Hs for all periods considering that the maximum overrun will happen every period, which

is the worst case scenario. Then for EDF global scheduling, the maximum demand bound function

DBF
#
s (t) using the BO mechanism is

DBF
#
s (t) =

⌊ t

Ps

⌋

· (Q#
s + Hs) (17)

whereQ#
s is the subsystem budget when using the BO mechanism.

For a global FPS scheduler, the request bound functionRBF
#
s (t) is

RBF
#
s (t) = (Q#

s + Hs) +
∑

Sk∈HPS(s)

⌈ t

Pk

⌉

(Q#
k + Hk) (18)

B. Enhanced overrun – overrun mechanism 3

As seen in Section V-A, the PO mechanism works with a modified supply bound functionsbf◦(t)

that is less efficient in terms of CPU resource usage comparedwith the originalsbf(t), as illustrated

in Figure 4. While for the BO mechanism, the request/demand bound function (DBF/RBF) will be

increased byQs + Hs in all periods which may require more resources as well. In the following an

enhanced overrun mechanism (EO) is proposed. This new overrun mechanism makes it possible to

usesbf(t) in Eq. (1) to improve the efficiency of CPU resource utilization and at the same time the

request/demand bound function (DBF/RBF) will be Qs +Hs for the first instance and then onlyQs for

the following periods when applying global schedulabilityanalysis.

The EO mechanism is based on imposing an offset (delaying thebudget replenishment of subsystem)

equal to the amount of an overrunθs to the execution instant that follows a subsystem overrun. As

shown in Figure 3c, the execution of the subsystem will be delayed byθs after a new period followed

by overrun even if that subsystem has the highest priority atthat time. By this the maximum BD will

be decreased to2(P − Q) compared with PO (basic overrun with payback) shown in Figure 3a and

therefore it is possible to use the same supply bound function presented in Section III-B. One of the

important features that the EO mechanism provides is that itmoves the effect of overrun from the

local to the global schedulability analysis, so the subsystem development will not depend on if there is

a specific overrun mechanism enforced or not. This feature isvery important in an open environment,

and it allows for the usage of the existing local schedulability condition without any modification.

1) Global analysis with enhanced overrun:The effect of overrun is now moved to global schedu-

lability analysis when using the EO mechanism. In the following, a demand bound functionDBF∗s(t)

is presented for EDF global scheduling of a subsystemSs that upper-bounds the demand requested

by Ss under the EO mechanism. Now,DBF∗s(t) includes the offsetθs = Hs as follows:

DBF
∗
s(t) =

⌊t + Hs

Ps

⌋

· Q∗
s + O∗

s(t), (19)

whereQ∗
s is the subsystem budget when using the EO mechanism and

O∗
s(t) =

Hs if t ≥ Ps − Hs,

0 otherwise.
(20)

The schedulability condition of Eq. (6) can then be extendedby substitutingDBFs(t) with DBF
∗
s(t).

Using an FPS global scheduler, the offset imposed by the EO mechanism for each subsystemSs

can be modeled as a release jitterJs with the range of[0, Hs] soJs = Hs. The upper bound of request

bound functionRBF∗s(t) calculation is shown below,

RBF
∗
s(t) = (Q∗

s + Hs) +
∑

Sk∈HPS(s)

(
⌈t + Jk

Pk

⌉

(Q∗
k) + Hk) (21)

Looking at the schedulability analysis then

∀Ss, 0 < ∃t ≤ Ps − Hs, LBF
∗
s(t) ≤ t (22)

where

LBF
∗
s(t) = RBF

∗
s(t) + Bs , where (23)

VI. Comparison between the three overrun mechanisms

In this section, the efficiency of the three overrun mechanisms (BO, PO and EO) are compared.

First, the effect of using each one of them locally is shown, i.e., on a subsystem level. Then, their

effect globally is shown, i.e., on a system level.

A. Subsystem-level comparison

The following lemma shows that the minimum required subsystem budget when using the EO

mechanism will be lower than or equal to the minimum requiredbudget when using the PO mechanism

for both FPS and EDF local schedulers.

Lemma 1:Assuming that the minimum required budget to schedule all tasks in a subsystemSs

using the PO mechanism isQ◦
s, and that the corresponding budget when using the EO mechanism is

Q∗
s, thenQ∗

s ≤ Q◦
s.

