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Abstract

The challenges of designingreactive systems, which are supposed to maintain an
ongoing interaction with a possibly unpredictable environment, stem from the need
of ensuring thecorrectnessof the design at the earliest stage possible. An increas-
ingly appealing mathematical approach towards accomplishing this goal isformal
system construction. While enjoying the advantages of a rigorous development
process, it also frees the designer from the burden of taking into account imple-
mentation details, from the beginning.

This thesis proposes a formalmethodologythat aims at constructing correct
reactive systems. Our work lies in the area of computerized systems that combine
aspects of discrete control, continuous data values and real-time constraints. We
address the issues from the perspective of a logical framework calledrefinement
calculus. The results are described in terms of various forms of the so-calledaction
systems.

Designing for reactivity assumes dealing with composability and concurrency.
Targeting the correct execution of concurrent actions, we introduce asynchronized
semantics for the parallel composition of action systems. The construct mimics
the barrier synchronizationmechanism found as a primitive in concurrent pro-
gramming languages. We prove that the synchronized composition improves the
modular design capabilities of our framework. This translates into being able to
carry out refinements of modules, modeled by action systems, in isolation, without
knowledge about the details of functionality of the other modules of the parallel
environment.

Hybrid control systemsare reactive systems characterized by continuous be-
havior interleaved with discrete control decisions. As a precursor to full formal
analysis, simulation of hybrid system models can be used effectively, especially if
the state space is representedsymbolically. We present a simulation tool forcontin-
uous action systems(CAS), the timed extension of action systems. The simulator is
implemented inMathematica, a commercial computer algebra package. Our tool
takes a description of any CAS as input, and provides automatically a symbolic
simulation of the system, up to a given maximum time.

To cope with the concurrent behavior of hybrid systems, we extend the syn-
chronization execution environment developed for discrete action systems, to their
hybrid counterparts. The modularity results at the discrete level hold for the syn-
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chronized composition of CAS, too.
Many hybrid systems are defined usingparameters. The systems are intended

to work correctly under specific parametric conditions. These relationships may be
hard to find by following an intuitive approach alone. We apply the well-known
invariance ruleto the parametric reachability problem of hybrid systems modeled
as CAS. We synthesize constraints on parameters that are sufficient to guarantee
the safety property of a relevant hybrid system example.

When timing requirements are set on top of the functional ones, for any type of
reactive system, be it discrete or hybrid, we need to find a means to cope with them,
in design. This should be done regardless of the respective functional behavior. Be-
ing faithful to this viewpoint, we advance a top-down method for the incremental
construction ofscheduled real-time systems, within the refinement calculus frame-
work. We apply the method on two well-known scheduling algorithms, namely
Deadline-MonotonicandEarliest-Deadline-Firstpolicies.

A viable controller construction method is known in literature ascontroller
synthesis. Synthesis is equivalent to computing the most general model of a con-
troller that satisfies the requirements. Here, we propose agame-basedmethod for
thesynthesisof invarianceand certainreachabilitycontrollers.
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Chapter 1

Introduction

Unlike transformational systemsthat have to produce specific outputs for given
sets of inputs,reactive systemsare designed to maintain an ongoing interaction
with their environment. Therefore, they might be subjected to unexpected changes
of input stimuli. Typical examples of reactive systems are: air traffic control sys-
tems, programs controlling mechanical devices such as trains, planes, or ongoing
processes in nuclear reactors (see Figure 1.1).

Figure 1.1: A nuclear reactor.

Many systems contain a reactive component, andcontrol systemsbelong to this
class. A control system is equipped with acontroller that observes the state of a
plantvia sensors. Based on the acquired information, the controller communicates
actions to the plant viaactuators. Furthermore, reactive systems may be purely
discretein nature, meaning that the state space is defined by variables that are
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assigned discrete values. Alternatively, they can contain acontinuouscomponent,
usually described by real-valued variables that evolve according to somepredefined
laws. A mix of the two mentioned behaviors, that is, discrete and continuous, is
called ahybridbehavior. If timing requirements are added on top of the functional
ones, the respective reactive system is areal-time system. This means that its
correct behavior depends on both the accuracy of the output result, as well as on
the time at which the result is delivered.

Since malfunctioning of reactive systems can have dramatic consequences, it
is most important to guarantee theircorrectness. To accomplish this goal,formal
methodscome into picture, with their synergetic paradigms, namelyprogram ver-
ification andprogram construction. In the first case, correctness is established by
formally proving that the program behaves according to an initial document,called
thesystem specification. If one aims atconstructinga reactive (control) program
in a provably correct manner, applyingrefinementtechniques is a feasible option.
Refinement-based approaches implement the given system specification, as a pro-
gram, after a series of transformations called refinements.

Targeting hybrid control systems construction, the two pillars of modern de-
sign, control theoryandcomputer science, have brought tremendous progress in
the area. The pair stands complementary. The first solves therobustnessissues, by
specifying adequate control laws that ensure optimal performance. On the other
hand, the second answers the question of software correctness, with precision.
Through mathematical modeling, numerical experiments, analytical studies and
other techniques, control theory meets computer science in an attempt to produce
reliable hybrid control programs.

1.1 Formal Development of Reactive Systems

A formal-method-based reactive-system construction assumes the existence of the
following:

• a mathematical formalismin which the initial system specification is de-
scribed;

• an underlyinglogic, where the required properties that the system is expected
to satisfy are formulated;

• a constructiontechnique, which, if applied, leads to a correct and reliable
program.

Action Systems Formalism. Suitability for rigorous design methods is a crucial
criterion in choosing a specification language. Such a language should serve as the
basis for both modeling and rigorous reasoning. It is therefore importantthat the
language has a close relationship with an underlying logic, but can also be grasped
by software designers [110].
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In this thesis, we describe discrete systems byaction systems. The latter is a
useful formalism for modeling systems, due to its expressive power and develop-
mental clarity. It was introduced by Back and Kurki-Suonio [31, 32], who provided
an action-based model of system execution. In this model, atomic actions (thatis,
actions that are indivisible, such that no intermediate state can be observed) can
be executed whenever they are enabled, the selection among them being nondeter-
ministic. The standard form of an action system is the following:

Sys(z : Ty)
∧
= begin var x : Tx

•

x := x0 ; z := z0;
do A1 [] . . . [] Ai [] . . . [] An od

end : p

Here,A1, . . . , Ai, . . . , An are the actions ofSys, z the global variables, and
x the local variables. Theparametersp represent the constants of the model, thus
they do not change their values during execution. We explain action systemsin
more detail, in chapter 2.

There are various execution models [62, 97, 115, 127] that are close inspirit to
action systems. Out of them, Lamport’sTemporal Logic of Actions(TLA) [115],
and Chandy’s and Misra’sUNITY[62] are quite similar to action systems. UNITY
and TLA use temporal logics for specification purposes.

Originally, action systems also used temporal logic for reasoning. However,
later work by Back, Sere, and von Wright led to their formalization within the
refinement calculus[22, 30, 33].

It is important to underline the fact that action systems employ the same nota-
tion for high-level specifications and their implementations.

Continuous Action Systems. As presented in the previous paragraph, discrete
concurrent systems can be modeled by action systems, where a state (described by
a collection of state variables) is manipulated by a collection of actions.

Continuous Action Systems(CAS) are an extension of action systems to hybrid
systems, being based on a new approach to describe the state of a system. Essen-
tially, the state variables range over functions of time, rather than just over values.
The variables are expressed usinglambda abstraction, for example(λt · t − 2).
Given the functionf , we writef.t for the functionf applied to variablet. In our
example,f.t = t − 2.

The CAS formalism has been introduced by Back, Petre and Porres [27]. This
model allows one to describe both control actions and time advancing behavior,
with the same simple mechanism. Consequently, the hybrid, and real-time systems
that we are looking at, in chapters 4, 5 and 6, respectively, are modeled by CAS.

The semantics of CAS is given in terms of ordinary action systems, with ex-
plicit time, which is measured by a nonnegative real-valued variablenow. In the
action system translation of a CAS, the variablenow is declared, initialized and
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advanced, accordingly. We give the formal definition and describe the execution of
CAS in chapter 2.

Clock variables (timers), which measure the time elapsed since they were set
to zero, can be used in a CAS-based model, especially when we describe real-time
systems (chapter 6).

Besides CAS, there are many other hybrid formalisms developed to support
the description and analysis of real-time, or hybrid systems. Among them,timed
automata[9], hybrid automata[86] and the more general framework ofhybrid
input/output automata[120] have gained high popularity.

Refinement-based Construction Technique. Coined by Dijkstra [69] and Wirth
[155], stepwise refinementis a method for constructing programs in a provably
correct manner.

The construction method based on stepwise refinement involves developing
programs through one or more transformations calledrefinements. The first step
is to describe the system behavior in a precise, yet abstract manner. Thisinitial
form, which is usually nondeterministic, is called thespecification. Each refine-
ment is then a transformation that adjusts the initial specification, by reducing its
nondeterminism. There are cases in which the system behavior is describedby a
deterministic model, from the start; then, refinements can decrease the level of ab-
straction, by replacing some parts of the initial program model by more concrete
ones, while preserving correctness properties.

Back proposed therefinement calculus[21] as a further development of step-
wise refinement, based on Dijkstra’sweakest preconditionsemantics [70, 71] for
the language ofguarded commands. In Dijkstra’s view, the meaning of a guarded
command is defined by its weakest precondition. The latter is a predicate computed
by a function denotedwp. This function takes as its first argument a program state-
ment, and as its second a predicate, called thepostcondition. Then,wp(S, q), or
wp.S.q denote the weakest precondition ofS to establishq. It represents the largest
set of initial statesσ, such thatS executed inσ is guaranteed to terminate in a state
that satisfiesq.

Since the meaning of a program statement is interpreted as a predicate over
the program state, it follows that the properties that the program is required to
satisfy can be formulated as predicates. When needed, the requirements can also
betemporal properties, initially defined by Back and von Wright, within the dually
nondeterministic weakest precondition framework [37, 38].

Later work by Back and von Wright [35] extended and improved Back’sorig-
inal work on the refinement calculus. The underlying logic of refinement calcu-
lus is higher-order logic, which allows for quantification over functions, a very
useful feature when reasoning about complex behaviors. Researchon refinement
calculus has been independently carried out by Morris [131], and Morgan [129],
too. The approach to program refinement promoted by Morgan [130] is concise
andcalculational: an initial abstract specification is transformed towards an im-
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plementation throughrefinement laws. Early work of Hoare, who introduced the
notions ofprogram correctness[95] anddata refinement[96], has also influenced
the development of the refinement calculus framework.

Formalisms like theVienna Development Method(VDM) [102] and theB
method[3] propose a different approach to proving refinements of system mod-
els. One needs to first guess a new program (model), and then verify whether
the created model is indeed a refinement of the previous one. This is called a
verification-based formal approach.

a. Algorithmic Refinement. In this thesis, each statementS is identified with
a specificpredicate transformerfrom postconditions to weakest preconditions.
Hence, one can writeS.q instead ofwp(S, q), or wp.S.q.

The refinement calculus introduces arefinement relationbetween statements.
The relation is defined in terms of ordering on predicates. ThusS is refined byS′,
denotedS v S′, if and only if:

∀q • S.q ⊆ S′.q

This refinement relation modelsalgorithmic refinement, which preservestotal cor-
rectnessbetween program statements on the same state space. Most often, this type
of refinement decreases the statement’sS degree of nondeterminism.

The refinement relation is apreorder (that is, a reflexive and transitive rela-
tion). Due to the transitivity property, programs can be developed by a series of
refinement steps:

S0 v S1 v . . . v Sn

sinceS0 v Sn follows from the above.

b. Trace Refinement of Action Systems. The weakest precondition semantics
of action systems does not suffice for capturing reactive behavior. A system’s inter-
action with its environment subsumes the necessity of reasoning about sequences
of global states. Thus, the semantics of a reactive action system is given interms
of behaviors[33], which can also model nonterminating execution. A behavior of
an action system,

b = (x0, z0), (x1, z1) . . . ,

is a (possibly infinite) sequence of states, where each state has two components.
The first component is thelocal stateand the second is theglobal state. A trace
of a behavior is obtained by removing the local state component in each state of a
given system, and all finite stuttering (no change of the visible state).

In a general, less formal manner, we say that an action systemC refinesA,
written asA v C, if each trace inC is a refinement of a trace inA. In practice,
we use a special lemma to provetrace refinementof action systems [29, 33]. The
lemma is presented in chapter 2.

Clearly, trace refinement is more powerful than algorithmic refinement, since
it can change the state space of the system. For example, one might benefit from
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using an abstract, nonimplementable data structure, in the initial system model.
However, this data structure should be further transformed into a more concrete,
efficient representation, which can be implemented in a standard programminglan-
guage. The necessary transformations that lead to an implementable data structure
are performed with respect to anabstraction relation, which relates the initial data
representation to the final one. This type of refinement, calleddata refinement, can
be viewed as a particular case of trace refinement.

If, on the other hand, one needs to add functionality to the initial system specifi-
cation, new actions will have to describe the respective behavior. Theseactions are
expected to implement the stuttering actions, in the initial description, with respect
to global variables. Besides introducing new actions, some of the old actionsmay
be refined, such that the behavioral nondeterminism is reduced. This refinement
technique is also a special case of trace refinement, being known assuperposition
refinement.

In short, superposition refinement of action systems reduces to the following
steps:

• Replacing the initial variablesx by an extended list of variables, e.g.y =
x, x′.

• Changing the initialization of the action system, such that all variables iny
are assigned initial values.

• Replacing actionsAi by actionsCi, which are (algorithmic) refinements of
the old actions with respect tox, that is,

Ai v begin x′ • Ci end, for some i,

or adding new actions that do not modify variables inx, that is,

skip v begin x′ • Cj end, for some j,

whereskip is the statement that models stuttering.
• Introducing a continuation condition, which establishes that any enabled ac-

tion in the original action system has a corresponding enabled actionCi, or
Cj in the resulting system.

• Introducing a termination condition ofCj , which ensures that the execution
of any new action, taken separately, terminates eventually.

In case we do not change any data representation, and we also do not superim-
pose functionality, but rather need to just decrease nondeterminism of actions, then
we run into classical algorithmic refinement.

As the informal definitions outlined in this paragraph suggest, trace refinement
is a comprehensive form of refinement, which can be specialized, on demand, into
data, superposition or plain algorithmic refinement.

Since continuous action systems are special cases of ordinary action systems,
we can use the proof and refinement techniques developed for ordinary action sys-
tems, for CAS, as well. This allows us to prove correctness of transformations of
timed and hybrid models.
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1.2 Contributions of this Thesis

The current study presents a methodology for building correct programs for reac-
tive systems, be they discrete systems, hybrid control systems, or real-time sched-
ulers. The methodology comprises several techniques for solving the construction
problem, tailored to the nature of the target systems. Bothclosedandopenreactive
systems are considered. By closed systems we mean systems that can be viewed
in isolation; their behavior can not be influenced from outside. We treat closed
reactive systems where there is a clear distinction between the reactive program
and the rest of the system. Nonetheless, we also look at compound closed systems,
in which the reactive behavior is not modeled separately. In contrast, the behavior
of open reactive systems is influenced by the external environment. Systems that
comprise several components that interact with each other are open. Each com-
ponent taken apart is an open reactive system. We analyze aspects of behavior
control and modularity of such reactive systems, which, in addition, are required
to respond concurrently to a set of inputs.

Our contribution uses action systems and its hybrid/real-time extension, con-
tinuous action systems, as the modeling languages for the discrete, hybrid, and
real-time systems that we consider, respectively. The reasoning environment is the
refinement calculus, with its correctness-preserving refinement techniques, which
we have briefly described in section 1.1.

Even though the present work spans over untimed, and also timed and hybrid
systems, we have concentrated on solving the intrinsic, specific construction prob-
lems of each class of systems. By exploiting the richness of our favorite formalism
at the modeling stage, we carry out the program construction, where needed, un-
der the common umbrella of the established refinement methods. The following
sections emphasize the problems that we are analyzing and the main lines of our
contribution.

1.2.1 Behavior Control and Modularity of Reactive Systems

Problem Description. To cope with the complexity of reactive system design,
modular reasoningis a necessity. The entire system model is then composed from
smaller parts, themodules, which is desirable to be developed independently. This
desideratum should be supported by adequate rules and techniques, which guaran-
tee that separate module transformations do not alter the entire system correctness.
Moreover, equipped with such reasoning techniques, one may reuse previously de-
signed modules, in a different, yet similar setup.

As detailed in chapter 2,parallel action systemsare executed by interleaving
enabled actions. This model of execution is strongly connected with behavioral
nondeterminism. In chapter 3, we exemplify that the interleaved model of concur-
rency may not suffice, as such, for modeling parallel reactive systems.To ensure
the expected behavior, one has to model some sort of communication protocol
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among modules. This, in turn, makes the overall system model cumbersome and
expensive to implement.

Solution. We propose a solution to the above problem, in the form of asynchro-
nization mechanism(that mimicsbarrier synchronization[84]), implying a new
virtual execution model for action systems, applicable to both discrete and hybrid
designs. The extension to hybrid systems represented as CAS is carried out in
chapter 4.

We define the necessary formal concepts, and prove modular refinement re-
sults, for thesynchronized parallel action systems, which is the actual environment
that we introduce in chapter 3. By employing it, we eliminate intermediate results
that can affect the global state, as the system gives complete answers to the input
stimuli. One of the main advantages is the fact that we preserve the internal non-
determinism, thus we allow the modules to execute in any order, yet increasing the
external determinacy. Concretely, this means that the observable state is thesame,
after an execution cycle, regardless of the internal execution order during rounds.
The main results of chapter 3 are the following:

• A barrier synchronization mechanism applied to both discrete and hybrid
models (action systems and continuous action systems). The mechanism is
suitable for designing reactive systems that have to present a simultaneous
global response to sets of input stimuli. To achieve this, we introduce a new
parallel composition operator (sharp,]) that ensures correct outputs to all
sets of inputs, without employing communication channels between mod-
ules. Consequently, using our mechanism bears the advantage of less coding
effort, in practice. The new execution model requires a certain type of action
systems that we callpartitioned action systems, which separate local actions
from global actions.

• Proofs of the usefulness of our synchronized parallel environment, with re-
spect to modular design. We show that the capabilities of the action systems
framework, for modularity, are improved. This translates into being able to
carry out (trace) refinements of modules, in isolation, without knowledge
about the invariants of the other modules of the parallel environment. How-
ever, the price to pay is that one has to useproper invariants for trace refine-
ment. Theorem 3, and Corollary 1 of chapter 3 demonstrate these informal
claims.

The most important contribution of chapter 3 is the proof that barrier synchro-
nization can also improve reactive systems modularity, besides their control. We
believe that the proposed parallel execution model and its properties couldbe ex-
tended to other state-based formalisms, if one needs to obtain similar benefits.

Related Work. The approximation of concurrency by interleaving is used in
most process algebras like CSP [97], CCS [127], as well as in input-output au-
tomata [121] and UNITY [62]. The nondeterministic behavior induced by thein-
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terleaved model requires solutions for controlling the data flow. On the otherhand,
resolving control issues reduces the design independence across thedifferent lev-
els of the design process. Several recent studies have analyzed aspects of control
and / or composability within different formal frameworks, all of which deal with
a certain interleaved environment.

Cavalcanti and Woodcock [55], and Charpentier [63] needed to build new rea-
soning environments in order to address issues related to correctness and compos-
ability of (reactive) systems. Both approaches have strong roots in the weakest
precondition semantics of Dijkstra [71].

Bellegarde et al. introduce a similar idea of synchronized parallel composition
for event-B systems [42].

In the temporal logic of actions of Lamport [115, 116], synchronization isspec-
ified as a way of applyingnoninterleavingto system design. This is reached by
employingjoint actions. The author’s conclusion supports our point of view: in-
terleaving “blurs” the distinction between the components used in design.

1.2.2 Hybrid Systems Modeling and Analysis

Problem Description. Hybrid systems combine discrete control with continu-
ous evolutions. The latter are most frequently described by differential equations,
which make the state space of the system infinite. This and other reasons like,for
example, the interaction of the logic controller with the continuous behavior, make
hybrid systems inherently complex and difficult to analyze automatically.

Such systems may exhibit particular undesired behaviors that are not met in
purely discrete environments. One known behavioral anomaly istimelocking: time
is prevented from advancing by infinite executions of discrete transitions.Conse-
quently, the corresponding modeling formalism should be capable of prohibiting
such behaviors.

Tool support is needed in order to carry out hybrid system analysis. There is
a range of tools that can be used for this purpose: simulators, model-checkers,
theorem provers, or combinations of the last two techniques [133].

Simulating a formal model of the hybrid system is very useful, allowing one to
find potential trouble spots before proceeding to full formal verification.

Symbolic simulation, introduced by King [105], refers to performing simula-
tion on sets of states represented symbolically. Thus, symbolic simulation differs
from regular simulation in that it simultaneously traverses a number of trajectories,
rather than a single trajectory through the state space [151]. This allows thesim-
ulation of a potentially infinite number of trajectories in one symbolic simulation.
Initial logical mistakes can be uncovered by visualizing the behavior of the model,
or by inspecting lists of symbolic values of discrete-valued and continuous-valued
time variables.

The proof automation mentioned above can either be partial or total. In the
partial case, we havesemi-decisionprocedures. These algorithms may not always
succeed in proving a claim, and may, therefore, require guidance from the user. On
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the other hand, totally automated procedures are guaranteed to terminate with are-
sult. However, due to the undecidability of most properties of hybrid systems[6],
these algorithms apply only to a restricted class of hybrid systems. Besides, there
are many hybrid systems that containparametersin their representation. These
systems are supposed to operate correctly only for certain values of the parame-
ters, or if specific relationships between parameters hold. The relationships may
sometimes be easy to guess. If this is the case, we can then formally verify the cor-
rectness of the guess. Verification of models with parameters is a semi-decisional
process that depends on the number of clocks, parameters, and other variables.

Nevertheless, there are also cases where it is not trivial to intuitively formu-
late the correct parametric relationships, or values of parameters that would ensure
a correct functioning of the analyzed system. Then, one needs to deduce them
by means of a verification procedure. This method is calledparameter synthe-
sis. Since an algorithmic approach to parameter synthesis may sometimes fail to
deliver the expected constraints, it may be useful to tackle such a design task by
means ofdeductive reachability analysis.

Solution. Below, we enumerate the contributions of chapters 4 and 5, which try
to address the above mentioned problems.

• In chapter 4 we extend the syntax of continuous action systems [27], such
that the absence oftimelocksis guaranteed. We model theexecute only once
(at the same time-point) concept, for actions, by adorning transitions in the
original CAS. Rather than complicating the otherwise simple model of CAS,
we push the problem of avoiding timelocks to the implementation level. Our
solution aims at enhancing the class of hybrid/real-time systems that can be
handled within our framework.

• Still in chapter 4, we adapt the synchronization mechanism introduced in
chapter 3, to continuous action systems.Synchronized parallel CASlet one
compose reactive hybrid models, by employing the new parallel composi-
tion operator, ‘]’, such that the composition presents a global, concurrent
response to the inputs. The CAS modules synchronize on the update of the
global variables, after a sequence of execution rounds. All the resultses-
tablished for the discrete case, and outlined in section 1.2.1, hold for the
continuous case, too. We show that our model is useful for the design of
hybrid systems characterized by behaviors with discontinuities.

• A tool for the symbolic simulationof CAS, implemented in Mathematica
[156], is proposed in chapter 5. Mathematica is a powerful computer alge-
bra package, also equipped with plotting facilities. We give the flavor of this
platform, in chapter 2. Various linear models have been simulated. Symbolic
simulation should be used as far as it is possible, or numerical approximation
could be applied instead (for nonlinear cases). Besides graphical representa-
tion of variables, at the end of the simulation, we also get information about
the exact time moments when discrete transitions have been fired. Lists with
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symbolic values of all model variables at those particular moments complete
the set of simulation results delivered by the tool.

• In chapter 5, we also apply a deductive procedure for parameter synthesis,
on a relevant linear hybrid system model, that is, a temperature control sys-
tem within a nuclear reactor tank. The method is based on superposition of
nonconflicting invariants. It reduces to proving that a certain bad condition
can not be reached, if certain relationships between parameters hold. The
disadvantage is that our method is not automated. The advantage is that one
gets more insight about the system behavior, in comparison to parameter
synthesis carried out by using model-checkers like HYTECH [87, 88], or
TREX [48]. Moreover, the deductive method is not limited by the number
of parameters or clocks. Thus, it might be applied to complex parametric
hybrid systems.

Related Work. Alur and Henzinger have developed an assume-guarantee prin-
ciple for reasoning about timed and hybrid modules [12]. The approach uses the
concepts ofupdate roundsandtime rounds. The former rounds update the global
variables, whereas the latter update all clock variables, by selecting a duration (pos-
sibly 0) that the module is prepared to let elapse. In our synchronized environ-
ments, we do not make the distinction between rounds updating global variables,
and rounds updating time. All global variables (be they discrete valued or contin-
uous valued time variables) and time are updated by a sequence of statements,at
the end of the same cycle.

Many simulation packages have been proposed and applied for the system-
atic analysis of hybrid systems [74, 79, 124, 125]. Out of these, theMatlab
Simulink/Stateflowtool [124] provides extensive simulation facilities. However,
the conducted simulation is based on Matlab’s numerical routines. The suite con-
sists of two modeling languages: Simulink, which is used to model the continuous
dynamics, and Stateflow, used to specify the discrete control logic. The latter lan-
guage does not have a precise formal semantics, thus verification of hybrid systems
modeled in Stateflow is hampered.

Analysis and verification of parameterized hybrid models is a difficult problem,
since their verification is, in general, undecidable. Therefore, automatedparameter
synthesis can be applied with limitation. Tools that allow synthesis of parameters
for hybrid systems, such as HYTECH [87, 88], may fail to terminate due to pa-
rameter types, or big number of clocks. Initial bounds on parameters may beset in
order to limit the size of the generated state space. On the other hand, tools such as
TREX [48] useon-the-flystate exploration techniques, thus overcoming nontermi-
nation. However, TREX usestimed automata[9] as the modeling language, which
might be too weak for modeling hybrid systems, since timed automata is a subclass
of linear hybrid automata[86], which is used in HYTECH.

Aiming for generality, a deductive method, based on a mathematical invariance
proof, can be applied as an alternative to algorithmic approaches. It extracts correct
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values or relationships between parameters involved in hybrid designs, regardless
of the number of clocks or parameters. To gain confidence in manual proofs, we
may mechanize the process, by means of a theorem-prover [65].

1.2.3 Correct-by-Construction Real-Time Schedulers

Problem Description. Schedulingreal-time tasks is by far the research topic that
has received most attention in the real-time systems community. The requirements
of real-time systems include non-functional properties that need to be preserved
during execution. These properties refer totask deadlines, which are supposed to
be met, at run-time.

In most cases, when building a real-time schedule, it is essential to find a sys-
tematic way that guarantees that the tasks are executed such that they will always
complete by their deadlines. This way is called ascheduling policy[51, 119].
Hence, task priorities need to be assigned with respect to predefined algorithms.

Constructing correct policy-based real-time schedulers is not a trivial job, since
analyzing the schedulability conditions of sets of real-time tasks reduces, in most
cases, to computing fixed points. This technique is notoriously resource consum-
ing, so that trying to avoid such algorithms might become an attractive idea.

Solution. In consequence, in chapter 6, we propose the following:

• A refinement-based method for building correct-by-construction real-time
priority-driven schedulers, for uniprocessor systems. We enforceschedula-
bility properties, as the conjunction of timing requirements (meeting dead-
lines), mutual exclusive execution of tasks, and policy-related priority as-
signments. The scheduled system is derived through refinement, starting
from an abstract level. In the end, we reach an implementable level, also de-
scribed as an action system. A decomposition in two separate modules (the
scheduler and the set of tasks) is performed as a last step.

• The application of the technique described above to both fixed-priority (e.g.,
Deadline-Monotonic) algorithms, as well as to dynamic-priority algorithms
(e.g.,Earliest-Deadline-First). Preemptible, sporadic, as well as non-pre-
emptible, periodic task models are considered. Moreover, in the Earliest-
Deadline-First case, the constructed schedule is validated by simulating the
constructed real-time model in Mathematica, up to the least-common-multi-
ple of the task periods.

Related Work. Formal approaches have been recently applied by Kwak et al.
[113], who develop symbolic bisimulation algorithms, and Altisen et al. [4], who
propose synthesis algorithms, for constructing real-time schedules. A majordis-
advantage of these approaches is the practical high complexity of the algorithms.
Hence, the methods can not accommodate a large number of tasks.
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We were motivated by the mentioned inconvenience to find an alternative so-
lution to the model-checking targeted algorithms. In consequence, we have de-
veloped a general scheduler construction method, which can be applied toany
particular collection of real-time tasks.

A similar work to ours is due to Altisen, G̈oßler, and Sifakis [5], where fixed
point computation algorithms are combined with the incremental application of
priority rules that restrict the initial behavior of the real-time model. Nonetheless,
the authors model the system in a monolithic fashion, the real-time tasks being
represented by uncontrollable transitions in timed automata models. In compari-
son, our method leads eventually to a two-module implementation of the abstract
real-time model.

1.2.4 Controller Synthesis for Discrete Systems

Problem Description. Since many reactive systems are actually control systems,
it is essential to tackle the problem of constructing the controller of such a system.
The idea behindcontroller synthesisinvolves changing the level of abstraction of
an initial system model, by computing the most general (maximally nondetermin-
istic) controller that satisfies the requirements. Therefore, it is sufficientto start
with a nondeterministic, high-level model of the controller. In principle, synthesis
steps decrease the controller’s nondeterminism. In short, one needs to adjust the
initial system representation, by restricting the behavior of the controller, such that
all possible transitions that could lead to unsafe states are eliminated.

Most of the synthesis approaches known in literature are algorithmic. Theyare
based on computation of the maximal set of controllable states, usingbackward
fixed point iterationof symbolic predecessoroperators [18, 99, 122]. This strategy
implies exploration of the entire state space, in order to find the result. A main
drawback could be excessive memory consumption.

Solution. To address this deficit, in chapter 7, we propose a deductive game-
based method for solving the problem of sequential control. As distinct from the
research carried out in the previous chapters, chapter 7 opens a newgate by point-
ing to a different direction.

We describe the system as a game between two rival players, theangeland the
demon. The angel represents the controller, and the demon models the plant, or the
disturbance. Thus, we work with action systems that contain two kinds of nonde-
terministic statements, in the form ofangelic choices, or angelic nondeterministic
assignments, anddemonic choices, or demonic nondeterministic assignments.

Requirements are modeled as temporal properties, initially defined within the
dually nondeterministic weakest precondition framework, by Back and vonWright
[34, 37, 38]. The angelic controller has the obligation to enforce the respective
temporal property, if it can, regardless of the actions of the demonic plant.

Our method starts by checking whether the angel has a way to win the game
with respect to the specified requirement. The latter is analwaysproperty, when we
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synthesize controllers forinvariance(controllers that must keep the system within
a safe set of states). The requirement is a special form ofeventuallyproperty, called
weak response, when we address synthesis of reliable controllers forreachability
(controllers that must guide the system into an intended set of states, in finite time).
We show that the response property that we are looking at is enforced by proving
adequate invariance and termination properties of a fixed-point statement that we
define. From our perspective, this is the main difference between the approach
presented in chapter 7 and the algorithmic solutions to the controller synthesis
problem (for example the one employingalternating-time temporal logic[15]):
we reduce synthesis to correctness reasoning.

If we succeed in proving that there exists such a strategy for the angel, we
extract it, next, by rewriting the respective angelic statement in a certain context
resulted from the correctness proofs carried out in the first step. Thistransforma-
tion restricts the choices of the angel to those that establish the requirement. The
result is a correct, implementable (maximally nondeterministic) controller, which
is guaranteed to preserve the required temporal property for any of its available
choices.

Below, we summarize the contribution of chapter 7:

• A deductive method for synthesizing controllers for classes of discrete sys-
tems that can be modeled as games with more than one round.

• The application of our technique to both invariance and reachability con-
troller synthesis.

• A new inference rule for verifying the existence of angelic winning strate-
gies under a particular case of reachability control. Our study uses propa-
gation of context information as the main transformation for extracting the
angelic winning strategy. In both invariance and reachability cases, by play-
ing the angelic nondeterminism against the demonic one, we get, in the end,
a correct-by-construction implementable controller.

Related Work. Viewing a reactive system as a two-player game is not a new idea.
It can be traced back to Ramadge and Wonham [139], and Pnueli and Rosner [137].
The authors developed synthesis algorithms for finite-state discrete systems, and
showed that finding a winning strategy for the game was equivalent to synthesizing
a controller that satisfied the requirements.

For discrete-event systems, which is one of the most popular (discrete) frame-
works, there are tools for the construction ofsupervisory controllers[68, 157].

In order to overcome the state explosion problem encountered in most algo-
rithmic approaches to controller synthesis [18, 99, 122], Tripakis and Altisen have
proposedon-the-flyalgorithms [154]. However, their algorithms are applicable to
finite-state systems only.

If compared to dedicated model-checking algorithms, our approach is a general
and less costly technique in terms of computer memory resources. On the other
hand, it involves the non-trivial task of finding adequate invariants.
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Perhaps the closest work to ours is proposed by Slanina [147], who develops
proof rules for safety and response linear temporal logic [136] properties of con-
current reactive games. However, the equivalent of our second synthesis step, that
is, extracting the angelic winning strategy, is not apparent. We are just promised
that, if the control conditions can be proved valid, by invoking constructive the-
orem proving methods, the extracted program can be used further to synthesize a
control winning strategy. Moreover, the author does not use a two-foldnondeter-
minism, he rather relies onexistential Hoare triples[46, 145] to emulate angelic
behavior.

1.3 Organization

The thesis builds on published papers that have appeared in conference proceedings
and journals. Nevertheless, in the current study we extend and improve on the
results of the papers, providing information that is not available in the published
material. The list of papers that form the core of this thesis is given below, in
chronological order.

• R. J. Back and C. Cerschi.Modeling and Verifying a Temperature Control
System using Continuous Action Systems. In Proceedings of the 5th Interna-
tional ERCIM Workshop on Formal Methods for Industrial Critical Systems
(FMICS’2000), GMD Report 91, pp. 265-286,ERCIM and GMD, 2000.

• R. J. Back, C. Cerschi Seceleanu, and J. Westerholm.Symbolic Simulation
of Hybrid Systems. In Proceedings of the 9th Asia-Pacific Software Engi-
neering Conference (APSEC 2002), pp. 147 - 158, IEEE Computer Society
Press, 2002.

• R. J. Back and C. Cerschi Seceleanu.Contracts and Games in Controller
Synthesis for Discrete Systems. In Proceedings of the 11th IEEE Interna-
tional Conference on the Engineering of Computer-Based Systems (ECBS
2004), pp. 307 - 315, IEEE Computer Society Press, 2004.

• C. Cerschi Seceleanu and T. Seceleanu.Synchronization Can Improve Re-
active Systems Control and Modularity. Journal of Universal Computer Sci-
ence (JUCS), 10(10): 1429 - 1468, Springer, 2004.

• C. Cerschi Seceleanu.Formal Development of Real-Time Priority-Based
Schedulers. In Proceedings of the 12th IEEE International Conference on
the Engineering of Computer-Based Systems (ECBS 2005), pp. 263 - 270,
IEEE Computer Society Press, 2005.

• C. Cerschi Seceleanu.Designing Controllers for Reachability. In Proceed-
ings of the 29th Annual International Computer Software and Applications
Conference (COMPSAC 2005), IEEE Computer Society Press, 2005.

The outline of the rest of the dissertation is as follows. Chapter 2 presents the
preliminary notions needed and used throughout this study. The reader isbriefed
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on statements, games, actions systems, and continuous action systems, as wellas
the refinement techniques available for such models. The background chapter ends
with a short overview of the computer algebra tool,Mathematica[156].

A new parallel composition operator for action systems, “sharp” (‘]’), and an
associated execution environment, called thesynchronized parallel environment
are introduced in chapter 3. We compose action system modules by employing the
“sharp” operator that we define; moreover, we prove the essential properties that
emerge out of this formal perspective. The modular design and refinement of a
digital filter serves as the accompanying case-study.

The extended syntax for CAS and its corresponding implementation are pro-
posed in chapter 4. We close the chapter with thesynchronized parallel CAS,
intended for modular design of timed and hybrid systems.

In chapter 5, we describe and exemplify asymbolic CAS simulator, which we
have implemented in Mathematica. The tool is exercised on simulating the be-
havior of a nuclear reactortemperature control system. The simulation results are
presented as graphs, and also as symbolic lists of state variables values. Next,
we describe and exemplify the iterative invariance-basedparameter synthesisap-
proach, intended for the reliable design of hybrid systems with parameters.

The refinement-based methodology for the incremental construction of unipro-
cessor real-time schedulers is described in chapter 6. Preemptible, sporadic, and
also non-preemptible, periodic task collections are considered for scheduling. We
open the chapter with the main real-time scheduling results already known in the
literature of uniprocessor scheduling theory. Afterwards, we present the actual
scheduler construction method. Next, we apply it for constructing a real-time
model scheduled by the fixed-priorityDeadline-Monotonicalgorithm. Trace re-
finement techniques are then used to reach an efficient real-time system imple-
mentation; also, a provably correct decomposition splits the final model in two
distinct modules, the scheduler and the real-time tasks. Last but not least, we apply
our correct-by-construction method under the assumption of a dynamic-priority
scheme, that is, theEarliest-Deadline-Firstpolicy. We show how to validate the
constructed schedule by simulating it up to the least-common-multiple of the task
periods. For this, we use the tool described in chapter 5.

Last but not least, we return to the issue of discrete reactive system control.
Chapter 7 points to a different direction and introduces our game-based approach
to synthesis of controllers for discrete control systems. The first part deals with
finding winning strategies for safety games. The second part aims at finding ways
to win a particular type of reachability games. Two relevant examples illustrate the
application of the theoretical results.

We end our dissertation with conclusions, enumerate the limitations of our
methods and also future research directions, in chapter 8.

Some detailed proofs of particular theorems, corollaries, and refinements stated
throughout the thesis can be found in the Appendix.
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Chapter 2

Background

As already mentioned in the introduction, therefinement calculus[21, 35, 129, 131]
is a logical framework for reasoning about programs.

In principle, we want to know whether a program iscorrect with respect to
a given specification, and how can we improve orrefine the higher-level model,
without loss of correctness. Both specifications and programs can be seen as spe-
cial cases of a more general notion, that of acontract between different agents
(programs, modules, systems, users) involved in the computation.

A contract regulates the behavior of an agent, by modeling what the agentis
permitted and supposed to do. In the following, we only consider at most two rival
agents as participants. Then, the contract reduces to the special case of statements
where two distinct kinds of choices are permitted.

In this chapter, we give an overview of statements, and introduceaction sys-
temsas a special kind of statement. Next, we presentcontinuous action systems,
the extension of discrete action systems, which targets hybrid and real-time sys-
tems modeling. This is followed by brief formal descriptions ofcorrectnessand
refinementat both the action and system levels. At the end, we present shortly the
computer algebra tool,Mathematica.

All the notions and the tool description below provide the basis for the remain-
der of the thesis.

2.1 Statements

Our reasoning framework useshigher-order logicas the underlying logic. Astate-
mentS is built according to the syntax below:

S ::= skip (stuttering)
| abort (abort)
| magic (miracle)
| x := e (assignment)
| {p} (assertion)
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| [p] (assumption)
| S1 ; S2 (sequential composition)
| if g then S1 else S2 fi (deterministic conditional)
| S1 t S2 (angelic choice)
| S1 u S2 (demonic choice)
| {x := x′ | b} (angelic nondeterministic assignment)
| [x := x′ | b] (demonic nondeterministic assignment)
| (µX • S) (angelic recursion)
| (νX • S) (demonic recursion)

Here,p ranges overstate predicates(Σ → Bool), x := e is a state transformer
(Σ → Σ), andx := x′ | b is astate relation(Σ → Σ → Bool). In these definitions,
Σ is the polymorphic type of the program state. We writef.x for functionf applied
to argumentx.

The statementabort is seen as a failure: the computation has to beaborted
because something has gone wrong. This statement does not achieve anycondi-
tion. On the contrary, statementmagic achieves whatever condition the program is
supposed to, as if amiraclehas occurred [35].

Theassignmentchanges the state according to the state transformerx := e. In
the grammar,skip is described asstuttering(no change of the observable state).

Theassertion{p} leaves the state unchanged ifp holds and aborts otherwise (it
behaves like:if p then skip else abort fi ). It then follows thatabort is interpreted
as the assertion that is impossible to satisfy, that is,{false}. Theassumption[p]
also leaves the state unchanged ifp holds, but terminatesmiraculouslyotherwise
(that is, it establishes any postcondition, evenfalse). The assumption behaves as:
if p then skip else magic fi . Hence,magic can be interpreted as the assumption
that is impossible to satisfy, that is,[false].

In thesequential compositionS1 ;S2, statementS1 is first carried out, followed
by S2.

An angelic choiceS1tS2 allows a controllable entity calledthe angelto choose
which statement is to be executed. Ademonic choiceS1uS2 lets an uncontrollable
entity calledthe demonto choose between carrying outS1 or S2. Note that, if
there is only one type of nondeterminism involved, that is, demonic, we denotethe
respective nondeterministic choice of statements byS1 [] S2.

The angelic nondeterministic assignmentor angelic update, {x := x′ | b},
models angelic choices of the final state, among those that satisfy the booleancon-
dition b. In the demonic nondeterministic assignment(demonic update), [x :=
x′ | b], the choice of the final state is demonic. If no such state exists, then the
angelic update is aborting, while the demonic update is miraculous. In both assign-
ments,x′ characterizes the state after the execution of the statement, and stands for
a bound variable whose value should satisfyb.

