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Abstract

When component-based development is applied in the
domain of distributed embedded systems, where applica-
tions are often safety-critical and subject to real-time con-
straints, it is of significant importance that reliable predic-
tions of functional and extra-functional properties can be
derived at design-time. Preferably, analysis should be per-
formed in early development phases, where the cost of mod-
ifying the design is lower. Centered on an example applica-
tion from the automation domain, we show how a compo-
nent model specifically intended for embedded systems can
be combined with a language for high-level formal behavior
modeling. This allows modeling the behavior of individual
components, in terms of functionality, timing and resource
usage. In turn, this permits analysis of system level proper-
ties, while also supporting reuse of behavioral models when
components are reused.

1 Introduction

As pointed out by Henzinger and Sifakis, designing em-
bedded systems is not a straightforward application of ei-
ther hardware or software design methods [11]. An embed-
ded system involves computation that is subject to phys-
ical constraints. Some constraints refer to bounded re-
sources like available processor speed, power, etc., which
are derived from the implementation platform; on the other
hand, constraints such as deadlines fall into the category
of timing (execution) constraints, originating from the be-
havioral requirements. Therefore, to ensure its predictable
behavior, an embedded system design needs to be formally
checked against different requirements pertaining to various
kinds of constraints including functional, timing, safety, and
resource-usage constraints.

Designing an embedded system in a component-based
manner, by building it from well-specified and verified com-
ponents, intends to lower its complexity, in terms of im-
plementation, but also modeling and analysis. Here, we
adopt such a design perspective and describe the archi-

tecture of our embedded systems following the real-time
component model ProCom [20]. The component model is
structured in two layers, calledProSys, andProSave, each
addressing the concerns of a different level of granular-
ity (see Section 3). The possibly complex extra-functional
behavior of ProCom components is modeled in a dense-
time, state-based hierarchical language called REMES [18].
REMES fits a component-based perspective on embedded
system development, and is appropriate for modeling tim-
ing and resource-wise behaviors of components described
by modes, as explained in Section 3.

In this paper, one of the contributions is packing a ProSys
component, annotated with attributes, such as required re-
sources, with its behavioral model represented in REMES.
Then, both the interface and internal models of component
behavior are seen as the actual reusable unit of composition,
which can be employed as such, without modification, in
adequate design contexts. To accomplish this in Section 4,
we propose a way of mapping the ProSys component inter-
face, consisting of incoming and outgoing messages used
for asynchronous communication, onto the entry and exit
variables of REMES modes, respectively, such that the two
models become connected.

Most of the component-based system analysis frame-
works known in the literature [5, 21] focus on either analyz-
ing extra-functional behavior only, abstracting from check-
ing correctness of system functionality, or just on analyzing
interface behavior of components, via contracts [15]. This
work contributes also by showing how to support formal
analysis of various properties belonging to different cat-
egories (functional, safety, timing, resource-usage) within
the same framework. This capability, together with the
component-based design approach, might improve the ef-
ficiency of embedded system design, by allowing reuse of
both models and analysis results. We show the modeling
and analysis approach on aturntableexample system in-
troduced in Section 2, which we model as a collection of
ProSys components that we connect to their associated be-
havioral REMES models. The latter are then formally ana-
lyzed against functional, safety and resource-related prop-
erties, as described in Section 5, on the underlying Priced



Figure 1. The turntable system (load and un-
load stations are not shown).

Timed Automata models. In Section 6 we compare to some
of the relevant related work, before Section 7 concludes the
paper.

2 Example: The turntable system

As an example, we have considered the turntable drilling
system previously described by, e.g., Bos and Kleijn [7] and
Bortnik et al. [6]. The system, depicted in Figure 1, consists
of a rotating table that moves products between processing
stations where they are drilled and tested.

The load station places new products on the table (1), af-
ter which they are moved to the drill station (2) by rotating
the turntable90◦. Drilling requires that the product is se-
curely held in place by a clamp mechanism. After drilling,
the product is moved to the testing station (3) where the
depth of the drilled hole is measured. Finally, the unload
station (4) removes the product from the table, provided that
it passed the test. If not, it remains on the table to be drilled
and tested again. The turntable has four slots, each capable
of holding one product. Thus, the stations can operate in
parallel, so that while the first piece is being tested, a sec-
ond piece can be drilled, etc.

