
Mälardalen University Doctoral Thesis
No.65

Improving Predictability and
Resource Utilization in

Component-Based Embedded
Real-Time Systems

Johan Fredriksson

October 2008

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden

Copyright c© Johan Fredriksson, 2008
ISSN 1651-4238
ISBN 978-91-86135-00-3
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

With increase of software complexity and demands for improved development
efficiency, there is a need for new technologies and methods that can cope
with these challenges. In certain business domains, such as distributed web-
based systems and office applications, Component-Based Software Engineer-
ing (CBSE) has demonstrated advantages in achieving reusability of software
components, shorter time to market and increased quality. Due to these advan-
tages the approach is attractive also for other application domains, in particular
for Embedded Real-Time Systems (ERTS). However, applying CBSE to ERTS
is not trivial since ERTS have requirements related to timing and resources us-
age. One of the major challenges in providing CBSE for ERTS is to achieve
performance efficiency and predictability while maintaining reusability. In this
thesis we address this challenge, and three novel solutions are presented for im-
proving predictability and utilization of resources in component-based ERTS.

The first solution is a contract-based technique to achieve reuse of Worst-
Case Execution Times (WCET) predictions in conjunction with reuse of soft-
ware components. For resource constrained systems where a high degree of
predictability is needed, classical techniques for WCET-estimation may result
in unacceptable overestimations for reusable software components. Our solu-
tion allows different WCETs to be associated with subsets of the component
behaviour. The appropriate WCET for any usage context of the component is
selected by means of component contracts over the component’s input domain.

The second solution is a method for deriving the input combinations of a
software component that produces the WCET. The information resulting from
this method can be used, e.g., for guiding measurement-based WCET analysis.

The third solution is a framework for transformation of components to the
real-time tasks aiming at providing efficient utilisation of resources. Efficient
allocations can reduce memory usage and CPU-overhead considerably.

In addition this thesis demonstrates how the solutions can be incorporated

i

ii

in the CBSE development process. Furthermore, two tools have been imple-
mented and used for the evaluation of the research results; the evaluations show
that by using the methods outlined in the thesis resource efficiency and pre-
dictability can be substantially increased without negative impact on reuse.

Det är vackrast när det skymmer.

All den kärlek himlen rymmer

ligger samlad i ett dunkelt ljus

över jorden,

över markens hus.

Allt är ömhet, allt är smekt av händer.

Herren själv utplånar fjärran stränder.

Allt är nära, allt är långt ifrån.

Allt är givet

människan som lån.

Allt är mitt, och allt skall tagas från mig,

inom kort skall allting tagas från mig.

Träden, molnen, marken där jag går.

Jag skall vandra -

ensam, utan spår.

Per Lagerkvist - ¨Det är vackrast när det skymmer¨

-För att livet är för kort att slösas bort.

To Marie, Erika, Inger and Tommy

Without whom life would be a waste!

Preface and

Acknowledgments

When I began my undergraduate studies at Mälardalen University I intended
to study for three years and end with a bachelor’s degree. However, after three
years the studies had become so interesting that I decided to continued for a
further one and a half years to get a master’s degree. After this one and a half
years I again discovered that my need for more knowledge was unsatisfied.
Having been a Ph.D. student for five years I find that the fascination continues
and who knows where I will end up in the future.

This thesis is the end of the journey, and as E. Hemingway said, “It is good
to have an end to journey toward; but it is the journey that matters, in the end”,
and the journey leading to this thesis has indeed been a long but rewarding
journey in my life the past five years. I have had a lot of fun and met people
from around the world whom I would never have met otherwise. I would not
have made it this far, and especially wouldn’t have had as much fun without all
these people. It is impossible to quantify the Ph.D. studies in any proper way,
instead I try to summarize different categories that have played different roles
throughout these last five years.

Supervisors Without the encouragement, and guidance of my supervisors I
would have been lost a long time ago.

Prof. Ivica Crnkovic is my main supervisor. Thank you for always be-
lieving in me, and for giving me this opportunity to be a Ph.D. student. I am
impressed by your ability to get both the details and the big picture of my re-
search. We have had a lot of fun together, especially after a few “pivo” in
Croatia, Hvala!

Dr. Kristian Sandström is the assistant supervisor that has been with me
the longest. I have always enjoyed our zestful discussion about vital gadgets,

vii

viii

and I am looking forward to working with you in the future. I am amazed by
your ability to find the details in my research that no one else finds. I have you
to thank for many things in my research! Tack så mycket!

Dr. Thomas Nolte is my assistant supervisor and friend. We have travelled
(and photographed) the world, both within the frame of the research projects
and privately. Your friendship and guidance have made me not only a better
researcher, but also a better person and better photographer. I am eternally
grateful for all your support. Tack!

Prof. Mikael Nolin is my assistant supervisor. Your guidance, both on a
personal and professional level has helped me many times. You always believe
in me, and back me up. You are always very enthusiastic and you succeed
to spread that to those who work with you. I always enjoy our discussion on
gadgets, wine and real-time analysis - the essence of life. Tack så mycket!

For all help and support with worst-case execution time analysis in general
and with SWEET in particular, Dr. Andreas Ermedahl has helped a lot, even in
times of moving between houses. We have had countless fruitful discussions,
on the train between Stockholm and Västerås, and we have authored several
papers together. Even though you are not officially one of my supervisor we
have worked very much together, and you deserve thanks in this section as
well.

Thesis reviewers Apart from my supervisors, the people who helped me in
making this thesis better deserves an extra thank you. Thank you very much,
Stefan Bygde, Marie Costallas, Dr. Radu Dobrin, Dr. Jan Gustafsson, Prof.
Hans Hansson, Dr. Rikard Land, Prof. Björn Lisper, Dr. Frank Lüders, Dr.
Dag Nyström, Prof. Paul Pettersson, Prof. Heinz Schmidt.

Co-authors I have authored and co-authored 34 different papers. I would
never have made that without very competent and hard working co-authors.
Tank you, Prof. Peter Alternbernd, Dr. Jan Carlson, Prof. Ivica Crnkovic,
Dr. Radu Dobrin, Dr. Andreas Ermedahl, Dr. Joakim Fröberg, Prof. Hans
Hansson, Dr. Rikard Land, Anders Möller, Dr. Thomas Nolte, Prof. Mikael
Nolin, Irena Pavlova, Dr. Ian Peake, Dr. Kristian Sandström, Prof. Heinz
Schmidt, Dr. Massimo Tivoli and Dr. Mikael Åkerholm.

Coffees Drinking coffee at the department has been a pleasant activity, and
especially the breaks they have involved. Many ideas, both within and outside
of the research were born during these breaks. Dr. Rikard Land estimated an
intake of approximately 1500 cups of coffee in his thesis; hence I will not try to
name all people with whom I have had coffees, and instead I thank the school
of Innovation, Design and Engineering for providing the coffee.

ix

Project trips During the Ph.D. studies, one of the most rewarding parts is
traveling to conferences and workshops to present the research. I have travelled
to 15 conferences and workshops, in 10 countries during the past five years.

I have shared project trips with several colleagues during my time at the
department. Thank you Hüseyin Aysan, Moris Behnam, Markus Bohlin, Dr.
Jan Carlson, Dr. Radu Dobrin, Dr. Andreas Ermedahl, Dr. Joakim Fröberg,
Dr. Jan Gustafsson, Prof. Hans Hansson, Dr. Kaj Hänninen, Johan Kraft,
Dr. Rikard Land, Dr. Stig Larsson, Anders Möller, Jonas Neander, Dr. Dag
Nyström, Prof. Mikael Nolin, Dr. Thomas Nolte, Prof. Christer Norström, Dr.
Daniel Sundmark and Dr. Mikael Åkerholm.

Visits I spent six months of my studies at the Centre for Distributed Systems
and Software Engineering at Monash University, Melbourne, Australia. From
my time in Melbourne I especially want to thank Shane Gladigau, Dr. Christian
Guttmann, Dr. Ian Peake and Prof. Heinz Schmidt, for making my time so
pleasant. Much of the work was initiated together with Prof. Heinz Schmidt
during this stay. Thank you Heinz, your ingenuity is amazing.

Colleagues Dr. Mikael Åkerholm is one of the colleagues who I have known
the longest. We started the undergraduate studies together, and finished the
Ph.D together, and we have also worked together at CC-Systems. Thank you
Mikael, besides being a great colleague and co-author you are also a great
friend! I have spent many hours discussing life, education of children, develop-
ment processes and research methodology with Dr. Rikard Land, with whom I
have also authored several papers. You have taught me a lot, both academically
and personally. Thank you. I have spent countless lunches discussing training
and physiology with Prof. Hans Hansson and Prof. Christer Norström, I will
sincerely miss having these conversations on a daily basis. During my path
towards my Ph.D., several people have made my work and life more enjoyable
in many ways. Thank you Johan Kraft for being a good friend, and great to
discuss ideas with. Thank you Dr. Daniel Sundmark for our training sessions
and discussions, and also for being a great friend. Thank you Anders “Pett-
son” Petterson for your encouragement, friendship and discussions. Also a big
thank you to my personal trainer and friend Dr. Markus Nilsson.

There are countless people who have given much joy during the last five
years. Thank you Hüseyin Aysan for teaching me about photography, Moris
Behnam for the travel companionship, Markus Bohlin, Stefan Bygde for new
mathematical insights, Dr. Jan Carlsson and Dr. Radu Dobrin for your dis-
cussions and friendship, Harriet Ekwall for always solving the unsolvable, Dr.
Joakim Fröberg, Ewa Hansen, Dr. Kaj Hänninen, Andreas Hjärtström, Dr.

x

Damir Isovic and Dr. Magnus Larsson for your friendship, Dr. Stig Larsson for
the lessons on life, Markus Lindgren for all the lunches, Dr. Jukka Mäki-Turja,
Anders Möller, Dr. Dag Nyström (I do like you too, really!), Jonas Neander,
Prof. Sasikumar Punnekkat, Filip Sebek, Johan Stärner, Dr. Henrik Thane,
Dr. Massimo Tivoli, Monica Wasell for always helping out, Peter Wallin, Kurt
Wallnau and Gunnar Widforss for winning a photo context for me. You have
all contributed to make these past years enjoyable.

Industrial experience During the last two years I have spent a great deal of
time at CC-systems developing industrial systems. I have learned a lot about
the life in industry. I have had a wonderful time, and I especially wants to thank
Johnnie Blom, Jonas Ehlin, Carl Falk, Jörgen Hansson, Mats Kjellberg, Ken
Lindfors, Mattias Lång, Jörgen Martinsson, Andreas Olevik, Malin Olsson,
Johan Persson, Stefan Rönning, Göran Sohlman, Ulf Sporrong, Dr. Jochen
Wendebaum, David Wretling and Anders Öberg.

The important people I want to thank my family and friends; my
Greek/Finnish side of the family, Marja, Mimmis, Tina, Alexander, Sebastian,
Elias and Nils for believing in and supporting me in different ways. I also want
to thank my part of the family who lives in Skåne; even though we don’t meet
as often as we should I am still grateful for your love and support.

In the end, there are some things that matter more than others. With those
words I want to thank my mother Inger and my father Tommy for your love
and for teaching me the value of knowledge; and I want to thank my little
sister Erika for your never ending love and support.

Finally, the person to whom I am most grateful for her perseverance and
love is my fiancée Marie. Without your support I would never have come this
far, I am eternally thankful.

The liabilities The work leading up to this thesis was funded by the Swedish
Foundation for Strategic Research (SSF), Vetenskapsrådet (VR) and a donation
from ABB. Thank you all for providing this opportunity!

Johan Fredriksson
Solna, September, 2008

Notes for the reader

This thesis deals with timing predictability and resource optimization for Em-
bedded Real-Time Systems (ERTS) that are developed using Component-Based
Software Engineering (CBSE). In Chapter 5 we introduce extensions to a de-
velopment process for CBSE facilitating predictability and resource optimiza-
tion of ERTS. Chapter 6 outlines a framework for reuse of Worst-Case Exe-
cution Time (WCET) analysis for software components. In Chapter 7 we de-
scribe a framework for optimization of resources for component-based ERTS.
These three chapters present the research contributions of this thesis. Chapters
6 and 7 can be read independently of each other, and Chapter 5 describes the
connection between the two frameworks. Throughout Chapters 5, 6 and 7 we
use an example of an Adaptive Cruise Controller application to illustrate our
techniques.

To read about the results of the methods outlined in Chapters 6 and 7 the
reader is referred to Chapter 8, which outlines the empirical studies and data
collected from analyzing the methods. Chapter 8 also describes a prototype
tool that implements the ideas outlined in Chapter 6.

Chapter 2 give an introduction to real-time systems, real-time analysis and
WCET analysis, and Chapter 3 gives the basics of CBSE and describes funda-
mental concepts like component model, component, reuse and more. For the
reader interested in the research methodology, Chapter 4 provides detailed in-
formation about the research problems, questions and validations, and outlines
the research method.

To get an introduction and a summary of the thesis; the problems we deal
with, and the contributions, the reader is referred to Chapter 1 for an introduc-
tion and Chapter 9 for a summary of the thesis and the thesis contributions.
Chapter 9 also outlines possible future research directions. Furthermore, this
thesis enclose two appendices; Appendix A provides an extended set of data
from the validations described in Chapter 8. Appendix B provides a full list of
all publications authored or co-authored by Johan Fredriksson.

xi

Contents

1 Introduction 1

1.1 Embedded real-time systems 1
1.2 Component-based software engineering 4
1.3 Informal problem formulation 5
1.4 Overview of our solutions . 8
1.5 Contributions . 13
1.6 Thesis outline . 15

2 Embedded real-time systems 17

2.1 Embedded systems - general concept 17
2.2 Real-time systems - general concepts 18
2.3 Real-time model . 21
2.4 Real-time analysis . 24
2.5 Schedulability analysis . 25
2.6 Worst-case execution time analysis 27
2.7 Summary . 30

3 Component-based development for ERTS 31

3.1 Motivation . 31
3.2 Component reuse . 34
3.3 Basic definitions in CBSE 34
3.4 CBSE development process 35
3.5 Component model . 35
3.6 Component technology . 41
3.7 Component frameworks . 42
3.8 Summary . 42

xiii

xiv Contents

4 Research problem 45

4.1 Research introduction . 45
4.2 Specific research goal . 46
4.3 Research method . 46
4.4 Industrial problems . 49
4.5 Research setting . 51
4.6 Requirements . 57
4.7 Partial solution proposals . 60
4.8 Validation of solutions . 63
4.9 Summary . 65

5 Resource-aware development 67

5.1 Component-based software engineering process 67
5.2 Reusable analysis . 69
5.3 Allocating components to real-time tasks 72
5.4 System models . 73
5.5 ACC example . 76
5.6 Summary . 82

6 Input-sensitive execution-time analysis 83

6.1 Input-sensitive WCET analysis 84
6.2 Reusable WCET analysis . 89
6.3 Finding WCET input combination 101
6.4 Approaches for faster termination 105
6.5 ACC example - input-sensitive WCET analysis 108
6.6 Summary . 109

7 Allocating components to real-time tasks 111

7.1 Introduction . 112
7.2 Allocating components to real-time tasks 114
7.3 Allocation framework . 114
7.4 Using the framework . 118
7.5 Genetic algorithm setup . 119
7.6 ACC example - allocating components to tasks 121
7.7 Summary . 125

8 Empirical results 127

8.1 Input-sensitive execution-time analysis 127
8.2 Allocating components to tasks 143

Contents xv

9 Summary and conclusions 149

9.1 Summary . 149
9.2 Discussion . 151
9.3 Future research directions . 154

Bibliography 157

A Complete list of tables 179

B Complete list of publications 183

In the beginning the Universe was cre-

ated. This has made a lot of people

very angry and has been widely re-

garded as a bad move.

-Hitchhiker’s guide to the galaxy

Chapter 1

Introduction

In this thesis we explore context-aware, reusable Worst-Case Execution Time

(WCET) predictions and optimization of resource utilization in software com-
ponents for component-based embedded real-time systems. Such systems are
typically found in embedded applications such as vehicular systems and con-
sumer electronics.

We have developed methods for, (i) reusing WCET analysis for reusable
software components, and, (ii) allocating components to tasks to minimize
stack consumption and CPU-overhead while maintaining real-time constraints.
Both methods have been implemented and validated.

In this chapter we give an introduction to our research, starting with an
illustrative real-world example before we give an overview of the specific re-
search and contributions. We conclude this chapter with an overview of the
rest of the thesis and a discussion.

1.1 Embedded real-time systems

Many modern products have impressive capabilities. Take as example a mod-
ern car with functions like Electronic Damper Control (EDC) and Adaptive
Cruise Control (ACC). Only two decades ago such functions were impossible
to achieve, only relying on mechanical solutions. New advanced functions are
possible because mechanical systems are being replaced by electro mechani-
cal systems controlled by software. Consider the Electronic Stability Control
(ESC) which is an advanced function in modern cars [vZELP98]. ESC is a

1

2 Chapter 1. Introduction

technology that improves the vehicle’s handling by detecting and preventing
skids. This function is possible because mechanically controlled brakes are
replaced by computer controlled brakes where each wheel can be individually
braked.

Figure 1.1: Conceptually electronic stability control.

Embedded systems comprise electronics and software operating to adapt
to, or control, its environment. Embedded systems are different from desktop
computers in the sense that they do not commonly have a screen or keyboard
for interaction, but rather have different inputs for analog and digital sensors,
and, different types of communication buses. In vehicular systems the embed-
ded computers are often referred to as Electronic Control Units (ECUs). For
example the ESC system in a car consists of a number of ECUs, and, several
sensors and actuators. For example, a typical sensors in the ESC system in-
clude a steering wheel sensor that determines the drivers intended path, a yaw
sensor that reads the rotation of the car, wheel speed sensors that measure the
speed of each individual wheel, and a lateral acceleration sensor that measures
lateral (sideways) acceleration of the car. The ECUs continuously read the sen-
sors to determine if the car is under steering ((B) in Figure 1.1) or over steering
((C) in Figure 1.1). The presumed vehicle path is calculated with the steering
wheel sensor ((A) in Figure 1.1), and is compared to the actual path that is cal-
culated with the lateral acceleration, wheel speed and yaw sensors. To prevent

1.1 Embedded real-time systems 3

the car from over steering or under steering the correct brake action is calcu-
lated and applied for each wheel individually while at the same time reducing
the engine power.

The ESC system relies on that observation and action are performed with a
predictable timing pattern. The timing pattern usually comprise an exact peri-

odicity (T) and a last finish time, i.e., a deadline (D) when all calculations and
actions need to be finished. Typically an ESC system is triggered periodically
observing the environment every 40 milliseconds, and the brake force should
be applied within a few milliseconds. In order to prove that the system really
fulfils these timing requirements, engineers use Real-Time Analysis (RTA), and
one of the most important parts of that analysis is the WCET analysis. WCET
analysis determines how long time the calculations and actions can possibly
take in the worst case.

Systems that rely on time to function correctly are called Real-Time Sys-

tems (RTS). A definition that is commonly cited in literature is given by
Stankovic [SR89]:

Real-time systems are computer systems in which the correctness

of the system depends not only on the logical correctness of the

computations performed, but also on which point in time the re-

sults are provided.

The power of software controlled systems has lead to modern cars having
up to 90 ECUs controlling the different functions in the car. Such computer sys-
tems that are embedded in apparently non-computerized electrical and electro-
mechanical devices are known as embedded systems, and constitutes more than
99% of all computers in the world [Tur02, Lau06]. The IEEE has defined em-
bedded systems as [IEE92]:

A computer system that is part of a larger system and performs

some of the requirements of that system; for example, a computer

system used in an aircraft or rapid transit system.

Development of software for embedded real time systems (ERTS) is con-
sidered a complex and difficult task, both due to the additional requirements
imposed by such systems but also because of the inherent inobservability of
embedded systems as they normally lack human machine interfaces (screen
and keyboard). Software gives an increasing possibility for advanced func-
tions and adaptive behaviour and has become the primary means for creating
added value for customers. For instance, software in cars help reduce gas con-
sumption as well as increase performance, comfort and safety, and as a result

4 Chapter 1. Introduction

systems become increasingly software intensive. For example, the next gen-
eration of premium cars are estimated to carry around one gigabyte of binary
code [ABGP05], which is comparable to a typical desktop workstation today.
Reasons for this tremendous increase in code size include the demand for new
functionality on the one hand, and the availability of powerful and cheap hard-
ware on the other hand [PBKS07, ABGP05].

In addition customers expect new embedded systems to enter the market
faster, at lower prices, and the competition for customers is tough. The decreas-
ing time to market and increasing product differentiation leads to that software
is required to be flexible enough for rapid reuse, extension and adaptation of
system functions. As a result the trends in the embedded systems sector are:

• ERTS become increasingly software-intensive [FdN08].

• costs shift from hardware to software [CAPD02].

• individual functions integrate increasing functionality [CL02b].

This leads to requirements for new development paradigms that will enable
an efficient and cost-effective development while ensuring low cost of predic-
tion and high quality of the software.

1.2 Component-based software engineering

To cope with the decreasing time-to-market and the increasing software com-
plexity, designers are looking for new ways of building systems. The notion
of reuse has gained an increasing interest as software complexity grows. How-
ever, ad-hoc reuse has proven to be difficult and not very successful [PD96,
GSCK04]. Therefore, Component-Based Software Engineering (CBSE) has
gained a lot of interest, and especially the possibility of integrating software
from other vendors, i.e., third party composition. A definition that is regularly
cited in publications is the one by Heinemann and Councill [HC01]:

A software component is a software element that conforms to a

component model and can be independently deployed and com-

posed without modification according to a composition standard.

The term component model embraces the specification of components, how
components are assembled (composition), and the component framework. In
other words, the component model is a set of rules governing how the compo-
nents may or may not be used. The composition of components is the process

1.3 Informal problem formulation 5

of assembling components to form an application. Components are composed
to constitute systems by connecting their interfaces according to the rules de-
fined in the component model. The component interface is the entry to the
component functionality. A component composition is executed in the context
of a component framework. The component framework provides the necessary
run-time support that is not provided by the underlying run-time system, and
finally, a component technology is the concrete implementation of a compo-
nent model. To facilitate reuse, components are designed to be generic and
often with functionality suitable for different deployments. At the same time
systems integrate more functions into single components, giving rise to increas-
ingly varying behaviour of these components. This in turn makes it harder to
predict important real-time properties of components.

1.3 Informal problem formulation

In this section we give an informal description of the problems that gives a
good overview of both the problem domain, and an overview of the problems
that we aim to solve. In Chapter 4 we provide a more formal formulation of
the industrial problems as well as the academic research setting and research
problems.

As software complexity increases, software reuse becomes interesting. Be-
cause software is “soft”, it is relatively easy to create tailored software that
exactly fulfils all system requirements. As the software complexity increases
the behaviour become increasingly complex and varying. When reusing soft-
ware components, it is unlikely to find a component that exactly fulfils derived
system requirements. The key to reuse is generality and context independence,
and for many specific component use cases only parts of the component be-
haviour is actually going to be used. Unfortunately generality and context-
independence also leads to an increasing inability to make accurate predictions
of the component behaviour for a given specific use-case. Hence, there is a
need for parameterization of the predictions in order to support reuse and at the
same time accurate predictions [PD96, FPDF98].

Expected benefits from using CBSE include more effective management
of complexity, shorter time-to-market and higher maintainability. Reuse is the
main characteristics for CBSE that would bring these benefits. Today issues
relevant to embedded component-based systems such as real-time and resource
efficiency are often addressed outside CBSE. There are many methods and
theories for analyzing real-time properties, e.g., RTA, but few suitable when

6 Chapter 1. Introduction

applying CBSE [MGL06, MYZC06].

1.3.1 Components and real-time

One of the most important activities for RTA is WCET analysis. There are
many theories and tools for performing such analysis [SWE, Rap08, aiT, Bou,
LME98, EY97, BCP02, FW99]. Common for WCET analysis is that it is a
complex and time consuming activity not suitable for software with varying
usage. This is inherent in that the analysis is context and usage-unaware; and
components are typically deployed in different contexts with different usage,
and the usage can vary a lot between these contexts. Therefore, for compo-
nents that are reused in different systems it is often not very meaningful to
perform WCET analysis before the complete system has been designed, and
each components’ usage has been determined.

As the complexity and diversity of component functionality increases it
becomes harder to lower resource consumption while at the same time guaran-
teeing real-time constraints. This is because it becomes harder to make tight
predictions and keep low resource utilization with general components; at the
same time reuse of general components have been the key to structured and
efficient development. Paradoxically, components should be context-unaware
to be reusable at the same time as they need to be context-sensitive in order
to support accurate WCET analysis. This seems to be a fundamental problem
to overcome before the CBSE paradigm can be fully adopted in the embedded
systems domain.

Summarizing the above

• WCET is a prerequisite for RTA.

• WCET analysis is complex and time consuming.

• Reuse of current WCET analysis results between a component’s different
contexts leads to imprecise estimation of WCET.

1.3.2 Resource efficiency

In order to further support resource efficiency it is important to consider the
allocation of components to real-time tasks. Components are often directly
allocated to real-time tasks in a one-to-one fashion partly due to the ease of
directly mapping timing constraints from components to tasks, and, partly due

1.3 Informal problem formulation 7

to that it is not trivial to find an allocation between components and tasks such
that the stipulated timing requirements can be fulfilled. Allocating components
to real-time tasks is a multi dimensional problem involving timing constraints
and component architecture properties such as, e.g., component interaction and
temporal or spatial isolation between components. Each task and each task
switch generates a resource overhead. Thus, the number of tasks is a trade-off
between fulfilling timing constraints and minimizing resource utilization. A
higher number of tasks lead to higher overhead in terms of memory and CPU
usage.

When each component is allocated to a single real-time task the WCET
prediction error of each task is the same as the error of the component. When
several components are mapped to one task, the error scales with the number
of components, and the error can become quite large. The total system error
stays the same but larger errors of individual tasks have a greater impact on
properties like input jitter and output jitter, just to mention a few.

Summarizing the above

• A high number of tasks increases the resource consumption, and de-
creases system performance.

• Allocation of components to real-time tasks must maintain the compo-
nent architecture.

• Allocation of components to real-time tasks must consider temporal con-
straints.

1.3.3 Developing embedded real-time systems

Even simple embedded systems today show more and more complex behav-
iors, some triggered by usage-awareness or deployment-specific configuration
parameters. Properties of the component such as time and reliability are vari-
able and usage-dependent, and the variance may be large. Together with global
system timing requirements that are required to be handled with scheduling and
increasing requirements on resource consumption for lowering hardware costs,
the embedded systems domain is facing a difficult problem.

In order to facilitate CBSE for ERTS, issues like real-time and resource

consumption must be addressed as first class citizens in the component model.

8 Chapter 1. Introduction

There are many theories and models on both real-time and resource consump-
tion, but very few directly applicable to CBSE. This thesis is a step towards
using CBSE for ERTS, with a particular focus on the following aspects:

• Prediction of execution-time of components with respect to component
usage.

• Classification of execution times with respect to usage.

• Allocations of components to real-time tasks with respect to real-time
constraints.

• Optimization of system properties with respect to resource efficiency.

1.4 Overview of our solutions

We present three solutions that help tackle the outlined problems. The first
two solutions are for supporting tight and reusable WCET analysis. The first
solution is a method for parameterizable and reusable prediction of the WCET
property for reusable software components. In the second solution we derive
the input combination that triggers the execution of the program path that gen-
erates the WCET. The third solution is an allocation of components to real-time
tasks for improved resource utilization and maintained real-time constraints.
We present an overview of the solutions in the following sections.

1.4.1 Reusable WCET analysis

To support reuse of WCET predictions we need support for WCET analysis of
different usage.

A component that is designed for reuse has to be general and free from con-
text dependencies. By designing the component specifically for one particular
context or usage it can be analyzed and predicted with high accuracy, but not
easily reused. In order for general reusable components to be predicted with
higher accuracy we need new methods and frameworks. When the usage is not
known at design time of a component, it is necessary to augment the compo-
nent with information that can be used to accurately predict the WCET for a
specific usage. The WCET can differ a lot between different uses of the same
component. We want to define a contract as a function of an input-scenario
to determine the WCET for that specific usage scenario. The reusable WCET
analysis can be divided in three steps, namely:

1.4 Overview of our solutions 9

1. Component WCET analysis: Analyzing the WCET of the component
with respect to many different general usage scenarios (inputs).

2. Clustering WCETs: Clustering inputs that lead to similar execution
times.

3. Component contracts: Creating a contract that define the clustered in-
puts.

We show how the precision and reusability of WCET can be increased for
software components. We also discuss and give examples of how the pro-
posed techniques can be used for (i) aiding run-time measurements for acquir-
ing WCETs, and (ii) facilitating partial WCET analysis.

Summary of results

We have found that for industrial and academic components it is possible to
achieve a reusable parametric WCET with high accuracy1. For most compo-
nents every input combination is mapped to its corresponding exact2 WCET.
Furthermore, we have found that the overall system WCET analysis become
more accurate with our methods compared to that of traditional WCET analy-
sis.

Related work

Recent case-studies show that it is important to consider mode- and context-
dependent WCET estimates when analyzing real sized industrial software sys-
tems [SEG+06]. There are suggested models of the overall component-based
life cycle processes [AZP03, CCL06] as well as more concrete methods for,
e.g., component assessment [BB05, HC01]; our work illustrates how the divi-
sion into context-unaware and context-sensitive analyses could be integrated
into these models.

Staschulat et al. [SESW05] make a similar partitioning of execution time
behaviour of software modules based upon the context in which the module
is derived. Our approach has some similarities with this work, but we use the
partitioning for providing reusable and parametric analysis, whereas Stachulat
et al. use partitioning only for increasing the accuracy of WCET analyses.

Gheorghita et al. in [GSBC05] use usage scenarios to determine tighter
loop bounds. In [MMH+05] Mohan et al. use run-time usage information for

1We give an exact definition of accuracy in Chapter 6.
2As exact as the underlying WCET analysis can provide.

10 Chapter 1. Introduction

dynamic voltage scaling depending on the timing requirements. Wenzel et al.
[WRKP05] use both model checking and genetic algorithms to derive which in-
put data that makes a certain instrumented code part to be executed. Gross et al.
[SESW05] use evolutionary testing with measurement-based WCET analysis
to find a context dependent WCET. In [DP04] a framework for probabilistic
WCET with static analysis is presented. The probabilities are related to the
probability of possible values of external and internal variables.

In [BCP03b, BCP03a] each basic block of a program is analyzed with re-
spect to execution-times, and probability distributions of the execution-times
are derived. This method is, in contrast to our method, based on measure-
ments. In [LPB+05] a framework has been developed that considers the usage
of a system; however, neither software components nor reuse is considered. Ji
et al. [JWLQ06] divide the source code in modes depending on input, and only
the parts that are used in the a specific usage are analyzed.

None of the above mentioned approaches have reusability or software com-
ponents in mind. Also, our approach is more general and able to derive the
input values that gives the program WCET for different usages.

In [HKR06, FBH05, MYZC06, CZM+03, Zsc04] methods for parameteri-
zable contracts and their composition are proposed; however, they do not pro-
pose any specific analysis.

1.4.2 Derivation of WCET input combinations

A WCET analysis derives upper bounds for the execution-times of programs.
Such bounds are crucial when designing and verifying real-time systems. A
problem with today’s WCET analyses is that there is no feedback on what
input values that actually cause the WCET. However, this is an important in-
formation for the system designer for various reasons. It can, e.g., be used
for identifying bottlenecks, and hence is very useful for further optimizing the
program. Further, the information gained is valuable for whole-system stress
testing, i.e., identifying the overall systems real worst-case behaviour, and for
steering measurement-based timing analysis approaches, to select input value
combinations to run for long execution times. The derivation of WCET input
combination is based on the same technique as used for creating the reusable
WCET contracts, and can be divided into the following steps:

1. WCET analysis: Analyzing the WCET with respect to a large set of
input combinations

2. Reducing inputs: Removing input combinations that do not lead to the
WCET.

1.4 Overview of our solutions 11

3. Backtracking: Backtracking to explore all possible WCET input com-
bination candidates.

Summary of results

We have found for both industrial and academic components that our meth-
ods work, and for most of our benchmarks the WCET input variables can be
quickly derived even though the value space is large.

Related work

To the author’s knowledge the problem of deriving which input values that
actually cause the WCET has been sparsely addressed.

Wenzel et al. [WRKP05] use both model checking and genetic algorithms
to derive which input data that makes a certain instrumented code part to be
executed. The worst-case timing derived for different code parts are then com-
bined to an overall program WCET estimate. In contrast, our approach is
more general and able to derive the input values that gives the overall program
WCET.

1.4.3 Allocation to tasks

In RTSs temporal constraints are of great importance, and in such systems the
software is often divided into a number of tasks. A task is an entity that is
associated with a Task Control Block (TCB) that stores information in memory
about the state of the task. A scheduler uses this information to control the
execution of the task. The scheduler invokes tasks periodically or at any time,
i.e., aperiodically, and usually have timing requirements. Components trig-
gered with the same periodicity can often be coordinated and executed by the
same task, preserving temporal constraints. Every time a task is executed the
run-time system performs a context switch to activate the task, and each con-
text switch consumes a specific amount of CPU-time. There can be memory
profits in terms of fewer TCBs and profits in terms of CPU-overhead from con-
text switches by allocating several components into one task. Moreover, many
ERTSs use so called single shot tasks that share stack, and in such systems the
stack-size can be reduced manifold by co-allocating components.

An allocation can be performed in several different ways. In a small system
all possible allocations can be evaluated and the best chosen. For larger systems
it is not possible to explore all allocations due to the combinatorial explosion.

12 Chapter 1. Introduction

Different algorithms can be used to find an allocation and scheduling of tasks
that fulfils the timing requirements. For any algorithm to work there must be
some way to evaluate an allocation.

We propose an allocation framework that is used to calculate schedula-
bility, CPU-overhead and memory consumption. The framework is used to-
gether with an optimization algorithm to find feasible allocations that fulfill
the given timing requirements at the same time as memory consumption and
CPU-overhead are kept as low as possible. The framework has three main
concerns:

1. Allocation verification: Verifying that the allocation is feasible with
respect to a set of constraints, e.g., schedulability and isolation.

2. System property calculation: The properties stack usage and CPU-
overhead are calculate for each allocation.

3. Resource optimization: An optimization technique is used for optimiz-
ing the allocations with respect to stack usage and CPU-overhead while
maintaining real-time requirements.

Summary of results

We have evaluated the framework by using genetic algorithms to find alloca-
tions. We have found that for automatically generated system with properties
extracted from industrial systems, the properties stack-size and CPU-overhead
can be lowered. By allocating several components to one task the memory con-
sumption and CPU-overhead are lowered by as much as ≈ 50% and ≈ 30%
respectively, compared to allocating one component to one task.

Related work

The idea of assigning components to tasks for embedded systems while consid-
ering extra-functional properties and resource utilization is a relatively uncov-
ered area. In [BMdW+04, BMdWC04] Bondarev et al. are looking at predict-
ing and simulating real-time properties on component assemblies. However,
there is no focus on increasing resource utilization through component to task
allocation. There are also methods proposed for transforming structural mod-
els to run-time models [Dou99, Gom00, MG02], but extra-functional proper-
ties are usually ignored or considered as non-critical [KWS03]. In [SW00], an
architecture for embedded systems is proposed, and it is identified that compo-
nents has to be allocated to tasks, however there is no focus on the allocation of

1.5 Contributions 13

components to tasks. In [KWS03] the authors propose a model transformation
where all components with the same priority are allocated to the same task;
however no consideration is taken to lower resource usage. In [GLN01], the
authors discuss how to minimize memory consumption in real-time task sets,
though it is not in the context of allocating components to tasks. Shin et al.
[SLM02] are discussing the code size, and how it can be minimized, but does
not consider scheduling and resource constraints.

A similar problem is the allocation of real-time tasks to distributed proces-
sors, and different techniques are used to solve this problem, e.g., constraints
programming is [HCDJ08], simulated annealing [BNTZ93, TBW92], branch
and bound [HS97, RRC03].

1.5 Contributions

The specific in-depth technical contributions of the thesis are (i) two methods
for increasing accuracy and resource efficiency of a component’s WCET for
component-based ERTS, and (ii) a method for allocating components to tasks
while minimizing stack-usage and CPU-overhead, and at the same time main-
taining real-time constraints. The main contributions of the presented research
are summarized as follows:

C1 Reusable WCET analysis. The input space of a reusable component is par-
titioned with respect to execution time, creating parameterizable com-
ponent WCET contracts. A WCET contract is parameterizable and pro-
duces a WCET that is more accurate with respect to the specific usage.
The result is that the WCET analysis can be reused together with the
components. The reusable WCET is evaluated with components from
our industrial partners.

C2 Methods for deriving WCET input values. The input space of a component
is divided into partitions with respect to component WCET, searching for
an input combination that results in the execution of the worst-case path.
The result can be used for guiding measurement-based WCET analysis.
The derivation of WCET input values is evaluated with components from
our industrial partners.

C3 A framework for allocating components to tasks aiming at minimizing re-
source consumption while maintaining real-time constraints. The frame-
work calculates feasibility and fitness of an allocation. By exploring the

14 Chapter 1. Introduction

state space of possible allocations, and comparing them to each other,
meta heuristic methods like genetic algorithms can be used. The frame-
work is implemented with genetic algorithms, and evaluated with sys-
tems from our industrial partner.

C4 A resource-aware development process that is an extension of the CBSE
development process augmented with the methods outlined in this thesis.
The WCET analysis is divided and positioned in both the component
and system part. The component to task allocation is positioned after the
reusable WCET analysis for providing a tight WCET to the allocation
framework.

C53 A prototype tool implementing the ideas from contributions C1 and C2.
The prototype tool graphically presents WCET and BCET connected
to inputs and component contracts. The tool supports several different
heuristics for creating WCET contracts.

Table 1.5 presents how the contributions C1-C5 relate to the addressed prob-
lems as presented in Section 1.3.

1.6 Thesis outline

The thesis structure is depicted in Figure 1.2. Note that the chapters 6 and 7 are
shown as parallel in the thesis outline. This is because the solutions described
in Chapters 6 and 7 can be individually used for improving predictability and
resource utilization for ERTS; however, they are synergistic.

Chapter 1 introduces the reader to the particular problems this thesis seeks
to solve. We discuss the motivation and objective of this thesis: to re-
search and develop methods that facilitate CBSE for ERTS by increasing
resource efficiency and analyzability.

Chapter 2 provides the reader with a theoretical background on ERTS and
gives a critical survey of the current state of research.

Chapter 3 provides the reader with a theoretical background to component-
based development and give a survey of the current state of research.

3C5 is not a scientific contribution.

1.6 Thesis outline 15

Contrib. CBSE for ERTS Resource efficiency Development of ERTS Paper

and predictability

C1 We create techniques Higher accuracy of 2
for predicting WCET predictions allows 3
that can be reused the developer to 5
through dimension hardware
parametrization, yet correctly.
with high accuracy.

C2 Higher accuracy of 1
predictions allows
the developer to
dimension hardware
correctly.

C3 Helps to systematically Minimizing system 6
allocate components overheads through 7
to real-time tasks, efficient
something that allocations from
otherwise often is components to tasks,
performed ad-hoc. while at the same time

maintaining both real-
time requirements and
component architecture.

C4 We integrate both WCET 4
analysis and model
transformation in the
component-based
development process.

C5 Validation of the Validation of the
methods. methods.

Table 1.1: The relation between contributions, problem formulations and pub-
lications (a list of publications is presented in Appendix B).

16 Chapter 1. Introduction

Chapter 4 describes our research work and methods. We state and formalize
the problem that we try to solve, and give an overview of how we solve
the problem.

Chapter 5 gives an overview of the whole research, with both the allocation
framework and the context-sensitive analysis framework. We briefly
describe what the frameworks do and how they are positioned in the
component-based development process.

