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Abstract

Hard real-time systems have stringent timing constraints
expressed in units of time. To ensure that a task finishes
within its time-frame, the designer of such a system must be
able to derive upper bounds on the task’s worst-case execu-
tion time (WCET). To compute such upper bounds, timing
analyses are used. These analyses require that information
such as bounds on the maximum numbers of loop iterations
are known statically, i.e. during design time. Parametric
timing analysis softens these requirements: it yields sym-
bolic formulas instead of single numeric values represent-
ing the upper bound on the task’s execution time.
In this paper, we present a new parametric timing analysis
that is able to derive safe and precise results. Our method
determines what the parameters of the program are, con-
structs parametric loop bounds, takes processor behaviour
into account and attains a formula automatically. In the
end, we present tests to show that the precision and runtime
of our analysis are very close to those of numeric timing
analysis.

1 Introduction
Determining upper bounds on the execution times of

tasks is one of the most eminent challenges during the de-
sign of a hard real-time system; a task missing its dead-
line may cause the whole system to fail. Therefore, upper
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bounds of the worst-case execution times (WCET) must be
known at design time.

Due to the significance of the topic, many research
groups addressed it in the last years (see [12] for an
overview). Several timing analysis approaches have been
implemented and used in practice. Nevertheless, finding
precise and safe timing guarantees is considered a complex
and time consuming task. Furthermore, all data influencing
the timing behaviour, such as the maximal number of loop
iterations, must be known in advance, i.e. during the anal-
ysis. However, some systems need guarantees for timely
reactions which are not absolute, but dependent on a numer-
ical parameter. Examples are operating-system schedulers
which schedule a fixed set of tasks and servers who process
a number of requests. In such cases, there are only two pos-
sibilities: either provide bounds for the unknown variables
or start a new analysis each time the task is used with differ-
ent values. The first option endangers precision, the second
may unacceptably increase the analysis time.

Parametric timing analysis is an extension of numeric
timing analysis. Instead of computing a single numeric
value for the WCET, a parametric analysis is able to derive
symbolic formulas. The WCET for a task and a specific
parameter assignment is then simply derived by evaluating
the task’s timing formula. Imagine again the scheduler of an
operating system. This scheduler can be used within differ-
ent embedded systems, each time with a different number of
tasks. A parametric analysis is able to derive a WCET for-
mula depending on this parameter. Therefore, a wider class
of tasks may be analysed statically. Furthermore, a formula
shows how the execution time depends on parameters; in-
formation which allows to adjust the parameters such that
timing constraints are met.

In this paper, we propose a new method for parametric
timing analysis. Our approach analyses executables to de-



rive safe upper bounds. A parameter is a variable whose
value before program execution influences the program flow
and so the program’s execution time. Such a parameter is
either stored in memory or in a register (and is thus visible
to the user) or it is determined by the size of a dynamic data
structure accessed within a loop or in a recursion. In the first
case, the analysis automatically identifies the parameters. In
the second case, we assume that the user has specified a pa-
rameter that bounds the number of iterations of the loop or
recursion that traverses this data structure. So, the timing
behaviour can be analysed with respect to this parameter.
Note that from a technical view, the user annotation in the
second case is a rather small improvement – therefore, we
will mainly focus the first case here.

The contributions of our new method are the follow-
ing:
• Our analysis operates on executables, thus analyses the

actual instructions to be executed and can therefore
compute precise and safe upper bounds.

• The method is able to perform the whole analysis auto-
matically, starting from the identification of the param-
eters, determination of parametric loop bound expres-
sions up to the derivation of symbolic timing formulas.

• The method takes the low-level behaviour of processors
(e.g. caches, branch prediction) into account and thus
computes valid upper bounds even for complex proces-
sors.

• We have implemented a prototype (targeting the Pow-
erPC 565 and 755) to provide results of a parametric
analysis and show the practical feasibility of our ap-
proach.

The remainder of the paper is structured as follows: we
first give a short introduction to numeric timing analysis
our approach is based on in Section 2. We describe our
new parametric analysis in detail in Section 3, followed by
practical tests and evaluation in Section 4. We compare our
work to existing work in Section 5 and conclude in Section
6.

