

PROJECT MONITORING AND CONTROL IN MODEL-DRIVEN
AND COMPONENT-BASED DEVELOPMENT OF EMBEDDED

SYSTEMS
The CARMA Principle and Preliminary Results

Rikard Land, Jan Carlson, Stig Larsson, Ivica Crnkovic
Mälardalen University, School of Innovation, Design and Engineering, Västerås, Sweden
rikard.land@mdh.se, jan.carlson@mdh.se, stig.larsson@mdh.se, ivica.crnkovic@mdh.se

Abstract: This position paper describes how the combination of the Model-Driven Development (MDD) and
Component-Based Software Engineering (CBSE) paradigms can support project monitoring and control,
and project risk reduction. The core principle for this is articulated and named CARMA, and our research
agenda and preliminary results are described. Through interviews, industry input, process simulation, tool
implementation and pilot projects, and describing an extension of CMMI, we are exploring the CARMA
principle in order to provide guidelines for MDD/CBSE projects.

Keywords: Model-Driven Development, Component-Based Software Engineering, Project Monitoring and Control,
Risk management, CMMI, Empirical Studies.

1 INTRODUCTION

In this paper, we describe the preliminary results of
an evaluation of the combination of two increasingly
maturing approaches: Model-driven development
(MDD) and Component-Based Software
Engineering (CBSE). Current research efforts to
combine these are mostly centered on technology,
but there is a more or less implicit promise to reduce
risk in development projects by adopting these two
paradigms – especially when combined.

The assumed benefits are usually cast in
technical terminology: the software will be correct
by construction, component properties can be
composed into system properties, or models at
different levels are ensured to be consistent
(Håkansson et al, 2006; Selic, 2003; Stahl and
Völter, 2006). Only implicitly are the benefits
understood as e.g. reduced costs and risk (Feiler et
al, 2009). However, organizations need to change
their culture and way of working compared to
previous generations of software development
paradigms (Selic, 2003). Such changes may include:
• New ways of formulating requirements
• Different approaches to verification (how/when)
• New activities, re-ordered activities, significantly

different effort (relative and absolute) than usual

• New methods for project monitoring and control
As far as we know, the MDD/CBSE paradigms have
not been thoroughly evaluated from this point of
view (see section 2 for related work): will the
required effort and commitment pay off? The
purpose of this paper is to describe our initial results
in evaluating the MDD/CBSE combination from the
perspectives of risk management and project
monitoring and control.

The goal of evaluating a combination of two
paradigms, even from this more specific point of
view, is extremely ambitious and needs to be made
more concrete in order to be actionable. The next
sections will describe: in more detail the particular
technology chosen and related work (Section 2); the
formulation of a principle capturing the essence of
risk management and project monitoring and control
in this context (Section 3); our research agenda,
including the possible research methods to evaluate
this principle, and preliminary results (section 4).

The main threat to validity of the evaluation is
that we cannot do industrial case studies by the very
nature of the topic. Our investigation should rather
be seen as a feasibility study, where we collect
insights by means of implementations, interviews,
industrial experience, process simulation, tool
implementation and student projects, and the
formulation of a CMMI extension.

2 TECHNOLOGY AND RELATED
WORK

This section describes the fundaments of the fields
of Model-Driven Development (MDD) and
Component-Based Software Engineering (CBSE),
and its relation of the work presented in this paper.

2.1 Model-Driven Development

The principle behind Model-Driven Development
(MDD) is to bridge the gap between various
development artifacts such as requirements,
architectural descriptions, lower-level designs, and
implementation level through a series of more or
less automatic translations (Selic, 2003; Stahl and
Völter, 2006). MDD intends to make the
development process more efficient (through
automatic or semi-automatic translations), and
enable earlier verification (of the models). The final
software will thus to a large extent be correct by
construction (Selic, 2003). OMG’s Model-Driven
Architecture, MDA (http://www.omg.org/mda), is
one important instantiation of this principle, where
the main objective is to achieve platform
independence.

However, the MDD field focuses on languages
that can capture as much as possible, because the
next step in the process should ideally be generated
automatically from a detailed model. The
verification of models can only occur when a
significant time of the project has passed. The
concept of virtual integration in the SAVI program
(Feiler et al, 2009) is similar to the CARMA
principle we formulate, but we further clarify the
essence of the principle and describe how project
planning and milestones are integrated into the
MDD/CBSE paradigm, and we explicitly
incorporate high-level models and estimates which
can be provided very early. This is how risk
reduction is performed in industry today and which
we think estimates will be an unavoidable part of
project management and planning also in the future.