Chapter 6 presents our reusable context-sensitive execution-time analysis
framework. Here we describe the research and discuss and compare to
similar or related work.

Chapter 7 presents our allocation framework. Here we describe the research
in detail and discuss and compare similar or related work.

Chapter 8 describes examples and evaluations of each framework. In this
chapter we discuss the results and their implications.

Chapter 9 summarizes the thesis by discussing the results, contributions and
applicability of the research, and finally, discusses future work.

Appendix A presents an extended set of evaluation data.

Appendix B summarizes all publications, and reports written during the Ph.D.
studies.

1.6 Thesis outline 17������� ��	
����
��	������� ������ �����
��� ���
 ���������� ������	�	
 �������������	
 ��� � !"������� # ����� �$ �������
������� %�	��
���	��
��� �&���
��	�
����	������ ������� '(�
���)�	* ������������*��	�����	�	
 ����� �����
��� ���
���������� +��������� �����
 �������� ,"������ �	 ��	������	�

������� - ���������.��� ��������	

/���0123 /�&
�	� ���
 ��
�����/���0123 4������
� ���
 ���������
��	�
Figure 1.2: An overview of the chapters in the thesis.

Time is an illusion. Lunchtime doubly

so.

-Hitchhiker’s guide to the galaxy

Chapter 2

Embedded real-time systems

In this chapter we give an introduction to Embedded Real-Time Systems (ERTS).
We describe terminology and definitions used throughout this thesis.

2.1 Embedded systems - general concept

We do not need to search far to find an example of an ERTS in a modern every-
day appliance. For example in a modern vehicle, the engine is controlled by an
ERTS, measuring the airflow to the engine, pumping in just the right amount
of fuel and igniting this in each cylinder at the exact right moment. The Anti-
Lock Breaks (ABS) are controlled by an ERTS, continuously monitoring and
controlling the brakes to ensure the maximum braking effect. In the unlikely
event of a collision, an ERTS will detect the impact and deploy the airbag at
exactly the right point in time [Cha02, Ros01]. What is common to all these
systems is that they are parts of a bigger system and their actions have to be
delivered at specified instants in time. If they fail to deliver their services at the
right time, the consequences can lead to low performance, material damage or
in the worst scenario, loss of human life.

There are several definitions of an embedded system. The definition given
in Section 1.1 is quite vague since it only states that an embedded system is
part of a larger system. Li and Yao [LY03] define an embedded systems as
follows:

Embedded systems are computing systems with tightly coupled

hardware and software integration, that are designed to perform a

dedicated function.

19

20 Chapter 2. Embedded real-time systems

This definition includes the additional information that software is tightly
coupled with hardware and that both are designed to perform a dedicated func-
tion.

Common to embedded systems is that they typically are characterized by
a notion of embeddedness, i.e., it is not obvious that they are computers. An
embedded system is a computer controlled system used to achieve a specific
purpose and the computer is not the end-product itself. Such systems are typ-
ically found in, e.g., medical equipment, robotics, and, vehicular and automo-
tive systems.

2.2 Real-time systems - general concepts

ERTS usually control its environment by:

1. Observing the environment by reading sensors.

2. Making a decision by executing a control algorithm.

3. Affect the environment by writing to actuators.

Real-time constraints can be split into two different parts, (i) how fre-
quently the environment must be observed to get a coherent view of the real
environment, and (ii) how quickly after each observation the environment must
be affected in order to control the environment according to the temporal re-
quirements, as depicted in Figure 2.1.

Observe Affect

t

Observe Affect

Longest
allowed delay

Observation frequency

Observe Affect

t

Observe Affect

Longest
allowed delay

Observation frequency

execute execute

Figure 2.1: Simple real-time model.

2.2 Real-time systems - general concepts 21

The observation frequency is enforced in the system by triggering the soft-
ware in an often predefined periodic pattern. There is a notion of that real-time
has to be fast, but this is a misconception [Sta98]. It is only about “correct”
time, i.e., the time scale can be seconds for some applications and micro sec-
onds for some other application. Worst case, not average case matters. Not
speed but predictability is the goal. The objective of fast computing is to min-
imize the average response time. The objective of real-time computing is to
meet the individual timing requirement of each program.

A commonly given example of a hard Real-Time System (RTS) where pre-
dictability is very important is an airbag in a car. An airbag systems consists
of sensors and an Airbag Control Unit (ACU) which monitors a number of
related sensors within the vehicle, including accelerometers, impact sensors,
wheel speed sensors, gyroscopes, brake pressure sensors, and seat occupancy
sensors. The different signals from the various sensors are fed into the ACU
which determines the angle of impact, the severity, or force of the crash, along
with other variables. Depending on the result of these calculations, the ACU
may also deploy various additional restraint devices, such as seat belt pre-
tensioners, and/or airbags including frontal bags for driver and front passenger,
along with seat-mounted side bags, and "curtain" airbags which cover the side
glass [MA95].

The greater the collision impact the earlier the airbag should be deployed
as the airbag has to be deployed before an occupant moves forward 125 mm
relative to the car. Normally it takes 30 ms for an airbag to be deployed after
it gets a trigger signal from the airbag sensor. Thus, an airbag sensor is to be
designed in such a way that it can send a trigger pulse to the airbag deployment
circuit 30 ms before the time when the occupant’s head moves forward 125 mm
with respect to the car. For a crash at 50 km/h the airbag should be triggered in
the interval between 10 ms and 20 ms after the crash. Thus, timing is decisive
to achieve maximum protection, i.e., the airbag must be opened in the right
timing interval. If it opens too late, occupants could be injured. If it opens too
early, they are not protected adequately, since the airbag then no longer has its
ideal form on impact [WU93, Cha02].

A system is said to be a real-time system if the total correctness of an
operation depends not only upon its logical correctness, but also upon the time
in which it is performed. A definition that is commonly cited in literature
is [Dou99]:

Real-time systems encompass all devices with [temporal] perfor-

mance constraints that, when violated, constitute a system failure

of some kind.

22 Chapter 2. Embedded real-time systems

Another more stringent definition is given by Stankovic [SR89]:

Real-time systems are computer systems in which the correctness

of the system depends not only on the logical correctness of the

computations performed, but also on which point in time the re-

sults are provided.

Both definitions agree on that time is a first class citizen and that the cor-
rectness of the system depends on both function and timing.

2.2.1 Classification

There are different types of RTS that are classified according to the criticality
of a failure. Mission critical systems where a failure is considered to be a fault,
are denoted hard RTS, while systems where occasional failures can be accepted
are denoted soft RTS.

Hard real-time systems

Hard RST are systems where the consequences of a failure to meet all con-
straints is a fatal fault. For hard real-time applications, the system must be
able to handle all possible scenarios, including peak load situations. Thus, the
worst-case scenario must be analyzed and accounted for.

A RTS is said to be hard if completion after its deadline can cause
catastrophic consequences [But97].

Soft real-time systems

Soft RTS are systems where some requirements may be violated to some de-
fined extent. Late completion is undesirable but generally not fatal. Occasional
missed deadlines or aborted executions are usually considered tolerable. The
constraints in such systems are often specified in probabilistic terms.

A RTS is said to be soft if missing a deadline decreases perfor-
mance of the systems, but does not jeopardize its correct behaviour [But97].

According to these definitions most RTS are soft, except some safety critical
systems, such as airbags in cars. However, systems where the consequences of
failures are serious from the business point of view, are sometimes treated as
hard RTS.

2.3 Real-time model 23

Another common classification of RTS is to distinguish how a task is activated,
i.e., between time-triggered (TT) and event-triggered (ET) systems. Typically
control functionality is by its nature time-triggered, i.e., the activation of its
functionality is controlled by the progress of time.

Time-triggered real-time systems

Time-triggered systems are systems that are controlled by the progress of
time. The system is often characterized by an enforced periodic activation
pattern [Kop91].

Event-triggred real-time systems

Event-triggered systems are systems that are controlled by the arrival of an
event. A significant event is a change of state in an element of interest for the
given purpose, e.g., a wheel speed sensor in an ABS system. These systems
are characterized by aperiodic execution, with an unknown, and sometimes
unbounded period time [Kop91].

2.3 Real-time model

Real-time software is often divided into so called tasks that execute a piece of
software. Each task has some properties and requirements. The requirements
are typically a periodicity for periodic tasks, a latest completion time (often
referred to as deadline) and a priority, defining its execution order in a system
with multiple tasks. Each task also has some properties, e.g., Worst-Case Exe-
cution Time (WCET), and Best-Case Execution Time (BCET) and Worst-Case
Blocking Time (WCBT) in the case when shared resources are used.

The execution semantics are decided by the scheduling policy and the op-
erating system. To be able to schedule tasks they must conform to the specified
rules of the scheduler, and properties must be set, e.g., period, priority, deadline
etc. To ensure that the software fulfils the stipulated requirements, real-time
analysis has to be performed.

Time is important, what’s the problem, one might think? - The problem is
manifold. First of all, the program languages used in most commercial soft-
ware are C, C++, Java, to name a few. Most current de-facto standard languages
do not have the notion of time built in to the language. Hence, ensuring time-
liness requires complex validation procedures with analysis and simulations.

24 Chapter 2. Embedded real-time systems

In the real-time domain there exist many theories, methods and tools. These
methods use a number of real-time properties, such as WCET, execution pe-
riod, deadlines, etc., and terms such as tasks and scheduling, in reasoning about
timing and other related requirements.

A real-time model consists of:

• Task model

• Resource model

• Scheduling policy

2.3.1 Task model

The task model describes applications supported by system, and consists of:

• Temporal parameters

• Precedence constraints and dependencies

• Functional parameters

Tasks can be preemptable or non-preemptable. A preemptable task model
is described in [But97]. A periodic task τi is described by (and depicted in
Figure 2.2):

Figure 2.2: Task model.

• A period, Ti, specifies the period of a periodic task, which is the time
between an activation time ai and a finish time fi.

2.3 Real-time model 25

• Computation time, Ci, specifies the longest time it takes to execute the
code of the task if it could run on the CPU uninterruptedly. To ensure
that the software does not violate the longest allowed delay, the WCET
must be known. The accuracy of the response time analysis is highly
dependent on the accuracy of the WCET.

• Deadline, di, specifies a constraint on the completion time of the task.
The task must finish no later than di time units after it has been activated.

• Priority value, vi is a user defined integer value that represents the rela-
tive importance between tasks in the system.

An event-triggered, aperiodic task τj is described by:

• An activation time aj which is the time when the event arrive at the
system. Computation time, Cj , specifies the longest time it takes to
execute the code of the task if it could run on the CPU uninterruptedly.
To ensure that the software does not violate the longest allowed delay,
the WCET must be known. The accuracy of the response time analysis
is highly dependent on the accuracy of the WCET.

• Deadline, dj , specifies a constraint on the completion time of the task.
The task must finish no later than dj time units after it has been activated.

• Priority value, vj is a user defined integer value that represents the rela-
tive importance between tasks in the system.

The major difference between a periodic task τi and an aperiodic task τj

is that τi is strictly periodic, triggered with a strict period time, whereas the
latter can arrive at the system at any time. In many systems periodic tasks have
higher priority than aperiodic tasks.

2.3.2 Resource model

The resource model describes system resources available to applications. There
are different types of resources, (i) active resources, e.g., processor that exe-
cutes tasks and communication networks, and, (ii) passive resources that are
shared between tasks and may lead to blocking between tasks, e.g., shared in-
and outputs.

Usually each task need to allocate at least one active resource to execute,
and the progress of execution may depend on zero or more passive resources.

26 Chapter 2. Embedded real-time systems

2.3.3 Scheduling policies

The scheduling policy defines how applications use resources at all times. A
scheduling algorithm for ERTS aims at satisfying the timing requirements of
the entire system, i.e., meet all tasks deadline constraints while at the same time
minimizing the use of resources. There exist a wide range of scheduling algo-
rithms in the real-time literature. These can be classified in many ways, e.g.,
priority-based, value-based, rate-based, server algorithms [But97]. One com-
mon and coarse grained classification is based on when the actual scheduling
decision, i.e., the decision of what task to execute at each point in time, is made.
Scheduling that is performed before run-time is denoted off-line scheduling,
and scheduling during run-time is denoted on-line scheduling.

Off-line scheduling

Off-line schedules are created and usually scheduled according to a time table.
During run-time the dispatcher simply follows the table that was created before
run-time. Off-line schedules can resolve complex constraints and require no
overhead during run-time. However, there is no flexibility for different load
with respect to, e.g., aperiodic tasks (events).

On-line scheduling

On-line schedulers make decisions during run-time as opposed to off-line sched-
ulers. This gives a penalty during run-time in terms of calculation overhead for
deciding which task to be scheduled at any given time. On the other hand,
on-line schedulers can implement more advanced features such as resource re-
claiming in the case that the actual execution time of a task is lower than the
predicted worst-case [FÅDS03, BBB04]. The reclaimed resources can be used
for executing aperiodic tasks or to lower processor speed for power saving.

In this thesis we consider only priority-based real-time systems.

2.4 Real-time analysis

Real-time analysis is the method that is used analytically for determining if
the system will behave according to the timing requirements that have been
stipulated for the system.

2.5 Schedulability analysis 27

2.5 Schedulability analysis

A task set is said to be schedulable if a schedule can be found which guaran-
tees that all tasks will meet their timing constraints under all circumstances.
Schedulability analysis aims to before run-time determine whether a task set
is schedulable or not. For most real-time scheduling algorithms some kind
of schedulability analysis test is available [But97]. In static scheduling, the
schedulability analysis is combined with the construction of the schedule, a
so called proof by construction approach. That is, if a schedule which fulfils
all timing requirements and constraints can be constructed, the system is, by
definition, schedulable.

There exists several different types of approaches for pre run-time schedu-
lability analysis, two of the most commonly used are utilization-based and
response-time based.

2.5.1 Utilization-based analysis

In [LL73], Liu and Layland presents a utilization-based test for determining the
feasibility of a task set. Utilization-based analysis is a fast but coarse grained
analysis that will guarantee that a task set is schedulable, i.e., the scheduling
analysis is sufficient. However, in some cases when utilization-based analysis
reports that the task set is not schedulable, it may in fact be schedulable, i.e.,
the analysis is sufficient but not necessary. The analysis is only valid for task
sets where the deadline equals the period time (Di = Ti).

U ≡
N

∑

i=1

Ci

Ti
≤ N(21/N − 1)

The utilization U is equivalent to the sum of the ratio between the execution-
times and the periods of all tasks in the system.

U ≤ 0.69 as N →∞

Note that, as the number of tasks in the system approaches infinity, the
system can be guaranteed to be schedulable if the utilization is less than or
equal to 69%.

28 Chapter 2. Embedded real-time systems

2.5.2 Response time analysis

Research on schedulability for fixed priority scheduled systems has resulted
in a wide variety of research results. Several different schedulability-analysis
techniques for fixed priority systems exist [MT05, But97]. The most powerful
approach, that provides the highest obtainable utilization, and is able handle
the most expressive task models, is to use Response-Time Analysis (RTA).

Joseph and Pandya presented the first basic RTA for the simple Liu and
Layland task model [MJ86]. In addition, the following assumptions must hold
in order for the analysis to be valid:

• Tasks must be independent, i.e., there can be no synchronization between
tasks.

• Tasks must not suspend themselves.

• Deadlines must be less or equal to their corresponding periods, i.e., Di ≤
Ti.

• Tasks must have unique priorities.

The following formula determines the worst case response time, Ri, of task τi:

Rn+1
i = Ci +

∑

∀j∈hp(i)

⌈

Rn
i

Tj

⌉

Cj

Here the worst-case response time Ri of task τi, is calculated first and then
checked (trivially) with its deadline. Starting with R0

i = Ci and iterating until
Rn+1

i = Rn
i is guaranteed to yield the smallest possible solution and thus the

response time for τi [SH98].
In order to guarantee convergence one must either ensure a total task uti-

lization not greater than 100% or one can stop iterating when Rn+1
i > Di, i.e.,

a deadline violation has occurred.

2.5.3 Transactions

Transactions are collections of related tasks, which collectively perform some
function or have some shared timing attributes. A transaction usually has a
timing requirement, i.e., an end-to-end deadline. A transaction usually has a
period which denotes a lower bound on the time between re-arrivals of the
transaction. Unfortunately exact analysis is computationally infeasible to eval-
uate for task-sets with transactions [Tin94]; hence some other approach has

2.6 Worst-case execution time analysis 29

to be used. To use exact analysis the schedule has to be simulated over the
hyper-period (least common multiple of all periods), and a common approach
for this is schedule simulation [Aud91]. In, e.g., [RT02, MT05] fast methods
for calculating response-times for task sets with transactions with advanced
timing-properties such as offsets and jitter are presented.

2.5.4 Attribute assignment

For a real-time schedule to be feasible, task attributes have to be set accord-
ingly. Several publications exist on the matter but many of them, e.g., [GHS94,
Yer96], are not very straight forward and difficult to use. That is because they
are difficult to justify and they assume that all attributes are changeable. A
more straight forward approach is the one by Bate and Burns [BB99]. Timing
requirements such as Period, Deadline, Jitter and Separation are considered.
Furthermore, transactions are sequences of tasks executing in a fixed order.
The timing requirements for transactions are Period, End-to-End Deadlines

and Jitter. Bate and Burns use an iterative approach by considering subsequent
instances of tasks within one transaction and derive the attributes from the iter-
ative process. Their approach is somewhat similar to schedule simulation.

2.6 Worst-case execution time analysis

One very important part of the real-time analysis is the WCET analysis, that
determines the longest time a piece of software will execute. Reliable WCET
estimates are a fundament for most of the research performed within the real-
time research community. They are essential in real-time systems development
in the substantial step of creating schedules and to perform schedulability anal-
ysis, to determine if performance goals are met for tasks, and to check that
interrupts have sufficiently short reaction times [Gan06].

The WCET is defined as the longest possible execution time of a program
that could ever occur, on a specific hardware platform. There are different types
of WCET analysis. Common for all types is that they should produce the an
estimation of the longest possible time for executing a program on a specific
hardware platform. Because of high complexity, WCET analysis tools are of-
ten not able to estimate the exact WCET. In those cases the WCET estimate
should preferably be a safe, yet tight, overestimation.

30 Chapter 2. Embedded real-time systems

Real
BCET

Real execution times

Safe execution t ime estimations

Real
WCET

Safe BCET
estimation

Safe WCET
estimation

Measured
WCET

Measured
BCET

Measured execution times

P
ro

ba
bi

lit
y

of
 o

cc
ur

en
ce

Execution time

Figure 2.3: Execution time analysis.

2.6.1 Classification of WCET analysis

The different types of analyses include static WCET analysis that performs
a static analysis of the source code, producing an estimate of the execution
time that is sure to be not less than the actual WCET - it is said to produce
a safe over-estimation. Measurement-based WCET analysis that measures the
execution time during program execution, and will report the longest observed
execution time. Often, however, the absolute worst-case has not been observed
(Figure 2.3). Hybrid WCET analysis uses both static and dynamic analysis
to get a tight WCET. A few approaches to parametric WCET exist where the
WCET is expressed as a relation between the WCET and input parameters
(possibly also hardware parameters). However, many of them suffer greatly
from exponentially increasing complexity with respect to the program size.

Static WCET analysis

A static WCET analysis derives WCET estimates without actually running the
program. Instead, it takes into account all input value combinations, together
with the characteristics of the software and hardware, to derive a safe WCET
estimate. The analysis is commonly subdivided into three phases [Erm03,
WEE+08]:

• flow-analysis; where bounds on the number of times different instruc-
tions can be executed are derived,

2.6 Worst-case execution time analysis 31

• low-level analysis; where bounds on the time different instructions may
take to execute are derived, and

• calculation; where a WCET estimate is derived based on the information
derived in the first two phases.

Due to the inherent complexity of modern software and hardware, it is not
always possible to statically deduce the exact behaviour of a program. In these
cases conservative approximations are made, e.g., a loop bound flow-analysis
can report a larger loop bound than what is actually possible, or a low-level
cache analysis can classify a memory access as a cache miss even though it
always may result in a cache hit1.

Some static WCET analyses are input-sensitive, meaning that they are able
to take constraints on possible input variable values into account when calcu-
lating the WCET estimate. In general, such analyses should be able to derive
more precise WCET estimates than non-input-sensitive ones.

Measurement-based WCET analysis

A measurement-based WCET analysis executes the program on the hardware
for some input value combinations, using some type of time measurement fa-
cility, such as oscilloscopes, logical analyzers, or hardware trace mechanisms
to derive the timing of the program or parts of the program [BCP02, BCP03b,
BCP03a, WRKP05, WKE02]. Since it is impossible for most programs to test
all input value combinations, often only a subset of the possible executions are
run, hoping that the selected subset will include the WCET input value com-
bination. If not, this may lead to dangerous underestimations of the WCET.
The selection of test cases to reach the best path coverage is therefore crucial
when using measurement-based methods. An advantage of the measurement-
based approach may be that selection of test cases and control of coverage are
well-known techniques in software engineering.

Hybrid WCET analysis

Hybrid WCET analysis methods combine measurement-based and static WCET
analyses. Usually measurements are used to extract timing for smaller program
parts, and static analysis to deduce the final WCET estimate from the program
part timings. Examples of hybrid tools are RapiTime [Rap08] which is built

1Given that a cache miss always produces longer execution-times than that of a cache hit (which
may not always be true for all architectures).

32 Chapter 2. Embedded real-time systems

on a probabilistic WCET approach [BCP02] and SymTA/P [Sym08]. There
is a possibility that the hybrid methods underestimate the WCET, since the
WCET estimate is based on measurements, and measurements may exclude
the worst case path. At the same time, hybrid methods may also overestimate
the WCET, since measurements from mutually exclusive parts of the program
may be combined in the final WCET. For instance, the tool RapiTime is able to
either analyze source code, adding instrumentation points on the source code
level, or, otherwise use binary readers and instrument the generated code.

Parametric WCET analysis

Parametric (or symbolic) WCET analysis derives a formula for the execution
time, expressed in parameters of the program, rather than just a single number.
The parameters can be either external, or internal like a symbolic upper bound
to a loop count. A parametric WCET formula contains much more information
than just a single WCET estimate, and it can be used for applications like on-
line scheduling of tasks where parameters are unknown until runtime, or to find
which parts of a code that has the strongest influence on the WCET.

There are a few approaches where the WCET is expressed as a formula with
respect to loops. For example Vivancos and Coffman [VHMW01, CHMW07],
and, Bernat and Colin [BB00, CB02] present techniques that mainly parame-
terize loop bounds. However, in many cases it is necessary to be able to ex-
press excluding paths and infeasible paths in order to get a tight and parametric
WCET.

Parametric WCET has been proposed by many researchers within the WCET
community but there are still very few parametric WCET methods developed.
Lisper [Lis03] outlines a technique for fully automatic parametric WCET anal-
ysis, which is based on known mathematical methods. In a MSc thesis [Alt06,
Hüm06] Altmeyer and Hümbert outlines a method inspired by Lisper’s work.
Their work has been developed and tested with the aiT tool [aiT]. Current work
on the methods outlined by Lisper is also presented in [BL08, AHLW08].

2.7 Summary

This chapter has presented basic concepts and terminology used throughout
this thesis for reasoning about embedded real-time systems.

It is a mistake to think you can solve

any major problems just with potatoes.

-Hitchhiker’s guide to the galaxy

Chapter 3

Component-based

development for ERTS

In this chapter we give an introduction to Component-Based Software Engi-
neering (CBSE) terminology and definitions. We also discuss the industrial
motivations for using CBSE.

3.1 Motivation

CBSE in general is the emerging discipline of the development of soft-
ware components and development of systems incorporating software compo-
nents [CL02a]. It is a promising approach for efficient software development,
enabling well defined software architectures as well as reuse. Component tech-
nologies have been developed addressing different demands and domains. The
most common technologies are perhaps Enterprise Java Beans and Java Beans
from SUN, COM and .Net from Microsoft, and technologies implementing the
CORBA standard from OMG. These technologies are used for desktop and
distributed enterprise applications all over the world. However, these technolo-
gies are typically not used for all classes of systems. They are not used for (i)
resource constrained systems; they are simply to demanding both in computing
power and memory usage. They are not used for (ii) safety critical systems; it
is hard to verify the functionality due to complexity and black box property of
components. They cannot be used for (iii) real-time systems since they rely
on unpredictable dynamic bindings and other complex run-time mechanisms.

33

34 Chapter 3. Component-based development for ERTS

Looking at Embedded Real-Time Systems (ERTS) they often contain elements
of (i), (ii) and (iii).

Adoption of component technologies for the development of ERTS is sig-
nificantly slower than for, e.g., desktop and business systems. Major reasons
are that ERTS must satisfy requirements of timeliness, quality-of-service and
predictability. Also these types of systems may have severely constrained re-
sources (memory, processing power, communication). The widely adopted
component technologies do not in general address timeliness, quality-of-service
or similar extra-functional properties that are important for ERTS.

Component technologies have been developed for particular classes of
ERTS. Often, these have been developed within some organizations, and their
adoption outside that organization is limited. To avoid heavy-weight run-time
platforms, these component-technologies mostly do not support run-time de-
ployment of components and they lack many services. Composition of com-
ponents into a (sub)system is often performed in the design environment, prior
to compilation, enabling static prediction of system properties and global op-
timizations. Examples of such technologies include the Koala component
model for consumer electronics [vOvdLKM00], PECOS for industrial field de-
vices [GCW+02, NAD+02, GCS+02], and PBO for robotics [SVK97]. Such
component technologies are often tightly coupled to a specific operating system
or a specific domain and only few of them consider non-functional properties.
For these reasons they have not been general enough to be adopted for use in
other domains [MÅFN03].

The life cycle of ERTS produced by the electronic and software industry is
continuously being shortened due to the acceleration of technologies and cut-
ting time-to-market. ERTS are integrated into the products in many technology
areas. The decreasing time to market leads to that software is required to be
flexible enough for rapid reuse, extension and adaptation of system functions.
In today’s highly competitive market, electronics Original Equipment Manu-
facturers (OEM) are faced with new software technologies that are introduced
rapidly and just as rapidly become obsolete. Companies look for guidance
when developing products and services that enable faster access to the compo-
nents they use in their designs - they look to accelerate their time-to-market.

In fact time-to-market is so important that companies release products and
software before they are finished developing the products. One specific ex-
ample is the Popcorn hour media streamer that I bought in spring 2008, Fig-
ure 3.1 [Pop08], which was delivered with a “last minute note”, declaring that
some functionality is unimplemented at delivery due to the requirements on
short time-to-market.

3.1 Motivation 35

Figure 3.1: Last minute notes.

36 Chapter 3. Component-based development for ERTS

3.2 Component reuse

One of the more important component properties is unquestionable reuse. It
is commonly accepted that reuse, if used properly, increases productivity and
lowers development costs [Gri93, Jor97]. When software become complex,
software reuse becomes more interesting due to the fact that software is “soft”.
By this we mean that it is easy to create tailored software that exactly fulfills
all system requirements; however, as software become more complex the costs
and efforts for re-creating the software also increase, and the benefits of reuse
become more apparent.

To facilitate reuse, an important distinction between traditional software
development and CBSE is that individual components are not specified and
laid out according to existing other components that are supposed to integrate
their services. Every single component is specified according to a more or less
general requirements profile, so it can be reused and integrated in a number of
different contexts. Generality is a key feature of components to facilitate reuse
in many different contexts. Some of the benefits of reuse are:

Lower defect density . Quantitative studies have shown that reused software
components have significantly lower defect-density than non-reused soft-
ware components [LGA+07, Moh04, BBB+00, BBCD+00].

More stable code . Quantitative analyses has shown that the amount of mod-
ified code between releases is less in reused software components, than
in non-reused [BBB+00, BBCD+00].

Increased reliability . The quality of the reusable components improves
and it becomes more stable over several releases [LGA+07, BBB+00,
BBCD+00].

Reduced time-to-market . Even though reuse requires a greater initial ef-
fort the benefits in time of reusing is often greater [Gri93, BBB+00,
BBCD+00].

Reduced development costs . Shorter development time, and therefore lower
development cost is possible due to reuse of company assets, e.g., spe-
cialists knowledge. Several companies have reported reduced time and
cost by reusing software [Jor97].

3.3 Basic definitions in CBSE 37

3.3 Basic definitions in CBSE

Outside the CBSE community, there is often confusion about the basic terms.
The foundation of component-based systems is naturally the component. A
software component is a software entity that conforms to a component model

and can be composed without modification [CL02a]. The term component

model embraces the specification of components, how components are assem-
bled, and the component framework. With other words, the component model
is a set of rules governing how the components may or may not be used. The
composition of components is the process of assembling components to form
an application. Components are composed by constitute systems through con-
necting their interfaces according to the rules defined in the component model.
The component interface is the entry to the component functionality. A com-
ponent composition is executed in the context of a component framework. The
component framework provides the necessary run-time support that is not pro-
vided by the underlying run-time system, e.g., scheduling. A component tech-

nology is the concrete implementation of a component model with the sup-
porting tools, guidelines and imposed design constraints that a practitioner of
CBSE deals with.

3.4 CBSE development process

An important distinction between traditional development and CBSE is that
the CBSE process is divided in two parts: a system development process and
a component development process [CCL06]. The interface between these two
processes may be fairly complex. First during system development, existing
components may be examined already during the requirements phase (and in-
fluence the entire scope and direction of the system). Later components are
tested to assess functionality and quality characteristics; they are used in pro-
totyping during design, and finally integrated and deployed with the system.
And conversely, requirements on the system may also affect the evolution of
its constituent components more or less directly (depending on the business
relationship). Figure 3.2 shows a general model for CBSE processes.

3.5 Component model

The only way that a component can be distinguished from other forms of pack-
aged software is through its compliance with a component model. However, no

38 Chapter 3. Component-based development for ERTS

Figure 3.2: CBSE development process.

3.5 Component model 39

agreement on what should be included in a component model exists, but a com-
ponent model should specify the standards and conventions imposed on devel-
opers of components. Common is that component models deals with different
abstractions, component types, interaction schemes between components and
clarifies how different resources are bound to components. Important parts of
a component model are consequently:

• Component definitions

• Component interaction

• Component interfaces

• Component composition

• Component contracts

3.5.1 Component definition

The key concept of CBSE is that of software components that can be assembled
into larger components or final products. One of the most influential definitions
of software components is that of Szypersky [Szy98]

A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A soft-

ware component can be deployed independently and is subject to

composition by third parties.

Szyperski states that a component should be a unit of composition, meaning
that the only visible part should be the interfaces. Furthermore, the interfaces
should be contractually specified with respect to the interfaces and contextual
dependencies - meaning that the component must be well documented. Szyper-
sky also asserts that source code modules do not qualify as software compo-
nents since they make it possible for the composer to rely on implementation
details, thus violating the principle of black-box composition. The definition
states that it should be possible to market software components as indepen-
dent products and that buyers should be able to use them as parts in their own
products. Naturally, independent deployment also has technical implications,
namely that it must be possible to deploy (or upgrade) a single component
without any modification, recompilation, or similar of the rest of the systems
of which the component is a part.

40 Chapter 3. Component-based development for ERTS

In [HC01] Heineman and Councill present the following definition of software
components:

A software component is a software element that conforms to a

component model and can be independently deployed and com-

posed without modification according to a composition standard.

Heineman and Council states that a software components must conform to a
component model, but do not say anything about requirements on the compo-
nent model. The two definitions principally agree, since the requirement that
components can be composed without modification can only be satisfied if in-
terfaces and context dependencies are well defined and that compliance with
a standard naturally supports composition by third parties. In [Lüd06] Lüders
discusses an alternative component definition from the UML2.0 standard and
its relation to the other definitions:

A component is a modular unit with well-defined required and

provided interfaces that is replaceable within its environment. The

concept can be used to model both logical and physical compo-

nents.

Lüders [Lüd06] states that the definition is somewhat broader than the previ-
ous two, as “replaceable within its environment” is a weaker requirement than
“subject to independent deployment and composition by third parties”. This
terminology is also used by Crnkovic and Larsson [CL02a], who define a soft-
ware component as consisting of at least the following elements:

• A set of interfaces provided to, or required from the environment. These
interfaces are particularly for interaction with other components, rather
than with a component infrastructure or traditional software entities.

• An executable code, which can be coupled to the code of other compo-
nents via interfaces.

From these previous definitions we conclude that components need to be:

Standardized. Component standardization means that a component that is
used in a CBSE development process has to conform to some standard-
ized component model. This model may define, e.g., component inter-
faces, component meta-data, documentation, composition and deploy-
ment.

3.5 Component model 41

Independent. A component should be independent, i.e., it should be possible
to compose and deploy a component without having to use other specific
components. In situations where the component needs externally pro-
vided services, these should be explicitly set out in a “requires” interface
specification.

Composable. For a component to be composable, all external interactions
must take place through publicly defined interfaces. In addition, it must
provide external access to information about itself such as its methods
and attributes. For ERTS a component must also provide quality of ser-
vice information with respect to, e.g., execution time and resource con-
sumption.

Deployable. To be deployable, a component has to be self-contained and must
be able to operate as a stand-alone entity on some component platform
that implements the component model. This usually means that the com-
ponent is a binary component that does not have to be compiled before
it is deployed. For ERTS this may be a too stringent requirement.

Documented. Components have to be fully documented so that potential users
of the component can decide whether or not they meet their needs. The
syntax and, ideally, the semantics, and quality of service, of all compo-
nent interfaces have to be specified.

3.5.2 Component interaction

Component interaction is the rules for how components can communicate, and
how components can be assembled. Components must follow a common in-
teraction model defined by the component model. The interaction models sup-
ported by the component model influences the architecture of the systems that
are built with the component technology. A few common interaction models
are:

Pipes and filters. The components in this style are called filters and each have
a set of inputs and a set of outputs. The outputs of a filter can be attached
to inputs of other filters via simple connectors called pipes. Typically,
the filters transform streams of input data to streams of output data in
an incremental fashion. An important constraint is that filters should be
independent in the sense that they do not share state and each filter is
unaware of the identities of the other filters it is connected to.

42 Chapter 3. Component-based development for ERTS

Black board. The basic model of a blackboard system is composed of three
main entities: the blackboard, a set of knowledge sources and a control
mechanism [CL92]. The blackboard is a globally accessible database,
which is shared by knowledge sources. It contains the data and interme-
diate solutions. The blackboard is structured as a hierarchy of abstraction
levels, which determine where data is input and where solutions are col-
lected. Partial solutions are associated with each level and may be linked
to information on other levels.

Client server. Client/server computing systems are comprised of two logical
parts: a server that provides services and a client that requests services
of the server. Together, the two form a complete computing system with
a distinct division of responsibility. More technically, client/server com-
puting relates two or more threads of execution using a consumer/producer
relationship.

3.5.3 Component interface

CBSE relies heavily on interfaces. They must handle all properties that lead to
inter-component dependences, since the component implementation is hidden
to a developer (black-box property). Indications show that although interfaces
are familiar and have existed for several years, CBSE may require more of
an interface than earlier applications. In [WBS97], Weck et al. states that an
interface is “a collection of service access points, each of them including a
semantic specification.”.

A component realizes an interface by providing services or entry points for
data and control, this interface is called provided interface. A component re-
quires services from or pass data to other components, thus it is not reasonable
for a component to only provide services. Required services need to be spec-
ified in a required interface. A required interface specifies services that are
required by, or data and control passed to, other components.

Provided interface. Defines the services or data and control entry points that
are provided by the component.

Required interface. Defines the services that must be made available by, or
data and control passed to, other components.

3.6 Component technology 43

3.5.4 Component composition

Composition is to bring together components so that they give the desired be-
haviour. The possibilities for composition should be defined by the component
model [Lar04]. Typically the possible interaction patterns are component to
component, component to framework and framework to framework. Under
composition, resource binding are also treated, in terms of early or late. It is
during composition the system is formed and it is at this moment most predic-
tions of run-time properties can be done by supporting tools.

3.5.5 Component contracts

A contract is a specification of obligations of a component. There are several
types of contracts for software components. They have in common that they
specify some expected behaviour or property of the component. A commonly
cited classification of contracts is one by Beugnard et al. [BJPW99], where
four levels of contracts are defined, namely:

Syntactic. Conformance of functionality.

Behavioral. Behavioral contracts describes the behaviour of the component
with respect to the interfaces. Behavioral contracts can be realized with
textual descriptions, formal methods or component pre and post condi-
tions. Behavioral contracts can also specify certain context dependen-
cies.

Synchronization. Synchronization between components.

Quality of service. In contrast to the behavioral contract the quality of ser-
vice contract describes the performance of the component and specifies
non-functional properties such as timing aspects, memory consumption
required by component and system analyses.

3.6 Component technology

A component technology is a concrete implementation of a component model
and consists of tools and models for supporting assembling of, and interopera-
tion between components. A component technology should provide necessary
run-time support for the components and mature component technologies often
offer different development tools simplifying the engineering process [CL02a].

44 Chapter 3. Component-based development for ERTS

3.7 Component frameworks

A component framework is based on a software architecture, a set of compo-
nents and their interaction mechanisms. It provides the run-time mechanisms
required by the component model, and that are not provided by the underlying
run-time system. Thus, a component framework can be imagined as a small
operating system that offer the services that components require [CL02a].

3.8 Summary

During the last decade advances have been made in component-based devel-
opment for desktop and business applications. A few de-facto standards have
completely transformed the way such software is developed. These standards
are mainly Microsoft’s .NET, SUN’s Enterprise Java Beans and OMG’s Corba
Component Model (CCM). Component models for embedded systems are usu-
ally designed with very domain specific requirements in mind [MÅFN05]. For
instance the well known component model by Philips, Koala [vO02], considers
low resource usage, but does not consider, e.g., real-time properties that are im-
portant in many other embedded domains. There is a large set of different com-
ponent technologies that approach different problems in different ways such as
ABB’s PECOS [GCW+02], Rubus [LLL03, HMTN+08, HMTS+08], which
originates around research on Basement [HLB+97] , SaveComp [ÅCF+07]
and many more. None of these however have yet been successful outside of
their original domain. Thus, for ERTS it seems difficult to define de-facto
standards due to highly diverging requirements on different industrial seg-
ments [Crn04].

One of the more important component properties is unquestionable reuse.
It is commonly accepted that reuse, if used properly, increases productivity and
lowers development costs. However, support for reuse requires generality of
components which often leads to low accuracy of component properties which
is enough for desktop systems. But for ERTS low accuracy of component
properties leads to low resource efficiency, and low resource efficiency leads
to higher manufacturing costs in terms of hardware resources. On the other
hand, lack of support for reuse increase development costs and increases time-
to-market.

Reusable components should, by definition, be used in different applica-
tions [Crn02], i.e., they should be context-unaware. All possible deployments
are not known and the extra-functional behaviour of components in a new de-

3.8 Summary 45

ployment is often very hard to predict. This is not a problem for desktop appli-
cations where resources are abundant and the requirements on, e.g., timing and
safety are relatively low. Few component models support general component
properties at the same time as they are highly resource and run-time aware,
and vice versa. Component models that are specifically designed for a partic-
ular group of systems are often not adaptable and general enough to be used
in other systems or other domains. In order to achieve reuse, most component
technologies of today intentionally do not consider the system context, e.g.,
inputs, hardware and run-time system. As a result performance prediction is
often inaccurate.

Once you do know what the question

actually is, you’ll know what the an-

swer means...

-Hitchhiker’s guide to the galaxy

Chapter 4

Research problem

In this chapter we describe the industrial and research problems considered,
and we discuss our solutions and the research methodology that we have used.

The research problem stems from (i) the desire to lower development costs
and shorten time-to-market by using Component-Based Software Engineering
(CBSE), and (ii) the requirements on resource efficiency and predictability in
Embedded Real-Time Systems (ERTS). The general and overarching question
that we ask is

How can efficient reuse of software components be realized, while

fulfilling the requirements of resource efficiency and predictability

in embedded real-time systems?

We do not aim to fully answer this question, but we will explore the un-
derlying problem domain and provide knowledge that contributes to the partial
answering of the question.