2 Timing Analysis - State of the Art
The timing of modern processors highly depends on

caches, pipeline effects, branch prediction, etc. An analysis
has to take these effects into account and has to resort to
the level of the executable. We build our parametric timing
analysis on top of the aiT-Framework [9] which analyses
executables. The aiT-timing analysis as depicted in Figure
1 consists of a set of different tools that can be subdivided
into three main parts:
• CFG Reconstruction

• Static Analyses

• Path Analysis

Figure 1. The aiT toolchain

The CFG reconstruction builds the control-flow graph
(CFG), the internal representation, out of the binary exe-
cutable [18]. This CFG consists of so-called basic blocks.
A basic block is a list of instructions such that the basic
block is always entered at the first and left at the last in-
struction. To make sophisticated interprocedural analysis
techniques applicable, loop structures that the previously
constructed CFG still contains, have to be transformed into
tail-recursive routines. Additionally, user annotations, such
as upper bounds on the number of loop iterations which the
analysis can not automatically derive, are processed during
this step.

The static-analysis part consists of three different anal-
yses: loop analysis, value analysis and a combined cache
and pipeline analysis. The value analysis determines the ef-
fective addresses of memory accesses and also supports the
loop analysis to find upper bounds on the number of loop
iterations [16, 5]. For this purpose, the analysis derives in-
tervals for all variables within a program. Such an interval
for a variable x consists of a lower bound a ∈ Z ∪ {−∞}
and an upper bound b ∈ Z ∪ {∞} such that a ≤ x ≤ b
holds.

The loop analysis collects invariants for all potential loop
counters. This means it computes for all variables changed
within a loop, how much they change during one iteration.
Then, it evaluates the loop exits, request start and end values
for these potential loop counters from the value analysis and
thus derives upper bounds on the number of loop iterations.
If, for instance, a variable v is initialised by a constant cinit,
increased by cinc in each loop iteration and compared to
constant cexit (e.g., while (v < cexit){. . .}) at the loop exit,
the loop is obviously executed at most d(cexit−cinit)/cince.

The cache and pipeline analysis performs the so-called
low-level analysis. It simulates the processor’s behaviour
in an abstract fashion to determine for each basic block an
upper bound on its execution time [20, 10].
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The path analysis combines the timing information for
each basic block and the loop bounds and searches for the
longest path within the executable. In this fashion, it com-
putes an upper bound on a task’s execution time. Searching
the longest path is done using a technique called implicit
path enumeration (IPET) [19]: the control flow graph and
the loop bounds are transformed into flow constraints. The
upper bounds for the execution times of the basic blocks
as computed in the cache and pipeline analysis are used
as weights. Figure 2 provides an example. The variables
ni, also called traversal counts, denote how often a specific
edge is traversed. The first and the last basic block are left,
resp. entered, exactly once (n1 = 1; and n3 +n6 = 1;). For
all other basic blocks, the sum of the traversal counts enter-
ing equals the sum leaving. The loop body (basic blocks 4,
bounded by bloop) is executed at most bloop times as often as
the loop is entered (n4 <= bloopn2;). The constant cj de-
notes the cost of the basic block j. The maximum sum over
the costs of a basic block times traversal counts entering it
determines the final WCET bound.

1

2

n1

3

n2

4 n4

n5

5

n6

n3

n1 = 1;
n1 = n2 + n3;

n2 + n5 = n4 + n6;
n4 = n5;
n4 <= bloopn2;
n3 + n6 = 1;

max :
∑

i

 ∑
∀j:nj enters Bi

cinj


Figure 2. Control flow graph and the corre-
sponding flow constraints

3 Parametric Timing Analysis
A parametric analysis on the executable level has to face

several problems. One has to determine:
• the parameters of the program to be analysed,

• the influence of these parameters on the program’s exe-
cution, i.e. the parametric loop bounds,1

• the symbolic timing formula using implicit path enu-
meration.

Since we are interested in minimising the amount of user
annotations, we have to implement automatic analyses for

1Since programs spend most of their running-time in loops, parametric
loops are of main interest.

the first two parts. For the last part, we have to find a sym-
bolic optimisation method which is able to derive formulas
instead of numeric values. However, these three parts can
not be solved in isolation, since a solution for one of the
three parts clearly influences the others.