The literature on processes for Model-Driven
Development (MDD) focuses mostly on the division
into platform development and application
development (Stahl and Völter, 2006; Kleppe,
Warmer, Bast, 2003), and the new roles required for
this (Aagedal and Solheim, 2004; Krahn, Rumpe,
and Völkel, 2006; Guta, Szasz, and Schreiner,
2008). Also, while MDD relies on forward
engineering in order to produce correct software, the
combination MDD/CBSE in general also permits

using pre-existing components produced in many
different ways, including wrapped legacy code.

2.2 Component-Based Software
Engineering

In Component-Based Software Engineering (CBSE),
the software is designed and constructed as
components with clear boundaries and explicit
interfaces (Szyperski, 2002). This paradigm is
successful in e.g. the desktop domain, and has also
found its way into the embedded systems domain,
which is our focus (Hänninen et al, 2008; Larsson,
Wall, Wallnau, 2005; van Ommering, van der
Linden, and Kramer, 2006). From a process
perspective, this means the processes of component
development and system development are treated
separately, but interact (Crnković, Chaudron, and
Larsson, 2005). Component development could be a
result of system top-down decomposition, and result
in either internal development or in hiring a
subcontractor. A system may also be built from pre-
existing components, such as Off-the-Shelf (OTS)
components (components developed for the
marketplace), or as part of a product line initiative
(Clements and Northrop, 2001).

We have had to choose among the many
component technologies in order to be specific
enough, and identify the characteristics that support
the project monitoring and control, as we envision it,
to the largest extent. Although some literature,
component models and component technologies
describe the “component” concept as a deployable
entity (Szyperski, 2002), others fundamentally
assume there is a concept of component identity
throughout the process, from early design to run-
time. (For embedded software, it is even common
that the component boundaries are optimized away
during the deployment stage, when code is compiled
and linked into one single binary image). To monitor
the development (with support from automatic tools)
as will be described in section 3, it is essential to
adopt this second viewpoint. Also, there must be
compositional reasoning theories and tools available
for various component attributes, as well as an
attribute framework making it possible to trace
component attributes (such as timing properties,
memory consumption) throughout the development
process. Also, for embedded software, development
of hardware models is an essential part of the
development. This is true for the ProCom
component model (Bureš et al, 2008; Sentilles et al,
2008) and associated research at the Progress Centre
for Predictable Embedded Software Systems; there

are other component models to which our evaluation
will be applicable, but as a choice during our
investigation they do not support all the desired
characteristics to the same extent as ProCom, in
particular the attribute framework: AADL (As-2
Embedded Computing Systems Committee, 2009),
Autosar (www.autosar.org), SysML (www.sysml
.org) and OMG’s MARTE (www.omgmarte.org).
Also, we have good access to ProCom, the Progress
development environment, and the Progress
researchers, which makes it suitable to choose this
track.

2.3 Other Related Work

The principle presented in this paper inherits the
basic ideas from the concepts of daily builds,
continuous integration, continuous verification, and
test-driven development (Beck, 1999; Duvall,
Matyas, and Glover, 2007; Kruchten, 2004), and
adapts them to fit the combined MDD/CBSE
paradigm.

3 SUBJECT OF EVALUATION

3.1 Motivating Example

Figure 1 depicts an electronic stability control
system of a car (figure: Bureš et al, 2008; example
previously used in Land et al, 2009). Our envisioned
way to run a MDD/CBSE-oriented project is:
• The different components may either be already

existing, or to be developed. The existing ones
may need modification. (In the figure, for
example the Stability Control System may
require new development, while the Anti-lock
Braking System will be reused from a previous
system with minor modifications, and for the
Wheels speed component, there may be three
potential COTS components available, etc.)

• There are certain properties the system must
fulfill in order to be successful, such as response
times and static memory consumption. (In the
example, the latency from the Wheels speed
input to the Brake valves output must be less
than, say, 10 ms, and the software needs to fit in,
say, 64 kb memory.) Clearly, the functionality is
also a property that needs to be fulfilled, e.g.
according to a requirements specification, a use
case model, and/or state chart models describing
the behavior.

• If these properties cannot be fulfilled, project
management wants to be informed as early as
possible, in order to identify mitigation solutions
(e.g. acquire more powerful hardware, allocate
human resources to optimize the source code,
relax the requirements).