4.1 Research introduction

One of the most important aspects of ERTS is that they must exhibit a pre-
dictable timing behaviour; furthermore, these systems are often embedded in
larger systems where resources are scarce. In order to meet the challenges of
predictability and resource efficiency in the increasing complexity of embed-
ded software, developers need appropriate development methods and analysis
tools. One of the development strategies that industry is interested in is CBSE,

47

48 Chapter 4. Research problem

mainly for its focus on structured reuse. However, because of lack of models
and tools for analyzing predictability and resource consumption in relation to
components, CBSE has not yet been as successful in the embedded domain as
in the desktop and web system domains.

Several component technologies for ERTS have been developed. Examples
of component technologies for particular classes of ERTS are PECOS [GCW+02],
PBO [SVK97], RubusCM [LLL03], SaveCCT [ÅCF+07]. In general there has
been less focus on developing real-time tools and analyses for particular classes
of component-technologies, which is the focus of our research.

4.2 Specific research goal

We believe that CBSE will be one of the main future development strategies
for software in embedded systems. The increasing complexity of software is an
incitement for reuse, because the effort to re-create the software will become
higher and higher. For most systems in the industrial segment of embedded
systems it is not enough to only consider correct functionality. Even if the
functionality is reused it still requires a lot of work to re-analyze the software in
order to be able to generate correct extra-functional behaviour on the software.

The specific goals of this thesis are to:

• provide means for reusable WCET analysis for reusable software com-
ponents.

– specify WCET with respect to input with higher precision than
compared to traditional WCET for reusable software components.

• provide methods for efficient allocation of components to real-time tasks.

– reduce system CPU and memory overhead while maintaining real-
time requirements.

4.3 Research method

In this section we start by clarifying our view of research, research methods,
and what kind of research we have performed.

Research is the systematic collection, analysis and interpretation of data to
answer a question or solve a problem [Moh06]. Research relies on a research

4.3 Research method 49

method that guides the research. Research is often classified into two differ-
ent categories, viz., basic research and applied research. Applied research is
undertaken with the intention of applying results or previous research to an
identified problem. Our research is focused on real problems; we solve a real
problem and try to generalize the solution. This type of research is a mix
between applied and basic research and is sometimes referred to as frontier

research [Har05].
The starting point of our research has been selected from the study of indus-

trial problems. Thus, early on in the research we performed qualitative stud-
ies [MÅFN04, ÅFSC04], trying to understand the problems in the embedded
systems industry. The studies are slanted towards the heavy vehicular domain.
As with most real problems they are complex, difficult to grasp. Thus, we have
broken down the real problem in smaller, understandable sub problems. To
support the validity (construct validity) of our solutions, we deduce a set of
requirements from the research problems to make sure that we really approach
the problem that we intend to solve.

Embedded systems
industry

Academic
problems

Industrial
problem

Synthesized

Specific
industrial
problem

Research
setting

Transferred

Assumptions

S1

S2
S3

S4

S5 P1 P2

P3

Figure 4.1: Transformation of industrial problem to academic problems in a
reduced academic setting.

Good research requires not only a clearly stated problem and results, but
also convincing evidence that the results are sound. In order to fulfill these
criteria and approach the problem methodically, our research method is divided
into the following five steps inspired by Shaw [Sha01]:

1. We identify the industrial problem and derive five problem statements
S1-S5. (Section 4.4).

2. We transfer the industrial problem to an academic setting where a set of

50 Chapter 4. Research problem

assumptions that restricts the academic problem are identified. Further,
we formulate three specific academic research problems P1, P2 and P3,
based on the assumptions and the problem statements S1-S5, as depicted
in Figure 4.1 (Section 4.5).

3. We devise general solutions to the different problems in the for of re-
quirements (Section 4.6).

4. We describe specific partial solutions (Section 4.7).

5. We validate the specific solutions with respect to the corresponding in-
dustrial problem (Section 4.8).

The structure of this chapter follows a logical reasoning that leads from an
industrial problem→ problem statements and assumptions→ research prob-
lems→ requirements→ solution proposals→ validation. This logical chain is
depicted in Figure 4.2.

Partial
solution proposal 2

Partial
solution proposal 1

Partial
solution proposal 3

Problem P3Problem P1 Problem P2

Validation

Industrial and academic problem formulations and
assumptions

REQUIREMENTS

Refinement

Innovation

Implement

Section 4.5.2 Research problems

Section 4.6 Requirements

Section 4.7 Partial solution proposals

Section 4.8 Validation of solutions

Section 4.4 Industrial problems

Figure 4.2: Logical structure of chapter 4.

In Section 4.4 we describe the industrial problem. In Section 4.5 we de-
rive three research problems. We refine the research problems in Section 4.6
to form a set of requirements. We continue by proposing partial solutions to
these requirements in Section 4.7, and finally in Section 4.8 we describe the
validations of the solutions.

4.4 Industrial problems 51

4.4 Industrial problems

In this section we describe the studied industrial problem in general together
with the specific part that we consider in this thesis.

Some of the embedded industry domains are sensitive to resource con-
sumption. In segments like consumer electronics, where the product cost and
time-to-market are two of the main competitive factors, there is not room for
an increase of hardware costs due to increased resource consumption.

Many companies in the embedded systems domain view CBSE as a promis-
ing approach to more efficient software development. However, several key
issues have not yet been solved for CBSE, specifically relating to the demand-
ing requirements industry is facing on resource consumption, timeliness and
reliability [BCC+03].

New legislation for machinery (2006/42/EEC) [SAE06] has forced several
domains that before were exempted from the machine directive to follow the
new directives. The machine directive is ultimately about product safety, and
the safety aspects must be integrated in all aspects, from construction to use.
For machinery that are controlled by software, correctness of the software with
different type of software analysis, e.g., WCET analysis need to be proven.

4.4.1 General industrial problem

The industrial problem we discuss exists in the realm of ERTS. Within this
realm industry is facing problems with increasingly complex software [HKK04,
But06, PBKS07, HMTN06]. Issues like pressure to decrease time-to-market
and increasing complexity rapidly increases the cost for designing, developing
and testing the software; and more often the development involves domain ex-
perts whose time is very expensive. This has lead to an increasing desire to
reuse software [Bro06, Gil05, Acc06].

Due to these issues, many companies are looking for new development
strategies that can handle these problems [But06], and CBSE is an approach
that promises remedy for increasing complexity, long development times and
costs. Structured reuse is the main activity that provides the promised bene-
fits [HKK04]. CBSE has been proven to be useful in several domains, such
as desktop, internet and business systems. Compared to these domains, the
ERTS segment struggles with more stringent requirements on, e.g., timing and
resource consumption. In order to bring CBSE and ERTS closer, CBSE needs
to support such requirements [HKK04].

52 Chapter 4. Research problem

Problem statement S1: The efficiency of reuse has been proven mainly out-
side of the embedded and real-time systems domain.

One of the classes of requirements that are imposed on embedded real-
time systems are temporal requirements. ERTS have historically mostly been
used in mission critical systems, such as automotive, factory automation or
aerospace. However, the use of real-time systems has become wide spread
also in machinery and consumer electronics to satisfy increasingly demanding
customers [Bro06, PBKS07].

Temporal requirements origins from the fact that embedded software needs
to interact with a physical environment. This has created a need for being
able to analytically reason about the software’s temporal behaviour. For safety
critical systems in particular it is important to analytically show that the system
will behave correctly. Examples of well established uses of such analytical
properties is the increasing use of WCET analysis, which is a critical activity
for proving the temporal correctness of real-time systems [WEE+08].

Problem statement S2: Without real-time analysis it is difficult to prove that
the embedded real-time systems will react correctly and predictably to
its physical environment.

4.4.2 Specific industrial problem

In this section we further limit the general industrial problem to form a more
narrow industrial problem that we can use as a basis for our research.

When developing ERTS it is of main concern to make accurate predictions
of component properties such as timing and memory consumption. At the same
time it is desirable to gain from the development benefits offered by CBSE.
The key activity that will bring the CBSE benefits is reuse. In order to support
reuse in the CBSE development process, components need to be made general.
Reuse traditionally only considers functional parts, leaving timing prediction to
the system developer. Hence, to facilitate reuse, components are made unaware
of their context, i.e., their usage and environment, which makes it difficult to
perform accurate timing predictions [HKK04, PD96, But06, BCC+03].

Problem statement S3: The efficiency of software component reuse is low-
ered if software components have too much context-specific dependen-
cies.

By reusing traditional WCET analysis results of a component, the level
of reuse is increased, but the analysis must be performed with respect to all

4.5 Research setting 53

possible contexts, resulting in inaccurate estimations for most contexts. On
the other hand, by analyzing a specific system with the knowledge of the
system context, the analysis results are more accurate estimations, but the
key property reusability is decreased since the predictions can not easily be
reused. Also timing prediction is a difficult and time-consuming activity, re-
sulting in a higher development effort compared to if the predictions would be
reused [KP03, HK07].

Problem statement S4: Without context-specific knowledge it is difficult to
accurately predict the behaviour of software components.

An obstacle to combine predictability with correctly dimensioned hard-
ware is the inaccuracy of the system analysis. Real-time analysis is based on
worst-case assumptions, and the composition of multiple overestimated worst-
cases make the system impractically oversized and under utilized [Dur06]. Few
component technologies methodically consider the allocation of components to
real-time tasks, leading to worse than possible resource utilization. A faulty al-
location from components to real-time tasks can even lead to violated real-time
requirements [HMTN06, FSÅ05].

Problem statement S5: Poor allocation of components to real-time tasks may
lead to inefficient resource utilization or violated real-time requirements.

From the problem statements S1-S5 we see that there are several trade-offs
between the generality required by components for efficient reuse in the CBSE
process, and the specific usage required by an ERTS for achieving accurate
predictions required by real-time analysis; and between resource consumption
and real-time constraints when allocating components to real-time tasks.

4.5 Research setting

We use Shaw’s classification of software engineering research paradigms in
terms of research settings and products/approaches [Sha01] to characterize the
work in this dissertation. The research settings of this work, according to
Shaw’s definitions, are characterization and methods/means. Thus, the cor-
responding questions are:

Characterization: what are the important characteristics for increasing re-
source efficiency and predictability for reusable software components
in embedded real-time systems?

54 Chapter 4. Research problem

Methods/means: how can we accomplish increased resource efficiency and
predictability for reusable software components in embedded real-time
systems?

We create a research setting that is a simplification of the industrial problem
by stating a set of assumptions.

By making assumptions the industrial problem is reduced to a simpler prob-
lem that can be tackled easier. In subsequent research, these assumptions can
be relaxed to make the problems and solutions more generally applicable.

4.5.1 Limiting the problem using assumptions

We have identified a set of assumptions that we make explicit. The number
of assumptions can be made large but we have chosen a subset of assumptions
that we believe are important. There is no other rationale for choosing exactly
these assumptions than that we believe that they are important for reducing the
complexity of the problem.

Many small embedded systems do not have complex interaction models,
but rather require models that are simple and analyzable. Therefore sev-
eral component technologies for ERTS, for instance SaveCCT [ÅCF+07],
PBO [SVK97] and Pecos [GCW+02]), have chosen to limit the interaction
model to the pipes and filter model. Hence, we limit the problem to only con-
sider component technologies that use the pipes-and-filter interaction model.

Assumption: Only pipe-and-filter interaction is used between components.

In this research we do not aim to develop yet another WCET analysis tool,
and therefore we use existing tools. In this research we have used the SWEET
WCET analysis tool [GESL06], which is one tool that can produce different
WCETs depending on restrictions on the input.

Assumption: Input-sensitive WCET analysis is available.

Another assumption is that a component usage is always known for a com-
ponent in a specific system, and the analysis is performed with respect to this
specific system usage, and the analysis should be accurate with respect to that
usage. However, we do not make any assumptions on the accuracy of the us-
age. The resulting WCET is only as accurate as the accuracy of both the usage
and the usage dependent WCET.

Assumption: Components usage is known for each specific context.

4
.5

R
esea

rch
settin

g
5

5

Partial solution proposal 2
Parametrizing WCET analysis results with

respect to context information for increasing
reusability of the WCET analysis.

Partial solution proposal 1
Using the CBSE development process
for combining the benefits of structured
reuse of both funct ionality and WCET.

Requirement
R4

Accurate
analysis

Requirement
R6

Temporal
correctness

Requirement
R2

CBSE Process

Requirement
R3

Reusable WCET
analysis

Requirement
R5

Resource
efficiency

Requirement
R1

Automation

Partial solution proposal 3
Allocate components to real-time tasks in such

a way that resource efficiency is maximized
while temporal constraints are met.

Problem P3
Inefficient transformation from component
models to real-time models may reduce
resource eff iciency, and violate real-time

constraints.

Problem P1
Lack of development support for

reusable WCET analysis
complicates reuse of software

components.

Problem P2
Reuse requires general and context unaware
components while accurate WCET analysis
requires context awarness and component

specialization.

Validation
Do the reusable analysis and component to task allocation we propose achieve sufficient resource utilization and predictability for reusable

components in embedded real-time systems?

Industrial and academic problem formulations

Refinement

Innovation

Implementation

Partial solution proposal 2
Parametrizing WCET analysis results with

respect to context information for increasing
reusability of the WCET analysis.

Partial solution proposal 1
Using the CBSE development process
for combining the benefits of structured
reuse of both funct ionality and WCET.

Requirement
R4

Accurate
analysis

Requirement
R6

Temporal
correctness

Requirement
R2

CBSE Process

Requirement
R3

Reusable WCET
analysis

Requirement
R5

Resource
efficiency

Requirement
R1

Automation

Partial solution proposal 3
Allocate components to real-time tasks in such

a way that resource efficiency is maximized
while temporal constraints are met.

Problem P3
Inefficient transformation from component
models to real-time models may reduce
resource eff iciency, and violate real-time

constraints.

Problem P1
Lack of development support for

reusable WCET analysis
complicates reuse of software

components.

Problem P2
Reuse requires general and context unaware
components while accurate WCET analysis
requires context awarness and component

specialization.

Validation
Do the reusable analysis and component to task allocation we propose achieve sufficient resource utilization and predictability for reusable

components in embedded real-time systems?

Industrial and academic problem formulations

Refinement

Innovation

Implementation

Figure
4.3:R

esearch
flow

w
ith

dependencies
betw

een
solutions

and
problem

s.

56 Chapter 4. Research problem

In this research we do not aim to develop yet another memory analyzer, and
we use existing tools.

Assumption: Stack/memory analysis is available.

We do not provide methods or tools for analyzing or binding context switch
times, or other run-time properties; and we also assume that such methods,
tools and analyses exist, and that these times are known.

Assumption: Known and predictable context switch time, and, task control
block size for the run-time system.

We assume that all components can be analyzed with respect to memory,
CPU-overhead and execution time. We do not determine if a component is
analyzable, or how suitable the component is.

Assumption: All components can be analyzed.

We assume that all components are reusable from a strictly functional point
of view. We do not consider how the reuse of a component is affected depend-
ing on implementation specific details.

Assumption: All components are reusable.

Most analyses are developed and known for single processor systems. For
multi processor systems or distributed systems the analyses may be very dif-
ferent. Thus to limit the problem, we assume single processor, non-distributed
systems.

Assumption: Single processor, non-distributed, systems.

We do not consider different variants of hardware. Different alignment of
software in memory, could potentially lead to different cache behaviour and
thus different timing behaviour. There may also exist other issues that influ-
ence timing behaviour, e.g., different pipeline effects. However, to limit the
complexity of the problem, we assume that a WCET prediction is valid, given
that the component resides on the same type of hardware.

This of course limits the reuse to systems with the same hardware. How-
ever, we believe that this assumption is justified in many cases as components
often are distributed as binaries, compiled for a specific hardware. Thus, vari-
ants of the same component are required for reuse on different hardware.

Assumption: Invariant hardware in the component execution environment.

4.5 Research setting 57

Furthermore, when reusing components on the same type we assume that
prediction results can be reused given that it is reused on the same hardware.

Assumption: WCET predictions are always valid for components reused on
the same hardware.

From the problem statements (S1-S5) and the assumptions we form three
research problems. From these research problems we identify a set of require-
ments that define important characteristics for increasing resource efficiency
and predictability. The requirements also increase the confidence that we con-
sider the correct problem. To fulfill these requirements we propose three partial
solutions. The dependence between these parts is depicted in Figure 4.3.

4.5.2 Research problems

The nature of the studied industrial problem lies in the component-based de-
velopment of ERTS, where general and context-unaware software components
meets requirements on accurate timing predictions and low resource consump-
tion. The research problems detail some of many possible views of the indus-
trial problem. We do not claim that our views are more correct than any other
or that we cover all aspects of accurate timing predictions or low resource con-
sumption. However, the research problems identifies parts of the industrial
problem.

The problem statements S1-S5 stem from trade-offs between the generality
required for efficient reuse, and the particularity of accurate component prop-
erties and efficient transformation to real-time system. The potential benefits
of reuse are especially high in the embedded domain where product differ-
entiation is ever increasing and competitiveness is driven by time-to-market
and costs; thus there are strong reasons to find a solution to the trade-off. We
continue by deriving a set of research problems from the industrial problem
statements S1-S5, as outlined in Figure 4.1.

There are many incitements to reuse software components in a structured
way to lower, among many things, time-to-market and development costs.
Reuse has been proven efficient for some domains within software engineer-
ing, however, the domain of ERTS has not yet been one of these domains. It is
widely believed that one of the main things that obstructs reuse in this domain
is the pervasive use of usage and context dependent properties, such as, e.g.,
WCET [Lüd06].

58 Chapter 4. Research problem

In order to successfully reuse components in ERTS it is necessary to con-
sider the development of components and to combine the context freeness re-
quired by reuse and the context-awareness required by the analysis.

Problem P1 Lack of development support for reusable WCET analysis com-
plicates reuse of software components.

Statements: S1, S3 and S4.

Motivation:

• WCET analysis is difficult and time consuming to use [HK07].

• Reuse is the main activity in CBSE to lower development time
and cost [PD96].

To support reuse, context-freeness is vital. If a component has strong de-
pendencies to one or a set of contexts, its reuse is limited to only the systems
that conform to that specific context. Predicting the behaviour of a component
without knowing its intended use may lead to very inaccurate predictions (or
the inability to give any predictions at all).

To provide evidence of predictable behaviour for ERTS, one of the most im-
portant real-time properties is the WCET. While reusable components should
be context free, WCET is a context-sensitive property, meaning that it is sensi-
tive to both the hardware it is executed upon and the usage, i.e., how it is used
in that particular setting. If WCET is predicted without respect to context the
predictions become much to inaccurate, pessimistic or even impossible to state.
Inaccurate predictions leads to hardware being under-utilized, or even worse to
faulty and unreliable systems.

Problem P2 Reuse requires general and context-unaware component while
accurate WCET analysis requires context-awareness and component spe-
cialization.

Statements: S2 and S3 and S4.

Motivation:

• Accurate WCET analysis requires context information [GESL06,
KP05].

• Accurate analysis is required for correctly dimensioned hard-
ware, and correct system behaviour [Dur06].

4.6 Requirements 59

Although predictability is one of the most important aspects of ERTS, it is
also important with high resource utilization efficiency in order not to overdi-
mension hardware. To achieve high resource efficiency it is important to con-
sider how components are deployed. Even resource efficient components that
are deployed without considering resource utilization may lead to resource in-
efficient systems, i.e., it is of little importance to have accurate predictions if
the underlying system does not take advantage of them. Thus, the allocation of
components to real-time tasks must be considered.

Components are reused at design and development of a system. However,
transformation from component models to real-time models are not reused.
A system needs to be transformed from a component model to a real-time
model for each new context. Improper transformation from component models
to real-time models may both reduce resource efficiency, and violate system
properties.

Problem P3 Inefficient transformation from component models to real-time
models may reduce resource efficiency, and violate real-time constraints.

Statements: S2 and S5.

Motivation:

• It is often desired to keep resource consumption low in em-
bedded real-time systems [Crn04].

• Real-time constraints must be satisfied in a system with
real-time constraints, in order to guarantee correct be-
haviour [But97].
• Components must be synthesized to real-time tasks [MG02,

KWS03].

4.6 Requirements

From the formulated problems we break down the problems and identify a set
of key requirements. The rationale for defining requirements from the research
problems is to be able to validate the solutions with respect to the requirements
in order to increase the confidence that our solutions actually solve (at least
partially) the problems.

We define a set of requirements based on the research problems to make
sure that we tackle the problem we intend, in a way that is adequate to industry.
By fulfilling the requirements we increase the confidence that we tackle the

60 Chapter 4. Research problem

correct problem. This can also be seen as a step in increasing construct validity
of the thesis.

We do not claim that the requirements we have defined are exhaustive in
the sense that they cover all issues in increasing prediction accuracy and re-
source utilization in ERTS. Also, each requirements could potentially be re-
fined. However, the given requirements reflects issues that the embedded sys-
tems research community, real-time research community, component-based
development communities and industry consider to be important.

It is possible to tackle the problems P1-P3 in many different ways. We want
to direct our solutions to be of interest to the industry. Thus we also consider
the component properties that we found to be important when defining the
requirements.

The following component properties were found to be important to indus-
try in earlier studies that we have presented in, e.g., Möller et al. [MÅFN05],
Åkerholm et al. [ÅFSC04] and is further supported by Hänninen et al.
[HMTN06].

Predictable: To what extent a component’s behaviour can be analyzed.

Resource efficiency: How much resources a component requires in order to
successfully fulfill its operation.

Reusable: How easily a component can be reused.

Simplicity: How much effort is required to use the component.

Usable: How easy the component is to use in a certain context.

We synthesize the component properties and the research problems to form
specific requirements that we consider in our research.

4.6.1 Requirement definitions

WCET analysis is both time consuming and difficult. Having tools that au-
tomatically derive a reusable WCET increases the development efficiency by
making WCET analysis simpler and more accessible.

〈Requirement R1〉 Automation: The WCET analysis shall be automated as
much as possible, requiring a minimum of human interaction.

Derived from: P1, Simplicity, Usable

4.6 Requirements 61

The CBSE development process is different from traditional development
in the sense that it is divided into component development and system devel-
opment. Thus the WCET analysis should be divided in two different parts, a
component part, developed to be reusable by the component developer, and a
system part, to be used by the system designer. This facilitates the adoption of
the technique in the CBSE development process.

〈Requirement R2〉 CBSE Process: The WCET analysis shall be performed
in the component development part of the CBSE development process.
The WCET shall be known in the system development part of the CBSE
development process.

Derived from problem: P1, Reusable, Usable

One problem is that, to gain maximum benefit from reuse not only the func-
tional parts of components need to be reused, but also non-functional parts,
e.g., WCET analyses. Thus, we need to find a way to reuse a component with-
out re-analyzing the WCET.

〈Requirement R3〉 Reusable WCET analysis: It shall be possible to reuse a
software component without re-doing WCET analysis.

Derived from: P2, Portable, Reusable

WCET analysis can of course always be reused but to make sure that the
WCET is always a safe over estimation, all possible usages must be considered.
This will potentially lead to very inaccurate predictions.

〈Requirement R4〉 Accurate analysis: The reusable WCET analysis results
shall reach a pre-defined accuracy, and it shall be possible to reach the
same accuracy as with current state of the art WCET analyses.

Derived from: P2, Predictable

We want to transform the component-based system to a real-time system
conforming to a specific real-time model. We must be able to separate an effi-
cient transformation from an inefficient. A common approach for transforming
components to tasks is simply to view one component as one task.

〈Requirement R5〉 Resource efficiency: Components shall be transformed to
real-time tasks such that the resource efficiency is higher than for a sys-
tem where one component is allocated to one real-time task.

Derived from: P3, Resource efficiency

62 Chapter 4. Research problem

There exists many possible allocations from components to real-time tasks.
At the same time as we want the system as resource efficient as possible, a
transformation from components to real-time tasks may not violate temporal
requirements.

〈Requirement R6〉 Temporal correctness: Components must be transformed
to tasks in such a way that the temporal correctness of the system is
maintained.

Derived from: P3, Predictable

The requirements are not exhaustive in the sense that they completely cover
the problems, as depicted in Figure 4.4. The problems are too big and complex
and we only provide partial solutions to the problems in this thesis.

Figure 4.4: Conceptual coverage of requirements with respect to the research
problems in this thesis.

4.7 Partial solution proposals

In [ÅFSC04, MÅFN04] we have surveyed several component technologies for
ERTS, and investigated different methods that are commonly used with ERTS.
Often predictable behaviour and resource efficiency are conflicting properties
because many methods for lowering resource consumption are simply not suit-
able for ERTS. Dynamic resource management and adaptive behaviour are ex-
amples of techniques widely used outside the embedded and real-time domain
for enforcing efficient resource usage.

4.7 Partial solution proposals 63

4.7.1 Resource-aware development

We have found that the most common techniques in ERTS for resource effi-
ciency are compile-time techniques. Run-time techniques introduce uncertain-
ties in the execution, making it difficult to predict correct behaviour.

Component functionality is reused between products, analysis on the other
hand is typically performed for each system rather than for each component.
Many analysis tools are expensive, time consuming and difficult to use, and
there are potential big time gains to be made if component analysis can be
reused in the same way as the component.

Partial solution proposal 1: Using the CBSE development process for com-
bining the benefits of structured reuse of both functionality and WCET.

Fulfils requirements: R2

How does this solution fulfil requirements R2? We propose that the WCET
analysis is divided in two parts to fit the CBSE development process. The first
part is a reusable component WCET analysis, where inputs are partitioned with
respect to WCET to form input-parameterizable component WCET contracts.
The second part is the parameterization and composition to find the usage de-
pendent WCET.

How does this solution contribute to the overarching question? We propose
to integrate our techniques in the CBSE development process. This facilitates
the use of the techniques in relation to CBSE because the CBSE development
process differs from traditional development models.

4.7.2 Input-sensitive WCET analysis

Reuse gives lower accuracy with respect to analyzability and increased re-
source consumption because of the generality needed for efficient reuse. How-
ever, how much lower prediction accuracy can we accept to lower time-to-
market and what is sufficient resource utilization?

Reaching high resource utilization and predictability implies high effort.
Thus, there is a clear trade-off between effort and better properties. Effort
must be connected to some quantitative property like, e.g., cost, to be able to
reason about. Sufficient accuracy and resource utilization is of course then
entirely dependent on the application domain. In safety critical applications
it is probably easier to motivate a higher cost for reaching high predictability
than in, e.g, cheap consumer electronics. Because of this it is desirable to have

64 Chapter 4. Research problem

parameterizable methods. Then the methods may be applicable to a larger set
of domains.

Partial solution proposal 2: Parameterizing WCET analysis results with re-
spect to context information for increasing reusability of the WCET anal-
ysis.

Fulfils requirements: R1, R3, R4

How does this solution fulfill requirements R1? Automatic slicing can be
used for finding variables and variable value bounds that affect the program
flow, and thus the WCET. Human intervention is not required, but can be used
for speeding up the analysis by manually specifying variables and their bounds.

How does this solution fulfill requirements R3? By creating parameteriz-
able component WCET contracts, that are parameterizable with usage, to get
a usage dependent WCET, then, given the assumptions stated in Section 4.5.1
the component WCET can be reused together with the software component.

How does this solution fulfill requirements R4? By gradually exploring
the program state space by using automatically derived annotations it is possi-
ble to achieve an equally accurate WCET compared to a manually annotated
traditional WCET analysis.

How does this solution contribute to the overarching question? By pa-
rameterizing WCET with respect to usage reuse of software components is
facilitated.

4.7.3 Allocation of components to real-time tasks

Making accurate predictions and supporting reuse is sufficient for the construc-
tion and analysis of a system; however, eventually the system needs to be syn-
thesized to a run-time system. In ERTS tasks are the run-time entities that
control the execution of the components. One common approach to map com-
ponents to tasks is one-to-one allocation where one component is allocated to
one task. This allocation is very convenient from an analysis perspective be-
cause real-time analysis can be performed early in the development. However,
the allocation is not very efficient due to high overhead.

Partial solution proposal 3: Allocate components to real-time tasks in such
a way that resource efficiency is maximized while temporal constraints
are met.

Fulfils requirements: R5, R6

4.8 Validation of solutions 65

How does this solution fulfill requirements R5? The allocation framework
guarantees that any allocation is never worse than the one-to-one, by always
using the one-to-one allocation as a starting point in the search for better allo-
cations.

How does this solution fulfill requirements R6? The allocation framework
has a set of rules for evaluating an allocation if it is feasible, those rules also
encode the temporal correctness. Thus a transformation that is resource effi-
cient but does not fulfill the stipulated timing requirements is not considered to
be a feasible allocation.

How does this solution contribute to the overarching question? By provid-
ing a framework for structured allocation of components to real-time tasks, re-
source utilization is increased and real-time requirements are maintained from
design to synthesis. Allocation of components to real-time tasks is one step
towards increased use of CBSE in ERTS.

4.8 Validation of solutions

One of the things that distinguishes good software engineering research is the
presence of proper validation. Validation is required before the claims of effec-
tiveness and/or usefulness can be determined. We revisit the research method
proposed in Section 4.3 and describe how our results have been validated. We
strive to validate the solution with respect to the industrial problem by vali-
dating the results with respect to the requirements that were derived from the
industrial problem. In the summary of Chapter 9 we also revisit the industrial
problem and discuss to what degree it has been solved.

The question that the validation should answer is why our research is valid?
The simple answer to the question is that the research is valid because we have
used a proper research method. To further answer the question we need to know
what we mean by validity. Validity is usually divided into four categories, i.e.,
Construct validity, Reliability, External validity and Internal validity.

Construct validity means, put simply, did we implement the program we in-

tended to implement and did we measure the outcome we wanted to mea-

sure?

Reliability means, can we repeat the research and get the same results?

External validity means, how well the results can be generalized outside the
study.

66 Chapter 4. Research problem

Internal validity means, put simply, did the input to the program cause the
outcome to happen?

According to Shaw [Sha02] there exist 5 types of evaluations in software
engineering, Persuasion, Implementation, Evaluation, Analysis and Experi-

ence. We use several of these methods, and we go through each partial solution
and describe the type of validation used.

4.8.1 Resource-aware development

Validation of partial solution 1: We develop extensions for the CBSE devel-
opment process and reasons about the usage of the process together with
the proposed methods. We are extensively using existing literature, dis-
cussions, examples and evaluations for validating the solution.

Type of validation: Persuasion.

Construct validity: To ensure construct validity, several sources of ev-
idence is used, both use of existing literature, and experiments.

External validity: The results are only generalizable with respect to our
explicit assumptions. When the assumptions are not valid we can
not guarantee external validity. The systems that are evaluated are
both academic benchmarks and industrial code from two compa-
nies in different business segments within the ERTS domain.

Internal validity: We disregard the internal validity; we do not see any
threats because we have control over all variables, and we know
their relationships.

Reliability: The experiments leading to the results are well controlled.
The same evaluation has been performed multiple times to generate
multiple data points.

Original research: Paper 2 and Paper 4.

Described in thesis: Chapter 5.

4.8.2 Input-sensitive WCET analysis

Validation of partial solution 2: We propose and implement methods for
reusable WCET analysis for permitting reuse of accurate WCET predic-
tions of components in ERTS. We perform empirical evaluations through
empirical models from both industrial code and academic benchmarks.

4.8 Validation of solutions 67

Type of validation: System implementation, empirical evaluation.

Construct validity: To ensure construct validity we have well defined
frameworks, clearly defining what is measured.

External validity: The results are only generalizable with respect to our
explicit assumptions. When other variables are considered we can
not guarantee external validity. The systems that are evaluated are
both academic benchmarks and industrial code from two compa-
nies in different business segments within the ERTS domain.

Internal validity: We disregard the internal validity; we do not see any
threats because we have control over all variables, and we know
their relationships.

Reliability: The experiments leading to the results are well controlled.
The same evaluation has been performed multiple times to generate
multiple data points.

Original research: Paper 1, Paper 2, Paper 3 and Paper 5

Described in thesis: Chapter 6 and Chapter 8.

4.8.3 Transformation from components to real-time tasks

Validation of partial solution 3: We propose and implement a method for
transforming components to tasks in such a way that temporal constraints
are preserved and resource usage is increased compared to a reference
transformation. We perform empirical evaluations through simulations.

Type of validation: System implementation, empirical evaluation.

Construct validity: To ensure construct validity we have well defined
frameworks, clearly defining what is measured.

External validity: The results are only generalizable with respect to our
explicit assumptions. When other variables are considered we can
not guarantee external validity. The allocation strategy has not been
extensively tested for different types of systems, thus the results are
not generalizable in other systems than ERTS.

Internal validity: We disregard the internal validity; we do not see any
threats because we have control over all variables, and we know
their relationships.

68 Chapter 4. Research problem

Reliability: The experiments leading to the results are well controlled.
The same evaluation has been performed multiple times to generate
multiple data points.

Original research: Paper 2, Paper 6 and Paper 7.

Described in thesis: Chapter 7 and Chapter 8.

4.9 Summary

This chapter has outlined the research method used when addressing the re-
search problems in the thesis. This chapter is also the concluding chapter in
the introductory part, and the following chapters will address the technical con-
tributions.

Even he, to whom most things that

most people would think were pretty

smart were pretty dumb, thought it was

pretty smart.

-Salmon of Doubt

Chapter 5

Resource-aware development

This chapter positions our proposed methods for increasing resource utiliza-
tion and predictability, in the component-based development process. We first
introduce the CBSE process, and then briefly describe the methods and their
relationships to the process.

Traditional software development (e.g., the waterfall model [Roy70]) con-
siders the system view, and develops a system with normally well defined sys-
tem context and usage. In contrast, the CBSE process is divided in two parts: a
system development process and a component development process and inter-
actions between the two processes [CCL06]. In the CBSE development process
the component development is focused on developing components to be used
in many different systems, while the system development is focused on reusing
existing components to build a system. Thus, there is a significant difference
between the traditional and CBSE software development processes.

To enable CBSE for ERTS it is important to address reusable predictions
and low resource consumption, and, to address these issues in relation to the
CBSE development process.

5.1 Component-based software engineering pro-

cess

To facilitate reuse, an important distinction between traditional software de-
velopment and CBSE is that individual components are not specified and laid
out according to existing other components that are supposed to integrate their

69

70 Chapter 5. Resource-aware development

services. Every single component is specified according to a more or less gen-
eral requirements profile, so it can be reused and integrated in a number of
different contexts [ABGP05]. Generality is a key feature of components be-
cause they should be reused in many different contexts. However, the interface
between the component development and system development processes may
be fairly complex. Existing components are surveyed in the system develop-
ment process during the requirements phase, influencing the entire scope and
direction of the system because the system is easier built with existing compo-
nents [LBCC08]. If no suitable existing components can be found, new com-
ponents are developed in the component development process. During later
phases in the CBSE process the components are tested to assess functional-
ity and quality characteristics; they are used in prototyping during design, and
finally integrated and deployed with the system.

Figure 5.1 shows a general model for the CBSE processes where compo-
nents and systems are developed independently. Most of the interaction be-
tween the component and system development processes are performed during
the requirements and design phases, and, the verification phase.

Verify

Store

System
Development

Component
Assessment

Component
Development

Select

Find

Requirements

Design

Verification

Release

Operation

Implementation

Integration

Maintenance

Requirements

Design

Verification

Release

Maintenance

Implementation

Integration

Figure 5.1: CBSE development process (from [CCL06]).

5.2 Reusable analysis 71

5.2 Reusable analysis

Worst-Case Execution Time (WCET) analysis has been used in traditional soft-
ware development for ERTS for a long time, and is a vital part of real-time
analysis. However, to introduce reusable WCET analysis for CBSE, it must be
assessed how the reusable analysis can be incorporated in the CBSE develop-
ment process. WCET analysis is normally performed in the verification activ-
ity of traditional software development processes. The analysis of component-
based systems is different since components are developed to be general and
reusable, and the systems are developed from existing components.

Predicting the amount of resources required by ERTS is of prime impor-
tance for verifying that the system will fulfill its real-time and resource con-
straints. Particularly important in ERTS is to predict the WCET of tasks, so
that it can be proven that task temporal constraints (typically deadlines) will be
met.

The division between development of components and development of sys-
tems in the CBSE process implies that one efficient way of reusing WCET
analysis is to position the analysis in the component development process, so
that the results can be reused with the component in the system development
process. By introducing an analysis process where part of the analysis is per-
formed by the component developer the overall development process becomes
arguably more efficient compared to traditional analysis.

Traditionally the complete analysis is required to be performed by the sys-
tem developer because current WCET analysis techniques requires the com-
plete system to be available in order to make accurate predictions. However,
WCET analysis is both difficult and time consuming and often requires man-
ual tuning and annotation of the program [HK07]. A lot of effort can be saved
if the WCET analysis can be reused. Moreover, if an equally accurate, and
reusable prediction can be produced the benefit is potentially very high.

On a high level we divide the reusable WCET analysis into (i) the construc-
tion and analysis of the components where the component developer performs
reusable WCET analysis, and (ii) the development of systems and usage where
the system developer uses the reusable WCET analysis on a specific system
to find the specific WCET of each component for the system, as depicted in
Figure 5.2.

The component developer produces a parameterizable, reusable WCET
analysis for individual components; the system developer parameterize the
components’ reusable WCET analysis is with information about the system
specific usage in order to acquire the system specific WCET.

72 Chapter 5. Resource-aware development

56789:;6<=>?=@6@AB@9;C8D8E89F6G?H=ID;6J@I=H>9AD=@K9HL68AD@F M<NO
<=@A6PA Q6@8DADL6B@9;C8D8BRR7H9A6 M<NOS9??D@F A=A98T8 U VMNP6R7AD=@

W=>9D@6P?6HA M<NO A==;8
S=@DA=HD@F X789F6 I66Y:9RT

QC8A6> Y6L6;=?6H <=>?=@6@A Y6L6;=?6H

Figure 5.2: Resource centric development process view.

5.2 Reusable analysis 73

Figure 5.3 shows how a general model for a CBSE process is extended
with the reusable WCET analysis as part of the Verification activity, and the
analysis results packaged with the component in the Release activity. These
results are reused during the system WCET analysis, which is performed in the
Verify phase of the component assessment process.

Verify

Store

System
Development

Component
Assessment

Component
Development

Select

Find

Requirements

Design

Verification

Release

Operation

Implementation

Integration

Maintenance

Requirements

Design

Verification

Release

Maintenance

Implementation

Integration

Reusable
WCET
analysis

System
WCET
analysis

Figure 5.3: CBSE development process extended with reusable WCET analy-
sis.

This development process allows for the effort of WCET analysis to be
moved from the system development to the component development. In this
way, not only the component itself but also the WCET analysis is reused several
times. The system developer escapes the effort of learning and using advanced
WCET analysis tools, and the overall process becomes more efficient. We
deepen these discussions in Chapter 6, and the reusable WCET analysis is
evaluated in Chapter 8.

74 Chapter 5. Resource-aware development

5.3 Allocating components to real-time tasks

The problem of allocating components to tasks does not exist in traditional
ERTS, since traditional ERTS are normally designed considering tasks (i.e.,
processes or threads of execution). However, when the system is developed
from reusable components, it is not obvious how these components shall be
allocated to real-time tasks in order to minimize resource consumptions while
maintaining real-time constraints, e.g., respecting deadlines.

The allocation of components to real-time tasks depends on real-time prop-
erties. The allocation must be performed in such a way that real-time analysis
guarantees that stipulated real-time requirements are fulfilled. The allocation
is therefore positioned in the development process after the reusable WCET
analysis as shown in Figure 5.4.

Verify

Store

System
Development

Component
Assessment

Component
Development

Select

Find

Requirements

Design

Verification

Release

Operation

Implementation

Integration

Maintenance

Requirements

Design

Verification

Release

Maintenance

Implementation

Integration

Reusable
WCET
analysis

System
WCET
analysis

Component
to task

mapping

Figure 5.4: CBSE development process extended with reusable WCET analy-
sis and component to task allocation.