Our language also permitsrecursive statements, as(µX • S) or (νX • S). In
the first case, the recursive statement is executed so thatS is repeated a demonically

18



chosen (finite) number of times. IfS can be executed indefinitely, this infinite
execution is a failure (abort) for the angel. In the second case, the execution of
(νX • S) is similar, with the difference that infinite execution is not a bad thing for
our agent.

Semantics of Statements. A predicate transformeris a function that maps pred-
icates to predicates ((Σ → Bool) → (Σ → Bool)). We want the predicate trans-
formerS to map postconditionq to the set of all initial statesσ from whichS is
guaranteed to end in a state ofq. Thus,wp.S.q is theweakest preconditionof S to
establish postconditionq.

The pointwise extension of the implication ordering (⇒) on Bool gives us the
ordering on predicates (⊆). Also, conjunction (∩), disjunction (∪), and negation
(¬) on predicates are defined by pointwise extension of the correspondingoper-
ations on booleans. Similarly, the order (v), and operations (u,t) on predicate
transformers are lifted from their respective counterparts on predicates.

In all the following chapters, except for the last, we choose to use the notation
for booleans, for predicates too, rather than the actual set notation (e.g. q∧ r rather
thanq ∩ r, q, r predicates). In the last chapter, we employ the predicate-specific
notation, as a distinctive feature of the fact that we work with dual nondeterminism.

Predicates form acomplete boolean lattice, and so do predicate transformers
[35]. Abort is the bottom (⊥) andmagic is the top (>) of the predicate transformer
lattice.

Given the fact that Back’s refinement calculus [35] does not make a distinc-
tion between program statements and their semantics, each statementS is simply
identified with a specific predicate transformer from postconditions to weakest pre-
conditions. Hence, one can writeS.q instead ofwp.S.q.

The intuitive description of statements can be used to justify the following
definition of the weakest precondition semantics:

skip.q
∧
= q (2.1)

abort.q
∧
= false (2.2)

magic.q
∧
= true (2.3)

(x := e).q
∧
= q[x := e] (2.4)

{p}.q
∧
= p ∩ q (2.5)

[p].q
∧
= ¬p ∪ q (2.6)

(S1 ; S2).q
∧
= S1.(S2.q) (2.7)

(if g then S1 else S2 fi ).q
∧
= (¬g ∪ S1.q) ∩ (g ∪ S2.q) (2.8)

(S1 t S2).q
∧
= S1.q ∪ S2.q (2.9)

(S1 u S2).q
∧
= S1.q ∩ S2.q (2.10)
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{x := x′ | b}.q
∧
= (∃x′ • b ∩ q[x := x′]) (2.11)

[x := x′ | b].q
∧
= (∀x′ • b ⊆ q[x := x′]) (2.12)

These definitions are consistent with Dijkstra’s original semantics for the lan-
guage of guarded commands [71], and with later extensions to it.

Observe that the controllability of the angel is mirrored in the semantics of the
angelic choice: forS1 t S2 to establishq, it is enough that one of the statements
does it. In contrast, the uncontrollable demonic behavior shows in the requirement
that both alternatives of the choiceS1 u S2 should establishq, in order for the
demonic choice to do so.

We say that a predicate transformerS is monotonicif and only if the following
implication holds:

∀p, q • p ⊆ q ⇒ S.p ⊆ S.q

Furthermore, a predicate transformerS is calledstrict (or nonmiraculous) if it
preservesfalse, andterminating(or nonaborting) if it preservestrue. Also, S is
said to beconjunctiveif it preserves nonempty meets of predicates, anddisjunctive
if it preserves nonempty joins of predicates:

S.false = false (S strict)
S.true = true (S terminating)

S.(∩ i ∈ I • qi) = (∩ i ∈ I • S.qi), I 6= ∅ (S conjunctive)
S.(∪ i ∈ I • qi) = (∪ i ∈ I • S.qi), I 6= ∅ (S disjunctive)

A conjunctive specificationmay be a compound statement where all the con-
stituent statements are conjunctive predicate transformers. The statement below is
such an example:

{p} ; (S1 [] S2)

Fixed pointsare used to give meaning to recursive definitions. Theleast fixed
point of f is denoted byµ.f , while thegreatest fixed pointis denoted byν.f . The
least fixed point off is characterized by the following two properties:

f.(µ.f) = µ.f (folding least fixed point)
f.x v x ⇒ µ.f v x (least fixed point induction)

(2.13)

The greatest fixed point is characterized by the following dual properties:

f.(ν.f) = ν.f (folding greatest fixed point)
x v f.x ⇒ x v ν.f (greatest fixed point induction)

(2.14)

Let us consider the function(λX · S). The least fixed point of this function is
written as

µ.(λX · S) = (µX · S)

An important particular case of recursion is thewhile loop, which is defined as
the least fixed point of the unfolding function:

while g do S od
∧
= (µ X • if g then S ; X else skip fi )
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By unfolding, we see thatS is repeatedly executed as long as the predicateg holds.
Theguarded iteration statementgeneralizes thewhile loop. It is defined as

do g1 → S1 [] . . . [] gn → Sn od
∧
=

while g1 ∪ . . . ∪ gn do [g1] ; S1 u . . . u [gn] ; Sn od

This gives thewhile loop as a special case, whenn = 1:

do g → S od = while g do S od

Here, the predicateg is calledthe guardof the loop, assuming thatS is strict.
In general, the semantics of theguardgS of a statementS is: gS = ¬S.false

[134], meaning that it characterizes those states from whichS behaves non-mira-
culously (gS guards against miracles).
Prioritizing composition. This construct, introduced by Nelson [134], and adap-
ted for action systems by Sekerinski and Sere [141], is basically a choiceoperation,
where statements are given certain priorities. If a lower level priority statement
is enabled, it can be executed only if no other higher level priority statementis
enabled.

Then, the prioritizing composition of two statements is defined as:

S1 // S2
∧
= S1 [] ¬gS1 → S2

In order of decreasing binding power, the operators are:; [] //.
Quantified composition. Any composition operator can bequantified. This ap-
plies to the different compositions of statements. For instance, the quantified non-
deterministic choice is defined as follows:

[ [] i ∈ [1..n] : Si ]
∧
= S1 [] . . . [] Sn

Statements as Games. In a previous paragraph, we have shown how statements
can be interpreted as (monotonic) predicate transformers. In this paragraph, we
briefly discuss thegame-basedinterpretation of statements.

Statements can be defined in terms of a game that is played by two participants,
the angel and the demon. Thegame semanticsdescribes how a statementS encodes
the rulesof a game. A play of the gameS is characterized by aninitial state (σ)
of the game, and agoal (a postcondition)q that describes the set of final states that
are winning positions.

A sequence of an angelic and a demonic update is interpreted as atwo-player
game with the angel and the demon as players:

{x := x′|x < x′ ≤ x + 2} ; [x := x′|x ≤ x′ ≤ x + 2]

In the above game, the angel plays first, after which the demon takes its turn.The
players are rivals. For a given postconditionq, the angel tries to reach a final state
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that satisfiesq, starting from the initial stateσ. The demon tries to prevent this.
In the example, the angelic nondeterministic assignment lets the angel increase
the value of the natural variablex, with one or two units, whereas the demonic
assignment requires the demon to keepx unchanged, or increase its value also by
1 or 2.

We say that the angel has astrategy to wina two-player game, if and only if it
has a way of making its choices insideS such that the postconditionq holds in the
final state, regardless of how the demon resolves its choices. Note that to win, the
angel must be able to reachq, thus nontermination is bad for the angel.

In the above game example, assuming that the initial state satisfiesx = 0, the
angel does have a strategy to win the game with the goalx ≥ 2, no matter how the
demon moves. On the other hand, from that same initial state, the angel can not
win the game for postconditionx = 2.

2.2 Action Systems

Back and Kurki-Suonio proposed theaction systemsformalism, as a framework
for specifying and refining concurrent programs [31, 32]. An actionsystem is in
general a collection ofactionsor guarded commands, which are executed one at a
time.

The generic action system is built according to the following syntax:

A(z : Tz)
∧
= begin var x : Tx

• Init ; do A1 [] . . . [] An od end : p (2.15)

Here,A contains the declaration oflocal variablesx (of typeTx), followed by an
initialization statementInit and theactionsA1, . . . , An, grouped within ado -
od loop. Variablesz (of typeTz) areglobal to the action system. The constants
p = p1, . . . , pm are called theparametersof systemA.

An action (guarded command), Ai
∧
= gi → Si, Si strict, isenabledand its

bodySi is executed, if theguardgi evaluates to true. Otherwise, actionAi is called
disabled. The chosen actions change the values of the variables in a way that is
determined by the action body.

The initialization statement assigns starting values to the global and local vari-
ables. After that,enabledactions are repeatedly chosen and executed. We as-
sume that actions areatomic, that is, they are indivisible. In addition, the guard
of an action systemA given by (2.15) is denoted byggA, and it is defined as:
ggA

∧
=

∨n
i=1 gi. The execution of systemA terminates when its guard does not

hold anymore, that is, when¬ggA holds.
In other words, an action system is an initializeddo − od loop:

Init ; do g1 → S1 [] . . . [] gn → Sn od
∧
=

Init ; (µX • [g1] ; S1 ; X u . . . u [gn] ; Sn ; X u [¬(g1 ∨ . . . ∨ gn)])
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An action system is not usually regarded in isolation, but rather as a part of a
more complex structure, the rest of which, that is, theenvironment, communicates
with the action system viashared(read and written) variables. In the following,
we assume and extend the notations defined in [28].

The set of state variables accessed by some actionA is denotedvA, and is
composed of thereadvariable set of actionA, denotedrA, and thewrite variable
set of actionA, denotedwA. We have thatvA = rA ∪ wA. We can also build
the same sets at the system level, considering the local / global partition of the
variables. Thus, for a given action systemA, we have the access set,vA, split into
the global read / write variables, denoted bygrA/gwA and the local read / write
variables, denoted bylrA/lwA. We say that an actionA of A is eitherglobal, if
gwA ∩ wA 6= ∅, or local, if wA ⊆ lwA.

Action systems occupy a central position in this thesis. We will thus take ad-
vantage of the expressiveness of this formalism, and use it further for modeling
purposes.

Parallel Composition of Action Systems.Several action systems can be com-
bined to form a new action system.

Let our protagonists beA andB, two action systems of the form

A(zA)
∧
= begin var xA

• InitA ; do gA → SA od end

B(zB)
∧
= begin var xB

• InitB ; do gB → SB od end

Assuming thatxA andxB are disjoint, the parallel composition [22] ofA andB is
the systemP = A || B:

P(zP )
∧
= begin var xP

• InitA ; InitB ; do gA → SA [] gB → SB od end

The composed action system essentially combines the variables, the initialization
statements and the actions of the two components. The initialization of the com-
mon variablesz must be consistent1, that is, they are assigned the same initial val-
ues by both initialization statements,InitA andInitB. In principle, initializations
are merely made of assignments; nevertheless, other constructs like conditionals
are allowed only if they do not mention in their guards uninitialized (global) vari-
ables. Some of the previously global variables ofA andB may become local
variables ofP. We add these to the reunion of the individual local variables ofA
andB, thus obtaining the set of local variables ofP, xP . The global variableszP

are defined aszP
∧
= (zA ∪ zB) − xP .

Given the above formalization,A || B is executed by first initializing the local
and global variables, and then interleaving the execution of the enabled actions of
A andB. Termination occurs when both action systems terminate, which means
that there is no enabled action, in neither of the systems, that is,ggA∨ggB ≡ false.

1Alternatively, global variables can have a well-defined value that is expressed as a precondition.
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In short, one observes the composition as the single systemP.

Prioritizing Composition of Action Systems. Considering the same action sys-
temsA andB as above, their prioritizing composition is a new action system
U = A // B, defined by:

U(zU )
∧
= begin var xU

• InitA ; InitB ; do gA → SA // gB → SB od end

The variablesxU are the reunion of the local variablesxA, xB, to which the
variables hidden from the interface ofU are added. The global variableszU =
(zA ∪ zB) − xU . The choice between the action ofA and the action ofB is deter-
ministic in the sense that when both are enabled,SA is executed.

2.3 Correctness and Refinement of Action Systems

Invariance. We say that a predicateI(vA) – I for short – ispreservedby an action
A, if the relation

I ⇒ A.I

holds. Considering the actionA
∧
= g → S, S strict, the above relation translates

into
g ∧ I ⇒ S.I

This means that whenever the actionA is enabled, and provided thatI holds, the
execution of the action bodyS terminates in a state ofI.

At the system level, a predicateI(vA) (I for short) is aninvariant of the action
systemA, given by (2.15), if:

• it is establishedby Init, that is,

true ⇒ Init.I, and if

• it is preservedby each actionAi
∧
= gi → Si, that is,

gi ∧ I ⇒ Si.I, ∀i ∈ [1..n]

Correctness.Proving correctness of programs can be done by applying the infer-
ence rules ofHoare logic [95], which hold of any constructs of a programming
language. The logical rules let us reduce the correctness of a program statement
to the correctness of its components. Dijkstra’s predicate transformer method pro-
vides an alternative approach aiming for a similar goal.

The approach via Hoare logic is based on primitive assertions of the form
{p}S {q}, wherep, q are predicates andS a statement. Operationally, this means
that if S is activated in a state wherep is true, thenq is true of any state in which
S might halt [134]. The approach to thepartial correctnessmodel via predicate
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transformers defineswlp.S.q (weakest liberal precondition) to be the weakestp
such that{p}S {q}.

Refinement calculus is built around the concept oftotal correctness, that is,
(∀q · S.q = S.true ∧ wlp.S.q). We say that a predicate transformerS is totally
correct with respect to preconditionp and postconditionq, denoted byp {|S|} q, if
and only ifp ⊆ S.q holds.

For example, for arbitrary statementsS1, S2, and predicatesp, r, andq, the
correctness rule (in the Hoare style) for their sequential composition is the follow-
ing:

p {|S1|} r r {|S2|} q

p {|S1 ; S2|} q

Algorithmic refinement. An actionA is (algorithmically) refinedby the actionC,
writtenA v C, if, wheneverA establishes a certain postcondition, so doesC [22]:

A v C
∧
= ∀q • A.q ⇒ C.q

Refinement rules. A refinement ruleallows us to deduce that a certain refine-
mentS v S′ is valid. For example, adding choices to an angelic assignment and
removing choices from a demonic assignment are both valid refinements.

b ⊆ b′ |= {x := x′ | b} v {x := x′ | b′} (2.16)

b′ ⊆ b |= [x := x′ | b] v [x := x′ | b′] (2.17)

Equality “=” of statements can be used as refinement.
The rule ofbackward propagation of an assertion, or pulling an assertion

through an angelic nondeterministic assignment is given below:

{x := x′ | b} ; {q} = {x := x′ | b ∧ q[x := x′]} (2.18)

We also use the rule ofadding context assertionsto a nondeterministic choice
of guarded statements:

{p} ; (g1 → S1 [] . . . [] gn → Sn)
= {p} ; (g1 → {g1 ∧ p} ; S1 [] . . . [] gn → {gn ∧ p} ; Sn)

(2.19)

Dropping an assertion is also a valid refinement:

{p} ; S v S (2.20)

A local variable introductionis a refinement of the form:

begin var y := e′ ; S end v begin var x, y := e, e′ ; S′ end (2.21)

whereS′ is similar toS, possibly with total assignments tox added.
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Next, we give one refinement rule for guarded iteration statements:

g1 → S1 v g′1 → S′
1 ∧ . . . ∧ gn → Sn v g′n → S′

n

∧ (g′1 ∨ . . . ∨ g′n ⇒ g1 ∨ . . . ∨ gn)

⇒

do g1 → S1 [] . . . [] gn → Sn od v do g′1 → S′
1 [] . . . [] g′n → S′

n od

Other refinement laws that we apply in proofs that are outlined in the Appendix are
enumerated there.

Data refinement of actions. When carrying out data refinement,abstractdata
structures can be replaced byconcreteones (that is, ones more efficiently imple-
mentable).

Let us consider an action system that contains an atomic actionA that depends
on program variablesa andz. Variablesz are global to the analyzed action system.
Next, letR(a, c, z) (simply written asR) be a booleanabstractionrelation, which
links theabstractlocal variablesa to theconcretelocal variablesc. Additionally,
let I(c, z) be a predicate that depends on the concrete and global variables. Then,
action A is data refinedby actionC using relationR and predicateI, that is,
A vR,I C, if

∀q • R ∧ I ∧ A.q ⇒ C.(∃a • R ∧ I ∧ q),

whereq is a predicate on the variablesa, z, and(∃a.R ∧ I ∧ q) is a predicate on

c, z. If R is the identity relation (R
∧
= a = c), we then writeA vI C. Similarly,

if I ≡ true, we writeA vR C. If both are trivial, we run into the usual algorithmic
refinement of actions,A v C, as defined previously.

Trace refinement of action systems.The semantics of a reactive action system is
given in terms of behaviors [33]. Abehaviorof an action systemA is a sequence
of states,

b = (x0, z0), (x1, z1) . . . ,

where each state has two components. The first component is thelocal stateand
the second is theglobal state. Behaviors can be finite or infinite. A finite behavior
is calledterminatingif it ends in a proper state, oraborting if it ends improperly,
indicated by the symbol⊥.

A trace, tr(b), of a behaviorb, is obtained by removing the local state com-
ponent in each state of a given system, and all finite stuttering (no change of the
visible state). We denote the set of all traces of an action systemA by tr(A). An
abortingtrace corresponds to an aborting behavior.

The order relation over traces is anapproximation relation¹. A tracet ap-
proximates a tracet′, t ¹ t′, if either t = t′, or t is aborting and it is a prefix oft′.
An action systemA is trace refinedby an action systemC, A v C, if every trace
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of C has an approximating trace inA:

A v C ∧= ∀c ∈ tr(C) · ∃ a ∈ tr(A) · a ¹ c

In practice, we use the following lemma to prove trace refinement of action
systems [29].

Lemma 1 Given the action systems

A(z) ∧= begin var a • a, z := a0, z0 ; do A od end

C(z) ∧= begin var c • c, z := c0, z0 ; do C [] X od end,

let R(a, c, z) be an abstraction relation andI(c, z) an invariant of systemC. The
concrete systemC (trace) refines the abstract systemA, denotedA vR,I C, if:

1. Initialization: R(a0, c0, z0) ∧ I(c0, z0) ≡ true
2. Main action: A vR,I C
3. Auxiliary action: skip vR,I X
4. Continuation condition: R ∧ I ∧ gA ⇒ gC ∨ gX
5. Internal convergence: R ∧ I ⇒ (do X od ).true

The first condition of Lemma 1 says that the initializations of the systemsA and
C establish the invariantI and the abstraction relationR. The second condition
requires the abstract actionA to be (data) refined by the concrete actionC, by
usingI andR. In turn, the third condition indicates that the auxiliary actionX
is obtained by data refining askip action. This means thatX behaves likeskip
with respect to the global variablesz, which are not supposed to be changed in the
refinement. The continuation condition means that whenever the actionA of the
abstract systemA is enabled, provided thatR andI hold, there must be an enabled
action in the concrete systemC as well. Finally, the fifth condition states that,
if R andI hold, the execution of the auxiliary actionX, taken separately, must
eventually terminate.

Observe that, if we do not add any auxiliary actions, meaning that the refine-
ment assumes only rewriting the existing actions, for optimization purposes, we do
not have to check requirements 3, 4 and 5.

Decomposition. One way of developing a concurrent program is to first specify
it without taking parallelism into consideration, and then add parallelism subse-
quently, by decomposing the initial specification.

In this spirit, Sekerinski and Sere [141] introduced a theorem forprioritizing
decompositionof an action system, which we present below in an adapted form.

Theorem 1 If action systemA is of the form

A ∧= begin var x, y • [B0 ∧ C0] ; do B [] g → C od end,

where variablesx do not occur inC0, variablesy do not occur inB0, and further-
more variablesx do not occur inC, and for some predicateI,
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1. Initialization: B0 ∧ C0 ⇒ I,

2. Preservation: (B preservesI) ∧ (C preservesI),

3. Exit condition:I ∧ ¬gB ∧ gC ⇒ g,

then
A v B // C

where

B(y) ∧= begin var x • [B0 ∧ C0] ; do B od end

C(y) ∧= begin [C0] ; do C od end

The exit conditionensures that, after eliminatingg, actionC does not become
enabled inB // C when it was not inA, because thenB // C would not terminate
whenA would.

2.4 Continuous Action Systems

A continuous action system(CAS), proposed by Back, Petre and Porres [27], con-
sists of a finite set of variables that can range over discrete or continuous valued
time functions, together with a finite set of actions that act upon the variables. The
variables form the state of the system. A CAS is of the form

C(z : Real+ → Tz)
∧= begin var x : Real+ → Tx

• Init;
do g1 → S1 [] . . . [] gn → Sn od

end : p

(2.22)

Here,x = (x1, . . . , xn) are thelocal variablesof the system,Init is the ini-
tialization statement, whileAi = gi → Si, i = 1, . . . , n are theactionsof the
system. The variablesz = (z1, . . . , zk) are defined in the environment of the
CAS and they are calledglobal variables. As similar to the discrete case, the con-
stantsp = (p1, . . . , pm) are theparametersof systemC. Real+ stands for the
non-negative reals, and it is used as the time domain.

Intuitively, executing a CAS proceeds as follows. There is an implicit variable
now, that shows the present time. Initiallynow = 0. The guards of the actions may
refer to the value ofnow, as may any expressions in the action bodies (but they can
not changenow). The initializationInit assigns initial time functions to the local
and global variables. These time functions describe the default future behavior of
the variables. The system will then start evolving according to these functions, with
time (as measured bynow) moving forward continuously. However, as soon as one
of the conditionsg1, . . . , gn becomes true, the system chooses one of theenabled
actions, saygi → Si, for execution. The choice is nondeterministic if there is more
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than one such action. The bodySi of the action is then executed. It will usually
change some variables by changing their future behavior. Variables that are not
changed will behave as before. After the changes stipulated bySi have been done,
the system will evolve to the next time instance when one of the actions is enabled,
and the process is repeated. The next time instance when an action is enabled
may well be the same as the previous, that is, time needs not progress between
the execution of two enabled actions. This is usually the case when the system is
doing some (discrete, logical) computation to determine how to proceed next. It is
possible that after a certain time instance, none of the actions is enabled anymore.
This just means that, after this time instance, time diverges (grows unboundedly).

Note that in our approach actions are selected and executed asynchronously,
compared to the hybrid automata formalism [86] where transitions are fired syn-
chronously.

We writex :− e for an assignment, rather thanx := e, to emphasize that only
the future behavior of the variablex is changed to the functione. The past behavior
(beforenow) remains unchanged.

One of the main advantages of this model for hybrid computation is that both
discrete and continuous behaviors are described in the same way. In particular,
if the variables are only assigned constant functions, then we obtain a discrete
computation.

Let C be the CAS described by (2.22). We explain the meaning ofC by trans-
lating it into an ordinary action system. Its semantics is given in terms of the
following action system̄C:

C(z : Real+ → Tz)
∧= begin var now : Real+, x : Real+ → Tx

•

now := 0 ; Init ; UT ;
do g1.now → S1 ; UT

[] . . . (2.23)

[] gn.now → Sn ; UT

od

end : p

Here, the variablenow is declared, initialized and updated explicitly. It models the
moments of time that are of interest for the system, that is, the starting time and the
succeeding moments when some action is enabled. The value ofnow is updated
by the statementUT (UpdateTime),

UT
∧= now := next.gg.now

Above,gg = g1 ∨ ... ∨ gn andnext is defined by

next.gg.t
∧=

{
min{t′ ≥ t | gg.t′}, if existst′ ≥ t such thatgg.t′

+∞, otherwise.
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Thus, the functionnext gives a moment of time when at least one action is
enabled. Only at such a moment can the future behavior of variables be modified. If
no action will be ever enabled, then the second branch of the definition is followed,
and the variablenow goes to infinity.

We assume in this thesis that the minimum in the definition ofnext always
exists when at least one guard is enabled in the present or future. Continuous
action systems that do not satisfy this requirement are considered ill-defined (for
example, a guard of the formnow > 0 is ill-defined).

We define thefuture updatex :− e by

x :− e
∧= x := x/now/e

where

x/t0/e
∧= (λt · if t < t0 then x.t else e.t fi )

Thus, only the future behavior ofx is changed by this assignment.
A CAS is essentially a collection of time functionsx1, . . . , xn over the non-

negative reals, defined in a stepwise manner. The steps form a sequence of intervals
I0, I1, I2, . . ., where each intervalIk is either a left closed interval of the form
[ti . . . ti+1), or a closed interval of the form[ti, ti], that is, a point. The action
system determines a family of functions,x1, . . . , xn, which are defined over this
sequence of intervals and points. The extremes of these intervals correspond to the
control points of the system where a discrete action is performed.

The behavior of a hybrid system is often described using a system ofdiffer-
ential equations. Continuous action systems allow for this kind of definitions, by
introducing the shorthanḋx :− f(x). This will assign tox a time function that
satisfies the given differential equation, such that the functionx will evolve contin-
uously.

As an example, iff = (λt • v), wherev is a constant value, then we have that

ẋ :− v
∧= x :− (λt · x.now + v ∗ (t− now))

We can useclock variablesor timersto measure the passage of time and to correlate
the execution of an action with time. A clock variable measures the time elapsed
since it was set to zero. Assume thatc is a time variable of typeReal+. We then
use the following definition for resetting the clockc:

reset(c) ∧= c :− (λt · t− now)

Since a clock variable is just a regular variable, we can define as many clocks as we
need and reset them independently. It is also possible to do arithmetic operations
with clock variables, e.g., to use time intervals in guards. These features make the
formalism well suited for modeling real-time systems, too.
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2.5 A Brief Description of Mathematica

Mathematica[156] is a computer algebra tool, developed at Wolfram Research,
USA, which integrates a numeric and symbolic computational engine, graphics
system, programming language, documentation system, and advanced connectivity
to other applications.

We have chosen Mathematica as a development environment for implementing
a symbolic simulation tool for hybrid systems. The tool is described in chapter
5. Since the continuous laws of evolution within hybrid systems are defined in
terms of differential equations, it is most important to have analysis tools that can
handle solving such equations. This and other reasons that support our choice are
enumerated below:

• Mathematica handles complex symbolic calculations that often involve a
large number of terms.

• It has advanced capabilities for plotting and visualizing data.

• One can solve equations, differential equations, and minimization problems,
numerically or symbolically.

• Mathematica has a simple interface, which can be used directly; however,
the package can also be used through a web browser, or by other systems as
a back-end computational engine.

Mathematica as a Programming Language.Programmed computations are of
great help. Mathematica incorporates a range of programming paradigms, which
facilitate writing programs in a flexible and intuitive manner.

In Mathematica, there is no need to predeclare variable types, or dimensionsof
lists and arrays, to direct memory management, or to compile the programs.
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Chapter 3

Synchronized Discrete Reactive
Systems

Designing for reactivity entails dealing with communication, composability, con-
currency and preemption. Out of these,concurrencyis related to the fundamental
aspects of systems withmultiple, simultaneously activecomputing agents that in-
teract with one another. The complexity of such systems comes as an inherent
byproduct, which leads further to problems concerning the correctnessof the steps
performed in the development flow.

In this chapter, we concentrate on two major problems regarding the design of
reactive systems, be they software or hardware-targeted systems: behavior control
and modularity. A feasible design methodology requires that the designer com-
poses the system from parallel concurrent components calledmodules. Such mod-
ules are modeled here by action systems. We approach aspects of concurrency and
modular design from the perspective of the system–level integrator who has access
to a library of predefined modules. His only task is to appropriately connectthem
in order to get the system functionality.

The built-in interleaving semantics for handling concurrency in action systems
goes together with behavioral nondeterminism. Observations of an interleaved
model are sequential, therefore the updates of two systems executing in parallel
may not be consistent over a set of executions [128]. Hence, though versatile and
general, this way of modeling large systems can have a negative impact on the
data flow control and thecomposabilityof the modules that interact concurrently.
When plugging modules together, one has to specify additional details aboutthe
order in which they exchange information. This requirement may compromise the
data abstraction at the interface of a module. We will illustrate these phenomena
by examples.

In the following, we provide a solution to the above mentioned problems, by
introducing an additional concurrency mechanism for action systems, as away
to describe controllable behavior [60, 61]. The mechanism mimicsbarrier syn-
chronization, a common technique of reaching thread synchronization, found as
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a primitive within concurrent programming languages [84]. For this purpose, we
define a new parallel composition operator. The concepts that we formulatestill
rely on the established mathematical techniques underlying action systems. More-
over, the synchronized environment provides the designer with additional means
for system development.

Our goal is completed by showing that the new virtual execution environment
also enhances the capabilities of our framework, for modular design. Modules may
be picked up from existing libraries and just plugged into the system representa-
tion. The traditional techniques of trace refinement [33], introduced in chapter 2,
are used to ensure that the implementation is correct with respect to a system spec-
ification that faithfully captures the system’s global reaction to all sets of inputs.

We believe that the result of this chapter’s contribution, that is, the positive
effect of the proposed synchronized environments on the design modularity, could
also be applied to other formal frameworks, to obtain similar benefits.

3.1 Interleaved vs. True Concurrency

In interleavingsemantics without fairness assumptions, concurrency is equated
with nondeterministic sequentiality. Informally, this law can be expressed as be-
low:

do Action1 || Action2 od

= (Action1 [] Action2) ; (Action1 [] Action2) ; (Action1 [] Action2) ; . . .

In true concurrencysemantics [135] this equation does not hold. On the other
hand, interleaving semantics are held to be mathematically more tractable, whereas
true concurrency semantics are better for dealing with certain properties,such as
fairness.

3.2 Traditional Model of Action Systems Execution

Traditionally, action systems are executed in a sequential manner. Parallel execu-
tions are modeled by interleaving actions, without fairness considerations.There
also exists a parallel execution model for action systems, with fairness conditions
[32]. However, in the following, we assume the truly demonic interleaved model
as the default one.

The initialization places the system in a stable, starting state. From there, any
enabled action may be selected for execution. Only one action is chosen, in a
(demonically) nondeterministic way. The statements inside thedo − od loop of
a systemA, as illustrated by (2.15), are iterated as long asggA ≡ true. Termination
is normal if the exit condition (¬ggA) holds.

Thus, the execution of an action system assumes that there exists a virtual exter-
nal entity - theexecution controller (controller in short) - which, at any moment,
knows what actions are enabled. After initialization, the controller selects for ex-
ecution any of the enabled actions. After the completion of the action execution,
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the system moves to a new state. We call this operation anexecution round. No-
tice that an execution round is equivalent to the execution of an action. After this,
the controller, which behaves demonically, evaluates the new state, observes the
enabled actions and starts another execution round.

Next, let us visually exemplify the above mentioned round-based execution
scenario. Consider two action systemsA andB:

A(zA : Tz)
∧
= begin var xA : Tx

• zA := zA0
; xA := xA0

;
do A1 [] A2 od

end

B(zB : Tz)
∧
= begin var xB : Tx

• zB := zB0
; xB := xB0

;
do B1 [] B2 od

end

An intuitive illustration of the execution ofA, B is shown at the upper part of
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Figure 3.1: Execution Visualization of the Traditional Parallel Composition.

Figure 3.1, as statecharts-like descriptions.
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After the initial entry (the transition labeledInit), the systemsA andB evolve
either towards the stateS1A, or S2A, andS1B, or S2B, respectively, depending on
which action is enabled in each of the action systems. This coincides with the end
of one execution round. The execution continues (if possible) by reentering the
statesSys

A
or Sys

B
, now by taking the (default) transition labeledexec, through

the choice operator. If both actions (A1 andA2, or B1 andB2, respectively) are
simultaneously enabled, the selection at the choice-point is nondeterministically
taken by the controller. The two substates ofSys

A
or Sys

B
are visualized as OR-

states [83].
The parallel composition ofA andB is specified as the action systemC :

C = A || B. Observe that, in the corresponding part of Figure 3.1, the states
S1A, S2A, S1B, S2B are collected together as OR sub-states ofSysC . Any execu-
tion round takes the system into one of the mentioned states, depending on the
enabledness of the composing actions, or on the selection of the controller.

3.2.1 Example: A Digital Filter

Let us illustrate the interleaved execution model by a simple example. We consider
the task of modeling a digitalfilter [101]. Briefly, a filter is a module that takes
as input a sequence of samples, performs certain operations on it, and delivers as
output a corresponding sequence of samples. The incoming sequence isdescribed
asX[n], whereX is the input signal andn identifies the sample position; a similar
notation applies to the output signalY , for which we have the samplesY [n]. The
relation between the input and output is given byY [n] =

∑N−1
k=0 h[k]×X[n− k],

where the vectorh[0, ..N − 1] contains the filtercoefficients. Hence, apart from
the incoming current sample ofX, (N − 1) previous samples are stored in a buffer
and can be accessed by the filter. Finally, a filter may have either a softwareor a
hardware implementation. From the above informal description of the filter we can
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Figure 3.2: Simple filter representation.

identify two modules of such a device: the storage First-In-First-Out (FIFO)-like
buffer, and the actual implementation of the filter functionality. In the following,
we model the signal source by systemS, the buffer by systemB, whereas system
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F models the actual filter. This is illustrated in Figure 3.2 a). The complete action
system description is the parallel composition of the available modules, that is,
P = S ‖ B ‖ F . The composed system as well as the modules are given below.
Note that the common global variables are initialized in a consistent way, by all
modules. Also,z0 andy0 model sequences of values, respectively.

S(X : T ) (3.1)
∧
= begin X := x0 ;

do [X := X ′ | X ′ ∈ T ] od

end

B(X, Z[0,..N − 2] : T ) (3.2)
∧
= begin X, Z[0,..N − 2] := x0, z0 ;

do Z[0], Z[1], . . . , Z[N − 2] := X, Z[0], . . . , Z[N − 3] od

end

F(X, Z[0,..N − 2], Y : T ) (3.3)
∧
= begin X, Z[0,..N − 2], Y := x0, z0, y0 ;

do Y :=
N−1
∑

k=1

h[k] × Z[k − 1] + h[0] × X od

end : h[0,..N − 1]

Hence, by computingP, we get:

P(Y : T ) (3.4)

= begin var X, Z[0,..N − 2] : T •

X, Z[0,..N − 2], Y := x0, z0, y0 ;

do [X := X ′ | X ′ ∈ T ]

[] Z[0], Z[1], . . . , Z[N − 2] := X, Z[1], . . . , Z[N − 3]

[] Y :=
N−1
∑

k=1

h[k] × Z[k − 1] + h[0] × X

od

end : h[0,..N − 1]

Observe first that the interleaved execution ofP does not guarantee that every
signal emitted byS is correspondingly received byB andF ; several executions
of S may be selected, before any ofB or F . Moreover, different values can be
assigned toY for the same sequence of samples provided byS, depending on the
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order of selection for execution of the systemsB andF . Only one of these results
is correct.

Both problems can be solved by specifying a certain order in which the mod-
ules ofP should be executed. This can be achieved by introducing the commu-
nication variablesreqS , reqF andackS , ackF , and by devising a communication
protocol such that the desired order is enforced. Hence, the systems should know
about the status of the partners, as indicated by the elements of the communication
channel. The systems may be remodeled asS1,B1,F1:

S1(reqS , ackS , ackF : Bool ; X : T )
= begin reqS := false ; ackS := false ; ackF := false ; X := x0;

do

¬(reqS ∨ ackS ∨ ackF ) /∗ actionA1
S1

∗/

→ [X := X ′ | X ′ ∈ T ] ; reqS := true

[] reqS ∧ ackS ∧ ¬ackF /∗ actionA2
S1

∗/

→ reqS := false

od

end

B1(reqF , ackF : Bool ; X, Z[0,..N − 2] : T )
= begin reqF := false ; ackF := false ; X := x0 ; Z[0, ..N − 2] := z0;

do

reqF ∧ ¬ackF /∗ actionA1
B1

∗/

→ Z[0], Z[1], . . . , Z[N − 2] := X, Z[0], . . . , Z[N − 3];
ackF := true

[] ¬reqF ∧ ackF /∗ actionA2
B1

∗/

→ ackF := false

od

end

F1(reqS , reqF , ackS , ackF : Bool ; X, Z[0,..N − 2], Y : T )
= begin reqS := false ; reqF := false ; ackS := false ; ackF := false;

X := x0 ; Z[0,..N − 2] := z0 ; Y := y0;
do

reqS ∧ ¬(reqF ∨ ackF ) ∧ ¬ackS /∗ actionA1
F1

∗/

→ Y :=
∑N−1

k=1 h[k] × Z[k − 1] + h[0] × X ; reqF := true

[] reqF ∧ ackF /∗ actionA2
F1

∗/

→ reqF := false ; ackS := true

[] ¬reqS ∧ ackS /∗ actionA3
F1

∗/

→ ackS := false

od

end : h[0,..N − 1]

The result of their parallel composition,P1 = S1 ‖ B1 ‖ F1, is illustrated by the
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block diagram of Figure 3.2 b), where the communication variables are shown as
dotted lines.

By implementing the communication channels, the execution ofP1 becomes a
deterministic sequence of activities, given as:

A1
S1

→ A1
F1

→ A1
B1

→ A2
F1

→ A2
B1

→ A2
S1

→ A3
F1

→ A1
S1

→ . . .

The meaning of the sequence is as follows. First, the systemS1 is deactivated, after
which F1 performs the filtering, and then informsB1, by settingreqF := true,
that it can perform its operation. When this is accomplished,B1 signals toF1

(ackF := true). Next,F1 signals the end of the operation, toS1 (ackS := true),
followed by a couple of rounds for resetting the acknowledge signalsackF (by
actionA2

B1
), andackS (by A3

F1
). Another sample can now be presented byS1, and

so on.
Consider further that, in the above example,X is an audio signal andF1 mod-

els a low-pass filter. The output ofF1 would go to the woofer speaker of one’s
audio system. We would also like to have a high-pass filter, the output of which
would go to the corresponding speakers of the same audio system. We wantto
reuse the previously designed modules, and then add one that can detectthe high
frequencies of the incoming signal. The high-frequency filter is modeled bythe
new systemM1:

M1(reqS , reqM , ackSM , ackM : Bool ; X, Z[0,..N − 2], W : T )
∧
= begin reqS := false ; reqM := false ; ackSM := false ; ackM := false;

X := x0 ; Z[0,..N − 2] := z0 ; W := w0;
do

reqS ∧ ¬(reqM ∨ ackM ) ∧ ¬ackSM

→ W :=
∑N−1

k=1 hM [k] × Z[k − 1] + hM [0] × X ; reqM := true

[] reqM ∧ ackM

→ reqM := false ; ackSM := true

[] ¬reqS ∧ ackSM

→ ackSM := false

od

end : hM [0,..N − 1]

Structurally,F1 andM1 are the same, the difference residing in the values of the
coefficients,h[0,..N −1] andhM [0,..N −1], respectively.M1 uses the same input
signals,X, Z, andreqS (to which it answers withackSM ).

In order to accommodate the introduction ofM1, the systemB1 has to wait for
the two filters to read its data, once a new sample has been issued byS1. Conse-
quently, we have to change the representation ofB1. The same is required forS1,
since it has to communicate withM1, too. Thus,S1 becomesS2 (here, we omit
the description of the latter). The new systemB2 is described as follows, whereas
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the whole filter is illustrated in Figure 3.2 c).

B2(reqF , ackF , reqM , ackM : Bool ; X, Z[0, ..N − 2] : T )
= begin reqF := false ; ackF := false ; reqM := false ; ackM := false;

X := x0 ; Z[0,..N − 2] := z0;
do

reqF ∧ reqM ∧ ¬ackF ∧ ¬ackM

→ Z[0], . . . , Z[N − 2] := X, . . . , Z[N − 3] ; ackF , ackM := true

[] ¬reqF ∧ ¬reqM ∧ ackF ∧ ackM

→ ackF , ackM := false

od

end

Discussion. The interleaving model of execution brings the benefit of a very sim-
ple concept. In order to reduce the implicit nondeterministic behavior of the model,
inappropriate in certain situations, as shown in our example, one may introduce
control channels. These ensure that the data emitted by one source is notmissed
by any of the intended targets, or that data is processed in a correct manner.

However, there is another aspect of the problem, not yet solved by the exem-
plified introduction of the communication channels. An observer of the composed
systemP2 = S2 ‖ B2 ‖ F1 ‖ M1 (the listener, in the example) has access to both
output sequences,Y (n) andW (n) (Figure 3.2 c)). Depending on the execution or-
der ofF1 andM1, until the listener observes the new output(Y (n+1), W (n+1)),
it also observes the intermediate state, that is, either(Y (n), W (n+1)), or (Y (n+
1), W (n)), which is also an incorrect aspect of the design. A solution is provided,
again, by introducing new communication channels, betweenF1 andM1, on one
side, and the observer, on the other. What happens if multiple, differentobservers
become necessary in the design?

Any extension / reduction of the design elements requires an internal change
of the involved modules. This clearly destroys any hope for a modular design
flow and the reuse of components in future projects. We may assign meanings
like “data valid”, “operation finished”, etc., to the signals of the communication
channels, thus the interleaved approaches are suitable for asynchronous designs
[152]. Unfortunately, these signals are global variables of the model. Inhardware,
generally, this translates into “more wires”; in software, this violates the principle
of information hiding [41]. In the following section, we propose a solution to this
kind of design issues.

