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Abstract 

A new approach to interact with an industrial robot 

using hand gestures is presented. System proposed here 

can learn a first time user’s hand gestures rapidly. This 

improves product usability and acceptability. Artificial 

neural networks trained with the evolution strategy 

technique are found to be suited for this problem. The 

gesture recognition system is an integrated part of a 

larger project for addressing intelligent human-robot 

interaction using a novel multi-modal paradigm. The 

goal of the overall project is to address complexity 

issues related to robot programming by providing a 

multi-modal user friendly interacting system that can be 

used by SMEs. 

 

1. Introduction 

Introduction of industrial robots in the manufacturing 

process has revolutionized a number of industries. The 

most striking example is perhaps the car industry. An 

investment involving industrial robots or in automation 

in general is, thus, seen as a necessary action for 

strengthening market position of a company. Despite this 

strong belief robot automation investments are 

considered to be technically challenging as well as costly 

by a considerable amount of small and medium sized 

enterprises (SME) [6]. 

Some of the reasons for this belief are as follows: An 

industrial robot must be placed in a cell that will occupy 

valuable space. The robot will perhaps operate only 

during a couple of hours a day. In addition, no matter 

how simple the manufacturing process might be, to 

integrate the robot into a manufacturing process one has 

to rely on a robot programming expert, a so-called 

integrator. Robot programming requires expert 

knowledge not only in robot kinematics, the integrator 

must also master advanced software engineering. For an 

engineer that does not have skills of a robot integrator 

switching from one manufacturing process to another is 

not a trivial task. The integrator is, thus, needed when 

there is a need for a new or updated robot program. 

Obviously, for most SMEs these issues result in 

challenges with respect to high costs, lack of flexibility, 

and reduced productivity. Note that these challenges are 

not restricted to SMEs. There is always a need of 

increased flexibility and optimally usage of resources in 

all sizes of companies as well as sectors. 

We hypothesize that in order to make industrial 

robots more common within the SME sector, industrial 

robots should be (re)programmable by task experts as 

well. In this context we define a task expert as a person 

that has expert knowledge on the manufacturing process 

that is subject to an industrial robot investment. As 

describe above, no matter how knowledgeable the task 

expert is, he/she will need assistance while integrating 

the robot into the manufacturing process. Yet another 

important factor in this context is related to how a novel 

user is introduced to a totally new way of interacting 

with a robot. The importance of this factor should not be 

underestimated since getting used to a new system is 

always associated with new challenges for an individual. 

In this paper we present a hand gesture recognition 

system. This system is part of a larger system called the 

µ-Intelligent Human-Robot Interaction Architecture (µ-

iHRI) (Fig. 1). It consists of a novel high level language 

and a cognitive robot architecture (µ-for addressing 

natural interaction between a human and a robot [3] (see 

[4] and [5] for an introduction to the field). The µ-iHRI 



system is designed to be highly intuitive to use for task 

experts as well as other user groups. This system will 

allow the user to instruct the robot, a process which is 

fundamentally different from traditional robot 

programming. This process will be carried out using 

combination of following modalities: (i) hand gestures, 

(ii) natural speech, vision-based 3-dimensional object 

recognition, and (iv) vision-based hand and body posture 

recognition. Note that these modalities are used naturally 

by humans while interacting with each other. In the µ-

iHRI paradigm a robot will be able to give feedback to 

the user when needed. This is highly important since all 

communication, including ambiguities and other 

complex issues, must be dealt within the framework of 

the same framework. 

 

Figure 1. The µ-Intelligent Human-Robot 
Interaction Architecture. 

 

Consequently, the high level language is equipped 

with methods for representing objects, their features, and 

relationships between them so that meaningful 

instructions can be given to the robot. Taking together, it 

is obvious that the process of interaction, as described 

above, is more like a dialog between two humans than 

traditional robot programming, and the gesture 

recognition system under development is an integrative 

part of this larger system. 