Proof: The proof is split into two parts, proving the case of having an EDF local scheduler and

an FPS local scheduler, respectively.

a) EDF local scheduler.:A subsystemSs is exactly schedulable iff in addition to Eq. (3),
∑n

i dbfEDF(i, t) + b(t) = sbf(t) for ∃t s.t. minn
i Di ≤ t ≤ LCMSs

+ maxn
i Di (see Theorem 2.2 in

[13]). This means that if the budgetQs is the minimum required budget to guarantee the schedulability

of tasks inSs, then there is a set of timeste at which
∑n

i dbfEDF(i, t) + b(t) = sbf(t). Without loss

of generality, assume thatte includes one element. If the same subsystem budgetQs is used when

running the PO mechanism and the EO mechanism, respectively, then

sbf
◦(t) = sbf(t − Hs) (24)

wheresbf(t) is used with the EO mechanism and the shift in time “−Hs” comes from the difference

in BD between the EO and PO mechanisms. From Eq. (1) and Eq. (24), there are two cases:

case 1:sbf◦(t) = sbf(t) for t ∈ [kPs −Qs +Hs, (k +1)Ps−2Qs] wherek is an integer numberk > 1.

case 2:sbf◦(t) < sbf(t) for t out of the range specified in case 1.

If te ∈ [kPs−Qs +Hs, (k+1)Ps−2Qs] thensbf◦(te) = sbf(te). In turn,
∑n

i dbfEDF(i, t
e)+b(te) =

sbf
◦(te), which means thatQs may be enough to schedule all tasks in a subsystemSs using the PO

mechanism, soQ∗
s = Q◦

s at time t = te. However, Eq. (3) must be checked if it holds for all other

times t, to be sure that the subsystemSs is still schedulable.

If te is not in the range given for case 1, thensbf
◦(te) < sbf(te). In turn,sbf◦(te) <

∑n
i dbfEDF(i, t

e)+

b(te) which means that the budgetQs will not satisfy the condition in Eq. (3) using the PO mechanism,

hence a higher budget should be provided. In this caseQ∗
s < Q◦

s.

b) FPS local scheduler.:A subsystemSs is exactly schedulable iff in addition to Eq. (5),∀τi, 0 <

∀t ≤ Di, rbfFP(i, t) + bi ≥ sbf(t) (see Theorem 2.3 in [13]). This means that if the budgetQs

is the minimum required budget to guarantee the schedulability of tasks inSs, then there is a set of

timestf at whichrbfFP(i, t) + bi = sbf(t). Note that Eq. (24) is valid since it is independent on the

type of scheduler used.

If all elements intf are not in the range given for case 1, then∀τi, 0 < ∀t ≤ Di, rbfFP(i, t)+bi >

sbf(t) which makes the local scheduler . To solve this problem, the budget when using the PO

mechanism should be increased. In this caseQ∗
s < Q◦

s.

Lemma 2:Assuming that the minimum required budget to schedule all tasks in a subsystemSs

using the BO mechanism isQ#
s , and that the corresponding budget when using the EO mechanism

is Q∗
s, thenQ∗

s = Q#
s .

Proof:

Using the EO mechanism or the BO mechanism, the BD time of a subsystemSs equals to2Ps−2Qs

see Figure 3. That means thesbf(t) for both mechanisms will be the same for allt ≥ 0. The demand

bound functiondbfEDF(i, t) when using an EDF scheduler locally will not be changed when using

either of the EO mechanism or the BO mechanism. The same goes for the request bound function

rbfFP(i, t) when using FPS locally. Looking at the Eq. (3) and Eq. (5) thenthe local schedulability

analysis when using the EO mechanism and the BO mechanism will be the same, i.e.,Q∗
s = Q#

s .

B. System-level comparison

As shown in the previous section, the minimum required budget when using the EO mechanism is

equal to the minimum required budget when using the BO mechanism, and lower than or equal to the

minimum required budget when using the PO mechanism. However, at system level, it is not easy to

see which one of these three approaches that will require minimum overall system CPU resources in

the general case.