Because of the real-time requirements imposed on ERTS, the allocation of
components to real-time tasks is a problem in current CBSE development prac-
tices [KWS03]. Therefore it is vital that the allocation considers temporal at-

5.4 System models 75

tributes, such as WCET, deadline and period time. In a system with many com-
ponents, the overhead due to context switches is quite high. ERTS consist of
periodic and aperiodic events, often with associated end-to-end timing require-
ments. Periodic, time-triggered components can often be coordinated and ex-
ecuted by the same task, while preserving temporal constraints. Co-allocating
several components to one real-time task may lead to better performance in
terms of, e.g., memory and CPU usage. Hence, it is easy to understand that
there can be positive effects as a result of grouping several components into
one task.

There are several ways to allocate components to tasks. One common
allocation strategy, which may have lead to the confusion between what are
components and what are tasks, is the one-to-one allocation where one com-
ponent constitutes one task1. This mapping is used in several component tech-
nologies including, e.g., Rubus [Lun08, LLL03], PBO [SVK97] and Auto-
comp [SFÅ04]. Components can be co-allocated, where many components
form a task. Nevertheless, a component can be distributed over several tasks.
The one-to-one mapping is often chosen due to its matching properties with
real-time analysis, since a component assembly can be checked at design-time
with standard real-time analysis. However, to ensure that temporal require-
ments are met, while at the same time resource usage is minimized, special
methods for mapping component to tasks need to be developed. One such
method is described in detail in Chapter 7, and evaluated in Chapter 8.

5.4 System models

We describe a general system model that is used throughout the rest of this
thesis to reason about our methods for reusable WCET analysis and component
to task allocation.

Descriptive models

The component interaction model is a pipe-and-filter model with transactions,
which is commonly used within the embedded systems domain. Each compo-
nent has a trigger; a time trigger or an event trigger or a trigger from a preceding
component. A component transaction describes an order of components to be

1Components and tasks are in fact two orthogonal concepts; components are design entities
and tasks are run-time entities, the concepts are still sometimes confused.

76 Chapter 5. Resource-aware development

executed and defines an end-to-end timing requirement. In Figure 5.5, the no-
tation of a component assembly with six components and four transactions is
described. The graphical notation is similar to the one used in UML.

c1

c5

c2

c3

c4

c6 Actuator

Actuator

Event

Timer

Timer

tr1

tr2

tr3

tr4

Trigger

Transaction

Event Trigger

Time Trigger

cn

Component

Figure 5.5: Graphical notation of the component model.

Many component models for embedded systems have the notion of transac-
tions built in; however, if a component model lacks the notion of transactions,
it is possible to model end-to-end timing requirements and execution order at
a higher abstraction level. In general a system is described as a set of com-
ponents, and transactions (flow) among components. The component model is
described with:

Component ci is a tuple 〈Pi,Ri, Si, Qi, mi, fi, progi〉, where Pi is the pro-
vided interface, which is a set {pi,0, pi,1, ..., pi,n−1} of input variables
and Ri is the required interface, i.e., a set {ri,0, ri,1, ..., ri,n−1} of out-
put variables. Both input and output variables can pass data or con-
trol. Si represents a trigger; a time trigger, an event trigger or a trigger
from a preceding component. Qi represents the periodicity of a trigger.
mi is the amount of stack memory required by the component. fi is a
contract as a function with respect to a usage that returns the estimated
WCET of the component with respect to the specified usage Ui such that
fi : Ui, pti → WCET i, where Ui is a usage profile and pti is a prob-
ability threshold used for removing WCET with low probability. progi

is the software behaviour of the component in some form, e.g., source
code, graphical model or binary format.

Usage profile Ui is a set of inputs and probabilities for those inputs. Ui repre-
sents predicted inputs for the component in a specific context and usage.
The usage profile is described in detail in Chapter 6.2.3.

5.4 System models 77

Component Transaction Γi is an ordered relation between components
ca, cb, cc, ..., cn, and an end-to-end deadline dci. The deadline is relative
to the event that triggered the component transaction, and the first com-
ponent within a transaction defines the transaction trigger. ΓT

i defines
that the transaction is time-triggered and ΓE

i denotes that the transaction
is event triggered. A component transaction can stretch over one or sev-
eral components, and a component can participate in several component
transactions. The component ca should execute before the component cb,
and the component cb should execute before cc to produce the expected
results etc. The correct execution behaviour for a component transaction
is formalized with the regular expression denoted in 5.1.

caΣ∗cbΣ
∗ccΣ

∗...Σ∗cn (5.1)

Where Σ∗ denotes all components defined by the transaction in any order. This
means that a transaction allows arbitrary execution ordering as long as the pat-
tern ca before cb before cc exists, i.e., ca, cc, cb, ca, cc is a valid transaction
since at some point, cb executes after ca, and cc executes after cb. However, in
order to use most current response time analyses it is required that a transaction
only consists of components with harmonic period times.

In a component assembly, event triggers are treated different from periodic
triggers as the former are not strictly periodic. There is only a lower bound-
ary restricting how often it can occur, but there is no upper bound restricting
how much time may elapse between two invocations. Thus, if an event trigger
could exist inside or last in a transaction, it would be impossible to calculate
the response time for the transaction, and hence a deadline could never be guar-
anteed.

Task model

Our task model specifies real-time properties similar to many traditional real-
time task models, e.g., [MJ86], with the addition of the organization of entities
in the component model into tasks. During the allocation from components
to real-time tasks, properties like schedulability and response-time constraints
must be analyzed in order to ensure the correctness of the final system. Compo-
nents only interact through explicit interfaces; hence tasks do not synchronize
outside the component model. The task model is for evaluating schedulability
and other properties of a system.

78 Chapter 5. Resource-aware development

Task τj is a tuple 〈Zj , Tj, Cj , stackj〉 where Zj is an ordered set of com-
ponents. Components within the same task are executed in sequence
following the order of Z and with the same priority as the task. Tj is the
period of the task. The parameter Cj is the estimated WCET. stackj is
the stack usage of the component. Tj , Cj and stackj are deduced from
the components in Zj . Cj is the sum of WCET for all components in Zj .
Hence, for a task τj , the parameter Cj is calculated with Equation 5.2.
stackj is the maximum of all components specified stack usage and is
calculated with Equation 5.3. The task inherits the trigger(s) of the first
component ci in the set Zj to facilitate scheduling analysis.

Cj =
∑

∀i(ci∈Zj)

(fi (Ui, pti)) (5.2)

stackj = max
∀i(ci∈Zj)

(mi) (5.3)

The task model specifies the organization of entities in the component
model into tasks and transactions over tasks. During the allocation of com-
ponents to real-time tasks, extra-functional properties like response-time con-
straints must be respected in order to ensure the correctness of the final system.

System model

The system consists of system parameters and a schedulable task set.

System K is described with the tuple < A, β, ρ > where A is a task set to be
scheduled by the system scheduler. The constant β is the size of a task
control block, i.e., the size of the data structure needed by the scheduler,
containing information for managing the task. The task control block is
considered constant and the same for all tasks. The constant ρ is the time
associated with a task switch, i.e., the time for storing and restoring the
state of the CPU such that several tasks can share the CPU. The system
kernel is the only explicit shared resource between tasks; hence we do
not consider blocking effects due to, e.g., synchronization.

5.5 ACC example

To illustrate our models and the techniques described in Chapters 6 and 7 we
use an Adaptive Cruise Control (ACC) application as an illustrative example.

5.5 ACC example 79

The ACC is developed with the SaveCCM component model [ÅCF+07] as
depicted in Figure 5.6 and is constructed with four components, one switch
and one assembly. For a detailed description of SaveCCM and the ACC we
refer to [ÅCF+07].

The ACC is a conceptual design with features like automatic scanning of
road signs, brake assist if objects approach too fast, and adaptive speed consid-
ering the distance to cars in front.

In this example we assume that a car OEM develops the ACC from a set
of pre-fabricated components (and an assembly). We assume that the ACC
is developed for two car models, a high-end luxurious car model and a low-
end car model. The car manufacturer (i.e., system developer in Figure 5.2)
must analyse the ACC with respect to timing, in order to assert that it will
behave according to the system requirements. Once this is done, the ACC is
allocated to real-time tasks in such a way that the temporal requirements are
met. Furthermore, the allocation should minimize the resource consumption.

Looking at Figure 5.6, the components in the ACC are detailed in Table 5.1
together with the properties trigger Si, period time Qi, where the period time
is determined by the trigger. If a component cj is triggered by a preceding
component ci, then the period time Qj is inherited from the component ci,
thus Qj = Qi. The memory consumption mi is the memory required by a
component. Moreover, the ACC is designed with three time triggered transac-
tions 〈ΓT

0 , ΓT
1 , ΓT

2 〉 and associated end-to-end deadlines 〈dc0, dc1, dc2〉. The
transactions are described in Table 5.2.

The component Speed Limit is periodically triggered by a 50Hz clock. The
components Object Recognition, Brake Assist and ACC Controller are trig-
gered in sequence with the same period as Speed Limit. The Logger HMI

Output is triggered by a 10Hz clock. Furthermore, we consider the assembly
ACC Controller the same as a component, which is allowed by the SaveCCM
component model.

Component Name 〈Si, Qi, mi〉
Speed Limit cspeed 〈 50Hz, 20, 1024〉
Object Recognition cobj 〈cspeed, 20, 512〉
Brake Assist cbreak 〈cobj , 20, 512〉
Logger HMI Output clog 〈 10Hz, 100, 2048〉
ACC Controller cacc 〈cobj , 20, 2048〉
(assembly)

Table 5.1: The five components Speed Limit, Object Recognition, Brake Assist,
Logger HMI Output and ACC Controller as depicted in Figure 5.6.

Following the CBSE work flow as depicted in Figure 5.2 we discuss the

80 Chapter 5. Resource-aware development

Road Signs Enabled

Current Speed

Road Sign Speed
ACC Max Speed

Distance

ACC Enabled

BrakePedal Used

<<Assembly>>
50 Hz

10 Hz

BrakeSignal

Throttle

Brake
Assist

<< SaveComp >>

Logger
HMI Outputs

<< SaveComp >>

Object
Recognition

<< SaveComp >>

Mode Switch

<< Switch >>

ACC
Controller

<< Assembly >>

BrakeAssist

ACC

Max Speed

ACC ApplicationSpeed Limit

<< SaveComp >>

Figure 5.6: Adaptive Cruise Control.

following actions in relation to the ACC example.

• Usage profile assessment in Section 5.5.1.

• Input-sensitive component WCET analysis in Section 5.5.2.

• Allocation of components to real-time tasks in Section 5.5.3.

Γi Ni dci

Γ0 cspeed → cobj → cbreak 800
Γ1 cspeed → cobj → cacc 2000
Γ2 clog 10000

Table 5.2: The three transactions in the ACC.

5.5.1 Usage profile assessment

In our example the car OEM uses the ACC for two different car models, one
high-end car and one low-end car. In the high-end car more features are enabled
than for the low-end car.

5.5 ACC example 81

In Tables 5.3 and 5.4 we outline the usage profiles U1 and U2, i.e., the
possible values for the different inputs, with respect to the two car models.
The inputs considered are Road Signs Enabled (RSE), ACC Max speed (AMS),
Road Sign Speed (RSS), Distance (D), Current Speed (CS), ACC Enabled (AE)
and BrakePedal Used (BPU), as depicted in Figure 5.6.

Table 5.3 describes the usage profile for the high-end car where road signs
scanning can be activated or deactivated (RSE). The ACC maximum speed is
250 km/h (AMS), while the operation speed intervals for the road signs scan-
ning system is between 0 and 130 km/h (RSS). The distance for the adaptive
speed is between 0 m and 2 km. The current speed of the ACC can be between
0 and 250 km/h (CS). The adaptive behaviour of the ACC can be enabled or
disabled, switching between an adaptive and a normal cruise controller (AE),
and the brake pedal can be pressed or fully released (BPU).

Table 5.4 describes the usage profile for the low-end car where both the
adaptive part of the ACC and the road sign scanning are always disabled, re-
sulting in a normal cruise controller. As a consequence of this the distance (D),
ACC enabled (AE) and road sign speed (RSS) are always 0.

RSE AMS RSS D CS AE BPU

0,1 250 0..130 0..2k 0..250 0 0,1

Table 5.3: High-end car usage profile U1.

RSE AMS RSS D CS AE BPU

0 130 0 0 0..250 0 0,1

Table 5.4: Low-end car usage profile U2.

A usage profile is a description of the usage of the system, and a usage de-
pendent WCET is valid only in the given usage profile. It is therefore important
to describe the usage profile as accurately as possible.

5.5.2 Input-sensitive WCET analysis

The developer of the individual components performs an input-sensitive WCET
analysis that is parametrized with a usage profile. The system developer and
the domain expert make an assessment of the system usage, creating usage pro-
files for the system. During the system analysis the contract fi : U →WCET

is parameterized with the usage profile for respective car model, and the WCET
is given.

82 Chapter 5. Resource-aware development

Comp. ui U1 U2

SpeedLimit 304 284 105
ObjectRecog. 201 201 120
BrakeAssist 174 91 88
Logger. 400 303 303
ACC Controller 1241 1241 769

Table 5.5: WCETs according to the methods usage independent (ui) and usage
dependent (ud) and usage dependent with usage profiles ud(U1) and ud(U2).

To illustrate the difference in WCET for different inputs, we present both
the usage independent and usage dependent WCET in Table 5.5. We present
the usage independent WCET (ui), and the usage dependent WCET consider-
ing usage profiles U1 and U2 described in Section 5.5.1. Notice that the usage
U1 produce the same WCET as compared to the usage independent (ui) WCET
except for the components clog (Logger) and cbrake (Brake Assist). For U2 the
difference with respect to the usage independent (ui) WCET are greater.

The context-sensitive WCET analysis produces a contract fi : U →WCET

for each component ci that is parameterized with a usage. The contract for, e.g.,
cspeed (Speed Limit) consists of three predicates as outlined in Table 5.6.

Predicate for component Speed limit

RSE = 1→ WCET = 304
RSE = 0 ∧ RSS > 0→ WCET = 284
RSE = 0 ∧ RSS = 0→ WCET = 105

Table 5.6: cspeed resulting contract fspeed.

Not considering the usage potentially results in very inaccurate WCET. In
Section 6.5 we outline the detailed analysis for the component cspeed (Speed
Limit), and describe the contract.

5.5.3 Allocating component to tasks

When the system is developed and analyzed, and it has been asserted that all
timing requirements are met, the system is allocated from components to real-
time tasks, to be scheduled by a real-time scheduler. The components are allo-
cated to real-time tasks, and then task properties for each task are derived from
the allocated components.

There exists a large number of possible allocations of components to tasks.
By utilizing our framework two allocations are produced for usage profiles U1

and U2, as depicted in Figure 5.7. The framework results in a set of tasks,

5.5 ACC example 83

Figure 5.7: Allocation of components to real-time tasks with respect to the
different WCET predicted considering U1 and U2.

to which the components are allocated. We denote the resulting task set A.
We consider the strategy of allocating each component to a single task (1-to-1
allocation) to be the standard allocation. Thus, we compare our allocations to
the 1-to-1 allocation and calculate the improvement of context-switch overhead
pA and stack usage sA for all tasks.

The context switch overhead pA and stack usage sA are presented in Ta-
ble 7.4 for the task set A with respect to the different allocations. The improve-
ment is presented in parenthesis, and is calculated with respect to the 1-to-1
allocation as the worst possible allocation, and the Optimal as the best alloca-
tion.

The optimal allocation is where all components are allocated to one task.
We will show in Section 7.6 that this allocation is feasible only with input-
sensitive WCET prediction considering usage profile U2. For WCET predic-
tions with respect to usage profile U2 and for a usage independent WCET pre-
diction this allocation is not possible with respect to schedulability.

Thus, for the low-end car the car OEM can use less powerful and less ex-
pensive hardware while still guaranteeing that stipulated timing constraints are
fulfilled.

Allocation pA sA
1-1 allocation 4.6% (0%) 7644 (0%)
U1 allocation 2.4% (63%) 6020 (31%)
U2 allocation 1.1% (100%) 2384 (100%)
Optimal allocation 1.1% (100%) 2348 (100%)

Table 5.7: CPU overhead and stack usage with respect to different allocations
(improvement in parenthesis).

84 Chapter 5. Resource-aware development

The goal for the allocations depicted in Figure 5.7 is to minimize context
switch overhead, task control block size and stack size, while maintaining the
stipulated timing constraints. We discuss the numbers in Table 7.4 and the
allocations in detail in Section 7.6.

5.6 Summary

Traditional WCET analysis has been used in traditional software development
for embedded real-time systems for a long time. Examples of such develop-
ment processes are the waterfall model [Roy70] and the V-model [Pre01]. Tra-
ditional software development only considers the system view, and the devel-
opment of a system requires the system context and usage to be well known.
In contrast, the CBSE development process is divided in two different pro-
cesses; component development process, and system development processes
and interactions between the two processes. In the CBSE development pro-
cess, component development is focused on developing general components to
be used in many different systems, while the system development is focused
on reusing existing components to build a system. Thus, there is a significant
difference between the traditional and CBSE software development processes.

The problem of allocating components to tasks does not exist in traditional
systems, since traditional systems are designed with respect to tasks (i.e., pro-
cesses or threads of execution). However, when the system is developed from
reusable components, it is not obvious how these components should be, or can
be, mapped to real-time tasks. This is not a problem that limits the reusability
of the components (as with the WCET analysis) but the problem stems from
that the system is developed from existing components that may have con-
straints on how they can be allocated to tasks.

In this chapter we have outlined the usage of the methods described in
Chapters 6 and 7. We have positioned the reusable WCET analysis, and the
component to task allocation in the CBSE development process in order to
facilitate the usage of these techniques in relation to CBSE. Furthermore we
have outlined relevant definitions needed for reasoning about the problems in
Chapters 6 and 7.

Forty two

-Answer to Life, the Universe, and
Everything.

Chapter 6

Input-sensitive

execution-time analysis

In this chapter we outline two novel methods, based on a combination of static
WCET analysis and systematic search over the value space of component input
variables, for deriving the WCET behaviour of a software component. We use
the input-sensitiveness of computer software components to express a relation-
ship between their inputs and execution times. In particular we present:

• a novel approach to input parametric WCET analysis for reusable soft-
ware components.

• a novel method for deriving the values of the component inputs that gives
the WCET.

• various approaches to speed up the search over the value space, allowing
the input parametric WCET, and the WCET input values, to be quicker
derived, in some cases.

The methods are evaluated in Chapter 8, and the results show that the pro-
posed methods can express relationships between inputs and execution times
with equally high precision compared to traditional WCET analysis. The meth-
ods have been evaluated with both industrial and academic software.

85

86 Chapter 6. Input-sensitive execution-time analysis

6.1 Input-sensitive WCET analysis

To facilitate reuse, an important distinction between traditional software devel-
opment and CBSE is that individual components are not specified and laid out
according to existing other components that are supposed to integrate their ser-
vices. Every single component is specified according to a more or less general
requirements profile, so it can be reused and integrated in a number of different
contexts. Generality is a key feature of components to facilitate reuse in many
different contexts [BBB+00, BBCD+00].

In this work we use the relationship between component input and compo-
nent execution times to form a WCET contract. To facilitate reuse of WCET
estimates, different component execution times are classified with respect to
component input. A component WCET contract is defined as a set of input
classes with corresponding WCET estimates. The contract is not created with
respect to any specific component usage, but describes the timing behaviour of
the component solely with respect to its inputs.

The WCET estimate is a context-dependent property that varies depending
on component inputs, internal component state and hardware state. In this work
we only consider the parts that can be observed from outside of the component.
The component inputs are observable, but the component’s internal state and
the CPU hardware state, are not observable outside of the component.

We derive WCETs for a component with respect to input combinations.
Internal program states and hardware states will have to be considered by the
WCET analysis tool; which is outside the scope of this thesis.

For our results this implies that the estimated WCET will always be safely
overestimated.

6.1.1 Input value space partitioning

Given a component ci that has a provided interface Pi with n inputs, such that
Pi = {pi,0, pi,1, ..., pi,n−1}. Each provided input pi,j is associated with a vari-
able vi,j and a value domain vi,j ∈ Vi,j . The set of variables vi,0, vi,1, ..., vi,n−1

represent an input value space as a set of input value combinations.

Definition 6.1. An input variable vi,j represents the value of the provided input

pi,j , and Vi,j represents the possible values for vi,j ∈ Vi,j .

Input value combinations for a provided input interface Pi = {pi,0, pi,1}
are described as tuples 〈vi,0, vi,1, . . . , vi,n−1〉. Consider the two input variables
vi,0 and vi,1, with the value domains Vi,0 = {v : 0 ≤ v ≤ 1} and Vi,0 = {v :

6.1 Input-sensitive WCET analysis 87

0 ≤ v ≤ 1}, then the possible input variable combinations are described by the
input value space Di = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}.

Definition 6.2. An input value space Di is a set of input value combinations,

as formalized in 6.1.

Di = {〈vi,0, vi,1, ..., vi,n−1〉 : vi,j ∈ Vi,j} (6.1)

An input combination tuple d represents one combination of single values
on the provided inputs. Consider a provided interface Pi = {pi,0, pi,1} and the
input combination d = 〈0, 1〉 represents that the input pi,0 is given the value 0
and pi,1 is given the value 1.

Definition 6.3. A tuple d = 〈vi,0, vi,1, ..., vi,n−1〉 describes an input combi-

nation for the provided interface Pi.

Di represents all possible value combinations tuples d for a component ci.
In the input-sensitive WCET analysis, the input value space Di is partitioned
in subsets. A predicate φ considering the input value space Di is used for
partitioning. For example, the predicate φ may put restrictions on the input
variables vi,0, vi,1 and vi,2 such that φ = [0 ≤ vi,0 < 1, 0 ≤ vi,1 < 1, 0 ≤
vi,2 < 2].

In this case, each tuple d ∈ Di is restricted to the single value 0 for vi,0

and vi,1 and to the values 0 and 1 for vi,2. A predicate φ may also express
dependencies between input variables, e.g., φ = [1 ≤ vi,j < 3, vi,k < vi,j].

Definition 6.4. φ is a predicate on an input value space Di, and φ(d) notates

that the tuple d fulfills φ.

Di|φ represents the tuples in Di that fulfill the predicate given in φ. Thus,
Di|φ is a condition subset of Di such that all tuples must fulfills the predicate
φ, and all tuples d that violates φ are removed from Di|φ.

Definition 6.5. An input value space partition Di|φ is a condition subset of all

value combination tuples with respect to a predicate φ, as formalized in 6.2.

Di|φ = {d ∈ Di : φ(d)} (6.2)

If φ defines dependencies between input variables, e.g., φ = [vi,0 < vi,1]
some method must be used for deriving the possible values combination of the
input value space partition. An examples of one such method is, e.g., constraint
programming with finite domain constraints [RvBW06].

88 Chapter 6. Input-sensitive execution-time analysis

Figure 6.1 outlines a simple algorithm for building an input value space
partition by resolving dependencies between input variables. The algorithm
iterates through all input value combinations d ∈ Di and removes those that
violate the predicate φ to derive Di|φ.

For example, consider two 8-bit integer input variables vi,0 and vi,1 and the
predicate φ = [1 ≤ vi,0 ≤ 2, vi,1 < vi,0]. The input value space partition Di|φ

consists of a set of value combination tuples 〈vi,0, vi,1〉 and from the predicate
φ we see that vi,0 can assume the values 1 or 2. At the same time vi,1 must be
lower than vi,0. Thus the input value space partition will consist of the three
tuples Di|φ = {〈1, 0〉〈2, 0〉〈2, 1〉}.

The number of possible concrete input tuples for the initial input value
space is |Di| = 28 · 28 = 216, and the resulting number of possible concrete
input tuples in the input value space partition |Di|φ| = 3.

1. BEGIN build_value_space_partition
2. Di = vi,0 × vi,1 × · · · × vi,n−1;

3. Di|φ = Di ;
4. DO
5. FOREACH tuple d ∈ Di|φ DO
6. IF d violates φ THEN
7. remove d from Di|φ ;
8. FI
9. END FOREACH
10. UNTIL all dependencies in φ are solved ;
11. RETURN Di|φ ;
12. END build_value_space_partition

Figure 6.1: Building an input value space partition.
Note that an input value space partition Di|φ, associated with a predicate

φ, is always a subset of Di such that |Di|φ| ≤ |Di|.

Definition 6.6. |Di| is the concrete number of input combination tuples in the

set Di.

The number of possible non-empty input value space partitions |P(Di)|
is then 2|Di| − 1. The powerset P(Di) contains all subsets Di|φ ⊆ Di. An
input value space partition |Di| = 1 is denoted single valued input value space
partition.

Each input value space partition Di|φ can be associated with two execution
times, WCET (Worst-Case Execution Time) and BCET (Best-Case Execution

Time).

Definition 6.7. WCET i|φ = est_wcet(ci,Di|φ) is an estimate of the WCET

6.1 Input-sensitive WCET analysis 89

for an input value space partition Di|φ with respect to a software component

ci.

Definition 6.8. BCET i|φ = est_bcet(ci,Di|φ) is an estimate of the BCET

for an input value space partition Di|φ with respect to a software component

ci.

Due to large number of possible program states precision may be lost in a
WCET-analysis tool, generating large overestimations for WCET and underes-
timations for BCET. A smaller input domain generates fewer program states;
thus, limiting the input domain Di|φ normally increases the precision of the
WCET estimate. Thus the WCET estimates normally become more accurate
when analyzing smaller parts of the behaviour by limiting the inputs:

est_wcet (ci,Di) ≥ max
∀φDi|φ

(

est_wcet
(

ci,Di|φ

))

6.1.2 Partitioning primitives

We define a set of primitives used in pseudo-code examples throughout the rest
of this chapter.

Primitive 6.1. new_D (Di, φ) → Di|φ creates a new input value space par-

tition Di|φ with respect to an initial input value space partition Di and a pred-

icate φ.

Primitive 6.2. new_vc (φ, vi,j , predicate) → φ′ created a new predicate φ′

with respect to the predicate φ and the additional predicate on vi,j , i.e., φ′ is

more restrictive than φ.

Primitive 6.3. select_var
(

Di|φ, strategyi

)

→ vi,j selects the jth input vari-

able vi,j to be divided from the input value space partition Di|φ. An input

variable vi,j is chosen for division depending on strategyi and such that vi,j

can be further divided, i.e., vi,j is not restricted to a single value by φ. Exam-

ples of variable selection strategies are:

• Last used the same input variable is chosen as last division if possible.

• Next the next possible input variable is chosen.

If no input variable fulfills these criteria, then select_var(Di|φ, strategyi)
will return nil.

90 Chapter 6. Input-sensitive execution-time analysis

Primitive 6.4. min_value (vi,j , φ)→ l returns the lowest value l of vi,j with

respect to the predicate φ.

Primitive 6.5. max_value (vi,j , φ) → u returns the highest value u of vi,j

with respect to the predicate φ.

Notice that we use “WCET” and “WCET estimate” interchangeably. If
nothing else is mentioned, we always mean “WCET estimate”. The same ap-
plies for BCET.

In examples we may use the notation vi,j ← {l..u} instead of l ≤ vi,j ≤ u

for the sake of readability.

6.1.3 WCET analysis tool assumptions

In order to restrict the problem we make a set of assumptions with respect to
the WCET analysis tool used in our proposed methods. We explicitly state the
assumptions below.

Let real_wcet(ci,Di|φ) be the real WCET for the component ci and the
input value space partition Di|φ. For the input-sensitive WCET analysis to
work correctly the following assumptions should hold:

Assumption 6.1. The WCET calculation should never underestimate the

WCET, i.e., real_wcet(ci,Di|φ) ≤ est_wcet(ci,Di|φ) should be true for any

Di|φ.

Assumption 6.2. A WCET calculation run with a single-valued input value

space partition should produce a WCET estimate equal to the time for

running the program with these inputs, i.e., when |Di|φ| = 1, then

est_wcet(ci,Di|φ) = real_wcet(ci,Di|φ).

Assumption 6.3. For any two predicates φ and φ′, and the input value space

partitions Di|φ and Di|φ′ , such that Di|φ′ ⊆ Di|φ, then est_wcet(ci,Di|φ′) ≤
est_wcet(ci,Di|φ) should hold.

Assumption 6.4. For any two predicates φ and φ′, and the input value space

partitions Di|φ and Di|φ′ , such that Di|φ′ ⊆ Di|φ, then est_bcet(ci,Di|φ′) ≥
est_bcet(ci,Di|φ) should hold.

Assumption 6.5. For any input variable’s value domain vi,j there should be

a natural ordering such that 0 ≤ vi,j < n.

Assumption 6.6. Each input variable vi,j can only be assigned a finite set of

discrete values.

6.2 Reusable WCET analysis 91

We claim that assumptions 6.1, 6.3 and 6.4 are sound and valid for most
type of today’s input-sensitive WCET analysis tools. However, assumption 6.2
might not always be true in reality due to imprecision introduced by a WCET
analysis tool. In order for assumption 6.2 to hold, the initial hardware state and
internal program states must be known. Both these aspects are internal to the
component and are not visible outside of the component. Since a component
can be delivered as a pre-compiled entity, where the only visible parts are its
input variable, the WCET tool will have to deal with the internal states. This
leads to that the estimated WCET most likely will be overestimated. This
is because the WCET analysis must consider the worst possible combination
of hardware and internal states. Similarly, the BCET will be underestimated.
However, technical details of WCET analysis tools are outside of the scope of
this thesis.

6.2 Reusable WCET analysis

For components that are reused in different systems it is often not very mean-
ingful to perform WCET analysis. This is because traditional WCET analysis
considers only one specific usage of a system. Each component can be ana-
lyzed with respect to a specific system and usage; however that prediction is
only valid for that specific usage, and the usage for a software component can
vary a lot. To predict the execution time with high accuracy of a complex com-
ponent, components must be reanalyzed for every new usage - a very costly
activity. Furthermore, it is not certain that the source code is available for com-
ponents as they may be delivered as binaries by subcontractors. In this case
analysis become even more costly [Kor99].

Our viewpoint is to make the analysis both reusable, and tight. To achieve
this we propose a component contract that can be parameterized with usage-
information to get the usage dependent WCET.

Reusable software components

The key to reuse is generality and context freeness. Often only parts of the
component behaviour is used in a specific system and context. Therefore gen-
erality and context-freeness leads to an increasing inability to make accurate
predictions of the component behaviour for each specific use-case.

By designing a component specifically for one particular usage the compo-
nent can be analyzed and predicted with high accuracy, but not always reused.

92 Chapter 6. Input-sensitive execution-time analysis

In order to support reuse and at the same time support accurate predictions,
new parameterizable methods and frameworks are needed [PD96].

Components are augmented with information that can be used to accurately
predict the WCET by parameterization of the prediction with respect to differ-
ent use cases. The WCET is the longest time it takes to execute an execution
path of a program. If the WCET execution path of that program can not be
executed due to limitations on the inputs, then the usage dependent WCET is
reasonably lower.

Components for embedded systems especially need to be reusable both
with respect to functional and extra-functional specifications, since the main
idea in component-based software engineering is to quickly assemble systems
out of pre-fabricated reusable components.

If a piece of software is analyzed with a usage independent WCET the
predictions may be overly pessimistic resulting in the system being under uti-
lized. Predictions with respect to the actual behaviour allows for a considerably
tighter WCET than would be predictable from the usage independent WCET
analysis. In a large software system the usage independent WCET may po-
tentially be orders of magnitude inaccurate compared to the usage dependent
WCET.

The reusable software component concept

Lets assume two components ca and cb, where each component has a set of
inputs Pa = {pa,0, pa,1} and Pb = {pb,0, pb,1}. The input value spaces Da

and Db represents the possible input value combinations. Analyzing these
components considering the input value spaces Da and Db give the worst-
case execution times est_wcet(ca,Da) = 1200ms and est_wcet(cb,Db) =
2200ms.

Lets assume that the components ca and cb are part of a system where
their input values are limited due to a specific usage. These limitations
can be described with predicates φ and φ′, and the possible input combina-
tions are the input value space partitions Da|φ and Db|φ′ respectively. The
resulting usage dependent WCETs are est_wcet(ca,Da|φ) = 500ms and
est_wcet(cb,Db|φ′) = 200ms as depicted in Figure 6.2.

The composite WCET of components ca and cb are 900ms for the usage
Da|φ and Db|φ′ , as compared to the usage independent (Da and Db) WCET
3400ms. The difference is quite large, and in a system with many components
the difference between the context dependent and context-free WCETs can po-
tentially be quite large, which leads to costly over dimensioning of the system
resources.

6.2 Reusable WCET analysis 93

Figure 6.2: Context free vs. context dependent component behaviour.

We define a contract as a function of a set of an input value space partition
to determine the WCET for that specific usage scenario. The reusable WCET
analysis can be divided in three steps, namely:

Component WCET analysis Analyzing the WCET of the component with
respect to input.

Finding input value space partitions Finding input value space partitions in
which all input combinations lead to similar execution times.

Parametric component contracts Creating parametric contracts that express
a relationship between input value space partitions and WCETs.

6.2.1 Component WCET analysis

We can not know the usage of a component before the component has been
deployed, therefore it is not meaningful to create input value space partitions
with respect to possible usages before deployment. However, we can acquire
knowledge of the WCET and BCET with respect to different input value space
partitions. Dividing input value space partitions to minimize the difference
between WCET and BCET increases accuracy for the different input variable
combinations.

94 Chapter 6. Input-sensitive execution-time analysis

Finding input value space partitions

The difference between WCET i|φ and BCET i|φ of an input value space par-
tition Di|φ is an upper approximation of the difference between the WCET and
BCET for a component ci, which indicates the largest difference between two
execution times within the input value space partition. This is an indicator of
how close the execution times are for the different input value combinations
within the same input value space partition Di|φ. A challenge is to select input
value space partitions Di|φ in such a way that each different execution time is
mapped to only one input value space partition.

In other words, an input value space partition Di|φ should be chosen such
that every input combination tuple d ∈ Di|φ should produce similar execution
times, i.e., est_wcet(ci,Di|φ) is close to est_bcet(ci,Di|φ) and the input value
space partitions should be as large as possible, i.e., encompass as many input
combinations as possible.

When WCET analysis is performed with restrictions on the input parame-
ters, it is desirable to not analyze all single value input combinations, but rather
a set of input value space partitions Di|φ ⊆ Di, such that:

⋃

∀φ

Di|φ = Di

Definition 6.9. The accuracy of an input value space partition Di|φ is the

difference between the highest and lowest execution time within that input value

space partition, compared to the context-free WCET and BCET, as formalized

in Equation 6.3.

1−
WCET i|φ −BCET i|φ

WCET i −BCET i
(6.3)

The accuracy is an indication of the difference of the execution times for
each input combination in the input value space partition Di|φ. Less difference
between WCET i|φ and BCET i|φ leads to higher accuracy. Consider the Fig-
ure 6.3, all “real execution times” are represented by an estimated WCET and
an estimated BCET. If there is a large difference between the estimated WCET
and BCET, then the accuracy for the input value space partition Di|φ is low;
and Di|φ should be chosen differently.

Note that the “real execution times” in an input value space are unknown,
and an estimation of the WCET with respect to an input value space parti-
tion est_wcet(ci,Di|φ) results in one single estimate. Also the estimation of

6.2 Reusable WCET analysis 95

BCET, est_bcet(ci,Di|φ) results in a single estimate. Thus, the only times
known for an input value space partition Di|φ are WCET i|φ and BCETa|φ.

Figure 6.3: Input value space partition accuracy over the input space partition
Di|φ and execution time.

The sum of the difference between WCET i|φ and BCET i|φ of all in-
put value space partitions should be minimized to get the highest accuracy for
a component ci. In the extreme to achieve the greatest accuracy, each input
value space partition contains one single element; a good solution is therefore
a trade-off between acceptable accuracy and the number of input value space
partitions. If the difference between WCET i|φ and BCET i|φ of each in-
put value space partition is larger than the required accuracy the input value
space partition should be chosen differently. The acceptable difference be-
tween WCET i|φ and BCET i|φ of the input value space partition depends on
the desired accuracy of the reusable analysis.

Each WCET analysis consumes some time, and it is desirable to achieve
highest possible accuracy with lowest possible effort. Thus, trying to keep the
number of runs with a WCET analysis tool low, is important to lower the effort
of the outlined approach.

The accuracy of a whole component WCET prediction is the sum of the
accuracy of each input value space partition, where each input value space
partition is weighted with respect to its size.

Definition 6.10. Component WCET prediction accuracy is the sum of all

weighted input value space partition accuracy, as formalized in Equation 6.4.

96 Chapter 6. Input-sensitive execution-time analysis

Figure 6.4: Binary search for WCET over the input domain represented by
input variables vi,0 and vi,1. Each gray block indicates that the desired accu-
racy has been achieved, and the figure shows how the search tree expands, and
divides the inputs.

6.2 Reusable WCET analysis 97

∑

∀φ

((

1−
WCET i|φ −BCET i|φ

WCET i −BCET i

)

·
|Di|φ|

|Di|

)

(6.4)

The search for input value space partitions can be terminated when any of the
following criteria are fulfilled:

1. All input value space partitions are single valued, i.e., |Di|φ| = 1.

2. A pre-defined accuracy is achieved.

3. A pre-defined effort is reached.

6.2.2 Binary search algorithm description

To find accurate input value space partitions with least effort and in bounded
time we propose a binary tree search approach, dividing the input space into
new input value space partitions until the desired accuracy has been found,
as outlined in Figure 6.4. The only data initially known is the longest and
shortest execution time for the input value space partition Di (the WCET i

and BCET i). There are several other possible approaches to solve similar
search problems, such as simulated annealing [KGV83] and evolutionary algo-
rithms [Hol92].

In previous sections we have described a general framework for deriving
WCETs with respect to component inputs. In this section we give an example
of a concrete search heuristics for deriving input-sensitive WCET. The argu-
ments to the algorithm, described in Figure 6.5, are the component ci, the input
variables’ input value space partition Di, and the initial predicate φ. We use
the primitives introduced in Section 6.1.2 to describe the algorithm.

First an initial input variable is chosen for division. The input variable
is chosen with the primitive select_var and one of the strategies next or
last_used. The highest and lowest values of the input variable v are acquired
through the max_value(v, φ) and min_value(v, φ) primitives. The highest
and lowest values are for creating two new predicates φ′ and φ′′. The pred-
icates are used for dividing the input value space partition into two disjunct
input value space partitions Di|φ′ and Di|φ′′ . To guarantee that all partitions
simultaneously stored in the wcet_list are disjunct, i.e., the same input value
combinations should only occur in one partition, the input variables are se-
lected in a predefined order determined by select_var(Di|φ, strategyi).

98 Chapter 6. Input-sensitive execution-time analysis

The new input value space partitions are added to the wcet_list. The
wcet_list contain the “leaves” in the binary tree and the wcet_list is sorted
with, e.g., one of the following sorting strategies:

Worst accuracy the input value space partition with worst accuracy, i.e., largest
difference WCET−BCET , is returned and removed from the wcet_list.

Best accuracy the input value space partition with greatest accuracy, i.e., small-
est difference WCET − BCET , is returned and removed from the
wcet_list.

Highest WCET the input value space partition with highest WCET is re-
turned and removed from the wcet_list.

Last used the input value space partition latest added is returned and removed
from the wcet_list.

As the wcet_list is populated, several input value space partitions are el-
igible for further division. The next input value space partition is chosen de-
pending on the sorting strategy of the wcet_list. An input value space partition
Di|φ is chosen with wcet_less.pop(sort_strategy) such that the first element
is returned and removed from the wcet_list such that the following criteria are
fulfilled:

1. there exists at least one input variable vi,j that can be further divided
with respect to φ.

2. the accuracy of Di|φ is lower than the desired accuracy.