Figure 3 denotes the structure of the parametric timing
analysis. The new or changed parts with respect to the non-
parametric analysis are marked bold. First, the parameter
analysis determines the parameters of the program to be
analysed and the variables that depend on these parame-
ters. Second, the loop analysis computes loop bounds for
the non-parametric loops and loop-bound expressions for
the parametric loops. The cache and pipeline analysis re-
mains unchanged. Later on, in the parametric path analy-
sis, a symbolic integer linear program [8] is generated and
solved.

Such a symbolic ILP finds the optimum of a linear func-
tion over the following set:

{~x|~x ≥ ~0, A~x + B~z + ~c ≥ ~0, ~x integral}

where ~z is a vector of parameters. The result is a conditional
expression in this vector ~z. Consider again the example
given in Figure 2. The vector ~x represents the variables n1

to n6, vector ~z represents the parameter bloop and the linear

function is given by max :
∑

i

(∑
∀j:nj enters Bi

cinj

)
.

The flow constraints (as presented in the previous section)
are reformulated to fit into the form A~x + B~z + ~c ≥ ~0

Static Analyses

Loop Analysis

Value Analysis

Cache/Pipeline
Analysis

Path Analyses

Symbolic ILP 
Generation

Symbolic ILP Solver

Loop Transformation

CFG Reconstruction

Parameter Analysis

Executable

WCET-
Formula

Figure 3. Structure of the parametric timing
analysis

Symbolic integer linear programming [8] has been de-
veloped by Paul Feautrier and has already been proposed
for timing analysis [14] – but within a different context. As
the name indicates, integer linear programming is only able
to handle linear constraints. A parametric analysis, how-
ever, shifts the evaluation of the parametric expressions out
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of the analysis to the instantiation of the symbolic formula.
By this, the analysis exhibits two inherent sources of non-
linearity: first, not all loop bounds can be described by a
linear constraint. Consider Figure 4 where the loop in pro-
cedure f1 is bounded by p2 and the loop in procedure f2
is only bounded if the parameter p is positive. The sec-
ond source of non-linearity is caused by nested loops.2 In
Figure 5, the inner loop is bounded by the parametric ex-
pression p · q which obviously can not be described using
a linear constraint. Both sources are solved by introducing
so-called artificial parameters which are used to hide the
non-linearity from the symbolic ILP.

proc f1(p)
begin
i := 1;
while (p*p>i) (
....
i := i + 1;
)

end

proc f2(p)
begin

i := 0;
while (p!= i) (
....
i := i + 1;
)

end

Figure 4. Two loops with non-linear paramet-
ric loop bounds.

proc f3(p,q)
begin

i := 0;
while (p != i) (

....
while (q != j) (

...
)

)
end

Figure 5. Nested loop with non-linear para-
metric loop bound

In the remainder of this section, we describe the parts of
the parametric analysis in detail.

3.1 Parameter Analysis
On the executable level, there are only registers and

memory cells and no classification into parameter or vari-
able. In our context, each register and memory cell used
within a program is a variable. A parameter is simply a
variable the program reads from before it writes to. This
is because the value of such a variable before program ex-
ecution may influence the program flow. However, for the

2Although the analysis works on assembler level, some examples are
given in pseudo code for the sake of simplicity.

subsequent loop analysis, computing the set of parameters
at a certain program point is not sufficient. Instead, we have
to compute at each program point a set of so-called param-
eter dependencies.

Definition 1 (Parameter Dependency)
A parameter dependency D is a triple (v, p, [a, b]) consist-
ing of a variable v, a parameter p and an interval [a, b] where
a, b ∈ Z.

The interpretation is the following: if at a given program
point a dependency D = (v, p, [a, b]) holds, then also the
following holds:

v = p + c where c ∈ [a, b]

Parameters are usually stored in memory whereas pro-
cessors operate on registers. If the analysis stores only the
set of parameters without the relation to the registers, it
loses important information and is unable to compute para-
metric loop bounds in most cases. The additive interval is
also used to include more cases, namely those where the
variables linearly depend on the parameter.

The purpose of the parameter analysis is to compute the
dependencies defined above. For this, we use the value anal-
ysis as in the numeric timing analysis which computes the
values for the above intervals.