• The properties of interest are (in principle)
derivable from knowledge of individual
components’ properties, their interconnections,
and their allocation to hardware, and the
characteristics of the hardware. For example, the
response time depends on (at least): which
components are invoked from input to output, the
computation time needed by each component
(which depends on hardware), and data transfer
between components (which may be significant
if this involves several communications over a
network). Also behavioral diagrams can in
principle be composed (Håkansson et al, 2008).
(Another model, not shown here, is needed to
describe the allocation of software components
to hardware.) We assume that there exist reliable
such composition theories for the properties of
interest.

• Later in the development, it may be possible to
generate the values for the properties of interest
from implementations. Earlier in the
development, it may be possible to estimate the
values of these properties from half-finished
implementations, or less refined models, adding
a certain margin. Very early in the development,
it is possible to provide values for these
properties through expert estimates, or as
allocated budgets to components based on the
requirements on the system.

• Each attribute type (e.g. “memory consumption”,
“behavior”) may thus be associated with many
different values for a single component instance,
which have been created differently (estimates,
test results, static analysis results, model
checking proofs), and on different versions of the
component (Sentilles et al, 2009).

• It becomes possible to formulate milestones (e.g.
project gates) in terms of expected values of the
attributes. For example, if the requirement on
static memory consumption is 32 kb for a
component, we may define the goal for an early
milestone to be 40 kb, generated from a model in
a language known to give pessimistic values). A
later milestone may be defined for this property
as 24 kb, based on static analysis for a point in
time where an incomplete implementation should
be achieved, with a known set of (planned)
completed features. (If these features are not

implemented, this should raise a flag in another
milestone criterion, for attribute “functionality”.)

The key observation is that all of these types of
values from very different sources are valuable at
different points during the project from a project
monitoring and control viewpoint, and that they can
be treated in a uniform manner independent of their
source, with support for more or less automatic
generation and composition of the values.

Figure 1: Component design of an electronic stability
control (ESC) subsystem of a car.

3.2 The CARMA Principle

The principle we envision is implicit in (the
combination of) MDD and CBSE, but has not before
been clearly articulated, can be formulated as:
• Components. Choose a component technology

which supports compositional reasoning of
component properties. As early as possible,
define the components of your system (i.e. the
architectural structure).

• Attributes. Keep track of the properties of
(components of) your system through component
attributes. Use a tool that supports management
of these properties, including automatic
composition.

• Requirements. Refine your high-level system
requirements into product requirements, and
specify these in terms of the attributes which are
analyzable with (tools supporting the)
composition theories.

• Milestones. Formulate milestones (e.g. project
gates) in terms of tuples: <expected value in
relation to product requirement; method to generate
this value>.

• Analysis. Perform verification analysis at the
defined milestones. In addition, the individual
developers, architects, project manager, etc., may
perform analyses of interest at any time; this

resembles debugging in direct connection to
implementation, which is informally done (i.e.
not mandated by a formal process) but an
invaluable tool for the individual developer
before passing the code (or, in MDD, the model)
on to verification as part of the formal process.

We call this principle the CARMA principle
(Components, Attributes, Requirements, Milestones,
Analysis).

The CARMA principle captures what we believe
is a major opportunity in practice if adopting the
MDD/CBSE paradigm. There is risk reduction
inherent in the “correct by design/construction”
paradigm, but it is important to leverage on this at a
project management level, including the time
dimension, the possibility of changed requirements,
which may be due to external events as well as to
internal events in the project. We are performing
several complementary studies of this principle, each
aiming at providing different types of insights. The
studies explore the characteristics of MDD/CBSE
projects implementing the CARMA principle, as is
explained in detail in the next section.

4 PRELIMINARY RESULTS

This section outlines four evaluation methods which
are all underway in our research agenda. For each
we describe the research method shortly, the
evaluation point of view, and preliminary results.

Our main basis for both interviews and
extensions of existing implementation is the
technology development at the Progress Centre for
Predictable Embedded Software Systems
(http://www.mrtc.mdh.se/progress/).

4.1 Interviews and Documentation

Research question: How do the researchers
developing modeling languages and methods,
analysis methods, synthesis to executable, etc.
envision the benefits of their methods? Is the
approach in large feasible for embedded systems
projects?
Research method: We have performed interviews
with researchers of various MDD/CBSE modeling/
analysis/construction methods, and tool builders. As
a concrete artifact discussed during the interviews, a
process simulation model (see section 4.2) has been
iterated with these researchers. We have also studied
industrial requirements specifications with the
objective of identifying how closely it matches the
proposed approach.