3.3 Synchronized Parallel Environments

Synchronized environment. We want to build an environment in which the re-
sponse of the system is a collection of the individual module reactions to the input
stimuli. The solution that we propose requires that the modules synchronize when
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the global variables of the compound system are updated. This is achievedby ex-
tending the execution round concept, as described in section 3.2, to anexecution
cycle. A cycle is defined by the activities carried out by the system between two
global states: it is a sequence of rounds in which each participating action system
updates the local variables, as necessary, followed by a last round, inwhich, si-
multaneously,all the global variables are updated, accordingly. Note that between
rounds, the global state of the system does not change.

From the controller’s point of view, we can imagine the following scenario.
It selects for execution an enabled action from one action system module. If the
action updates global variables, the system is marked as “executed”, andno other
action can be selected from that system. However, the other participants, or possi-
ble external observers, do not see the changes yet. Another action is then selected,
from an “unexecuted” action system. The process continues until all the modules
are marked “executed”. This also signals the end of a cycle, when all the global
variables are updated.

3.3.1 Partitioned Action Systems

The translation of the above scenario into our framework requires certaincharac-
teristics for the action systems employed in design. These requirements are intro-
duced by Definition 1. Recall from chapter 2 thatwS is the set of variables written
by an actionS, gwA is the set of global variables written by an action systemA,
andlwA models the local variables written by the same action system.

Definition 1 Consider the action systemA

A(z : Tz)
∧
= begin var x : Tx • Init ; do gL → L [] gS → S od end (3.5)

We say thatA is apartitioned action system if:

1. gwA ⊆ wS - meaning thatS is the global action ofA. Notice thatwS
may also contain local variables ofA.

2. wL ⊆ lwA - meaning thatL is the local action ofA.

3. (do gL → L od ).(¬gL ∧ gS) ≡ true - meaning that the execution of
L, taken separately, terminates, and establishes the precondition for executing S.

Notice that the specificationA, as given by Definition 1, encodes more visibly
than (2.15), the mechanism that triggers the global state changes. Also, in the
above definition we forbid nested loops. IfgwA is empty, the action systemA can
not function as an actuator, since it does not modify any global variable.
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3.3.2 The Synchronization Operator (])

Let us considern partitioned action systems (k ∈ [1..n]):

Ak(zk)
∧
= begin var xk • Initk ; do gk

L → Lk [] gk
S → Sk od end, (3.6)

for which we also have that∀j, k ∈ [1..n], j 6= k • ((gwAj ∩ gwAk = ∅) ∧ (xj ∩
xk = ∅)) (the action systems do not write on the same global variables and they
also have pairwise disjoint local variables).

The synchronized parallel compositionof the above systems is a new action
systemP = A1] . . . ]An, given by:

P(z)
∧
= begin var x : Tx, sel[1,..n] : Bool, run : Nat • Init;

do

ggP

→ run = 0 ∧ ¬sel[1] selection action
→ sel[1] := true ; run := 1

[] . . .
[] run = 0 ∧ ¬sel[n]

→ sel[n] := true ; run := n
[] run = 1 ∧ g1

L moduleA1

→ L1

[] run = 1 ∧ ¬g1
L ∧ g1

S

→ wS1c := wS1 ; S′
1 ; run := 0

[] run = 1 ∧ ¬ggA1

→ run := 0
[] . . .
[] run = n ∧ gn

L moduleAn

→ Ln

[] run = n ∧ ¬gn
L ∧ gn

S

→ wSnc := wSn ; S′
n ; run := 0

[] run = n ∧ ¬ggAn

→ run := 0
[] sel ∧ run = 0 update action

→ Update ; sel := false

od

end

The operator ‘]’ (“sharp”) is called thesynchronization paralleloperator.
The setz of global variables ofP is, initially, the union of the global variables

sets of each module:z =
⋃

k zk. It may be possible that communication between
some modules ofP (the composing systemsAk) should not be disclosed at the
interface of P. Therefore, the variables that model such channels will behidden
within the systemP. They will not be mentioned inz.
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Further, the local variablesx of the new action systemP are the union of the
local variablesxk, to which we add the hidden variables. We also add copies
(wSkc) of the original write variables of each action bodySk. They replace the
original variableswSk, therefore we haveS′

k = Sk[wSk := wSkc]. Finally, the
list x is completed by adding the arraysel and the execution indicator,run. The
predicateggP is a short notation for the disjunction of the guards of all the actions
in the systemsAk: ggP

∧
=

∨n
1 ggAk

, whereggAk
= gk

L ∨ gk
S .

TheInit statement is the sequential composition of the individualInitk state-
ments, to which we add the initialization of variableswSkc, sel andrun:

Init
∧
= Init1 ; . . . ; Initn ; wS1c, . . . , wSnc := wS1, . . . , wSn;

run := 0 ; sel := false

The actionUpdate is given by:

Update
∧
= Update1 ; . . . ; Updaten, whereUpdatek

∧
= wSk := wSkc.

The above definition of the ‘]’ - based composition says that, whenever there is
a change in the input, such a composition of action systems reacts based on thestate
of all its modules. The result is composed of the individual reactions of each of the
modules. The system composition reacts only if at least one module is enabled
(∃k ∈ [1..n] • ggAk

≡ true). Moving certain variables to the local level, within the
systemP, is motivated by the containment of local communication. The variable
run identifies the system that is selected for execution. The variablesel stores the
information on the executing, or already executed systems. Whenever all of the
elements of the arraysel becometrue (sel = sel[1] ∧ . . . ∧ sel[n]), andrun = 0,
we have reached the end of an execution cycle. At this moment, the assignment
sel := false is understood as a shorthand notation forsel[1] := false ; . . . ;sel[n] :=
false.

The assignmentwSkc := wSk that precedes the actionS′
k takes into account

that the (local) variables ofwSk could have been also updated byLk. As they may
also belong torSk, their current values must be taken into consideration. In case
actionsLk do not modifyrSk, the presence of this assignment is not necessary. The
same applies when there are no local actions in a given partitioned action system.

Further, we are able to find useful properties of systemP, expressed by the
following theorem (the proof is shown in Appendix A-1).

Theorem 2 Assume that the partitioned action systemsA1 andA2 are of the form
given by (3.5). Then, the synchronized parallel compositionA1]A2 satisfies the
following properties:

(a) A1 ] A2 is a partitioned action system (] preserves partitioning)

(b) A1 ] A2 = A2 ]A1 (commutativity of])
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The Update Action. In a more general view, we would avoid imposing the restric-
tion that∀j, k ∈ [1..n], j 6= k.gwAj ∩ gwAk = ∅. Designs where the systems
do not have disjoint sets of global write variables are not necessarily examples of
bad designs. A well known example of such situations is the bus-based design of
digital systems, where multiple participants in the processing effort share a com-
mon resource, the bus lines. Of course, the situation requires a thoroughanalysis,
and there exist multiple solutions that resolve the inevitable conflicts. Therefore,
the actionUpdate might not be merely the action that updates the respective vari-
ables; instead, it can rather be the action that “solves” such conflicts. Intuitively,
this means that the systemP must also allow the designer to separately specify
the actionUpdate. Relaxing the above mentioned assumption is subject to further
studies. Preliminarily, such an approach has been already studied by Seceleanu and
Garlan [143], for modeling self-adaptive systems, in multimedia environments.
Execution Visualization. A graphical, statecharts-like representation of the exe-
cution model as introduced by the synchronization operator is illustrated in Figure
3.3. Considering two action systemsA andB, each with a single actionA andB,
respectively, we build the synchronized environmentC = A ] B. After splitting
the original actions ofA andB into local and global actions, the first two illustra-
tions of Figure 3.3 represent the execution ofA andB, as also discussed in section
3.2. There is one difference, seen in the third representation, residing inthe mutual
exclusion of the transition conditions (g′L andg′S); therefore, the controller does
not make a selection, the choice being clear. In addition, now, the executionmodel
corresponding toC, differently from the one in Figure 3.1, shows an AND-based
statecharts description.

Several execution rounds may be necessary to bring to termination the localac-
tivities of each of the synchronized components. This is reflected by the transitions
to the border of the corresponding state from the internalLA or LB OR-states.
Further, before executing the actionUpdate, in order to reach the stateGAB – that
corresponds to the end of an execution cycle - both substatesA andB have to be
exited.

Design Implications. We revisit briefly the example proposed in Section 3.2.1.
Consider that instead of the parallel compositionP = S ‖ B ‖ F , we write the
description of our system asP = S ] B ] F . Clearly, the modulesS,B,F are
partitioned action systems, since they have only global actions. When using such a
composition, we do not have to add communication channels to any of the modules,
which all remain simple, as described by (3.1), (3.2), (3.3) and (3.4). Also, in case
of a synchronized environment, the multiplicity of targets stops being an issue for
the systemP. We can introduce as manyF-like systems as required, without mod-
ifying B orS in order to accommodate the presence of the new modules. Addition-
ally, an external observer will always observe only the state(Y (n+1), W (n+1)),
regardless of the order in which the systemsF and the correspondingM (M1

without the communication variables) are selected for execution.
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Figure 3.3: Execution Visualization of the Synchronized Composition.

3.4 Module Refinement in Synchronized Environments

Design Process. Faced with the complexity of modern day devices, the designer
of such systems has to start the design process at higher levels of abstraction, which
may provide him with a simpler model of the whole system. A correct partitioning
and identification of the necessary modules is the next step. Crucial to a module-
based design context is the possibility to separately analyze and, if necessary, im-
prove the functionality of the modules, optimize them for a given technology, or
map them to existing library elements. All these actions involve, most usually,
certain transformations of the initial representations. One has to certify thatthe
modifications imposed on the modules represent a correct transformation ofthe
initial specification, with respect to behavior. Within the refinement calculus,the
correctness of such transformations is ensured by action-level and system-level re-
finement rules. In the following, we exemplify how the mentioned rules apply to
system design. We analyze the process, both from an interleaved, and also from a
synchronized perspective.

3.4.1 Refinement Example

Let us see next how the refinement procedure is applied to the design example
outlined in section 3.2.1. Considering a hardware implementation of our exam-
ple, a direct mapping of the filter functionality on hardware elements (registers,
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multipliers, adders, etc) is represented in Figure 3.4 a). Characteristic to thisim-
plementation of systemF is the parallel processing and the large area occupied by
the hardware elements. A functionally equivalent implementation (Figure 3.4 b))
would result out of a serial representation of the filtering device, which requires a
reduced silicon area. We transform the original systemF into FS , with the action
system model given as:

FS(X, Z[0,..N − 2], Y : T )
∧
= begin var temp : T ; step : [0,..N ] •

X, Z, Y := x0, z0, y0 ; temp := 0 ; step := 0;
do

step = 0
→ temp := 0 ; step := step + 1

[] step ∈ [1,..N − 1]
→ temp := temp + h[step] × Z[step − 1] ; step := step + 1

[] step = N
→ Y := temp + X × h[0] ; step := 0

od

end : h[0,..N − 1]

IsFS a correct transformation ofF? Is the whole system still working accord-
ing to the functional specification?
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Figure 3.4: The hardware implementation of the filtersF andFS .

In isolation, one may prove (see Appendix A-4), using Lemma 1, that the sys-
temFS is a refinement ofF , F vI FS , under the invariantI:

I
∧
= (step = 1 ⇒ temp = 0) ∧

N
∧

p=2

(step = p ⇒ temp =

p−1
∑

k=1

h[k] × Z[k − 1])
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However, the separate refinement of the moduleF is not sufficient;I must be
an invariant of the whole compositionS ‖ B ‖ FS . From a system level point
of view, we should check thatS ‖ B ‖ F vI S ‖ B ‖ FS . Unfortunately, asB
does notrespectI, the refinement is not possible (see [39] for details about the
conditions for refinement). This fact has a simple explanation. Since the controller
may choose an enabled action from eitherB or FS , let us suppose that it chooses
only actions fromFS , until step = N , after which it selectsB for execution.
Hence, following the update ofZ, the invariantI is no longer valid. The solution
towards a correct result comes, again, from employing communication channels
as described in section 3.2.1. The invariantI has to be rewritten so as to take
into account these channels, and the systems will gain some independence inthis
respect. Still, the same problems arise when one introduces another filtering unit
(M), in which case both the invariant and the system models must be reshaped.

3.4.2 Trace Refinement of Partitioned Action Systems

Definition 2 Any invariantI is aproper1 invariant of an action systemA, if

∀ v ∈ rA, v /∈ wA • ∀ z, z′ •

I[wA := w′A, v := z] ≡ I[wA := w′A, v := z′]) (3.7)

In the above definition,wA is the set of variables updated by the moduleA;
variablesrA are read byA. The definition says that the computed value of a
proper invariantI does not depend on the variables updated by other modules. If
the action systemA is a partitioned one, then the variableswA should be replaced
by the corresponding set of write variables (wL) of the local action, and also by
the set of write variables (wS) of the global action. In addition, proving that an
invariant is proper within a synchronized environment reduces to showing that the
relation (3.7) holds for the global action only. This is due to the fact that variablesv
do not change after the execution of any local action in the mentioned environment.

Next, we propose a lemma that can be used to prove trace refinement of parti-
tioned action systems.

Lemma 2 Given the partitioned action systems

A(z)
∧
= begin var a • a, z := a0, z0 ;

do gA
L → LA [] gA

S → SA od end,

C(z)
∧
= begin var c • c, z := c0, z0 ;

do gC
L → L′

A [] gC
S → S′

A [] gX → X od end,

1We use the short nameproper for any invariant that issuitablefor a synchronized composition
of action systems.
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letR(a, c, z) be an abstraction relation andI(c, z) a proper invariant of the system
C. The systemA is (trace) refined by the systemC, A vR,I C, if:

1. Initialization: R(a0, c0, z0) ∧ I(c0, z0) ≡ true

2. Main actions: (gA
L → LA vR,I gC

L → L′
A)

∧ (gA
S → SA vR,I gC

S → S′
A)

3. Auxiliary action: skip vR,I gX → X
4. Continuation condition: R ∧ I ∧ (gA

L ∨ gA
S ) ⇒ gC

L ∨ gC
S ∨ gX

5. Partitioning property: R ∧ I ⇒ (do gX → X [] gC
L → L′

A od ).
(¬(gX ∨ gC

L ) ∧ gC
S )

Proof. Since the first four requirements of Lemma 2 are only adaptations of the
original four requirements of Lemma 1, we concentrate here on showing that the
fifth requirement of Lemma 2 implements the corresponding requirement of the
original trace refinement lemma:

R ∧ I ⇒ (do gX → X [] gC
L → L′

A od ).(¬(gX ∨ gC
L ) ∧ gC

S )
⇒ R ∧ I ⇒ (do gX → X od ).true

We consider the definition of the weakest precondition of a loop, to establish
some postconditionQ, as given by Dijkstra [71]:

wp(do g → A od , Q) = ∃k ≥ 0 • Hk,
H0 = Q ∧ ¬g,
Hk = H0 ∨ wp(g → A, Hk−1)

(3.8)

In our context, established by Lemma 2, the new local action of the refined
system (C) is:

Lnew = gX → X [] gC
L → L′

A

We need to prove that

(do Lnew od ).(¬(gX ∨ gC
L ) ∧ gC

S ) ⇒ (do gX → X od ).true

holds.
In order to compute(do Lnew od ).(¬(gX ∨ gC

L ) ∧ gC
S ), we apply (3.8):

H ′
0 ≡ ¬(gX ∨ gC

L ) ∧ gC
S

H ′
k ≡ H ′

0 ∨ (gX → X [] gC
L → L′

A).H ′
k−1

≡ { wp rule for choice}
H ′

0 ∨ ((gX → X).H ′
k−1 ∧ (gC

L → L′
A).H ′

k−1)

⇒ { logic }
H ′

0 ∨ (gX → X).H ′
k−1

(3.9)
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We prove thatH ′
k ⇒ H ′

k+1 (by induction onk). If k = 0, thenH ′
0 ⇒ H ′

1

follows directly from the definition ofH ′
1 and logic. Fork > 0, we have:

H ′
k

≡ { definition}
(H ′

0 ∨ (gX → X).H ′
k−1) ∧ (H ′

0 ∨ (gC
L → L′

A).H ′
k−1)

⇒ { induction hypothesisH ′
k−1 ⇒ H ′

k, monotonicity of wp}
(H ′

0 ∨ (gX → X).H ′
k) ∧ (H ′

0 ∨ (gC
L → L′

A).H ′
k)

≡ { definition}
H ′

k+1

(3.10)

Next, by applying (3.8), we compute(do gX → X od ).true:

HX
0 ≡ ¬gX

HX
k ≡ HX

0 ∨ (gX → X).HX
k−1

≡ ¬gX ∨ (gX → X).HX
k−1

In a similar manner as above (by induction and monotonicity of wp), we obtain
that

HX
k ⇒ HX

k+1 (3.11)

In the following, we prove thatH ′
k ⇒ HX

k by induction onk. The casek = 0
is easy. Fork > 0 we have

H ′
k

⇒ { (3.9)}
H ′

0 ∨ (gX → X).H ′
k−1

⇒ { induction hypothesis onk = 0 }
HX

0 ∨ (gX → X).H ′
k−1

⇒ { induction hypothesis onk = k − 1, monotonicity of wp}
HX

0 ∨ (gX → X).HX
k−1

(3.12)

Summing up the results of (3.9),. . ., (3.12), we conclude that

(do Lnew od ).(¬(gX ∨ gC
L ) ∧ gC

S ) ⇒ (do gX → X od ).true

Thus, considering that the requirements 1 to 5 of Lemma 2 are satisfied, also
the requirements of Lemma 1 are satisfied, hence,A vR,I C.

Observe that the fifth requirement of Lemma 2 strengthens the original request
(given in Lemma 1), by specifying that not only the auxiliary actiongX → X,
taken in isolation, must terminate, but that the new group of local actions,gX →
X [] gC

L → L′
A must terminate. Moreover, they must also establish the precondition

for the (possibly) new global actiongC
S → S′

A to execute.
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3.4.3 Modularity

Along the line established by Lemma 2, we prove the following theorem.

Theorem 3 Consider the synchronized environmentP
∧
= A1] . . . ]An, where

each of the modules preserves the proper invariantsI1, . . . , In, respectively. We
then have that

I = I1 ∧ . . . ∧ In ∧
∧

k∈[1..n]

(sel[k] ∧ run 6= k ⇒ I ′k)

is a proper invariant ofP. Above,I ′k
∧
= Ik[wSk := wSkc].

The theorem states that in a synchronized environment, the global properties
of the system are obtained from the individual properties of the modules, as I ⇒
I1 ∧ . . . ∧ In. The additional terms ofI help us make the connection between the
copies of the write variables and the respective original variables, at themoment
when the actionUpdate is executed. The theorem is proved in Appendix A-2.

Corollary 1 Consider the partitioned action systemsAk, given by (3.6), and the
abstraction relationRj . Assume that, the systemAj preserves its respective proper
invariant Ij . Then

Aj vRj ,Ij
A′

j

A1] . . . ]Aj] . . . ]An vRj ,Ij
A1] . . . ]A′

j] . . . ]An
,∀j ∈ [1 . . . n]

The statement of the corollary follows from Theorem 3 and Lemma 2 (see
Appendix A-3).

The interpretation of Corollary 1 is that each component of a synchronized
parallel composition may be refined in isolation, without knowledge about the in-
variants of the other components. The system designer may then employ the mod-
ules without knowing their respective internal details of functionality. The module
designer is responsible for improving the performance of the modules, in total
transparency for the integrator designer. This is a consequence of thefact that the
systems exchange information at the end of an execution cycle, rather thanafter
each execution round. Observe that, ifIj is anewinvariant forA′

j , it will just be a
new entry in the definition ofI, as specified by Theorem 3.

A similar conclusion as ours is reached by Back and von Wright for the parallel
composition of action systems [39]. However, this is achieved while requiringthat
the invariants of all modules are known, and a noninterference relation between
them proves to hold. The corresponding noninterference condition corresponds
to our requirement that the invariantIj is proper. Still, checking the properness
of an invariant concerns the respective module designer only, who does not have
to get information about the other invariants. Therefore, we have increased the
independence of the module designer. Nevertheless, the mentioned benefit comes
at the expense of needing more constrained action system invariants.
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3.4.4 Refinement Example Revisited

Consider the analysis presented in section 3.4.1. If we checkF vI FS in the
context of Lemma 2, meaning that we adopt a synchronized perspective on the
composition, we will immediately obtain thatS ] B ] F vI S ] B ] FS (notice
thatFS is a partitioned action system). Besides this, a previous addition of module
M would not change the refinement, and we could haveS ] B ] F ] M vI

S ] B ] FS ] M.

3.5 Summary and Related Work

The research presented in this chapter was motivated by an analysis of control as-
pects and of modular design techniques, as supported by the current action systems
formal framework. We exemplified that the interleaved model of concurrency may
not suffice, as such, for modeling parallel reactive systems. Additionalvariables
are needed in order to implement the system functionality, correctly. Our solution
comes as a synchronization mechanism, implying a new virtual execution model
of action systems, applicable to both discrete and hybrid designs. This last claim
is supported in chapter 4, where we show how to apply the same synchronization
mechanism to models of hybrid systems represented as continuous action systems.
We eliminate intermediate results that could affect the global state, as the system
gives complete answers to the stimuli provided by the environment. Most impor-
tantly, we prove that the modularity capabilities of synchronized action systemsare
better than those of the parallel composition of such systems.

Related Work. The approximation of concurrency by interleaving is used in
most process algebras like CSP [97], CCS [127], as well as in input-output au-
tomata [121] and UNITY [62]. The nondeterministic behavior induced by the
interleaved model requires solutions for controlling the data flow. However, re-
solving control issues reduces the design independence across the different levels
of the design process. Several recent studies have analyzed aspects of control and
/ or composability within different formal frameworks, all of which deal witha
certain interleaved environment.

Cavalcanti and Woodcock [55], and Charpentier [63] build new reasoning en-
vironments in order to address issues related to correctness and composability of
(reactive) systems. Both approaches have strong roots in the weakestprecondition
semantics of Dijkstra [71]. These aspects are already included in our framework,
and we have shown how to use them in order to achieve our goals. The main idea
is to isolate the local updates performed by an action system from the global ones,
which appear to be updates carried out at the same time with the corresponding
global variables of the other systems. This is consistent with the views presented
by Gupta et al. [81], in the framework ofconcurrent constraint programming.

The product operator of Milner’sSynchronous Calculus of Communicating
Systems(SCCS) [126] offers a somewhat similar approach to synchronization.
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However, while we synchronize on the updates of a group of variables,the SCCS
approach is based on simultaneous execution of actions, which we only reach in
the last execution round of a synchronized composition. Moreover, synchroniza-
tion restrictionsmust be analyzed for each particular synchronized composition,
thus decreasing the possibility of reuse.

Hoare and He use thesync operator for modelingbulk synchronization, as
a means of controlling concurrent processes [98]. The operator is semantically
close to oursharp operator. However, the composition is not exploited towards
achieving higher degrees of modularity, it just serves the purpose of improving
concurrent behavioral control.

Bellegarde et al. introduce a similar idea of synchronized parallel composition
for event-B systems [42]. In contrast to our model, which increases theexternal
determinacy, while preserving theinternal nondeterminism, the event-B solution
preserves also the external nondeterminism. Moreover, agluing invariant is nec-
essary when synchronized modules are refined. This requirement comes from the
fact that the synchronization is performed only with regard to selected events, col-
lected in a synchronization specification. Therefore, the supplier of modules should
also deliver to the system integrator, besides the modules themselves, the synchro-
nization specification. From this point of view, the approach is similar to the one
adopted by Back and von Wright [39], where information about the invariants of
all modules must be known in order to perform refinements. A more relaxed ap-
proach to this problem is given by Butler [53]. The author combines features of the
state-based action systems and of the algebraic CSP, in search for modularity.

In the temporal logic of actions of Lamport [115, 116], synchronization isspec-
ified as a way of applyingnoninterleavingto system design. This is reached by
employingjoint actions. The author’s conclusion supports our point of view: in-
terleaving “blurs” the distinction between the components used in design.

Treharne and Schneider [153] employ CSP processes to control B-machines.
The basic problems are raised by the interleaved execution semantics of bothfor-
malisms. Playing the state-based formalism (B), against the event-based approach
(CSP), one may get a controllable environment for modeling certain applications.
Our study shows, on the other hand, that it is possible, within the same state-based
framework, to obtain the desired control of behaviors.

An execution mechanism quite close to our synchronized environment is de-
scribed by the semantics of STATECHARTS [83]. We can identify the execution of
local actions that come from a single component, in an execution cycle, as acom-
pound transition– CT. There are as many suchnonconflictingCTs, as modules in
a synchronized composition. By adding the initial and final state corresponding to
a given execution cycle, we obtain a full CT.

In a similar study targeting modular development of hierarchic reactive sys-
tems, Alur and Grosu build their approach based on refinement checking by a-
ssume-guaranteerules [10]. Compared to our work, the authors benefit from un-
restricted compositionality of interleaving composition with respect to refinement.
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This property characterizes the language ofreactive modules[13], which is used to
describe the respective modules employed in design. However, the moduleshave
disjoint sets of variables.

In VHDL [19], the update mechanisms for variables and signals are relatively
similar to our solution concerning local and global variables. The difference resides
in the fact that already executed processes (assimilated to action systems) may be
rescheduled for execution, within the same VHDL execution cycle. This is possi-
ble due to new values of watched signals, assigned by other processes.The validity
of such an approach is supported by the fact that, targeting a hardwareimplemen-
tation, the VHDL designer may assume that eventually, such reaction-triggering
events will cease to appear (the combinational logic outputs will eventually settle
to some value).

One important remark is that our approach does not necessarily address syn-
chronousdesigns. The existence of a common clock signal is not suggested by
any of our constructs. It is true that synchronous designs can be easily obtained
from our models. This is furthermore supported by the underlying “synchrony hy-
pothesis”, as the time to perform individual actions is assumed to be null. From
this perspective, we are close to the synchronous group of languages(Esterel [45],
Lustre, Signal, etc.).

By providing the new virtual execution environment, we have tackled two im-
portant problems of system design: behavior control and modularity. Theessential
result of the study is mentioned by Corollary 1. Based on this, we can say that
the system level integrator and the module designers gain an increased indepen-
dency with respect to each other, during the design process. Tools likeRefinement
Calculator[54] could be used for proving the necessary trace refinements in a syn-
chronized context.

We believe that our achievement of using barrier synchronization to increase
the modular design capabilities of the action systems framework is a contribution
that could be easily adapted to other similar formal environments. The trade off:
the action systems involved in design have to respect more constrained invariants.
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Chapter 4

Modeling Hybrid Systems

In the previous chapter, we have focused on techniques suited for the rigorous
construction of discrete concurrent reactive systems. It is now time to embark on
the study of systems that also contain a continuous component. This and the next
two chapters will ultimately give a unified view of the discrete and continuous
system design.

Describing hybrid systems by continuous action systems, as introduced by
Back, Petre and Porres [27], bears the advantage of using the same proof theory as
for discrete action systems. This is justified by the fact that the implementation of
a CAS is an action system having time as an explicit variable.

Freezing time unless the system execution has finished is an anomaly of a hy-
brid system model, being known astimelocking. Due to the way in which time
is advanced in the action system implementation of CAS, such an undesired phe-
nomenon might appear. The original definition of CAS does not contain a clear
mechanism that would prevent timelocks from occurring. Therefore, in this chap-
ter we extend the syntax of CAS, by incorporating theexecute only onceconcept,
for its actions. In this way, we move something that would usually have to be ex-
plicitly expressed in a CAS, to an implementation issue in the corresponding action
system representation. As a result, the timelock-free behavior is enforced while the
CAS model remains simple.

Next, we also adapt the formalization of thebarrier synchronization mecha-
nismthat we have developed in chapter 3 for action systems, to CAS models.

We illustrate our modeling techniques on two simple control systems: a hea-
ting-cooling system and a two-tank system.

4.1 Timelocking and Zenoness

When executing a hybrid system, an evolution is followed by a discrete transition
or a sequence of discrete transitions. If the hybrid system is modeled as a CAS,
the transitions might trigger a change of the future evolution of some continuous-
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valued or discrete-valued time variables. Moreover, in traditional CAS, a discrete
transition does not take time. Therefore, its execution is represented on thetime
coordinate as a point.

Hybrid systems can suffer from two undesired behavioral anomalies:timelock-
ing [49], andzenoness[1]. In principle, we would like to build models that do not
expose the mentioned anomalies, since they might determine unexpected behavior
of the model, or might compromise simulation.

Traditionally, a timelock occurs when the infinitely repeated execution of a dis-
crete transition prevents the execution of a time-advancing statement [49]. There-
fore, in such cases, the time in the model stops, and some discrete transition re-
mains enabled forever. In a CAS, the timelock interpretation is similar to the tradi-
tional one, and this will become apparent in section 4.2.

A Zeno behavior appears in situations when, although time keeps progressing
during the execution of the model, it is prevented from growing unboundedly.

Since hybrid models that suffer from zenoness can not be realized physically,
we will next give a definition of a nonzeno action system, which lets us rule out
zeno candidates.

Definition 3 Assume a CAS denoted bySys and its semantic translationSys. We
say thatSys is nonzenoif the following condition holds:

∃ ε ∈ Real+ · ∀now, now′ ∈ Real+, now′ = min{t′ ≥ now | ggSys.t
′} ·

now′ − now > ε

As also argued by Alur and Henzinger [12], one needs to make sure thatan execu-
tion can be extended to an execution of arbitrary accumulated duration.

4.2 Adorned Continuous Action Systems

Problem description. As presented in chapter 2, any CAS model is explained
in terms of a corresponding action system with explicit time. In the latter, time is
advanced by evaluating the disjunction of constituent action guards. The current
value of time is measured by variablenow. The minimum time point that is at least
equal to the actualnow represents the next transition time. This means that some
action (in particular, an action described by a differential equation) couldbe exe-
cuted more than once at the same moment of time, which in turn could prevent the
execution of any other action, if it never becomes disabled. This scenarioimplies
that time is being locked atnow. Thus, the system does not evolve, yet it does not
terminate. Note that discrete updates do not suffer from this anomaly.
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To illustrate this sort of behavior, we consider the following heating-cooling
system modeled as a CAS. Below, we give its action system translation.

HC(θ : Real+ → Real)
∧
= begin var now : Real+ •

now := 0 ; θ :− (λt · 4 ∗ t) ; UT ;
do

θ.now = 10
→ θ :− (λt · θ.now − 2 ∗ (t − now)) ; UT

[] θ.now = 5
→ θ :− (λt · θ.now + 3 ∗ (t − now)) ; UT

od

end

(4.1)

In the above model, the first action’s guard holds even after the executionof
the corresponding action body, which is supposed to decrease the temperatureθ
whenever it reaches the maximum value of 10. Since the temperature starts de-
creasing fromθ.now = 10, the next minimumnow is the same as its immediate
predecessor (atnow, θ.t = θ.now = 10). Therefore, looping in the same state
at the same moment of time goes on forever. Consequently, the temperature never
gets the chance to actually decrease, and for that matter to increase later. The phe-
nomenon triggers nontermination of the execution of the first action. Obviously,
simulating models such as (4.1) is not possible.

Solution. From the above example, one can learn that CAS models should have
a way of preventing the execution of any action more than once ifnow has not
changed. In this spirit, we provide a means for modeling theexecute only once
(or single invocation at a new time point) concept. The mechanism reduces to
extending the syntax of CAS, by decorating each transition with 1. This single
response problem translates into an implementation issue, within the corresponding
action system with explicit time. As a result, the CAS model stays simple.

Even if this solution targets mainly time consuming actions, we extend it to
the entire system model, for simplicity and consistency. If an action performs only
a discrete computation, the single invocation at a newnow mechanism does not
compromise functional correctness. It even makes sense, as discrete actions take
no time.

Syntactically, a CAS with adorned transitions is as follows:

C(y : Real+ → Ty)
∧
= begin var x : Real+ → Tx

• Init;

do g1
1
→ S1 [] . . . [] gn

1
→ Sn od

end

(4.2)
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4.3 Implementing Continuous Action Systems

Adorning CAS transitions with single response indicators requires that there is
an actual mechanism that implements this concept. We present here two distinct
CAS implementations and underline the appropriate situations where each could
be employed, respectively.
1. Using a single variablestate. As a first solution, which in fact has been already
used [27], one can add a variablestate that stores the current state of the system.
By keeping track of the system states before and after a discrete transition, through
variablestate that is set accordingly, we get self-disabling actions in effect.

Let us see how this applies to the heating-cooling action system (4.1).

HC(θ : Real+ → Real)
∧
= begin var now : Real+, state : Real+ → {0, 1} •

now := 0;
state :− (λt · 0);
θ :− (λt · 4 ∗ t) ; UT ;

do

state.now = 0 ∧ θ.now = 10
→ state :− (λt · 1);

θ :− (λt · θ.now − 2 ∗ (t − now)) ; UT
[] state.now = 1 ∧ θ.now = 5

→ state :− (λt · 0);
θ :− (λt · θ.now + 3 ∗ (t − now)) ; UT

od

end

(4.3)

This solution for preventing timelocks works well for systems with a small number
of states and with an obvious discrete transition route.

The same disabling mechanism might be difficult to apply to systems with a
large number of states, or to nondeterministic systems. In such cases it is not
easy, if possible at all, to determine the next state of the system, based on current
information.

Alternatively, one could use actions like (state.now 6= 1∧ . . . → state :− (λt ·
1) ; . . .), in order to deal with nondeterminism and more complex state machines.
Even so, if two (or more) actions of such an action system do not changenow, this
second solution does not prevent waffling back and forth between those actions,
forever, yet at the samenow. Hence, the timelocking problem moves from the
action level to the group-of-actions level.

Next, we propose a general modeling solution that overcomes the mentioned
inconveniences.
2. Using variablesu1, . . . , un. We translate a decorated CAS described by (4.2)
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into an action system with time, as follows.

C(y : Real+ → Ty)
∧
= begin var now, nowc : Real+, x : Real+ → Tx,

u1, . . . , un : Real+ → Bool •

now := 0 ; Init ; u1, . . . , un : −(λt · false) ; UT ; nowc := now;
do

¬u1.now ∧ g1.now
→ u1 :− (λt · true) ; S1 ; UT ; Check

[] . . .
[] ¬un.now ∧ gn.now

→ un :− (λt · true) ; Sn ; UT ; Check
od

end

(4.4)

where

Check
∧
= if now 6=nowc thenu1, . . . , un :− (λt · false) ; nowc := now else skipfi

Describing the state of the system by local variablesu1, . . . , un forces each ac-
tion to execute just once at the samenow. After one execution, any action becomes
disabled until time is advanced. Observe that, by employing this solution, we have
eliminated the need of computing next states based on current ones.

In order to avoid the premature termination of system execution, statement
Check resets the variablesu1, . . . , un, provided thatnow 6= nowc. Here,nowc

is the copy of the current time. Consequently, a new execution cycle is enabled.
Otherwise, ifnow = nowc, the status-quo is maintained by executingskip. Hence,
the system continues its execution only if time progresses, otherwise it terminates.

Theu - variables CAS implementation (4.4) could be applied to a hybrid con-
trol system with nondeterministic state transitions, like the one that we are going
to outline in the next section.

4.3.1 Example: A Two-Tank System

The example system of Figure 4.1 has also been studied by Slupphaug et al.[148],
however our version is simplified. It consists of two tanks, that is, the buffer and
the supply, a pump with three modes (off, low speed, high speed) used to pump
water from the buffer tank into the supply, and two on/off valves, positioned at the
inlet of the buffer, and at the outlet of the supply, respectively. The plant receives
liquid from an input stream and has to deliver the liquid to an output target.

The safety requirement is equated to keeping the level of the liquid in both
tanks between 1 m and 9 m, hence preventing emptying, as well as overflowing
of the tanks. In chapter 5 we introduce a simulation tool for CAS. With this tool
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Figure 4.1: Two-tank system.

at hand, we would like to simulate various execution scenarios of the two-tank
system. This could help in figuring out control strategies that would, for example,
prevent the system from swinging periodically between the minimum and the max-
imum level. Such a degree of freedom during simulation means that it is desirable
to model the system as nondeterministically as possible, in the beginning. In this
way, the designer will be able to explore different possible trajectories. The user
will have to resolve the nondeterministic choices whenever it is the case, automat-
ically or interactively. The gain out of simulating such a nondeterministic model is
an increased intuition for further possible improvements, tailored to one’s practical
needs.

System modeling. Depending on the liquid levels in the buffer and the supply,
the controller should set the valves and use the pump appropriately. Its dutyis to
regulate the levels in both tanks without violating the safety requirement mentioned
above (1 ≤ levelbuf ≤ 9), (1 ≤ levelsup ≤ 9).

Below, we enumerate the model variables:

• xb, xs : Real+ → Real - denote the liquid levels in the buffer and the supply,
respectively;

• uiv, uov : Real+ → {0, 1} - denote the positions of the inlet and the outlet
valves, respectively (0 - closed,1 - opened);

• up : Real+ → {0, 1, 2} - models the position of the pump (0 - off, 1 - low
speed,2 - high speed).

The inflow rate (vi), outflow rate (vo), and pump capacity factor (α) are the
parameters of the system. For the current analysis we assume thatvi = vo =
α = 1 m3/min. Nevertheless, we do not substitute the parameter values in the
continuous evolutions of variablesxb, xs of the model. We rather use the param-
eters as such, for one to be able to run the simulation under different parameter
instantiations.
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The differential equations that describe the continuous behavior ofxb andxs

are the following:

ẋb = 1/3.5 ∗ (vi ∗ uiv − α ∗ up)
ẋs = 1/2 ∗ (α ∗ up − vo ∗ uov)

In the equations above,3.5 (m2) is the buffer (bottom) area, and2 (m2) is the
supply area. Observe that levelsx vary inversely proportional to these areas.

Rather than presenting the whole CAS model of the two-tank system, we will
enumerate and describe formally only some of its possible actions. Since we are
simulating the model in the next chapter, we will give the translated version of the
entire CAS there. Note that we do not make a distinction between the controller
and the plant in our model; we are in fact modeling a closed hybrid system.

• For example, the system may be in a state where the liquid in the buffer tank
has reached the maximum of 9 m. At the same time, suppose that the level of the
liquid in the supply is1 ≤ xs < 9. Provided that the inlet valve is closed (uiv = 0)
– to avoid the overflow of the buffer tank – one could use the pump on either low
(up = 1) or high speed (up = 2). The outlet valve should be opened (uov = 1)
for the liquid to be delivered continuously. The timed representations of the two
actions that correspond to this situation are given below.

xb.now = 9 ∧ 1 ≤ xs.now < 9
1
→ c :− (λt · t − now) ; uiv :− (λt · 0);

up :− (λt · 1) ; uov :− (λt · 1);
ẋb :− 1/3.5 ∗ (vi ∗ uiv − α ∗ up)
ẋs :− 1/2 ∗ (α ∗ up − vo ∗ uov)

xb.now = 9 ∧ 1 ≤ xs.now < 9
1
→ c :− (λt · t − now) ; uiv :− (λt · 0);

up :− (λt · 2) ; uov :− (λt · 1);
ẋb :− 1/3.5 ∗ (vi ∗ uiv − α ∗ up)
ẋs :− 1/2 ∗ (α ∗ up − vo ∗ uov)

Observe that the actions contain the linear differential equations that character-
ize the behavior ofxb, xs, rather than their respective analytic solutions.

• Even in situations whenxb = 1, if 1 < xs.now ≤ 9, the pump could be
working at low speed, provided that the inlet valve is opened. This is possible only
under the assumption ofvi = vo = α. The action below models such a behavior:

xb.now = 1 ∧ 1 < xs.now ≤ 9
1
→ c :− (λt · t − now) ; uiv :− (λt · 1);

up :− (λt · 1) ; uov :− (λt · 1);
ẋb :− 1/3.5 ∗ (vi ∗ uiv − α ∗ up)
ẋs :− 1/2 ∗ (α ∗ up − vo ∗ uov)

• If uiv = up = uov = 1, the controller can decide to close the pump or use it

61



at high speed, depending on whether the liquid level in each tank is above or below
half of maximum, respectively:

1 < xb.now ≤ 4.5 ∧ 4.5 ≤ xs.now < 9∧
uiv.now = 1 ∧ up.now = 1 ∧ uov.now = 1
1
→ c :− (λt · t − now) ; up :− (λt · 0);

ẋb :− 1/3.5 ∗ (vi ∗ uiv − α ∗ up)
ẋs :− 1/2 ∗ (α ∗ up − vo ∗ uov)

4.5 < xb.now < 9 ∧ 1 < xs.now < 4.5∧
uiv.now = 1 ∧ up.now = 1 ∧ uov.now = 1
1
→ c :− (λt · t − now) ; up :− (λt · 2);

ẋb :− 1/3.5 ∗ (vi ∗ uiv − α ∗ up)
ẋs :− 1/2 ∗ (α ∗ up − vo ∗ uov)

4.4 Synchronized Hybrid Models

As in discrete reactive systems, concurrency, in all its flavors, plays animportant
role in hybrid designs. The parallel composition of CAS, as described in chapter 2
uses interleaving as the underlying execution mechanism. Thus, composing certain
hybrid modules might imply a similar effort for controlling their behavior, as in
the discrete case. From a modular design perspective, there are classes of hybrid
systems for which theu implementation of CAS (4.4) helps in reducing this effort.

4.4.1 Parallel Composition of Hybrid Models with Discontinuities

In the following, we analyze situations that may appear in the behavior of CAS,
when employing a traditional parallel operator between two modules. As we will
see, certain malfunctions may be exposed due to the interleaved model of execu-
tion, combined with particular timed evolutions.

In practice, there are situations where hybrid systems manifest the so called
“discontinuities” with infinite bandwidth, or “sudden changes” [107]. They may be
found for instance, when analyzing relays switching and mechanical components
engaging/disengaging [149], or in processes that observe hysteresis-like behaviors
[158].