Table 1 lists a few representative system requirements
addressing functional correctness, timing and resource con-
sumption, selected to include examples of both generic, lo-
cal and system-wide properties. These properties will be
used to illustrate how the proposed approach allows differ-
ent types of analysis to be performed. In Section 5, we show
how the architecture of the turntable system can be modeled
in ProCom, and how modeling the behavior of each compo-
nent in REMES allows us to verify that these requirements
are satisfied.

3 ProCom andREMES

3.1 The ProCom component model

ProCom [20] is a component model for design and devel-
opment of distributed embedded systems, addressing key

Table 1. Requirements and properties of the
turntable system.

Generic requirements:
1 The system should be free from deadlocks.

Functional requirements:
2 A product must be clamped when drilled.
3 The table should never turn when one of the sta-

tions is operating.
Timing requirements:

4 Processing five products should never take more
than 25 seconds (assuming that at most one
drilling fails).

Resource properties:
5 What is the minimum energy consumption for

processing five products?

characteristics and development concerns inherent to the
domain. In particular, ProCom considers the need for sup-
port throughout the development process, from early design
to deployment, and for addressing the different concerns
that exist when considering the system as a collection of
complex and distributed functionalities on one hand, and the
low-level control functionality of the individual parts onthe
other. As a consequence, ProCom is structured in two lay-
ers, each layer addressing the concerns of the correspond-
ing level of granularity: The upper layer, called ProSys,
is intended for modeling complex, active, concurrent and
typically distributed subsystems, communicating via asyn-
chronous message passing. The lower layer, called ProSave,
serves for modeling of non-distributed, passive and small
units of functionality, closer to function blocks or tasks.The
two layers are not independent but relate to each other in
the sense that a ProSys component can be modeled out of
ProSave components. For more details, see [8].

This paper only addresses the top layer (ProSys) of the
component model, although the intention is to use REMES

for modeling the behavior of individual components also in
the lower layer. Figure 2 exemplifies the graphical notation
of ProSys.

3.2 Attribute framework

In ProCom, different functional and extra-functional
characteristics can be associated as attributes with compo-
nents, their services, ports, subcomponents, etc. The at-
tributes may span from single number (e.g., static memory
usage of a component) to complex models.

The attribute framework [19] provides a systematic
way to support the management and integration of extra-
functional properties during the development of a compo-



Figure 2. Example of the ProSys notation:
Component A has two input ports ( A1 and
A2) and one output port ( A3), and commu-
nicates with component B by sending mes-
sages (each carrying an integer) over the
message channel M.

nent or a system. In it, extra-functional properties are rep-
resented by attributes consisting of a unique identifier and
one or more values. The complete list of the attribute types
that are available during the development is stored in an at-
tribute registry together with the specification of each at-
tribute, that is (i) the list of entities to which this attribute
can be attached, and (ii) the valid format for its values (e.g.
integer, interval, model, etc.). Providing that it is authorized
by its specification, an attribute can be associated with any
entity of a component model such as component, message
port, connection or even component instance.

3.3 The REMES language for behavior mod-
eling

In case of more elaborate functional and extra-functional
behavior (such as timing and resource consumption), we use
a dense-time state-based hierarchical modeling language
called REMES [18].

The internal behavior of a component is depicted by
a REMES modethat can beatomic (seeAtomic mode 1,
Atomic mode 2 in Figure 3) orcomposite(made of atomic
modes). The discrete control of a mode is captured by acon-
trol interfacethat consists ofentry- andexit points, whereas
the data transfer between modes is carried out through a
well-defineddata interfacethat consists of typed global
variables. A composite mode may also have a specialinit
entry point where the global variables are initialized.