If there does not exist an input value space partition that fulfills these cri-
teria, then wcet_list.pop(sort_strategy) will return nil. An input variable is
chosen and used for creating new predicates. The algorithm iteratively refines
the input value space partitions. Finally, the algorithm terminates when:

1. desired accuracy for all input value space partitions is achieved, OR

2. all input value space partitions are fully divided, OR

3. highest effort is reached (e.g., longest allowed search time has passed).

6.2 Reusable WCET analysis 99

1.BEGIN find_value_space_partitions(ci, Di, φ, strategyi, max_effort)
2. Di|φ ← new_D(Di, φ);
3. effort = 0;
4. v ← select_var(Di|φ, strategyi);
5. WHILE v 6= nil ∧ effort < max_effort DO

6. l← min_value(v, φ);
7. u← max_value(v, φ);
8. φ′ ← new_vc(φ, v,′′ l ≤ v < (l + (u − l)/2)′′);
9. φ′′ ← new_vc(φ, v,′′ (l + ((u− l)/2) ≤ v < u′′);
10. Di|φ′ ← new_D(Di, φ′);

11. Di|φ′′ ← new_D(Di, φ′′);
12. WCET i|φ′ ← est_wcet(ci, Di|φ′);

13. WCET i|φ′′ ← est_wcet(ci, Di|φ′′);
14. BCET i|φ′ ← est_bcet(ci, Di|φ′);
15. BCET i|φ′′ ← est_bcet(ci, Di|φ′′);
16. wcet_list.insert(WCET i|φ′ , BCET i|φ′ , Di|φ′);
17. wcet_list.insert(WCET i|φ′′ , BCET i|φ′′ , Di|φ′′);
18. Di|φ ← wcet_list.pop(sort_strategy);
19. /*φ is the predicate of Di|φ*/

20. v ← select_var(Di|φ, strategyi);
21. increase effort;
22. END WHILE

23. RETURN wcet_list;
24.END find_value_space_partitions

Figure 6.5: Finding input value space partitions with binary search algorithm.

6.2.3 Approaching parametric WCET

Parametric WCET is an approach to execution time analysis where the WCET
is expressed as a mathematical expression parameterized with inputs and possi-
bly other context parameters. Current problems with fully automatic paramet-
ric WCET relates to its very high complexity in terms of state space. Several
simpler approaches only parameterize input variables that affect loops, which
leads to potentially lower accuracy compared to our approach due to that they
disregard many other program effects (e.g., mutually excluding program parts).

Our approach categorizes WCETs with respect to input values. The gran-
ularity depends on the effort and time put into finding value space partitions
and the creation of WCET contracts. The approach is exact in the sense that
it considers the whole program flow and relates the execution time to their
corresponding input values. The complexity is related to the search depth, al-
lowing different accuracy (and complexity). Thus, by running the algorithm
a short time, a less accurate yet still reusable parameterizable WCET may be
achieved; while running the algorithm longer achieves higher accuracy.

All parameterizable analyses must be parameterized with some informa-
tion, i.e., the parameters. In our case we define a contract to be parameterized

100 Chapter 6. Input-sensitive execution-time analysis

with a usage profile. A usage profile consists of an input value space parti-
tion defining the value combinations of the specific usage, a probability mass
function with occurrences of value combinations for all inputs defined in the
contract and a priority threshold for ignoring low probability WCETs.

Usage profile

In the “real” physical world, distinct modes exist and are often engineered
into systems, for example, as modes of operation. We hypothesize that modes
are significant discriminators of WCET and can be utilized for more accurate
WCET modeling of systems constructed out of software components.

Except the natural limitations given by, e.g., a variable’s type, the variable’s
possible input values can be further constrained by the system developer. For
example, a variable speed declared as an 8-bit unsigned integer can hold inte-
ger values between 0 and 255. Assuming that speed holds the value of a vehicle
speed sensor, and the vehicle can not go faster than 200 km/h, then speed can
be further constrained to speed ← {0..200}. The number of possible values
that the variable can assume is called the value domain size. Thus, we can use
the concept of input value space partitions with predicates to define a set of in-
put combinations as a usage. We denote a predicate φU to define a usage. For
the component ci with the input space partition Di a usage is denoted Di|φU .
Thus, the input value space partition Di|φU describes the possible values of a
certain usage.

Definition 6.11. A usage profile U = 〈φU ,P , pt〉 is a predicate φU connected

with a probability mass functionP and 0 ≤ pt < 1 is a given priority threshold

to ignore low probability WCETs.

The probability mass function for the occurrence of the input combination
tuples d ∈ Di|φU , is outlined in Equation 6.5, where Pr(d) is the probability
of the occurrence of the input value combination d. The sum of the proba-
bilities of all input combinations in the usage profile equals to 1, as outlined
by Equation 6.6. Consider the example in (Figure 6.6), where the probability
mass function of a usage profile Di|φU is depicted as the light gray area. The
dark gray area is the probability of a subset Di|φ ⊆ Di|φU .

The probability for an input value space partition Di|φ is given by Π(Di|φ),
and is the probability of the occurrence of all input combination tuples in the
intersection between the input value space partition and the usage profile, as
outlined in Equation 6.7.

6.2 Reusable WCET analysis 101

P(d) =

{

Pr(d) if d ∈ Di|φU ,

0 if d 6∈ Di|φU .
(6.5)

1 =
∑

d∈D
i|φU

P(d) (6.6)

Π(Di|φ) =
∑

d∈(Di|φ∩D
i|φU)

P(d) (6.7)

The sum of the probabilities of all input combinations in a value partition
Di|φ is the probability of that input value space partition.

Figure 6.6: Probability mass function of a usage profile Di|φU . The dark gray
area is the probability of a subset Di|φ ⊂ Di|φU .

Component WCET contracts

The search algorithm may result in a large number of input value space par-
titions if high accuracy is required. In the worst case, the number of input
value space partitions is equal to the number of input combinations. It is de-
sired to create as few input value space partitions as possible and yet acquire

102 Chapter 6. Input-sensitive execution-time analysis

as high accuracy as possible. Too many input value space partitions will result
in an unmanageable amount of information. Consider two 32-bit integer inputs
rendering 264 possible input combinations, and equally many corresponding
WCETs.

To lower the number of input value space partitions, two input value
space partitions Di|φ′ and Di|φ are merged if their associated WCETs are
the same, i.e., Di|φ′ ∪ Di|φ|WCET i|φ′ = WCET i|φ. Actually two input
value space partitions can be merged if their corresponding WCETs are close
enough to maintain the desired accuracy, such that Di|φφ′ = Di|φ′ ∪Di|φ and
max(WCET i|φ′ , WCET i|φ)−min(BCET i|φ′ , BCET i|φ) ≤ accuracy.

A component contract is used for acquiring a WCET with respect to a us-
age. The contract is parameterized with the usage profile. The parameteriza-
tion match the input combinations of the usage Di|φU with the input combina-
tions of all input value space partitions Di|φ. All input value space partitions
Di|φ ∩Di|φU 6= ∅ are referred to as active input value space partitions, i.e., all
input value space partitions Di|φ that are active and their respective WCETs
are eligible for the usage dependent component WCET. The usage dependent
WCETU is defined in Equation 6.8.

WCETU = max
(

WCET i|φ

)

∀r(Di|φ∩Di|φU 6=∅)

(6.8)

A component contract is a function of a usage U that results in a usage
dependent WCET (Equation 6.9).

fU : Di|φU → max
(

WCET i|φ

)

∀r(Di|φ∩Di|φU 6=∅)

(6.9)

The usage dependent WCET together with the probability Π(Di|φ) of a
WCET allows for a contract user to disregard WCETs with low probabilities
in a specific usage. Thus, the component contract can be defined as a func-
tion of an input value space partition and a priority threshold pt disregarding
inputs with low probability, as defined in Equation 6.10. Note that the priority
threshold may be set to 0 for critical systems, thus considering all WCETs.

fU : Di|φU , pt→ max
(

WCET i|φ

)

∀r((Di|φ∩Di|φU 6=∅)∧(Π(Di|φ)≥pt))

(6.10)

6.3 Finding WCET input combination 103

Contract composition

Each input value space partition can be associated with a set of possible out-
puts. Each component produces output given the input such that the required
interface Ri of component ci is a function of the input fi : Pi → Ri. By adding
this information to the predicates the approach is composable since one compo-
nent will automatically give a component usage scenario to the next connected
component.

Abstract interpretation can be used to make a safe over-approximation of
limitations on outputs given limitations on inputs by analyzing possible values
of the output variables, however in most current tools, all probabilities are lost.
SWEET [GESL06] is one tool that can produce restrictions on the output with
respect to the input, however, without probabilities.

6.2.4 Algorithm complexity

The binary search algorithm will have a worst-case behaviour of:

O(2 · |Di| − 1) = O(2 · |Di|) = O(|Di|)

This is because the algorithm will analyze all leaves in the tree resulting
in |Di| plus all the branches in the tree |Di| − 1, resulting in a complexity of
O(|Di|+ |Di| − 1), resulting in a worst case behaviour of O(|Di|).

6.3 Finding WCET input combination

The second novel method described in this chapter is an approach to find the
input combination that generates the worst-case path for a given input partition.

Knowing the input value combinations that result in the worst-case be-
haviours enriches the user’s knowledge about the software component of in-
terest. It can be used for identifying bottlenecks, and hence is very useful for
further optimizing the software component. Moreover, to cope with the com-
plexity of the software and hardware of interest, WCET analysis tools often
make over-approximations in their inherent subanalyses, which may result in
non-tight WCET estimates [FH08]. Thus, knowing the WCET input values
allows the user to get an estimate on the imprecision introduced by the WCET
analysis. The knowledge of this input combination can be used for steering
measurement-based timing analysis approaches to select input value combina-
tions that produce long execution times.

104 Chapter 6. Input-sensitive execution-time analysis

Similar to the search algorithm described in the previous sections, we sub-
divide the input value space partitions. However, instead of subdividing until
a desired accuracy has been achieved for every branch, here we subdivide the
branch or branches that exhibits the worst-case execution time.

The algorithm is presented in Figure 6.7. It works by iteratively calculating
WCET estimates for different partitions of the program’s input value space.
In each iteration the part of the input value space with the largest calculated
WCET estimate, which has not yet been subdivided, is selected and subdi-
vided into two smaller partitions for which WCET estimates are calculated.
The process continues until the selected partition corresponds to only one con-
crete input value combination. The partition then holds the WCET input value
combination and is returned.

Basically we search for an input value space partition Di|φ such that:

|Di|φ| = 1 ∧
(

WCET i|φ ≥WCET i|φ′

)

∧ φ 6= φ′

6.3.1 Algorithm description

The arguments to the algorithm described in Figure 6.7 are the behaviour of the
component under analysis ci, an input value space partition Di and the initial
predicate φ. We use the primitives described in Section 6.1.2 to describe the
algorithm.

An input variable is chosen for dividing the predicate in two parts. In order
to as quickly as possible search for individual input combinations the last_used

strategy is used in the search for the WCET input combination. The predi-
cate φ is set to divide Di in half; and the WCET for the resulting input value
space partition is estimated and added to the wcet_list. Input value space
partitions inserted in the wcet_list are sorted according to the highest WCET

strategy. When removing an item from the queue the input value space par-
tition with the largest WCET estimate will be returned and removed from the
queue. To guarantee that all partitions simultaneously stored in the wcet_list

are disjunct, i.e., the same input value combinations should only occur in one
partition, the input variables are selected in a predefined order determined by
select_var(Di|φ, strategyi). Moreover, the currently selected input variable’s
range is divided down into a single value before selecting the next input vari-
able. The algorithm iteratively refines the input value space partitions until one
input value space partition with the size |Di|φ| = 1 has a larger WCET than all
input value space partitions with the size |Di|φ| > 1.

6.3 Finding WCET input combination 105

1.BEGIN find_WCET_input_value(ci, Di), φ
2. Di|φ ← new_D(Di, φ);
3. v ← select_var(Di|φ,′′ last_used′′);
4. WHILE v 6= nil DO
5. l← min_var(v, φ);
6. u← max_var(v, φ);
7. vcp ← new_vc(φ, v,′′ l ≤ v < (l + (u− l)/2)′′);
8. vcq ← new_vc(φ, v,′′ (l + ((u− l)/2) ≤ v < u′′);
9. Di|φ′ ← new_D(Di, vcp);
10. Di|φ′′ ← new_D(Di, vcq);
11. WCET i|φ′ ← est_wcet(ci, Di|φ′);

12. WCET i|φ′′ ← est_wcet(ci, Di|φ′′);
13. wcet_list.insert(WCET i|φ′ , Di|φ′);
14. wcet_list.insert(WCET i|φ′′ , Di|φ′′);

15. Di|φ ← wcet_list.pop(“largestwcet′′);
16. /*φ is the predicate of Di|φ*/

17. v ← select_var(Di|φ,′′ last_used′′);
18. END WHILE

19. RETURN Di|φ;
20.ENDfind_WCET_input_value

Figure 6.7: Finding WCET input combination with binary search algorithm.

6.3.2 Example

Figure 6.8 illustrates how the algorithm works. The component ci has a pro-
vided interface Pi with three inputs {pi,0, pi,1, pi,2} and has been given the
initial input value space of 〈vi,0 ← 0..15, vi,1← 0, vi,2 ← 0..1〉 which corre-
sponds to 16 · 1 · 2 = 32 concrete input value combinations. Input variable vi,0

is first selected to do range division upon. This produces two new partitions for
which WCET calculations are made. The 〈vi,0← 0..7, vi,1← 0, vi,2← 0..1〉
partition gives the largest WCET estimate 72 and the analysis therefore con-
tinues with this partition during the next iteration. This time vi,0’s range is
subdivided into 0..3 and 4..7, both producing partitions for which WCET esti-
mates are calculated.

The division of vi,0 continues until the value of vi,0 which produces the
largest WCET estimate when vi,1← 0 and vi,2← 0..1 has been found. Since
vi,1 now only can hold a single value, the next input variable selected is vi,2.
The division of vi,2’s range produces two partitions, for which 〈vi,0←5, vi,1←
0, vi,2 ← 1〉 gives the largest WCET 70. There are no other partitions in the
wcet_list with a larger WCET estimate, so the iteration stops and the partition
is returned.

Note that the gray boxes in Figure 6.8 has a different meaning compared to
Figure 6.4.

106 Chapter 6. Input-sensitive execution-time analysis

Figure 6.8: Example of basic algorithm execution.

6.4 Approaches for faster termination 107

6.3.3 Algorithm complexity and back-tracking

Our algorithm will have a best-case behaviour of O(2·log |Di|) = O(log |Di|)
where Di is the input value space. This is because in each step of the algorithm
the size of the currently selected input value space partition is divided by two.
In many cases this will also be the algorithm’s worst-case behaviour, since
the worst-case input values are likely to be found in one of the two partitions
originating from the currently selected one.

Unfortunately, due to over-approximations made in the WCET analysis,
this is not always true, i.e., sometimes both partitions originating from the cur-
rently selected partition get a WCET estimate smaller than, in the wcet_list al-
ready stored, WCET estimate. The analysis then has to back-track and continue
with this partition. For example, assume that the 〈vi,0← 5, vi,1← 0, vi,2← 1〉
partition in Figure 6.8 gave a WCET estimate of 65 instead of 70. The anal-
ysis should then continue with 〈vi,0 ← 6..7, vi,1 ← 0, vi,2 ← 0..1〉 instead of
terminating. In the worst-case this type of back-tracking gives that a WCET
calculation must be made for each concrete input value combination plus the
WCET calculation for the binary search. Thus, the algorithm has a worst-case
behaviour of O(|Di|+ 2 · log |Di|) = O(|Di|).

To reduce the amount of back-tracking, it is important that the WCET cal-
culation is tight, i.e., est_wcet(ci,Di|φ) is close to real_wcet(ci,Di|φ) even
though |Di|φ| is large. However, if the complexity for deriving a tight WCET
estimate is significantly higher than deriving a less tight WCET estimate, some
back-tracking might still be worth doing.

6.4 Approaches for faster termination

A potential problem with both the algorithms outlined in Sections 6.2 and 6.3 is
that many WCET calculations might be needed, especially when |Di| is large.
This section outlines some approaches for faster algorithm termination.

6.4.1 Slicing the input space

A component may have inputs where different inputs may affect the execution
time, and inputs that do not affect the execution time. To determine which
input variables that affect the execution time, and which do not, we make the
observation that an input variable’s different values may cause the execution
time variations in two different ways:

108 Chapter 6. Input-sensitive execution-time analysis

Conditional branch instructions: The value of an input variable affects the
outcome of conditionals expressions in the software which in turn de-
termines how many times an instruction can be executed. This includes
all conditional instructions in the software such as loop exit conditions,
switch or if-statements. The input variables’ different values may decide
how many times different instructions can execute and in what order they
can be executed.

Input-sensitive instructions: The value of an input variable makes an instruc-
tion execute with different values, and some of these values result in a
different execution time for the instruction compared to other values.
This might happen, for example, if the values to the instruction affect
where in memory a certain load executes (given that different memory
addresses have different access time). Another example is arithmetic
instructions with variable execution time due to argument values.

Practically to find which inputs that affect Conditional branch instructions

or Input-sensitive instructions we use slicing. Slicing is a technique for simpli-
fying programs by focusing on selected aspects of semantics. The process of
slicing deletes those parts of the program which can be determined to have no
effect upon the semantics of interest [Wei81]. We perform slicing with respect
to the above stated instructions, and in our methods we identify all input vari-
ables which are part of the resulting slice. Only those variables may cause the
program execution time to vary due to their input value assignments.

6.4.2 Extreme value heuristic

A general observation is that for many programs it is more likely that either
the smallest or the largest value in an input variable’s value domain will be
the value that gives the WCET. This is especially true if the outcome of loop
conditions are dependent on this input variable. As an illustrative example
consider the min and max input variables in Figure 6.9. The largest number of
loop iterations will occur when min is as small as possible and max is as large
as possible.

Our extreme-value search heuristic builds on this observation. It modifies
the algorithm outlined in Figure 6.7 as follows: whenever a variable v with a
range l..u is selected for the first time it will be divided into three new ranges;
l..l, l+1..u−1, and u..u, each producing an input value space partition for
which WCET estimates are calculated. If the medium range (l+1..u−1) is
selected for further division, normal binary range division is performed.

6.4 Approaches for faster termination 109

1. // Inputs that may be given input values

2. int a[100];

3. int min=0, max=0, index=0, val=0, sum=0;

4. // The code to analyse

5. int sum_selected_irray_elements(void) {

6. int tmp = 0;

7. int i = min;

8. sum = 0;

9. while(i <= max) {

10. tmp = a[index];

11. sum = sum + tmp;

12. a[index] = val;

13. index++;

14. i++;

15. }

16. return sum;

17. }

Figure 6.9: Illustrating example of extreme values in a loop.

Figure 6.10: Example of extreme value heuristic.

110 Chapter 6. Input-sensitive execution-time analysis

Figure 6.10 illustrates how the heuristic works. The program has two input
variables vi,0 and vi,1, with given input values of 0..15 and 0..255 respectively.
vi,0 is first selected to do input range division upon. This produces three new
partitions for which WCET estimates are calculated. The 〈vi,0 ← 0, vi,1 ←
0..255〉 partition gets the largest WCET estimate and the analysis continues
with a division of vi,0. This produces three new partitions for which WCET
estimates are calculated. The 〈vi,0← 0, vi,1← 255〉 partition gives a WCET
estimate which is larger than all other partitions in the priority queue. Thus, the
WCET was given when vi,0 and vi,1 were assigned its minimum and maximum
input values respectively.

6.4.3 User interaction

Another option for improving the overall analysis time, is to let the user provide
an input value space partition in which she/he believes hot spots are to be found.
For example, in Figure 6.8 the user might believe that the worst-case is when
vi,2 = 1 and 0 ≤ vi,0 ≤ 6. Then the analysis can be started with an initial
set of partitions according to the user’s assumptions, e.g., 〈vi,0← 0..6, vi,1←
0, vi,2←1〉, 〈vi,0←0..6, vi,1←0, vi,2←0〉, and 〈vi,0←7..16, vi,1←0, vi,2←
0..1〉, where the first partition corresponds to the user provided assumption.

6.5 ACC example - input-sensitive WCET analy-

sis

We revisit the example outlined in Section 5.5, and discuss the component
cspeed (Speed Limit) in detail, and explore the resulting input value space par-
titions. cspeed has 3 variables ACC Max Speed (AMS), Road Signs Enabled
(RSE) and Road Sign Speed (RSS). The input value space partition Dspeed has
a size |Dspeed| = 301 · 2 · 301 = 181202 possible input combinations.

The algorithm iteratively divides the input domain in input value space par-
titions until the desired accuracy is achieved. In this example we attempt to
achieve 100% accuracy (according to our definition of accuracy, Definition

6.10). We explore two heuristics of the select_var in this example (see Prim-

itive 6.3), Last used with eXtreme value heuristic (LX) and Last used (L). The
strategy Last used is described in Section 6.1.2 and eXtreme value heuristic is
described in Section 6.4.2.

The LX strategy finds input value space partition with 100% accuracy much
faster than the L strategy. It only requires 20 WCET tool runs for the entire

6.6 Summary 111

input domain, as compared to the L strategy that requires more than 1000 runs.
Our algorithm has divided the inputs in their respective input value space

partitions, as shown in Table 6.1. It is straightforward to extract 3 predicates
from these input value space partitions for the contract fspeed, that are used
for the parameterization of speed. We see that the input AMS is the same for
all input value space partitions, thus does not affect the WCET. The resulting
predicates that form the contract are shown in Table 6.2.

D WCET BCET AMS RSE RSS
Dspeed 304 105 0..300 0..1 0..300

Dspeed,0 304 304 0..300 1 0..300
Dspeed,1 284 284 0..300 0 1..300
Dspeed,2 105 105 0..300 0 0

Table 6.1: cspeed resulting input value space partitions.

Predicate

RSE = 1→ WCET = 304
RSE = 0 ∧ RSE > 0→ WCET = 284
RSE = 0 ∧ RSE = 0→ WCET = 105

Table 6.2: cspeed resulting contract fspeed.

6.6 Summary

A software component that is reused in different settings is used with different
usage profiles, i.e., with different inputs. Unfortunately, a change in the us-
age of a component can also invalidate past experience about the component’s
quality of performance. Indeed it is safe to assume the worst possible usage
scenario for estimating the components performance, however, this results in
pessimistic and inaccurate system property predictions. Especially for embed-
ded real-time systems, where not only the correct predictions are important,
but also resource consumption, it is necessary to have more accurate methods.

One possible way of acquiring accurate predictions is to perform predic-
tions for every new usage profile. However, this undermines the CBSE main
action reuse. Hence, it is desired to gain accurate predictions of component
properties in a reusable way.

In this chapter we have introduced two novel methods based on static
WCET analysis and structured search over the input domain of a reusable soft-
ware component. The first method provides a parameterizable and reusable

112 Chapter 6. Input-sensitive execution-time analysis

WCET for reusable software components. We have introduced a concept of
WCET analysis accuracy based on the difference between the WCET and
BCET for a given input domain. With the accuracy as a search criteria we
guide the structured search to produce as accurate predictions as possible in as
short time as possible.

In our experience it is a matter of several man weeks to setup, learn and
effectively use many of the commercial and research WCET analysis tools. The
work effort is effectively moved from the system developer to the component
developer, and for every reuse there are potentially big time gains. For many
WCET tools it is also required to do a lot of “hands on tuning” and adaptations
of the code and annotations of the inputs in order to run the WCET tool.

Due to less over approximations when analyzing smaller parts of the be-
haviour by limiting the inputs we have also observed that the WCET become
more accurate for the whole system.

Another problem that arises from reusing components is that they can be
aligned differently in memory between systems. In a system with caches this
may cause cash-lines to be invalidated frequently as a result from interference
between components. A possibility for limiting this problem is to predefine
possible alignments in memory for each component. In this way, interference
may be analyzable, and predictions can be made tighter.

We partly rely on the presence of BCET analysis which is not present in
most of today’s WCET analysis tools. However, we note that we actually want
to know the best-case execution path with the worst-case hardware effects.
The reasons for this is that we want to have a single value for input value space
partitions with |Di|φ| = 1. By using a “real” BCET (best-case path and best-
case hardware effects) a single valued input value space partition will get two
values. There should be only one execution path with a single valued input
value partition, but the hardware may behave differently in the best and worst
cases.

The second novel method derives an input combination that triggers the
execution of the WCET path, that produces the WCET. In this method we
use techniques similar to the first outlined method in the sense that we use
static WCET analysis and structured search over the component input domain.
But rather than searching the entire input domain, we iteratively remove parts
of the domain that does not generate execution of the WCET program path.
The knowledge of the WCET input combination is useful for, e.g., producing
efficient test cases for measurement-based WCET.

Finally, we show with complexity analysis that these methods can be used
effectively.

Space is big. Really big. You just

won’t believe how vastly hugely mind-

bogglingly big it is. I mean you may

think it’s a long way down the road to

the chemist, but that’s just peanuts to

space.

-Hitchhiker’s guide to the galaxy

Chapter 7

Allocating components to

real-time tasks

Following the extension of the Component-Based Software Engineering (CBSE)
process presented in Chapter 5, this chapter moves beyond the WCET analysis
and presents a method for optimizing the resource usage in component-based
real-time systems. The method presented is based on real-time analysis, re-

source consumption calculations and genetic algorithms for deriving alloca-
tions from components to tasks that are optimized for low resource consump-
tion, while maintaining stipulated real-time requirements.

Allocating components to tasks, and scheduling of tasks are both com-
plex problems due to the exponentially growing search space imposed by the
amount of possible combinations. Simulated annealing [KGV83] and genetic
algorithms [Hol73, FB70, Hol92] are examples of algorithms that are fre-
quently used for optimization of such problems. However, to be able to use
such algorithms, a framework to calculate properties, such as memory con-
sumption and CPU-overhead, is needed.

This chapter describes a general framework for reasoning about trade-offs
concerning allocation of components to tasks while preserving extra-functional
requirements. Temporal constraints are verified and the allocations are opti-
mized for low memory consumption and CPU-overhead. The framework is
evaluated using industrially relevant component assemblies, and the results
show that CPU-overhead and memory consumption can be reduced by as much
as ≈ 50% and ≈ 30% respectively, compared to allocating each component to
one task.

113

114 Chapter 7. Allocating components to real-time tasks

7.1 Introduction

In many component-based Embedded Real-Time Systems (ERTS) there is no
explicit strategy for deriving real-time tasks from components, i.e., translating
a system described with software components to a system of run-time entities,
e.g., tasks. This has lead to that many systems use a one-to-one allocation from
components to tasks creating one real-time task from each and every compo-
nent. If available memory is limited by physical footprint, cost, or power con-
sumption constraints, or if low overhead is needed, the allocation from compo-
nents to tasks need to be performed with a more sophisticated approach.

Lets consider two components ca and cb, depicted in Figure 7.1, they can
be allocated to tasks in three different ways:

1. ca in one task τ1, and cb in one task τ2.

2. ca and cb in the same task τ1.

3. cb and ca in the same task τ1 (reverse order compared to allocation 2).

Figure 7.1: Possible allocations of 2 components to tasks.

7.1 Introduction 115

The allocations (2) or (3) will, e.g., result in lower memory consumption.
If the components have different periodicity a co-allocation may lead to high
processor utilization, which may be acceptable if the main concern is to min-
imize memory usage. However depending on their real-time constraints the
allocations may be feasible or infeasible; thus, the allocation must be evaluated
with respect to real-time constraints, and some allocations may not be feasible,
i.e., deemed unschedulable. Another issue is the number of task switches that
results from a specific allocation, as well as processor utilization that may vary
a lot depending on the timing constraints of the components. All these things
may be traded against each other; memory, CPU overhead and schedulability.

In a system with only a small number of components it is trivial to find the
best allocation from components to tasks, but already in a system with 10 com-
ponents the number of possible allocations exceeds several millions, e.g., a sys-
tem with 4 components results in 73 different allocations, and a system with 10
components can be allocated in 58941091 different ways (sets of segments) 1.
This is because 10 components can be allocated to any number between 1 and
10 tasks, with any combination of components in each task, and the order of
components in each task is significant. In such systems it may be difficult to
find a good allocation manually. Many industrial ERTS consist of as many as
50 different components. In order to remedy this challenge we have defined a
theoretical framework for reasoning about the allocation from components to
tasks. The reasoning framework is well suited to be applied with optimization
techniques such as, e.g., genetic algorithms.

7.1.1 Component to task allocation

Definition 7.1. ΓT denotes a component transaction that is time-triggered.

Components and component transactions are defined in Section 5.4.

Definition 7.2. ΓE denotes a component transaction that is event-triggered.

Components and component transactions are defined in Section 5.4.

An isolation set I defines a relation between components that should not
be co-allocated. It is described as a set of component pairs 〈(ci, cj), (ck, cl)〉
that define what components may not be allocated to the same task. There
may be memory protection requirements or other legitimate engineering rea-
sons to avoid allocating certain combinations of components; for example, if

1Sets of segments can be calculated with the recursive formulae a(n) = (2n−1) ·a(n−1)−
(n − 1) · (n − 2) · a(n − 2) [Slo08], where a(n) give the number of possible allocations, and n

is the number of components.

116 Chapter 7. Allocating components to real-time tasks

a component has a highly uncertain WCET. The predicate Iso(i, j) defines
that components ci and cj has an isolation requirement, and should not be co-
allocated.

Definition 7.3. Iso(ci, cj) defines an isolation requirement between two com-

ponents ci and cj . The isolation requirement implies that the components ci

and cj may not be allocated to the same task.

Components may have precedence relations in terms of triggering. If a
component is triggered by a preceding component, they are said to have a
precedence relation, component ci precedes component cj means that compo-
nent cj is triggered by component ci. prcd(ci, cj , Γk) defines that component
cj is preceded by component ci, i.e., component cj is triggered by component
ci and both component are part of transaction Γk.

Definition 7.4. prcd(ci, cj , Γk) defines that component ci triggers component

cj and both components ci, cj ∈ Γk are part of transaction Γk.

7.2 Allocating components to real-time tasks

Temporal constraints are of great importance when dealing with ERTS, and
tasks control the execution of software. Hence, components need to be allo-
cated to tasks in such a way that temporal requirements are met, while at the
same time resource usage is minimized. Given an allocation the framework
determines if the allocation is feasible, and the memory consumption and task
switch overhead are calculated. To impose timing constraints, the framework
defines end-to-end timing requirements and denote them transactions. Transac-
tions are defined by a sequence of components and a deadline, before which the
sequence of tasks must have finished their execution (relative to the triggering
of the transaction). Thus, this work has three main concerns:

1. Verification of allocations from components to tasks.

2. Calculating system properties for an allocation.

3. Minimizing resource utilization.

7.3 Allocation framework

The allocation framework is a set of models for calculating properties of alloca-
tions of components to tasks. The properties calculated with the framework are

7.3 Allocation framework 117

used for optimization algorithms to find feasible allocations that fulfill given
real-time requirements and minimizes memory consumption as well as CPU-
overhead.

In order to not over constrain the allocation from components to tasks it
is important to have tight WCET estimates, which has been a problem for
reusable software components. Also, if several components are allocated to
one task, the error of each component will scale linearly to form a large task
output jitter, possibly making it harder to schedule the task set.

For a task set A that has been created from components with a one-to-
one allocation, it is trivial to calculate the system memory consumption and
CPU-overhead since each task will inherit the same properties as the basic
component. When several components are allocated to one task we need to
calculate the appropriateness of the allocation as well as the tasks properties.
For a set of components, c0,...,cn−1, allocated to the task set A, the following
resource properties are considered:

• CPU-overhead pA

• Memory consumption sA

Each component ci has a pre-defined maximum stack size. Since all compo-
nents allocated to one task will use the same stack, the stack of the task is
equal to the maximum size of the stack of all components allocated to the task.
The CPU overhead pA and the memory consumption sA for a task set A are
formalized in Equations 7.1 and 7.2:

pA =
∑

∀n(τn∈A)

ρ

Tn

(7.1)

sA =
∑

∀n(τn∈A)

(stackn + β) (7.2)

where ρ is the context switch time and β is the size of the task control block
of the system (as described in Section 5.4). pA represents the sum of the task
switch overhead divided by the periods for all tasks in the task set, and sA

represents the total amount of memory used for stacks and task control blocks
for all tasks in the task set.

7.3.1 Constraints on allocations

There is a set of constraints that must be considered when allocating compo-
nents to tasks, these are:

118 Chapter 7. Allocating components to real-time tasks

• Component isolation

• Intersecting transactions

• Periodic and aperiodic events and their period times

• Schedulability

Each constraint is discussed in detail below, and we use the notation of
components and tasks as described Section 5.4.

Isolation

It is not realistic to expect that components can be allocated in an arbitrary way.
There may be explicit dependencies that prohibits that certain components are
allocated together, the isolation set I defines which components may not be
allocated together. There may be specific engineering reasons to why some
components should be separated. For instance, it may be desired to minimize
the output jitter for some tasks, e.g., components with highly uncertain WCET
could be isolated. There may also be safety integrity reasons to separate certain
components. Hence it must be assured that two components that are defined to
be isolated do not reside in the same task. This is validated with Equation 7.3

¬∃τn(ci ∈ Zn ∧ cj ∈ Zn ∧ Iso(i, j)) (7.3)

where there must not exist any task τn that allocates two components cj and
ck such that these components have an isolation requirement. Iso(i, j) is a
predicate returning if there is a isolation requirement between component ci

and cj , and Zn is the set of allocated components in task τn, as described in
Section 5.4.

Intersecting transactions

If two or more component transactions intersect one task, there are different
strategies of how to allocate the component to tasks. A task inherits the trig-
ger(s) of the first allocated component, i.e., the component ci ∈ Zn where ci

is the first element in Zn. Therefore it is important to consider which com-
ponents that are allocated to a task with respect to multiple transactions. We
do not want a task to be event triggered, while at the same time having timing
constraints from a time-triggered transaction. The feasibility condition taking
care of intersecting transactions is described in Equations 7.4 and 7.5.

7.3 Allocation framework 119

¬∃τn

(

(

ci ∈ ΓE
j ∧ cm ∈ ΓE

k ∧ ci ∈ Zn ∧ cm ∈ Zn

)

∧ (7.4)
(

prcd(cm, ci, Γ
E
k) ∨ prcd(cm, ci, Γ

E
j)

)

)

, j 6= k

If a component ci is allocated to a task τn, and the component is part of an
event triggered transaction ΓE

j , and a component cm is also allocated to the
task τn and is part of another event triggered transaction ΓE

k , then no preceding
components in either transaction shall be allocated to the same task. This is
because a component should be triggered by both transactions. The triggering
of a component is inherited from one component. If that component is triggered
by only one of the transactions then it is not possible to guarantee the timing
requirements. Zn is the set of allocated components in task τn, as described in
Section 5.4.

¬∃τn

(

(

ci ∈ ΓT
j ∧ cm ∈ ΓE

k ∧ ci ∈ Zn ∧ cm ∈ Zn

)

∧ (7.5)
(

cm ∈ ΓE
k ∧ prcd(cm, ci, Γ

E
k)

)

)

, j 6= k

If a component ci is allocated to a task τn and the component is part of an
event triggered transaction ΓE

k , and a component cm allocated to the task τn

and the component cm is part of a time triggered transaction ΓT
k , then no pre-

ceding components that are part of the event triggered transaction ΓE
j shall be

allocated to the task τn. This is because, in our model, the task inherits the
triggering of only one component, and if that trigger is event driven, then it
is impossible to guarantee the timing constraints of the time-triggered transac-
tion.

Triggers

Some allocations from components to tasks can be performed without impact-
ing the schedulability negatively. A component that triggers a subsequent com-
ponent can be allocated into a task if it has no other explicit dependencies, see
(1) in Figure 7.2. Components with the same period times can be allocated to
the same task if they do not have any other explicit dependencies, see (2) in
Figure 7.2. Since a task may only have one trigger, time triggered components
with the same or harmonic period can be triggered by the same trigger and thus
allocated to the same task. However, event triggered components may only be

120 Chapter 7. Allocating components to real-time tasks

allocated to the same task if they are in fact triggered by the same event, see
(3) in Figure 7.2. Z [Z [\]^_ _ _ _ \`^a a \b^c c ac ac

Figure 7.2: Component to task allocation considering triggers.

Schedulability

Schedulability analysis is highly dependent on the scheduling policy chosen.
Depending on the system design, different analysis approaches have to be con-
sidered. The task and task transaction meta-models are constructed to fit dif-
ferent scheduling analyses. In the evaluations in Chapter 8 we have used fixed
priority exact analysis. However, the model can easily be extended with jitter
and blocking for real-time analysis techniques that allow those properties. The
framework assigns each task a unique priority pre run-time, and it uses exact
analysis for schedulability analysis, together with the Bate and Burns [BB99]
approach for verifying that the transaction deadlines are met.

7.4 Using the framework

An allocation can be performed in several different ways. In a small system all
possible allocations can be evaluated and the best chosen. For a larger system,
however, this is not possible due to the combinatorial explosion of possible
allocations. Different algorithms can be used to find a feasible allocation of
components to tasks. For any algorithm to work there must be some way to
evaluate an allocation. The proposed allocation framework can be used to cal-
culate schedulability, CPU-overhead and total memory load. Each allocation is
compared to the worst and best possible allocations. The worst-case allocation

7.5 Genetic algorithm setup 121

is a one-to-one allocation where every component is allocated to one task, and
the best-case allocation is all components allocated to one single task. How-
ever, allocating all components to one task very seldom produces a schedulable
task set because of too varying timing constraints between different compo-
nents and transactions.

Simulated annealing [KGV83], genetic algorithms [Hol73, FB70] and bin
packing [Baa88] are well known algorithms often used for optimization prob-
lems. We briefly discuss how these algorithms can be used with the described
framework, to perform component to task allocations.

Bin Packing (BP) [Baa88] is a method well suited for our framework. In
[JO95] a bin packing technique that handles arbitrary conflicts (BPAC)
is presented. The BPAC model constrains certain elements from being
packed into the same bin, which directly can be used in our model as the
isolation set I , and the bin-packing feasibility function is the schedula-
bility.

Genetic algorithms (GA) [FF95] can solve, roughly, any problem as long as
there is some way of comparing two solutions, judging which is bet-
ter according to a fitness criteria. The proposed framework gives the
possibility to use the properties memory consumption, CPU-overhead
and schedulability as grades for an allocation. In, e.g., [MBD98] and
[MBMB98], genetic algorithms are used for scheduling complex task
sets and scheduling task sets in distributed systems.

Simulated annealing (SA) [KGV83] is a global optimization technique that
is regularly used for solving NP-Hard problems. An energy function
consists of a schedulability test, the memory consumption and CPU-
overhead. In, e.g., [TBW92][CA95] simulated annealing is used to place
tasks on nodes in distributed systems.

7.5 Genetic algorithm setup

In order to evaluate the performance of the allocation framework, it has been
implemented. We have chosen to perform a set of allocations and compare
the results to a corresponding one-to-one allocation where each component is
allocated to a task. The allocations are evaluated with respect to feasibility,
memory consumption and CPU overhead.

122 Chapter 7. Allocating components to real-time tasks

The implementation is based on GA, and as Figure 7.3 shows, each gene
represents a component and contains a reference to the task in which it is as-
signed. Each chromosome represents the entire system with all components
assigned to tasks. Each allocation produced by the GA is evaluated by the
framework, and is given a fitness value depending on the feasibility, memory
consumption and CPU overhead of the allocation.

Figure 7.3: The genetic algorithm view of the component to task allocation; a
system with eight components (c0 − c7), allocated to three tasks (τ0 − τ2).

7.5.1 Fitness function

The fitness function is based on the feasibility of the allocation together with
the memory consumption and CPU overhead. The feasibility part of the fit-
ness function is mandatory, i.e., the fitness value for a low memory and CPU
overhead can never exceed the value for a feasible allocation. The feasibility
function consists of the following parts, with their respective possible values
used in the fitness function:

• I which represents component isolation (1, 100].

• IT representing intersecting transactions (1, 100].

• Tr representing triggers (1, 100].