The example that we illustrate in the following paragraphs is deliberately small
and simple. This makes it easier to discuss implementation issues, without being
affected by the actual complexity of a practical example. Therefore, we only give
a hypothetical behavioral description of a hybrid system, willing to analyze our
action system models in the presence of discontinuities.

Let us consider next the abstract model of a hybrid control system, which
evolves according to the function plotted in Figure 4.2, above the time axis. The
outputY is either increased or decreased, at different speeds (v1, v2), respectively.
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The system under analysis behaves according to the following CAS:

S1(Y : Real+ → Real+)
∧
= begin var dir : Real+ → Bool • Y :− (λt · 0) ; dir :− (λt · true);

do

Y.now = 0 /∗ actionA1
1 ∗/

1
→ Y :− (λt · v1 ∗ (t − now));

dir :− (λt · true)
[] (Y.now = Y0 ∧ dir.now) ∨ Y.now = YH /∗ actionA2

1 ∗/
1
→ Y :− (λt · YH − v2 ∗ (t − now));

dir :− (λt · false)
[] Y.now = Y1 /∗ actionA3

1 ∗/
1
→ (Y :− (λt · Y1 + v1 ∗ (t − now))

[] Y :− (λt · Y1 − v2 ∗ (t − now)))
od

end

Figure 4.2: The timed evolutions of systemsS1 andS2.

Notice, in the graphical representation ofS1, that the outputY evolves between
0 and a maximal valueYH . A second characteristic is the “jump” and the change of
direction at pointY.now = Y0; this happens in every instance of the execution. A
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descending trend is taken every time the system reachesY.now = YH . However,
another direction change may happen at pointY.now = Y1, where the system may
choose to switch again to an ascending trend towardsYH , or to continue descending
towards0. The number of direction changes at this point is arbitrary. Observe
that the value of local variabledir helps discriminating between time moments
represented byt1 or t2.

As observers, we are interested in counting how many times the output variable
Y reaches certain values. Concretely, in our analysis, we identify one such value
with Y0. Consequently, we attach toS1 a system that counts the events when
Y = Y0. This system may be described as

S2(Y : Real+ → Real+, counter : Real+ → Nat)
∧
= begin counter :− (λt · 0) ; Y :− (λt · 0);

do

Y.now = Y0 /∗ actionA1
2 ∗/

1
→ counter :− (λt · counter.now + 1)

od

end

Even if the composed system, hybrid system plus counter, is simple enough to
be designed as a compound, we choose to design it modularly. This is justified
by the fact that we want to create the premises for further extensions; secondly,
the counter systemS2 is not regarded as a required functional unit, under normal
circumstances.

Interleaved model. At first, we follow the traditional parallel execution model
approximated by interleaving, ofS = S1 || S2. At some moment in time (t1, t3, t5
in Figure 4.2), whenY.now = Y0, actionsA2

1 andA1
2 are simultaneously enabled.

If the controller chooses to execute the actionA2
1, first, the variableY will be

updated toYH . This disablesA1
2. Thus, the counter misses to record this trajectory

change. At time stampst2, t4, whenY = Y0 also holds, the interleaved model
allows a correct update of the variablecounter, as the action of the counter is the
only enabled one.

This situation can be solved by adding extra information to the modules, re-
garding their communication, or by employing other operators on CAS, which
could determine the modules to react in a way that produces a correct output.
However, either of the solutions implies extra modeling effort. Such a solution
also deteriorates the system’s modularity, since it requires a thorough analysis of
both of the composing action systems, as also illustrated in chapter 3.

Let us see how the synchronized perspective on the composition of CAS mod-
ules solves the issues exposed above.
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4.4.2 Synchronized Continuous Action Systems

In this section, we give the definition of the synchronized composition of CAS,
which is similar in spirit to the one defined for the discrete case, in chapter 3.
Nevertheless, the timed composition bears some particular features.

Firstly, we introducepartitioned continuous action systems, by the following
definition.

Definition 4 Consider a CAS of the form:

A(z : Real+ → Tz)
∧
= begin var x : Real+ → Tx

• Init ;

do gL
1
→ L [] gS

1
→ S od (4.5)

end

We say thatA is apartitioned CAS if:

1. gwA ⊆ wS - meaning thatS is the global action ofA. Notice thatwS may
also contain local variables ofA.

2. wL ⊆ lwA - meaning thatL is the local action ofA.

3. (do gL
1
→ L od ).gS ≡ true - meaning that the execution ofL establishes

the precondition for executingS.

Observe that in (4.5), we have separated the local actions from the global actions in
the same way as for partitioned action systems. Moreover, we impose requirements
similar to those stated by Definition 1.

In Definition 4, the notationdo gL
1
→ L od stands for

do ¬uL.now ∧ gL.now → uL : −(λt · true) ; L ; UT od

whereUT
∧
= now := min{t′ ≥ now | gg.t′}. The fact that the local action is

executed only once at some momentnow eliminates the need to require that the

corresponding loop terminates. Hence, it is sufficient thatdo gL
1
→ L od enables

the global actionS after it executes.

We emphasize the fact that one needs to employ as manyuL-like variables as
there are choices in the local actionL. This ensures that the execute-only-once
concept is implemented for all (possible) sub-actions ofL. The procedure does not
apply to the global actionS, in which case a singleu-variable suffices.

The meaning of a partitioned CAS is given by its translation into the following
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action system:

A(z : Real+ → Tz)
∧
= begin var now, nowc : Real+, x : Real+ → Tx,

uL, uS : Real+ → Bool •

now := 0 ; Init ; uL, uS : −(λt · false) ; UT ; nowc := now;
do

¬uL.now ∧ gL.now
→ uL : −(λt · true) ; L ; UT

[] ¬uS .now ∧ gS .now
→ uS : −(λt · true) ; S ; UT

[] now 6= nowc

→ uL, uS : −(λt · false) ; nowc := now
od

end

(4.6)

Synchronized CAS. Let us considern partitioned CAS of the form given by
(4.5). Theirsynchronized parallel compositionis a new system,P=A1] . . . ]An.
Its definition is given in terms of the action systemP:

P(z : Real+ → Tz)
∧
= begin var x : Real+ → Tx, sel[1..n],

u1
L, . . . , un

S : Real+ → Bool,
run : Real+ → Nat, now, nowc : Real+ •

now := 0 ; Init ; UT ; nowc := now;
do

run.now = 0 ∧ ¬sel[1].now selection action
→ sel[1] :− (λt · true) ; run :− (λt · 1)

[] . . .
[] run.now = 0 ∧ ¬sel[n].now

→ sel[n] :− (λt · true) ; run :− (λt · n)
[] run.now = 1 ∧ ¬u1

L.now ∧ g1
L.now moduleA1

→ L1 ; u1
L :− (λt · true)

[] run.now = 1 ∧ ¬u1
S .now ∧ g1

S .now
∧ (u1

L.now ∨ ¬g1
L.now)

→ wS1c :−wS1 ;S′
1 ; run :− (λt · 0) ; u1

S :− (λt · true)
[] run.now = 1 ∧ ¬u1

S .now ∧ ¬ggA1
.now

→ run :− (λt · 0) ; u1
S :− (λt · true)

[] . . .
[] run.now = n ∧ ¬un

L.now ∧ gn
L.now moduleAn

→ Ln ; un
L :− (λt · true)

[] run.now = n ∧ ¬un
S .now ∧ gn

S .now
∧ (un

L.now ∨ ¬gn
L.now)

→ wSnc :−wSn ;S′
n ; run :− (λt · 0) ; un

S :− (λt · true)

(4.7)
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[] run.now = n ∧ ¬un
S .now ∧ ¬ggAn

.now
→ run :− (λt · 0) ; un

S :− (λt · true)
[] sel.now ∧ run.now = 0 update action

→ Update ; UT ;
if now 6= nowc

then u1
L, . . . , un

S , sel :− (λt · false) ; nowc := now
else skip

fi

od

end,

Init
∧
= Init1 ; . . . ; Initn ; wS1c, . . . , wSnc :− wS1, . . . , wSn;

run :− (λt · 0) ; sel, u1
L, . . . , un

S :− (λt · false)

Update
∧
= Update1 ; . . . ; Updaten, whereUpdatek

∧
= wSk :− wSkc

S′
k

∧
= Sk[wSk :− wSkc]

ggAk

∧
= gk

L ∨ gk
S

Recall that the setz of global variables ofP is, initially, the union of the global
variables sets of each module:z =

⋃

k zk. If the communication among some
modules ofP should not be disclosed at the interface ofP, the variables that model
such channels will behiddenwithin the systemP.

Further, the local variablesx =
⋃

k xk, to which we add the hidden variables.
We also add copies (wSkc) of the original write variables of each action bodySk.
They replace the original variableswSk, therefore we haveS′

k = Sk[wSk :−wSkc].
Finally, the listx is completed by adding the arraysel and the execution indicator,
run.

The above definition of the ‘]’ - based composition of CAS says that, whenever
there is a change in the input, the composed system reacts based on the state of all
its modules.

Observe that time is not advanced unless all the modules have given their re-
spective responses to the input. As distinct from the discrete case, the synchronized
parallel composition of partitioned CAS does not need to testggP upon the en-
trance of the loop. This is motivated by the fact thatP cannot executeskip actions
forever. The conditional statement followingUpdate enforces termination if time
has not been advanced by any of the module actions.

Since CAS semantics is given in terms of ordinary action systems, all the mod-
ularity results proved in chapter 3 hold for the composition defined by (4.7),too.
Consequently, due to Corollary 1, any module can be trace refined independently,
provided that its invariant isproper.

4.4.3 Example Revisited - Synchronized Design Approach

Let us now compose the systemsS1 andS2, defined in section 4.4.1, by using the
‘]’ operator. It is easy to check thatS1 andS2 are partitioned CAS. As a result, we
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get the new partitioned CAS,Snew = S1 ] S2. Next, we translateSnew into Snew,
by applying the definition (4.7).

Snew(counter : Real+ → Nat)
∧
= begin var Y, Yc : Real+ → Real+, counterc, run : Real+ → Nat,

sel[1..n], u1, u2 : Real+ → Bool, now, nowc : Real+ •

counter, counterc, run, Y, Yc :− (λt · 0);
sel, u1, u2 :− (λt · false) ; UT ; nowc := now;

do

¬sel[1].now ∧ run.now = 0
→ sel[1] :− (λt · true) ; run :− (λt · 1)

[] ¬sel[2].now ∧ run.now = 0
→ sel[2] :− (λt · true) ; run :− (λt · 2)

[] (run.now = 1 ∧ ¬u1.now ∧ Y.now = 0
→ Yc :− (λt · v1 ∗ (t − now));

dir :− (λt · true)
[] run.now = 1 ∧ ¬u1.now ∧

((Y.now = Y0 ∧ dir.now) ∨ Y.now = YH)
→ Yc :− (λt · YH − v2 ∗ (t − now));

dir :− (λt · false)
[] run.now = 1 ∧ ¬u1.now ∧ Y.now = Y1

→ Yc :− (λt · Y1 + v1 ∗ (t − now))
[] Yc :− (λt · Y1 − v2 ∗ (t − now)));
run :− (λt · 0) ; u1 :− (λt · true)

[] run.now = 1 ∧ ¬u1.now∧
¬(Y.now = 0 ∨ Y.now = Y1∨
((Y.now = Y0 ∧ dir.now) ∨ Y.now = YH))

→ run :− (λt · 0) ; u1 :− (λt · true)
[] run.now = 2 ∧ ¬u2.now ∧ Y.now = Y0

→ counterc :− (λt · counter.now + 1);
run :− (λt · 0) ; u2 :− (λt · true)

[] run.now = 2 ∧ ¬u2.now ∧ Y.now 6= Y0

→ run :− (λt · 0) ; u2 :− (λt · true)
[] sel.now ∧ run.now = 0

→ Y :− Yc ; counter :− counterc ; UT ;
if now 6= nowc

then

sel, u1, u2 :− (λt · false) ; nowc := now
else skip

fi

od

end

If we repeat the previously described scenario, at momentst1, t3, t5, . . ., when
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Y.now = Y0, the definition ofSnew lets us preserve the old values ofY . Hence, the
synchronization mechanism enables the systemS2 to update the variablecounter
correctly, even whenS2 is selected for execution afterS1. The order of system
execution ceases to be a correctness issue.

It is possible that one can find a solution by considering the traditional parallel
composition ofS1 andS2. One could try, for instance, to bring the variabledir
to the interface ofS1, so that it may be read byS2, which in turn could take a
correct decision. However, as concluded also in chapter 3, such a solution requires
exposure of internal functionality and presumes knowledge of the internal behavior
of modules (in our case, ofS1). Moreover, for such a trick to work, one has to first
detect which are the time points when the system’s functioning requires a detailed
analysis. This would be necessary in order to avoid potential discontinuity-caused
errors [107]; in our example, one has to detect the possible malfunction ofthe
counter system in points similar to the (t1, Y0) tuple.

In comparison, due to the synchronized semantics, one can design the overall
system modularly, by simply pluggingS1 andS2 together, and without encoding
any kind of communication between these modules. Also, in case one needs to add
similar modules to the composed system, the synchronized composition lets one
reuse the existing modules. At the same time, the global behavior is under control:
barrier synchronization ensures correct outputs to all inputs.

4.5 Summary and Related Work

In this chapter we have extended the syntax of continuous action systems [27] by
modeling the concept of single point invocation of an action. As a result, ourmodel
does not allow the infinite execution of an enabled continuous action, at the same
time point. The issue of preventing timelocks is moved to the implementation
level. We have proposed a general solution that uses an execution marker for each
action, namely, a boolean variable that is set true after the respective action has
been executed. Assuming a particular momentnow, new execution rounds are
allowed as long as there is at least one flag on false. If the executed actions do not
consume time, that is,now remains unchanged, and all flags are true, the execution
terminates. On the other hand, ifnow changes, all flags are reset. Consequently,
any formerly selected action can be reselected in the future.

Last but not least, we have proposed abarrier synchronization mechanismfor
CAS, similar to the one developed in chapter 3, for discrete systems. Employing
the synchronization operator allows for compositionality and modular reasoning of
an important class of hybrid systems, that is, systems withdiscontinuous changes
in continuous variable values. These arise, in general, in complex systems, such
as aircrafts, which often operate in different modes of continuous behavior. When
mode changes occur, the continuous dynamics may change abruptly, yet the con-
troller should identify the event and react in consequence. We have shown how
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synchronized CAS can faithfully model such systems, at the same time allowing
for a modular design perspective.

Related Work. The CAS language is suited for modeling and verification of
mission-critical systems, since it allows for the explicit failure of the system (mod-
eled by the “abort” statement). It also allows references to historical values of the
variables in guards and expressions (e.g., x.(now - 1)). Such features do not appear
in modeling languages like, for example,hybrid automata[6, 86] or hybrid I/O
automata[120].

Rönkkö and Li have introducedlinear hybrid action systemsas a way of mod-
eling hybrid systems with linear continuous behavior [140]. The approachis more
restrictive than CAS since only smooth functions (without discontinuities) canbe
handled. We have shown through the example of section 4.4.1 that CAS allows
any type of function to describe the continuous evolutions. Moreover, Rönkkö’s
and Li’s approach uses an implicit notion of time, hence the formalism is not in-
tended for modeling real-time systems. Our model facilitates the description of
real-time systems, as chapter 6 demonstrates.

The composition of timed systems expressed as communicating processes is
also analyzed by Bornot and Sifakis [47], who strive formaximal progress: when-
ever interleaving and synchronization are both possible, synchronization is pre-
ferred. In our approach, the property holds by default when one employs the syn-
chronization operator for composing CAS modules.

CHARON is an environment that supports structured hierarchial modeling of
hybrid systems [11]. In CHARON a system is described by a collection ofagents
that communicate with their environment via shared variables; the behavior ofan
agent is called amodeand it is basically a hierarchical state machine. CHARON
has a formal compositional semantics with a notion of refinement: traces of a
mode can be computed from traces of its submodes. The approach assumesan
interleaving semantics of discrete updates, whereas updates of analog variables
must be synchronized. Synchronized (continuous) action systems allow both non-
hierarchical and also hierarchical perspectives. In the latter case, the same shared-
variable mechanism can be used for communication among modules.

Compositionality of concurrent hybrid behaviors is also central to models such
as hybrid I/O automata [120] andhybrid modules[12]. In the latter, Alur and Hen-
zinger have developed an assume-guarantee principle for reasoning about timed
and hybrid modules. The authors separate the so calledupdate rounds, which take
no time, where discrete or clock variables are updated by the modules or envi-
ronment, fromtime rounds, which have specified durations. Each update round
consists of several subrounds. From this point of view, this approachis similar to
our synchronized hybrid environment, yet ours differs in that we do not make the
distinction between rounds updating global variables, and rounds updating time.
All global variables (be they discrete valued or continuous valued time variables)
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and time are updated by a sequence of statements, at the end of the same cycle.
Moreover, the timed modules employed by Alur and Henzinger are partially or-
dered, and the respective update rounds follow that ordering. This is especially
valid whenawait dependenciesoccur. We do not use the clauseawaitsin our mod-
els, thus the order of module execution is permitted to be nondeterministic but this
internal nondeterminism does not affect the visible state.

The hybrid constraint languageapproach (Hybrid cc) [82] to modeling and
verification of hybrid systems assumes that various aspects of the given hybrid au-
tomaton are expressed as constraints. The technique supports logical concurrency
for program construction, allowing a similar preemption construction to Esterel
[45].
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Chapter 5

Hybrid Systems Analysis

Hybrid control systems can be quite difficult to build, due to the interaction of
the continuous system behavior with the discrete controller. Hence, simulatinga
formal model of the system is most useful, allowing one to find potential trouble
spots before proceeding to full formal verification.

In this chapter, we first introduce a symbolic simulation tool for continuous
action systems, as a means of analyzing high-level models [25]. We have built the
tool in Mathematica [156], a powerful computer algebra package, also equipped
with good plotting facilities.

The main problem in carrying out formal analysis of hybrid system models is
their infinite state space, which, in turn, is a result of the continuous evolutions
involved. There are uncountably many successor states from a given state of a
hybrid system. Furthermore, checking whether a hybrid system ever reaches a bad
state is undecidable.

Such issues can be overcome by finding suitable abstractions of the continuous
dynamics, or of both the discrete transitions and continuous flows, which induce
transition systems that can be model-checked for certain properties [151]. In prin-
ciple, the result of such a procedure is just an assertion that the model behaves as
expected, with respect to the verified property.

In contrast, a deductive, iterative approach to formal analysis of hybrid models
provides the designer with important insights on the overall system behavior. The
drawback is the lack of a “push-button” technique; on the other hand, thegain in
understanding is necessary, if one wants to improve the system representation at
later design stages.

For parametric models, the outcome of the analysis consists of constraints on
parameters, or relationships between parameters, which define the set ofall possi-
ble values guaranteeing that some system property holds for any possiblebehavior.

In the following, we also present a deductive way of synthesizing correct pa-
rameter values, by using superposition of nonconflicting invariants [24].Illustra-
tive examples show the proposed approaches at work.
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5.1 Symbolic Simulation of Hybrid System Behavior

Prior to, or as an alternative to verification, the simulation of a hybrid system model
brings many benefits to the designer, by paving the way towards an error free ab-
straction. A lot of effort has been devoted to developing simulation tools forhybrid
systems, targeting various modeling languages. Such tools include the HybridChi
simulator [40], Dymola [74], Shift [79], and Simulink [124].

The contribution of this section is to show how tosimulatethe behavior of hy-
brid systems that are modeled as CAS. The simulation technique that we use is
symbolic. Given the simulation parameters, we represent states using predicates,
and we construct the exact analytic functions that describe the behaviorof the hy-
brid system over time (rather than just numeric approximations of the behavior).
The simulation method is based on calculating symbolically the next time point
when at least one action is enabled, using the minimization capabilities of some
programming language. This means that our simulation method is not dependent
on choosing a fixed sampling interval, but that the simulation rather proceedsfrom
one interesting time point to the next. These interesting time points can be very
dense in times when the behavior changes rapidly, and be sparse at othertimes.

The Generic CAS Simulator. In this paragraph, we describe the CAS simulator
in a generic setting, independent of the programming language used, however with
its usability certainly benefitting from having as powerful language as possible.

The symbolic simulation of a CAS consists of three major steps, as follows:

1. Solving each guard separately and finding a list of times in the future when
the guard will evaluate to true.

2. Extracting the least of the times in the list for each guard.

3. Collecting the results from step one and two, from all guards, and determin-
ing a globally minimal next time. Having found it, one has simultaneously
determined whether there is one or several guards satisfied at the respective
time moment. If just one guard is satisfied, the corresponding action body is
executed, thus changing some of the program variables. If there are several
guards simultaneously true, then the user is asked to supply the choice of ac-
tion to be taken. It is also possible that the machine makes a random choice
among the enabled actions.

In the first step, the computation of the solution list for the guards can be ar-
bitrarily complicated depending on the structure of the guards. The guard may
involve the solution of higher order algebraic equations, or nonlinear differential
equations, or both, in which case analytic solutions to the guards are probably im-
possible to obtain. In this case, one has to resort to a numerical solution of the
guards, e.g., integrate differential equations forward in time using some appro-
priate numerical scheme. Then, we can still obtain an approximated continuous
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solution by interpolating the numerical solution with linear functions between the
numerically obtained values.

In case the list of minimum values for the guard from step one is a collection
of finite analytic expressions, we will be able to proceed to step two without loss
of accuracy. The identification of the minimum value in step two, that is, sorting
the list of solutions to a guard, may be numerically cumbersome. The expressions
in the list can easily have the tendency of becoming increasingly complicated as
time goes on; then, in the end we have to resort to evaluating the minimum values
numerically. This immediately makes the comparison of values very close to each
other prone to mistakes. The third step is in principle as hard as step two, only now
we are comparing the minimum values for each guard with each other.

The usability of the symbolic simulator is thus largely dependent on whether
we are able to pass through step one to three, using symbolic expressions.

The main function of the simulator is given below, in pseudocode.

S0(); (* initialize variables *)

now = 0; (* start at time t = 0 *)

Max now = 100; (* simulate until Max now *)

while ( now < Max now ) (* loop until Max now*)
{ (* loop through all guards *)

(* and find min time when some guard holds*)
for ( i = 1 ; i ≤ m ; i = i+1 )

{

(* list of solutions to guard i *)
sol list = SolveGuard(i);

(* find the earliest time in solution list *)
TentativeNextNow = ExtractMinTime(sol list);

NextActionTime = Max now;
NoOfNextActions = 0;

(* find the globally minimal next time *)

(* and the corresponding actions*)

(* check for any solution *)
if ( IsNumeric(TentativeNextNow) == False )
continue;

(* check for later solution *)
if ( NextActionTime < TentativeNextNow )
continue;
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(* we have several guards with earliest time *)

(* form list of possible next actions *)
if ( NextActionTime == TentativeNextNow )

{
NoOfNextActions = NoOfNextActions + 1;
NextActionList[ NoOfNextActions ] = i;
continue;
}

(* new earliest time *)
if ( NextActionTime > TentativeNextNow )

{
NextActionTime = TentativeNextNow;
NoOfNextActions = 1;
NextActionList[ NoOfNextActions ] = i;
continue;
}

}

(* take appropriate next action *)

(* no next now available *)
if ( NoOfNextActions == 0 ) break;

(* no next now within maximum limit *)
if ( NextActionTime == Max now ) break;

(* next time available, it is unique *)
if ( NoOfNextActions == 1 )
{
now = NextActionTime;
SNextActionList[1];
}

(* next time available, it is not unique *)
if ( NoOfNextActions > 1 )
{
now = NextActionTime;
Action Choice =
UserSelect(NoOfNextActions,NextActionList);

SAction Choice;
}

} (* end of while loop *)
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5.1.1 Mathematica-based Simulation of Continuous Action Systems

We have chosen to implement the simulator inMathematica[156], a powerful com-
puter algebra package. Besides allowing us to get symbolic solutions to the time
varying behavior of the hybrid system, Mathematica also provides good facilities
for visualizing the system evolution as graphs.

The state variable functions are often described by differential equations. The
differential equation solver of Mathematica is then very useful, in particularfor
those cases where it is easy to find an exact solution. If we do not get anana-
lytic solution, we can still get a numeric approximation of the time functions, and
use these approximations in our simulation. The approximation will introduce an
uncertainty into the simulation, but still allows us to carry out the simulation inde-
pendently of a fixed sampling interval.

Our tool [25] performs simulation of CAS fully automatically. It is essentially
an interpreter with plotting capabilities for CAS, written in the programming lan-
guage of Mathematica. Our experiences with this tool have been very promising.
Besides providing a good visualization of the behavior of hybrid systems, ithas
also been quite efficient in harnessing the power of Mathematica.

Most of the simulation tools for hybrid systems use either a fixed-step or a
variable-step numerical solver to approximate the differential equation by adiffer-
ence equation [151]. One of the main strengths of our tool is the fact that, at least
in the linear case, we do not need to provide a suitable discretization of the contin-
uous system dynamics. As a result, we perform the simulation on the continuous
time model, without tolerances.

The tool is parametric, in the sense that the number of guarded actions and the
number of functions that are evaluated and plotted are set by the user, depending
on the system that one wants to analyze. These parameters are denoted byvari-
ablesNoOfGuards, NoOfFuncs, respectively. There is also an upper bound for the
simulation time, denoted byEndTime, in case the simulation goes on forever.

To run a simulation, the user has to:

• Supply the values ofEndTime, NoOfGuards, andNoOfFuncs.

• Specify the initial conditions by giving initial values to all the variables.

• Input the guards and the corresponding action bodies as simple ASCII files,
yet using valid Mathematica commands.

The simulation tool then computes the behavior of the model, under these specific
choices.

We have applied our simulation technique to a small collection of hybrid sys-
tems. In the coming sections, we describe two applications in more detail. The
first one models a heat producing nuclear reactor with two cooling rods, and the
second one is the two-tank system introduced in chapter 4. The tool has proved to
be very useful in these and other cases that we have tried. It has provided a way
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of exploiting nondeterminism in specifications, and at most times it has confirmed
the a priori intuition about the system behavior.

5.1.2 Linear Hybrid Models: A Nuclear Reactor Temperature Con-
trol System

The current case-study has also been analyzed by Alur et al. [7]. The hybrid system
is a temperature control system (TCS, for short) for a heat producing reactor. It is
described by the temperature as a function of timeθ(t). The reactor starts from the
initial temperatureθ0 and heats up at a given ratevr. Whenever the core reaches
the critical temperatureθM , it is designed to be cooled down by inserting into the
core either of two rods, modeled by variablesx1(t) andx2(t). These are in fact
clocks that measure the time elapsed between two consecutive insertions of the
same rod, respectively. The cooling proceeds at ratev1 or v2 depending on which
rod is being used; the cooling stops when the reactor reaches a given minimum
temperatureθm, by releasing the respective inserted rod. The rod used for cooling
is then unavailable for a prescribed timeT , after which it is again available for
cooling.

The object of the simulation is to ascertain that the reactor never reaches the
critical temperatureθM without at least one of the rods available, otherwise a shut-
down will be initiated.

The action systemT CS (where time is explicitly advanced) consists of a set
of initializing statements and a collection of guards and their corresponding action
bodies (see Figure 5.3). The last action (action 5) hasabort as its body, indicating
that the shutdown state is not desired.

Let ∆θ = θM − θm. Obviously, the time that the coolant needs to increase its
temperature fromθm to θM is

τr = ∆θ/vr,

and the cooling times usingrod1 androd2 are

τ1 = ∆θ/v1 andτ2 = ∆θ/v2,

respectively.
The sequence of heating and cooling times is shown in Figure 5.1.
Observe that in our modelT CS we have used variablestart, which denotes

the moment when the system starts evolving in a new state. Also, in order to aid
intuition about the system’s continuous behavior, we have given both the analytic
solutions of the differential equations, as well as the actual differential equations
that they satisfy. As an alternative representation of the behavior ofT CS, we give
its state transition diagram, in Figure 5.2.

Clearly, if τr ≥ T (the temperature rises at a rate slower than the time of
recovery of the rods), then theshutdownstate is not reachable. However, this can
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Figure 5.2: The state transition diagram of the temperature control system.

be a too strong condition for not running into the undesired state. Inspecting Figure
5.1 one can find a weaker condition [7]:

2τr + τ1 ≥ T ∧ 2τr + τ2 ≥ T (5.1)

Relation (5.1) claims that the shutdown state will never be reached if the time
between two insertions of the same rod is greater than or equal to the time needed
for the rod to recover.

To get a first assurance that condition (5.1) is indeed sufficient, we proceed with
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T CS
= begin var x1, x2, c : Real+ → Real+;

θ : Real+ → Real ; state : Real+ → {0, 1, 2, 3};
start, now : Real+ • now := 0;
state :− (λt · 0) ; c :− (λt · t − now);
x1 :− (λt · T1 + c.t) ; x2 :− (λt · T2 + c.t);
θ :− (λt · θ0 + vr ∗ c.t);
start := now ; now := min{t′ ≥ now | gg.t′};

do {action1 : cool with rod1}
state.now = 0 ∧ θ.now = θM ∧ x1.now ≥ T
→ c :− (λt · t − now) ; / ∗ ċ = 1

θ :− (λt · θM − v1 ∗ c.t) ; / ∗ θ̇ = −v1

state :− (λt · 1);
start := now ; now := min{t′ ≥ now | gg.t′}

[] {action2 : release rod1}
state.now = 1 ∧ θ.now = θm

→ c :− (λt · t − now) ; / ∗ ċ = 1
x1 :− (λt · t − now) ; / ∗ ẋ1 = 1

θ :− (λt · θm + vr ∗ c.t) ; / ∗ θ̇ = vr

state :− (λt · 0);
start := now ; now := min{t′ ≥ now | gg.t′}

[] {action3 : cool with rod2}
state.now = 0 ∧ θ.now = θM ∧ x2.now ≥ T
→ c :− (λt · t − now) ; / ∗ ċ = 1

θ :− (λt · θM − v2 ∗ c.t) ; / ∗ θ̇ = −v2

state :− (λt · 2);
start := now ; now := min{t′ ≥ now | gg.t′}

[] {action4 : release rod2}
state.now = 2 ∧ θ.now = θm

→ c :− (λt · t − now) ; / ∗ ċ = 1
x2 :− (λt · t − now) ; / ∗ ẋ2 = 1

θ :− (λt · θm + vr ∗ c.t) ; / ∗ θ̇ = vr

state :− (λt · 0);
start := now ; now := min{t′ ≥ now | gg.t′}

[] {action5 : shutdown}
state.now = 0 ∧ θ.now = θM ∧ x1.now < T ∧ x2.now < T
→ state :− (λt · 3) ; abort

od

end : θ0, θm, θM , vr, v1, v2, T1, T2, T

Figure 5.3: The TCS action system model
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the simulation of the TCS model for two sets of parameters: the first set chosen to
satisfy condition (5.1), the second set chosen not to satisfy the same condition. The
simulation results should either confirm or deny our assertion. In the second case,
at some point in time, the simulation should run intoabortby executing the action
5 of theT CS action system.

5.1.3 Simulating the Behavior of the Temperature Control System in
Mathematica

The starting point for the formulation of the simulation is to take the initializing
expressions and the expressions of the guarded actions ofT CS as such, with as few
numerical or logical manipulations as possible. This confirms our basic strategy of
simulating the model as given, thus exposing any possible modeling errors likein
the spelling of the model, or in the logic of the guarded actions. The initialization
of T CS is implemented in the language of the symbolic manipulation program as

now = 0;
c [t−] = t − now;
x1 [t−] = T1 + c [t] ;
x2 [t−] = T2 + c [t] ;
θ [t−] = θ0 + νr ∗ c [t] ;
state [t−] = 0;

In Mathematica,t− signifies the fact thatt is the variable in the function that
is being defined. We assume that we start instate0, with the rods 1 and 2 both
available for cooling, hence the clocksx1 andx2 are initialized to the (constant)
valuesT1 andT2 (time units), respectively.

As usual, the guards are boolean conditions, which we test for the value of true.
In the implemented TCS model, the first guard has the form

guard1solution = InequalitySolve[
state [t] == 0 &&
θ [t] == θM &&
x1 [t] >= T &&
t >= start && t <= EndTime, t
]

Here, we are using the Mathematica built-in functionInequalitySolve to deter-
mine the next moment or moments in time at or afternow, when all the conditions
of guard 1 become true: the system is in state 0, it has reached the critical temper-
ature and rod1 is available. As a result of solving the simultaneous inequalitieswe
obtain a list calledguard1solution, which contains the empty set, or a collection
of discrete times and/or finite or infinite ranges of times for which the conditions
hold. This list is passed to a subroutine that picks out the earliest time at which
guard 1 becomes true.
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Similarly, the body of action 1, should we decide to take that action, is given
by the following expressions:

c [t−] = t − now;
θ [t−] = θM − ν1 ∗ c [t];
state [t−] = 1;
start = now

The main task of the simulation is to go through the guards one by one and deter-
mine whether they will become true at some point in time in the future. In case
there are several solutions to a guard, the minimum of these times is selected, be
it a discrete value or the starting value for a closed range. After this, the minimum
times for all guards are compared, and the smallest of these with the correspond-
ing action body (or actions bodies) is (are) chosen. In case the next action is one
particular action, we will take that action, update the value ofnow and solve the
guards over again. In case several guards become true at the next instance of time,
all corresponding action bodies are of course possible, and the user isasked to sup-
ply the choice of action to be taken. In addition, a random mode is programmed,
in which case a choice among multiple possible actions is made by the simulator.

5.1.4 Simulation Results

The essential information gained by the above procedure is a list of time moments
at which some action has been taken in the model, a corresponding list of actions,
and lists with symbolic values for the discrete and continuous functions of the TCS
hybrid model: the system state, the temperature of the reactorθ(t) as a continuous
piecewise linear function, and similar functions for the clocksx1(t) andx2(t). An
artificial upper time limittmax = 100 was supplied in case the simulation would
go on forever. The results presented below are all computed automatically,within
seconds.
Parameter set 1.Given the parameter values

T1 = 6, T2 = 2, T = 6, v1 = 4, v2 = 3, vr = 6, θ0 = 0, θm = 3, θM = 15,

which satisfy condition (5.1), two of the lists mentioned above are the following:

now = {0, 5/2, 11/2, 15/2, 23/2, 27/2, 33/2, 37/2,
45/2, 49/2, 55/2, 59/2, 67/2, 71/2, 77/2,
81/2, 89/2, 93/2, 99/2, 103/2, 111/2, 115/2,
121/2, 125/2, 133/2, 137/2, 143/2, 147/2,
155/2, 159/2, 165/2, 169/2, 177/2, 181/2,
187/2, 191/2, 199/2}
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theta(t) : {6t, 25 − 4t,−30 + 6t, 75/2 − 3t,−66 + 6t,
69 − 4t,−96 + 6t, 141/2 − 3t,−132 + 6t,
113 − 4t,−162 + 6t, 207/2 − 3t,−198 + 6t,
157 − 4t,−228 + 6t, 273/2 − 3t,−264 + 6t,
201 − 4t,−294 + 6t, 339/2 − 3t,−330 + 6t,
245 − 4t,−360 + 6t, 405/2 − 3t,−396 + 6t,
289 − 4t,−426 + 6t, 471/2 − 3t,−462 + 6t,
333 − 4t,−492 + 6t, 537/2 − 3t,−528 + 6t,
377 − 4t,−558 + 6t, 603/2 − 3t,−594 + 6t}

Using the first parameter set, the graphical results of the simulation are the
plots in Figures 5.4 to 5.6. The vertical lines in the graphsaction(t) andstate(t)
are purposely drawn to guide the reader’s eye. In this first case, the simulation did
not reveal any unexpected behavior, instead it showed a regular timed behavior of
the state variables.
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Figure 5.4: The timed behavior ofθ and the executed actions (parameter set 1)
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Figure 5.5: The timed behaviors of clocksx1 andx2 (parameter set 1)

Parameter set 2.Under a different set of values that violate the condition (5.1),
that is, the same set as above exceptT = 8, the simulation shows that the reactor
will reach the shutdown state. Action 5 becomes enabled at timet = 37/2, since
neither of the rods is available (see Figure 5.7). Similar to the first case, here we
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also get the graphical representations in time, of all the model variables. Figures
5.7, 5.8 and 5.9 show the respective graphs.
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Figure 5.6: The state as a function of time (parameter set 1)

Consequently, the simulation ofT CS confirmed our guess: if the parameters
do not satisfy condition (5.1), the system will eventually reach the shutdownstate.
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Figure 5.7: The timed behavior ofθ and the executed actions (parameter set 2)
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Figure 5.8: The timed behaviors of clocksx1 andx2 (parameter set 2)

Parameter set 3.Now, let us replace the heating ratevr = 6, with vr = 2, in the
first parameter set, while keeping the other parameters the same. This change gives
rise to a simulated situation of having both cooling rods simultaneously available,
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at some point. Formally, this translates into actions 2 and 4, of the model in Figure
(5.3), becoming enabled at some same momentnow. This scenario is exposed by
the simulator, which presents the user with the choice dialog box, updated to the
current situation. This particular case is shown in Figure 5.10.
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Figure 5.9: The state as a function of time (parameter set 2)

Figure 5.10: The dialog box corresponding to nondeterministic choice.
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5.1.5 Simulation of the Two-Tank Action System

We return to the two-tank example of chapter 4 and give its complete action system
model. Observe that here, the analytic solutions to the differential equationsare
given, rather than the equations themselves.

T anks (5.2)

= begin var xb, xs : Real+ → Real,

up : Real+ → {0, 1, 2},

uiv, uov : Real+ → {0, 1},

u1, . . . , u14 : Real+ → Bool,

c : Real+ → Real+, now, nowc : Real+ •

now := 0 ; c :− (λt · t) ; xb :− (λt · 1) ; xs :− (λt · 1/2 ∗ α ∗ c.t) ;

uiv, up :− (λt · 1) ; uov :− (λt · 0) ; u1, . . . , u14 : −(λt · false) ;

now := min{t′ ≥ now | gg.t′} ; nowc := now ;

do [ [] 1 ≤ i ≤ 14 : Ai ; UT ; Check ] od

end : vi, vo, α

where:

A1 = ¬u1.now ∧ 1 < xb.now ≤ 9 ∧ xs.now = 1
→ u1 :− (λt · true) ; c :− (λt · t − now);

uiv :− (λt · 1) ; up :− (λt · 1) ; uov :− (λt · 0);
xb :− (λt · xb.now + 2/7 ∗ (vi − α) ∗ c.t);
xs :− (λt · 1 + 1/2 ∗ α ∗ c.t)

A2 = ¬u2.now ∧ 1 < xb.now < 9 ∧ 1 < xs.now < 9
→ u2 :− (λt · true) ; c :− (λt · t − now);

uiv, up, uov :− (λt · 1);
xb :− (λt · xb.now + 2/7 ∗ (vi − α) ∗ c.t);
xs :− (λt · xs.now + 1/2 ∗ (α − vo) ∗ c.t)

A3 = ¬u3.now ∧ (xb.now > 9 ∨ xs.now > 9)
→ abort

A4 = ¬u4.now ∧ 1 < xb.now ≤ 4.5 ∧ 4.5 ≤ xs.now < 9∧
uiv.now = 1 ∧ up.now = 1 ∧ uov.now = 1
→ u4 :− (λt · true) ; c :− (λt · t − now);

up :− (λt · 0);
xb :− (λt · xb.now + 2/7 ∗ vi ∗ c.t);
xs :− (λt · xs.now − 1/2 ∗ vo ∗ c.t)
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A5 = ¬u5.now ∧ 4.5 < xb.now < 9 ∧ 1 < xs.now < 4.5∧
uiv.now = 1 ∧ up.now = 1 ∧ uov.now = 1
→ u5 :− (λt · true) ; c :− (λt · t − now);

up :− (λt · 2);
xb :− (λt · xb.now − 2/7 ∗ (vi − α) ∗ c.t);
xs :− (λt · xs.now + 1/2 ∗ (α − vo) ∗ c.t)

A6 = ¬u6.now ∧ 1 < xb.now < 9 ∧ xs.now = 9
→ u6 :− (λt · true) ; c :− (λt · t − now);

uiv :− (λt · 1) ; up :− (λt · 0) ; uov :− (λt · 1);
xb :− (λt · xb.now + 2/7 ∗ vi ∗ c.t);
xs :− (λt · 9 − 1/2 ∗ vo ∗ c.t)

A7 = ¬u7.now ∧ xb.now = 1 ∧ xs.now = 1
→ u7 :− (λt · true) ; c :− (λt · t − now);

uiv :− (λt · 1) ; up :− (λt · 0) ; uov :− (λt · 0);
xb :− (λt · 1 + 2/7 ∗ vi ∗ c.t);
xs :− (λt · xs.now)

A8 = ¬u8.now ∧ xb.now = 1 ∧ 1 < xs.now ≤ 9
→ u8 :− (λt · true) ; c :− (λt · t − now);

uiv :− (λt · 1) ; up :− (λt · 1) ; uov :− (λt · 1);
xb :− (λt · 1 + 2/7 ∗ (vi − α) ∗ c.t);
xs :− (λt · xs.now + 1/2 ∗ (α − vo) ∗ c.t)

A9 = ¬u9.now ∧ xb.now = 1 ∧ xs.now = 9
→ u9 :− (λt · true) ; c :− (λt · t − now);

uiv :− (λt · 1) ; up :− (λt · 0) ; uov :− (λt · 1);
xb :− (λt · 1 + 2/7 ∗ vi ∗ c.t);
xs :− (λt · 9 − 1/2 ∗ vo ∗ c.t)

A10 = ¬u10.now ∧ xb.now = 9 ∧ xs.now = 1
→ u10 :− (λt · true) ; c :− (λt · t − now);

uiv :− (λt · 0) ; up :− (λt · 2) ; uov :− (λt · 0);
xb :− (λt · 9 − 4/7 ∗ α ∗ c.t);
xs :− (λt · 1 + α ∗ c.t)

A11 = ¬u11.now ∧ xb.now = 9 ∧ 1 ≤ xs.now < 9
→ u11 :− (λt · true) ; c :− (λt · t − now);

uiv :− (λt · 0) ; up :− (λt · 1) ; uov :− (λt · 1);
xb :− (λt · 9 − 2/7 ∗ α ∗ c.t);
xs :− (λt · xs.now + (α − vo)/2 ∗ c.t)
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A12 = ¬u12.now ∧ xb.now = 9 ∧ 1 ≤ xs.now < 9
→ u12 :− (λt · true) ; c :− (λt · t − now);

uiv :− (λt · 0) ; up :− (λt · 2) ; uov :− (λt · 1);
xb :− (λt · 9 − 4/7 ∗ α ∗ c.t);
xs :− (λt · xs.now + (α − vo/2) ∗ c.t)

A13 = ¬u13.now ∧ xb.now = 9 ∧ xs.now = 9
→ u13 :− (λt · true) ; c :− (λt · t − now);

uiv :− (λt · 0) ; up :− (λt · 0) ; uov :− (λt · 1);
xb :− (λt · xb.now);
xs :− (λt · 9 − 1/2 ∗ vo ∗ c.t)

A14 = ¬u14.now ∧ xb.now < 1
→ abort

Check = if now 6= nowc then u1, . . . , u14 :− (λt · false) ; nowc := now
else skip

In order to visualize the behavior of (5.2), we have implemented the model
(5.2) in the language of Mathematica, and simulated it up tot = 300 time units,
with our symbolic tool introduced in section 5.1.1.