The parameter analysis is a data flow analysis using ab-
stract interpretation [4]. The instructions of the program are
analysed in an abstract fashion. In Figure 6, for instance, if
the program loads the content from memory cell 0x42 to
register R4 and memory cell 0x42 has not been written to
before. The analysis considers the memory cell a parameter
and adds the dependency R42 = Mem(0x42) to the current
program point. When register R4 is increased by 10, the de-
pendency is changed to R4 = Mem(0x42) + 10 and when
the register is loaded with a constant, the dependency does
not hold any longer.

R4 = Mem(0x42);

R4 = R4 + 10;

R4 = 10;

R5 = Mem(0x42);

1

2

3

4

{(R4, Mem(0x42), [0, 0])}

{(R4, Mem(0x42), [10, 10])}

{}

{(R5, Mem(0x42), [0, 0])}

Figure 6. Parameter analysis

Note that in the current implementation, the analysis can
only handle dependencies with constant offsets. This means
that dependencies of the form v := 2p or v := p + q where
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p and q are parameters can not be derived and the analy-
sis relies on user annotations. In most cases, however, de-
pendencies with constant offsets are sufficient; usually, the
parameters are used directly without changing their value
beforehand.

3.2 Parametric Loop Analysis
The purpose of the parametric loop bound analysis is

to compute the loop bounds for each parametric and non-
parametric loop. Obviously, the latter problem can be
solved as in numeric timing analysis. Inputs to this step
are the parameter dependencies for each program point as
computed in the preceding step and the values in registers
and memory cells (as far as the value analysis was able to
derive them).

The numeric loop analysis derives loop bounds by col-
lecting loop invariants. For all potential loop counters, it
computes how much they are changed during one iteration,
determines initial values for these variables, evaluates the
loop exits, and finally constructs the loop bounds. There-
fore, the loop analysis consists of four phases:

1. Collection of (potential) loop counters.

2. Derivation of loop invariant.

3. Evaluation of loop exits.

4. Construction of loop bounds.

All variables changed within the loop body are potential
loop counters - the first phase collects these variables. The
second phase determines the loop invariant for the potential
loop counters. Such loop invariants have the form: “loop
counter i is incremented in each iteration by at least 2 and at
most 3”. The third phase then evaluates the loop exits. This
means, the analysis determines the values the loop counters
are compared with at the loop exit conditions. In the last
phase, the collected information is combined to compute
bounds on the number of loop iterations.

The numeric analysis uses for all of these steps the inter-
vals computed by the value analysis and derives loop bound
intervals [a, b] where a ∈ N denotes the lower bound and
b ∈ N ∪ {∞} the upper bound.

In the parametric case, however, loops are not bounded
by intervals but by symbolic expressions. Therefore, we ex-
tended the above method by symbolic evaluation. The para-
metric analysis not only acquires intervals from the value
analysis but also parameter dependencies derived by the pa-
rameter analysis. This information is sufficient to compute
safe loop bound expressions. The evaluation of the loop ex-
its as well as the construction of the loop bounds has been
replaced by symbolic evaluation.

Consider the loop given in Figure 7. Assume that register
R4 depends on the parameter in memory cell 0x42 (R4 =

Mem(0x42) or, in terms of parameter dependencies as
computed in the preceding step, (R4, Mem(0x42), [0, 0]))
holds.

R4 = Mem(0x42);
R5 = 0;

n1

LoopHead:
R1 = (R4 = R5);
Jumpz LoopEnd;

n2

LoopBody:
. . .

n3

LoopEnd:
. . .

n6

R5 = R5 + 1;
Jump LoopHead;

n4

n7

1

2

3

4

5
n5

Figure 7. Simple loop example for the loop
analysis

The register R5 is a potential loop counter (since it is
accessed within the loop body). Its initial value is 0 and it is
incremented by 1 in each iteration. The loop exit compares
the register R5 with the register R4. Since this register is
parametric, the value analysis could not compute a bounded
interval for it. The parameter analysis, however, derives the
dependency R4 = Mem(0x42). At this point, the analysis
has collected all information needed to derive a symbolic
loop bound expression:

if Mem(0x42) < 0 then∞ else Mem(0x42)

The evaluation of this expression has to be postponed un-
til the value for the parameter at memory cell Mem(0x42)
is available.

As the parameter analysis, the parametric loop bound
analysis uses the framework of abstract interpretation [4].
The collection of the potential loop counters and the invari-
ant derivation are data flow analyses that interpret the pro-
gram in an abstract fashion.