• Sc represent schedulability (1, 100].

Consider that each of these feasibility tests is assigned a value greater than
1 if they are true, and a value of 0 if they are false. The parameter n represents

7.6 ACC example - allocating components to tasks 123

the total number of components. Then, the fitness function can be described as
with Equation 7.6.

Fitness =
(

(I +IT +Tr+Sc)F +
(n

sA

+
∑

∀i(τi∈A)

ρ · n

Ti

)

O

)

·(I ·IT ·Tr ·Sc+1)

(7.6)
where the fitness is the sum of all feasibility values multiplied with a factor F ,
added with the inverted memory usage and performance overhead, multiplied
with a factor O, and F >> O. The total fitness is multiplied with 1 if any fea-
sibility test fail, and the products of all feasibility values plus 1 if all feasibility
tests succeed.

7.6 ACC example - allocating components to tasks

We revisit the example outlined in Section 5.5, and discuss the allocation of
components to tasks in different ways. For the 5 components outlined in Sec-
tion 5.5 there exists 501 different possible allocations. However, only a few of
them are feasible. We show 5 different feasible allocations in Figure 7.4.

A search heuristics searches for a feasible allocation with high performance
(i.e., low CPU overhead and low memory consumption), and it uses the frame-
work to evaluate an allocation. The framework calculates feasibility and per-
formance. The feasibility is calculated with respect to:

• Isolation

• Triggers

• Intersecting transactions

• Schedulability

The performance of an allocation is based on:

• CPU overhead

• Memory consumption

An allocation is compared to the optimal allocation, where the optimal al-
location is that all components are allocated to one task (independent of feasi-
bility).

124 Chapter 7. Allocating components to real-time tasks

Figure 7.4: 5 feasible component to task allocations of the ACC example.

Allocation E is optimal with respect to CPU overhead and memory con-
sumption since there exist no other allocation for the given components that
can yield a lower CPU overhead or memory consumption. The feasibility of the
allocation is validated for the components given in Section 5.5 and the WCETs
given by the usage dependent WCET analysis for the usage profiles U1 and U2,
as presented in Section 5.5.1. In Table 7.1 we reintroduce the components and
properties and we discuss the evaluation of the allocation with respect to the
feasibility requirements and performance properties for the different WCETs.

Component Name 〈Si, Qi, mi〉
Speed limit cspeed 〈 50Hz, 20, 1024〉
Object recognition cobj 〈cspeed, 20, 512〉
Brake assist cbreak 〈cobj , 20, 512〉
Logger HMI Output clog 〈 10Hz, 100, 2048〉
ACC Controller cacc 〈cobj , 20, 2048〉

Table 7.1: The five components Speed Limit, Object Recognition, Brake Assist,
Logger HMI Output and ACC Controller.

7.6 ACC example - allocating components to tasks 125

7.6.1 Isolation, triggers and intersecting transactions

In the example there are no isolation requirements between any components;
thus, the allocation is feasible with respect to this requirement. There are some
constraints on allocating different types of triggers to the same task. In this
allocation there exits two different triggers, one 50Hz clock and on 10Hz clock.
The period times of these clocks are harmonic. Thus, the allocation is feasible
with respect to triggers. However, by allocating all components to one task,
it is required to use the lowest period time in order to fulfill all components
requirements. There are also no intersecting transactions in this allocation.
However, intersecting transactions are exclusively a problem when there exist
event-triggered transactions.

Γi Ni dci

Γ0 cspeed → cobj → cbreak 800
Γ1 cspeed → cobj → cacc 2000
Γ2 clog 10000

Table 7.2: The three transactions in the ACC.

7.6.2 Schedulability

In Table 7.3 we present the tasks’ WCET for the usage independent (ui) WCET
as well as for the usage profiles U1 and U2. The transactions ΓT

0 , ΓT
1 and ΓT

2

must also be considered. The transactions are presented in Table 7.2. cbreak

and cacc are executed after cobj , which is executed after cspeed .
We calculate the response time for allocation A, where task τ4 (last in trans-

action Γ2) has a response time of 10000 for (ui), which is equal to the stipulated
deadline dc2. The response time for task τ3 (last in transaction Γ1) is calculated
to 1920 for (ui) and is lower than the stipulated deadline dc1. Finally we calcu-
late the response time for task τ2 (last in transaction Γ0), which has a response
time of 679 for (ui), which is lower than the stipulated deadline dc0. On the
other hand, if we consider allocation D, where task τ0 needs to fulfill the dead-
lines of both transactions Γ0 and Γ1, we see that only the WCET for U2 fulfills
this requirement. The other WCETs are greater than dc0. The transactions Γi

and deadlines dci are presented in Table 7.2.
In Table 7.4 the resource usage for each allocation is presented. The context

switch ρA is 22 and the task control block size β is 300. The difference in CPU-
overhead pA and memory usage sA between, e.g., allocations A and E is large,
allowing for large benefits in finding good allocations.

126 Chapter 7. Allocating components to real-time tasks

Allocation Task Period
WCET

ui U1 U2

A

τ0 2000 304 284 105
τ1 2000 201 201 120
τ2 2000 174 91 88
τ3 2000 1241 1241 769
τ4 10000 400 303 303

B

τ0 2000 505 485 225
τ1 2000 174 91 88
τ2 2000 1241 1241 769
τ3 10000 400 303 303

C
τ0 2000 679 576 313
τ1 2000 1241 1241 769
τ2 10000 400 303 303

D
τ0 2000 1920 1817 1082
τ1 10000 400 303 303

E τ0 2000 2320 2120 1385

Table 7.3: Period time and WCET for all component to task allocations in
Figure 7.4.

Allocation pA sA
A 4.6% 7644
B 3.5% 6832
C 2.4% 6020
D 1.3% 4696
E 1.1% 2348

Table 7.4: CPU overhead and memory usage with respect to the different allo-
cations presented in Figure 7.4.

7.6.3 Other allocations

We show 5 different allocations in Figure 7.4. Some of them exhibit bad per-
formance and/or are not feasible. We mention that allocation (A) in the figure is
feasible for all usage profiles, but this allocation exhibits the worst performance
in terms of memory usage and CPU-overhead. The best feasible allocation for
the usage independent (ui) WCET prediction is C, for usage profile U1 the best
feasible allocation is also C, and, for usage profile U2, the best allocation is E.
Refer to Table 7.3 and Figure 7.4 for the different allocations, and Table 7.4 for
the resource usage for respective allocation.

In this example we have illustrated different allocations and we have shown
that tighter WCETs can increase the possibilities for finding allocations with
lower memory consumption and lower CPU overhead.

7.7 Summary 127

7.7 Summary

Resource efficiency is important in ERTS, both with respect to performance
and memory. Schedulability, considering resource efficiency, has gained much
focus, however the allocation from components to tasks has gained very little
attention. Hence, in this chapter we have described an allocation framework
for allocating components to tasks, to facilitate existing scheduling and op-
timization algorithms such as genetic algorithms, bin packing and simulated
annealing. The framework is designed to be used during compile-time to min-
imize resource usage and maximize timeliness. The framework can also be
used iteratively in case of design changes; however with some obvious draw-
backs on the results. The framework can easily be extended to support other
optimization criteria besides task switch overhead and memory consumption.

Results from simulations show that the framework gives substantial im-
provements both in terms of memory consumption and task switch overhead.
The described framework also has a high ratio in finding feasible allocations.
Moreover, in comparison to allocations performed with a one-to-one alloca-
tion our framework performs very well, with ≈ 30% reduced memory size and
≈ 50% reduced task switch overhead. The simulations show that the proposed
framework performs allocations on systems of a size that covers many embed-
ded systems, and in a reasonable time for an off-line tool. We have also shown
how CPU load and deadline laxity affects the allocation.

We demand rigidly defined areas of

doubt and uncertainty!

-Hitchhiker’s guide to the galaxy

Chapter 8

Empirical results

In this chapter we present the evaluations and results of the technical contribu-
tions presented in Chapters 6 and 7. Section 8.1 presents the evaluations of the
methods outlined in Chapter6 while Section 8.2 presents the evaluations of the
component to task allocation framework outlined in Chapter 7.

8.1 Input-sensitive execution-time analysis

In this section we begin with presenting our prototype tool for creating WCET
contracts and finding WCET input values. We continue with presenting eval-
uations of the methods outlined in Sections 6.2 and 6.3. The evaluations are
performed with industrial and academic software components. In particular we
evaluate the effort needed to gain improvement in the methods.

8.1.1 Prototype tool

Many of the methods presented in Chapter 6 have been implemented in a pro-
totype tool. The prototype tool also performs program slicing for deriving the
input variables whose different values may cause the program execution time
to vary. This allows the input data search space to be reduced when deriving
WCET input values for any type of measurement-based or static WCET anal-
ysis. It is also possible to provide a pre-defined set of inputs, overriding the
slicing. Furthermore, the user may have to provide limitations for inputs that
the tool can not determine automatically.

129

130 Chapter 8. Empirical results

Tool overview

Graphical UI

WCET
tool

Analysis
results

Update
statistics

Search engine

Input value
space

partitions

Recovery unitRecovery
data

WCET
frontend

database Create new
value space

partition

Initial
Param.

Reusable WCET analysis tool

WCET/
BCET

WCET tool
Specific

data

Component
binary

Component

Component inputs

Input value space
(restrictions on

input values)

Input Program slicing

Program slicing to
identify inputs that
affect the program

execution time

Selected inputs

Search for WCET input values

WCET estimate

Input value
space partition

Partitioning of
the input

value space

Input sensitive
WCET
analysis

Output

Parameterizable
WCET estimate

Worst-case input
values and

WCET estimate

Figure 8.1: Tool architecture and a logical view of the information flow.

The tool architecture and logical work-flow are presented in Figure 8.1.
A component with a specification of the inputs and an initial value space are
input to the tool. Slicing is used for removing inputs that do not affect the
execution time. A value space is partitioned and a database in the form of
a kd-tree [Ben75] is used for storing information about each evaluated value
space partition. A value space partition is chosen with the binary tree search
heuristics; from the chosen value space partition two new partitions are cre-
ated according to one of the heuristics presented in Chapter 6, using a static

8.1 Input-sensitive execution-time analysis 131

WCET analysis tool for deriving the WCET and (if required) BCET for each
value space partition. The new value space partitions and their corresponding
WCET and BCET are stored in the database. The results from the tool are
(i) a parameterizable WCET to be reused with the component, and, (ii) the
worst-case input combination and its respective WCET.

A WCET tool front-end provides the possibility to change WCET tool. The
Graphical User Interface (GUI) shown in Figure 8.2 provides the user with
options for different tool settings, and graphically presents the WCETs and
BCETs for the derived value space partitions. Statistics other than execution
time are also logged and presented such as, e.g., flow analysis time, low-level
analysis time and number of flow facts. The analyses can be length and there-
fore the tool has a recovery unit storing the current state in the event of an
unscheduled stop in the analysis.

From the GUI the user can start and stop the analysis, or, load a recovery
state after an unscheduled stop; also WCET tool options and heuristics are
chosen via the GUI. A graphical panel in the bottom of the tool window shows
the progress of the tool, and the value space partitions.

Figure 8.2: Graphical user interface of the evaluation tool.

132 Chapter 8. Empirical results

The tool uses the WCET analysis tool SWEET (SWEdish Execution time
Tool) [SWE06]. SWEET includes an input-sensitive flow analysis called Ab-

stract Execution (AE) [GESL06], which is a form of symbolic execution. The
AE has several options for trading precision and analysis time. The AE options
can be set in the GUI together with calculation method and limitations on the
input variables.

Constraints on input values are given in SWEET’s annotation language.
Numeric variables are constrained by intervals. Pointer constraints are sets of
abstract addresses, each representing a range of NIC addresses. Annotations
can constrain the variable values in specific program points. Normally, when
constraining inputs, this is the program entry point. The value space partitions
are directly translated to annotations for SWEET in the prototype tool.

Benchmarks

To evaluate the methods in Chapter 6, programs from the Mälardalen WCET
Benchmark suite [SWE06] have been used together with components provided
by industrial partners [BEG+08], to evaluate our methods. Benchmarks which
may by run with many different input values are included. Table 8.1 gives
some details of the benchmark used. #LOC gives lines of C code, #Vars

give the number of input variables and |D| represents the size of the input do-
main. For the industrial benchmarks named “task” we do not have access to
the source code. Because of this, all benchmarks have been treated as black-
box components, for which we only have considered information about their
inputs. Furthermore, the benchmarks named “task” are designed according to
the Rubus [HMTN+08] component model.

8.1.2 Reusable WCET

Many benchmarks’ inputs have been divided until the point where (i) all value
space partitions are single valued, or (ii) the accuracy1 reach 100%. For some
benchmarks this has not been possible due to limitations on the WCET analysis
tool or limited search heuristic.

All benchmarks have been run with four different strategies for partitioning
the input value space partition. These strategies are; firstly, Last used (L)
where the next variable to be divided in the value space partition is the same
variable as was divided last. The L strategy is similar to a depth first tree
search algorithm. The second strategy is Next (N) where the next variable to

1Accuracy is defined in Chapter 6.

8.1 Input-sensitive execution-time analysis 133

Program Description #LOC #Vars |D|

crc Cyclic redundancy check computation on 40 bytes of data. 128 4 81

edn Finite Impulse Response (FIR) filter calculations. 285 3 216

inssort Insertion sort on a reversed array of size 10. 92 10 10320

jcomplex Nested loop program. 64 2 29

lcdnum Read ten values, output half to LCD. 64 2 210

ns Search in a multi-dimensional array. 535 1 29

nsichneu Simulates an extended Petri net. Generated code with more
than 250 if-statements.

4253 6 218

esab_mod Industrial code developed by CC-Systems and Esab to con-
trol welding machine.

3064 17 272

task1 Industrial task code developed by Volvo CE for the Trans-
mission ECU of articulated haulers.

55 4 26

task3 Industrial task code developed by Volvo CE for the Trans-
mission ECU of articulated haulers.

58 7 18

task4 Industrial task code developed by Volvo CE for the Trans-
mission ECU of articulated haulers.

72 18 257

task5 Industrial task code developed by Volvo CE for the Trans-
mission ECU of articulated haulers.

86 8 210

task7 Industrial task code developed by Volvo CE for the Trans-
mission ECU of articulated haulers.

123 26 237

Table 8.1: Benchmark programs used.

be divided is the next variable in their annotated order. The N strategy is similar
to a breadth first tree search algorithm. Both strategies are also analyzed with
eXtreme value heuristics Next eXtreme (NX) and Last used eXtreme (LX).
Following basic heuristics, the value space partition is divided in two new value
space partitions, with respect to the chosen variable. In the extreme heuristics
the value space partition is divided in three new value space partitions the first
time each variable is divided, as suggested in Section 6.4.2.

For each benchmark we show the number of analyses required to reach a
specific accuracy, with the number of runs on the y-axis, and the accuracy on
the x-axis. Each benchmark has been evaluated with respect to ARM9 hard-
ware and the cluster-based (CB) calculation [Erm03]. The flow facts used in
SWEET are presented below, and generated flow facts for each benchmark are
presented in Table 8.2.

ip infeasible paths, i.e., paths that can not be taken together.

ep excluding pairs, i.e., nodes that can not be visited together.

ina infeasible nodes calculations for all iteration, i.e., nodes that can not be
visited.

134 Chapter 8. Empirical results

ine infeasible paths calculation in each iteration, i.e., nodes that can not be
visited.

mmh minimum and maximum header counts, i.e., the number of times the
header2 node can be visited.

mmnl minimum and maximum nested loop count, i.e., loop count for nested
loops.

mmnc minimum and maximum node count, i.e., number of times a node is
visited.

Program
Flow facts

ip ep ina ine mmh mmnl mmnc

crc X X X X X
edn X X X X X

inssort X X X X X
jcomplex X X X X X
lcdnum X X X X X

ns X X X X X
nsichneu X X X X X

esab_mod X X X X X X X
task1 X X X X X
task3 X X X X X
task4 X X X X X
task5 X X X X X
task7 X X X X X

Table 8.2: Generated flow fact for each benchmark.

To be able to reach an accuracy of 100% the algorithm consider value space
partitions with any difference in either WCET or BCET to be different value
space partitions. In practice it is likely to have a certain range where value
space partitions with similar execution times are grouped.

For many benchmarks we see a trend with rapid improvement for the first
few runs, and a slower improvement after the evaluation has reached an ac-
curacy of ≈ 50 − 70%. There is often a clear increase in runs where the
improvement slows down that we call the break point.

The desired behaviour is to have the break point as late as possible, and
to always have the rapid improvement before the slow improvement. If the
slow improvement is before the rapid improvement it becomes more difficult
to trade runs against accuracy.

2A header node is the first node in a scope, determining if any nodes in that scope will be
executed.

8.1 Input-sensitive execution-time analysis 135

d ed fd gd hd id jd kd ld md eddnoo
pqrs

Rapid improvement Slow improvement

Brake point

Figure 8.3: Trend of accuracy with respect to #runs.

crc and insertsort benchmarks

The evaluations show no improvement for the crc and insertsort bench-
marks. The input domain for crc is very small (only 81 input combinations).
Even when each single value input combination is analyzed there is no differ-
ence in WCET and BCET. This shows that the benchmark is not input-sensitive
with respect to execution time. The insertsort input space is quite large,
but even after 12000 WCET runs no improvement was achieved. After study-
ing the source code of these benchmarks, it is clear that the effect of different
inputs is very small. These benchmarks are therefore not representative to the
proposed methods.

jcomplex and lcdnum benchmarks

For the benchmarks jcomplex and lcdnum we see a rapid improvement
before a slow improvement with a break point at ≈ 50%− 60%. For LX there
are two break points, which is not desirable. The other strategies performs

136 Chapter 8. Empirical results

well. Figure 8.4 and Figure 8.6 show the accuracy of the first 100 runs, where
an accuracy of 50% is achieved already after about 30 runs for the Next (N)
strategy. After 100 runs an accuracy of more than 70% has been achieved.
However, to reach 100% accuracy another order of magnitude is required, i.e.,
around 1000 runs, as shown in Figure 8.5 and Figure 8.7.tuvwxyz{

|}|~|�|�|�|�|�|
�|�|}||
| }| ~| �| �| �| �| �| �| �| }||�uu����
�z{� �z{� z{��zwz ���� ��z� ���� ��z� z{��zwz

Figure 8.4: jcomplex first 100 runs.

��������
���������������� ��¡��
¢��£������
� �� �� �� �� �� � ¡� ¢� £� ���¤��¥¦§¨

©��ª ©��ª ��ª«��� ¬¤ª ®�¯ ¬¤ª ®�¯ ��ª«���
Figure 8.5: jcomplex.°±²³´µ

¶·¶¸¶¹¶º¶»¶¼¶½¶
¾¶¿¶·¶¶
¶ ·¶ ¸¶ ¹¶ º¶ »¶ ¼¶ ½¶ ¾¶ ¿¶ ·¶¶À±±ÁÂÃÄ
ÅÆÇÈ ÅÆÇÈ ÆÇÈÉÆµÆ ÊÀËÈ ´ËÆ² ÊÀËÈ ´ËÆ² ÆÇÈÉÆµÆ

Figure 8.6: lcdnum first 100 runs.

ÌÍÎÏÐÑ
ÒÓÒÒÔÒÒÕÒÒÖÒÒ

×ÒÒÒ×ÓÒÒ
Ò ×Ò ÓÒ ØÒ ÔÒ ÙÒ ÕÒ ÚÒ ÖÒ ÛÒ ×ÒÒÜÍÍÝÞßà

áâãä áâãä âãäåâÑâ æÜçä ÐçâÎ æÜçä ÐçâÎ âãäåâÑâ
Figure 8.7: lcdnum.

nsichneu benchmark

nsichneu has a rapid improvement first and a break point between 50% and
70% depending on strategy. The L and LX strategies outperform the N and NX
strategies as can be seen in Figure 8.8. Despite the complexity and size of input
domain the nsichneu benchmark reach 50% accuracy after ≈ 25 runs and

8.1 Input-sensitive execution-time analysis 137èéêëìèíî
ïðñïñðòïòðóïóð
ôïôððï
ï ñï òï óï ôï ðï õï öï ÷ï øï ñïïùëëúûüý
þíÿ� þíÿ� íÿ��í�í �ùé� îéí� �ùé� îéí� íÿ��í�í

Figure 8.8: nsichneu first 50 runs.

����	�
�
������������������������
� �� �� �� �� � �� �� �� �� ����������

�
�� �
��
���
�
 ��� ��
! ��� ��
!
���
�

Figure 8.9: nsichneu.

90% accuracy after ≈ 150 runs. Various reasons to why not 100% accuracy is
reached may be to few runs, inaccuracy of the WCET tool or patterns difficult
to find with binary search.

edn and ns benchmarks

The edn benchmark shown if Figure 8.10 exhibits a different behaviour than
previous benchmarks in that it has a threshold for the L strategy. The slow
improvement precedes the rapid improvement making it more difficult to trade
effort against accuracy. The ns benchmark shown in Figure 8.11, has the rapid
improvement before the slow improvement and the break point at ≈ 70%. The
ns benchmark only has one input variable, thus resulting in the same behaviour
independent of using the N or L strategies. For the ns benchmark a small
penalty in using the extreme value heuristic is observed.

task1 benchmark

task1 exhibits different behaviours depending on strategy. The L strategies
exhibit the desired behaviour with the rapid improvement before the slow im-
provement and a late break point, while the N strategy has an earlier break
point. Notice that the accuracy is still comparably high for a low number of
WCET runs for the L and LX strategies. The results for task1 are depicted in
Figures 8.12 and 8.13. task1 reaches an accuracy of 100% after ≈ 20 runs,
and 60% already after 2 runs. task1 reaches 100% accuracy.

138 Chapter 8. Empirical results"#$
%&'()(*)%)&)'

+)+*&%
% (%)% +% &% ,% *% -% '% .% (%%/001234
5"67 5"67 "678"9" :/;7 <;"# :/;7 <;"# "678"9"

Figure 8.10: edn.

=>
?@ABCD?D@DA

DBDC@?
? D? @? E? A? F? B? G? C? H? D??IJJKLMN
OPQR OPQR PQRSPTP UI>R V>PW UI>R V>PW PQRSPTP

Figure 8.11: ns.XYZ[\
]̂_\`\a`]`^`_

b`ba^]
] \] `] b] ^] c] a] d] _] e] \]]Yffghij
klmX klmX lmXnlol pYZX qZlr pYZX qZlr lmXnlol

Figure 8.12: task1 first 40 runs.

stuvw
xwxyxzx{x|x

}x~x�x
x wx yx zx {x |x }x ~x �x �x wxxt������
���s ���s ��s���� �tus �u�� �tus �u�� ��s����

Figure 8.13: task1.�����
������

����
� �� �� �� �� �� �� �� �� �� ���������
¡¢£� ¡¢£� ¢£�¤¢¥¢ ¦��� §�¢¨ ¦��� §�¢¨ ¢£�¤¢¥¢

Figure 8.14: task3.

©ª«¬
®®®¯®®®¯®®°®®®°®®
® ¯® °® ±® ²® ® ³® ´® µ® ¶® ¯®®ª··¸¹º»

¼½¾© ¼½¾© ½¾©¿½À½ Áª«© Â«½Ã Áª«© Â«½Ã ½¾©¿½À½
Figure 8.15: task5.

8.1 Input-sensitive execution-time analysis 139

task3 and task5 benchmarks

task3 and task5 shown in Figures 8.14 and 8.15 both exhibit the behaviour
with a rapid improvement before a slow improvement and a late break point
for at least one strategy. The different strategies performs very differently and
for task3 the LX strategy perform well, while the other strategies perform
worse. For task5 all strategies except L performs well. The L strategy has an
early break point. Both benchmarks reach 100% accuracy.

test4 benchmark

task4 has despite its input value size reached an accuracy of 90%. The results
also show that a low effort give a large effect with a break point as late as
≈ 80% for the L strategy. The results are shown in Figures 8.16 and 8.17.
task4 reaches 90% accuracy after 20 runs and 80% already after 5 runs.

task7 benchmark

task7 has reached 30% accuracy after 700 WCET runs. Various reasons
to why not 100% accuracy is reached may be to few runs, inaccuracy of the
WCET tool or patterns difficult to find with binary search. Still, a low number
of runs reach and accuracy of 15-20%. Note in Figures 8.18 and 8.19 that the
graph stops at 40%. There is a big difference between the strategies and NX
performs best. However, the rapid improvement is before the slow. The break
point is between 20% and 25%.ÄÅÆÇÈ

ÉÊËÉËÊÌÉÌÊÍÉÍÊ
ÈÉÈÊÊÉ

É ËÉ ÌÉ ÍÉ ÈÉ ÊÉ ÎÉ ÏÉ ÐÉ ÑÉ ËÉÉÅÒÒÓÔÕÖ
×ØÙÄ ×ØÙÄ ØÙÄÚØÛØ ÜÅÆÄ ÝÆØÞ ÜÅÆÄ ÝÆØÞ ØÙÄÚØÛØ

Figure 8.16: task4 first 50 runs.

ßàáâã
äåääæäääæåääçäääçåää
ä æä çä èä ãä åä éä êä ëä ìä æääàííîïðñ

òóôß òóôß óôßõóöó ÷àáß øáóù ÷àáß øáóù óôßõóöó
Figure 8.17: task4.

140 Chapter 8. Empirical results

úûüýþ
ÿ�ÿÿ�ÿÿ�ÿÿ�ÿÿ�ÿÿ�ÿÿþÿÿ
ÿ � �ÿ �� �ÿ �� �ÿ �� �ÿû����	

��ú ��ú �ú���� �ûüú �ü�� �ûüú �ü�� �ú����
Figure 8.18: task7 first 700 runs.

�����
��������������������
� � �� �� �� �� �� �� ������ !"

#$%� #$%� $%�&$'$ (���)�$* (���)�$* $%�&$'$
Figure 8.19: task7.

+,-./012
34535463647374

838443
3 53 63 73 83 43 93 :3 ;3 <3 533-==>?@A
B+CD B+CD +CDE+0+ F-,D G,+2 F-,D G,+2 +CDE+0+

Figure 8.20: esab_mod first 50 runs.

HIJKLMNO
PQPPRPPSPPTPPUPPVPPWPP
P QP RP SP TP UP VP WP XP YP QPPJZZ[\]^

_H`a bJIa cIHO bJIa cIHO H`adHMH _H`a H`adHMH
Figure 8.21: esab_mod.

8.1 Input-sensitive execution-time analysis 141

esab_mod benchmark

esab_mod has reached an accuracy of 65%, as shown in Fig-
ures 8.20 and 8.21. Various reasons to why not 100% accuracy is reached
may be to few runs, inaccuracy of the WCET tool or patterns difficult to find
with binary search. The esab_mod benchmark exhibits different break points
for different strategies and the N strategy performs best. All strategies has a
rapid improvement in the beginning and a slow improvement at the end; thus a
low number of runs give a comparably high accuracy. An accuracy of 50% is
reached already after less than 10 WCET runs.

Conclusions

We notice a big difference in many of the tests between the different approaches.
Hence we draw the conclusion that it is important to choose the right strategy.
We propose that this is automated in future work by monitoring the difference
in accuracy between each run and change the strategy if the accuracy is not
improving.

It is interesting that even though the different strategies performs very dif-
ferently, all benchmarks, within 10 WCET runs give an improvement greater
than 20% compared to classical WCET analysis. Most benchmarks give an
improvement of 50% within ≈ 20 WCET runs.

Benchmark
Best strategy Worst strategy

Up to 50% Up to 100% Up to 50% Up to 100%

crc n/a n/a n/a n/a
inssort n/a n/a n/a n/a

edn N/NX N/NX L L
jcomplex N N LX L
lcdnum N NX NX N

ns L/N L/N LX/NX LX/NX
nsichneu LX L NX NX

task1 L/LX LX NX NX
task3 N L/N LX/NX LX/NX
task4 L/LX/N/NX N L/LX/N/NX NX
task5 NX L L L
task7 NX NX L L

esab_mod L N NX NX

Sum L 4 4 4 4
Sum LX 3 1 4 2
Sum N 6 5 1 1

Sum NX 4 3 7 5

Table 8.3: Best and worst strategies.

142 Chapter 8. Empirical results

We have categorized the different strategies with respect to their perfor-
mance. They are categorized in best and worst up to 50% accuracy, and, best
and worst up to 100% accuracy. We do not draw any final conclusions from
the findings in Table 8.3, but the results are slightly slanted towards that the N
strategy performs slightly better than the others.

One conclusion that we draw from the results in general is that it indeed
is possible to create input parameterizable WCET. The results show that, for
both academic and industrial components, a low effort in terms of WCET runs
gives rise to a comparably high accuracy. Reaching very high accuracy requires
a comparably higher effort, and, in many cases it is possible to reach 100%
accuracy.

We finally note that for our results to be representative for all type of input-
dependent embedded systems, more evaluations need to be performed. The
included code may be quite complex, however several of the benchmarks are
quite small.

8.1.3 Finding WCETs

Program #Vars |D| Basic

#WC MinT MaxT #BT TotT

crc 4 81 7 6922 7421 0 49934
edn 3 216 12 5063 5531 0 63512

inssort 10 10320 619 344 765 0 326894
jcomplex 2 512 455 32 828 155 116541

lcdnum 2 1024 7 31 859 0 3436
ns 1 512 6 1093 38172 0 155205

nsichneu 6 218 25 17733 95203 0 1716109
esab_mod 19 272 309 9836 97153 92 4126380

task1 4 64 11 16359 19564 0 188593
task3 7 18 9 14468 18968 0 147326
task5 8 210 53 47 157 7 5434
task7 26 237 167 375 719 2 72165

Table 8.4: Finding WCET analysis results for benchmarks without program
slicing.

Tables 8.4 and 8.5 give the analysis results when using no slicing, i.e., all
input variables are assumed to affect the program execution time. #Vars gives
number of input variables. |D| gives the size of the input value space. Basic

gives the results for the basic input derivation method, while Extreme gives
the corresponding ones for our extreme value search method. #WC gives the
number of WCET calculations performed. MinT and MaxT gives the mini-

8.1 Input-sensitive execution-time analysis 143

Program #Vars |D| Extreme

#WC MinT MaxT #BT TotT

crc 4 81 10 6813 7562 0 71872
edn 3 216 7 4687 4984 0 33636

inssort 10 10320 619 485 780 0 326894
jcomplex 2 512 455 47 922 141 97078

lcdnum 2 1024 4 63 734 0 2157
ns 1 512 1 35256 35256 0 35256

nsichneu 6 218 20 13968 95203 0 1309785
esab_mod 19 272 227 9881 99443 54 3740033

task1 4 64 8 14203 20234 0 121687
task3 7 18 10 14125 21890 0 153654
task5 8 210 43 62 187 8 4514
task7 26 237 174 328 625 3 72912

Table 8.5: Finding WCET analysis results for benchmarks with extreme value
heuristics and without program slicing.

Program #Vars |D| Basic

#WC MinT MaxT #BT TotT

nsichneu 5 210 24 17453 92780 0 1638990
esab_mod 15 258 216 6750 61012 17 3956334

task7 17 237 167 328 656 2 70164

Table 8.6: Analysis results for benchmarks affected by program slicing.

Program #Vars |D| Extreme

#WC MinT MaxT #BT TotT

nsichneu 5 210 17 17087 46702 0 644249
esab_mod 15 258 90 7668 61601 10 1185105

task7 17 237 174 328 625 3 72893

Table 8.7: Analysis results for benchmarks affected by with extreme value
heuristics and program slicing.

144 Chapter 8. Empirical results

Figure 8.22: Number of runs and analysis time with respect to input space.

mum and maximum analysis time (in milliseconds) used for any of the WCET
calculations. #BT gives the number of back trackings performed in the input-
value search analysis. TotT gives the total analysis time (in milliseconds) re-
quired to derive the WCET input values.

A general conclusion is that we indeed can derive the input combination
that forces the execution of the WCET program path. Moreover, as can be
expected, the number of WCET calculations are for most programs highly re-
lated to the size of the program’s input value space. For most programs the
WCET input value combination can be derived without any back-tracking at
all. However, for one program, (jcomplex), over-estimations in the static
WCET calculations lead to extensive backtracking, resulting in a fairly large
number of WCET runs for relatively small input domains.

We also note that for many programs there is a variability in the time for
doing different WCET calculations. In general, when the input value size de-
creases, the time for performing the WCET calculation also decreases. Thus,
the first analysis generally consumes most time, while subsequent analyses are
faster. This indicates that the time penalty for performing multiple runs is less
than linear. Furthermore, the two different heuristics (Basic and Extreme) are

8.2 Allocating components to tasks 145

highly dependent on the structure of the analyzed program. For some pro-
grams the benefits are very large for using the extreme heuristics, while other
programs instead get a smaller penalty.

Tables 8.6 and 8.7 give the analysis results when using slicing. The slicing
was made under the assumption that we were using a hardware architecture
with always constant time for different memory accesses from the same in-
struction, and no instructions with variable execution time due to argument
values. Thus, the program slicing could therefore be performed on condition-
als only. #Vars gives number of input variables left after the slicing and |D|
gives the size of the corresponding input value space.

Only the benchmarks (nsichneu, esab_mod and task7), that had their
value space reduced by the slicing are included in the Table 8.6. We see that
the reduction in analysis time, as well as the size of the input value space,
when using slicing, are significant for nsichneu. However, for task7 the
effects are more moderate. This is inherent in that most input data removed
for task7 were relatively small in value size, or static pointers holding only a
single abstract pointer value.

Note that our results may not be fully representative for all type of input-
dependent embedded system programs. Some of the included components are
quite complex; however, several of the benchmarks are quite small. Moreover,
some of the used benchmarks are not true input-sensitive programs, instead
the input-sensitivity seems to have been added to originally single-input value
programs.

8.2 Allocating components to tasks

8.2.1 Simulation set up

This section describes the simulation method and set up for evaluating the al-
location of components to tasks. For each simulation the genetic algorithm
allocates components to tasks and evaluates the allocation, and incrementally
finds new allocations.

The system data is produced by creating a random schedulable task set,
on which all components are randomly allocated, i.e., we create an allocation
backwards from which component and transaction properties are derived. The
component properties are deduced from the task they are allocated. Transac-
tions are deduced the same way from the task set. In this way there is always at
least one solution for each system. However, it is not sure that all systems are

146 Chapter 8. Empirical results

solvable with a one-to-one allocation. The components and component trans-
actions are used as input to the framework. Hereafter, systems that are referred
to as generated systems are generated to form input to the framework. Sys-
tems that come out of the framework are referred to as allocated systems. The
simulation parameters are set up as follows:

• The number of components of a system is randomly selected from a
number of predefined sets. The number of components in the systems
are ranging in twenty steps from 40 to 400, with a median on 120 com-
ponents.

• The period times for the components are randomly selected from a pre-
defined set of different periods between 10 and 100 ms.

• The WCET is specified as a percentage of the period time and chosen
from a predefined set. The WCETs together with the periods in the sys-
tem constitutes the system load.

• The transaction size is the size of the generated transactions in percent-
age of the number of components in the system. The transaction size is
randomly chosen from a predefined set. The longer the transactions, the
more constraints, regarding schedulability, on how components may be
allocated.

• The transaction deadline laxity is the percentage of the lowest possible
transaction deadline for the generated system. The transaction deadline
laxity is evenly distributed among all generated systems and is always
greater than or equal to one, to guarantee that the generated system is
possible to map. The higher the laxity, the less constrained transaction
deadlines.

One component can be involved in more than one transaction, resulting in more
constraints in terms of timing. The probability that a component is participating
in two transactions is set to 50% for all systems.

To get as realistic systems to simulate as possible, the values used to gen-
erate systems are gathered from some of our industrial partners. The industrial
partners chosen are active within the vehicular embedded system segment. Ta-
ble 8.8 outlines all values and distributions, of the system generation values.
The task switch time used for the system is 22 µs, and the TCB size is 300
bytes. The task switch time and TCB size are representative of commercial
RTOS TCB sizes and context switch times for common CPUs.

8.2 Allocating components to tasks 147

Parameters on component level WCET in % of period Distribution (%)
Number components Distribution (%) 2 45

40 1,25 4 50
50 6,25 8 5
60 10 Stack size Distribution (%)
70 6,25 256 10
80 2,75 512 25

100 7,5 1024 25
120 13 2048 35
140 7,5 4096 10
150 5 Parameters on system level

160 2,5 transactions size Distribution (%)
180 8 % of num. comp.
200 5,25 10 10
210 5 13 25
240 9 17 25
250 1,25 21 25
280 5 25 15
300 2 Laxity % of ctr.dl Distribution (%)
320 1 110 33
350 1,25 130 33
400 0,25 150 33

Isolation % of all components Distribution (%) Utilization % Distribution (%)
0 20 30 25

10 30 50 25
20 30 70 25
30 20 90 25

GA parameters

Period time (µs) Distribution (%) GA property Value
10000 20 Population 300
25000 20 Generations 500
50000 40 Elite rate 5%

100000 20 Cull rate 40%
Mutation rate 1%

Table 8.8: Data used for generating systems, and GA parameter.

The simulations are performed for four different utilization levels, 30%,
50%, 70% and 90%. For each level of utilization 1000 different systems are
generated. The GA was setup with an initial population of 300 individuals, and
every simulation was run for 500 generations. The simulations were run on a
1.8 GHz Pentium 4m processor with 768 MB of RAM. The mean time for each
simulation is 133 seconds.

8.2.2 Results

A series of simulations have been carried out to evaluate the performance of
the proposed framework. To evaluate the schedulability of the systems, FPS
scheduling analysis is used. The priorities are randomly assigned by the ge-

148 Chapter 8. Empirical results

Load Laxity
1-1 allocation GA allocation

Stack CPU Success Stack CPU Success

30%

All 28882 4,1% 74% 17380 2,0% 87%
1.1 25949 3,5% 39% 14970 1,6% 58%
1.3 33077 4,4% 78% 21005 2,2% 97%
1.5 26755 4,1% 95% 15503 2,0% 99%

50%

All 37277 4,8% 82% 24297 2,4% 90%
1.1 35391 4,3% 49% 23146 2,3% 64%
1.3 38251 4,8% 88% 25350 2,5% 96%
1.5 37043 4,9% 98% 23740 2,3% 100%

70%

All 44455 5,1% 85% 30694 2,7% 91%
1.1 44226 5,0% 58% 31638 2,7% 73%
1.3 44267 5,1% 94% 30686 2,7% 98%
1.5 44619 5,2% 98% 30232 2,6% 100%

90%

All 46943 5,6% 87% 37733 3,1% 93%
1.1 54858 5,7% 65% 41207 3,4% 80%
1.3 49607 5,5% 92% 35470 3,0% 98%
1.5 53535 5,7% 98% 38260 3,1% 99%

Table 8.9: Memory, CPU overhead and success ratio for 1-1 and GA alloca-
tions.

netic algorithm, and no two tasks have the same priority. We compare the
allocations to one-to-one allocations. Table 8.9 summarizes the results from
the simulations. The columns entitled "stack" and "CPU" displays the average
memory size (Stack + TCB) and CPU overhead respectively, for all systems
with a specific load and transaction deadline laxity. The column entitled "Suc-
cess" in the 1-1 allocation section displays the rate of systems that are solvable
with the 1-1 allocation. The column entitled "Success" in the GA allocation
section displays the rate at which our framework finds allocations, since all
systems have at least one solution. The stack and CPU values are only col-
lected from systems where a feasible allocation was found.

The first graph of the simulations (Figure 8.23) shows the success ratio, i.e.,
the percentage of systems that were possible to map with the one-to-one allo-
cation, and the GA allocation respectively. The success ratio is relative to the
effort of the GA, and is expected to increase with a higher number of genera-
tions for each system. Something that might seem confusing is that the success
ratio is lower for low utilization compared to high utilizations, even though,
intuitively, it should be the opposite. The explanation to this phenomenon is
that the timing constraints become tighter as fewer tasks participate in each
transaction (lower utilization often leads to fewer tasks). With fewer tasks the
task phasing, due to different periods, will be lower, and the deadline can be set
tighter. This has happened because the systems are automatically generated.