2. Methods 

Gesture recognition has to be addressed with an 

algorithm that detects gestures with high probability, 

since the system has to be reliable. A system that does 

not meet this requirement will not be accepted by users 

in general. Furthermore, a new user should spend as little 

time as possible with the system during the introduction 

phase, which also includes teaching the gesture 

recognition system the new user’s gestures. It is not 

trivial to address both these requirements at the same 

time, since to fulfill the first requirement, usually, one 

expects to collect considerable amount of data from a 

user. This can be interpreted as a time consuming 

process, and hence may not be plausible in many cases. 

Thus, high system performance and user friendliness are 

clearly in contradiction with each other. 

Yet another requirement is on the reaction time of the 

algorithm, since unnecessary long delays are considered 

to be annoying, especially when the user expects real 

time performance from the system. These three 

requirements are directly related to usability of gesture 

recognition systems as well as the whole system, namely 

the µ-iHRI, and hence have to be addressed. 

Feed-forward artificial neural networks (ANN) [1] 

have been used in a number of function approximation 

problems with success. An ANN is an abstract topology 

consisting solely of computing units called perceptrons, 

which are grouped into layers. Information is propagated 

in a poorly feed-forward manner from input to output 

layer without feedback to previous layers. Connections 

between perceptrons in a layer are also prohibited. Each 

of these connections is associated with a weight, which 

is adjusted by a learning algorithm during the learning 

phase. The result is approximation of the target function. 

Thus, input to a perceptron is weighted sum of the 

outputs of perceptrons from the previous layer. Output of 

a perceptron takes the form of a sigmoidal transfer 

function [1]. In the proposed work ANN are trained 

using the evolution strategy (ES) paradigm [2]. This 

class of algorithms searches the domain in a probabilistic 

way. They are suitable for noisy data and search domains 

having many local maxima points. 

The gesture data is collected by a Senseboard device 

[3]. This U-shaped device is attached to a hand, parallel 

to the wrist. It is fitted between the thumb and rest of the 

fingers. The Senseboard is equipped with five sensors: 

three accelerometers, one for each dimension (x,y,z), and 

two tilt sensors (wrist up/down and elbow rotation). Data 

from the Senseboard is, thus, five time series. Once data 

collection is done for a gesture, it is manually tagged 

with the gesture type information and number of 

samplings.  

ES is a probabilistic population based search 

algorithm. It works by randomly selecting individuals 

from a generation and produce new individuals, called 

offsprings, by performing crossover on the selected 



individuals. Later, the offsprings are randomly mutated. 

Once this has been done, the fitness of each offspring is 

calculated. The fittest individuals from the intermediate 

population consisting of offsprings and parents are 

selected into the next generation. 

Figure 2. Number of correctly classified 
gestures as a function of generation. After 
7000 generations the ANN can detect 
almost 80% of the gestures. 

Figure 3. Sum of absolute weights as a 
function of generation. The penalty 
function for the weights prevents them 
from grooving in an uncontrolled manner. 

Yet another advantage of using ES instead of 

traditional methods for training ANN, such as back-

propagation, is that the network topology can be 

optimized during training, with respect to number of 

connections. Since gesture data is high dimensional this 

possibility is seen as a way of improving results even 

further in the future.  Note also that adding new gestures 

into the language will also induce more complexity, thus 

the need for removing connections as well as perceptrons 

will probably needed. 

3. Results and Conclusions 

Collected data consists of four different types of 

gestures, defined as “rotate up”, “rotate down”, “rotate 

left”, and “rotate right”. In addition a sampling series 

with no hand movement is also performed. These data 

are tagged as “no-gesture”. All gestures are truncated to 

become exactly one second in length (25 sample points 

with 25 Hz sampling frequency). In total there are 142 

gestures evenly distributed between five gesture types. 

Note that there are only 28–30 gestures representing 

each gesture type. This is for testing the network 

performance with as few gestures as possible to see if the 

proposed algorithm can address the second requirement 

defined earlier. 