In the scenario that we describe here, we assume that, initially, there is a mini-
mal amount of liquid in the buffer,xb = 1 m; the inlet valve is opened, the outlet
valve is closed, and the pump functions at low speed and transfers liquid to the
supply. The liquid level in the supply increases as follows:xs :− (λt ·1/2∗α∗c.t).
Also vi, vo, α have their nominal values, that is,vi = vo = α = 1 m3/min.

Without changing the semantic model (5.2), we implement the actionCheck as
anIf statement, available in Mathematica’s programming language. The statement
below is executed after each computation ofnow:

If [now != nowcopy, u1[t−], . . . , u14[t−] = 0,
(u1[t−] = u1[t] ; . . . ; u14[t−] = u14[t] ; nowcopy = now)]

The corresponding lists with the simulation results for the described scenario
are given in Figure 5.11.

The continuous evolution of variablesxb, xs, and clockc, as well as the actions
of (5.2) that were executed during simulation, are all drawn as graphs in Figures
5.12 and 5.13.

If one refines (5.2), so as to strengthen some of the guards and decrease the be-
havioral nondeterminism, one may attempt to identify the upper and lower bounds
of the system parameters, by simulation. Such information might be useful in case
one wants to change parameter values for optimization purposes. Severalscenarios
have been simulated, out of which it results, as expected, that ifα < 0.5 m3/min,
for nominal valuesvi = vo = 1 m3/min, the levels in both tanks exceed the max-
imum of9m. Hence, actionA3 becomes enabled and the system aborts execution.
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now list : {   0,   2,  30,  38,  54,  54,  54,  54,  68,  82,
      98, 112, 112, 126, 126, 142, 158, 170, 170, 182, 
     198, 214, 222, 222, 230, 246, 246, 260, 274, 290, 300}

clock list : {     t,   -2+t,  -30+t,  -38+t,  -54+t,  -54+t, -54+t,
       -54+t,  -68+t,  -82+t,  -98+t, -112+t, -112+t, -126+t, 
      -126+t, -142+t, -158+t, -170+t, -170+t, -182+t, -198+t, 
      -214+t, -222+t, -222+t, -230+t, -246+t, -246+t, -260+t, 
      -274+t, -290+t,   10}

xb list : { 1,              0.428571 + 2t/7, 26.1429 - 4t/7,  -6.42857 + 2t/7,
    9,             39.8571 - 4t/7,   24.4286 - 2t/7,  39.8571 - 4t/7, 
  -18.4286 + 2t/7,  5,              -23 + 2t/7,       41 -2t/7,
  -73 - 4t/7,     -35 + 2t/7,       -35 + 2t/7,        5.57143,
  -39.5714 + 2t/7, 57.5714 - 2t/7,  106.143 - 4t/7,  -49.8571 + 2t/7,
    6.71429,   -54.4286 + 2t/7,   72.4286 - 2t/7, 135.857 - 4t/7,  
  -61.2857 + 2t/7, 79.2857 - 2t/7,  149.571 - 4t/7,  -73.2857 + 2t/7,
    5,            -77.8571 + 2t/7,    7.85714}

xs list : {  0.5 t,     1,       -29 + t,     28 - t/2,   -26 + t/2, 
   -53 + t,     1,       -26 + t/2,   42 - t/2,  -40 + t/2,
    58 - t/2,   2,       -54 + t/2,   72 - t/2,  72 - t/2,
   -70 + t/2,  88 - t/2,   3,        -82 + t/2, 100 - t/2, 
   -98 + t/2, 116 - t/2,   5,        106 + t/2, 124 - t/2,
     1,      -122 + t/2, 138 - t/2, -136 + t/2, 154-t/2,   4}

Figure 5.11: Two-tank simulation results as symbolic lists.
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Figure 5.12: Timed evolutions ofxb, xs.
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Figure 5.13: Timed evolutions ofc and the executed actions.

However, in order to confirm or refute this claim, one should proceed to formal
verification, as done in the TCS case-study. The overflow situation is represented
graphically in Figure 5.14.

We have also observed that the system tends to swing less between extreme
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Figure 5.14: Overflow in both tanks (α = 0.4 andvi = vo = 1).

values if initiallyxb > 1.

Discussion. Complex continuous system dynamics can be described bynonlin-
ear differential equations. To be able to simulate and reason about such systems,
one needs to find the solutions of the respective equations. Solving the system of
equations at run-time is more complicated.

For example, in Mathematica, one can use the functionDSolve to find sym-
bolic solutions to ordinary differential equations. Solving a differential equation
consists essentially in finding the form of an unknown function.DSolve returns
as its result a rule, which gives the independent variable as a pure function. Then,
by applying the respective rule to all occurrences of the independent variable in a
certain differential equation, by using the Mathematica commandexpr /. rule, one
can extract the solution as a function of time.

For simulating nonlinear CAS models, we have to apply such a procedure at
run-time. Our experience has shown that it may be successful only for systems
with simple nonlinearities. For more complicated cases, the tool is not able to
carry out the simulation by using symbolic solutions. In such cases, one should
perhaps resort to numerical solutions, and apply interpolation.

5.2 Parameter Synthesis

As seen in section 5.1.2, the temperature control system is parametric in nature,
meaning that it is supposed to work correctly only for specific values of its param-
etersv1, v2, vr, θm, θM .

Let us now assume that we are confronted with a situation where it is not triv-
ial to guess the sufficient relation between parameters, which would ensure correct
and safe system functioning. In such cases, one needs to find a way ofsynthe-
sizing the right parameter values or relationships. To accomplish this goal, here
we apply the well-known deductive method of reachability analysis by proving an
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invariance property. We show next how invariance checking can be used to deter-
mine the weakest relationships between model parameters. This method is mixed
with an incremental way of constructing a sufficiently strong invariant, by adding
information to an initial property. The latter encapsulates an approximation of the
basic behavior of the hybrid system under analysis.

A stateσ′ is reachable from the stateσ if there is a run of the hybrid system that
starts inσ and ends inσ′ [7]. Usually, we want to prove that some bad conditiong
is not reachable. This we can do by proving that some conditionI is an invariant
of the system, and thatI ⇒ ¬g. Since the target system is parametric, we expect
thatI ⇒ ¬g is not satisfied unless some relationR between parameters holds. As
every reachable state satisfiesI, this then shows that every reachable state satisfies
¬g, that is, a state whereg holds cannot be reached.

Formalizing the above scenario, we describe next the proposed parameter syn-
thesis method.

Deductive Reachability Analysis. Assume the action system

Sys(z : Real+ → Tz)
∧
= begin var start, now : Real+, x : Real+ → Tx

•

now := 0 ; start := now ; S0 ; UT ;

do g1.now → S1 ; UT [] . . . [] gn.now → abort od

end : p1, . . . , pm,

with p1, . . . , pm parameters, and

UT
∧
= start := now ; now := min{t′ ≥ now | gg.t′}

Also, assume thatI is a fixed invariant ofSys. This means that the following
conjunction holds:

(true {|now := 0 ; start := now ; S0 ; UT |} I) ∧

(g1 ∧ I {|S1 ; UT |} I) ∧ . . . ∧ (gn−1 ∧ I {|Sn−1 ; UT |} I)

Then, the problem of synthesizing the conditions that the parameters should
satisfy reduces to finding a sufficient relationR(p1, . . . , pm), other thanfalse, such
that

(I ⇒ ¬gn) ⇐ R(p1, . . . , pm)

The construction of the invariant mentioned above follows an incremental pat-
tern, which starts with a basic invariant that characterizes the functional behavior
of the hybrid system. Then, this initial invariant is strengthened by other non-
conflicting invariants (that is,I2 ; ¬I1). Each added property incorporates new
information with respect to a state variable.

Hence, our method follows closely the deductive approaches to verification, in
which therule of invarianceis applied for proving an invariance property [44, 104].
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Although the method is suited for such purposes, the creativity required byfinding
sufficiently strong invariants makes it more difficult to apply.

Abstract interpretation[66] carried out through predicate abstraction has been
recently applied by many researchers, for computing approximations of a timed
model [89, 142]. The approximation predicates are computed via stepwise refine-
ment. One could for instance use this method as an automated way of finding
suitable invariants for parametric CAS.

Alternatively, symbolic reachability analysis techniques, as implemented in the
model-checker TREX [48] can be applied for parameter synthesis. Also,the tool
HYTECH [87, 88] could be employed for a similar task. Nonetheless, model-
checking algorithms may fail to terminate due to several potential causes: number
of clocks, parameter types and ways in which parameters are related.

5.2.1 Applying Deductive Synthesis on the Temperature Control Sys-
tem

Returning to our nuclear reactor example, we recall that if the temperature rises to
its maximum and can not decrease because no rod is available, a complete shut-
down is required.

Let us remind the reader that the following relations hold:

∆θ = θM − θm (maximum temperature difference)
τr = ∆θ/vr (time to increaseθ from θm to θM )
τ1 = ∆θ/v1 (cooling time using rod1)
τ2 = ∆θ/v2 (cooling time using rod2)

Here, we assume that we could not figure out the correct relationship, other than
τr ≥ T , of parametersτr, τ1, τ2, T , which guarantees that the shutdown condition
never holds. Consequently, we embark on synthesizing the respective relation, by
applying the combined method of incremental invariant construction, and invari-
ance proof. The problem is to find theweakestparameter relationship. According
to the method presented in the previous section, we need to build an invariant that
satisfies

I ⇒ ¬(state.now = 0 ∧ θ.now = θM ∧ x1.now < T ∧ x2.now < T )

⇐ R(τr, τ1, τ2, T ) (5.3)

Proof Technique. In general, as also demonstrated in the previous chapters, one
should employ the weakest precondition semantics of statements for proving prop-
erties of (continuous) action systems. However, here we decide to resort to proving
invariance byforward analysis, which assumes computations ofstrongest postcon-
ditionsof statements, with respect to a given precondition.

Our decision is justified by the fact that timed weakest precondition compu-
tations are long and difficult to follow (see Appendix A-5). Even if, in principle,
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forward analysis is weaker then backward analysis, we are backed in this choice
by the fact that all the statements that we are reasoning about, in this particular
example, are assignments, hence they terminate. Also, since there are no unde-
fined expressions, one does not run the risk of not catching abortion of execution
of statements. The third reason has to do with lack of automation - currently, we
do not have a tool for performing weakest precondition computations on CAS.

Let us assume the Hoare triple,{p}S {q}, p, q predicates, denoting thepartial
correctness ofS with respect to preconditionp and postconditionq. Introduced
by Dijkstra and Scholten [72], thestrongest postcondition predicate transformer,
denoted bysp.S.p, holds in those final states for which there exists a computation
controlled byS, which belongs to the class“initially p” . Proving the Hoare triple
reduces then to showing that (sp.S.p ⇒ q) holds. Thestrongest postcondition
rulesfor the assignment statement, and for sequential composition are as follows:

sp.(x :− (λt · e)).p(x) ≡ x = (λt · e) ∧ (∃x · p(x))

sp.(S1 ; S2).p ≡ sp.S2.(sp.S1.p), ∀p

In the following, we apply this technique as such.
Basic Invariant. We start by generating the statechart of the temperature control
system, just to get a first approximation of the invariant. Then, we keep adding
information to the system states, in order to figure out an invariant strong enough
to ensure safety, provided that some relationR(τr, τ1, τ2, T ) holds.

Figure 5.2 shows the states that the system can be in, and the properties that
hold in each state. It is essentially a hybrid automaton view of the temperature
control system, and it describes a first system property as follows:

I
∧
= (∀t ∈ [start, now) • (5.4)

(state.start = 0 ⇒ (state.t = 0 ∧

dθ/dt = vr ∧

dx1/dt = 1 ∧

dx2/dt = 1 ∧

θ.start = θm ∧ (x1.start = 0 ∨ x2.start = 0)))

∧ (state.start = 1 ⇒ (state.t = 1 ∧

dθ/dt = −v1 ∧

dx1/dt = 1 ∧

dx2/dt = 1 ∧

θ.start = θM ∧ x1.start ≥ T ))

∧ (state.start = 2 ⇒ (state.t = 2 ∧

dθ/dt = −v2 ∧

dx1/dt = 1∧
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dx2/dt = 1 ∧

θ.start = θM ∧ x2.start ≥ T ))

∧ (state.start = 3 ⇒ (θ.start = θM∧x1.start < T∧x2.start < T )))

Lemma 3 The predicateI defined by (5.4) is an invariant of the action system
T CS, described in Figure 5.3.

The invariant thus shows the basic continuous behavior in each state, as well as
the discrete transitions. It is easy to check thatT CS has the properties mentioned
in (5.4). By inspecting each guard and action body ofTCS, the fact thatI is an
invariant follows trivially.
Finding a Stronger Invariant. The invariantI that we have just extracted is not
good enough, as condition (5.3) is not satisfied for anyR(τr, τ1, τ2, T ) other than
false. Thus, we need to strengthenI further.

Adding information on top of the basic behavior, encapsulated in predicate
(5.4), leads to a new invariant. We add the propertyθ ≤ θM , which is part of the
safety condition, to each state, respectively. Then, we get:

I ′ ≡ (∀t ∈ [start, now) •

(state.start = 0 ⇒ (θ.t ≤ θM ∧

state.t = 0 ∧

dθ/dt = vr ∧

dx1/dt = 1 ∧

dx2/dt = 1 ∧

θ.start = θm ∧ (x1.start = 0 ∨ x2.start = 0)))

∧ (state.start = 1 ⇒ (θ.t ≤ θM ∧

state.t = 1 ∧

dθ/dt = −v1 ∧

dx1/dt = 1 ∧

dx2/dt = 1 ∧

θ.start = θM ∧ x1.start ≥ T ))

∧ (state.start = 2 ⇒ (θ.t ≤ θM ∧

state.t = 2 ∧

dθ/dt = −v2 ∧

dx1/dt = 1 ∧

dx2/dt = 1 ∧

θ.start = θM ∧ x2.start ≥ T ))

∧ (state.start = 3 ⇒ θ.start = θM ∧ x1.start < T ∧ x2.start < T ))
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Lemma 4 PredicateI ′ is an invariant ofTCS.

Proof. Let us show that:

Iθ
∧
= (∀t ∈ [start, now) •

(state.start = 0 ⇒ (θ.t ≤ θM ∧ state.t = 0))

∧ (state.start = 1 ⇒ (θ.t ≤ θM ∧ state.t = 1)) (5.5)

∧ (state.start = 2 ⇒ (θ.t ≤ θM ∧ state.t = 2)))

is a property of the temperature control system.
We apply standard forward analysis (of computing strongest postconditions as

shown above) on the translated model of the TCS. Thus, we have to provethat
Iθ, given by (5.5), is established by the initialization statement, and that it is also
preserved by each action. We show here the proofs for the initialization statement
and for action 1 (cooling with rod1). The calculation ofgg needed in the proof is
also outlined. We assume thatv1, v2, vr ∈ Real+ − {0}, θm ≥ 0, θM ≥ 0, and
θ0 ≤ θM . We also assume that the choice of the rod to use as coolant is demoni-
cally nondeterministic, in case both rods are available.

(5.5 a) Initialization. We have to prove thattrue {|S0 ;UT |} Iθ holds, whereS0 is
the initialization statement ofT CS. BecauseS0 ; UT terminates, we will actually
prove that{true}S0 ; UT {Iθ} holds.

The initialization statement establishes the following strongest postcondition,
sp.(S0 ; UT ).true:

now = 0

∧ state = (λt · 0)

∧ c = (λt · t)

∧ x1 = (λt · T1 + c.t)

∧ x2 = (λt · T2 + c.t)

∧ θ = (λt · θ0 + vr ∗ t)

∧ start = now

∧ now′ = min{t′ ≥ now | gg.t′}

We assume thatsp.(S0 ; UT ).true holds. Next, we need to make sure that the
partial invariantIθ is satisfied after the initial assignments. Thus, we have that

Iθ[start := 0, now := now′, state :− (λt · 0), θ :− (λt · θ0 + vr ∗ t)]

≡ { substitute updated variables in the invariant}

(∀t ∈ [0, now′) •

(λt · 0).0 = 0 ⇒ (λt · θ0 + vr ∗ t).t ≤ θM ∧ (λt · 0).t = 0

∧(λt · 0).0 = 1 ⇒ (λt · θ0 + vr ∗ t).t ≤ θM ∧ (λt · 0).t = 1

∧(λt · 0).0 = 2 ⇒ (λt · θ0 + vr ∗ t).t ≤ θM ∧ (λt · 0).t = 2)
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≡ { λ reduction, logic}

(∀t ∈ [0, now′) • θ0 + vr ∗ t ≤ θM )

≡ {now′ = min{t′ ≥ 0 | θ0 + vr ∗ t′ = θM}, assumptionθ0 ≤ θM}

(∀t, 0 ≤ t < (θM − θ0)/vr
• vr ∗ t ≤ (θM − θ0))

≡ { logic }

true

In the outlined proof, we had to evaluate the disjunction of the guards, at time
t′, to be able to depict the exactnow′. To make the calculation explicit, let us first
see what the expressiongg.t′ actually translates into:

gg.t′ ≡ (λt · state.t = 0 ∧ θ.t = θM ∧ x1.t ≥ T ).t′ ∨

(λt · state.t = 1 ∧ θ.t = θm).t′ ∨

(λt · state.t = 0 ∧ θ.t = θM ∧ x2.t ≥ T ).t′ ∨

(λt · state.t = 2 ∧ θ.t = θm).t′ ∨

(λt · state.t = 0 ∧ θ.t = θM ∧ x1.t < T ∧ x2.t < T ).t′

Returning to our particular case, we then have:

gg.t′[θ :− (λt · θ0 + vr ∗ t)]

≡

gg[θ :− (λt · θ0 + vr ∗ t)].t′

≡ {(state.t′ = 0 ∧ (λt · θ0 + vr ∗ t).t′ = θM ∧ x1.t
′ ≥ T ) ∨

(state.t′ = 1 ∧ (λt · θ0 + vr ∗ t).t′ = θm) ∨

(state.t′ = 0 ∧ (λt · θ0 + vr ∗ t).t′ = θM ∧ x2.t
′ ≥ T ) ∨

(state.t′ = 2 ∧ (λt · θ0 + vr ∗ t).t′ = θm) ∨

(state.t′ = 0 ∧ (λt · θ0 + vr ∗ t).t′ = θM ∧ x1.t
′ < T ∧ x2.t

′ < T )}

gg[θ :− (λt · θ0 + vr ∗ t), state :− (λt · 0)].t′

≡ {λ-reduction}

(0 = 0 ∧ θ0 + vr ∗ t′ = θM ∧ x1.t
′ ≥ T ) ∨

(0 = 1 ∧ θ0 + vr ∗ t′ = θm) ∨

(0 = 0 ∧ θ0 + vr ∗ t′ = θM ∧ x2.t
′ ≥ T ) ∨

(0 = 2 ∧ θ0 + vr ∗ t′ = θm) ∨

(0 = 0 ∧ θ0 + vr ∗ t′ = θM ∧ x1.t
′ < T ∧ x2.t

′ < T )

≡ {logic}

(0 = 0 ∧ θ0 + vr ∗ t′ = θM )

≡ {logic}

θ0 + vr ∗ t′ = θM
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Thus,Iθ holds after the initialization, which means that it holds from moment 0
until the next moment whenθ = θM . In the following, we compute the verification
condition for the first action (cooling with rod1) and show that it preserves the
invariant.

(5.5 b) Cooling with rod1. We assume thatIθ holds on[start, now), thatg1 is
true and that the local variables have been updated by the assignments of the body
of action 1. Thus, we affirm the strongest postconditionsp.(action1).Iθ:

(∃ start, now, state, θ, c · (∀ t ∈ [start, now) · Iθ))

∧ state.now = 0 ∧ θ.now = θM ∧ x1.now ≥ T

∧ c′ = (λt · t − now)

∧ θ′ = (λt · θM − v1 ∗ c.t)

∧ state′ = (λt · 1)

∧ start′ = now

∧ now′ = min{t′ ≥ now | gg.t′}

We now check whether the added informationIθ is true after the assignments
of action 1. Hence, we have that

Iθ[start := start′, now := now′, c :− c′, θ :− θ′, state :− state′]

≡ { definition ofI ′θ}

(∀t, start′ ≤ t < now′ •

state′.start′ = 0 ⇒ (θ′.t ≤ θM ∧ state′.t = 0) ∧

state′.start′ = 1 ⇒ (θ′.t ≤ θM ∧ state′.t = 1) ∧

state′.start′ = 2 ⇒ (θ′.t ≤ θM ∧ state′.t = 2)

≡ { replace updated variablesstate′, θ′, λ-reduction,

computenow′ = now + τ1 }

(∀t, now ≤ t < (now + τ1) •

1 = 0 ⇒ (θM − v1 ∗ (t − now) ≤ θM ∧ 1 = 0) ∧

1 = 1 ⇒ (θM − v1 ∗ (t − now) ≤ θM ∧ 1 = 1) ∧

1 = 2 ⇒ (θM − v1 ∗ (t − now) ≤ θM ∧ 1 = 2)

≡ { logic }

(∀t, now ≤ t < (now + τ1) • θM − v1 ∗ (t − now) ≤ θM )

≡ {θ = θM − v1 ∗ (t − now) is decreasing starting fromθM , v1 > 0,

(t − now) ≥ 0}

true
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The calculation ofgg.t′, in this case, is as follows.

gg[state := (λt · 1)].t′

≡ {((λt · 1).t′ = 0 ∧ θ.t′ = θM ∧ x1.t
′ ≥ T ) ∨

((λt · 1).t′ = 0 ∧ θ.t′ = θm) ∨

((λt · 1).t′ = 0 ∧ θ.t′ = θM ∧ x2.t
′ ≥ T ) ∨

((λt · 1).t′ = 0 ∧ θ.t′ = θm) ∨

((λt · 1).t′ = 0 ∧ θ.t′ = θM ∧ x1.t
′ < T ∧ x2.t

′ < T )}

≡ {λ-reduction}

(1 = 0 ∧ θ.t′ = θM ∧ x1.t
′ ≥ T ) ∨

(1 = 1 ∧ θ.t′ = θm) ∨

(1 = 0 ∧ θ.t′ = θM ∧ x2.t
′ ≥ T ) ∨

(1 = 2 ∧ θ.t′ = θm) ∨

(1 = 0 ∧ θ.t′ = θM ∧ x1.t
′ < T ∧ x2.t

′ < T )

≡ {logic}

θ.t′ = θm
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Figure 5.15: TCS state transition diagram with added property,θ ≤ θM .

Given the above, we have proved that action 1 preservesIθ. Consequently,
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now,I ′ ≡ I ∧ Iθ is preserved after transitionstate0 → state1. The proofs for the
other possible safe transitions are similar, and are omitted here. The updatedstate
transition diagram is shown in Fig. 5.15.

Constructing the Final Invariant and Synthesizing the Constraints on Param-
eters. Our final goal is to provide sufficient assurance that the system evolves on
the safe side. Recall that the safety property reduces to proving first that in any
state,θ ≤ θM . Moreover, whenever the system is instate0 andθ = θM , there
should always be (at least) one rod available for cooling:

state = 0 ∧ θ = θM ⇒ (x1 ≥ T ∨ x2 ≥ T )

The latest invariantI ′ is still too weak to fulfill requirement (5.3), for any other
R exceptR ≡ false. Thus, we keep on adding information and strengthening
the invariant. Clearly, the information that is missing addresses clocksx1 andx2,
which measure the elapsed time since the latest use of rod1 and rod2, respectively.

0

d / dt = vr

dx1 / dt = 1

dx2 / dt = 1

now � start = r

t [start, now) � .t M

((x1.t = t � start x2.t r + 1 + t � start)

(x2.t = t � start x1.t r + 2 + t � start))

= M x1 T

= m

x1 := 0

= M x1 T x2 T
= M x2 T

= m

x2 := 0

3

false

1

d / dt = - v1

dx1 / dt = 1

dx2 / dt = 1

now � start = 1

t [start, now) �

.t M x2.t r + t � start

2

d / dt = - v2

dx1 / dt = 1

dx2 / dt = 1

now � start = 2

t [start, now) �

.t M x1.t r + t � start

Figure 5.16: TCS statechart with properties regardingx1, x2

Besides properties ofx1 andx2, we also add corresponding information about
the time interval betweenstart andnow, in each state. For example, considering
state0, one knows that any transition from this state to any other reachable state is
triggered by the equalityθ = θM . The necessary time forθ to increase toθM is τr,
therefore it is obvious that(now − start = τr) is a property ofstate0. We carry
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out similar judgements forstate1 andstate2, and we add this new information to
the latest system diagram. As a result, we get the diagram of Fig.5.16.

We denote the new property byIx:

Ix (5.6)

≡ (∀t ∈ [start, now) •

(state.start=0⇒

(((x1.t = t − start ∧ x2.t ≥ τr + τ1 + t − start)

∨(x2.t = t − start ∧ x1.t ≥ τr + τ2 + t − start))

∧(now − start = τr)))

∧ (state.start = 1 ⇒

((x2.t ≥ τr + t − start) ∧ (now − start = τ1)))

∧ (state.start = 2 ⇒

((x1.t ≥ τr + t − start) ∧ (now − start = τ2)))

∧ (state.start = 3 ⇒ false))

Then, we can claim the following lemma.

Lemma 5 The predicateIf ≡ I ′ ∧ Ix is an invariant ofT CS.

Proof. For brevity, we are going to prove that condition (5.6) is preserved afterre-
leasing rod1, that is, after transitionstate1 → state0, whenx1 is reset. The proofs
for the initialization statement, and for cooling with rod1 or rod2 are simpler, thus
we omit them. However, one needs to choose the values ofT1 andT2, so thatIx

holds right from the beginning. This means that we can have either (T1 = τr + τ2

andT2 = 0), or (T2 = τr + τ1 andT1 = 0). Even without this choice, the invariant
will hold after both rods have been used once.

We assume the following strongest postcondition:

(∃ start, now, state, θ, c, x1, x2 · (∀ t ∈ [start, now) · I ′ ∧ Ix))

∧ state.now = 1 ∧ θ.now = θm

∧ c′ = (λt · t − now)

∧ x′
1 = (λt · t − now)

∧ θ′ = (λt · θm + vr ∗ c.t)

∧ state′ = (λt · 0)

∧ start′ = now

∧ now′ = min{t′ ≥ now | gg.t′}
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After the respective updates, we have that

Ix[start := start′, now := now′, state :− state′, x1 :− x′
1]

≡ (∀t ∈ [start′, now′) •

state′.start′ = 0 ⇒

((x′
1.t = t − start′ ∧ x2.t ≥ τr + τ1 + t − start′)

∨(x2.t = t − start′ ∧ x′
1.t ≥ τr + τ2 + t − start′))

∧ state′.start′ = 1 ⇒ (x2.t ≥ τr + t − start′)

∧ state′.start′ = 2 ⇒ (x1.t ≥ τr + t − start′)

∧ state′.start′ = 3 ⇒ false)

≡ {start′ = now, state′.now = 0, logic}

(∀t ∈ [now, now′) •

((x′
1.t = t − now ∧ x2.t ≥ τr + τ1 + t − now)

∨(x2.t = t − now ∧ x′
1.t ≥ τr + τ2 + t − now))

≡ {substitutingx′
1.t = t − now, logic}

(∀t ∈ [now, now′) • x2.t ≥ τr + τ1 + t − now)

≡ {state.start = 1, x2.t ≥ (τr + t − start) in [start, now),

thusx2.now ≥ (τr + now − start) ⇒ x2.now ≥ τr + τ1,

dx2/dt = 1 in [now, now′)}

true

Above,

gg[state :− (λt · 0)].t′

≡ {substitution}

(0 = 0 ∧ θ.t′ = θM ∧ x1.t
′ ≥ T ) ∨

(0 = 1 ∧ θ.t′ = θm) ∨

(0 = 0 ∧ θ.t′ = θM ∧ x2.t
′ ≥ T ) ∨

(0 = 2 ∧ θ.t′ = θm) ∨

(0 = 0 ∧ θ.t′ = θM ∧ x1.t
′ < T ∧ x2.t

′ < T )

≡ {logic}

θ.t′ = θM

Therefore, we have proved our claim.
Action 4 (release rod2) is symmetric to action 2, hence, following the same

line of proof, the invariant also holds after transitionstate2 → state0.

We are left with showing thatIf is sufficient to satisfy (5.3), that is

(If ⇒ ¬g5) ⇐ R(τr, τ1, τ2, T ) (5.7)
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Condition (5.7) reduces to:

(∀t ∈ [start, now) •

state.t = 0 ⇒ (((x1.t = t − start ∧ x2.t ≥ τr + τ1 + t− start)

∨(x2.t = t − start ∧ x1.t ≥ τr+ τ2+ t− start))

∧ now − start = τr))

⇒ ¬(state.now = 0 ∧ θ.now = θM ∧ x1.now < T ∧ x2.now < T )

≡ {now − start = τr in state0}

(x1.now = τr ∧ x2.now ≥ 2τr + τ1) ∨

(x2.now = τr ∧ x1.now ≥ 2τr + τ2)

⇒ (x1.now ≥ T ∨ x2.now ≥ T )

⇐ {logic}

(x2.now ≥ 2τr + τ1 ∨ x1.now ≥ 2τr + τ2)

⇒ (x1.now ≥ T ∨ x2.now ≥ T )

≡ {logic}

2τr + τ1 ≥ T ∧ 2τr + τ2 ≥ T

This result implies further that, if parametersv1, v2, vr, andT are chosen to
satisfy the synthesized relation, the undesired shutdown state is not reachable.

5.3 Summary and Related Work

In this chapter we have, first of all, presented a simulation tool for hybrid sys-
tems modeled as CAS. We have built the tool using Mathematica, a commercial
program [156]. The tool takes a description of any CAS as input, and provides
automatically a symbolic simulation of the system, up to a given maximum time.
The restrictions on the simulation are essentially those of Mathematica. Never-
theless, more efficient algorithms for evaluating action systems guards needto be
implemented.

Symbolic manipulation is an efficient way of simulating a model execution.
Plotting the discrete and also continuous model variables as functions of time, with
infinite precision, makes the simulation available even without knowing the sam-
pling period to be used for the actual implementation. Thus, in many cases our tool
eliminates the need for introducing tolerances in the model. This is true especially
when the physical phenomena of the hybrid system are described by linear differ-
ential equations. In case the hybrid model is nonlinear, Mathematica could solve
the respective nonlinear differential equations either symbolically or numerically.
It then follows that, in case we get a numerical solution, we need to introducetol-
erances in our action system model and rely on an approximation of the behavior
of the variables.
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We have applied our simulation technique on two case studies: the tempera-
ture control system of a nuclear reactor core, which uses two independent rods for
cooling, and a two-tank control system. In the first example, given a certain set
of parameters, the objective of the simulation has been to make sure that the re-
actor never reaches a critical temperature without at least one of the cooling rods
being available, to avoid a shutdown of the reactor. The simulation results helped
in correlating the model with the actual system behavior.

One of the main advantages of using CAS for modeling hybrid systems is that
we now have both a solid proof technique for proving properties of the systems,
as well as a powerful simulation technique that we can use to analyze and explore
the systems. Simulation can either be used as a precursor to more comprehensive
proofs, to iron out bugs in the model, or as an alternative to a complete correctness
proof.

Still in this chapter, we have showed how the usual deductive technique of
proving inductive invariants is applied on action systems with explicit time. We
have done this in order to synthesize sufficient parametric conditions that guar-
antee a correct operation of the analyzed hybrid system. The method relieson
strengthening an initial invariant, by adding information regarding system vari-
ables. We stop when the invariant is strong enough to make the undesired set of
states not reachable. We show that this happens if a certain parametric relation-
ship holds. The relationship follows from proving that the invariant implies the
negation of the abort condition. Nevertheless, there is no guarantee thatthe suc-
cessive strengthening steps will ever achieve this goal, nor is there any guidance
as to which predicates to use for strengthening. Even so, the fact that themethod
seems to work on complex hybrid system models might lure one into employing
an additional tool that would facilitate finding suitable predicates. Details on this
issue are provided in the next paragraph.

We have applied the above method for temperature control, giving a formal
proof for a safety property.

Related Work. Many simulation packages have been proposed and applied for
the systematic analysis of hybrid systems [74, 79, 124, 125]. Comprehensive over-
views and comparisons of some of the most popular simulation tools for hybrid sys-
tems, such as DYMOLA, SHIFT, SIMULINK/STATEFLOW, GPROMS, BASIP
etc. are given by Kowalewski et al. [109], and Mosterman [132].

Reachability analysis for hybrid systems is among the most important and diffi-
cult problems. Alur, Henzinger et al. propose algorithmic analysis of suchsystems,
modeled as hybrid automata [7, 14]. Their techniques are based on constructing
the reachable region of linear hybrid models. The authors also provide decidabil-
ity and undecidability results for classes of linear hybrid systems (see also [108]).
For general hybrid systems, the algorithmic analysis can be applied with certain
limitations.

Alur et al. [7] use symbolic model-checking techniques, for reachability anal-
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ysis of timed automata (see also [92]). The construction techniques are illustrated
on the temperature control system that we have also analyzed. The tool KRONOS
[67] is used to automate the computation of the characteristic set of state predicates,
under particular values of the parameters.

In comparison with the cited approaches, we give a general mathematical proof
to parametric reachability problem. The method is based on traditional strongest
postcondition computation, and it is applicable even in those cases where relation-
ships between parameters can not be guessed. Parametric verification can be han-
dled by model-checking tools like UPPAAL [117], and parameter synthesis can be
automatically carried out by, for example, HYTECH [87, 88] or TREX [48]. UP-
PAAL can not be used to synthesize constraints on parameters, one should guess
the respective parametric relationship instead, and instantiate it for verification. On
the other hand, model-checkers HYTECH and TREX are able to perform param-
eter synthesis, in some cases. For example, as stated by Henzinger et al. [93],
systems with complex relationships between multiple parameters and timing con-
stants can quickly lead to arithmetic overflow, when analyzed with HYTECH. In
contrast, analysis with a single parameter is often successful.

Whenever reachability construction fails, the reachability verification method
can be applied [94]. First, the user has to guess (heuristically) the reachable region,
and then verify that the guess is correct. The method is almost fully automated
(there are no automated guess heuristics), but in case the guessed region is not
directly inductive, new variables and constraints have to be added.

In principle, dedicated model-checking techniques [7] provide only an asser-
tion that the hybrid system model satisfies a safety property. Our approach, like
other deductive approaches to reachability verification, relies on proving an invari-
ance property. The method offers useful key insights on the system behavior. In
practice, this may be important if one wants to improve the functionality of the sys-
tem, at later stages. Adding information to system states might ease the processof
refinement. A major drawback is the task of finding appropriate invariants. Tools
for guided invariant generation, like the one within SAL [43] can help the designer
overcome this shortcoming. In SAL, the underlying technique of invariant con-
struction is based on a combination of least and greatest fixed-point computation
of reachable states [150].

The verification methodology based onabstractedautomata developed by Puri
and Varaiya [138] faces the inconvenience that the created abstractions depend on
the property to be proved. Different properties may require differentabstractions
of the same hybrid system.

Recently, important progress has been done in the emergent area of reachability
analysis of hybrid systems viapredicate abstraction[8, 43]. The technique is based
on abstracting the infinite state-space of a hybrid system into a finite representa-
tion, by identifying each state of the abstract state space with a truth assignment
to the abstraction predicates [80]. Then, if a temporal logic formula holds for the
abstracted system, it also holds for the original one.
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Chapter 6

Building Uniprocessor
Priority-driven Real-Time
Schedulers

As proved in chapter 3, in a concurrent system, it is not necessary to specify the
exact order in which processes execute. The general behavior of the program ex-
hibits significant nondeterminism. If the program is correct then its functional
outputs will be the same regardless of internal behavior or implementation details.

While the program’s outputs will be identical to all the possible interleavings,
the timing behavior will vary considerably [52]. If one of the processes has a strict
deadline, then perhaps only interleavings in which that process is executed first will
meet the program’s temporal requirements. Areal-time systemneeds to restrict the
nondeterminism found within concurrent systems [52]. This process is known as
scheduling.

A real-time schedulercan be seen as a controller of sets of real-time tasks. It
establishes the order in which tasks are dispatched, decides the starting time of
execution, for each individual task, and it also regulates the task’s access to shared
resources.

Task priorities are assigned with respect to predefined algorithms. However,
their programming discipline is not well supported by existing development tools
[78]. Thus, a mathematically proven correct-by-construction method for building
generic real-time schedulers could be beneficial. We introduce, in this chapter,
such a precise method [58]. Nevertheless, this requires work at a high level of
abstraction, that is, without consideration of functionality.

Consideringn real-time tasks,T (1), T (2), . . . , T (n) that we assume schedu-
lable, we want to derive a scheduler that controls the tasks such that all of their
executions complete by the respective deadlines. We call this condition thetime-
liness conditionand we model it as predicateqt. Given the fact that the scheduler
gives priorities to tasks according to some scheduling algorithm, we denote this
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policy conditionas predicateqpol. We should also require from the scheduler to
grant the CPU to no more than one task at a time. This is themutually exclusive
execution condition, qme.

In short, we start with a conjunctive specification of the collection of tasks.This
model asserts the specific initial states that the system should start from. Further,
we enforcethe above mentioned predicates that guarantee a correctly scheduled
system, by applying the refinement rules of assertion propagation and dropping an
assertion (see chapter 2). Consequently, the resulting system representation is free
of assertions, which is indeed what we aim for.

The correctness conditions that should be enforced by the scheduler are mod-
eled asalwaysproperties (the scheduler should respect¤ (qt ∧ qme ∧ qpol)). To
be able to construct a correct scheduler, we generalize to CAS the expected result
proved by Back and von Wright [38]: enforcement ofalwaysproperties reduces to
invariance proofs on action systems.

The method leads, eventually, to an implementation of the real-time system
model. We exemplify the proposed construction strategy on theDeadline-Monoto-
nic (DM) scheduling policy, which is described in the following section. We con-
sider tasks to be independent; we also disregard any other resource allocation than
the CPU.

Employing a similar technique, we also tackle the development ofEarliest -
Deadline - First(EDF) scheduling programs, for periodic tasks (the mechanism
underlying the EDF algorithm is also discussed in section 6.1). The construction is
completed by a simulation-based validation method, where the constructed model
is simulated up to the least-common-multiple of the periods of the participating
tasks. The simulation is carried out with our CAS symbolic simulator introduced
in chapter 5.

6.1 Uniprocessor Scheduling of Real-Time Tasks

In this section, we review the definitions and results of the real-time scheduling
theory, which are essential to understanding the rest of the chapter.

Real-time systems are systems whose correctness depends on both the accuracy
of the output result, as well as on the time at which the latter is delivered.

A real-time taskT (i) is in general characterized by the following attributes:

• minimum inter-arrival time, P [i],

• worst-case execution time, E[i],

• deadline, D[i], and

• priority, pr[i].

We restrict our analysis to tasks withD[i] ≤ P [i].
The temporal requirements of ahard real-time system imply thatall the par-

ticipating tasks complete the execution by their deadlines.Softreal-time programs
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accept arbitrary omissions in meeting deadlines, at run-time, yet within some pre-
defined tolerances with respect to completion times. Moreover, the system perfor-
mance degrades directly proportional to tardiness.

Tasks may beperiodic, meaning that they arrive at fixed intervals equal to
the periodsP [i], respectively; they can also besporadic, that is, the tasks arrive
irregularly, yet no sooner thanP [i] (the minimum inter-arrival time). The timing
behavior of a sporadic task is exemplified in Figure 6.1 [20].

T(i) released T(i) releasedT(i) releasedD[i] D[i]

P[i] P[i]

Figure 6.1: The execution of a sporadic task.

With priority-based scheduling, a high-priority process may be released during
the execution of a lower priority one. There are cases when tasks run to comple-
tion without interruption, no matter if a higher-priority task is waiting while the
current task is executing; such tasks are callednon-preemptible. When a task can
be interrupted from running, at any time, by a higher priority task, we say that the
respective task ispreemptible.