In doing a comparison among the three approaches,system loadis defined as a quantitative measure

to represent the minimum amount of CPU allocations necessary to guarantee the schedulability of

the systemS. Then, the impact of each overrun mechanism on the system load can be investigated,

respectively.

When using EDF as a global scheduler, the system load is computed as follows:

loadsys = max
t

LBF(t)

t
. (25)

Note thatα = loadsys is the smallest fraction of the CPU that is required to schedule all the

subsystems in the systemS (satisfying Eq. (6)) assuming that the resource supply function (at system

level) is αt.

When using FPS as a global scheduler, the system load is computed as follows:

loadsys = max
∀Ss∈S

{αs}. (26)

where

αs = min
0<t≤Ps

{
LBFs(t)

t
| LBFs(t) ≤ t}. (27)

Looking at Eq. (25) and Eq. (26),loadsys can be decreased by loweringLBF(t).

c) EDF global scheduler. :Comparing between the three overrun mechanisms, the mechanism

that requires the lowestDBF(t) at the timet whenLBF(t)/t is at its maximum will require less system

load. Three cases can be distinguished based on the type of overrun mechanism used and its associated

demand bound function:

1) PO vs BO. Comparing Eq. (14) and Eq. (17), it can be concluded thatDBF
◦
s(t) ≥ DBF

#
s (t) for

0 ≤ t < 2 · Ps. The reason for this is that according to Lemma 2 and Lemma 1,Q◦
s ≥ Q#

s .

Whent is in the range of0 ≤ t < 2 ·Ps, the floor in Eq. (14) and Eq. (17) will equal to0 or 1,

which makes Eq. (14) and Eq. (17) identical, and the only difference is the value of the budget.

If t is not in this range then it is not possible to decide which mechanism that can give a lower

demand bound function without knowing the full interface parameters using both mechanisms.

At a certain time instancets when ts ≫ 2Ps, DBF◦s(t) < DBF
#
s (t) for t ≥ ts.

2) BO vs EO. Comparing Eq. (17) and Eq. (19), it can be concluded thatDBF
∗
s(t) ≥ DBF

#
s (t) for

0 ≤ t < 2 · Ps. The reason for this is that according to Lemma 2Q∗
s = Q#

s , while the floor

part in Eq. (17) and Eq. (19) is different. Looking at the EO mechanism, the demand bound

function is increased whent = Ps − Hs. For the BO mechanism, the demand bound function

is increased att = Ps, which means thatDBF∗s(t) > DBF
#
s (t) at Ps − Hs ≤ t < Ps. However, if

t > 2Ps, then it is not possible to decide which one of the two mechanisms that will be better

than the other, as in the first case above.

3) PO vs EO. Comparing Eq. (14) and Eq. (19), it can be concluded thatDBF
◦
s(t) < DBF

∗
s(t) whent

is in the rangekPs−Hs ≥ t < kPs andDBF◦s(t) ≥ DBF
∗
s(t) whent is in kPs ≥ t < (k+1)Ps−Hs,

wherek is an integer value greater andk > 0. Note that, at a certain time instancets when

ts ≫ 2Ps, DBF◦s(t) ≥ DBF
∗
s(t) for t ≥ ts if Q∗

s < Q◦
s.

The example shown in Figure 5 explains the three cases described above.

Defining the timetl as the time at which the system load is evaluated from Eq. (25), then, depending

on the value oftl and the type of overrun mechanism used, it would be possible to estimate which one

of the three overrun mechanisms that will require the lowestsystem load. For example, iftl ∈ 2 · Pk

and Pk is the shortest subsystem period, then the subsystem load when using the BO mechanism

is less than or equal to the subsystem load when using any of the other two overrun mechanisms.