The second graph (Figure 8.24) shows that the deadlines are relaxed with

8.2 Allocating components to tasks 149efghije fjjklfmhkn
opqprp
sptpp

puv puw pux puo puq pur pus tyz{z |yz}~t�t �|��z~� �|��z~�
Figure 8.23: Average success ratio.

������� ����������
��������
�����

��� ��� ��� ��� ��� ��� ��� ����� ������������ ����� �� ������� ����� ��������� ����� �� ¡�¢�£�
Figure 8.24: Success rate for alloca-
tions.

higher utilization, since the allocations with relaxed deadlines perform well,
and the systems with a more constrained deadline show a clear improvement
with higher utilization.

The third graph (Figure 8.25) shows for both approaches the average stack
size for the systems at different utilization. The comparison is only amongst
allocations that are have been successfully mapped by both strategies. The
memory size consists of the TCB and the stack size, and the TCB size is 300
bytes. As described earlier, each task allocates a stack that is equal to the size
of the largest stack among its allocated components.

The fourth graph (Figure 8.26) shows the average task switch time in mi-
cro seconds for the entire system. The task switch overhead is only dependent
on how many tasks there are in the system. The average improvement of GA
allocation in comparison to the 1-1 allocation is, for the success ratio, 10%.
The memory size is reduced by 32%, and the task switch overhead is reduced
by 48%. Hence we can see a substantial improvement in using more sophis-
ticated methods to allocate components to tasks. A better strategy for setting
priorities would probably lead to an improvement in the success ratio. Fur-
ther we observe that lower utilization admits larger improvements than higher
laxity of the deadlines; and since lower utilization in the simulations often
gives tighter deadlines, we can conclude that the allocation does not negatively
impact schedulability. However, regarding the improvements, the more com-
ponents the more constraints are put on each transaction, and thereby on the
components, making it harder to perform good allocations.

150 Chapter 8. Empirical results¤¥¦§ ¨©¥ ª
«¬¬®¬¯¬
°¬±¬
¬²® ¬²¯ ¬²° ¬²± ¬²³ ¬²´ ¬²µ «²¬¶·¸· ¹¶·º»¼½¾

«¿« À¹ÁÁ·»Â À¹ÁÁ·»Â
Figure 8.25: Average memory size.

Ã ÄÅÆÄÇÈ
ÉÊÉËÊÉÌÊÉÍÊÉÎÊÉÏÊÉÐÊÉ

ÉÊÍ ÉÊÎ ÉÊÏ ÉÊÐ ÉÊÑ ÉÊÒ ÉÊÓ ËÔÕÖÕ ×ÔÕØÙËÚË Û×ÜÜÕÙÝ Û×ÜÜÕÙÝ
Figure 8.26: Average task switch over-
head.

8.2.3 Summary

Results from simulations show that the allocation framework gives substantial
improvements both in terms of memory consumption and task switch overhead.
The described framework also has a high ratio in finding feasible allocations.
Moreover, in comparison to allocations performed with a one-to-one allocation
our framework performs very well, with 32% reduced memory size and 48%
reduced task switch overhead. The simulations show that the proposed frame-
work performs allocations on systems of a size that covers many embedded
systems, and in a reasonable time for an off-line tool. We have also shown how
CPU load and deadline laxity affects the allocation.

I may not have gone where I intended

to go, but I think I have ended up where

I needed to be.

-The Long Dark Tea-Time of the
Soul

Chapter 9

Summary and conclusions

In this chapter we summarize and conclude the thesis, and we discuss possible
future research directions.

9.1 Summary

This thesis provides a link between Component-Based Software Engineering
(CBSE) and Embedded Real-Time Systems (ERTS), presenting some of the
difficulties in, and, providing several solutions for, developing predictable and
resource constrained systems by reusing pre-fabricated software components.

We introduce our research starting with an illustrative example from the
real world before giving an overview of the specific research and contributions.
ERTS is introduced together with its terminology and definitions. The state-
of-research is presented in terms of real-time scheduling and WCET analysis.
We give an introduction to CBSE terminology and definitions and discuss its
industrial motivations. The industrial and research problems are discussed and
we outline the research methodology that has been used in order to approach
the research problems. An extension to a CBSE development process is pro-
posed and our methods are positioned in the CBSE process to support resource
efficiency and accurate analysis in developing component-based ERTS. Two
novel methods are outlined for deriving accurate WCET estimates of a com-
ponent; the methods are based on a combination of static WCET analysis and
systematic search over the value space of input variables. We also present a
method for deriving allocations from components to real-time tasks that is op-

151

152 Chapter 9. Summary and conclusions

timized for low resource consumption, while maintaining stipulated real-time
requirements; the method is based on real-time analysis, calculating resource
consumption and genetic algorithms. Throughout the thesis we use an exam-
ple of an Adaptive Cruise Controller application to illustrate our techniques.
Finally we present evaluations of the technical contributions.

9.1.1 Contributions

We have introduced several novel methods for improving utilization and pre-
diction accuracy for reusable software components. We have extended a CBSE
development process with our methods, and we have also developed tools and
evaluated the methods with both industrial code and academic benchmarks.

The specific in-depth technical contributions of the thesis are (i) two meth-
ods for increasing accuracy and resource efficiency of WCET for components,
and (ii) a method for allocating components to tasks for minimizing stack-
usage and CPU-overhead, while maintaining real-time constraints.
The main contributions of the presented research are summarized as follows:

C1 Reusable WCET analysis. The input space of a reusable component is par-
titioned with respect to execution time, creating parameterizable com-
ponent WCET contracts. A WCET contract is parameterizable and pro-
duces a WCET that is more accurate with respect to the specific usage.
The result is that the WCET analysis can be reused together with the
components. The reusable WCET is evaluated with components from
our industrial partners.

C2 Methods for deriving WCET input values. The input space of a component
is divided into partitions with respect to component WCET, searching for
an input combination that results in the execution of the worst-case path.
The result can be used for guiding measurement-based WCET analysis.
The derivation of WCET input values is evaluated with components from
our industrial partners.

C3 A framework for allocating components to tasks aiming at minimizing re-
source consumption while maintaining real-time constraints. The frame-
work calculates feasibility and fitness of an allocation. By exploring the
state space of possible allocations, and comparing them to each other,
meta heuristic methods like genetic algorithms can be used. The frame-
work is implemented with genetic algorithms, and evaluated with sys-
tems from our industrial partner.

9.2 Discussion 153

C4 A resource-aware development process that is an extension of the CBSE
development process augmented with the methods outlined in this thesis.
The WCET analysis is divided and positioned in both the component
and system part. The component to task allocation is positioned after the
reusable WCET analysis for providing a tight WCET to the allocation
framework.

C51 A prototype tool implementing the ideas from contributions C1 and C2.
The prototype tool graphically presents WCET and BCET connected
to inputs and component contracts. The tool supports several different
heuristics for creating WCET contracts.

9.2 Discussion

In Chapter 4 several industrial and academic problems were formulated, and
solutions proposed. We revisit the questions identified from Shaw’s classifica-
tion of software engineering research [Sha01]; the questions related to charac-
terization and methods. The first question is:

Characterization: what are the important characteristics for increasing re-

source efficiency and predictability for reusable software components in

embedded real-time systems?

We have found that important characteristics for increasing resource utilization
and predictability for reusable software components are:

• WCET analysis is both time consuming and difficult. Having tools that
automatically derive a reusable WCET increases the development effi-
ciency by making WCET analysis simpler and more accessible. Thus
the WCET analysis should be automated as much as possible, requiring
a minimum of human interaction.

• The CBSE development process is different from traditional software de-
velopment in the sense that it is divided into component development and
system development. WCET analysis should be divided in two different
parts, one component part, developed to be reusable by the component
developer, and one system part, to be used by the system designer. This

1C5 is not a scientific contribution.

154 Chapter 9. Summary and conclusions

facilitates the adoption of the technique in the CBSE development pro-
cess. Reusable WCET analysis should be performed in the component
development part of the CBSE development process and should be pa-
rameterized in the system development part of the CBSE development
process.

• Reusable WCET analysis results should reach a pre-defined accuracy,
and it should be possible to reach higher accuracy compared to current
state of the art static WCET analysis.

• A component-based system must be transformed to a real-time system
conforming to a specific real-time model. A common approach for al-
locating components to real-time tasks is to view one component as one
task. For better resource usage many components should be allocated
to one real-time task. At the same time an allocation from components
to real-time tasks must not violate temporal requirements. Thus, com-
ponents should be allocated to tasks in such a way that the temporal
correctness of the system is fulfilled.

The second question is related to methods and means from Shaw’s classifica-
tion of software engineering research.

Methods/means: how can we accomplish increased resource efficiency and

predictability for reusable software components in embedded real-time

systems?

• The reusable WCET analysis method has shown to provide accurate
WCET estimates that can be used under the assumptions given in this
thesis. The method comes with a penalty of increased effort in terms of
calculation time for achieving the reusable WCET.

The results show that the proposed method can express relationships be-
tween inputs and execution times with higher precision compared to tra-
ditional WCET analysis. The method has been evaluated with both in-
dustrial and academic software.

Due to tighter WCET estimations when analyzing smaller partitions of
a component the WCET become more accurate compared to traditional
WCET analysis.

Moreover, as can be expected, the number of WCET calculations are for
most programs highly related to the size of the program’s input value

9.2 Discussion 155

space. For most evaluated components, the results scales very good up
to around an accuracy2 of ≈ 60− 70%. The last ≈ 30− 40% accuracy
generally scales worse than linear, requiring more effort. The algorith-
mic complexity is still never higher than O(n), where n is the input value
size.

• The second novel method derives an input combination that triggers the
execution of the WCET path (the path through a program that takes
longest time). In this method we use techniques similar to the first out-
lined method in the sense that we use static WCET analysis and struc-
tured search over the component input domain. However, rather than
searching the entire input domain, we iteratively remove parts of the do-
main that do not generate execution of the WCET path.

The evaluations show that it is possible to derive the input combination
that generates the execution of the WCET program path within bounded
time and with low algorithmic complexity, i.e., never higher algorithmic
complexity than O(n) where n is the size of the input domain.

• The third method allocates components to real-time tasks in such a way
that resource utilization is maximized. The evaluations show that allo-
cation of components to tasks potentially give high benefits in terms of
increased resource efficiency. We have also shown that tighter WCET
estimations produce a higher number of feasible allocations, and hence
a greater chance to find a better allocation compared to one-to-one allo-
cations.

Results from simulations show that the allocation framework gives sub-
stantial improvements both in terms of memory consumption and task
switch overhead. The described framework also has a high ratio in find-
ing feasible allocations. Moreover, in comparison to allocations per-
formed with a one-to-one allocation our framework performs very well,
with 32% reduction in required memory size and 48% reduction of task
switch overhead. The simulations show that the proposed framework
performs allocations on systems of a size that covers many embedded
systems, and in a reasonable time for an off-line tool. We have also
shown how CPU load and deadline laxity affects the allocation.

So, have we solved the outlined problems with these novel methods? No, we
certainly have not solved the problems; however, we take one step in the right

2Accuracy is defined in Chapter 6.

156 Chapter 9. Summary and conclusions

direction. We underline the difficulty in reusing software components in ERTS,
and provides methods and tool for facilitating CBSE in ERTS. The research
show that it is possible to achieve efficient reuse of software components and
at the same time have efficient use of resources and high accuracy of real-time
predictions.

The assumptions restrict the usefulness of the approach in practice, and in
future work the assumptions need to be relaxed. It is worth noting though that
all research is based on assumptions, and some assumptions are impractical.
For instance most real-time scheduling work is based on the assumption that
tasks are independent. However, as research progresses assumptions may be
relaxed, making the research more practically applicable.

9.3 Future research directions

In this section we present a selection of possible future research directions. We
outline a list of possible directions and we will further discuss a few of those
research directions:

• Parameterization with respect to hardware in the reusable WCET con-
tracts.

• Parallelization of the algorithms used for finding input value space par-
titions in the reusable WCET method.

• More advanced real-time constraints in the allocation framework.

• More advanced search heuristics in the reusable WCET analysis.

• Incremental WCET analysis.

9.3.1 Varying hardware

In future work it may be possible to also parameterize the contracts with respect
to hardware to facilitate reuse over hardware boundaries. This gives another
dimension to the problem and increases the search domain. Different aspects
of hardware can be considered. For example different alignment in memory,
different hardware architectures and much more. It is not obvious how this in-
formation should be treated; one possibility is to view the hardware parameters
as a larger input domain. However, a more sophisticated approach is probably
preferable in order to limit the search effort.

9.3 Future research directions 157

9.3.2 Distribute the search algorithms

The reusable WCET analysis is inherent suitable for parallelizing of the analy-
sis executions. This is future work that has been discussed, and would dramat-
ically improve the performance of the methods.

The analysis times for some of the test-benches are several hours. The
times are still, in the opinion of the author, reasonable given the complexity
of the problem. The approach however, is easily parallelized using SMP or
clusters of computers. The technique can be used for, e.g., speculative WCET
analysis of value space partitions.

9.3.3 Dynamic search strategies

The methods for reusable WCET and deriving the WCET input combination,
a binary search where the proposed search strategies are evaluated during the
search. A simple heuristics is to cycle the different variable selection strategies
depending on the improvement in accuracy between two consecutive WCET
runs. In this way it might be possible to always choose the best strategy de-
pending on what part of the input space is divided.

Bibliography

[ABGP05] Colin Atkinson, Christian Bunse, Hans-Gerhard Groß, and
Christian Peper. Component-Based Software Development for

Embedded Systems: An Overview of Current Research Trends

(Lecture Notes in Computer Science). ISBN 3-540-30644-7.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[Acc06] The embedded software industry: Challenges and successes.
Whitepaper, May 2006.
http://www.accenture.com/.

[ÅCF+07] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans
Hansson, John Håkansson, Anders Möller, Paul Pettersson,
and Massimo Tivoli. The save approach to component-based
development of vehicular systems. Journal of Systems and

Software, 80(5):655–667, May 2007.

[ÅFSC04] Mikael Åkerholm, Johan Fredriksson, Kristian Sandström,
and Ivica Crnkovic. Quality attribute support in a component
technology for vehicular software. In Proc. 4th Conference

on Software Engineering Research and Practice in Sweden,
Linköping, Sweden, October 2004.

[AHLW08] Sebastian Altmeyer, Christian Hümbert, Björn Lisper, and
Reinhard Wilhelm. Parametric timing analysis for complex
architectures. In Proc. 15th IEEE International Conference on

Real-Time Computing Systems and Applications (RTCSA’08),
Kaohsiung, Taiwan, August 2008. IEEE Computer Society
Press.

159

160 Bibliography

[aiT] ait execution time analyzer.
http://www.absint.com/ait/.

[Alt06] Sebastian Altmeyer. Parametric wcet analysis, parametric
framework and parametric path analysis. Master’s thesis,
Saarland University, Department of Computer Science, Oct
2006.

[Aud91] Neil C. Audsley. Optimal priority assignment and feasibility
of static priority tasks with arbitrary start times. Technical
Report YCS-91-164, Department of Computer Science, Uni-
versity of York, December 1991.

[AZP03] Andreas S. Andreou, Andreas C. Zographos, and George A.
Papadopoulos. A three-dimensional requirements elicita-
tion and management decision-making scheme for the de-
velopment of new software components. In Proc. 5th In-

ternational Conference On Enterprise Information Systems

(ICEIS), pages 3–13, Angers, France, 2003. Springer Verlag.

[Baa88] Sara Baase. Computer algorithms: introduction to design and

analysis (2nd ed.). ISBN 0-201-06035-3. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1988.

[BB99] Ian Bate and Alan Burns. An approach to task attribute as-
signment for uniprocessor systems. In Proc. 11th Euromicro

Workshop on Real Time Systems, pages 46–53, York, England,
June 1999. IEEE Computer Society Press.

[BB00] Guillem Bernat and Alan Burns. An approach to symbolic
worst-case execution time analysis. In Proc. 25th IFAC/IFIP

Workshop on Real-Time Programming, Palma, Spain. IFAC,
Elsevier Science Ltd, May 2000.

[BB05] Jesal Bhuta and Barry Boehm. A method for compatible cots
component selection. In Proc. International Conference on

COTS-Based Software Systems (ICCBSS’05), pages 132–143,
Bilbao, Spain, February 2005. Springer Verlag.

[BBB+00] Felix Bachmann, Len Bass, Charles Buhman, Santiago
Comella-Dorda, Fred Long, John Robert, Robert Seacord,

Bibliography 161

and Kurt Wallnau. Technical concepts of component-
based software engineering, volume ii. Technical Re-
port CMU/SEI-2000-TR-008, Software Engineering Institute,
Carnegie-Mellon University, May 2000.

[BBB04] Guillem Bernat, Ian Broster, and Alan Burns. Rewriting his-
tory to exploit gain time. In Proc. 25th IEEE Real-Time Sys-

tems Symposium (RTSS’04), pages 328–335, Lisbon, Portugal,
2004. IEEE Computer Society Press.

[BBCD+00] Len Bass, Charles Buhman, Santiago Comella-Dorda, Fred
Long, John Robert, Robert Seacord, and Kurt Wallnau. Vol-
ume i: Market assessment of component-based software engi-
neering. Technical Report CMU/SEI-2001-TN-007, Software
Engineering Institute, May 2000.

[BCC+03] Ed Brinksma, Geoff Coulson, Ivica Crnkovic, Andy Evans,
Sébastien Gérard, Susanne Graf, Holger Hermanns, Jean-
Marc Jézéquel, Bengt Jonsson, Anders Ravn, Philippe
Schnoebelen, Francois Terrier, and Angelika Votintseva.
Component-based design and integration platforms: a
roadmap. Technical Report IST-2001-34820, The ARTIST
consortium, April 2003.

[BCP02] Guillem Bernat, Antoine Colin, and Stefan M. Petters. Wcet
analysis of probabilistic hard real-time systems. In Proc. 23rd

IEEE Real-Time Systems Symposium (RTSS’02), pages 279–
288, Austin, TX, USA, December 2002. IEEE Computer So-
ciety Press.

[BCP03a] Guilemm Bernat, Antoine Colin, and Stefan Petters. pWCET:
a tool for probabilistic worst-case execution time analysis of
real-time systems. Technical Report YCS-2003-353, Depart-
ment of Computer Science, York University, York, England,
January 2003.

[BCP03b] Guillem Bernat, Antoine Colin, and Stefan M. Petters.
pWCET, a Tool for Probabilistic WCET Analysis of Real-
Time Systems. In Proc. 3d International Workshop on

Worst-Case Execution Time analysis (WCET’03) in conjunc-

tion with 13th Euromicro Conference of Real-Time Systems,

162 Bibliography

(ECRTS’03), pages 21–38, Porto, Portugal, June 2003. IEEE
Computer Society Press.

[BEG+08] Dani Barkah, Andreas Ermedahl, Jan Gustafsson, Björn
Lisper, and Christer Sandberg. Evaluation of automatic flow
analysis for WCET calculation on industrial real-time system
code. In Proc. 20th Euromicro Conference of Real-Time Sys-

tems, (ECRTS’08), pages 331–340, Prague, Czech republic,
July 2008. IEEE Computer Society Press.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. Communications of the ACM,
18(9):509–517, 1975.

[BJPW99] Antoine Beugnard, Jean-Marc Jezequel, Noel Plouzeau, and
Damien Watkins. Making components contract aware. IEEE

Computer, 32(7):38–45, 1999.

[BL08] Stefan Bygde and Björn Lisper. Towards an automatic para-
metric wcet analysis. In Proc. 8th International Workshop on

Worst-Case Execution Time analysis (WCET’08) in conjunc-

tion with 18th Euromicro Conference of Real-Time Systems,

(ECRTS’08). IEEE Computer Society Press, July 2008.

[BMdW+04] Egor Bondarev, Johan Muskens, Peter de With, Michel Chau-
dron, and Johan Lukkien. Predicting real-time properties
of component assemblies: a scenario-simulation approach.
In Proc. 30th Euromicro conference, pages 40–47, Rennes,
France, September 2004. IEEE Computer Society Press.

[BMdWC04] Egor Bondarev, Johan Muskens, Peter de With, and Michel
Chaudron. Towards predicting real-time properties of a com-
ponent assembly. In Proc. 30th Euromicro conference, pages
601–610, Rennes, France, September 2004. IEEE Computer
Society Press.

[BNTZ93] Alan Burns, Mark Nicholson, Ken W. Tindell, and N. Zhang.
Allocating and scheduling hard real-time tasks on a point-to-
point distributed system. In Proc. Workshop on Parallel and

Distributed Real-Time Systems (WPDRTS’93), pages 11–20,
Newport Beach, CA, USA, April 1993. IEEE Computer Soci-
ety Press.

Bibliography 163

[Bou] Bound-t execution time analyzer.
http://www.tidorum.fi/bound-t/.

[Bro06] Manfred Broy. Challenges in automotive software engineer-
ing. In Proc. 28th International Conference on Software engi-

neering (ICSE’06), pages 33–42, New York, NY, USA, May
2006. ACM Press.

[But97] Giorgio C. Butazzo. Hard Real-Time Computing Systems.
ISBN 0-7923-9994-3. Kluwer Academic Publishers, 1997.

[But06] Giorgio Buttazzo. Research trends in real-time computing for
embedded systems. ACM Special Interest Group on Embed-

ded Systems, 3(3):1–10, July 2006.

[CA95] Sheng T. Cheng. and Ashok K. Agrawala. Allocation and
scheduling of real-time periodic tasks with relative timing
constraints. In Proc. 2nd IEEE International Conference on

Real-Time Computing Systems and Applications (RTCSA’95),
pages 210–217, Tokyo, Japan, October 1995. IEEE Computer
Society Press.

[CAPD02] Ivica Crnkovic, Ulf Askerlund, and Anita Persson-Dahlqvist.
Implementing and Integrating Product Data Management and

Software Configuration Management. ISBN 1-58053-498-8.
Artech House Software Engineering Library, 2002.

[CB02] Antoine Colin and Guillem Bernat. Scope-tree: A program
representation for symbolic worst-case execution time analy-
sis. In Proc. 14th Euromicro Conference of Real-Time Sys-

tems, (ECRTS’02), pages 50–59, Washington, DC, USA, June
2002. IEEE Computer Society Press.

[CCL06] Ivica Crnkovic, Michel Chaudron, and Stig Larsson.
Component-based development process and component life-
cycle. In Proc. International Conference on Software Engi-

neering Advances (ICSEA’06), page 44, Tahiti, French Poly-
nesia, October 2006. IEEE Computer Society Press.

[Cha02] Ching-Yao Chan. A treatise on crash sensing for automotive
air bag systems. IEEE/ASME Transactions on Mechatronics,
7(2):220–234, June 2002.

164 Bibliography

[CHMW07] Joel Coffman, Christopher Healy, Frank Mueller, and David
Whalley. Generalizing parametric timing analysis. Proc. ACM

SIGPLAN Conference on Languages, Compilers and Tools for

Embedded Systems (LCTES’07), 42(7):152–154, 2007.

[CL92] Norman Carver and Victor Lesser. The evolution of black-
board control architectures. Technical Report UM-CS-1992-
071, Department of Computer Science, University of Mas-
sachusetts Amherst, October 1992.

[CL02a] Ivica Crnkovic and Magnus Larsson. Building Reliable

Component-Based Software Systems. ISBN 1-58053-327-2.
Artech House publisher, 2002.

[CL02b] Ivica Crnkovic and Magnus Larsson. Challenges of
component-based development. Journal of Systems and Soft-

ware, 61(3):201–212, April 2002.

[Crn02] Ivica Crnkovic. Component-based software engineering –
new challenges in software development. Software Focus,
2(4):127–133, April 2002.

[Crn04] Ivica Crnkovic. Component-based approach for embedded
systems. In Proc. 9th International Workshop on Component-

Oriented Programming (WCOP’04), Oslo, Norway, June
2004. Springer Verlag.

[CZM+03] Kendra Cooper, Jia Zhou, Hui Ma, I-Ling Yen, and Farokh B.
Bastani. Code parameterization for satisfaction of qos re-
quirements in embedded software. In Proc. International con-

ference on Engineering of Reconfigurable Systems and Algo-

rithms (ERSA’03), pages 58–64, Las Vegas, NV, USA, June
2003. CSREA Press.

[Dou99] B. P. Douglas. Doing Hard Time. ISBN 0-201-49837-5. Ad-
dison Wesely, 1999.

[DP04] Laurent David and Isabelle Puaut. Static determination of
probabilistic execution times. In Proc. 16th Euromicro Con-

ference of Real-Time Systems, (ECRTS’04), pages 223–230,
Catania, Sicily, July 2004. IEEE Computer Society Press.

Bibliography 165

[Dur06] Marc Duranton. The challenges for high performance embed-
ded systems. In Proc. 9th Euromicro Conference on Digital

Systems Design, (DSD’06), pages 3–7, Dubrovnik, Croatia,
September 2006. IEEE Computer Society Press.

[Erm03] Andreas Ermedahl. A Modular Tool Architecture for Worst-

Case Execution Time Analysis. PhD thesis, Uppsala Uni-
versity, Dept. of Information Technology, Uppsala University,
Sweden, June 2003.

[EY97] Rolf Ernst and Wei Ye. Embedded program timing analy-
sis based on path clustering and architecture classification.
In Proc. IEEE/ACM international conference on Computer-

aided design (ICCAD’97), pages 598–604, San Jose, CA,
USA, 1997. IEEE Computer Society Press.

[FÅDS03] Johan Fredriksson, Mikael Åkerholm, Radu Dobrin, and Kris-
tian Sandström. Attaining Flexible Real-Time Systems by
Bringing Together Component Technologies and Real-Time
Systems Theory. In Proc. 29th Euromicro Conference on

EUROMICRO (EUROMICRO’03), pages 399–403, Belek,
Turkey, September 2003. IEEE Computer Society Press.

[FB70] Alex Fraser and Donald Burnell. Computer Models in Genet-

ics. ISBN 0-070-21904-4. New York: McGraw-Hill, 1970.

[FBH05] Viktoria Firus, Steffen Becker, and Jens Happe. Paramet-
ric performance contracts for qml-specified software compo-
nents. In Proc. 2nd International Workshop on Formal Foun-

dations of Embedded Software and Component-based Soft-

ware Architectures (FESCA 2005), pages 73–90, Edinburgh,
Scottland, December 2005. Elsevier Science Inc.

[FdN08] Peter H. Feiler and Dionisio de Niz. Assip study of real-
time safety-critical embedded software-intensive system engi-
neering practices. Technical Report CMU/SEI-2008-SR-001,
Technical report, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, USA, February 2008.

[FF95] Carlos M. Fonseca and Peter J. Flemming. An overview of
evolutionary algorithms in multiobjective optimization. Evo-

lutionary computation, 3(1):1–16, Spring 1995.

166 Bibliography

[FH08] Christian Ferdinand and Reinhold Heckmann. Worst-case ex-
ecution time – a tool provider’s perspective. In Proc. 11th

IEEE Symposium on Object Oriented Real-Time Distributed

Computing (ISORC08), pages 340–345, Orlando, FL, USA,
May 2008. IEEE Computer Society Press.

[FPDF98] William Frakes, Ruben Prieto-Diaz, and Christopher Fox.
Dare: Domain analysis and reuse environment. Annals of Soft-

ware Engineering, 5(1):125–141, 1998.

[FSÅ05] Johan Fredriksson, Kristian Sandström, and Mikael Åker-
holm. Optimizing Resource Usage in Component-Based Real-
Time Systems. In Proc. 8th International Symposium on

Component-Based Software Engineering (CBSE8), pages 49–
65, St.Louis, MO, USA, May 2005. Springer Verlag.

[FW99] Christian Ferdinand and Reinhard Wilhelm. Efficient and pre-
cise cache behavior prediction for real-timesystems. Real-

Time Systems Journal, 17(2-3):131–181, 1999.

[Gan06] Jack Ganssle. Really real-time systems. In Proc. Embed-

ded Systems Conference, Silicon Valley 2006 (ESCSV 2006),
Boston, MA, USA, April 2006. Embedded Systems Confer-
ence.

[GCS+02] Thomas Genssler, Alexander Christoph, B. Schulz, Michael
Winter, Christian M. Stich, C. Zeidler, Peter O. Müller,
A. Stelter, Oscar Nierstrasz, Stéphane Ducasse, Gabriela Aré-
valo, Roel Wuyts, P. Liang, Bastiaan Schönhage, and Reinier
van den Born. Pecos in a nutshell. Technical report, The
PECOS Consortium, 2002.

[GCW+02] Thomas Genßler, Alexander Christoph, Michael Winter, Os-
car Nierstrasz, Stéphane Ducasse, Roel Wuyts, Gabriela Aré-
valo, Bastiaan Schönhage, Peter Müller, and Chris Stich.
Components for embedded software: the pecos approach. In
Proc. 5th International Conference on Compilers, Architec-

ture, and Synthesis for Embedded Systems, (CASES’02), pages
19–26, New York, NY, USA, June 2002. ACM Press.

Bibliography 167

[GESL06] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and
Björn Lisper. Automatic derivation of loop bounds and in-
feasible paths for WCET analysis using abstract execution. In
Proc. 27th IEEE Real-Time Systems Symposium (RTSS’06),
pages 57–66, Rio de Janiero, Brazil, December 2006. IEEE
Computer Society Press.

[GHS94] Richard Gerber, Seongsoo Hong, and Manas Saksena. Guar-
anteeing end-to-end timing constraints by calibrating interme-
diate processes. In Proc. 25th IEEE Real-Time Systems Sym-

posium (RTSS’04), pages 192–203, Lisbon, Portugal, Decem-
ber 1994. IEEE Computer Society Press.

[Gil05] Helen Gill. Challenges for critical embedded systems. In
Proc. 10th IEEE International Workshop on Object-Oriented

Real-Time Dependable Systems (WORDS’05), pages 7–12,
Washington, DC, USA, February 2005. IEEE Computer So-
ciety Press.

[GLN01] Paulo Gai, Giuseppe Lipari, and Marco Di Natale. Minimizing
memory utilization of real-time task sets in single and multi-
processor systems-on-a-chip. In Proc. 22nd IEEE Real-Time

Systems Symposium (RTSS’01), pages 73–81, London, UK,
December 2001. IEEE Computer Society Press.

[Gom00] Hassan Gomaa. Designing Concurrent Distributed, and Real-

Time Applications with UML. ISBN 0-201-65793-7. Addison
Wesely, 2000.

[Gri93] Martin L. Griss. Software reuse: from library to factory. IBM

Systems Journal, 32(4):548–566, July 1993.

[GSBC05] Stefan Valentin Gheorghita, Sander Stuijk, Twan Basten, and
Henk Corporaal. Sharper wcet upper bounds using automat-
ically detected scenarios. Technical Report ESR-2005-04,
Eindhoven University of Technology, Department of Electri-
cal Engineering, Electronic Systems, March 2005.

[GSCK04] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent.
Software Factories: Assembling Applications with Patterns,

Models, Frameworks, and Tools. ISBN 0-471-20284-3. John
Wiley & Sons, 2004.

168 Bibliography

[Har05] William C. Harris. Frontier research: the European chal-

lenge; High-Level Expert Group report. ISBN 92-894-9209-0.
Office for Official Publications of the European Communities,
febr. 2005 edition, 2005.

[HC01] George T. Heineman and William T. Councill. Component-

based Software Engineering, Putting the Pieces Together.
ISBN 0-201-70485-4. Prentice-Hall, 2001.

[HCDJ08] Pierre-Emmanuel Hladik, Hadrien Cambazard, Anne-Marie
Déplanche, and Narendra Jussien. Solving a real-time allo-
cation problem with constraint programming. Journal of Sys-

tems and Software, 81(1):132–149, 2008.

[HK07] Trevor Harmon and Raymond Klefstad. Interactive back-
annotation of worst-case execution time analysis for java
microprocessors. In Proc. 14th IEEE International Con-

ference on Real-Time Computing Systems and Applications

(RTCSA’07), pages 209–216, Daegu, South Korea, August
2007. IEEE Computer Society Press.

[HKK04] Bernd Hardung, Thorsten Kölzow, and Andreas Krüger.
Reuse of software in distributed embedded automotive sys-
tems. In Proc. 4th ACM international conference on Embed-

ded software (EMSOFT’04), pages 203–210, New York, NY,
USA, September 2004. ACM Press.

[HKR06] Jens Happe, Heiko Koziolek, and Ralf Reussner. Parametric
performance contracts for software components with concur-
rent behaviour. In Proc. 3rd Workshop on Formal Aspects of

Component Software (FACS), volume 167, pages 91–106. El-
sevier Science Inc., sep 2006.

[HLB+97] Hans Hansson, Harold Lawson, Olof Bridal, Christer
Norström, Sven Larsson, Henrik Lönn, and Mikael Ström-
berg. Basement: An architecture and methodology for dis-
tributed automotive real-time systems. IEEE Transactions on

Computers, 46(9):1016–1027, September 1997.

[HMTN06] Kaj Hänninen, Jukka Mäki-Turja, and Mikael Nolin. Present
and future requirements in developing industrial embedded

Bibliography 169

real-time systems - interviews with designers in the vehicle
domain. In Proc. 13th IEEE International Conference and

Workshop on the Engineering of Computer Based Systems

(ECBS), pages 139–150, Potsdam, Germany, March 2006.
IEEE Computer Society Press.

[HMTN+08] Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lind-
berg, John Lundbäck, and Kurt-Lennart Lundbäck. The rubus
component model for resource constrained real-time systems.
In Proc. 3rd IEEE International Symposium on Industrial Em-

bedded Systems (SIES’08), Montpellier, France, June 2008.
IEEE Computer Society Press.

[HMTS+08] Kaj Hänninen, Jukka Mäki-Turja, Staffan Sandberg, John
Lundbäck, Mats Lindberg, Mikael Nolin, and Kurt-Lennart
Lundbäck. Framework for real-time analysis in rubus-ice.
In Proc. 13th IEEE International Conference on Emerging

Technologies and Factory Automation, Hamburg, Germany,
September 2008. IEEE Computer Society Press.

[Hol73] John H. Holland. Genetic algorithms and the optimal alloca-
tion of trials. SIAM Journal on Computing, 2(2):88–105, June
1973.

[Hol92] John H. Holland. Adaptation in Natural and Artificial Sys-

tems: An Introductory Analysis with Applications to Biology,

Control and Artificial Intelligence. MIT Press, Cambridge,
MA, USA, 1992.

[HS97] Chao-Ju Hou. and Kang G. Shin. Allocation of periodic
task modules with precedence and deadline constraints in dis-
tributed real-time system. IEEE Transactions on Computers,
46(12):1338–1356, December 1997.

[Hüm06] Christian Hümbert. Parametric wcet analysis, parameter anal-
ysis and parametric loop analysis. Master’s thesis, Saarland
University, Department of Computer Science, Oct 2006.

[IEE92] IEEE. The new ieee standard dictionary of electrical and elec-
tronics terms. Technical report, IEEE std., 1992.

170 Bibliography

[JO95] Klaus Jansen and Sabine R. Ohring. Approximation algo-
rithms for time constrained scheduling. In Proc. 1st IEEE

International Conference on Algorithms and Architectures

for Parallel Processing, pages 670–679, Brisbane, Australia,
April 1995. IEEE Computer Society Press.

[Jor97] Kimberly Jordan. Software reuse term paper for the mjy team.
Technical Report TP-KJ.1.0, George Mason University, April
1997.

[JWLQ06] Meng-Lou Ji, Ji Wang, Shuhao Li, and Zhi-Chang Qi. Auto-
mated wcet analysis based on program modes. In Proc. Inter-

national workshop on Automation of Software Test (AST’06)

in conjunction with International Conference on Software En-

gineering (ICSE’06), pages 36–42, Shanghai, China, May
2006. ACM Press.

[KGV83] Scott Kirkpatrick, Charles D. Gelatt, and Mario P. Vecchi. Op-
timization by simulated annealing. Science, 220(4598):671–
680, May 1983.

[Kop91] Hermann Kopetz. Event-triggered versus time-triggered real-
time systems. In Proc. International Workshop on Operating

Systems of the 90s and Beyond, pages 87–101, London, UK,
1991. Springer Verlag.

[Kor99] Bogdan Korel. Black-box understanding of cots components.
In Proc. 7th International Workshop on Program Comprehen-

sion (IWPC’99), page 92, Washington, DC, USA, 1999. IEEE
Computer Society Press.

[KP03] Raimund Kirner and Peter Puschner. Discussion of miscon-
ceptions about wcet analysis. In Proc. 3d International Work-

shop on Worst-Case Execution Time analysis (WCET’03) in

conjunction with 13th Euromicro Conference of Real-Time

Systems, (ECRTS’03), pages 61–64, Porto, Portugal, August
2003. Mälardalen Real-Time Centre, Mälardalen University.

[KP05] Raimund Kirner and Peter Puschner. Classification of WCET
analysis techniques. In Proc. 8th IEEE International Sym-

posium on Object-oriented Real-time distributed Computing,

Bibliography 171

pages 190–199, Seatle, WA, USA, May 2005. IEEE Computer
Society Press.

[KWS03] Sharath Kodase, Shige Wang, and Kang G. Shin. Trans-
forming structural model to runtime model of embedded soft-
ware with real-time constraints. In Proc. Design, Automation

and Test in European Conference and Exhibition (DATE’03),
pages 170–175, Munich, Germany, November 2003. IEEE
Computer Society Press.

[Lar04] Magnus Larsson. Predicting Quality Attributes in Component-

based Software Systems. PhD thesis, Mälardalen University,
Department of Computer Science and Engineering, Västerås,
Sweden, March 2004.

[Lau06] Audi Q7 Launch. Audi q7 launch (september 2006),
September 2006. http://editorial.carsales.com.au/car-
review/2051265.aspx.

[LBCC08] Rikard Land, Laurens Blankers, Michel Chaudron, and Ivica
Crnkovic. Cots selection best practices in literature and in
industry. In Proc. 10th International Conference on Software

Reuse (ICSR’08), pages 100–111, Beijing China, May 2008.
Springer Verlag.

[LGA+07] Jingyue Li, Anita Gupta, Jon Arvid, Borretzen Borretzen, and
Reidar Conradi. The empirical studies on quality benefits
of reusing software components. In Proc. 31st International

Computer Software and Applications Conference (COMPSAC

2007), pages 399–402, Washington, DC, USA, July 2007.
IEEE Computer Society Press.

[Lis03] Björn Lisper. Fully automatic, parametric worst-case execu-
tion time analysis. Technical report, Mälardalen Real-Time
Research Centre, April 2003.

[LL73] Chung L. Liu and James W. Layland. Scheduling Algo-
rithms for Multiprogramming in hard-real-time environment.
Journal of the Association for Computing Machinery (ACM),
20(1):46–61, 1973.

172 Bibliography

[LLL03] Kurt-Lennart Lundbäck, John Lundbäck, and Mats Lindberg.
Component-based development of dependable real-time appli-
cations, August 2003. Real-Time in Sweden (RTiS), Presen-
tation of Component-Based Software Development Based on
the Rubus Concept.

[LME98] Yau-Tsun Steven Li, Sharad Malik, and Benjamin Ehrenberg.
Performance Analysis of Real-Time Embeded Software. ISBN
0-792-38382-6. Kluwer Academic Publishers, Norwell, MA,
USA, 1998.

[LPB+05] Jong-In Lee, Su-Hyun Park, Ho-Jung Bang, Tai-Hyo Kim, and
Sung-Deok Cha. A hybrid framework of worst-case execu-
tion time analysis for real-time embedded system software. In
Proc. Aerospace Conference, pages 1–10, Big Sky, MT, USA,
March 2005. IEEE Computer Society Press.

[Lüd06] Frank Lüders. An Evolutionary Approach to Software Com-

ponents in Embedded Real-Time Systems. PhD thesis,
Mälardalen Univeristy, Department of Computer Engineering
and Electronics, December 2006.