Note that the loop bounds, derived by the loop analysis,
are always relative to the loop entry edge. This means that
if a loop is bounded by an expression E, then the loop is
executed E times the number the loop is entered.

3.3 Pipeline Analysis
In modern processors, the execution time of a single in-

struction can not be considered constant - it highly depends
on the previously executed instructions. Not only the cache
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behaviour but also more complex features such as out-of-
order execution, branch prediction, and speculative execu-
tion can lead to varying execution times for a single instruc-
tion. A miss-predicted branch followed by a speculative
execution, for instance, causes the processor to spend time
in a dead path and to waste time compared to a correctly
predicted branch. Thus, the low-level behaviour of the pro-
cessor must be taken into account to derive safe and tight
upper bounds on the execution time.

Although the pipeline analysis is not changed with re-
spect to numeric timing analysis, it is a crucial part of the
parametric timing analysis: it simulates the low-level be-
haviour of the target processor, i.e. the behaviour of the
pipeline and the cache, in an abstract fashion [20, 10, 13].

The pipeline analysis is based on an abstract processor
model that abstracts away from all features not relevant to
the timing behaviour. For instance, the execution time of an
arithmetic operation does not depend on the actual operands
but on the occupied execution unit. The same holds for a
memory access: not the accessed data but the address of the
access influences the latency and thus the timing. Caches,
branch prediction, prefetch queues and so on, however, are
still part of the model. With this abstract processor, the
pipeline analysis simulates the execution of the program
along the control flow graph and derives upper bounds on
the execution times of the basic blocks. It hereby overap-
proximates all possible execution traces through the proces-
sor. In case the control flow splits, the abstract processor
states are forwarded to all possible successors and in case
the control flow converges, the abstract processors states of
all predecessors are combined.

Due to the fact that the abstract model contains all timing
relevant features and overapproximates all possible hard-
ware traces, the analysis computes safe upper bounds and
even takes timing anomalies [17] into account.

3.4 Parametric Path Analysis
The parametric path analysis computes the WCET for-

mula by symbolically searching the longest execution path
in the program. As in the numeric timing analysis, im-
plicit path enumeration is used to generate flow constraints.
These flow constraints, however, must be linear in order to
be used in an ILP. Therefore, the usually non-linear loop
bound expression that are computed by the loop analysis,
are replaced by artificial parameters.

Definition 2 (Artificial Parameter)
An artificial parameter AP is a symbolic representation for
a loop bound expression. It may contain each type of ex-
pression (including constants, parameters, and also artificial
parameters) except for traversal counters.3

3Artificial parameter are also used to represent user-specified loop-
bound annotations. In case the analysis could not derive loop-bound ex-

Consider the loop in Figure 7 and its loop bound:

if Mem(42) < 0 then∞ else Mem(42)

This loop bound is represented by an artificial parameter
APl during the path analysis. The flow constraints for this
loop are thus given by

n1 = n2

n2 + n5 = n3 + n6

n3 = n4

n4 = n5

n6 = n7

n3 ≤ APln2

and the cost function by

max : n1c1 + n2c2 + n3c3 + n4c4 + n5c2 + n6c5

where ci denotes the maximal execution time of the corre-
sponding basic block i.

Although the last constraint contains no loop bound ex-
pression, it is still non-linear since a parameter is multi-
plied by a variable. The problem is caused by the relative
loop bounds, which are thus converted to absolute ones. In
order to perform this conversion, all variables have to be
bounded. In the above example, the variable n2 is obvi-
ously bounded by 1 and thus the absolute loop bound is
given by n3 ≤ APl. In case of nested loops, variables may
be bounded by artificial parameters again (see Figure 5 for
an example). Assume an inner loop is bounded by a loop
bound expression represented by AP1 and the correspond-
ing outer loop by an expression represented by AP2. After
the conversion to absolute loop bounds, there is a constraint
of the form

nx ≤ AP1AP2

which is again non-linear. Thus, a new artificial parameter
APx = AP1AP2 replaces the product of the other artificial
parameters and the new constraint is given by

nx ≤ APx

In general, the analysis first bounds all variables (either
by a constant as in the simple case or by an artificial param-
eter) and then replaces the relative loop bounds by absolute
ones. Obviously, if all loops are bounded, all variables are
bounded too. Note that we lose information during the con-
version from relative to absolute loop bounds; absolute loop
bounds are less precise since they do not obey the relation-
ship between loop entry edge and loop bound.

pressions, the user can specify the loop as bounded by a parameter. Hereby,
an artificial parameter is introduced.
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The constraint system after the conversion is completely
linear and thus forms a valid symbolic integer linear prob-
lem. This ILP is then solved by a symbolic ILP-solver. Note
that we use in the implementation PIP [7], a freely available
solver developed by Paul Feautrier that uses symbolic ver-
sions of the simplex [6] and cutting plane algorithm [11].