However, if tl ≫ Pk then the possibility of having good results when using the BOmechanism is

very low. Another aspect that can be considered is whenQ◦
s = Q#

s = Q∗
s for all subsystems, then the

system load using the PO mechanism will always be less than orequal to the system load when using

the other two mechanisms. Otherwise, all subsystem parameters should be given in order to evaluate

which one of the three mechanisms that can give better results in terms of lowest system load.

d) FPS global scheduler. :Looking at Eq. (27), in order to minimize the system loadLBFk(t)

of the subsystemSk that generates the maximumα should be minimized. The overrun mechanism

that generates the lowest request bound functionRBFs(t) for the subsystemSk, will require the lowest

system load. However,Sk may not be the same subsystem when using different overrun mechanisms,

DBF�
DBF�
DBF�

t� �� ��������� �����	
���
���	
� ���
����
����	
����
����
��
Q* = Q� <Q�

Fig. 5. Comparing between DBF
◦
s(t), DBF#

s (t) and DBF
∗
s(t).

and also, at a certain time instancet, the value ofRBFs(t) when using one of the overrun mechanisms

will be less than when using another overrun mechanism, and for another time instancet the value of

RBFs(t) might be less when using the second mechanism. It can be concluded that none of the three

overrun mechanisms can perform better than the other two in the general case, as it depends directly

of the system parameters.

The comparison between the three overrun mechanisms in terms of request bound function is shown

below;

1) PO vs BO. Comparing Eq. (16) and Eq. (18), it easy to show thatRBF
◦
s(t) ≥ RBF

#
s (t) for

0 ≤ t < Ps. The reason is that the interference from other higher priority tasks is always

Qk + Hk for both cases andQ◦
s ≥ Q#

s . If t > Ps then the mechanism that require a lower

request bound function is different depending on the systemparameters. It can be concluded

that if the subsystem periods of all subsystems are equal, then the BO mechanism will require

less (or at least equal) system load than using the PO mechanism. Another interesting observation

is that if the subsystem that generates maximumα in Eq. (27) has the highest priority, then the

BO mechanism will require less (or at least equal) system load than using the PO mechanism.

The reason for this is inherent in the subsystem priority; asthe subsystem has higher priority,

then there will be no interference from other lower prioritysubsystems.

2) BO vs EO. Comparing Eq. (18) and Eq. (21), it is easy to show thatRBF
∗
s(t) ≥ RBF

#
s (t) for

0 ≤ t < Ps. If t > Ps, then finding the best mechanism that requires the least system load

depends on the system parameters.

3) PO vs EO. Comparing Eq. (16) and Eq. (21), it can be concluded thatRBF
◦
s(t) < RBF

∗
s(t) when

t is in the rangekPs − Hs ≥ t < kPs and RBF
◦
s(t) ≥ RBF

∗
s(t) when t is in (k − 1)Ps ≥ t <

(k)Ps − Hs wherek is an integer value greater andk > 0.

The following examples show some of the cases discussed above:

e) Example 1::Suppose that a systemS consists of three subsystems with parameters as shown

below;

Subsystem Q◦ Ps Q∗
s=Q# H

S1 20 5 4 2

S2 50 15 13 4

S3 100 20 18 4

The global scheduler is EDF. Using the PO mechanismloadsys = 0.85 and maximumα is att = 100,

using the BO mechanismloadsys = 0.86 and maximumα is at t = 100, and for the EO mechanism

loadsys = 0.755 and maximumα is at t = 98.

f) Example 2:: Suppose that a systemS consists of three subsystems with parameters as shown

below;

Subsystem Q◦ Ps Q∗
s=Q# H

S1 12 2 1.75 1

S2 15 13 2.9 2

S3 60 10 9.5 3

The global scheduler is EDF. Using the PO mechanismloadsys = 0.73 and maximumα is at t = 15,

using the BO mechanismloadsys = 0.8 and maximumα is at t = 60, and for the EO mechanism

loadsys = 0.82 and maximumα is at t = 13.

g) Example 3::Suppose that a systemS consists of three subsystems with parameters as shown

below;

Subsystem Q◦ Ps Q∗
s=Q# H Priority

S1 40 5 4.5 1 High

S2 40 2 1.75 1 Middle

S3 40 3.5 3 2 Low

The global scheduler is FPS. Using the PO mechanismloadsys = 0.36 and maximumα is at t = 40,

using the BO mechanismloadsys = 0.33 and maximumα is at t = 40, and for the EO mechanism

loadsys = 0.35 and maximumα is at t = 38.