A fixed-priorityscheduling policy relies on assigning priorities to tasks, offline.
These priorities do not change during system execution. One of the most popular
such algorithm is theDeadline-Monotonic(DM) scheme, introduced by Leung and
Whitehead [118].

Deadline-Monotonic. Let us consider thatn preemptible, (hard) real-time tasks,
T S = {T (1), .., T (n)} execute on a single CPU. Under the mentioned assump-
tion, D[i] ≤ P [i],∀i ∈ [1..n], an optimal set of priorities can be obtained such that
(D[i] < D[j] ∨ (D[i] = D[j] ∧ i < j)) ⇒ pr[i] > pr[j], for all tasksT (i), T (j).
This means that the priorities of tasks are in the reverse order from their dead-
lines. If the CPU is free, the highest priority process among the waiting processes
is scheduled.

We say that a task isfeasible(or schedulable) if any of its instances finishes
execution before or at most at its deadline. Joseph and Pandaya [103]proposed a
method to determine thefeasibility (or schedulability) of a task by computing its
worst-casecompletion time(response time), according to the equation:

R[i] = E[i] + B[i] +
∑

j∈hp(i)

dR[i]/P [j]e ∗ E[j] (6.1)

Above,hp(i) is the set of higher priority tasks thanT (i), andB(i) is the maximum
blocking time caused by a concurrency control protocol protecting shared data. The
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ceiling valuedR[i]/P [j]e is the smallest integer greater or equal toR[i]/P [j]. The
last term (

∑

j∈hp(i)dR[i]/P [j]e∗E[j]) of equation (6.1) measures the interference
of higher priority tasks with the execution of taskT (i). The interference consists
of the computation time of all higher priority tasks that are released beforeD[i]
[20]. The (smallest) solution of equation (6.1) can be obtained by computing the
sequencer[i]n, n ∈ Nat defined by the recurrence relation below:

r[i]n+1 = E[i] + B[i] +
∑

j∈hp(i)

dr[i]n/P [j]e ∗ E[j] (6.2)

Above, r[i]0 is given an initial value of 0. The computation stops when a fixed
point is reached, that is,r[i]n+1 = r[i]n. This value is the worst-case response
time R[i]. A taskT (i) is feasible ifR[i] ≤ D[i]. If all the participating tasks are
feasible then the entire task set is declaredschedulableby the DM algorithm.

Task priorities can also be decided online, by employing adynamic priority
scheduling policy.

Earliest-Deadline First. Fordynamicpriority schedulers, the priority of a task is
recomputed at run-time. If scheduled by theEarliest-Deadline-First(EDF) algo-
rithm, the runnable processes are executed in the order determined by theabsolute
deadlines of the processes, the next process to run being the one with theshortest
(nearest) deadline. Although it is usual to know the relative deadlines of each pro-
cess (e.g. 10 ms after release), the absolute deadlines are calculated at run-time,
hence the scheme is described as dynamic.

Within the context of uniprocessor scheduling, it has been shown by Liu and
Layland [119] that EDF, which at each instant of time chooses for execution the
currently-active job with the smallest computed deadline, is anoptimalalgorithm.
This means that any feasible task system is guaranteed to be successfully scheduled
using EDF.

Schedulability analysisis the process of determining whether a collection of
tasks can be scheduled in such a manner that all task instances will complete by
their deadlines. When assumingD[i] ≤ P [i], the EDF schedulability analysis turns
out to be somewhat less straightforward than in the fixed-priority case.

6.2 Generic Approach
6.2.1 Enforcing the Required Conditions

To facilitate the formal analysis, we start by specifying the real-time system as
an unscheduled collection of tasks. Next, we construct a correct, implementable
scheduled system, under the assumption that the tasks are schedulable by some
supported algorithm. In the end, we decompose the obtained real-time system, by
refinement, into two modules: the CAS that models the set of tasks and the CAS
that models the scheduler.
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Assume that we have a way of describing the timeliness, policy and mutual ex-
clusion predicates, asqt, qpol, qme, respectively. We will show later in this chapter
their formal definitions. Since all three correctness conditions have to holdfor any
behavior of the system, it follows intuitively that they can be expressed as aglobal
“always” (¤) temporal property:

¤ q
∧
= ¤ (qt ∧ qme ∧ qpol)

Given the definition of the “always” property over discrete behaviors [38], we can
extend it totimed behaviors.

A timed behavior is a sequence of states, where each state is a tuple of the form
(x, y), with x : Real+ → Tx the local variables, andy : Real+ → Ty the global
ones. We can say that, for alltimed behaviorsb, we have:

b |= ¤ q iff (∀i · bi ∈ q),

whereq is a predicate.
In order to effectively enforce the scheduling predicates on sets of real-time

tasks, we apply the invariant-based inference rule for proving enforcement of “al-
ways” properties [38], to the timed case. This is shown in Lemma 6.

Lemma 6 Assume the following action system:

RT S
∧
= begin var start, now : Real+, x : Real+ → T • Init ; UT ;

do g1.now → S1 ; UT [] . . . [] gn.now → Sn ; UT od end

Then, scheduler correctness properties can be proved using invariants, as follows:

p ⇒ I g1.now∧I {|S1 ;UT |} I . . . gn.now∧I {|Sn ;UT |} I I ⇒ q

p {| do g1.now → S1 ;UT [] . . . [] gn.now → Sn ;UT od |} ¤ q

wherep, q are predicates that depend on time, and

UT
∧
= start := now ; now := min{t′ ≥ now | gg.t′}

The variable “start” denotes the beginning of the next time interval triggered by a
discrete transition.

Proof.

p {|do g1.now → S1 ; UT [] . . . [] gn.now → Sn ; UT od |} ¤ q
≡ {correctness rule [38], rule (2.10)}

p ⇒ (νx · q ∧ (¬g1.now ∨ S1.(UT.x)) ∧ . . . ∧ (¬gn.now ∨ Sn.(UT.x)))
⇐ {assumptions:p ⇒ I, I ⇒ q}

I ⇒ (νx · I ∧ (¬g1.now ∨ S1.(UT.x)) ∧ . . . ∧ (¬gn.now ∨ Sn.(UT.x)))
⇐ {greatest fixed point induction rule (2.14)}

I ⇒ I ∧ (¬g1.now ∨ S1.(UT.I)) ∧ . . . ∧ (¬gn.now ∨ Sn.(UT.I))
≡ {logic, assumptionsgi.now ∧ I ⇒ Si.(UT.I),∀ i ∈ [1..n]}

true
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Even if the result of the above lemma is not at all surprising, it is nevertheless
useful. If the correctness assertions required by the rule of Lemma 6 hold, it follows
that the required constraints are enforced. Consequently, a feasible schedule can
be constructed.

The first step is to find a predicateI
∧
= It ∧ Ime ∧ Ipol. PredicateIt ⇒ qt

has to be an invariant in order to guarantee timely completion of tasks executions.
In addition, two other types of constraints have to be enforced, for the real-time
system to operate correctly. They are the mutual exclusion, and the scheduling
policy conditions, that is,Ime ⇒ qme, andIpol ⇒ qpol, respectively. The first one
ensures that no more than one task at a time is granted the CPU, while the second
imposes the order in which tasks are given priorities for execution.

Since we aim for a scheduler that preserves the predicateI described above,
we model the loop of the systemRT S asdo {Choice.I} ; Choice od, where

Choice
∧
= g1.now → S1 ; UT [] . . . [] gn.now → Sn ; UT

Here,{Choice.I} represents the initial states that we are interested in. The infor-
mation supplied by the computed precondition{Choice.I} is then used to refine
the initial model, as shown in section 6.2.2.

Rather than carrying out the schedulability analysis on a complete real-time
system model, we assume that the set of tasks is schedulable and proceed toa step-
wise, correctness-preserving scheduler development. Then, our goal is to construct
a scheduler that schedules the system to meet all deadlines, according to the sup-
ported scheduling algorithm. In case tasks are to be scheduled by a fixed-priority
policy, we use the existing results of scheduling theory, presented at the beginning
of this chapter.

For a dynamic-priority scheme, the priorities are assigned at run-time, thus the
schedulability of the task set can not be checked offline, unless we consider only
integer points [159]. So, there is no established schedulability condition thatwe
can assume when starting to build the scheduled system. However, it is argued
that one approach for validating the schedulability of a task set is thesimulationof
the model, for a sufficiently long time, until the real-time system is in the periodic
state [52]. This interval of time is called thefeasibility interval. We apply this
method of validation, by simulating the real-time CAS model that we construct,
for theEarliest-Deadline-Firstprotocol. To accomplish this goal, we use the CAS
symbolic simulation tool, built in Mathematica.

6.2.2 Deriving the Final Scheduler Model by Refinement

As mentioned previously, our method of constructing the real-time system assumes
that, initially, we specify the latter asdo {Choice.I} ;Choice od, whereChoice
is the nondeterministic model of the task set. Next, we apply stepwise refinement,
targeting a final representation that is scheduled by the rules of a particular policy.
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The generic refinement steps are as follows:

{Choice.I} ; (g1.now → S1 ; UT [] . . . [] gn.now → Sn ; UT )
= {rule(2.19)}

{Choice.I} ; (g1.now → {g1.now ∧ Choice.I} ; S1 ; UT []
. . . [] gn.now → {gn.now ∧ Choice.I} ; Sn ; UT )

v {rewrite in context, strengthen guards}
{Choice.I} ; (g′1.now → {g1.now ∧ Choice.I} ; S1 ; UT []
. . . [] g′n.now → {gn.now ∧ Choice.I} ; Sn ; UT )

v {rule (2.20)}
g′1.now → S1 ; UT [] . . . [] g′n.now → Sn ; UT

= { notation}
Choicef

(6.3)

The idea is to remove all assertions, yet ensuring thatI holds after dropping
them. The result is an implementable model. In order to decrease the level of ab-
straction, and eventually reach a more efficient implementation, we go on and trace
refine the real-time model that contains the loopdo Choicef od. These transfor-
mations are supported by trace refinement rules for CAS. The rules are introduced
later in this chapter.

As a last step, we decompose the refined real-time system, in two modules.
We thus get a two-module implementation of the initial model, which consists of
the scheduler and the real-time tasks. In principle, the separate representation of
the online scheduler gives one the possibility to improve the performance of,or add
functionality to the scheduler, without necessarily modifying the task model. Thus,
a two-module description increases the flexibility in design, and the reusability
of the real-time system components, by decoupling scheduling issues from task
behavior. In order to decompose the real-time system model correctly, we apply
the prioritizing decomposition theorem, introduced by Sekerinski and Sere [141],
and presented in chapter 2.

In short, the development method that we propose combines theprecondition
analysistechnique withprogram derivation[35].

6.3 Preemptible Task Model
By definition, a preemptible task is one that can be interrupted from running at
some point in time. We model a generic preemptible, sporadic taskT (i), i∈ [1..n],
as a choice among five guarded actions defined by (6.4).

The model below does not encode any explicit scheduling algorithm, it rather
assumes a virtual scheduler. We abstract from the functional behavior, since it is
not relevant within this context. Each task can be in one of the four possiblestates,
sl (sleeping), wt (waiting for the CPU), ex (executing), andpt (preempted). If no
task has been released, thearrival clockca measures the time from0 to each task’s
release; after that, the same clock records the time elapsed between two consecutive
arrivals of each task. The vector variableofs denotes thearrival offsetof each task,
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that is, the arbitrary number of time units (including 0) beyondP [i], which might
pass before the next occurrence ofT (i). We record the execution time of each task
by clockce, and the task preemption time, by clockcp. All three clocksca, ce, and
cp are vectors of length equal to the number of tasks.

T (i)
∧
= state[i].now = sl ∧ ca[i].now = P [i] + ofs[i].now

→ ca[i] :− (λt · t − now) ; state[i] :− (λt · wt) ; UT
[] state[i].now = wt

→ ce[i] :− (λt · t − now) ; state[i] :− (λt · ex) ; UT
[] state[i].now = ex ∧ ce[i].now = E[i]

→ ce[i] :− (λt · 0) ; cp[i] :− (λt · 0);
[ ofs[i] :− x′ | ∀t ≥ now · x′.t ∈ Real+ ];
state[i] :− (λt · sl) ; UT

[] state[i].now = ex ∧ ce[i].now < E[i]
→ ce[i] :− (λt · ce[i].now);

cp[i] :− (λt · cp[i].now + t − now);
state[i] :− (λt · pt) ; UT

[] state[i].now = pt
→ ce[i] :− (λt · ce[i].now + t − now);

cp[i] :− (λt · cp[i].now) ; state[i] :− (λt · ex) ; UT

(6.4)

ex


Ce[i] :- (Ce[i].now + t - now)


Cp[i] :- Cp[i].now


Ca[i].now >= P[i] + ofs[i].now


Ce[i].now = E[i]


Ce[i].now < E[i]


now = 0


Ca[i] :- t

sl


Ce[i] :- 0     Cp[i] :- 0


[ ofs[i] :- x | x in Real+ ]


wt


Ca[i] :- t - now


pt


Ce[i] :- Ce[i].now


Cp[i] :- (Cp[i].now +t - now)


Figure 6.2: Preemptible task behavior as an STD.

Since the tasks are sporadic, their actual arrival times are not periodic;instead,
successive arrivals of the same task are separated by no less thanP [i] time units,
respectively. We model this behavior by requiring the clockca[i] to be equal to
P [i] + ofs[i].now, for the taskT (i) to become available. If we consider the col-
lection of available tasks, and the initial model of a task (6.4), shouldT (i) wait
for the CPU, it could start executing right away (the guard of the secondaction
holds) or, in case some other tasks are simultaneously waiting,T (i) could be post-
poned for an arbitrary time (since the choice of an action out of several enabled
ones is nondeterministic). When selected, the task changes its state toex, and
clock ce[i] is reset. Upon completion of execution, whence[i].t is E[i], the respec-
tive task returns to statesl, the execution and preemption clocks are both set to0,
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and the offset variable is nondeterministically assigned a nonnegative real value.
If the task is executing and, implicitly, its permission is removed by the virtual
scheduler, the task takes the transition to statept, the execution clock is frozen,
ce[i] :− (λt · ce[i].now), andcp[i] starts increasing linearly with time. When the
scheduler restores the task’s permission to execute, the latter returns toex, and the
clock ce[i] starts evolving again whilecp[i] is frozen. The vector variablestate
stores the current state of each task. Note that, in (6.4), we assume the worst-
case execution time of the task, thus, we check force[i].now = E[i], in order
to establish if the task has finished its execution. Observe also that the choice is
deterministic, since the guarded actions of taskT (i) are mutually exclusive. The
described task behavior is graphically represented as the state-transition diagram
(STD) of Figure 6.2.

By employing the quantified nondeterministic choice operator on the partici-
pating tasks, we can further describe the real-time task set, as the action system:

RT S ∧= begin var start, now : Real+,

state : array [1..n] of (Real+ → {sl, wt, ex, pt}),
ofs, ca, ce, cp : array [1..n] of (Real+ → Real+) •

now := 0 ; state :− (λt · wt) ; ca :− (λt · t) ;
[ ; 1 ≤ i ≤ n · [ ofs[i] :− x′ | ∀t · x′.t ∈ Real+ ] ] ; (6.5)

ce, cp :− (λt · 0) ; UT ;
do [ [] 1 ≤ i ≤ n · {T (i).I} ; T (i) ] od

end
Initially, the tasks are deemed to share a critical instant. That is why, atnow = 0,
they are all waiting for execution. The initial future assignments of clocksce,
cp stand for[ ; i · ce[i], cp[i] :− (λt · 0), (λt · 0) ]. The arrival clock elements
ca[i] start increasing linearly with time, and the offsetsofs[i] are assigned arbitrary
nonnegative real values.

6.4 Fixed-Priority Scheduling: The Deadline-Monotonic
Algorithm

The generic procedure outlined in the previous sections is applied first to the con-
struction of a real-time system scheduled by the Deadline-Monotonic algorithm.

6.4.1 Enforcing Conditions for Correct Scheduling

Timeliness, Mutual Exclusion, and DM Policy Conditions as Safety Require-
ments.We work under the following assumptions:

• the tasks are preemptible;
• R[i] ≤ D[i], whereR[i] is the worst-case completion time of each task,

and is computed by applying equations (6.1) and (6.2).
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When checking schedulability of a set of real-time sporadic tasks, we can ap-
proximate each sporadic task with a periodic one, of period equal toP [i] [20].

The second assumption implies that the set of tasks under analysis is schedula-
ble. Nonetheless, there also exists theorem-prover support for verifying schedula-
bility of sets of preemptible sporadic tasks, as the concurrency protocol ofPriority-
Ceilinghas been formalized and verified in PVS [73].

According to the method introduced in sections 6.2.1 and 6.2.2, we construct
the DM scheduled system by following the steps below.

• Firstly, we define the timeliness property that we want to enforce on the action
system (6.5). We express this condition as the following predicate:

qt
∧= ∀i · ∀t ∈ [start, now) ·

state[i].start = ex ⇒ ca[i].t + R[i]− (ce[i].t + cp[i].t) ≤ D[i]

In the above relation, we require that, if a task has just started to execute
(state[i].start = ex), the clockca[i].t should ensure that at the end of execu-
tion the deadlineD[i] is not exceeded, even under the worst-case response-time
scenario (that is, time to completion equalsR[i]). The case when the task has been
preempted (at least once) and it returns to execution is also considered, by adding
the value of the preemption clock,cp[i], to the current value of the execution clock
ce[i]. Next, we need to find a predicateIt ⇒ qt, and then computeT (i).It. We
choose:

It ≡ ∀i · ∀t ∈ [start, now) ·
(state[i].start = ex ⇒

(state[i].t = ex ∧ ca[i].t− (ce[i].t + cp[i].t) ≤ D[i]−R[i] ∧
ca[i].t = ca[i].start + t− start))

∧ (state[i].start = ex ∧ ce[i].start = 0 ⇒ cp[i].t = 0)

• Secondly, we perform the precondition analysis step. By successive application
of rules (2.10), (2.7), (2.4), the computed weakest precondition,T (i).It, is as fol-
lows.

T (i).It

≡ {succesive application of rules (2.10), (2.7), (2.6), (2.4)}
(∀j 6= i · T (i).Ij

t )
∧ (state[i].now = wt ⇒

(∀now′ · now′ = min{t′ ≥ now | ce[i].t′ ≤ E[i]} ⇒
(∀t∈ [now, now′)· ca[i].t−(t− now) ≤ D[i]−R[i] ∧

ca[i].t = ca[i].now + t− now)))
∧ (state[i].now = pt ⇒

(∀now′ · now′ = min{t′ ≥ now | ce[i].t′ ≤ E[i]} ⇒
(∀t∈ [now, now′)·

ca[i].t−(ce[i].now+(t− now) + cp[i].now) ≤ D[i]−R[i] ∧
ca[i].t = ca[i].now + t− now)))
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where

Ij
t ≡ ∀t ∈ [start, now) ·

(state[j].start = ex ⇒

(state[j].t = ex ∧ ca[j].t − (ce[j].t + cp[j].t) ≤ D[j] − R[j] ∧

ca[j].t = ca[j].start + t − start))

∧ (state[j].start = ex ∧ ce[j].start = 0 ⇒ cp[j].t = 0)

The detailed computation can be found in Appendix A-5.

• Thirdly, we derive the real-time model that preservesIt. We do this by prop-
agating the available context information, given as assertions, into the respective
guards, as outlined in section 6.2.2. We return toRT S and work on the generic
task model,T (i). Out of refining in context, the nondeterministic behavior of the
entire set of tasks is constrained with respect toIt. This reflects in strengthening
the second and fifth action guards of each task described by (6.4), respectively, by
imposing upper bounds on clocksca[i], for guard two, andca[i] − (ce[i] + cp[i])
for the last guard (i ∈ [1..n]).

Let us denote:new−now
∧
= now′ = min{t′ ≥ now | ce[i].t

′ ≤ E[i]}. We
then have:

{T (i).It} ; T (i)
v {substitute task model, rule (2.19), weaken assertion, logic}

{T (i).It};
(. . .
[] state[i].now = wt
→ { ∀ now′ · new−now ⇒ (∀t ∈ [now, now′)·

ca[i].t − (t − now) ≤ D[i] − R[i] ∧
ca[i].t = ca[i].now + (t − now))

};
ce[i] :− (λt · t − now) ; state[i] :− (λt · ex);
start := now ; now := min{t′ ≥ now | gg.t′}

. . .
[] state[i].now = pt
→ { ∀ now′ · new−now ⇒ (∀t∈ [now, now′)·

ca[i].t = ca[i].now + (t − now)) ∧
ca[i].t − (ce[i].now + (t − now) + cp[i].now) ≤ D[i] − R[i]

};
ce[i] :− (λt · ce[i].now + t − now) ; cp[i] : −(λt · cp[i].now);
state[i] :− (λt · ex) ; start := now;

now := min{t′≥ now | gg.t′}
)

(6.6)
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v {pull assertions through guards, drop assertions}
. . .
[] state[i].now = wt ∧ ca[i].now ≤ D[i] − R[i]
→ ce[i] :− (λt · t − now) ; state[i] :− (λt · ex);

start := now ; now := min{t′ ≥ now | gg.t′}
. . .
[] state[i].now = pt ∧ ca[i].now − (ce[i].now + cp[i].now) ≤ D[i]−R[i]
→ ce[i] :− (λt · ce[i].now + (t − now)) ; cp[i] : −(λt · cp[i].now);

state[i] :− (λt · ex) ; start := now ; now := min{t′≥ now | gg.t′}
= {notation}

T ′(i)

Due to Lemma 6, if we replace the new task form,T ′(i), of (6.6), in (6.5), we get
a real-time system model where the safety property¤ qt holds. The “three-step”
technique has led to a representation that preserves the timeliness predicateIt (it is
easy to check on the refined version of (6.5), where one replacesT (i) with T ′(i),
thatIt is indeed an invariant).

The refinement for timeliness is summarized in table (6.7).

T (i)
action initial guard guard strengthening predicate

wt → ex state[i].now = wt ca[i].now ≤ D[i] − R[i]
pt → ex state[i].now = pt ca[i].now − (ce[i].now + cp[i].now) ≤ D[i] − R[i]

(6.7)

Nevertheless, not only deadline-related constraints matter, but also beingable
to ensure, for each real-time task, the mutually exclusive access to CPU resources.
Consequently, we are not happy with a scheduled system that lets two tasksexe-
cute simultaneously. Therefore, we go on and enforce the mutual exclusion safety
condition.

qme
∧
= ∀i · ∀t ∈ [start, now) ·

state[i].start = ex ⇒ (∀j 6= i · state[j].t 6= ex)

An important system property is the fact that its state does not change during the
time interval[start, now). Hence, conditionqme is added with this property to get
Ime:

Ime ≡ ∀i · ∀t ∈ [start, now) ·

(state[i].start = ex ⇒ (∀j 6= i · state[j].t 6= ex))

∧ (state[i].start = s ⇒ state[i].t = s), s ∈ {sl, wt, pt}

Following a similar line of refinement as in (6.6), after propagation of the cor-
responding context information, that is,T (i).Ime, we get an improved version of
the task model, which guarantees mutually exclusive execution. The weakest pre-
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condition for the taskT (i) to establishIme is given below:

T (i).Ime

≡ {succesive application of rules (2.10), (2.7), (2.6), (2.4)}
(∀j 6= i · T (i).Ij

me)
∧ (state[i].now = wt ⇒

(∀now′ · now′ = min{t′ ≥ now | ce[i].t′ ≤ E[i]} ⇒
(∀t ∈ [now, now′) · (∀j 6= i · state[j].t 6= ex))))

∧ (state[i].now = pt ⇒
(∀now′ · now′ = min{t′ ≥ now | ce[i].t′ ≤ E[i]} ⇒

(∀t ∈ [now, now′) · (∀j 6= i · state[j].t 6= ex))))

In the above,Ij
me is similar toIme, with the difference that the indexi is replaced

by j.
Table (6.8) shows the guards that are affected by the second refinement.

T ′(i)
action T (i) guard guard strengthening predicate

wt → ex state[i].now = wt ∀j 6= i · state[j].now 6= ex
∧ ca[i].now ≤ D[i]−R[i]

pt → ex state[i].now = pt ∀j 6= i · state[j].now 6= ex
∧ ca[i].now − (ce[i].now + cp[i].now)

≤ D[i]−R[i]

(6.8)

We agree with the fact that the result of enforcing mutual exclusion is straightfor-
ward, thus we could have added this condition from the start, when modeling the
preemptible task. However, for the sake of consistency, we have chosen to carry
out a similar refinement as for the timeliness predicate.

Enforcingqt andqme on the task set is still not enough for ensuring a correct
scheduling. The first condition does guarantee that each task, taken separately,
terminates before or at its deadline, but it does not ensure the same in case multi-
ple tasks are simultaneously waiting for their turn. Not only deciding on the right
dispatch time of each task, but also the correct task execution order, based on pri-
orities, falls into the responsibility area of the embedded scheduler. Consequently,
we introduce the vector variablepr that models the fixed priority of each task,
respectively and we define the policy-related conditionqpol. The latter specifies
that the task chosen for execution is always the one with the highest priority of all
waiting or already preempted tasks.

qpol
∧= ∀i · ∀t ∈ [start, now) ·

(state[i].start = ex ⇒
(∀j 6= i · (state[j].start = sl ∧ ca[j].start < P [j]) ∨
((state[j].t = wt ∨ state[j].t = pt) ∧ pr[j].t < pr[i].t)))

∧ (state[i].start = pt ⇒
(∃j 6= i · state[j].t = wt ∧ pr[i].t < pr[j].t))
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Once a taskT (i) has started to execute, all the other tasks with lower priorities than
T (i) are either waiting or being preempted, or else they have not been releasedyet,
that is,state[j].start = sl ∧ ca[j].start < P [j]. In this way, the list of waiting
tasks is updated when the scheduler selects the highest priority task for execution.
We chooseIpol ⇒ qpol as follows:

Ipol ≡ qpol

∧ (∀j 6= i · pr[j].start < pr[i].start ⇒ pr[j].t < pr[i].t)

Next, we conduct a combined technique of precondition calculation and program
derivation, as for the other two properties. The refinement is shown in thetable of
Figure (6.3).

By applying logic, we can simplify the first and the third guards in Figure
6.3. Hence, the predicate(∀j 6= i · state[j].now 6= ex) can be dropped from the
corresponding guards of actionswt → ex andpt → ex.

T
s(i)

action T
′(i) guard guard strengthening predicate

wt → ex state[i].now = wt ∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j])
∧ ca[i].now ≤ D[i] − R[i] ∨ ((state[j].now = wt ∨ state[j].now = pt)

∧ (∀j 6= i · state[j].now 6= ex) ∧ pr[j].now < pr[i].now)
ex → pt state[i].now = ex ∃j 6= i · state[j].now = wt

∧ ce[i].now < E[i] ∧ pr[i].now < pr[j].now
pt → ex state[i].now = pt ∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j])

∧ca[i].now−(ce[i].now+cp[i].now)≤D[i]−R[i] ∨ ((state[j].now = wt ∨ state[j].now = pt)
∧ (∀j 6= i · state[j].now 6= ex) ∧ pr[j].now < pr[i].now)

Figure 6.3: Task refinement for policy-related propertyIpol.

Out of the above successive refinements, we get the final form of the scheduled
preemptible task

T s(i)
∧
= Ai

1 [] Ai
2 [] Ai

3 [] Ai
4 [] Ai

5,

Ai
1 = state[i].now = sl ∧ ca[i].now = P [i] + ofs[i].now

→ ca[i] :− (λt · t − now) ; state[i] :− (λt · wt) ; UT

gi
21 ≡ state[i].now = wt ∧ ca[i].now ≤ D[i] − R[i]

gi
22 ≡ (∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

((state[j].now = wt ∨ state[j].now = pt) ∧
pr[j].now < pr[i].now))

Ai
2 = gi

21 ∧ gi
22

→ ce[i] :− (λt · t − now) ; state[i] :− (λt · ex) ; UT
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Ai
3 = state[i].now = ex ∧ ce[i].now = E[i]

→ ce[i] :− (λt · 0) ; cp[i] :− (λt · 0);
[ ofs[i] :− x′ | ∀t ≥ now · x′.t ∈ Real+ ];
state[i] :− (λt · sl) ; UT

gi
4 ≡ state[i].now = ex ∧ ce[i].now < E[i] ∧

(∃j 6= i · state[j].now = wt ∧ pr[i].now < pr[j].now)

Ai
4 = gi

4

→ ce[i] :− (λt · ce[i].now) ; cp[i] :− (λt · cp[i].now + t − now);
state[i] :− (λt · pt) ; UT

gi
51 ≡ state[i].now=pt ∧ ca[i].now−ce[i].now−cp[i].now≤D[i]−R[i]

gi
52 ≡ (∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

((state[j].now = wt ∨ state[j].now = pt) ∧
pr[j].now<pr[i].now))

Ai
5 = gi

51 ∧ gi
52

→ ce[i] :− (λt · ce[i].now + (t − now)) ; cp[i] :− (λt · cp[i].now);
state[i] :− (λt · ex) ; UT

Combiningn such tasks results in the correct-by-construction scheduled real-time
system.

Last, we refine the system model (6.5), by introducing the local variablepr,
which is initialized such that tasks are assigned priorities in the reverse order from
their deadlines. These fixed values are established by a demonic nondeterministic
assignment. The scheduled real-time system is described as follows:

RT S
s

∧
= begin var start, now : Real+,

state : array [1..n] of (Real+ → {sl, wt, ex, pt}),

ofs, ca, ce, cp : array [1..n] of (Real+ → Real+),

pr : array[1..n] of (Real+ → Nat) •

now := 0 ; state :− (λt · wt) ; ce, cp :− (λt · 0) ; ca :− (λt · t) ;

[ ; 1 ≤ i ≤ n · [ ofs[i] :− x′ | ∀t ≥ now · x′.t ∈ Real+ ] ] ; (6.9)

[ pr :− p′ | ∀t ≥ now · ∀i · p′[i].t 6= 0 ∧ (∀j ∈ [1..n] ·

(D[i] < D[j] ∨ (D[i] = D[j] ∧ i < j)) ⇒ p′[i].t > p′[j].t) ] ; UT ;

do [ [] 1 ≤ i ≤ n · (Ai
1 [] Ai

2 [] Ai
3 [] Ai

4 [] Ai
5) ] od

end

By simple inspection of the above actions, one can conclude thatI
∧
= It ∧ Ipol

is indeed an invariant of the real-time system described by (6.9): it is established
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by the initialization and it is preserved by each action (as a consequence ofour
development method).

Based on Lemma 6, the invariance property is sufficient for inferring that

¤ q
∧
= ¤ (qt ∧ qpol)

has been enforced on the initial real-time system model, generating the correctly
scheduled systemRT S

s
.

Although correct, the real-time model (6.9) does not provide an efficient im-
plementation. For example, one needs to compare pairs of tasks, in an exhaustive
manner, in order to pick up the one with the highest priority, and select it forexecu-
tion. This is a time consuming operation, especially when dealing with large sets of
tasks. Therefore, we would like to optimize the system representation, yet ensur-
ing that the correctness properties, which we have just enforced, arepreserved. To
accomplish this goal, we apply trace refinement. As a result, the task-comparing
operation is replaced by a functionMax that establishes, quicker and simpler, the
highest priority task, out of alist of waiting (or preempted) tasks. For example, in
Mathematica, there exists such a function that picks up the maximum element of
an array, and delivers it as output.

6.4.2 Trace Refinement of Continuous Action Systems

In this section, we adapt the main proof obligations that one should discharge while
carrying out trace refinement of action systems, to CAS.

As explained in chapter 2, a trace of an action system is a sequence of ob-
servable states. Within the context of CAS, the observable states are given by
evaluating the state functions at consecutive moments recorded by variablenow.

Here, we introduce the notions ofbehaviorandtracefor CAS. A behavior of a
CAS is a sequence of states observed at consecutive momentsnow:

b = ((x.now1, z.now1), . . . , (x.nowk, z.nowk), . . .)

Above,x denotes thelocal state, andz theglobalstate, and (now1, . . . , nowk, . . .)
is a sequence of consecutive (not necessarily different) transition times.

A trace of behaviorb is obtained by removing the local state component in each
state of a given CAS, and all finite stuttering (no change inz).

Assume that two CAS,A andC are translated into their respective semantic
definitions given by action systemsA, andC. Let us further suppose that the local
variables ofC, xC = xA ∪ y, wherexA are the local variables ofA andy are some
auxiliary variables. We assume next thatX is theauxiliary action that modifies
variables ofy, and thatI is a predicate over the observable states of the concrete
systemC. This means thatI refers only to the values of the system variables at
momentnow.
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We denote bySA ; UT the action ofA, and bySC ; UT the one ofC. Then,
we say thatA is (trace) refined byC (usingI), A vI C, if the following conditions
hold:

true ⇒ (InitC ; UT ).I (6.10)

I ⇒ (SC ; UT ).I (6.11)

(SA ; UT ) vI (SC ; UT ) (6.12)

I ∧ gA.now ⇒ gC .now ∨ gX .now (6.13)

skip vI X (6.14)

I ⇒ (do X od ).true (6.15)

Above,

(SA ; UT ) vI (SC ; UT ) ≡ (∀t · ∀q · I ∧ (SA ; UT ).q ⇒ (SC ; UT ).(I ∧ q))

The first two relations ensure thatI is established atnow = 0, and preserved
by the actions of the concrete systemC, which is necessary to guarantee that the
system evolves towards the nextnow starting from a state ofI. Condition (6.12)
requires that the main action of the abstract system is refined by the main actionof
the concrete system, usingI. Relation (6.13) guarantees that whenever an action
is enabled in the abstract system, one of the actions of the concrete system, be it
a refinement of the old action or the fresh auxiliary action, is also enabled. This
means that once an initial real-time model is free of deadlocks, the refined system
is also free of deadlocks. The last but one condition says that the auxiliary action
behaves likeskip with respect to the global variables, while preservingI. Finally,
the last condition says that the execution of the auxiliary action, taken separately,
terminates eventually, wheneverI holds.

6.4.3 Implementing the Real-Time System

Getting back to our target, that is, an efficient implementation of the real-time
system model (6.9), we perform the transformations presented below.
• Step 1.We introduce the auxiliary local vector variableq, which stores the tasks’
priorities, respectively; when a taski is in statewt, its priority is added toq, at
q[i]; when the same task has finished execution, its priority is removed fromq, by
assignmentq[i] :− (λt · 0). The actions that modifyq[i] are as follows.

A′i
1 = state[i].now = sl ∧ ca[i].now = P [i] + ofs[i].now

→ ca[i] :− (λt · t − now) ; state[i] :− (λt · wt) ; q[i] :− pr[i] ; UT

A′i
3 = state[i].now = ex ∧ ce[i].now = E[i]

→ ce[i] :− (λt · 0) ; cp[i] :− (λt · 0) ;

[ ofs[i] :− x′ | ∀t ≥ now · x′.t ∈ Real+ ]

state[i] :− (λt · sl) ; q[i] :− (λt · 0) ; UT
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• Step 2.We conduct the following refinements:

Ai
2 vI A′i

2 , Ai
4 vI A′i

4 , Ai
5 vI A′i

5 ,

where

I
∧
= ∀i · ∀now ·

(state[i].now = sl ⇒ q[i].now = 0)

∧ ((pr[i].now = Max(q.now) ∧ pr[i].now = q[i].now

∧ (∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j])

∨ ((state[j].now = wt∨state[j].now = pt)

∧ pr[j].now < pr[i].now ∧ q[j].now = pr[j].now)))

∨ (pr[i].now 6= Max(q.now) ∧ pr[i].now = q[i].now

∧ (∃j 6= i · state[j].now = wt ∧ pr[j].now > pr[i].now

∧ q[j].now = pr[j].now)))

and

g′i2 ≡ pr[i].now = Max(q.now) ∧

(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

state[j].now = wt ∨ state[j].now = pt) ∧

state[i].now = wt ∧ ca[i].now ≤ D[i] − R[i]

A′i
2 = g′i2

→ ce[i] :− (λt · t − now) ; state[i] :− (λt · ex) ; UT

g′i4 ≡ pr[i].now 6= Max(q.now) ∧

state[i].now = ex ∧ ce[i].now < E[i]

A′i
4 = g′i4

→ ce[i] :− (λt · ce[i].now) ; cp[i] :− (λt · cp[i].now + (t − now)) ;

state[i] :− (λt · pt) ; UT

g′i5 ≡ pr[i].now = Max(q.now) ∧

(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

state[j].now = wt ∨ state[j].now = pt) ∧

state[i].now=pt ∧ ca[i].now−(ce[i].now+cp[i].now)≤D[i]−R[i]

A′i
5 = g′i5

→ ce[i] :− (λt · ce[i].now + t − now) ; cp[i] :− (λt · cp[i].now) ;

state[i] :− (λt · ex) ; UT
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For example, proving the truth of relationAi
2 vI A′i

2 boils down to showing
that the relations below hold:

I ∧ g′i2 ⇒ gi
2 (6.16)

∀q · I ∧ g′i2 ∧ (ce[i] :− (λt · t − now) ; state[i] :− (λt · ex) ; UT ).q

⇒ (ce[i] :− (λt · t − now) ; state[i] :− (λt · ex) ; UT ).(I ∧ q) (6.17)

A similar decomposition into refinement of guards and action bodies applies to the
other two refinements, that is, of actionsAi

4 andAi
5, respectively.

Since relation (6.17) can be easily proved, we are left to discharge requirement
(6.16), for the refinementAi

2 vI A′i
2 to be valid. The proof is sketched below:

I ∧ pr[i].now = Max(q.now) ∧

(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

state[j].now = wt ∨ state[j].now = pt) ∧

state[i].now = wt ∧ ca[i].now ≤ D[i] − R[i])

≡ {substituteI, logic}

pr[i].now = Max(q.now) ∧ pr[i].now = q[i].now ∧

(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

((state[j].now = wt ∨ state[j].now = pt) ∧

pr[j].now < pr[i].now ∧ q[j].now = pr[j].now))) ∧

(state[i].now = sl ⇒ q[i].now = 0) ∧

state[i].now = wt ∧ ca[i].now ≤ D[i] − R[i] ∧ . . .

⇒

state[i].now = wt ∧ ca[i].now ≤ D[i] − R[i] ∧

(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

((state[j].now = wt∨state[j].now = pt)∧pr[j].now<pr[i].now))

The dots in the above proof stand for the part ofI that treats all the other tasks
exceptT (i). We have also checked thatAi

4 vI A′i
4 and Ai

5 vI A′i
5 are met;

however, we omit the proofs here. Consequently, requirement (6.12) isfulfilled.
By replacing the refined actions in the real-time system model (6.9), we get the

new scheduled action system as:

RT S
′s

(6.18)
∧
= begin var start, now : Real+,

state : array [1..n] of (Real+ → {sl, wt, ex, pt}),

ofs, ca, ce, cp : array [1..n] of (Real+ → Real+),

pr, q : array[1..n] of (Real+ → Nat) •

123



now := 0 ; state :− (λt · wt) ; ca :− (λt · t); Init
ce, cp :− (λt · 0);
[ ; i · [ ofs[i] :− x′ | ∀t · x′.t ∈ Real+ ] ];
[ pr :− p′ | ∀t ≥ now · ∀i · p′[i].t 6= 0 ∧ (∀j ∈ [1..n]·

(D[i] < D[j] ∨ (D[i] = D[j] ∧ i < j)) ⇒ p′[i].t > p′[j].t) ];
[ ; i · q[i] :− pr[i] ];
[I] ; UT ;
do

[ [] 1 ≤ i ≤ n : (A′i1 [] A′i2 [] A′i3 [] A′i4 [] A′i5 ) ]
od
end

In (6.18), the arrayq is initialized with the task priorities, respectively, since
all tasks are concurrently waiting for the CPU, at timenow = 0.

The initialization statement assumes the predicateI. We are doing this because,
essentially,I requires a correct implementation of the functionMax and we as-
sume that this requirement holds of any programming language that hasMax as
a built-in function. Hence, relation (6.10) is fulfilled. Along the same line, rela-
tion (6.11) also holds, meaning that each (new) action ofRT S ′s preservesI. We
give here only the sketch of the respective proof forA′i1 . The rest of the proofs are
similar.

g′i1 ∧ I

= {substituteg′i1 }
(state[i].now = sl ∧ ca[i].now = P [i] + ofs[i].now) ∧ I

⇒ {computeA′i1 .I}
(now=min{t′ ≥ now | state[i].t′ = wt ∧ t′−now≤D[i]−R[i]} ⇒

(pr[i].now = Max(q.now) ∧
(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

((state[j].now = wt ∨ state[j].now = pt) ∧
pr[j].now < pr[i].now ∧ q[j].now = pr[j].now))) ∧

(state[i].now = sl ⇒ q[i].now = 0)
∧(∀j 6= i · Ij))

The predicateIj incorporates the information inI about tasks indexed byj 6=
i, which is not modified by the assignments inA′i1 .

Considering the fact that we have proved relations (6.10), (6.11) and (6.12), we
conclude that

RT Ss vI RT S ′s

Note that requirements (6.13), (6.14) and (6.15) need not be checked, since we
have not introduced any auxiliary actions. Hence, one can viewRT S ′s as a more
efficient representation of the constructed modelRT Ss

.
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6.4.4 Deriving the Scheduler Component

The real-time scheduled systemRT S
f

that we have constructed is based on the
simplistic assumption of independent tasks. Clearly, this should be relaxed atlater
stages of design, as task interaction is needed in many meaningful applications.
Processes can interact safely by either some form of protected shareddata (us-
ing, for example, semaphores, monitors or protected objects), or directly (using
some form of rendezvous) [52]. Therefore, extra requirements have to be added to
the real-time scheduled system, regarding resource management protocols, all of
which are connected to scheduling.