3.5 Instantiation
The result of the parametric path analysis is a conditional

expression in the artificial parameters. Therefore, the analy-
sis provides a last step, namely the instantiation. Addition-
ally, since the output of the symbolic ILP-solver is rather
complex and hardly human-readable, the instantiation step
provides a pretty-printer for the result.

A (pretty-printed) result for one parameter is usually of
the form:

if AP1 > cl then AP1cm + cn else co

AP1 = if Mem(0x42) < 0 then∞ else Mem(0x42)

where cl, cm, cn, and co are constants and Mem(0x42) is
a parameter. In case there are more than one parameter,
the formula contains nested conditions in these parameters.4

The resulting formula and the loop bound expression are
usually quite simple and clear - at least after pretty-printing.

For the evaluation, the user provides values for the (non-
artificial) parameters, i.e. the values the parametric regis-
ters or memory cells hold before program execution starts.
These values are then used to evaluate first the artificial pa-
rameters and then the timing formula. Note that in case a
loop bound for a parametric loop has been annotated by the
user directly, the user can also provide a value for this pa-
rameter directly.

4 Measurements and Discussion
In this section, we describe the precision of our method:

a short theoretical discussion is followed by some practical
results.

4.1 Loss of Precision
There are two sources that may lead to a loss of pre-

cision compared to the numeric timing analysis. The first
one is the less precise detection of infeasible path and the
second one is the information lost during the loop bound
transformation (relative to absolute).

Parametric timing analysis may be unable to exclude
paths that the numeric analysis can exclude. If the numeric
analysis is given a loop iteration count or the value of a vari-
able which must be considered parametric otherwise, the
analysis can use this information to compute more precise
results. This affects on the one hand te complete program

4In theory, the number of parameters is unbounded, in practise, how-
ever, the symbolic ILP-solver PIP is the bottleneck.

path that might depend on a parameter, and on the other
hand the low-level analysis. The low-level analysis, for in-
stance, distinguishes between the first and all subsequent
iterations of a loop. The numeric analysis can often disre-
gard the cache states after the first run (in case the number
of loop iterations is at least two), the parametric analysis
has to consider always all cases and thus has a less precise
cache- and pipeline-state.

The second reason for a loss of precision is depicted in
Figure 8. If the path analysis could handle relative loop
bounds, the computed worst-case execution path would
contain only one of the loops (L1 or L2), whereas the para-
metric formula contains both loops: the loop entry edges
nl1 and nl2 are bounded both by 1. The information that
only one of the loops and not both are executed during a
single run is lost. Although only one of them is actually
taken, the parametric worst-case execution time includes
both. This may lead to a rough over-approximation.

Figure 8. CFG with two loops on Disjoint
Paths

4.2 Measurements
Apart from the theoretical description in the last section,

we now discuss the practical evaluation of our analysis. We
implemented a prototype of our parametric timing analysis
for the PowerPC 565 and PowerPC 755. Both are rather
complex processors that use a wide span of recent tech-
niques, including out-of-order execution and branch predic-
tion and thus exhibit timing anomalies [15, 17, 20]. Note
that the evaluation is based on the timing analysis for the
PowerPC 565.

We compared our results against the non-parametric
analysis. This means, we compute the symbolic formula
once and instantiate it for several values in the parametric
case (PA) and in the non-parametric case (NPA), we anno-
tate the loop bounds and start one analysis for each param-
eter assignment.