VII. Computing resource holding time

This section explains how to compute the resource holding time hj,i, a very important parameter

in the global analysis. Using the periodic virtual processor model, each subsystemSs receives CPU

resources with allocation timeQs every periodPs. During Qs, the CPU allocation is 100 % of the

CPU capacity (see Figure 2 where the slope in the supply curveduring Q is one). The mechanism

presented in Section V guarantees that locking and releasing a critical section of a globally shared

resourceRj will happen within the allocated CPU resourceQs+θ. Thenhj,i will include the execution

time of the taskτi that locksRj inside the critical section as well as the interference fromall tasks

within the same subsystem that can preempt the execution inside the critical section. The worst case

scenario happens when all tasks that can preempt the execution of the critical section will be released

just after taskτi has entered the critical section of resourceRj.

The resource holding time can be computed depending on the local scheduling algorithm, as shown

below;

Under FPS scheduling the resource holding timehj,i of a shared resourceRj is [9];

W FPS
j (t) = cxj +

n
∑

τk∈U

⌈
t

Tk

⌉ · Ck, (28)

wherecxj,i = max{ci,j} is the maximum execution time of taskτi inside the critical section of the

resourceRj andn is the number of tasks andU is the set of tasks such thatU = {τk|πk > rcj}.

The resource holding timehj,i is the smallest positive timet∗ such that

W FPS
j (t∗) = t∗. (29)

Under EDF scheduling the resource holding timehj,i of a shared resourceRj accessed by task

τi is [16];

W EDF
j (t) = cxj,i +

n
∑

τk∈U

(

min
(⌈ t

Tk

⌉

,
⌊Di − Dk

Tk

⌋

+ 1
))

· Ck, (30)

The resource holding timehj,i is the smallest positive timet∗ such that

W EDF
j (t∗) = t∗. (31)

Finally, the resource holding time of a resourceRj is hj = max{hj,i} for all τi access resourceTj .

Note that the preemption inside the critical section from other subsystems has not been counted

when calculating the resource holding time. However, the interference from higher preemption level

subsystems is taken into account in the global schedulability analysis. Looking at Eq. (6) and Eq. (9),

hj,i may act as a blocking to other subsystems. Moreover, it is also the extra capacity required to

prevent budget expiry inside critical section. Whenhj,i is considered as a blocking time for other

subsystems, the effect of interference from higher preemption level subsystems inside the critical

section will be included in the global schedulability of theblocked subsystem (in the summation

part of Eq. (6) and of Eq. (9)). Whenhj,i is used to evaluate the overrun, interference from other

subsystems inside the critical section will not be important, as the only important part here is that the

locked resource should be released before the end of the period.

Eq. (28) and Eq. (30) can be simplified to evaluatehj,i as shown below:

hj,i = cxj,i +
∑

τk∈U

Ck (32)

The difference between the simplified equation Eq. (32) and the original equations Eq. (28) and

Eq. (30) is that in Eq. (28) and Eq. (30) all tasks that can preempt inside the critical section are

assumed to be execute only once. The reason for why it is safe to assume only one execution of each

preempting task inside the critical section is given in the following lemma, showing that if a task

executes more than one time inside the critical section, thesubsystem will become unschedulable.

Lemma 3:For a subsystem that uses an overrun mechanism to arbitrate access to a global shared

resource under the periodic virtual processor model, each task that is allowed to preempt the execution

of anther task currently inside the critical section of a globally shared resource can, in the worst case,

only execute (cause interference) once independent if the local scheduler is EDF or FPS.

Proof: This lemma is proven by considering two cases:

(1) Ps < Tm (whereTm = min(Ti) for all i = 1, ..n), if the task having periodTm executes 2 or

more times inside the critical section, this means that the resource will be locked during this period,

i.e.,hj,i > Tm thenhj,i > PS, which in turn means that the CPU utilization required by thesubsystem

Ss will be Us = (Qs + hj,i)/Ps > 1.

(2) If Ps ≥ Tm , sbfΓ(t) should provide at leastCm at time t = Tm to ensure the schedulability

test in Eq. (3) for the EDF scheduler and in Eq. (4) for the FPS scheduler. Note thatsbfΓ(t) = 0

during t ∈ [0, 2Ps − 2Qs] so, 2Ps − 2Qs < Tm which meansQs > Ps − Tm/2.

If the task that has periodTm execute 2 times inside the critical section thenhj,i > Tm. Hence,

Qs + hj,i > Ps + Tm/2 which meansUs = (Qs + hj,i)/p > 1.