A composite mode executes by performing a sequence
of discrete steps, via actions that, once executed, pass the
control from the current submode to a different submode.
An action,A = (g, S) (e.g., (y == b, d := u) in the figure), is a
statementS (in our cased := u), preceded by a boolean con-
dition, theguard (y == b), which must hold in order for the
action to be executed and the corresponding outgoing edge
taken. A REMES composite mode may containconditional
connectors(decorated with letterC) that allow a possibly
nondeterministic selection of one discrete outgoing action
to execute, out of many possible ones. Below, viaC, one of
the empty statement actions,x≤a ∧ d == v or d≥ v can be

C

Entry

Composite mode

Atomic mode 1 

Atomic mode 2

r1’ = n, r2’ = m,

        y ≤ b
x ≤ a and 

d == v Exit

d ≥ v U

Init
r3+=q y == b

d : = u

Figure 3. A REMES composite mode.

chosen for execution.
In REMES one may model timed behavior and resource

consumption. Timed behavior is modeled by global con-
tinuous variables of specialized typeclock, that is,x, y in
our figure, evolving at rate 1. A boolean condition called
invariant (e.g.,y≤b) may be used to specify for how long
an atomic mode can be executed. Once the invariant stops
to hold, the current mode is exited. In case a mode is ex-
ited instantaneously after its activation, the mode is called
urgent(decorated with letterU).

The composite mode in Figure 3 has two continuous re-
sources (r1 andr2) and one discrete resourcer3. Consump-
tion of the continuous resources is expressed by their first
derivatives (r1’ and r2’), seeAtomic mode 1, which give
the rates at which the mode consumes the resources, re-
spectively (r1 is consumed at raten, whereasr2 at ratem,
wherem andn are integers). Discrete resources are allo-
cated through usual updates, e.g.,r3 += q.

For enabling formal analysis, REMES models are se-
mantically transformed into Timed Automata (TA) [2] or
Priced Timed Automata (PTA) [3], depending on the analy-
sis goals. We refer the reader to [18] for a thorough descrip-
tion of REMES.

4 Integrating REMES into ProCom

ProCom has been developed to facilitate the expres-
sion and analysis of functional and extra-functional prop-
erties, but does not, per se, provide any means to actually
model them. It needs to be complemented with formalisms,
complying with the component-based approach, that enable
early formal analysis of relevant concerns. One step to-
wards this support for formal analysis is the integration of
REMES, by which functional behavior, resource consump-
tion and timing can be addressed in a single modeling for-
malism.

Concretely, the integration is achieved by defining a new
attribute type in the attribute registry. The attribute type
can be attached to ProSys subsystem components, and has
an attribute value consisting of a reference to the REMES

model file in the component structure.



The relation between the ports of the component and the
variables in the REMES model is given by a mapping, de-
scribed below. As detailed in Section 4.2, we also need to
slightly extend the REMES language to fit the active, non-
terminating semantics of the ProSys components.

4.1 Connecting component interfaces and
REMES modes

The connection between ProSave and REMES is done by
mapping ProSave- to REMES interface. Each ProSave trig-
ger port is mapped to a REMES boolean variable, and each
ProSave data port is mapped to a REMES data variable of
same type as the port type. In our previous work [18],
we describe the connection between ProSave components
and REMES modes on an abstracted version of a tempera-
ture control system. Here, we instead focus on connecting
REMES to ProSys components.

Let P be the set of message ports of a ProSys
component C. Each port pi∈[1...n] ∈ P is a tuple
(Name, Kind, Type, Value), where:Name is the port iden-
tifier, Kind models the input/output feature of the mes-
sage port,Type encodes the port’s data type, andValue

stores the port’s actual data value. Further, letM be a
REMES mode that depicts the behavior of component C,
andV the set of all variables of modeM that correspond
to the ports ofC. Each variablevj∈[1...n] ∈ V is a tuple
(Name, Kind, Type, Value), where:Name is an identifier of
the variable,Kind distinguishes between read (global vari-
able of the mode that may be written by other modes) and
write (global variable of the mode that may be read by other
modes) variables,Type encodes the variable’s data type,
andValue stores the actual variable value. The connection
between modeM and the interface of componentC is given
by a mapping functionµ : P → V that maps component
ports to REMESmode variables. Assuming non-empty mes-
sages (Value(pi) 6= NULL), the mapping is defined as fol-
lows:

µ(pi) = vi, vi = (vi1 , vi2),

such that the following boolean condition holds:

Name(vi1) = Name(pi) ∧ Name(vi2) = Name(pi) + “ value
′′

∧

((Kind(pi) = input ∧ Kind(vi1) = read ∧ Type(vi1) = bool

∧Value(vi1) = false ∧ Kind(vi2) = read

∧Type(vi2) = Type(pi) ∧ Value(vi2) = Value(pi))

∨

(Kind(pi) = output∧ Kind(vi1) = write ∧ Type(vi1) = bool

∧Value(vi1) = false ∧ Kind(vi2) = write

∧Type(vi2) = Type(pi) ∧ Value(vi2) = Value(pi)))

In case an empty message is received/sent (Value(pi) =
NULL), the mapping function returnsvi = (vi1 , NULL).

The parallel composition of the REMES modes associ-
ated to all ProSys components in the given system, together
with representations of the ProSys message channels and
connections, describe the whole system’s behavior. Fig-
ure 4 exemplifies the mechanism of connecting the ProSys
and REMES interfaces.

ProSys port REMES variables
A1 bool A1 andfloat A1 value

A2 bool A2

A3 bool A3 andint A3 value

Figure 4. Example of how ProSys ports are
mapped to REMES variables. Component A

receives a message of type float via input
port A1 and an empty message via input port
A2, and it sends a message of integer type
through output port A3.

4.2 REMES extensions

The traditional REMES modes described in Section 3.3
run to completion, and as such are suitable for depicting
the behavior of ProSave components. In order to be able
to capture the active behavior of a ProSys component, yet
at the same time to ensure the termination of the internal
behavior of a REMES mode, each REMES composite mode
is enriched with a special write global variable calledhis-
tory, similar to CHARON [1]. Whenever an execution of a
REMES composite mode would return to an already visited
submode, the composite mode is exited and the control state
of that mode is recorded into its history variable. Next time
when the composite mode is entered, the control state of
that mode is restored according to the value of the history
variable. The history variable of a composite modeM con-
tains the names of the submodes ofM as values, or a special
valuenull, which denotes that the mode is not active. A sub-
modeSM of a composite modeM is called active when the
history variable ofM has the valueSM. Additionally, in the
extended REMES for modeling behavior of ProSys systems,
guards are modeled as conjunctions of boolean expressions
over usual variables, to which constraints on history vari-
ables are added. Every time when there is a change in the
history variable value of a certain composite mode its re-
activation should be ensured. Access to the proper history
variable values of every composite mode is done bySys-
tem[name], wherename denotes the name of the composite
mode.



In addition, we have enriched REMES with a so called
non-lazymode. A non-lazy mode does not contain any in-
variant to specify how long it is allowed to delay in that
mode. Time is allowed to pass in a non-lazy mode until
at least one of the guards of the outgoing discrete actions
evaluates totrue. As such, in order to ensure the exit of
a non-lazy mode, the disjunction of the action guards as-
sociated to the outgoing edges of that mode should always
eventually becometrue.

5 Example revisited

In this section we describe a software architecture of the
turntable drilling system adhering to the ProCom compo-
nent model. We then show how the behavior — in terms of
functionality, timing and resource consumption — of indi-
vidual components can be modeled in REMES, and how this
permits analysis of the whole system to determine whether
the candidate design meets the identified system require-
ments. We consider a traditional component-based develop-
ment process mixing top-down decomposition with a reuse
of pre-existing components in a bottom-up manner [9], and
assume that system requirements have already been cap-
tured in a previous phase.

5.1 Architecting the turntable in ProCom

Since the different stations are relatively independent,
we model each station, and the turntable, with a separate
component. Accordingly, we define theLoader, Driller ,
Tester, Unloaderand theTurntablesubsystems in ProSys.
However, in order to ensure the synchronization between
the stations and the table, e.g., guaranteeing that the table
turns only when no processing station is operating (i.e., re-
quirement 3 in Table 1), an additional subsystem is needed:
theController.