Note that the numeric analysis uses the program lp solve,
whereas the parametric analysis uses PIP for solving the in-
teger linear programs. The tests have been performed on
Intel Core Duo 1,66 Mhz with 1024 MB RAM and com-
piled with a gcc-cross-compiler. The parametric formulas
which we provide in the following are direct transcriptions
from results obtained by the parametric timing analysis. For
the sake of simplicity, we omit the loop bound expression;
they mainly denote the actual memory cell that holds the
value of the parameter.
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We used the following test programs:
• Factorial

• Nested Loop

• Insertion sort

• Matrix Multiplication

• Square Root Computation by Taylor Series

• Finite Impulse Response Filter

• Cyclic Redundancy Check
In all cases except for the last one, we computed the tim-

ing bounds for the values 0, 1, 10, and 100. The cyclic re-
dundancy check is an example containing two parameters.
Here, we have chosen 0, 1, 10, and 100 for the first and
8, 64, 128, and 256 for the second parameter. The upper
bounds on the timing guarantees are given in the number of
cycles. Note that the last three test programs are taken from
the Mälardalen WCET benchmark suite.5 Unfortunately, it
was not possible to obtain real-life application from the in-
dustry to evalutate the method.

Factorial
The first example computes the factorial of n, where n is
a parameter. The program has one unique path and must
be considered to be rather simple. Table 1 shows the re-
sults. As one can see, the parametric analysis gives for all
used parameter assignments exactly the same results as the
numeric timing analysis.

n NPA PA Diff. in %
0 574 574 0
1 770 770 0

10 2 309 2 309 0
100 17 699 17 699 0

Time(n) =
{

574 if n < 1
171n + 599 otherwise

Table 1. Results for factorial

Nested Loop
The next example consists of a triangular loop. The outer
loop is bounded by the parameter and the inner loop is
bounded by the outer loop’s loop counter. The results can
be seen in Table 2.

For all values larger than zero, we have a constant over-
approximation, which amortises as the parameter grows.
The over-approximation is caused by the conversion from
relative to absolute loop bounds, where the analysis loses
some information about the relationship between inner and
outer loop.

5http://www.mrtc.mdh.se/projects/wcet/
benchmarks.html

n NPA PA Diff in %
0 686 686 0
1 997 1 049 5.2

10 15 686 15 764 0.5
100 1 365 686 1 365 764 <0.1

Time(n) =
{

686 if n < 1
135n2 + 150n + 764 otherwise

Table 2. Results for nested loop example

Insertion Sort
The insertion sort benchmark is a more complex but com-
pletely structured program, which contains in our case one
normal parametric loop that initialises an array of size n and
one parametric nested loop that sorts the values contained
in this array by the insertion-sort-algorithm. The results are
shown in Table 2.

n NPA PA Diff in %
0 1 494 1 798 20.3
1 1 910 2 086 9.1

10 118 411 121 579 2.7
100 10 788 631 10 791 799 <0.1

Time(n) =

 1798 if n < 1
2086 if n = 1
1067n2 + 1188n + 2999 otherwise

Table 3. Results for insertion sort

Only for very low values, the parametric analysis is high
above the numeric timing analysis. For the value 100 the
difference is negligible.

Matrix Multiplication
The fourth benchmark first initialises and then multiplies
two matrices of size n× n. It uses the naive approach with
nested parametric loops of depth 3. Results are shown in
Table 4.

n NPA PA Diff in %
0 2 915 3 046 4.5
1 5 244 8 371 59.6

10 745 156 890 884 19.6
100 669 888 316 683 246 374 2.0

Time(n) =

 3046 if n < 1
2431n3 + 2003n2

+663n + 3274 otherwise

Table 4. Results for matrix multiplication
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Square Root Computation
This test program computes the square root using Taylor
series. The parameter determines the iteration depth and
thus the precision of the square root computation.

n NPA PA Diff in %
0 208 208 0
1 208 208 0

10 3331 3331 0
100 34561 34561 0

Time(n) =
{

208 if n < 1
347(n− 1) + 208 otherwise

Table 5. Results for square root computation

Cyclic Redundancy Check
The last benchmark program performs an 8bit cyclic redun-
dancy check. (Also taken from Mälardalen WCET bench-
mark suite). The parameter n is the length of the input
stream for which the checksum is computed. We introduced
an additional parameter a which denotes the size of the al-
lowed alphabet, the input string contains elements of. Here,
we performed the analysis for the values 0, 1, 10, and 100
for n and 8, 64, 128, and 256 for a which gives a total num-
ber of 16 combinations. See Table 6 for the results.