The training data is constructed by randomly dividing 

all 142 gestures into five sets. The algorithm performing 

this procedure ensures that all five gestures types are 

distributed as evenly as possible. Later, the dimension of 

the data is reduced to one fifth of its original by 

calculating mean values of five adjacent data points 

along the time axis. This process reduces noise is the 

data as well as dimension of it. Finally data from all five 

sensors are combined into a vector of 25 elements, which 

will become the input to the ANN. The ANN topology 

used for function approximation consists, thus, of 25 

inputs. It has two hidden layers of perceptrons, eight in 

the first, and six in the second. The output layer has four 

perceptrons. The resulting network topology contains 

290 weights. The initial value for each weight and bias 

value is 0.0±2.4. In the training data the output that is 

associated with a certain gesture is set to 1.0, whereas 

others three outputs are set to 0.0. All four outputs for 

“no-gesture” data are set to 0.0. 

Population size is 80, and hence is constant. Each 

offspring has two parents, and in each generation 10 new 

offsprings are generated. It should be noted that the 

mutation used in ES is a normal distributed random 

number with the current value as its origin, the 

individuals’ mutation strength is the standard deviation 

of this distribution. 

One of the optimization methods available in ES, self-

adaptation, has been proved to be valuable for the 

gesture data. This method works by keeping track of 

how many offspring outperform the parents. This value 

is then used at regular intervals to adjust the mutation 

strength of each individual. This value is the number of 

successful offspring divided by the number of offspring 

produced and is called probability of success. If this 

value exceeds a certain threshold, mutation strength is 

increased, if it is lower than the threshold mutation 

strength is decreased, otherwise nothing is done. In the 

simulations mutation strength for each individual is set 

to 4.0±1.0% at the beginning. The self-adaptation 

algorithm controls every thirty generations with a 

probability of success threshold of 1/5 and adjusts the 

mutation strength of each individual by 3%. 
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During training a penalty value equal to the sum of 

absolute weights divided by 100 is subtracted from the 

fitness value. The effect is reduced absolute weight 

values. This has three favorable affects. Firstly, 

connections between neurons as well as perceptrons can 

be removed, after the training phase. The result is 

simpler ANN, which are most often more favorable over 

their more complex counterparts. Furthermore, if 

connections from a certain input note are close to zero 

that node can be removed, and hence the ANN input 

dimension can be reduced. 

During the first 100 generations of training, all five 

sets are used for training. Later, 5-fold cross-validation is 

used for deciding when to stop training the ANN. In this 

version of cross-validation one (out of five) sets is 

randomly picked and used as the validation set during 10 

generations. Remaining four sets are used as training 

sets. The training procedure is repeated until one of the 

following convergence criteria is met after the first 100 

generations: (i) 10 000 generations have passed; (ii) sum 

of squared errors over test set increases by more than ten 

during one generation; (iii) mutation strength of fittest 

individual is less than one. 

Once the four-dimensional output matrix has been 

produced by the ANN, it can be used to calculate 

number of correctly identified gestures. The output that 

has the highest value, out of four, is the classified 

gesture. If the highest output value is less than 0.3, the 

gesture is classified as “no-gesture”. Note that, once the 

network has been fully trained and is used in an 

application, the threshold for classifying the “no-

gesture” can be modified for improved performance. 

A number of experiments have been done to fully 

explore results of training ANN with ES for gesture data. 

ANN with one and two hidden layers have been tested, 

as well as the impact of self-adaptation on search 

performance. In general ANN with two hidden layers 

performed better, thus, for the final tests this topology 

was chosen. 

Self-adaptation was surprisingly useful. With as few 

as 142 gestures in the training and validation sets ANN 

can detect roughly 80% of the data. In Fig. 2 the network 

converges to 112 correctly classified gestures out of 142. 

When self-adaptation was turned off correct 

classification was roughly 40% (not shown here). One of 

the main requirements of this system was minimum time 

spent to introduce a new user to the system. We 

hypothesize that for a gesture language consisting of 

some ten gestures it will not be plausible to do more than 

30 runs per gesture. Note that only this procedure would 

take some 10 minutes. Finally, penalty function for the 

weights has shown to be useful (Fig. 3). Despite 

improved classification after 2000 generations sum of 

absolute weights is kept almost constant. In the next 

phase weights that have low amplitudes are subject to 

elimination. The result will be a more simpler network 

topology. 

In the next phase of the project we intend to improve 

the classification performance further. We believe that 

80% of correctness in classification may not be 

satisfactory for some users. We also need to address a 

richer gesture language, with perhaps four times as many 

gestures as in the previous language. 
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