Next, the interfaces of these identified components need
to be specified. Since the component model has been im-
posed, the available communication mechanisms between
components are restricted to asynchronous message pass-
ing for the active and independent parts of the system (syn-
chronous control- and data-flows are available only in the
lower layer). At this step, it is possible to browse com-
ponent repositories to find pre-existing components which
functionalities and possibly extra-functional properties that
match the requirements. In the case of our turntable sys-
tem, we assume that theLoaderandUnloadercomponents
can be reused from a previous project. For the remaining
components, the interfaces remain to be specified. Figure 5
illustrates the component interfaces and shows how compo-
nents are connected.

TheTurntablecomponent receives a message when the
table should be rotated. In order to make the component

Figure 5. ProCom design of the turntable sys-
tem.

reusable in different systems (e.g., a turntable with more
than four stations), the angle of rotation of the table can be
specified in the message. When the table has been turned, a
message is sent to inform other parts of the system.

TheTesterandDriller have similar interfaces; an incom-
ing message telling the station to start processing, and an
outgoing message indicating that it has finished. The output
message ofTesteralso contains a boolean value represent-
ing if the test succeeded or not.

The Controller keeps track of the current status of the
four slots, and activates stations accordingly, by sending
messages to each stations and receiving messages back once
they are done. Consequently, the interfaces ofController
must be compatible with the interfaces of the stations (in-
cluding those of the reusedLoaderandUnloader).

It is possible to further decompose each of these ProSys
components into either smaller ProSys components or into
ProSave components according to the level of complexity
of the functionality, and the potential for distribution. Be-
fore doing that, however, the developer may want to validate
the feasibility of the design so far. Some properties can be
analyzed from the ProCom design alone, for example that
connected ports and channels match, but in order to reason
about the requirements identified in Section 2, we need to
model the behavior of the components identified so far.

5.2 Behavior modeling in REMES

We model the functional, timing and resource usage be-
havior of the turntable components as models in REMES.
Since theLoaderand theUnloadercomponents are reused,
they already have behavioral models, but the remaining
components should be given REMES models. Because of
space limitation, we only present the REMES models of
Driller andController, depicted in Figure 6 and 7, respec-
tively.

The Driller component is responsible for moving the
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Figure 6. The Driller modeled in REMES.
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Figure 7. The Controller modeled in REMES.

drill up and down and for locking ad unlocking the clamp.
In order to do this, it reads values from the drill and clamp
sensors, modeled by boolean variablessdu (drill in upmost
position),sdd (drill in downmost position),scl (clamp fully
locked) andscu (clamp fully unlocked). Neither of the two
message ports ofDriller carries values, and thus they are
mapped to two boolean variablesdrill and drilled, as de-
scribed in Section 4.1.

The Driller remains in the non-lazy modeIdle un-
til receiving a drill message. When this happens,
the component goes through a sequence of submodes:
Clamp locking, Driller moving down, Driller moving up and
Clamp unlocking. Each of these submodes is exited as the
result of a sensor value turningtrue. When exiting the last
submode, adrilled message is sent, indicating that the oper-
ation is finished.

This REMES model also models the consumption of en-
ergy of theDriller subsystem. We assume the following:
powering theDriller consumeseng pow units of energy
per time unit, locking or unlocking the clamp consumes
eng clamp units of energy per time unit and drilling con-
sumeseng drill units of energy per time unit. Moreover,
we assume that the time of eachDriller operation cycle is
bounded to the interval[tdrill1, tdrill2].

The Controller component, depicted in Figure 7, keeps
track of the states of the four slots and operates the stations
and the turntable accordingly by exchanging messages with
all of them. The behavior defined by the REMESmode con-
sists of two main submodes, one in which the controller
waits for messages from the stations, and one waiting for

the turntable to finish turning.