[Lun08] Kurt-Lennart Lundbäck. Rubus os reference manual – general
concepts, August 2008.
http://www.arcticus.se.

[LY03] Qing Li and Caroline Yao. Real-Time Concepts for Embedded

Systems. ISBN 1-578-20124-1. CMP Books, 2003.

[MA95] Syed M. Mahmud and Ansaf I. Alrabady. A new decision
making algorithm for airbag control. IEEE Transactions on

Vehicular Technology, 44(3):690–697, August 1995.

[MÅFN03] Anders Möller, Mikael Åkerholm, Johan Fredriksson, and
Mikael Nolin. Software component technologies for real-time
systems - an industrial perspective. In Proc. WiP Session of

Real-Time Systems Symposium (RTSS’03), Cancun, Mexico,
December 2003. IEEE Computer Society Press.

[MÅFN04] Anders Möller, Mikael Åkerholm, Johan Fredriksson, and
Mikael Nolin. Evaluation of component technologies with
respect to industrial requirements. In Proc. 30th Euromicro

Bibliography 173

Conference, Component-Based Software Engineering Track,
pages 56–63, Rennes, France, August 2004. IEEE Computer
Society Press.

[MÅFN05] Anders Möller, Mikael Åkerholm, Joakim Fröberg, and
Mikael Nolin. Industrial grading of quality requirements for
automotive software component technologies. In Proc. Em-

bedded Real-Time Systems Implementation Workshop in con-

junction with the 26th IEEE International Real-Time Systems

Symposium, Miami, FL, USA, December 2005. IEEE Com-
puter Society Press.

[MBD98] Yannick Monnier, Jean-Pierre Beauvis, and Anne-Marie Dé-
planche. A genetic algorithm for scheduling tasks in a real-
time distributed system. In Proc. 24th Euromicro Conference

(EUROMICRO’98), pages 708–714, Västerås, Sweden, Au-
gust 1998. IEEE Computer Society Press.

[MBMB98] David Montana, Marshall Brinn, Sean Moore, and Garrett
Bidwell. Genetic algorithms for complex, real-time schedul-
ing. In Proc. IEEE International Conference on Systems, Man,

and Cybernetics, pages 245–248, San Diego, CA, USA, Oc-
tober 1998. IEEE Computer Society Press.

[MG02] Kevin L. Mills. and Hassan Gomaa. Knowledge-based au-
tomation of a design method for concurrent systems. IEEE

Transactions on Software Engineering, 28(3):228–255, March
2002.

[MGL06] Pascal Montag, Steffen Görzig, and Paul Levi. Applying static
timing analysis to component architectures. In Proc. Inter-

national Workshop on Software Engineering for Automotive

Systems (SEAS’06), pages 21–28, New York, NY, USA, 2006.
ACM Press.

[MJ86] Paritosh K. Pandya Mathai Joseph. Finding Response Times
in a Real-Time System. The Computer Journal, 29(5):390–
395, 1986.

[MMH+05] Sibin Mohan, Frank Mueller, William Hawkins, Michael
Root, Christopher Healy, and David Whalley. Parascale: Ex-
ploiting parametric timing analysis for real-time schedulers

174 Bibliography

and dynamic voltage scaling. In Proc. 26th IEEE Real-Time

Systems Symposium (RTSS’05), pages 233–242, Miami, FL,
USA, December 2005. IEEE Computer Society Press.

[Moh04] Parastoo Mohagheghi. Impact of Software Reuse and In-

cremental Development on the Quality of Large Systems.
PhD thesis, Norwegian University of Science and Technology
NTNU, September 2004.

[Moh06] Elsadig Yousif Mohamed. How to conduct scientific research?
Sudanese Journal of Public Health, 1(2):144–147, April 2006.

[MT05] Jukka Mäki-Turja. Engineering Strength Response-Time

Analysis - A Timing Analysis Approach for the Development

of Real-Time Systems. PhD thesis, Mälardalen Univeristy,
Department of Computer Engineering and Electronics, May
2005.

[MYZC06] Hui Ma, I.-Ling Yen, Jia Zhou, and Kendra Cooper. Qos
analysis for component-based embedded software: model and
methodology. Journal of Systems and Software, 79(6):859–
870, June 2006.

[NAD+02] Oscar Nierstrasz, Gabriela Arévalo, Stéphane Ducasse, Roel
Wuyts, P. Black, Peter O. Muller, T. Zeidler, Thomas Genssler,
and Reinier van den Born. A component model for field de-
vices. In Proc. 1st International IFIP/ACM Working Con-

ference on Component Deployment (CD’02), pages 200–209,
Berlin, Germany, June 2002. Springer Verlag.

[PBKS07] Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and
Thomas Stauner. Software engineering for automotive sys-
tems: A roadmap. In Proc. Future of Software Engineering

(FoSE’07), pages 55–71, Washington, DC, USA, May 2007.
IEEE Computer Society Press.

[PD96] Rubén Prieto-Diaz. Reuse as a New Paradigm for Software
Development. In System Reuse: Issues in Initiating and Im-

proving a Reuse Program. London:Springer-Verlag, 1996.

[Pop08] Popcorn hour media streamer homepage, August 2008.
http://www.popcornhour.com/onlinestore/.

Bibliography 175

[Pre01] Roger S. Pressman. Software Engineering: A Practitioner’s

Approach. ISBN 0-071-23840-9. McGraw Hill Higher Edu-
cation, June 2001.

[Rap08] RapiTime WCET tool homepage, August 2008.
www.rapitasystems.com.

[Ros01] William Rosenbluth. Investigation and Interpretation of Black

Box Data in Automobiles:A Guide to the Concepts and For-

mats of Computer Data in Vehicle Safety and Control Systems,
chapter A Review of Antilock Braking and Traction Control
Systems, pages 72–79. ISBN 0-8031-2091-5. ASTM Interna-
tional, 2001.

[Roy70] Winston W. Royce. Managing the development of large soft-
ware systems: concepts and techniques. In Proc. IEEE WEST-

CON, pages 1–9, Los Angeles, CA, USA, August 1970. IEEE
Computer Society Press. Reprinted in Proc. Int’l Conf. Soft-
ware Engineering (ICSE) 1989, ACM Press, pp. 328-338.

[RRC03] Michael Richard, Pascal Richard, and Francis Cottet. Al-
locating and scheduling tasks in multiple fieldbus real-time
systems. In Proc. Emerging Technologies and Factory Au-

tomation (ETFA’03), pages 137–144. IEEE Computer Society
Press, September 2003.

[RT02] Ola Redell and Martil Törngren. Calculating exact worst case
response times for static priority scheduled tasks with offsets
and jitter. In Proc. 8th IEEE Real-Time Technology and Appli-

cations Symposium (RTAS’02), pages 164–172, San Jose, CA,
USA, September 2002. IEEE Computer Society Press.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook

of Constraint Programming (Foundations of Artificial Intel-

ligence). ISBN 0-444-52726-5. Elsevier Science Inc., New
York, NY, USA, 2006.

[SAE06] SAE J1939 Standards Collection, May 2006.
http://www.sae.org.

[SEG+06] Daniel Sehlberg, Andreas Ermedahl, Jan Gustafsson, Björn
Lisper, and Steffen Wiegratz. Static wcet analysis of real-time

176 Bibliography

task-oriented code in vehicle control systems. In Proc. 2nd

International Symposium on Leveraging Applications of For-

mal Methods (ISOLA’06), pages 212–219, Paphos, Cyprus,
November 2006. IEEE Computer Society Press.

[SESW05] Jan Staschulat, Rolf Ernst, Andreas Schulze, and Fabian Wolf.
Context sensitive performance analysis of automotive appli-
cations. In Proc. Design, Automation and Test in European

Conference and Exhibition (DATE’05), pages 165–170, Mu-
nich, Germany, March 2005. IEEE Computer Society Press.

[SFÅ04] Kristian Sandström, Johan Fredriksson, and Mikael Åker-
holm. Introducing a component technology for safety critical
embedded real-time systems. In Proc. 7th International Sym-

posium on Component-based Software Engineering (CBSE7),
pages 194–208, Edinburgh, Scottland, May 2004. Springer
Verlag.

[SH98] Mikael Sjodin and Hans Hansson. Improved response-time
analysis calculations. In Proc. 19th IEEE Real-Time Systems

Symposium (RTSS’98), pages 399–408, Madrid, Spain, De-
cember 1998. IEEE Computer Society Press.

[Sha01] Mary Shaw. The coming age of software architecture resreach.
In Proc. IEEE 25th International Conference on Software En-

gineering (ICSE’01), pages 657–664, Toronto, Canada, May
2001. IEEE Computer Society Press.

[Sha02] Mary Shaw. What makes good research in software engineer-
ing? International Journal on Software Tools for Technology

Transfer, 4(1):1–7, November 2002.

[SLM02] Insik Shin, Insup Lee, and Sang Lyul Min. Embedded sys-
tem design framework for minimizing code size and guaran-
teeing real-time requirements. In Proc. 23rd IEEE Real-Time

Systems Symposium (RTSS’02), Austin, TX, USA, December
2002. IEEE Computer Society Press.

[Slo08] Neil J. A. Sloane. The on-line encyclopedia of in-
teger sequences, number of "sets of lists", July 2008.
http://www.research.att.com/˜njas/sequences/A000262.

Bibliography 177

[SR89] Jack A. Stankovic and Krithi Rammaritham. Tutorial: Hard

Real-Time Systems. ISBN 0-8186-0819-6. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1989.

[Sta98] Jack A. Stankovic. Misconceptions About Real-Time Com-
puting: A Serious Problem for Next-Generation Systems.
IEEE Computer, 21(10):10–19, October 1998.

[SVK97] David B. Stewart, Richard A. Volpe, and Pradeep K. Khosla.
Design of Dynamically Reconfigurable Real-Time Software
Using Port-Based Objects. IEEE Transactions on Software

Engineering, 23(12):pages 759 – 776, December 1997.

[SW00] Kang G. Shin and Shige Wang. An architecture for embed-
ded software integration using reusable components. In Proc.

4th International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems, (CASES’01), pages 110–
118, Atlanta, GA, USA, November 2000. IEEE Computer So-
ciety Press.

[SWE] Swedish execution time tool.
http://www.mrtc.mdh.se/projects/wcet/.

[SWE06] Wcet project homepage, August 2006.
http://www.mrtc.mdh.se/projects/wcet.

[Sym08] Symta/p execution time analyzer, August 2008.
http://www.ida.ing.tu-bs.de/.

[Szy98] Clemens Szyperski. Component Software - Beyond Object-

Oriented Programming. ISBN 0-201-74572-0. Addison-
Wesley, 1998.

[TBW92] Ken W. Tindell, Alan Burns, and Andy Wellings. Allocating
hard real-time tasks (an np-hard problem made easy). Real-

Time Systems Journal, 4(2):145–165, May 1992.

[Tin94] Ken W. Tindell. Adding time offsets to schedulability analysis.
Technical Report YCS-94-221, Technical Report, Department
of Computer Science, University of York, 1994.

[Tur02] Jim Turley. The two percent solution. Technical Report arti-
cleID 9900861, Embedded Systems Design, December 2002.

178 Bibliography

[VHMW01] Emilio Vivancos, Christopher Healy, Frank Mueller, and
David Whalley. Parametric timing analysis. In Proc. ACM

SIGPLAN workshop on Languages, compilers and tools for

embedded systems (LCTES’01), pages 88–93, Bird, UT, USA,
June 2001. ACM Press.

[vO02] Rob van Ommering. Building Reliable Component-Based

Software Systems, chapter The Koala Component Model,
pages 223–236. ISBN 1-58053-327-2. Artech House Publish-
ers, July 2002.

[vOvdLKM00] Rob van Ommering, Frank van der Linden, Jeff Kramer, and
Jeff Magee. The koala component model for consumer elec-
tronics software. IEEE Computer, 33(3):78–85, March 2000.

[vZELP98] Anton T. van Zanten, Rainer Erhardt, Klaus Landesfeind,
and Georg Pfaff. Vdc systems development and perspective.
In SAE World Congress, pages 424–444, Detroit, MI, USA,
February 1998. SAE, SAE.

[WBS97] Wolfgang Weck, Jan Bosch, and Clemens Szyperski. Work-
shop report of 2nd workshop on component-oriented program-
ming. In Proceedings Second International Workshop on

Component-Oriented Programming (WCOP’97), pages 323–
326, Jyväskylä, Finland, June 1997. Springer Verlag.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl,
Niklas Holsti, Stephan Thesing, David Whalley, Guillem
Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika
Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan
Staschulat, and Per Stenström. The worst-case execution time
problem — overview of methods and survey of tools. ACM

Transactions on Embedded Computing Systems, 7(3):1–53,
2008.

[Wei81] Mark Weiser. Program slicing. In Proc. IEEE 5th Interna-

tional Conference on Software Engineering (ICSE’81), pages
439–449, San Diego, CA, USA, March 1981. IEEE Computer
Society Press.

Bibliography 179

[WKE02] Fabian Wolf, Judita Kruse, and Rolf Ernst. Timing and power
measurement in static software analysis. Microelectronics

Journal, 33(1):91–100, January 2002.

[WRKP05] Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Pe-
ter P. Puschner. Automatic timing model generation by CFG
partitioning and model checking. In Proc. Design, Automation

and Test in European Conference and Exhibition (DATE’05),
pages 606–611, Munich, Germany, March 2005. IEEE Com-
puter Society Press.

[WU93] Kajiro Watanabe and Yasushi Umezawa. Optimal triggering of
an airbag. In Proc. Intelligent Vehicles’93 Symposium, pages
78–83, Tokyo, Japan, July 1993. Volvo AB.

[Yer96] Ramesh Yerraballi. Scalability in Real-Time Systems. PhD
thesis, Computer Science Department, old Dominion Univer-
sity, Norfolk, VA, USA, August 1996.

[Zsc04] Steffen Zschaler. Formal specification of non-functional prop-
erties of component-based software. In Proc. Workshop on

Models for Non-functional Aspects of Component-Based Soft-

ware (NFC’04) at UML conference 2004. TU Dresden, Octo-
ber 2004. ISSN 1430-211X.

Appendix A

Complete list of tables

For each benchmark we show the number of analyses (#Runs) requried to
reach a specific accuracy, and how many different value space partitions that
resulted in (#D).

Strategy Last Used Strategy Next

%Acc Basic Extreme Basic Extreme

#Runs #D #Runs #D #Runs #D #Runs #D

10% 8 5 16 11
20% 40 17 32 19
30% 48 22 180 53 2 2 8 6
40% 62 28 190 60 10 6 25 12
50% 80 37 204 64 24 13 53 26
60% 112 52 234 71 60 28 126 52
70% 160 75 268 87 132 59 220 68
80% 264 111 332 113 296 121 312 105
90% 622 127 616 132 392 323 578 139

100% (96%)878 72 (96%)874 72 (96%)822 90 (96%)870 72

Table A.1: jcomplex benchmark

181

182 Chapter A. Complete list of tables

Strategy Last Used Strategy Next

%Acc Basic Extreme Basic Extreme

#Runs #D #Runs #D #Runs #D #Runs #D

10% 3 3 11 7
20% 2 2 4 3 20 10
30% 4 3 5 4 10 6 47 30
40% 8 5 20 13 16 8 58 28
50% 64 33 38 21 28 12 100 43
60% 114 58 226 104 46 23 112 44
70% 230 91 306 137 60 24 180 71
80% 432 141 518 172 138 55 256 102
90% 728 184 804 170 334 121 348 129

100% 1066 179 1072 169 1100 171 970 208

Table A.2: lcdnum benchmark

Strategy Last Used Strategy Next

%Acc Basic Extreme Basic Extreme

#Runs #D #Runs #D #Runs #D #Runs #D

10% 6 4
20% 27 10
30% 2 2 3 3 12 33 13
40% 8 4 5 4 26 73 24
50% 44 11 20 14 48 15 92 27
60% 46 13 29 20 98 25 250 69
70% 54 15 35 24 236 57 (64%)397 84
80% 90 23 38 26 (75%)448 94
90% 122 25 (85%)52 32

100% (92%)304 50 (87%)328 95

Table A.3: nsichneu benchmark

Strategy Last Used Strategy Next

%Acc Basic Extreme Basic Extreme

#Runs #D #Runs #D #Runs #D #Runs #D

20% 3 3 3 3
50% 2 2 2 2
60% 5 4 5 4
70% 4 3 4 3
80% 7 4 7 4
90% 8 3 11 4 8 3 11 4

100% 16 3 19 4 16 3 19 4

Table A.4: ns benchmark

Strategy Last Used Strategy Next

%Acc Basic Extreme Basic Extreme

#Runs #D #Runs #D #Runs #D #Runs #D

10% 18 3 5 3
90% 32 3 7 3

100% 34 2 9 2 2 2 2 2

Table A.5: edn benchmark

183

Strategy Last Used Strategy Next

%Acc Basic Extreme Basic Extreme

#Runs #D #Runs #D #Runs #D #Runs #D

10% 4 2 7 3
20% 6 3 9 5
30% 19 6
40% 8 5 27 10
50% 12 6 29 10
60% 2 2 2 2 14 6 31 9
70% 24 4 7 4 20 6 43 9
80% 32 4 9 4 32 10 51 9
90% 48 7 17 7 48 9 59 8

100% 72 5 23 5 56 7 73 7

Table A.6: task1 benchmark

Strategy Last Used Strategy Next

%Acc Basic Extreme Basic Extreme

#Runs #D #Runs #D #Runs #D #Runs #D

20% 2 2 2 2 2 2 2 2
30% 4 3 5 3 4 3 5 3
40% 8 3 8 3
50% 6 3 10 3 10 3
60% 8 3 12 3 6 3 12 3
70% 10 3 14 3 12 3 14 3
80% 14 3 16 3 14 3 16 3
90% 16 3 18 3 16 3 18 3

100% 18 3 20 3 18 3 20 3

Table A.7: task3 benchmark

Strategy Last Used Strategy Next

%Acc Basic Extreme Basic Extreme

#Runs #D #Runs #D #Runs #D #Runs #D

50% 2 2 2 2 2 2 2 2
60% 5 3 5 3
70% 4 3 69 11 4 3 198 10
80% 20 6 165 17 6 3 362 12
90% 298 20 (86%)2130 48 18 3

100% (94%)70 4

Table A.8: task4 benchmark

184 Chapter A. Complete list of tables

Strategy Last Used Strategy Next

%Acc Basic Extreme Basic Extreme

#Runs #D #Runs #D #Runs #D #Runs #D

10% 42 7 18 7 6 4
20% 52 7 20 7
30% 64 7 26 9
40% 78 10 24 8 40 9
50% 1018 10 92 11
60% 1138 10 27 9 156 13
70% 1332 10 216 14 9 5
80% 1486 9 344 15 21 7
90% 1662 11 30 8 584 15 77 12

100% 2166 9 39 6 1068 13 452 10

Table A.9: task5 benchmark

Strategy Last Used Strategy Next

%Acc Basic Extreme Basic Extreme

#Runs #D #Runs #D #Runs #D #Runs #D

10% (0%)2150 1 30 3 14 5 9 3
20% 702 11 160 36 83 26
30% 2097 14 (28%)2124 211 694 149
40% (30%)2157 14 (33%)2125 358

Table A.10: task7 benchmark

Strategy Last Used Strategy Next

%Acc Basic Extreme Basic Extreme

#Runs #D #Runs #D #Runs #D #Runs #D

10% 9 4
20% 2 2
30% 4 3 3 3 2 2 26 11
40% 6 4 108 43 6 4 (35%)525 163
50% 8 5 525 52 12 8
60% 650 13 40 10
70% (65%)650 13

Table A.11: esab_mod benchmark

Appendix B

Complete list of publications

In this appendix we present the complete list of publications. The publications
are divided into three categories (i) papers that are fundamental for the thesis
contributions, (ii) papers that are related to the thesis, but not directly to the
thesis contribution, and, (iii) papers that are not related to the thesis. The papers
that are not related to the thesis are results from cooperation with researchers
from other research fields; often the contributions of these papers are somewhat
outside my main research track. The papers are sorted chronologically under
each category.

With the papers that are fundamental for the thesis contribution, I also state
my contribution, and how the paper is used in this thesis. Table B provides an
overview of how the papers relate to the chapters in this thesis.

Chapter Directly contributing publications Related publications

Chapter 1
Chapter 2
Chapter 3 20,23,24,29,30
Chapter 4 17,21,22,27,28
Chapter 5 2,4 11,13,23,30
Chapter 6 1,2,3,5 8,9,10,14,15,16,19
Chapter 7 2,6,7 18,23,25,27,
Chapter 8
Chapter 9

Table B.1: The relation between publications and the chapters of the thesis.

185

186 Chapter B. Complete list of publications

Publications related to the thesis contributions

1: Deriving the Worst-Case Execution Time Input Values, Andreas Er-
medahl, Johan Fredriksson, Peter Altenbernd, submitted for publication.

Abstract: A Worst-Case Execution Time (WCET) analysis derives up-
per bounds for the execution times of programs. Such bounds are crucial
when designing and verifying real-time systems. A major problem with
today’s analyses is that there is no feedback on what input values that
actually cause the WCET. However, this is an important information for
the system’s designer for various reasons.

In this article we present several novel approaches to overcome this prob-
lem. In particular, we show how to use program slicing to derive the
input variables whose different values may cause the program execution
time to vary. Furthermore, we present a method, based on a combination
of input-sensitive static WCET analysis and systematic search over the
value space of the input variables, to derive the input value combination
that causes the WCET. Since the basic method may be time-consuming
when the input-value space is large, we also present different approaches
for faster termination.

Usage in thesis: This paper is fundamental for the contribution of deriva-
tion of WCET input value combination.

My contribution: The work has been equally distributed among the
authors of the paper. Johan Fredriksson has also been responsible for the
evaluation of the methods.

2: Contract-Based Reusable Worst-Case Execution Time Estimate, Jo-
han Fredriksson, Thomas Nolte, Mikael Nolin and Heinz Schmidt, In
Proc. 13th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA’07), pages 39-46, Daegu,
South Korea, August, 2007. IEEE Computer Society Press. Awarded

Best Real-Time Paper.

Abstract: We present a contract-based technique to achieve reuse of
known worst-case execution times (WCET) in conjunction with reuse
of software components. For resource constrained systems, or sys-
tems where high degree of predictability is needed, classical techniques
for WCET-estimation will result in unacceptable overestimation of the
execution-time of reusable software components with rich behavior. Our
technique allows different WCETs to be associated with subsets of the

187

component behavior. The appropriate WCET for any usage context of
the component is selected be means of component contracts over the in-
put domain. In a case-study we illustrate our technique and demonstrate
its potential in achieving tight WCET-estimates for reusable components
with rich behavior.

Usage in thesis: This paper is fundamental for several of the contri-
butions in this thesis. This paper describes the reusable input sensi-
tive WCET analysis and its relation to the component to task allocation
framework.

My contribution: Johan Fredriksson has been the main author and con-
tributor of the paper. The work has been performed in close cooperation
with Thomas Nolte and Mikael Nolin. The paper was initiated by Johan
Fredriksson.

3: Clustering Worst-Case Execution Times for Software Components,
Johan Fredriksson, Thomas Nolte, Andreas Ermedahl and Mikael No-
lin, In Proc. 7th International Workshop on Worst-Case Execution Time

Analysis (WCET’07), in conjunction with the 19th IEEE Euromicro Con-

ference on Real-Time Systems (ECRTS’07), Pisa, Italy, July, 2007. Inter-
nationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany

Abstract: For component-based systems, classical techniques for Worst-
Case Execution Time (WCET) estimation produce unacceptable overes-
timations of a components WCET. This is because software components
more general behavior, required in order to facilitate reuse. Existing
tools and methods in the context of Component-Based Software Engi-
neering (CBSE) do not yet adequately consider reusable analyses.

We present a method that allows different WCETs to be associated
with subsets of a components behavior by clustering WCETs with re-
spect to behavior. The method is intended to be used for enabling
reusable WCET analysis for reusable software components. We il-
lustrate our technique and demonstrate its potential in achieving tight
WCET-estimates for components with rich behavior.

Usage in thesis: This paper is fundamental for the reusable WCET anal-
ysis contribution.

My contribution: Johan Fredriksson has been the main author and con-
tributor of the paper and the work has been performed in close coop-

188 Chapter B. Complete list of publications

eration with Thomas Nolte, Andreas Ermedahl and Mikael Nolin. The
paper was initiated by Johan Fredriksson.

4: Reusable Component Analysis for Component-Based Embedded Real-

Time Systems, Johan Fredriksson and Rikard Land, In Proc. 29th IEEE

International Conference Information Technology Interfaces (ITI’07),
pages 615-620, Dubrovnik, Croatia, June, 2007. IEEE Computer So-
ciety Press.

Abstract: Component-Based Software Engineering (CBSE) promises
an improved ability to reuse software which would potentially decrease
the development time while also improving the quality of the system,
since the components are (re-)used by many. However, CBSE has not
been as successful in the embedded systems domain as in the desktop do-
main, partly because requirements on embedded systems are stricter (e.g.
requirements on safety, real-time and minimizing hardware resources).
Moreover these requirements differ between industrial domains. Para-
doxically, components should be context-unaware to be reusable at the
same time as they should be context sensitive in order to be predictable
and resource efficient. This seems to be a fundamental problem to over-
come before the CBSE paradigm will be successful also in the embedded
systems domain. Another problem is that some of the stricter require-
ments for embedded systems require certain analyses to be made, which
may be very complicated and time-consuming for the system developer.

This paper describes how one particular kind of analysis, of worst-case
execution time, would fit into the CBSE development processes so that
the component developer performs some analyses and presents the re-
sults in a form that is easily used for component and system verifica-
tion during system development. This process model is not restricted to
worst-case execution time analysis, but we believe other types of analy-
ses could be performed in a similar way.

Usage in thesis: This paper describes the positioning of the proposed
methods in the CBSE development process and is fundamental for Chap-
ter 5.

My contribution: Johan Fredriksson has been the main author and con-
tributor of the paper. The work has been performed in close cooperation
with Rikard Land. The paper was initiated by Johan Fredriksson.

5: Predicting Execution-Time for Variable Behaviour Embedded Real-

Time Components, Johan Fredriksson, Thomas Nolte, Mikael Nolin

189

and Heinz Schmidt In Proc. Workshop on Model and Analysis Methods

for Automotive Systems (WMAAS’06) in conjunction with IEEE Real-

Time Systems Symposium (RTSS’06), Rio de Janeiro, Brazil, December,
2006. IEEE Computer Society Press.

Abstract: Embedded systems for vehicle control critically depend on
efficient and reliable control software, together with practical methods
for their production. Component-based software engineering for embed-
ded systems is currently gaining ground since variability, reusability, and
maintainability are supported. However, existing tools and methods do
not guarantee efficient resource usage in these systems.

In this paper we present a method, which increases the accuracy of
execution time predictions for embedded components without lower-
ing reusability of the components. For assessing the correct timing be-
haviour, the method classifies run types by their time in addition to their
probability.

Usage in thesis: This paper is fundamental for the reusable WCET anal-
ysis contribution.

My contribution: Johan Fredriksson has been the main author and con-
tributor of the paper. The work has been performed in close cooperation
with Thomas Nolte and Mikael Nolin and Heinz Schmidt. The paper
was initiated by Johan Fredriksson.

6: Optimizing Resource Usage in Component-Based Real-Time Systems,
Johan Fredriksson, Kristian Sandström, Mikael Åkerholm In Proc. 8th

LNCS International Symposium on Component-based Software Engi-

neering (CBSE8), pages 49-65, St.Louis, MO, USA, May, 2005. Springer
Verlag.

Abstract: The embedded systems domain represents a class of systems
that have high requirements on cost efficiency as well as run-time prop-
erties such as timeliness and dependability. The research on component-
based systems has produced component technologies for guaranteeing
real-time properties. However, the issue of saving resources by allocat-
ing several components to real-time tasks has gained little focus. Trade-
offs when allocating components to tasks are, e.g., CPU-overhead, foot-
print and integrity. In this paper we present a general approach for
allocating components to real-time tasks, while utilizing existing real-
time analysis to ensure a feasible allocation. We demonstrate that CPU-
overhead and memory consumption can be reduced by as much as 48%

190 Chapter B. Complete list of publications

and 32% respectively for industrially representative systems.

Usage in thesis: This paper is fundamental for the component to task
allocation framework.

My contribution: Johan Fredriksson has been the main author and con-
tributor of the paper. The work has been performed in close co-operation
with Kristian Sandström.

7: Transformation of component models to real-time models, Johan
Fredriksson, Licentiate Thesis, Mälardalen University, ISBN 91-88834-
55-7, April, 2005. Mälardalen University Press.

Abstract: Industry is constantly looking for new developments in soft-
ware for use in increasingly complex computer applications. Today, the
development of component-based systems is an attractive area for both
Industry and Academia. The systems we focus on in this thesis are em-
bedded computers, in particular those in automotive systems. A modern
car incorporates several embedded computers that control different func-
tions of the car, e.g., anti-spin and anti-lock breaks.

The main purpose of this thesis is to investigate how component tech-
nologies for use in embedded systems can reduce resource usage without
compromising non-functional requirements, such as timeliness.

The component-technologies available have not yet been used exten-
sively in the vehicular domain. To understand why this is the case we
have conducted a survey and performed evaluations of the requirements
of the vehicular industry with respect to software and software devel-
opment. The purpose of the evaluation was to provide a fundament for
defining models, methods and tools for component-based software engi-
neering.

The main contribution of this work is the implementation and evaluation
of a framework for resource-efficient mappings between component-
models and real-time systems. Few component technologies today con-
sider the mapping between components and run-time tasks. We show
how effective mappings can reduce memory usage and CPU-overhead.
The implemented framework utilizes genetic algorithms to find feasible,
resource efficient mappings.

We show how component models designed for resource constrained safety-
critical embedded real-time systems can use powerful compile-time tech-
niques to realize the component-based approach and ensure predictable
behaviour.

191

Further, we propose a resource reclaiming strategy for component-based
real-time systems, to decrease the impact of pessimistic execution time
predictions. In our approach, components run in different quality levels
as unused processor time is accumulated.

Usage in thesis: This Licentiate Thesis1 is fundamental for the compo-
nent to task allocation framework.

My contribution: Johan Fredriksson has been the sole author and con-
tributor of this Licentiate thesis.

Publications related to the thesis

8: Context Aware Optimizations for Embedded Real-Time Components,
Johan Fredriksson, Ph.D. Proposal, Västerås, Sweden, September, 2007.

9: Worst-Case Execution Time Clustering for Software Components,
Johan Fredriksson, Thomas Nolte, Andreas Ermedahl, Mikael Nolin,
Technical Report, Mälardalen Real-Time Research Centre, Mälardalen
University, April, 2007

10: Reusing Worst-Case Execution Time Analysis with Component Con-

tracts, Johan Fredriksson, Thomas Nolte, Mikael Nolin, Heinz Schmidt,
In Proc. 9th Real-Time in Sweden (RTiS’07), Västerås, Sweden, August,
2007.

11: Packaging Component-Analysis for Reuse, Johan Fredriksson, Rikard
Land, In 9th Real-Tine in Sweden (RTiS’07), Västerås, Sweden, August,
2007.

12: Contract-Based Reusable Analysis for Software Components with

Extra-Functional Properties, Johan Fredriksson, Thomas Nolte, In Proc.

Work-In-Progress (WIP) session of 19th IEEE Euromicro Conference on

Real-Time Systems (ECRTS’07), Pisa, Italy, July, 2007.

13: The SAVE approach to component-based development of vehicular

systems, Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hans-
son, John Håkansson, Anders Möller, Paul Pettersson, Massimo Tivoli,
Journal of Systems and Software, 80(5):655-667, May, 2007.

1The Swedish Licentiate Thesis is a “half time thesis” in the Ph.D. studies

192 Chapter B. Complete list of publications

14: Contract-Based Reusable Worst-Case Execution Time Estimate, Jo-
han Fredriksson, Thomas Nolte, Mikael Nolin, Heinz Schmidt, Techni-

cal Report, Mälardalen Real-Time Research Centre, Mälardalen Univer-
sity, April, 2007

15: Contract-Based Reusable Analysis for Software Components with

Extra-Functional Properties, Johan Fredriksson, Thomas Nolte, Tech-

nical Report, Mälardalen Real-Time Research Centre, Mälardalen Uni-
versity, April, 2007

16: Increasing Accuracy of Property Predictions for Embedded Real-

Time Components, Johan Fredriksson, Thomas Nolte, Proc. In Proc.

Work-In-Progress (WIP) session of 18th IEEE Euromicro Conference on

Real-Time Systems (ECRTS’06), Dresden, Germany, July, 2006.

17: Industrial Requirements on Component Technologies for Vehicular

Control Systems, Anders Möller, Mikael Åkerholm, Joakim Fröberg,
Johan Fredriksson, Mikael Nolin, MRTC report ISSN 1404-3041 ISRN

MDH-MRTC-195/2006-1-SE, Mälardalen Real-Time Research Centre,
Mälardalen University, February, 2006.

18: A component-based development framework for supporting func-

tional and non-functional analysis in control system design, Johan
Fredriksson, In 5th Conference on Software Engineering Research and

Practice in Sweden, Västerås, Sweden, October, 2005

19: Component-Based Context Dependent Hybrid Property Prediction,
Anders Moller, Ian Peak, Mikael Nolin, Johan Fredriksson, Heinz Schmidt,
in Proc. of Workshop on Dependable Software Intensive Embedded sys-
tems (ERCIM), pages 69-75, Porto, Portugal, September, 2005. ERCIM.

20: Component-Based Development of Safety-Critical Vehicular Sys-

tems, Ivica Crnkovic, DeJiu Chen, Johan Fredriksson, Hans Hansson,
Jörgen Hansson, Joel Huselius, Ola Larses, Joakim Fröberg, Mikael
Nolin, Thomas Nolte, Christer Norström, Kristian Sandström, Alek-
sandra Tesanovic, Martin Törngren, Simin Nadjm-Tehrani, Mikael Åk-
erholm, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-190/2005-

1-SE, Mälardalen Real-Time Research Centre, Mälardalen University,
September, 2005.

193

21: Quality Attribute Support in a Component Technology for Vehic-

ular Software, Mikael Åkerholm, Johan Fredriksson, Kristian Sand-
ström, Ivica Crnkovic, In 4th Conference on Software Engineering Re-

search and Practice in Sweden, Linköping, Sweden, October, 2004.

22: Evaluation of Component Technologies with Respect to Industrial

Requirements, Anders Möller, Mikael Åkerholm, Johan Fredriksson,
Mikael Nolin, In Proc. 30th Euromicro Conference, Component-Based

Software Engineering Track, pages 56-63, Rennes, France, August, 2004.
IEEE Computer Society Press.

23: Introducing a Component Technology for Safety Critical Embedded

Real-Time Systems, Kristian Sandström, Johan Fredriksson, Mikael
Åkerholm, In Proc. 7th International Symposium on Component-based

Software Engineering (CBSE7), pages 194-208, Edinburgh, Scotland,
May, 2004. Springer Verlag.

24: A Sample of Component Technologies for Embedded Systems, Mikael
Åkerholm, Johan Fredriksson, Technical Report, Mälardalen Real-Time
Research Centre, Mälardalen University, November, 2004.

25: Calculating Resource Trade-offs when Mapping Component Ser-

vices to Real-Time Tasks, Johan Fredriksson, Mikael Åkerholm, Kris-
tian Sandström, In 4th Conference on Software Engineering Research

and Practice in Sweden Linköping, Sweden, October, 2004

26: Achieve consistent mappings between component models and real-

time models - Licentiate Thesis Proposal, Johan Fredriksson, Techni-

cal Report, Mälardalen Real-Time Research Centre, Mälardalen Univer-
sity, June, 2004

27: An Industrial Evaluation of Component Technologies for Embedded-

Systems, Anders Möller, Mikael Åkerholm, Johan Fredriksson, Mikael
Nolin, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-

SE, Mälardalen Real-Time Research Centre, Mälardalen University, Febru-
ary, 2004.

28: An Industrial Evaluation of Component Technologies for Embedded-

Systems, Anders Möller, Mikael Åkerholm, Johan Fredriksson, Mikael
Nolin, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-
1-SE, Mälardalen Real-Time Research Centre, Mälardalen University,
February, 2004

194 Chapter B. Complete list of publications

29: Software Component Technologies for Real-Time Systems - An In-

dustrial Perspective, Anders Möller, Mikael Åkerholm, Johan Fredriks-
son, Mikael Nolin, In Proc. Work-in-Progress (WiP) session of 24th

IEEE Real-Time Systems Symposium (RTSS), Cancun, Mexico, Decem-
ber, 2003.

30: Component Based Software Engineering for Embedded Systems -

A literature survey, Mikael Nolin, Johan Fredriksson, Jerker Hammar-
berg (external), Joel Huselius, John Håkansson (Department of Informa-
tion Technology, Uppsala University), Annika Karlsson (external), Ola
Larses (external), (external), Goran Mustapic, Anders Möller, Thomas
Nolte, Jonas Norberg (external), Dag Nyström, Aleksandra Tesanovic
(external), Mikael Åkerholm, MRTC report ISSN 1404-3041 ISRN

MDH-MRTC-102/2003-1-SE, Mälardalen Real-Time Research Centre,
Mälardalen University, June, 2003.

Publications not related to the thesis

31: Handling Subsystems using the SaveComp Component Technology,
Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, Mikael
Nolin, Thomas Nolte, John Håkansson, Paul Pettersson, In Proc. Work-

shop on Models and Analysis for Automotive Systems (WMAAS’06) in

conjunction with the 27th IEEE Real-Time Systems Symposium (RTSS’06),
Rio de Janeiro, Brazil, December, 2006.

32: Application of Built-In-Testing in Component-Based Embedded Sys-

tems, Mikael Åkerholm, Irena Pavlova, Johan Fredriksson, Technical

Report, Mälardalen Real-Time Research Centre, Mälardalen University,
May, 2006.

33: A component-based development framework for supporting func-

tional and non-functional analysis in control system design, Johan
Fredriksson, Massimo Tivoli, Ivica Crnkovic, In Proc. 20th IEEE/ACM

International Conference on Automated Software Engineering (ASE’05),
pages 368-371, Long Beach, CA, USA, November, 2005. ACM.

34: A component-based approach for supporting functional and non-

functional analysis in control loop design, Massimo Tivoli, Johan
Fredriksson, Ivica Crnkovic, In Proc. 10th International Workshop

195

on Component-Oriented Programming (WCOP’05), Glasgow, Scotland,
July, 2005.

35: A component-based development framework for supporting func-

tional and non-functional analysis in control system design, Johan
Fredriksson, Massimo Tivoli, Ivica Crnkovic, Technical Report, Mälardalen
Real-Time Research Centre, Mälardalen University, June, 2005

36: Interference Control for Integration of Vehicular Software Compo-

nents, Mikael Åkerholm, Kristian Sandström, Johan Fredriksson, MRTC

report ISSN 1404-3041 ISRN MDH-MRTC-162/2004-1-SE, Mälardalen
Real-Time Research Centre, Mälardalen University, May, 2004.

37: Attaining Flexible Real-Time Systems by Bringing Together Com-

ponent Technologies and Real-Time Systems Theory, Johan Fredriks-
son, Mikael Åkerholm, Radu Dobrin, Kristian Sandström, In Proc. 29th

Euromicro Conference, Component Based Software Engineering Track,
pages 399 - 402, Belek, Turkey, September, 2003. IEEE Computer So-
ciety Press.

38: On the Teaching of Distributed Software Development, Ivica Crnkovic,
Igor Cavrak (external), Johan Fredriksson, Rikard Land, Mario Zagar
(external), Mikael Åkerholm, In Proc. 25th International Conference

INFORMATION TECHNOLOGY INTERFACES, pages 237-242, Dubrovnik,
Croatia, June, 2003. IEEE Computer Society Press.