From Lemma (3), it can be concluded that ift∗ > Tm then the required CPU utilizationUs will

be greater than one. This means that, in turn, all tasks that can preempt the execution of a critical

section should do so maximum one time in order to keep the utilization of a subsystem less than one.

This proves the correctness of Eq. (32) which is based on the assumption that all tasks can interfere

only once as a worst case while a task is in the critical section of the resourceRj . If the value ofhj,i

becomes greater thanmin(Tm, Ps) then it can be concluded that the subsystem will not be schedulable

and no further calculation towards finding a exact value ofhj,i is needed.

VIII. Summary

This paper presented three different overrun mechanisms that all can handle the problem of sharing

of logical resources in a hierarchical scheduling framework while at the same time supporting inde-

pendent subsystem development (open environments). Compared to the previous work [8], the results

have been generalized by also allowing for the FPS scheduling algorithm for both local and global

schedulers, which is suitable to open environment. In addition, a third overrun mechanism, basic

overrun without payback (BO), is included in the comparisonbetween the overrun mechanisms. Also,

this comparison is performed considering both FPS and EDF scheduling algorithms. The results from

comparison showed that it is not trivial to evaluate, in the general case, which overrun method that

is better than the other, as their impact on the CPU utilization is highly dependent on global system

parameters such as subsystem periods and budgets. Finally,the calculation of resource holding times

when using the periodic virtual processor model with both the EDF and the FPS scheduling algorithm

is presented, as the resource holding time is a very important parameter in the global schedulability

analysis.

Future work includes comparing the enhanced overrun mechanism (EO) with other synchronization

mechanisms such as BWI [23], the BROE server [15] and SIRAP [7]. In addition, implementing

the three overrun mechanisms and comparing the implementation overhead of each mechanism is

important. Finally, as the global schedulability analysisgives an upper bound for EO, it will be

interesting to find an exact or less pessimistic schedulability analysis.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time systems. InProceedings of the19
th

IEEE International Real-Time Systems Symposium (RTSS’98), pages 4–13, Madrid, Spain, December 1998.

[2] L. Almeida and P. Pedreiras. Scheduling within temporalpartitions: response-time analysis and server design. In

Proceedings of the 4th ACM international conference on Embedded software (EMSOFT ’04), pages 95–103, Pisa,

Italy, September 2004.

[3] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time Systems, 3(1):67–99, March 1991.

[4] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time sporadic tasks on one processor. In

Proceedings of the11
t
h IEEE International Real-Time Systems Symposium(RTSS’90), pages 182–190, Lake Buena

Vista, Florida, USA, December 1990.

[5] S. K. Baruah. Resource sharing in EDF-scheduled systems: A closer look. In Proceedings of the27
th IEEE

International Real-Time Systems Symposium (RTSS’06), pages 379–387, Rio de Janeiro, Brazil, December 2006.

[6] M. Behnam, T. Nolte, M.Åsberg, and I. Shin. Synchronization protocols for hierarchical real-time scheduling

frameworks. InProceedings of the 1st Workshop on Compositional Theory andTechnology for Real-Time Embedded

Systems (CRTS’08) in conjunction with the 29th IEEE International Real-Time Systems Symposium (RTSS’08),

November 2008.

[7] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A synchronization protocol for hierarchical resource sharing in

real-time open systems. InProceedings of the 7th ACM and IEEE International Conference on Embedded Software

(EMSOFT’07), pages 279–288, Salzburg, Austria, October 2007.

[8] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Scheduling of semi-independent real-time components: Overrun methods

and resource holding times. InProceedings of 13th IEEE International Conference on Emerging Technologies and

Factory Automation (ETFA’08). IEEE Industrial Electronics Society, September 2008.

[9] M. Bertogna, N. Fisher, and S. Baruah. Static-priority scheduling and resource hold times. InProceedings of the

15th International Workshop on Parallel and Distributed Real-Time Systems(WPDRTS), pages 1–8, Long Beach, CA,

USA, March 2007.

[10] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive scheduling. InProceedings of the26
th IEEE

International Real-Time Systems Symposium (RTSS’05), pages 389–398, Miami Beach, FL, USA, December 2005.
[11] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority pre-emptive systems. InProceedings of the

27
th IEEE International Real-Time Systems Symposium (RTSS’06), pages 389–398, Rio de Janeiro, Brazil, December

2006.