The submodeWait for turning is exited when theturned
message arrives. Depending on the current state of the four
slots, messages are sent out to the respective station. Thisis
managed by the four conditional connectors and the guards
Case9, . . . ,Case16. For example, theload message is only
sent if the first slot is empty, and thedrill message is only
send if the second slot is occupied. The local variables
signal loader etc. are used to keep track of what messages
were sent. When all messages are sent, the history variable
System[Controller] is assigned the valueWait for stations.
Thus, theController will continue executing in that sub-
mode when reentered.

In submodeWait for stations, theController waits until
it receives a reply to one of the messages sent. Since this
is a non-lazy mode, it must be exited as soon as the guard
on one of the outgoing discrete actions (Case1, . . . ,Case7)
is satisfied. If the message carry a value (which is the case
for loaded and tested), it is used to update the state of the
corresponding slot. When all messages have been received,
the messageturn is sent to theTurnable, and the history
variable is set toWait for turning before exiting, meaning
that the execution will be resumed in that submode.

5.3 Analysis

We have analyzed the model of the turntable system,
transformed into a network of PTA models, in UPPAAL



Table 2. System properties and verification results.
Num System property Temporal logic formula Verification result

1 The system should be free from deadlocks.A[] not deadlock Satisfied
2 A product must be clamped when drilled. A[] Driller.Driller moving down imply

Driller.drill clamp==locked
Satisfied

3 The table should never turn when one of
the stations is operating.

A[] (Turntable.Turn1 or Turntable.Turn2)
imply (Loader.Idle and Unloader.Idle
and Tester.Idle and Driller.Idle)

Satisfied

4 Processing five products should never take
more than 25 seconds (assuming at most
one failed drilling).

A[] (not loadedfailed and time>25 and
failed products≤1) imply
processedproducts≥5

Satisfied

5 What is the minimum energy consumption
for processing five products?

E〈〉 (processedproducts==5) 14 300 units

CORA1. Currently, the semantic translation from REMES to
PTA is done manually, as described in [18], although ideally
this step should be fully automated.

After having provided UPPAAL CORA with the PTA
model of the turntable system, the last step to verify the sys-
tem design is to formulate the desired system requirements
as temporal logic formulas. Table 2 lists the system require-
ments given in Section 2 together with their temporal logic
formulas and verification results. Property 1 is a generic
safety property, specifying the absence of a system dead-
lock, i.e., the system cannot come to a state from which it
cannot continue operating. The turntable system is verified
to be deadlock free. The next step is to verify that it satis-
fies the functional system requirements, here represented by
properties 2 and 3. Properties 4 and 5 are examples of extra-
functional properties, addressing time and resource usage,
respectively.

5.4 Packaging as components

The activities illustrated in the above sections concern
various functional and extra-functional properties of the
components, such as architectural models, REMES behav-
ioral models, PTA models, UPPAAL verification queries and
results, among others. To promote their reuse together with
the entity they describe, they are all packaged together in
a “bundle” of development artifacts, which together con-
stitute a component in the ProCom sense. This packaging
is managed by the attribute framework, which provides a
common structure to attributes of different kinds, such as
metadata specifying the date when an attribute value was
entered or edited.

In the integrated development environment providing
support for development with ProCom, calledPrIDE, the

1See the web pagewww.cs.aau.dk/ ˜ behrmann/cora/ for
more information about the UPPAAL CORA tool.

attribute framework is also responsible for registering ed-
itors by which complex attributes such as REMES models
can be viewed and modified. An illustration of the use of
the REMESattribute for the ProSys Driller subsystem is pre-
sented in Figure 8. Additional attributes could also be spec-
ified and used in a similar way, for example attributes cor-
responding to the timed automata or priced timed automata
models.

From the rich REMES model of a component — ex-
pressing how e.g., the resource usage changes over time
or in response to arriving messages, or how consumption
of different resources are related — it is possible to ex-
tract isolated extra-functional properties that can be stored
as separate attributes. For example, from the model of
Driller we can derive a bound on the additional power con-
sumed as the result of a receivedDrill message (the bound
is tdrill2 ∗ max(eng clamp, eng drill)). Albeit very simple
compared to the full REMES model, aMaxEnergy attribute
attached to theDrill input port provides useful information
about the component and could serve as input to other anal-
ysis techniques.