Preliminary results: The interviews and ongoing
collaboration has led to the formulation of the
CARMA principle as well as the construction of a
simulation model (see section 4.2). The study of
industrial requirements specifications have led to the
following observations:
• Some requirements are specified in enough detail

to allow specific pass/fail criteria to be specified,
and are relatively easy to map to the CARMA
principle. In particular:

- Many product requirements are specified in
terms of execution steps, sometimes using
some kind of dynamic diagram. Example:
“During startup, register X shall first be read
to determine the cause of the last
shutdown/reset. If the cause is… then do…”

- Some product requirements describe timing
behavior of some execution steps. “Example:
The first phase of startup shall take less than
X ms; the second step Y ms; …”

- Some product requirements, but not many,
are hardware specifications. Example: “The
processor shall be of type X”; “the software
image shall fit in X bytes of memory”.

• Requirements on safety-related functions are
formulated to be unambiguous and verifiable,
and with the highest level of detail (including
e.g. timing and resource usage as described in the
bullets above). This is due to the potentially
catastrophic effects of a specification error.

4.2 Process Simulation

Research method: We are simulating a queuing
network model (Kobayashi, 1978) of a development
process where the CARMA principle is adopted. We
vary input parameters such as requirements
volatility, the likelihood of detecting problems in
analysis and verification, the amount and points in
time verification is performed (e.g. milestones
throughout the project, and/or only or mainly at the
end of the project), the actions taken in case a
problem is found (e.g. try to optimize, re-architect
the system, drop or relax requirements, etc.). This
model is iterated with the interviewees as indicated
in section 4.1.
Research question: If adopting the MDD/CBSE
paradigm and the CARMA principle, what factors
affect the project outcome the most?
Preliminary results: The simulation results so far
indicate that with frequent milestone verifications,
the same amount of effort is spent on verification as
when verification is performed at the end. However,
the simulation results indicate several drawbacks

with verification occurring only at the end: 1) more
verifiers (i.e., people) are needed at the same time,
2) problems are found late, which cause a feedback
of error correction and re-verification (it is easy to
translate this into a sense of urgency and “fire-
fighting” in the development organization), and 3)
the project time is somewhat prolonged (but not very
much). Also, with more volatile requirements (i.e.
changed or added throughout the project) the total
effort is increased. These results seem intuitively
seem to be applicable more generally, and we take
this as a sign of credibility of the simulation model.
We hope that the simulation results, once fully
analyzed, will provide concrete guidelines on how to
plan and dimension MDD/CBSE development
projects in different circumstances.

4.3 Tool Implementation

Research method: We are implementing an
extension of the Progress Integrated Development
Environment, which implements the desired
attribute framework for components (Sentilles et al,
2009). In this extension, requirements on attribute
values are distinguished from actual attribute values,
and there will be a general mechanism to compare
these, as well as display summaries and
visualizations of milestone verifications, etc. We
will then use this tool in student projects.
Research question: Through the construction of the
tool extension, we will hopefully realize details
earlier overlooked. By using the tool in student
projects, we are able to collect insights. We can
nevertheless observe the amount of perceived
overhead the approach introduces, and suggestions
for e.g. automation and user interface improvements.

4.4 Presentation of the principle as a
CMMI extension

Research method: We are systematically extending
a well-known process model, CMMI (Chrissis,
Konrad, and Shrum, 2007), to clarify and explain the
CARMA principle.
Research question: This is dissemination rather
than evaluation, similar to CMMI extensions for
safety-critical systems (Defence Materiel
Organisation, Australian Department of Defence,
2007) and an extension for the medical domain
(McCaffery, Burton, and Richardson, 2009).
Preliminary results: An initial version has been
published (Land et al, 2009), and we are currently
extending the guidelines to cover not only the
software components and associated models are

covered, but also data (e.g. databases) and hardware
nodes and networks, which are extremely important
for accurate analysis of e.g. timing.

5 CONCLUSIONS

Our findings so far indicates that the MDD/CBSE
combination can be used in development projects
and potentially reduce costs, time, and especially
risk. With input from the research fields of MDD
and CBSE as well as industry, the CARMA
principle has been formulated and is shown to be
reasonably realistic. When there are mature tools
available, the results may be developed into
guidelines for application. Further studies will also
need to go beyond ProCom.

ACKNOWLEDGEMENTS

This work was partially supported by the Swedish
Foundation for Strategic Research (SSF) via the
strategic research centre PROGRESS.

REFERENCES

Aagedal, J. Ø., Solheim, I., 2004. “New Roles in Model-
Driven Development”, European Workshop on MDA.

As-2 Embedded Computing Systems Committee, 2009.
Architecture Analysis & Design Language (AADL),
Standard Document Number AS5506.