[12] Z. Deng and J.-S. Liu. Scheduling real-time applications in an open environment. InProceedings of the18
th IEEE

International Real-Time Systems Symposium (RTSS’97), pages 308–319, San Francisco, CA, USA, December 1997.

[13] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework using EDP resource models. InProceedings

of the28
th IEEE International Real-Time Systems Symposium(RTSS’07), pages 129–138, 2007.

[14] X. Feng and A. Mok. A model of hierarchical real-time virtual resources. InProceedings of the23
th IEEE

International Real-Time Systems Symposium (RTSS’02), pages 26–35, Austin, TX, USA, December 2002.
[15] N. Fisher, M. Bertogna, and S. Baruah. The design of an EDF-scheduled resource-sharing open environment. In

Proceedings of the28
th IEEE International Real-Time Systems Symposium (RTSS’07), pages 83–92, December 2007.

[16] N. Fisher, M. Bertogna, and S. Baruah. Resource-locking durations in EDF-scheduled systems. InProceedings of the

13
t
h IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’07), pages 91–100, Bellevue,

WA, USA, 2007.
[17] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for real-time applications. InProceedings of the

20
th IEEE International Real-Time Systems Symposium (RTSS’99), pages 256–267, Phoenix, AZ, USA, December

1999.

[18] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact characterization and average case

behavior. In Proceedings of the20
th IEEE International Real-Time Systems Symposium(RTSS’89), pages 166–171,

Santa Monica, CA, USA, December 1989.

[19] G. Lipari and S. K. Baruah. Efficient scheduling of real-time multi-task applications in dynamic systems. In

Proceedings of the6th IEEE Real-Time Technology and Applications Symposium (RTAS’00), pages 166–175, May-

June 2000.
[20] G. Lipari and E. Bini. Resource partitioning among real-time applications. InProceedings of the15

th Euromicro

Conference on Real-Time Systems (ECRTS’03), pages 151–158, Porto, Portugal, July 2003.

[21] G. Lipari and E. Bini. A methodology for designing hierarchical scheduling systems.J. Embedded Comput.,

1(2):257–269, 2005.

[22] G. Lipari, J. Carpenter, and S. Baruah. A framework for achieving inter-application isolation in multiprogrammed

hard-real-time environments. InProceedings of the21
th IEEE International Real-Time Systems Symposium(RTSS’00),

pages 217–226, Orlando, FL, USA, December 2000.

[23] G. Lipari, G. Lamastra, and L. Abeni. Task synchronization’ in reservation-based real-time systems.IEEE

Transactions on Computers, 53(12):1591–1601, December 2004.

[24] A. Mok, X. Feng, and D. Chen. Resource partition for real-time systems. InProceedings of IEEE Real-Time

Technology and Applications Symposium(RTAS), pages 75–84, Taipei, Taiwan ROC, May 2001.

[25] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for multiprocessors. InProceedings

of the 9
th IEEE International Real-Time Systems Symposium (RTSS’88), pages 259–269, Huntsville, AL, USA,

December 1988.

[26] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein. Analysis of hierarhical fixed-priority scheduling. In

Proceedings of the14
th Euromicro Conference on Real-Time Systems (ECRTS’02), pages 152–160, Vienna, Austria,

June 2002.

[27] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task schedulingin distributed real-time systems. InProceedings of

the International Conference on Industrial Electronics, Control, and Instrumentation IECON87, pages 909–916,

Cambridge, MA, USA, November 1987.

[28] I. Shin and I. Lee. Periodic resource model for compositional real-time guarantees. InProceedings of the24
th

IEEE International Real-Time Systems Symposium(RTSS’03), pages 2–13, Cancun, Mexico, December 2003.

[29] I. Shin and I. Lee. Compositional real-time schedulingframework. In Proceedings of the25
th IEEE International

Real-Time Systems Symposium(RTSS’04), pages 57–67, Lisbon, Portugal, December 2004.

[30] I. Shin and I. Lee. Compositional real-time schedulingframework with periodic model.ACM Transactions on

Embedded Computing Systems, 7(3):(30)1–39, April 2008.