As one might immediately imagine, new refinements need to be carried out;
in principle, they would mostly affect the behavior of the scheduler. Underthis
scenario, the single-block real-time system model would ultimately become much
more complicated. Hence, it can be beneficial to get a modular description ofthe
system, which might ease future design tasks.

Targeting a two-module implementation, we carry out the following refinement
steps on modelRT S ′

s
:

• Introduce a local variableok : array [1..n] of (Real+→ Bool). This vector
variable encodes the permission for execution given by the scheduler to each
task;ok[i] is set or reset according to the DM scheduling policy rules.

• Strengthen the guards of actionsA′i
1 , A′i

3 .

• Consider the following predicate (k ∈ [1, ..n]):

I1 ≡ ∀i · ∀now ·

(ok[i].now ∧ state[i].now = wt ⇒

(pr[i].now=Max(q.now)∧ca[i].now ≤ D[i]−R[i] ∧

(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

state[j].now = wt ∨ state[j].now = pt)))

∧ (ok[i].now ∧ state[i].now = pt ⇒

(pr[i].now = Max(q.now) ∧

ca[i].now − (ce[i].now + cp[i].now) ≤ D[i]−R[i] ∧

(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

state[j].now = wt ∨ state[j].now = pt)))

∧ (¬ok[i].now ∧ state[i].now = ex ⇒

(pr[i].now 6= Max(q.now)∧ ce[i].now < E[i]))

By usingI1, which can be easily shown to satisfy relations (6.10),(6.11) on
RT S

m
given below, we can prove

A′i
2 vI1 Ai

22m, A′i
4 vI1 Ai

42m, A′i
5 vI1 Ai

52m
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The actionsAi
22m, Ai

42m andAi
52m are also described below. The proofs that the

conditions (6.10 - 6.15) of trace refinement are met are sketched in Appendix (A-6).
Eventually, the successive application of the above steps leads to the following

refinement

RT S ′
s

vI1 {rule (2.21), trace refinement}

RT S
m

where

RT S
m

(6.19)

= begin var start, now : Real+,

state : array [1..n] of (Real+ → {sl, wt, ex, pt}),

ofs, ca, ce, cp : array [1..n] of (Real+ → Real+),

pr, q : array[1..n] of (Real+ → Nat),

ok : array[1..n] of (Real+ → Bool) •

now := 0 ; state :− (λt · wt) ; ca :− (λt · t); Init
ce, cp :− (λt · 0) ; ok :− (λt · false);
[ ; i · [ ofs[i] :− x′ | ∀t ≥ now · x′.t ∈ Real+ ] ];
[pr :− p′ | ∀t ≥ now · ∀i · p′[i].t 6= 0 ∧ (∀j ∈ [1..n]·

(D[i] < D[j] ∨ (D[i] = D[j] ∧ i < j)) ⇒ p′[i].t > p′[j].t)];
[ ; i · q[i] :− pr[i]];
[I] ; UT ;
do

[ [] 1 ≤ i ≤ n : (Ai
11m [] Ai

12m [] Ai
21m [] Ai

22m [] Ai
3m []

Ai
41m [] Ai

42m [] Ai
51m [] Ai

52m) ]
od

end,

Ai
11m = ¬ok[i].now ∧ state[i].now = sl ∧ ca[i].now = P [i] + ofs[i].now

→ ca[i] :− (λt · t − now) ; state[i] :− (λt · wt) ; q[i] :− pr[i] ; UT

Ai
12m = ok[i].now ∧ state[i].now = sl

→ ok[i] :− (λt · false) ; UT

Ai
21m = ¬ok[i].now ∧ pr[i].now = Max(q.now) ∧

(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

state[j].now = wt ∨ state[j].now = pt) ∧

state[i].now = wt ∧ ca[i].now ≤ D[i] − R[i]

→ ok[i] :− (λt · true) ; UT
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Ai
22m = ok[i].now ∧ state[i].now = wt

→ ce[i] :− (λt · t − now) ; state[i] :− (λt · ex) ; UT

Ai
3m = ok[i].now ∧ state[i].now = ex ∧ ce[i].now = E[i]

→ ce[i], cp[i] :− (λt · 0), (λt · 0) ; [ ofs[i] :− x′ | ∀t · x′.t ∈ Real+ ]

state[i] :− (λt · sl) ; q[i] :− (λt · 0) ; UT

Ai
41m = ok[i].now ∧ pr[i].now 6= Max(q.now) ∧

state[i].now = ex ∧ ce[i].now < E[i]

→ ok[i] :− (λt · false) ; UT

Ai
42m = ¬ok[i].now ∧ state[i].now = ex

→ ce[i] :− (λt · ce[i].now) ; cp[i] :− (λt · cp[i].now + t − now) ;

state[i] :− (λt · pt) ; UT

Ai
51m = ¬ok[i].now ∧ pr[i].now = Max(q.now) ∧

(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

state[j].now = wt ∨ state[j].now = pt) ∧

state[i].now=pt ∧ ca[i].now−(ce[i].now+cp[i].now)≤D[i]−R[i]

→ ok[i] :− (λt · true) ; UT

Ai
52m = ok[i].now ∧ state[i].now = pt

→ ce[i] :− (λt · ce[i].now + t − now) ; cp[i] :− (λt · cp[i].now) ;

state[i] :− (λt · ex) ; UT

It is easy to observe that we can rewrite the loop ofRT S
m

as follows.

do

[ [] 1 ≤ i ≤ n · (Ai
11m [] Ai

22m [] Ai
3m [] Ai

42m [] Ai
52m) ] (6.20)

[] g → (Ai
12m [] Ai

21m [] Ai
41m [] Ai

51m)

od

where

g
∧
= ¬ gg [ [] 1 ≤ i ≤ n · (Ai

11m [] Ai
22m [] Ai

3m [] Ai
42m [] Ai

52m) ]

By gg we denote the disjunction of the respective action guards.
Our goal is to decomposeRT S

m
, correctly. For this, we apply theprioritizing

decompositiontheorem (see chapter 2).
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Let us consider the trivial invariantI2 ≡ true. We identify the conditiong,
mentioned in Theorem 1, withg within the loop (6.20). Next, we identify guards
gB andgC of the same theorem, as follows:

gB ≡ gg [ [] 1 ≤ i ≤ n · (Ai
11m [] Ai

22m [] Ai
3m [] Ai

42m [] Ai
52m) ]

gC ≡ gg (Ai
12m [] Ai

21m [] Ai
41m [] Ai

51m)

Under these assumptions, it is easy to verify that the requirements of Theorem
1 are straightforwardly met. Since the invariant is trivial, it is established by the
initialization ofRT S

m
; also the actions of the new loop (6.20) preserveI2 because

they terminate. The exit condition¬gB ∧ gC ⇒ g is also immediate. Thus, we
can safely decompose the action system (6.19), without loss of correctness.

Eventually, due to Theorem 1, we end up with a two-module implementation of
the real time systemRT S

m
, which has been our design goal. The actual scheduler

is one of the modules, and the collection of tasks is the other one, each represented
by a corresponding CAS. The whole system description is given as

RT Sm = TS // Sched,

with

TS (ok : array[1..n] of (Real+ → Bool),

state : array[1..n] of (Real+ → {sl, wt, ex}),

ca, ce, cp : array [1..n] of (Real+ → Real+),

pr, q : array[1..n] of (Real+ → Nat))

= begin var ofs : array [1..n] of (Real+ → Real+) •

ok :− (λt · false) ; state :− (λt · wt); Init
ca :− (λt · t) ; ce, cp :− (λt · 0), (λt · 0);
[pr :− p′ | ∀t · ∀i · p′[i].t 6= 0 ∧ (∀j · (D[i] < D[j]∨

(D[i] = D[j] ∧ i < j)) ⇒ p′[i].t > p′[j].t)];
[ ; i · q[i] :− pr[i]] ; [ ; i · [ofs[i] :− x′ | ∀t · x′.t ∈ Real+] ];
[I];

do [ [] 1 ≤ i ≤ n · T m(i) ] od

end,

T m(i)

=

state[i].now = sl ∧ ca[i].now = P [i] + ofs[i].now ∧ ¬ok[i].now

→ ca[i] :− (λt · t − now) ; state[i] :− (λt · wt) ; q[i] :− pr[i]

[] ok[i].now ∧ state[i].now = wt

→ ce[i] :− (λt · t − now) ; state[i] :− (λt · ex)
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[] ok[i].now ∧ state[i].now = ex ∧ ce[i].now = E[i]

→ ce[i] :− (λt · 0) ; cp[i] :− (λt · 0) ; q[i] :− (λt · 0) ;

[ofs[i] :− x′ | ∀t ≥ now · x′.t ∈ Real+] ; state[i] :− (λt · sl)

[] ¬ok[i].now ∧ state[i].now = ex ∧ ce[i].now < E[i]

→ ce[i] :− (λt · ce[i].now) ; cp[i] :− (λt · cp[i].now + t − now) ;

state[i] :− (λt · pt)

[] ok[i].now ∧ state[i].now = pt

→ ce[i] :− (λt · ce[i].now + t − now) ; cp[i] :− (λt · cp[i].now) ;

state[i] :− (λt · ex),

Sched (ok : array[1..n] of (Real+ → Bool),
state : array[1..n] of (Real+ → {sl, wt, ex}),
ca, ce, cp : array [1..n] of (Real+ → Real+),
pr, q : array[1..n] of (Real+ → Nat))

= begin Init′;
do [ [] 1 ≤ i ≤ n·

¬ok[i].now ∧ pr[i].now = Max(q.now)∧
(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j])∨
state[j].now = wt ∨ state[j].now = pt)∧
state[i].now = wt ∧ ca[i].now ≤ D[i] − R[i]
→ ok[i] :− (λt · true)

[] ok[i].now ∧ state[i].now = sl
→ ok[i] :− (λt · false)

[] ok[i].now ∧ pr[i].now 6= Max(q.now)∧
state[i].now = ex ∧ ce[i].now < E[i]
→ ok[i] :− (λt · false)

[] ¬ok[i].now ∧ pr[i].now = Max(q.now)∧
(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j])∨
state[j].now = wt ∨ state[j].now = pt)∧
state[i].now=pt∧ca[i].now−(ce[i].now+cp[i].now)≤D[i]−R[i]
→ ok[i] :− (λt · true)

]
od

end

Note thatInit’ of Sched is the initialization statement ofTS, without the assignment
of variableofs, which is local toTS.

6.5 Non-Preemptible Task Model

Assume that we are givenn periodic, non-preemptible real-time tasks. A simple
model of a taskT (i) that belongs to such a collection is as follows.
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T (i)
∧
= state[i].now = sl ∧ ca[i].now = P [i]

→ ca[i] :− (λt · t − now) ; state[i] :− (λt · wt) ; UT
[] state[i].now = wt

→ ce[i] :− (λt · t − now) ; state[i] :− (λt · ex) ; UT
[] state[i].now = ex ∧ ce[i].now = E[i]

→ ce[i] :− (λt · 0) ; state[i] :− (λt · sl) ; UT

(6.21)

Distinctly from the preemptible model, each non-preemptible task can be in
one of three possible states,sl (sleeping), wt (waiting for the CPU), andex (exe-
cuting). The clockca measures the time between two consecutive arrivals of each
task, respectively. We record the execution time of each task by clock vector ce.

The tasks are periodic, therefore they arrive strictly atP [i], respectively. In the
initial model (6.21), if the taskT (i) is waiting for the CPU, it could start executing
right away. Alternatively, given the fact that the real-time system consistsof n such
tasks and that the choice among the waiting ones is nondeterministic,T (i) could
also wait an arbitrary time before starting execution. Since the guard of the second
action holds, the task eventually changes its state toex, and clockce[i] is reset.
Upon completion of execution, whence[i].t is E[i] (worst-case execution time),
the respective task returns to sleep.

In the next section, we proceed to the incremental construction of an EDF
scheduled system. However, since the steps are similar to the ones of the pre-
viously analyzed fixed-priority case, we will just highlight the key points ofthe
construction method, underlying their specificity.

6.6 Dynamic-Priority Scheduling: The EDF Algorithm
Recall from the beginning of the chapter that fordynamicpriority schedulers, the
priority of a task is recomputed at run-time. If scheduled by theEarliest-Deadline-
First algorithm, the runnable tasks are executed in the order determined by the
absolute deadlines of the processes, the next process to run being the one with the
shortest (nearest) deadline.

The real-time system model employing non-preemptible tasks is, initially, close
to the one given by (6.5), with the difference that now we quantify the choice ofn
non-preemptible tasks of the kind modeled by (6.21). We also remove the initial
assignment of task priorities, since in this case the priorities are decided online.

RT S
∧
= begin var start, now : Real+, (6.22)

state : array [1..n] of (Real+ → {sl, wt, ex}),

ca, ce : array [1..n] of (Real+ → Real+) •

state :− (λt · wt) ; ca :− (λt · t) ; ce :− (λt · 0) ; UT ;

do [ [] 1 ≤ i ≤ n : {T (i).I} ; T (i) ] od

end
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Note that we initialize the system similarly to the DM real-time system: at time
0, all tasks are in the ready state, waiting for the permission to execute.

6.6.1 Enforcing Conditions for Correct Scheduling

Enforcement of the correctness conditions proceeds in the same way as for the
fixed-priority case.

We model the timeliness condition as follows.

qt
∧
= ∀i · ∀t ∈ [start, now) ·

state[i].start = ex ⇒ ca[i].t − ce[i].t ≤ D[i] − E[i]

Along the lines described in section 6.2.1,qt is enforced if we find an action
system description, starting from (6.22), such that some predicateIt ⇒ qt is an
invariant of the transformed action system. ConditionIt is the following:

It ≡ ∀i · ∀t ∈ [start, now) ·

state[i].start = ex ⇒

(state[i].t = ex ∧ ca[i].t − ce[i].t ≤ D[i] − E[i] ∧

ca[i].t = ca[i].start + t − start)

The EDF policy predicate is:

Ipol ≡ ∀i · ∀t ∈ [start, now) ·

(state[i].start = ex ⇒

(∀j 6= i · (state[j].start = sl ∧ ca[j].start < P [j]) ∨

(state[j].t = wt ∧ D[j] − ca[j].start > D[i] − ca[i].start)))

∧ (state[i].start = s ⇒ state[i].t = s), s ∈ {sl, wt}

The conditionIpol requires that any task in stateex remains in that state during
the interval[start, now); besides, a task has either been the only task waiting, or
if other tasks have also been simultaneously waiting, the task that has started exe-
cuting has the shortest absolute deadline (that is, the smallest difference between
the relative deadlineD[i] and the arrival time) of them all.

Next, we need to refine the initial action system (6.22), in the context given
by the computed weakest precondition{T (i).I}, such thatIt, andIpol become
invariants of the refined system. We enforce the above predicates on taskmodel
(6.21), by propagating{T (i).I}. For brevity, we skip the refinement process, but
we present its result. After having carried out enforcement, we get the following
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transformed model, with a strengthened guard:

T (i)f

= state[i].now = sl ∧ ca[i].now = P [i]
→ ca[i] :− (λt · t − now) ; state[i] :− (λt · wt) ; UT

[] state[i].now = wt ∧ ca[i].now ≤ D[i] − E[i]∧
(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j])∨
(state[j].now = wt ∧ D[j] − ca[j].now > D[i] − ca[i].now))
→ ce[i] :− (λt · t − now) ; state[i] :− (λt · ex) ; UT

[] state[i].now = ex ∧ ce[i].now = E[i]
→ ce[i] :− (λt · 0) ; state[i] :− (λt · sl) ; UT

(6.23)

Let us exemplify in the next paragraph, how we can confirm or deny the schedu-
lability of a simple three-task real-time system, scheduled by EDF.

6.6.2 Validating the EDF Scheduled System

As tasks are periodically released, the schedule has an infinite length. Dueto the
periodicity of tasks, the whole schedule is also periodic of periodP = LCM(P [1],
. . . , P [n]), whereLCM is the least-common-multiple of the tasks periods (feasi-
bility interval). Then, the feasibility (or schedulability) analysis problem can be
solved by simulation of the scheduling algorithm (in our case EDF) until the task
set is in the periodic state [52]. This implies further that, if all tasks complete by
their deadlines during the feasibility interval, there will be no unpleasant surprises
in the future.
Example. We consider building an EDF schedule for the task set of Figure 6.4.

The correct model of our three task real-time system is an instantiation of the
generic model (6.22), where each constituent task is of the form given by (6.23). In
order to validate this model, we use the simulation technique. As outlined above,
we need to simulate (6.22), up to the least-common-multiple of task periods, which
is t = 60, in our case. For this purpose, we use our CAS symbolic simulator.

As previously, one has to translate the guards and action bodies of the three-
task model, in the language of Mathematica. Then, the main routine goes through
the guards, evaluates their boolean expressions, and based on the results, computes
the minimum moment of time as the nextnow.

Task Period Deadline Execution Time

T1 20 16 3

T2 15 15 3

T3 10 10 4

Figure 6.4: Three Periodic Tasks.

Implementation of the Model. In the Mathematica implementation, we have
modeled the possible values,sl, wt, ex, of the discrete-valued time variables

132



state1, state2, state3, of each task, as0, 1, 2, respectively. The continuous-valued
time variables are the arrival clocks, denoted byca1, ca2, ca3.

The simulation time limittmax = 60 was supplied to the tool, and so were the
task parameters,D[i], E[i], P [i], as given in Figure 6.4.

For example, thesl → wt (that is,0 → 1) action guard and body, of the first
task, are implemented by:

solution = InequalitySolve[
state1 [t] == 0 &&
ca1 [t] == P1 &&
t >= start && t <= EndTime, t
]

and

ca1 [t−] = t− now;
state1 [t−] = 1;
start = now

The guard of the action that schedules each task, respectively, is implemented
by using task comparison of absolute deadlines.

Surely, for larger number of tasks, we need to first refine the model in order to
get a more efficient representation (as we have done for the DM scheduled system).
Then, we can use the Mathematica functionMin, on the list variable that contains
the differencesD[i]− ca[i].now, ∀i ∈ [1..3], of the current waiting tasks.

The actual implementation of the alternative solution mentioned above (tai-
lored to our example) is as follows. We model the queue of waiting tasks as the
variableq[t−] and we initialize it to:q[t−] = {D1, D2, D3}. Next, we introduce
a list containing all three arrival clocks:ca = {ca1[t], ca2[t], ca3[t]}, where each
clock is modeled as the respective function of timecai[t−], i ∈ {1..3}. The list
with the differencesD[i]− ca[i].now is implemented by the following structure:
list = Table[{ }, {i, Length[q[t]]}]. Since the tasks are all waiting at time 0, we fill
the list accordingly:list = Insert[list,Simplify[q[i]− ca[i]], i].

Whenever a taskT (i) has arrived, it’s deadline is inserted inq, at position
i. Also, the difference between its deadline and its arrival clock is inserted into
the corresponding list. If a task has completed execution, it is dropped fromq.
After that, one needs to shift the positions of the remaining tasks, accordingly,
however we do not show this part in the code excerpt presented below. When
the scheduler decides the maximum priority task, it computes the minimum of all
current elements oflist.

Below, we give the Mathematica code of the above actions, for the first task
only.
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• Body of action sl→ wt:

ca1[t−] = t− now;
state1[t−] = 1;

q[t−] = Insert[q[t], D1, 1]
list = Insert[list, Simplify[q[1]− ca[1]], 1]

start = now

• Guard of action wt → ex:

solution = InequalitySolve[
state1[t] == 1 &&
ca1[t] <= D1− E1 &&
D1− ca1[t] == Min[list, {i, Length[list]}]
t >= start && t <= EndTime, t
]

• Body of action ex→ sl:

ce1[t−] = 0;
state1[t−] = 0;

q[t−] = Drop[q[t], {1}]
Length[q[t]] = Length[q[t]]− 1

start = now

The implemented model has three guarded actions that abort the simulation in case
any of the deadlines is missed. For example, the guard of such action that checks
for overrun of deadline, for task 1, is as follows:

solution = InequalitySolve[
state1 [t] == 2 &&
ce1 [t] == E1 &&
t− start > D1 &&
t >= start && t <= EndTime, t
]

and its body
Print[“Stop, task1 missed deadline′′, now];
Abort[ ]

Simulation results. The essential information delivered by the simulation proce-
dure contains: a list of time moments (now) at which an action has been executed
in the model, a corresponding list of actions (which we omit here), and lists with
symbolic values for the state of each task at each particular transition time, and for
the clocksca1, ca2, ca3 as (continuous) linear functions of time. Figure 6.5 shows
the mentioned symbolic lists.
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One can see, in Figure 6.5, based on the values of variablesstate1, state2,
state3, at each momentnow given in the correspondingnow list, the order in
which tasks have been executed. The tasks share their critical instant, attime 0.
Thus, initially, all of them are instate = 1, waiting for the CPU. So, as expected,
the first to execute is task 3, since at time 0 it has the earliest deadline, after which
task 2 and task 1 follow. Notice that, at timenow = 60, the simulation scenario
starts repeating.

At the end of the simulation period, we also get the functions of time,state1,
state2, state3, ca1, ca2, ca3, represented as graphs. The plotted functions are
presented in Figures 6.6 - 6.8.

now list : 

{0,0,4,10,10,13,13,15,16,16,20,20,20,20,23,23,27,30,30,30,33,33,37,40,40,40,43,45,45,

49,50,50,53,53,57,57,60,60}

state1 : {1,1,1,1,1,1,2,2,0,0,1,1,1,1,1,1,1,1,1,2,0,0,0,1,1,1,1,1,1,1,1,2,0,0,0,0,0}

state2 : {1,1,1,1,2,0,0,1,1,1,1,1,1,2,0,0,0,1,1,1,1,1,1,1,1,2,0,1,1,1,1,1,1,1,1,2,0}

state3 : {1,2,0,1,1,1,1,1,1,2,2,0,1,1,1,2,0,0,1,1,1,2,0,0,1,1,1,1,2,0,1,1,1,2,0,0,0}

ca1 : 

{t,t,t,t,t,t,t,t,t,t,-20+t,-20+t,-20+t,-20+t,-20+t,-20+t,-20+t,-20+t,-20+t,-20+t,

-20+t,-20+t,-20+t,-40+t,-40+t,-40+t,-40+t,-40+t,-40+t,-40+t,-40+t,-40+t,-40+t,-40+t,

-40+t,-40+t,20}

ca2 : 

{t,t,t,t,t,t,t,-15+t,-15+t,-15+t,-15+t,-15+t,-15+t,-15+t,-15+t,-15+t,-15+t,-30+t,

-30+t,-30+t,-30+t,-30+t,-30+t,-30+t,-30+t,-30+t,-30+t,-45+t,-45+t,-45+t,-45+t,-45+t,

-45+t,-45+t,-45+t,-45+t,15}

ca3 : 

{t,t,t,-10+t,-10+t,-10+t,-10+t,-10+t,-10+t,-10+t,-10+t,-10+t,-20+t,-20+t,-20+t,

-20+t,-20+t,-20+t,-30+t,-30+t,-30+t,-30+t,-30+t,-30+t,-40+t,-40+t,-40+t,-40+t,-40+t,

-40+t,-50+t,-50+t,-50+t,-50+t,-50+t,-50+t,10}

Figure 6.5: The symbolic lists fornow, state1, state2, state3, ca1, ca2, ca3.
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Figure 6.6: The graphs ofstate1, state2.

In Figure 6.9, we present the timing diagram of our constructed schedule.The
schedule is based on the results of the symbolic simulation; we have just repre-
sented the task execution order and the specific transition times that the tool has
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computed, graphically, to aid visualization of the solution.
Because all the imposed timing constraints hold during the feasibility interval,

assuming worst-case execution times of participating tasks, we can declare the task
set of the example, schedulable.

6.7 Summary and Related Work

We have presented a new method for the incremental construction of scheduled sys-
tems, within the correctness-preserving framework of continuous action systems
and refinement calculus. Unlike most of the previous related work, our develop-
ment process starts with a nondeterministic conjunctive specification, and applies
refinement rules of propagating context assertions, in order to enforce the required
schedulability, mutual exclusion and scheduling policy conditions.

The main schedulability goal of a real-time task set is to provide a guarantee
that the deadlines are never missed at run-time. Consequently, we model such a
condition as a property of the model, more concretely, analwaystemporal property.
This can be enforced into the initial incomplete task model, by means of Lemma 6,
which we have introduced to show that enforcing safety properties on CAS models
reduces to being able to prove certain invariants.

For the DM scheduling algorithm, we carry out successive refinements, until
we reach an efficient implementation of the correct-by-construction, yet abstract
model. Next, we continue the refinement process by applying the decomposition
theorem of Sekerinski and Sere [141], which provides us with a two-module imple-
mentation. Thus, we have managed to extract the real-time scheduler as a separate
module, which can turn into an advantage if further transformations are needed.

Next, we have applied our technique also to the EDF scheme, still under the
umbrella of Lemma 6, which gives us sufficient conditions for enforcing thetime-
liness and policy predicates. By simulating the EDF model of a simple set of three
real-time tasks, in Mathematica, we get symbolic lists of transition time moments,
and of variable values. As a plus, one can visualize the timed behavior of allthe
discrete and continuous functions of the model, as graphs. Based on the computed
data, we have actually constructed the scheduling solution, as a timing diagram.

Related Work. Formal approaches for constructing real-time schedulers have
been recently applied by Kwak et al. [113], and Altisen et al. [4]. Kwak et al. pro-
pose symbolic bisimulation algorithms that can be used for deciding the schedula-
bility of a collection of real-time tasks. For the same purpose, Altisen et al. use
algorithms based on the controller synthesis paradigm. A major disadvantage of
these approaches is the practical high complexity of the algorithms. Furthermore,
in both papers, the authors use two different formal frameworks in order to perform
the schedulability analysis of the task set. One formalism is used for modeling pur-
poses, whereas a different one is employed for giving semantics to the respective
model.
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Although the semantics of CAS is given in terms of ordinary action systems,
we also need at some point to employ two languages. In order to use automation,
for the EDF algorithm, we are forced to translate the real-time action system into
the language of Mathematica.

As an alternative solution to model-checking algorithms, we have solved the
problem of scheduler construction, generally. The analysis of any particular set
of real-time tasks comes down to an instantiation of our generic correct-by-cons-
truction models.

The closest work to ours is due to Altisen, Gößler, and Sifakis [5], where fixed
point computation algorithms are combined with the incremental application of
priority rules that restrict the initial behavior of the real-time model. The approach
is very general; it provides a rich priority model, and can handle task sets with
complex timing characteristics. However, the construction method does not allow
the separation of the scheduler as an actual component. Initially, the scheduler is
being represented by uncontrollable transitions in timed automata models. Nev-
ertheless, the concept of taskurgencyused by the authors is non-existing in our
approach.

Timed automata [9] have also been used for solving non-preemptive job-shop
scheduling problems [2, 100]. Schedules are computed based on the traces resulted
out of reachability analysis of locations that specify the schedulability property.

Alur and Henzinger have specified preemptive schedulers as hybrid automata
[14]. Their methods use model checking algorithms for verifying safety and live-
ness properties.

Braberman and Felder have proposed timed automata based schedulability ver-
ification of preemptive schedulers [50]. The authors have specified thetiming con-
straints as minimum or maximum distances between events. As such, they embrace
a conservative perspective, as we also do in this chapter.

The integration of real-time scheduling theory with program refinement has
also been studied by Fidge et al. [76]. Moreover, Fidge and Wellings model real-
time systems by combining Z specifications with action systems [77]. In compar-
ison, we handle the task within the action systems framework alone. The authors
use a global variable that measures absolute time, and a “tick action” for advanc-
ing time. A step further is taken by Fidge, Hayes and Watson, who introduce a
deadlinecommand, which allows for the specification of arbitrary deadlines that
must be met at run-time [75]. A summary on the advances made in developing a
refinement calculus for real-time programsis presented by Hayes [85]. Real-time
refinement laws targeting timing constructs such as delays and deadlines, aswell
as rules for handling infinite iterations are proposed.

Real-time scheduling of distributed action systems has been analyzed by Kurki-
Suonio et al. [112]. The idea of constructing the real-time concurrent system by
enforcing specific real-time properties via refinement has been investigated. Due to
inherent limitations in specifying the real-time requirements, the scheduling prob-
lem has been revisited later by Kurki-Suonio and Katara [111]. This time, real-
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time properties have been specified in TLA [1]. Safety conditions are imposed by
strengthening action guards, and deadlines are introduced through superposition
refinement. However, no actual schedules are computed.

As far as automation is regarded, TAXYS [64] and TIMES [17] are two mature
tools that support the design and analysis of real-time embedded systems. Also,
the theorem prover STeP has been applied to the deductive verification ofreal-time
systems [46]. Nonetheless, to our knowledge, checking EDF schedulability by
simulating a formal model that is guaranteed to be correct, provided that the tasks
are schedulable, has not been applied before.

We do not claim that our refinement-based method is a panacea, we just be-
lieve it might serve as a useful alternative approach to model-checking algorithms.
A combination of the two well-known methods of theorem-proving and model-
checking could perhaps provide the designer with the best developing means.

Let us analyze next how can we use both angelic and demonic behavior of
statements, in order to construct sequential game-like reactive programs.
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Chapter 7

Controller Synthesis for Discrete
Systems

A control system is usually a reactive system, made of a computer-basedcontroller
that observes aplant. We have already seen in previous examples that the plant’s
behavior is adjusted according to the control actions issued by the logic controller,
as a result of its reaction to certain changes in the environment. The control events
thus modify the system execution, such that some desired property holds. The
construction of a correct controller is thus crucial.

A viable controller construction method is known in literature ascontroller syn-
thesis. Synthesis is equivalent to computing the most general model of a controller
that satisfies the respective requirements. Therefore, it is helpful to start with a non-
deterministic, high-level model of the controller that abstracts away from control
implementation details. The result of carrying out synthesis steps is a decrease in
controller’s nondeterminism, such that in the end all possible transitions that could
lead to unsafe states are eliminated.

We are interested in synthesizing controllers forinvarianceand reachability.
The invariance controller has to keep the discrete system within a so called “good”
set of states, whereas the reachability controller has to guide the system into an
intended set of states, in finite time. In the latter case, we focus on the synthesis of a
particular case of reachability controllers, with possible application to the design of
fault-tolerantsystems that acceptk faults (k ≥ 1), and especiallyfail-safesystems.
The former maintain their integrity, for a limited time, while accepting one or more
errors in their operation. On the other hand, fail-safe systems are able to terminate
in a safe state, if they have suffered a serious damage (afailure) and need to halt
their operation [52].

Many studies deal with controller synthesis by applying symbolic model check-
ing algorithms to restrict the inputs of the controlled system so as to eliminate
undesired computations [18, 99]. Backward analysis is often employed, as being
most useful. Unfortunately, it is also an expensive algorithm, in terms of memory
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resources. Moreover, there are situations in which the systems are infinitestate,
thus they need to be abstracted in such a way that the properties of the abstracted
finite model hold in the concrete model too [106, 133].

Being motivated by the importance and usefulness of controller synthesis, and
challenged by its difficulty, we have tried to find an alternative deductive solution
to this problem [26, 59]. Our solution could, for instance, be employed when the
traditional model-checking approach fails. Furthermore, the method is applicable
as such for controller construction of either finite or infinite state discrete systems.

The behavior of a discrete control system can be adequately modeled by a
repetitive sequence of actions carried out by the controller, and the disturbance,
respectively. We take advantage of the dual nondeterminism in our modelinglan-
guage, and identify the control system with a two-player game having theangel
and thedemonas players. By identifying the angel with the controller and the de-
mon with the disturbance, we are able to exploit further the mentioned dualism,
while playing the angel against the demon. Having defined the system model, we
specify the requirement, next. It is a temporal property, which should be enforced
by the controller (that is, the angel) during system execution, in spite of the hostile
actions of the disturbance.

The dilemma that rises within this context is whether the angel can face the
challenges of the demon, and win the game by ensuring the intended overall system
behavior.

We focus, in the current chapter, upon solving this dilemma. To check whether
the temporal property that specifies the reachability control can be enforced by
the angel, we propose an inference rule that reduces enforcement to correctness
reasoning. Moreover, in case of a positive outcome, we show how to extract the
angelic winning strategy. We do this through a correctness-preserving transforma-
tion, that is, assertion propagation. Two illustrative examples, a memory buffer
controller and a data-processing system serve as the case-studies.

7.1 Game Tree Semantics of Action Systems

Back and von Wright have developed a semantics for action systems that general-
izes the traditional behavioral action systems semantics [37]. We present here the
basic notions, which we use in the rest of the chapter.

An (infinite) action gameis a pair(p, T ) wherep is theinitial predicateandT
is theaction(a monotonic predicate transformer). An execution of the action game
starts from some (demonically chosen) initial state inp, and then the actionT is
repeatedly executed atomically, as a game between the angel and the demon.

By a game treewe mean a tree withpredicate nodes(labeled with predicates,
that is, sets of states, from which the demon is to select a state) and state nodes
(labeled with states, from which the angel is to decide what the next predicate is),
in strict alternation, where
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• the root node is a predicate node,

• a predicate node is labeled with a predicatep if and only if for eachσ ∈ p,
there is exactly one child (a state node) labeled withσ and

• leaf nodes occur as follows:

– A leaf node labeled> follows after any predicate node containing the
empty predicatefalse (this models miraculous termination), and

– A leaf node labeled⊥ can occur as the only node following any state
node (this models abortion).

A game tree may be infinitely branching and it may contain infinite paths. Figure
7.1 illustrates a game tree. Here, state nodes (states) are shown as bullets (•) and
predicate nodes (predicates) as circles (◦).

T


T


T


Figure 7.1: Game Tree.

We will now describe how an action gameA = (p, T ) generates a game tree,
when the actionT is thought of as executed as a two-step game, according to its
normal form. This means that in any given stateσ

1. the angel first chooses a predicatep such thatT.p.σ holds (if there is no such
predicate then the execution has aborted), and

2. the demon then chooses a stateσ′ in p (if p is empty, then the execution has
become miraculous)

and then step 1 is repeated for stateσ′, etc. Thus, the possible executions of the ac-
tion systemA = (p, T ) give rise to a game tree which is exactly the tree generated
by T with rootp. This tree is thegame treeG(A) generated by theaction gameA.
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We recall the fact that the state space
∑

is extended with two elements (which
we callimproper states): ⊥ (standing for abortion or nontermination) and> (stand-
ing for a miracle). Theaugmented state space

∑

+ =
∑

∪{⊥,>} is a complete
lattice when ordered by the followingapproximation relation:

σ ¹ σ′ ∧
= σ = ⊥ ∨ σ = σ′ ∨ σ′ = >

A behavioris a sequencet = (t0, t1, . . .) of states (including⊥ and>). Behaviors
can be

• infinite, containing only proper states,

• aborting, that is, ending with an infinite repetition of⊥, or

• miraculous, that is, ending with an infinite repetition of>.

A strategyf (for the angel) for game treeG is a rule that resolves all the angelic
choices in the game treeG. Thus,f.G is a tree where every state node has exactly
one child.

Every path in a game tree gives rise to a behavior; we simply remove every
predicate node in the path, and if the path ends in⊥ or >, we repeat that final
improper state indefinitely. Thus, the treef.G can also be interpreted as a set of
behaviors (state sequences):t ∈ f.G holds if and only ift is the result of removing
all predicate nodes from a complete path in the treef.G and repeating the final
(improper) state indefinitely if the path is finite.

Temporal Properties. Let t be a behavior andq a predicate. Back and von
Wright [37] define thealways (¤) temporal property over discrete behaviorst,
as follows:

t |= ¤ q iff (∀i · ti ∈ q)

The above formula describes what it means for the behaviort to satisfythe property
¤ q.

By extending the satisfaction of temporal formulas to game trees, we have that
G |= φ holds if and only if there is a strategyf over G for the angel such that
t |= φ, for everyt ∈ f.G. Thus,G |= φ means that the angel canenforcethe
propertyφ, that is, make sure that it becomes true.

An action gameA = (p, T ) is said to satisfy a temporal propertyφ if G(A) |=
φ. Assuming that predicatep and monotonic predicate transformerT are given,
the following formula characterizesweakest temporal preconditions(the weakest
predicate such thatG(p, T ) satisfiesφ) for alwaysproperties:

wtp(T, ¤ q)
∧
= (νx • q ∩ T.x)
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7.2 Generic Approach to Synthesis

Given the structure of a control system, it follows naturally that it can be modeled
as a game between two players, the controller and some disturbance. We assume
that the behavior of the disturbance is hostile, thus we would like the controller
to guarantee the requirements despite the action of the disturbance. We call the
controllerthe angel, and the disturbancethe demon. During the game, the goal of
the angel is to force the system to remain inside a certain desired subset of the state
space, whereas the demon’s goal is to force the system to leave this same subset.

Let us assume that thediscrete systemis modeled by an action system of the
form

Sys(y : Ty)
∧
= begin var x : Tx

• Init ; do g → A ; D od end (7.1)

Here, statementA contains angelic choices andD demonic ones. The values of the
variables are chosen sequentially, first by the controller and then by the disturbance.
Consequently, the compositionA ;D models a two-player game where each player
has complete information about the moves of its rival.

Before proceeding to synthesis, one needs to specify the control system and
its requirements. Here, thecontroller is defined by an angelic nondeterministic
assignment, as follows:

A = {x := x′ | ba}

Dually, the behavior of thedisturbanceis described by a demonic nondeter-
ministic assignment:

D = [x := x′ | bd]

As previously mentioned, we focus on constructing controllers for invariance
and reachability. Hence, in the first case therequirementis encoded as asafety
property, whereas in the second case it is alivenessproperty.

Safety is an “always” property and has the form¤ q, whereq is a set of states
(predicate). The goal of the controller is to continually observe the plant, and force
control events at appropriate times, such that the plant always remains within the
safe set of states,q. Such controllers are calledinvariancecontrollers.

Traditional liveness properties are modeled as “eventually” (♦q) temporal pro-
perties. However, here we look at a variant of liveness property, which is defined
later in this chapter. Controllers that can enforce liveness properties are called
reachabilitycontrollers. Their duty is to guide the system towards the intended
reachable set,q, in finite time.

Assuming that at each round of the game, sequential angelic and demonic
choices determine the next state of the game, we can intuitively split the synthesis
problem into two sub-problems:

(a) Checking whether the angel can enforce the safety or liveness property. In our
case, this process reduces to correctness proofs.
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(b) In case the correctness conditions hold, it follows that the angel has a winning
strategy. Therefore, extracting the angelic winning strategy is the next step.
This second step is equivalent to the actual controller construction.

7.3 Synthesis of Controllers for Invariance

7.3.1 Enforcing the Safety Property

As pointed out, designing a controller for invariance implies the specification of
some safety property that should be enforceable by the angel during system execu-
tion. We express this property as an “always” (¤) temporal property.

In the following, we show how we can compute the precondition for the angel
to enforce the property¤ q in the action systemSys, given by (7.1). Applying the
result proved by Back and von Wright [38], to our case, we get the following:

p {|do g → A ; D od |}¤ q ≡ p ⊆ (νX • {q} ; [g] ; A ; D ; X).false (7.2)

Formula (7.2) shows that we can reduce the question of whether the “always”
temporal property can be enforced for an action system, to the question ofwhether
a certain goal can be achieved. In this case, the goalfalse cannot really be es-
tablished, so success can only be achieved by miraculous termination, or bynon-
termination caused by the demon.

As an immediate consequence of equation (7.2), we get the correctness rule for
safety, at the predicate level:

p {|do g → A ; D od |} ¤ q ≡ p ⊆ (νx • q ∩ (¬g ∪ A.(D.x))) (7.3)

For generalized action systems, Back and von Wright show how to prove enforce-
ment of temporal properties by using usual invariant-based methods [38], rather
than employing costly fixed-point computation algorithms. By adapting their re-
sult to our case, we get the rule shown in Lemma 7.

Lemma 7 Assume the following action system:

Sys(y : Ty) = begin var x : Tx
• Init ; do g → A ; D od end

Then, always-properties can be proved using invariants, as shown bythe inference
rule below:

p ⊆ I g ∩ I {|A ; D |} I I ⊆ q

p {| do g → A ; D od |} ¤ q

wherep, q are predicates.
Proof. Similar to the proof of Lemma 6.
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The inference rule of Lemma 7 states that proving the “always” property for
the loop of the action systemSys is in fact equivalent to showing that a predicate
I ⊆ q is an invariant ofSys. Even if this is an expected result, the presence of
the angelic nondeterminism makes the process slightly more complicated. We will
dwell on this issue in the next section.

Therefore, proving the safety propertyq by proving an invariance property
subsumes the following obligations:

1. Find a predicateI, such thatI ⊆ q holds.

2. Prove thatI is established by the initializationInit, that is,p ⊆ I, wherep
is the predicate that holds afterInit.

3. Prove thatI is preserved by the actiong → A ; D, that is

g ∩ I ⊆ A.(D.I)

= {substituteA, D, rule(2.7), rule(2.12), rule(2.11)} (7.4)

g ∩ I ⊆ (∃x′ · ba ∩ (D.I)[x := x′])

It then follows that, if the above conditions hold, the angel has a winning strat-
egy,A, thus a controller for invariance can be synthesized.

7.3.2 Extracting the Control Strategy for Invariance

After having established that the angel can enforce the required behavior, one needs
to extract its respective winning strategy.

In principle, the process of controller synthesis should constrain the angelic
behavior; on the other hand, usual refinement seems not to do the job, since the
refinement rule of angelic assignments (2.16) says that only by adding choices can
we get a refinement of such statements. However, in the following, we showhow
to reduce the angelic nondeterminism, with respect to the enforced property, via a
correctness-preserving transformation.