Beck, K., 1999. EXtreme Programming EXplained:
Embrace Change. Addison Wesley.

Bureš, T., Carlson, J., Crnković, I., Sentilles, S., and
Vulgarakis, A., 2008. ProCom - the Progress
Component Model Reference Manual, version 1.0,
ISRN MDH-MRTC-230/2008-1-SE.

Chrissis, M. B., Konrad, M., and Shrum, S., 2007. CMMI
Second Edition : Guidelines for Process Integration
and Product Improvement, Addison Wesley.

Clements, P., Northrop, L., 2001. Software Product Lines:
Practices and Patterns. Addison-Wesley.

Crnković, I., Chaudron, M., and Larsson, S., 2005,
“Component-based Development Process and
Component Lifecycle”. Journal of Computing and
Information Technology 13(4).

Defence Materiel Organisation, Australian Department of
Defence, 2007. +SAFE, V1.2 : A Safety Extension to
CMMI-DEV, V1.2, SEI technical note CMU/SEI-
2007-TN-006.

Duvall, P., Matyas, S., and Glover, A., 2007, Continuous
Integration: Improving Software Quality and
Reducing Risk. Addison-Wesley Professional.

Feiler, P., Hansson, J., de Niz, D., Wrage, L., 2009.
System Architecture Virtual Integration: An Industrial
Case Study, technical report CMU/SEI-2009-TR-017,
Software Engineering Institute.

Guta, G., Szasz, B., and Schreiner, W., 2008. A
Lightweight Model Driven Development Process
based on XML Technology. Draft Technical report 08-
01 in RISC Report Series, University of Linz, Austria.

Håkansson, J., Carlsson, J., Monot, A., Pettersson, P.,
2008. “Component-Based Design and Analysis of
Embedded Systems with UPPAAL Port”, 6th
International Symposium on Automated Technology
for Verification and Analysis, Springer.

Hänninen, K., Mäki-Turja, J., Sandberg, S., Lundbäck, J.,
Lindberg, M., Nolin, M., and Lundbäck, K.-L., 2008.
”Framework for Real-Time Analysis in Rubus-ICE”,
in 13th IEEE International Conference on Emerging
Technologies and Factory Automation, IEEE.

Kobayashi, H., 1978. Modeling and Analysis: An
introduction to System Performance Evaluation
Methodology, Addison-Wesley Publishing Company.

Kleppe, A., Warmer, J., Bast, W., 2003. MDA Explained :
The Model Driven Architecture: Practice and
Promise, Pearson Education.

Krahn, H., Rumpe, B., and Völkel, S., 2006.“Roles in
Software Development using Domain Specific
Modelling Languages”, in 6th OOPSLA Workshop on
Domain-Specific Modeling.

Kruchten, P., 2004. The Rational Unified Process : An
Introduction. Addison-Wesley, 3rd edition.

Land, R., Carlson, J., Larsson, S., and Crnković, I., 2009.
“Towards Guidelines for a Development Process for
Component-Based Embedded Systems”, in
International Conference on Computational Science
and Applications (ICCSA), Springer.

Larsson, M., Wall, A., and Wallnau, K., 2005. Predictable
Assembly: The Crystal Ball to Software. ABB Review.

McCaffery, F., Burton, J., Richardson, I., 2009.
“Improving software Risk Management in a Medical
Device Company”, in ICSE Companion.

Selic, Bran, 2003. “The Pragmatics of Model-Driven
Development”, IEEE Software 20(5), IEEE.

Sentilles, S., Vulgarakis, A., Bureš, T., Carlson, J., and
Crnković, I., 2008. “A Component Model for Control-
Intensive Distributed Embedded Systems”. In
Proceedings of the 11th International Symposium on
Component Based Software Engineering, Berlin.

Sentilles, S., Stepan, P., Carlson, J., Crnkovic, I., 2009.
“Integration of Extra-Functional Properties in
Component Models”, in 12th International Symposium
on Component Based Software Engineering, Springer.

Stahl, T., Völter, M., 2006. Model-Driven Software
Development : Technology, Engineering,
Management. John Wiley & Sons.

Szyperski C., 2002. Component Software - Beyond Object-
Oriented Programming, Addison-Wesley, 2nd edition.

van Ommering, R., van der Linden, F., Kramer, J.,and
Magee, J., 2000. “The Koala Component Model for
Consumer Electronics Software”. IEEE Computer
33(3), IEEE.

	1 INTRODUCTION
	2 TECHNOLOGY AND RELATED WORK