Ideally, any analysis result from a component analyzed
in isolation should be stored as an attribute of that compo-
nent. In the turntable case, the second property in Table 2
holds for theDriller subsystem regardless of how the rest
of the system behaves. The property could be packaged as
a reusable attribute of theDriller subsystem. However, the
details of how such attribute should be specified are yet to
be elaborated.

6 Related work

Few component models incorporate component extra-
functional behavioral aspects (e.g. timing, resource usage,
etc.) in their frameworks. This is especially true for wide-
spread “commercial” component models such as EJB [15],



Figure 8. Screenshot from PrIDE, with (a) the ProSys editor, (b) REMES editor, and (c) attribute frame-
work.

COM [17], which provide little or often no support for mod-
eling and analysis of extra-functional properties of compo-
nents. In contrast, there is a substantial recognition from
the research-oriented component models, such as BIP [4],
Palladio [5], PECT [12], which generally support a prede-
fined subset of extra-functional properties. For instance,
Palladio checks performance prediction of timing proper-
ties (response time, throughput), or resource usage proper-
ties. Koala [21] considers static memory usage only. BIP
focuses on timing properties such as worst-case execution
time, or end-to-end delay.

Two ways of integrating behavioral models can typically
be found in the research community: either the behavioral
model is an intrinsic part of the component, as in BIP, or it is
placed along the component, or the system, as in Palladio,
for instance. Our approach positions itself in the middle:
the behavioral model is placed alongside the components,
but it also is an intrinsic part of the component specifica-
tion, via the attribute framework. As different from BIP,
our approach allows one to attach behavioral models not
only to components, but also to individual services, for ex-
ample. In comparison to Palladio, which is mainly checked
by simulation, we use formal behavioral models that al-
low formal verification of behavior, in addition to simu-
lation, hence increasing the level of trust in the functional
and extra-functional behavior of components and systems.

Moreover, we also facilitate model reuse, since the REMES

behavioral models are part of the structure that constitutes a
component. An alternative solution consists in using an-
alytical interfaces jointly with a reasoning framework to
perform property predictions such as in BlueArX [13] and
PECT [12].

There is also a growing interest for applying model-
driven development in early design and analysis of em-
bedded systems, due to automated environments, such as
MathLab Simulink-Stateflow [14], and the development of
the UML profile for Modeling and Analysis of Real-time
and Embedded systems, (MARTE) [16]. In contrast to a
component-based approach, this methodology is not cen-
tered around the notion of components, and does not focus
on reusability; instead, it considers the model (or a set of
models comprising architectural, environment, resources,
allocation models etc.) as the only development artifact.

7 Conclusions and future work

We have presented a component based approach for
modeling both the architecture and behavior of distributed
embedded systems. The architectural aspect is modeled ac-
cording to the component model ProCom, to simplify the
design process and facilitate design-time reuse. The be-
havior of individual components is modeled in REMES, in



which functionality, timing and resource usage can be ad-
dressed together. Transformations of REMES models into
timed automata or priced timed automata allow for model-
checking of various properties, performed locally or at sys-
tem level. By connecting REMES behavioral models to in-
dividual ProSys components, via a general attribute frame-
work, we have addressed the important problem of model
reuse. The applicability of the approach has been shown
by employing our framework on modeling and analysis of a
turntable drilling system.

Future work includes exercising the scalability of
REMES and associated analysis techniques. Instead of gen-
erating a timed automata model of the entire system, com-
positional reasoning could be used to prove global system
properties out of individual subsystems, or subsystem clus-
ters properties. Another approach will envision develop-
ing specialized model checking optimizations, which ex-
ploit the topology of the ProSys architecture, similar to the
work on UPPAAL PORT [10]. Moreover, the relation be-
tween REMES models and other, simpler, attributes should
be investigated further, as well as the relation between the
REMES model of a composite component and those associ-
ated with its subcomponents. The overall approach should
also be further validated by case studies involving real in-
dustrial systems.
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