n a NPA PA Diff in %
0 8 5969 5969 0
0 64 50545 50545 0
0 128 101489 101489 0
0 256 203377 203377 0
1 8 5969 5969 0
1 64 50545 50545 0
1 128 101489 101489 0
1 256 203377 203377 0

10 8 7328 7328 0
10 64 51904 51904 0
10 128 102848 102848 0
10 256 204736 204736 0
100 8 20918 20918 0
100 64 65494 65494 0
100 128 116438 116438 0
100 256 218326 218326 0

Time(n, a) =


397 if n < 1 ∧ a < 1
796(a− 1) + 397 if n < 1 ∧ a ≥ 1
151(n− 1) + 397 if n ≥ 1 ∧ a < 1
151(n− 1) + 796(a− 1) + 397

if n ≥ 1 ∧ a ≥ 1

Table 6. Results for cyclic redundancy check

Discussion
The results of the benchmark programs show that accuracy
of the parametric timing analysis depends on the structure
of the analysed program. Nested parametric loops and para-
metric loops on disjoined paths causes overapproximation
(nested loop, insertion sort and matrix multiplication). This
overapproximation is due to the conversion from absolute to
relative loop bounds. In two cases (nested loop and inser-
tion sort), the overapproximation is constant, which means
that the relative difference decreases as the number of loop
iterations grows. Already for parameter values of 10 we
have a difference of less than 5%. Only for matrix multi-
plication, the difference grows linearly and therefore does
not scale as well. The first and the last two programs do not
contain nested loops. Here the parametric timing analysis is
as precise as the numeric timing analysis.

5 Related Work
Several research groups addressed timing analysis and

also parametric timing analysis.
Vivancos et al. proposed a method able to derive a sym-

bolic WCET formula [21]. In this approach, they use an
extended compiler that provides the control flow graph and
additional information for the timing analysis. An iterative
algorithm computes the WCET of the loops, which is then
used to compute a simple formula for the whole program.
The paper mainly focuses on the application of paramet-
ric timing analysis and thus gives rather coarse informa-
tion about the analysis itself. In [3] by Coffman et al., the
method has been extended to handle nested loops. Since the
upper bound on the execution time is computed bottom up
and thus, is only locally valid, the analysis can only handle
very simple processors without timing anomalies.

Parametric timing analysis on the source code level has
been proposed by Chapman et al. [2] and Bernat et al. [1].
Both approaches rely on user annotations, among others, for
the parameters affecting the control flow and for the expres-
sions influencing the parametric loop bounds. Using this
information, they build symbolic WCET expressions and
solve them using an algebra system such as Maple. In ad-
dition to the fact that our analysis operates on executables,
the main difference to our approach is the required amount
of user annotations.

Lisper proposed another parametric timing analysis [14].
He used polyhedral flow analysis for the parametric loop
bounds and symbolic ILP for the path analysis. The method
can derive WCET formulas automatically without any an-
notations. Especially the polyhedral flow analysis is able to
derive very precise results but at the cost of high complex-
ity. Since the method has not been implemented yet, there
exist no practical results so far. In our approach we used
the symbolic ILP as proposed by Lisper. The differences to
our method are the parameter analysis and the parametric

9



loop bound analysis replacing the polyhedral analysis. In
addition, our analysis operates on the executables in order
to take the behaviour of the processor into account.

6 Conclusions
The parametric analysis presented in this paper is able

to derive a symbolic WCET formula automatically. A pa-
rameter analysis identifies the parameters of the analysed
program and computes the dependencies between param-
eters and variables. The parametric loop analysis derives
loop bound expressions for the parameterised loops using
these dependencies. At the end, the parametric path analy-
sis constructs a symbolic ILP which is solved to derive the
parametric timing formula.

We implemented prototypes of the analysis for the Pow-
erPC 565 and 755. The computed results are very promis-
ing and show that the parametric timing analysis is able to
compute precise bounds on a task’s execution time. If the
analysed task contains nested parametric loops, the results
from the parametric timing analysis are often only a few
percent higher than those obtained by the numeric timing
analysis. If the analysed task does not contain nested para-
metric loops, the results of both analysis are the same.

In future work, the parameter analysis can be extended to
handle more complex dependencies and an improved sym-
bolic optimisation method as well as a parametric dead-
code analysis promise to increase the precision. Addition-
ally, real-life test-cases from industry are needed to evaluate
the practical applicability of the method.
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