Given the fact that we have provedI to be an invariant of the action system
Sys defined in Lemma 7, we know, due to the correctness rule for sequential com-
position, recalled in chapter 2, that the new statement

S

= g → {I} ; A ; {D.I} ; D ; {I}

= {rule (2.19)}

g → {g ∩ I} ; A ; {D.I} ; D ; {I}

can replace the statementg → A ;D of thedo − od loop. This is correct, sinceS
preserves the invariant, trivially. Within this context, we can rewriteA by using the
information supplied by assertion{D.I}, such that the angel is forced to restrict
its choices to the ones that establishI.
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In our case,A = {x := x′ | ba}, thus, we can propagate{D.I} backwards. In
this way, we strengthen the boolean condition of the angelic nondeterministic as-
signment. As a result, the angelic choices are reduced, according to the propagated
information. The actual transformation is as follows:

{x := x′ | ba} ; {D.I}

= {(2.18)} (7.5)

{x := x′ | ba ∩ D.I[x := x′]}

= Af

At first glance, this seems a transformation that does not actually favor our
agent; it rather serves the interests of the demon, since it decreases the set of final
states that the angel can choose from.

However, rewriting in the specified context makes the behavior of the angel
implementable. To support this claim, we prove that the angelic nondeterminism
within Af is in fact equivalentto demonic nondeterminism, within the analyzed
context.

The correctness rule of the sequence{g ∩ I} ; Af ; D ; {I} with respect to
preconditiong ∩ I and postconditionI is

g ∩ I {|{g ∩ I} ; Af |} D.I D.I {|D ; {I}|} I

g ∩ I {|{g ∩ I} ; Af ; D ; {I}|} I

We have that

({g ∩ I} ; Af ).(D.I)

= {substituteAf}

({g ∩ I} ; {x := x′ | ba ∩ (D.I)[x := x′]}).(D.I)

= {wp rules for angelic assignment, sequential composition, and assertion}

g ∩ I ∩ (∃x′ · ba ∩ (D.I)[x := x′])

⊆ {logic}

g ∩ I ∩ true

= {rewrite true}

g ∩ I ∩ (∀x′ · ba ∩ (D.I)[x := x′] ⊆ (D.I)[x := x′])

= {wp rules for demonic assignment, seq. composition, and assertion}

({g ∩ I} ; [ x := x′ | ba ∩ (D.I)[x := x′] ]).(D.I)

We also have that

({g ∩ I} ; Af ).(D.I)

= {substituteAf}

({g ∩ I} ; {x := x′ | ba ∩ (D.I)[x := x′]}).(D.I)
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= {wp rules for angelic assignment, sequential composition, and assertion}

g ∩ I ∩ (∃x′ · ba ∩ (D.I)[x := x′])

⊇ {(7.4): g ∩ I ⊆ (∃x′ · ba ∩ (D.I)[x := x′])}

g ∩ I ∩ true

= {rewrite true}

g ∩ I ∩ (∀x′ · ba ∩ (D.I)[x := x′] ⊆ (D.I)[x := x′])

= {wp rules for demonic assignment, seq. composition, and assertion}

({g ∩ I} ; [ x := x′ | ba ∩ (D.I)[x := x′] ]).(D.I)

Hence, for whatever choice the angel picks, such that it stays within the pool
of states denoted byba ∩ D.I[x := x′], the final predicateI holds, no matter how
the demon chooses to play.

The idea of implementing angelic nondeterminism by systematically trans-
forming angelic nondeterministic statements into demonic nondeterministic state-
ments, or deterministic statements is advocated by Celiku and von Wright [57].
Rules that guarantee the correctness of such transformations are proposed, yet
without targeting synthesis of controllers that need to meet (various) temporal re-
quirements.

7.3.3 Example: A Producer-Consumer Application

Let us assume that we are given the task of designing a controller for aFirst-In-
First-Out (FIFO) memory buffer (or aLast-In-First-Outbuffer, for that matter). A
specificproducerprocess adds data to the buffer, while a particularconsumertakes
away data from the buffer, with respect to predefined rules. This kind of pipelined
controller could be useful, for instance, in the design of hardware devices.

Our goal is to ensure that the producer can always provide at least one new
input to the buffer, that is, the buffer is never full after the consumer has finished its
round. We choose to show our proposed methodology on aparameterizedmodel,
where the parameter is the capacity of the buffer.

In the example that we present, we suppose that the producer places items at
one end of the buffer, and the consumer removes items at the other end (Figure 7.2
a)). However, this is just a modeling point of view, since the methodology applies
also if they operate at the same end of the buffer (Figure 7.2 b)).

System Modeling. We start by imagining a game between the controller (pro-
ducer), represented by the controllable variables, and the plant (consumer), mod-
eled by the uncontrollable ones. The players take turns and make moves with
respect to the following rules:

• each time the system executes, the producer has to add one or two items into
the virtual buffer (it can not add zero);
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Consumer


Producer
 Consumer


a)
 b)


Figure 7.2: The producer-consumer example: a) FIFO, b) Stack (LIFO)

• the consumer may choose to remove at most two items at a time, or leave the
number of items unchanged, depending on the sizes of the respective data
packages:

- the consumer is allowed to remove zero items, if it has removed one
item from the buffer, in the immediate previous step;

- if the consumer has removed zero in the previous round, it has to re-
move two items, in the current one;

- if the consumer has removed two items, it is mandatory that it removes
only one item during the current round.

Note that an external observer sees the start of each round and the end of it,
without noticing the intermediate states.

The goal of the controller is to find a way to enforce the required property,
during the execution of the system. For instance, such property is the requirement
to “never exceed the capacity of the buffer”, or “if an error has occurred, keep the
buffer within certain limits”.

The variables that describe the system state are as follows:

• C : Nat - models the number of items in the buffer, as updated by the con-
sumer, at the end of each round of the game; it represents the observable
value;

• r : {0,1,2} - represents the number of items removed by the consumer, from
the buffer;

• max : Nat- models the capacity of the buffer (maximum number of items),
yet not less than 4 locations (max ≥ 4), for the buffer to be sufficiently
large.
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The goal of the producer is a postcondition formalized as an “always” temporal
property:

¤ q = ¤(0 ≤ C < max),

The property can be interpreted in terms of the game: the producer loses the
game if the consumer manages to leave the buffer full, after its respective update.
By enforcing¤ q, we ensure that there is a continuous activity at the producer end
of the buffer.

In spite of the partly nondeterministic moves of the consumer, the producer
should be able to enforce¤ q. Having a way to keep ittrue during the entire
execution of the system is equivalent to synthesizing a controller for invariance.

Hence, we focus on synthesizing such a controller, within the mentioned setup.

7.3.4 The Producer-Consumer Model as an Action System

The process of controller synthesis is gradual; it starts with a nondeterministic
model of the controller, which has to be further adjusted correctly, in order to be
brought closer to the implementable level. This justifies our decision to specify
the actions of the producer, as an angelic nondeterministic assignment. Thus, the
behavior of the controller is described as follows:

Prod = {C := C ′ |C < C ′ ≤ C + 2} (7.6)

The boolean condition of the assignment ensures that the producer addsone
or two items to the buffer. Should we not require this condition to hold, the basic
angelic behavior is not enforced.

As the consumer is partly uncontrollable, it behaves demonically. Conse-
quently, it is modeled by a demonic nondeterministic assignment:

Cons = [r, C := r′, C ′ |(r = 0 ⊆ r′ = 2)

∩ (r = 1 ⊆ r′ ∈ {0, 1, 2})

∩ (r = 2 ⊆ r′ = 1)

∩ C ′ = C − r′] (7.7)

= [r := r′ |(r = 0 ⊆ r′ = 2)

∩ (r = 1 ⊆ r′ ∈ {0, 1, 2})

∩ (r = 2 ⊆ r′ = 1)] ;

C := C − r

The statementCons regulates the moves of the consumer, according to the
rules mentioned in section 7.3.3.

The producer is responsible for enforcing the safety property¤ q, formalized
previously. At each turn, it should choose an appropriate number of itemsto add
to the buffer, such that the latter can never be left fully occupied, by the consumer.
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The property should be guaranteed, regardless of the demonic nondeterministic
moves.

Further, we model the producer and the consumer, together, as the actionsys-
tem below, where we substitute statement (7.6) forProd, and (7.7) forCons. The
system terminates upon the completion of the process. This is decided by an ex-
ternal device, modeled by some statementDev. For simplicity, we choose here
to model a non-terminating loop. At will, the guardtrue can be replaced by a
non-trivial one.

Buf
∧
= begin var r : {0, 1, 2}, C : Nat •

r := 0 ; C := 0 ; [max ≥ 4];
do true → Prod ; Cons ; Dev od

end : max

(7.8)

7.3.5 Applying the Synthesis Method

According to the theory, we first check whether the safety property¤ q, given as
¤(0 ≤ C < max), can be enforced by the producer. In case this is possible, we
move along the line established in section 7.3.2, to extract the winning strategy.

Given the system model as the action systemBuf defined by (7.8), we proceed
as follows:

A1) Firstly, we need to find a predicateI ⊆ q. We chooseI as being

I = (r = 0 ∩ 0 ≤ C < max) ∪

(r 6= 0 ∩ 0 ≤ C < max − 1)

Proving thatI ⊆ q is straightforward.

A2) Next, I has to be an invariant of the action systemBuf . We assume that the
statementDev preserves the invariant (I{|Dev|}I holds), since it does not
interfere with the variables mentioned inI. The invariant is established by
the initialization statement:

p
∧
= r = 0 ∩ C = 0 ∩ max ≥ 4

⊆ {logic}

I

Then, we prove thatI is preserved by the action of the loop, that is,

I ⊆ Prod.(Cons.I)

Since statementDevpreserves the invariant trivially, the relation

I ⊆ Prod.(Cons.I) ⇒ I ⊆ Prod.(Cons.(Dev.I))
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holds. Hence, if we are able to prove the left-hand side of the above impli-
cation, the right-hand side follows. The proof is shown below.

Prod.(Cons.I)
= {substitute statement Cons}

Prod.(([r := r′ |
(r = 0 ⊆ r′ = 2)∩
(r = 1 ⊆ r′ ∈ {0, 1, 2})∩
(r = 2 ⊆ r′ = 1)] ; C := C − r).I)

= {rules (2.7), (2.4), (2.12)}
Prod.(∀r′ • (r = 0 ⊆ r′ = 2)∩

(r = 1 ⊆ r′ ∈ {0, 1, 2})∩
(r = 2 ⊆ r′ = 1))

⊆ (I[C := C − r])[r := r′]
= {substitute statement Prod, simplify}

{C := C ′ |C < C ′ ≤ C + 2}.
((r = 0 ⊆ 2 ≤ C ≤ max)∩
(r = 1 ⊆ 2 ≤ C ≤ max − 1)∩
(r = 2 ⊆ 1 ≤ C ≤ max − 1))

= {rule (2.11)}
(∃ C ′ • C < C ′ ≤ C + 2∩

((r = 0 ⊆ 2 ≤ C ′ ≤ max)∩
(r = 1 ⊆ 2 ≤ C ′ ≤ max − 1)∩
(r = 2 ⊆ 1 ≤ C ′ ≤ max − 1)))

= {case analysis}
• {witnessC ′ = C + 1}

(C ′ = C + 1)∩
(r = 0 ⊆ 2 ≤ C ′ ≤ max)∩
(r = 1 ⊆ 2 ≤ C ′ ≤ max − 1)∩
(r = 2 ⊆ 1 ≤ C ′ ≤ max − 1))

⊇ {logic}
I ∩ (C ≥ 2)

• {witnessC ′ = C + 2}
(C ′ = C + 2)∩
((r = 0 ⊆ 2 ≤ C ′ ≤ max)∩
(r = 1 ⊆ 2 ≤ C ′ ≤ max − 1)∩
(r = 2 ⊆ 1 ≤ C ′ ≤ max − 1))

⊇ {logic, assumptionmax ≥ 4}
I ∩ (0 ≤ C ≤ 1)

⊇ {logic}
(I ∩ (0 ≤ C ≤ 1)) ∪ (I ∩ (C ≥ 2))

= {logic}
I
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We have also proved the invariant with thePrototype Verification System
(PVS) [65]. The PVS specification ofProd, Cons, and the mechanized proof
of invariance are shown in Figures 7.3 and 7.4, respectively. Consequently,
irrespective of the chosen value ofr, the producer has a way of enforcing
¤ q.

B) Within this step, we apply rule (7.5) for rewriting the statementProd, given by
(7.6). The rewriting procedure uses backward propagation of the assertion

{Cons.I}

=

{ (r = 0 ⊆ 2 ≤ C ≤ max)

∩ (r = 1 ⊆ 2 ≤ C ≤ max − 1)

∩ (r = 2 ⊆ 1 ≤ C ≤ max − 1) }

Below, we show the one-step derivation that leads to the winning strategy of
the producer:

{C := C ′ | C < C ′ ≤ C + 2} ; {Cons.I}

= {rule (7.5)}

{C := C ′ | C < C ′ ≤ C + 2

∩ (r = 0 ⊆ 2 ≤ C ′ ≤ max)

∩ (r = 1 ⊆ 2 ≤ C ′ ≤ max − 1)

∩ (r = 2 ⊆ 1 ≤ C ′ ≤ max − 1)}

= {notation}

Prodf (7.9)

= { result proved in section 7.3.2, fixed postconditionCons.I }

[C := C ′ | C < C ′ ≤ C + 2

∩ (r = 0 ⊆ 2 ≤ C ′ ≤ max)

∩ (r = 1 ⊆ 2 ≤ C ′ ≤ max − 1)

∩ (r = 2 ⊆ 1 ≤ C ′ ≤ max − 1)]

The statementProdf , given by (7.9), represents the winning strategy of the pro-
ducer, which guarantees thatq is true, for all possible executions. Depending on
the current value ofC, as updated by the consumer, the lower and upper bounds on
C ′ may force the angel to add either one item strictly,C ′ = C + 1, or two items
only (C ′ = C + 2), or may allow for bothC + 1 andC + 2 as valid alternatives.
The strategy ensures a win for the angel, for whatever demonic choices.

Consequently, as discussed in section 7.3.2, the final model is implementable.
By strengthening the boolean condition of the angelic nondeterministic assignment
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Prod, given by (7.6), with the information available as the assertionCons.I, we
have eliminated the angelic choices that would not establishI. The producer can
blindly select its moves, yet satisfying¤ q, which has been our design target. Now,
we can safely replaceProd by Prodf in the action systemBuf .

An interesting extension of the analyzed example is to try to keep the content
of the buffer within certain specified limits. In this case, additional information,
which describes the conditions at the other end of the buffer, should be considered
also.

For example, let us assume that a safety property that tolerates neither a full,
nor an empty buffer, should be enforced onBuf :

¤ qnew = ¤ (1 ≤ C < max)

The conditionqnew requires an ongoing activity at both ends of the buffer.
Applying the same technique as for synthesizing a controller forq, we need to

find an invariant that impliesqnew. The respective predicate is as follows:

Inew

= (r = 0 ∩ 1 ≤ C < max) ∪

(r 6= 0 ∩ 1 ≤ C < max − 1)

Note that only the lower bound ofC has been modified, accordingly. It can be
proved that the winning strategy of the producer, which guaranteesqnew, for any
possible choice, is

{C := C ′ |C < C ′ ≤ C + 2

∩ (r = 0 ⊆ 3 ≤ C ′ ≤ max)

∩ (r = 1 ⊆ 3 ≤ C ′ ≤ max − 1)

∩ (r = 2 ⊆ 2 ≤ C ′ ≤ max − 1)}

Should we decide to always maintain the buffer filled at leastn locations, and at
mostmax − N locations, we then have, by induction, that:

Igen

= (r = 0 ∩ n ≤ C < max − N) ∪

(r 6= 0 ∩ n ≤ C < (max − N) − 1)

and the winning strategy:

{C := C ′ | C < C ′ ≤ C + 2

∩ (r = 0 ⊆ n + 2 ≤ C ′ ≤ max − N)

∩ (r = 1 ⊆ n + 2 ≤ C ′ ≤ (max − N) − 1)

∩ (r = 2 ⊆ n + 1 ≤ C ′ ≤ (max − N) − 1)}
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The ideas introduced here might be applied to a more general producer-consu-
mer problem. This would indeed lead to the construction of a correct and reliable
template for such a class of systems; then, not only the capacity, but also thenum-
ber of inputs and outputs, that is, the choices of the producer and the consumer,
respectively, should be parameterized.

Producer-Consumer Specification in the Language of the Prototype Verifica-
tion System. ThePrototype Verification System(PVS, in short) [65, 144] offers
mechanized support for formal program specification and verification.It has been
developed at SRI International, and it comprises aspecification languageand a
rich built-in prelude, made of theories that contain useful definitions and theorems.
The PVS specification language builds on classical typed higher-order logic.

PVS specifications are packaged astheoriesthat can be parametric in types and
constants. The built-in prelude and loadable libraries provide standard specifica-
tions and proved facts for a large number of theories.

fifo: theory

begin

nat_4 : TYPE+ = {n: nat | 4 <= n} CONTAINING 4
 N: nat_4 
 C, C0: var nat
 r, r0: var {n: nat | n < 3} 

 I(r, (C: int)): bool = (r = 0 and 0 <= C and C < N) or 
(r /= 0 and 0 <= C and C <= N - 2)

prod(C, C0): bool = C < C0 and C0 <= C + 2

cons(r, r0): bool =
(r = 0 => r0 = 2) and
(r = 1 => r0 < 3) and
(r = 2 => r0 = 1)

invariant: lemma I(r, C) => exists C0: prod(C, C0) and 
  (forall r0: cons(r, r0) => I(r0, C0 - r0))

wp: lemma (forall r0: cons(r, r0) => I(r0, C - r0)) =
((r = 0 => 2 <= C and C <= N) and
 (r = 1 => 2 <= C and C <= N - 1) and
 (r = 2 => 1 <= C and C <= N - 1))

end fifo

Figure 7.3: PVS specification ofProd, Cons

Proofs in PVS are presented in a sequent calculus. The atomic commands ofthe
PVS prover includequantifier instantiation, automatic conditional rewriting, sim-
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plification using arithmetic and equality decision procedures and type information,
and propositional simplification using binary decision diagrams. TheSKOSIMP

command, for example, introduces constants of the formx!i for universal quanti-
fiers, andASSERT combines rewriting with decision procedures.

Finally, PVS has a strategy language for combining atomic inference steps
into more powerful proof strategies. The strategyGRIND, for example, combines
rewriting with propositional simplification usingbinary decision diagrams(BDDs)
and decision procedures.

(skosimp)

(expand "I")

(expand "prod")

(expand "cons")

(case "C!1 <= 1")

(inst 1 "C!1 + 2")

(assert)

(grind)

(inst 2 "C!1 + 1")

(assert)

(grind)

Figure 7.4: PVS proof of invariance.

Since all we need to do is to prove an invariance property, we have reduced
the predicate transformer model of the producer and the consumer, to a boolean
specification in PVS. This lighter model, as can be seen in Figure 7.3, offersbetter
premises for a more intuitive, less intricate mechanized proof.

At first, we have proved thewp lemma, which verifies the correctness of the
computed weakest preconditionCons.I. The proof is carried out in 4 steps: invoke
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the quantifier ruleSKOLEM!, expand the definition ofCons, then ofI, and last,
use the rule for simplification with decision procedures,GRIND.

The main lemma calledinvariant checks for the validity of the invariant, after
executing the sequenceProd ;Cons. We have verified that predicateI implies the
existence of aC0 (C ′ in (7.6)), such that for any number of items removed by the
consumercons(r, r0), the invariant is preserved in the end. The proof is given in
Figure 7.4 and follows a similar pattern to the pen-and-paper proof.

7.4 Synthesis of Controllers for Reachability
Reachability controllers have to guide the system into a specified set of states, from
any initial state, or provided that some nontrivial condition is fulfilled. One ofthe
possible applications of the latter is infault-tolerantsystems.

Even if we agree with the point of view that the best way to deal with faults is
not to have them, it is not possible to makeanysystem 100% fault-free. Therefore,
full fault-tolerance is desirable. However, most systems can perform reliablyup to
a limited number of faults, with a possible decrease in performance.

For example, in order to guarantee reliability of fault-tolerant systems, one
may wish to encode the requirement that a system fault (or an accepted number of
faults) should not be followed by other faults, during the system’s life-time.

As distinct from the previously mentioned fault-tolerant systems, fail-safe sys-
tems should be able to terminate in a safe state, if they suffer a serious damage and
need to halt their operation. Failures result from many causes, such as degradation,
overloading, design errors etc. Besides minimizing the chances of a failure, one
should also strive to reduce its effect. This means that a system has to be designed
such that, if a failure occurs, its controller issues commands that lead to restoring
safety and termination.

In the following, we address the design of reachability controllers suited for
classes of fault-tolerant systems as described above.

7.4.1 Characterizing Enforcement of Response Properties inAction
Systems

Formal Definition of Weak Response. Let us consider a reactive system de-
scribed by an action system given by (7.1). In principle, for designing correct
reachability controllers, the angel has to guarantee liveness properties, modeled as
“eventually” (♦) properties. Here, we focus on an eventuality property that we de-
note by the temporal operator♦w(p, q), p, q predicates. We call this propertyweak
response.

The weak response property holds if:

• the system has reached a state in the set of reachable statesp and the angel
has a way of ensuring that the system execution terminates in a state ofq, or
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• if the angel can keep the system in a state of¬p, forever.

As proved by Back and von Wright [38], for “always” and “until” properties,
enforcement of temporal properties is reduced to traditional correctness proper-
ties of special fixed-point statements. To be able to further characterize♦w(p, q),
we define the following recursive statement, which subsumes the existence of two
loops:

WRes.p.q
∧
= (νX · [¬p] ; [g] ; A ; D ; X u [p] ; (µY · [¬q] ; {g} ; A ; D ; Y ))

(7.10)

In fact,WRes.p.q is a weak iteration that is necessarily terminating, if the particular
conditionp holds.

We can say that the statementWRes.p.q is aninterpreterfor ♦w(p, q); it exe-
cutes the constituent statements for determining whether the weak response prop-
erty is valid. The behavior ofWRes.p.q is shown in Figure 7.5.
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Figure 7.5: An interpreter for WRes.p.q

The diagram shows the angelic choices as empty circles and the demonic choices
as filled circles. A grey circle means that we do not know whether the choiceis
angelic or demonic.

For mission-critical systems (e.g., in avionics),p can model a failure that, once
encountered, has to be followed by the restoration of the safe state, and termina-
tion in such a state (whereq holds). The fail-safe systems attempt to limit the
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amount of damage caused by a failure [52]. Termination whenq holds is compul-
sory. To achieve this, we need to specifically add a guarded action that disables the
respective action system wheneverp ∩ q holds. The action should have the form
p ∧ q → S, whereS is an assignment that makes the guard of the system false.

To help intuition, we give a practical example described by Burns and Wellings,
in their book on real-time systems [52]: “The A310 Airbus’s slat and flap control
computers, on detecting an error on landing, restore the system to a safe state and
then shut down. In this situation, a safe state is having both wings with the same
settings; only asymmetric settings are hazardous in landing”. Informally, ifp =
(error on landing), then the airplane controller should enforceq = (equal settings
for both wings), at landing. Otherwise, ifp does not hold (no error on landing has
occurred),q need not necessarily hold.

We translate the informal descriptions presented above into a formal lemma,
which characterizes the weakest precondition of a statement with respect to the
weak-response property.

Lemma 8 Assume that predicatesp, q, and the monotonic predicate transformer
S are given. Then, the weakest predicate such that the game tree generated byS
satisfies♦w(p, q) is:

S.♦w(p, q) = (νx • (p ∪ S.x) ∩ (¬p ∪ (µy • q ∪ S.y)))

Proof. We follow the proof line of Lemma 2, in [37]. Let us considerq′ =
(νx • (p ∪ S.x) ∩ (¬p ∪ (µy • q ∪ S.y))). Consider also the game tree with
rootp0 = S.♦w(p, q) generated byS.

The angel must be able to choose a predicatep′ such that

(∀σ • (p.σ ∨ S.p′.σ) ∧ (¬p.σ ∨ (p′.σ = lim
α

qα+1.σ)))

holds and(p′, S) satisfies♦w(p, q).
In the above, the approximationsqα are defined by:

q0 = false

qα+1 = q ∪ S.qα

qα = (∪β < α · qβ), for limit ordinalsα

The approximationqα characterizes those states for which the angel can guar-
antee that, if we set a “counter” atα and decrease it after each time the demon has
made a choice, thenq will be established before the counter runs out. Thus, the
limit of these approximations is exactly the set of states that guarantee♦q.

Sincep0 is the greatest predicate with this property, we have:

σ ∈ p0 ≡ (σ ∈ p ∨ (∃p′ • S.p′.σ ∧ p′ ⊆ p0)) (7.11)

∧ (σ ∈ ¬p ∨ (∃p′ • p′ ⊆ p0 ∧ p′.σ = lim
α

(q.σ ∨ S.qα.σ)))
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Further, we have:

σ ∈ p0

≡ { argument (7.11)}
(σ ∈ p ∨ (∃p′ • S.p′.σ ∧ p′ ⊆ p0))

∧ (σ ∈ ¬p ∨ (∃p′ • p′ ⊆ p0 ∧ p′.σ = lim
α

(q.σ ∨ S.qα.σ)))

≡ { S monotonic}
(σ ∈ p ∨ S.p0.σ) ∧ (σ ∈ ¬p ∨ (p0.σ = lim

α
(q.σ ∨ S.qα.σ)))

≡ { set notation}
(σ ∈ p ∪ S.p0) ∧ (σ ∈ ¬p ∪ (p0 = lim

α
(q ∪ S.qα)))

Since this holds for allσ, we get:

p0 = (p ∪ S.p0) ∩ (¬p ∪ lim
α

(q ∪ S.qα))

Thus,p0 = S.♦w(p, q) is a fixed point of

(λx • (p ∪ S.x) ∩ (¬p ∪ µ.(λy • q ∪ S.y)))

To see thatp0 is the greatest fixed point, it is sufficient to show thatq′ ⊆ p0.
The latter follows from proving thatG(q′, S) |= ♦w(p, q).

For this, we note that the root ofG(q′, S) is q′ = (p∪S.q′)∩(¬p∪(µy·q∪S.y)),
which means that every state that the demon can choose is either inp, or in ¬p.
After that, the angel can chooseq′ as the next predicate. If the demon chooses
a state inp, given the fact that the angel choosesq′, (µy · q ∪ S.y) holds. If
the demon chooses a state of¬p, it follows thatS.q′ holds. Thus, by induction,
(p ∪ S.q′) ∩ (¬p ∪ (µy · q ∪ S.y)) will hold in every state if the angel follows the
strategy “always choose the predicateq′”.

The characterization in Lemma 8 of the weakest precondition gives us the fol-
lowing result for action game satisfaction of weak response.

Theorem 4 Assume thatS is a monotonic predicate transformer andp0, p, q are
predicates. Then

G(p0, S) |= ♦w(p, q) iff p0 ⊆ (νx • (p ∪ S.x) ∩ (¬p ∪ (µy • q ∪ S.y)))

Proof. Follows from Lemma 8.

This shows how reasoning about weak response is reduced to fixed point reasoning
about predicate transformers.
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Correctness Lemma for Weak Response. Here, we formulate enforcement of
weak response, as a correctness property.

Since

∀σ • σ {|do g → A ; D od |} ♦w(p, q) ≡ (WRes.p.q).false.σ,

we can further claim the following result.

Lemma 9 Let statementsA,D, and predicatesp, q be the same as above. Then

p0 {|do g → A ; D od |} ♦w(p, q)
≡p0 ⊆ (νX • [¬p] ; [g] ; A ; D ; X u [p] ; (µY • [¬q] ; {g} ; A ; D ; Y )).false

7.4.2 Proving Enforcement of Weak Response

Invariant-based Proof Rule. Below, we propose an inference rule for checking
whether the angel can enforce weak response properties in the particular case of an
action system of the form given in the following lemma.

Lemma 10 Assume the following action system:

Sys(y : Ty) = begin var x : Tx
• Init ; do g → A ; D od end

Then, weak-response properties can be proved using invariants, and termination
arguments, as follows:

p0 ⊆ I
g ∩ I {|A ; D|} I
p ∩ I ⊆ q ∪ g

¬q ∩ g ∩ (t = w) {|A ; D|} (q ∪ g) ∩ (t < w)
p0{|do g → A ; D od |} ♦w(p, q)

Here,p, q are predicates, and the state functiont ranges over some well-founded
set.

Proof.

p0 {|do g → A ; D od |} ♦w(p, q)
≡ {correctness rule - Lemma 9}

p0 ⊆ (νX · [¬p] ; [g] ; A ; D ; X u [p] ; (µY · [¬q] ; {g} ; A ; D ; Y )).false
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≡ {successive application of rules (2.7), (2.6), (2.10), (2.5)}

p0 ⊆ (νx · (p ∪ ¬g ∪ A.(D.x)) ∩ (¬p ∪ (µy · q ∪ (g ∩ A.(D.y)))))

⇐ {assumptionp0 ⊆ I}

I ⊆ (νx · (p ∪ ¬g ∪ A.(D.x)) ∩ (¬p ∪ (µy · q ∪ (g ∩ A.(D.y)))))

⇐ {greatest fixed point induction rule (2.14)}

I ⊆ (p ∪ ¬g ∪ A.(D.I)) ∩ (¬p ∪ (µy · q ∪ (g ∩ A.(D.y))))

⇐ {assumptiong ∩ I ⊆ A.(D.I)}

I ⊆ (p ∪ ¬g ∪ (g ∩ I)) ∩ (¬p ∪ (µy · q ∪ (g ∩ A.(D.y))))

≡ {logic}

I ⊆ (p ∪ ¬g ∪ I) ∩ (¬p ∪ (µy · q ∪ (g ∩ A.(D.y))))

⇐ {logic}

I ⊆ ¬p ∪ (µy · q ∪ (g ∩ A.(D.y)))

≡ {logic}

p ∩ I ⊆ (µy · q ∪ (g ∩ A.(D.y)))

⇐ {assumptionp ∩ I ⊆ q ∪ g}

q ∪ g ⊆ (µy · q ∪ (g ∩ A.(D.y)))

⇐ {least fixed point rule (2.13)}

∀w · (q ∪ g) ∩ (t = w) ⊆ q ∪ (g ∩ A.(D.((q ∪ g) ∩ (t < w))))

⇐ {shunting, simplification}

∀w · ¬q ∩ g ∩ (t = w) ⊆ A.(D.((q ∪ g) ∩ (t < w)))

⇐ {last assumption}

true

The rule of Lemma 10 shows the proof obligations when carrying out controller
synthesis for weak response. The predicateI might include states ofq, or states
of ¬p. Provided that the angel has started from a state of¬q ∩ g, one can prove
that it has a winning strategy if it can find a way to keep the system inI, or lead
the system into a state ofq ∪ g, trying to decreaset. This means that the controller
is forced to make appropriate moves, such that at the end of the game,q ∪ g gets
established, after a finite number of iterations (t < w).

Let us see, next, how these theoretical results apply to a concrete example.

7.4.3 Example: A Data Processing System

In this section, we analyze the operation of an abstract, distributed data process-
ing system. The input data is produced by one unit (PU), and transferred, via a
limited capacity channel, to a collection of collector devices (CD) that process it
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further. The channel is similar to a buffer that containsmaxlocations. A graphical
representation of the system is given in Figure 7.6.

CD


PU


CD1


CDn


CD2


max


Figure 7.6: The data processing system

The example resembles, in some sense, the one introduced and analyzed in
section 7.3.2: thePU is the producer, theCD replaces the consumer of the respec-
tive example. The methodology described in section 7.3 allows us to build a safe
system where the margins of the buffer are not exceeded, in either sense.

As distinct from the specification of the mentioned example, now, the buffer
may be in service only for a limited period of time (however large), measured
by the number of transactions between thePU andCD. In addition, thePU also
specifies which collector device should process the current data item at the CD
end of the buffer. Even if we are not modeling this feature here, we nevertheless
need to take it into consideration. A monitor / controller identifies this address and
consequently directs the data towards the appropriateCD. A costly, from certain
points of view, implementation of the system would add, on top of the necessary
data locations in the buffer, the number of locations required to store the target
address as issued byPU1. Hence, instead ofmaxbuffer locations, one needs to
employmax + mlocations (wherem ∈ {1, 2, . . .} is the number of slots storing
the address, assuming that each slot is of length 1). For simplicity, in the following
we consider that each address occupies one slot only, that is,m = 1.

From a safety point of view, it would be enough if the designer of such a system
integratesm extra locations into the buffer, thus increasing its capacity; then, one
could apply the solution found in section 7.3.2 (withnewmax = max + m). How-
ever, one could think of optimizing the usage of the buffer, such that its dimensions
remain the same (max). We are helped in this quest by an additional assumption:
built with its own safety considerations, the monitor / controller that receivesthe

1An also somewhat costly implementation would use an extra variable to store the address.

164



target address from thePU, may reconstruct it, once, during the life time of the
system, even if the necessary data is missing or corrupted.

Let us see how this additional assumption can be satisfied in practice. Based
on the fault-tolerant feature, one may think of a system that works “normally” un-
til it falls into the undesired erroneous state (from where the address of the next
processingCD may not be extracted by the monitor / controller). If this is the first
time that the event occurs, the error is detected and repaired by the monitoring pro-
cedures. After this, the system must be protected from reaching the same situation
again, during its life time. The resulting system is illustrated in Figure 7.7.

CD


PU


CD1


CDn


CD2


max - 1


Figure 7.7: The data processing system, with shorter buffer

System Modeling. Here,PU is the angelic program, whileCD behaves demon-
ically. Hence, the incoming signals are modeled as angelic updates, whereasthe
removal of the buffer content is viewed as a disturbance. As in the exampleof
section 7.3.2, the angel,PU, adds one or two data elements to the buffer (apart
from the newly required target address). The capacity of the buffer between the
two components is represented by the parametermax (max ≥ 4).

The variables in the system are as follows:

• life : Nat - records the functioning time of the system. It is incremented at
the end of an execution round (after both angel and demon have played their
turns).

• C : Nat - models the number of packages in the buffer. Whenever its value
goes over the valuemax − 1, thus violating the requirement of reserving
the last location for the target address, an error message is set. Concurrently,
some part (k locations) of the buffer content are automatically cleared (bring-
ing the buffer to the level ofC − k). The valid range of values for parameter
k will result while discharging the corresponding proof obligations.
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• r : {0,1,2} - represents the number of items removed byCD.

• err : Nat - models the error message;err is initialized to 0 and incremented
by one every time the conflicting situation appears.

The behavior of the demon is similar to the behavior of the consumer in the
producer-consumer model presented in section 7.3.2. The removal of data pack-
ages is arbitrary, within some given rules. For simplicity, we choose the rules to be
exactly the same as the ones in statementCons (see (7.7)).

The angel wins in two situations:

1. if the system reaches the end of its life time (expressed in the model by the
constantLimFunc) and there has not been any conflict between placing the
data packages and the target address. Concretely, the angel wins iferr =
0 ∩ life = LimFunc holds, or

2. if after one error has been signaled, the angel is able to keep the buffer filled
within the limits0 andmax − 1, until life = LimFunc. Hence, the angel
avoids the occurrence of a second, similar error. Consequently,err = 1 ∩
life = LimFunc is enforced.

The angel loses if, after one error has been signaled, it does not manage to
maintain the buffer occupied between0 andmax − 1. This means that a second
conflict target address - data input can not be avoided, thuserr > 1 holds.

The behavior of the angel is represented by the statement below:

PU ∧= {C := C ′ | C < C ′ ≤ C + 2} (7.12)

The demonic behavior is captured as follows:

CD ∧= (C ≥ max ∧ err = 0 → err := err + 1 ; C := C − k
u C ≥ max ∧ err > 0 → err := err + 1
u C < max → skip);
[ r := r′ | (r = 0 ⊆ r′ = 2)

∩ (r = 1 ⊆ r′ ∈ {0, 1, 2})
∩ (r = 2 ⊆ r′ = 1) ];

C := C − r ; life := life + 1

(7.13)

The additional information that we need is given as:

q
∧= (err = 1) ∩ (life = LimFunc)

g
∧= life ≤ LimFunc− 1

p
∧= (err > 0) ∩ (life < LimFunc)

I = (err = 0) ∩ ((r = 0) ∩ (0 ≤ C ≤ max− 1)
∪ (r 6= 0) ∩ (0 ≤ C ≤ max− 2))

∪ (err > 0) ∩ ((r = 0) ∩ (0 ≤ C ≤ max− 2)
∪ (r 6= 0) ∩ (0 ≤ C ≤ max− 3))

(7.14)
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One can notice that the above definition ofI includes the invariant used in
section 7.3.2. The old invariant ensures that, in case there exists an angelicwinning
strategy, we get a model in which the capacity of the buffer is not exceeded. The
choice is also motivated by reusability of previous designs. The current invariant,
however, takes into account the presence of the error messages, too.

The overallPU-CD system is then described as the following action system:

DPS
∧
= begin var r ∈ {0, 1, 2}, C, life, err : Nat •

r, C, life, err := 0, 0, 0, 0 ; [max ≥ 4];
do (life ≤ LimFunc − 1) → PU ; CD od

end : max

Applying the Synthesis Method for Weak Response. In order to find a winning
strategy for the angel (if any), we have to first check the validity of the following
relations.

1. p0 ⊆ I. Immediate proof, after replacingI with its definition (7.14) and also
consideringp0 = (err = 0 ∩ r = 0 ∩ C = 0 ∩ life = 0 ∩ max ≥ 4).

2. p ∩ I ⊆ q ∪ g. From definitions (7.14) we have, at first, that

q ∪ g

= { definitions (7.14)}

(err = 1 ∩ life = LimFunc) ∪ (life ≤ LimFunc − 1)

The proof of the required relation is immediate.

3. g ∩ I ⊆ PU.(CD.I). We start by denoting:

CD1
∧
= C ≥ max ∧ err = 0 → err := err + 1 ; C := C − k

u C ≥ max ∧ err > 0 → err := err + 1
u C < max → skip

CD2
∧
= [ r := r′ | (r = 0 ⊆ r′ = 2)

∩ (r = 1 ⊆ r′ ∈ {0, 1, 2})
∩ (r = 2 ⊆ r′ = 1) ];

C := C − r ; life := life + 1

We compute:

CD.I

= { rule (2.7),CD
∧
= CD1 ; CD2 }

CD1.(CD2.I)
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= {rules (2.4),(2.7), (2.12), logic}
CD1.(((r = 0 ⊆ err = 0 ∩ (2 ≤ C ≤ max))

∩ (r = 1 ⊆ err = 0 ∩ (2 ≤ C ≤ max − 1))
∩ (r = 2 ⊆ err = 0 ∩ (1 ≤ C ≤ max − 1)))

∪ ((r = 0 ⊆ err = 0 ∩ (2 ≤ C ≤ max − 1))
∩ (r = 1 ⊆ err = 0 ∩ (2 ≤ C ≤ max − 2))
∩ (r = 2 ⊆ err = 0 ∩ (1 ≤ C ≤ max − 2))))

= {logic}
CD1.(2 ≤ C ≤ max − 2 ∪ (err = 0 ∩ C = max − 1)

∪ (err = 0 ∩ r = 0 ∩ C = max)
∪ (r = 0 ∩ C = max − 1)
∪ (r = 2 ∩ C = 1))

= {logic}
CD1.(2 ≤ C ≤ max − 2 ∪ (err = 0 ∩ C = max − 1)

∪ (r = 0 ∩ err = 0 ∩ C = max)
∪ (r = 0 ∩ C = max − 1)
∪ (r = 2 ∩ C = 1))

= {notation}
CD1.I2

= {wp rules}
(C ≥ max ∩ err = 0) ⊆ I2[err := err + 1, C := C − k])

∩ ((C ≥ max ∩ err > 0) ⊆ I2[err := err + 1])
∩ (C < max ⊆ I2)

= {logic}
2 ≤ C ≤ max − 2 ∪ (r = 0 ∩ C = max − 1)

∪ r = 2 ∩ C = 1 ∪ (err = 0 ∩ C = max − 1)
∪ err = 0 ∩ C = max ∩ (k + 2 ≤ C ≤ max + k − 2)

We can write further that:

PU.(CD1.I2) (7.15)

= {definition}

∃ C ′ · (C < C ′ ≤ C + 2) ∩ CD1.I2[C := C ′]

⊇ {case split}

• {witnessC ′ = C + 1}

(C ′ = C + 1 ∩ 2 ≤ C ′ ≤ max − 2)

∪ (r = 0 ∩ C ′ = max − 1) ∪ (r = 2 ∩ C ′ = 1)

∪ (err = 0 ∩ C ′ = max − 1)

∪ (err = 0 ∩ C ′ = max ∩ k + 2 ≤ C ′ ≤ max + k − 2)

⊇ {2 ≤ k ≤ max − 2}

I ∩ C ≥ 2
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• {witnessC ′ = C + 2}

(C ′ = C + 2 ∩ 2 ≤ C ′ ≤ max − 2)

∪ (r = 0 ∩ C ′ = max − 1)

∪ (r = 2 ∩ C ′ = 1) ∪ (err = 0 ∩ C ′ = max − 1)

∪ (err = 0 ∩ C ′ = max) ∩ (k + 2 ≤ C ′ ≤ max + k − 2)

⊇ {max ≥ 4}

I ∩ (0 ≤ C ≤ 1)

= {logic}

(I ∩ 0 ≤ C ≤ 1) ∪ (I ∩ C ≥ 2)

= {logic}

I

⊇ {logic}

g ∩ I

Notice the extraction of parameterk: its range of values is limited to the
interval [2..max − 2]. By showing thatg ∩ I ⊆ PU.(CD.I), the above
derivation (7.15) completes the invariance proof.

4. ¬q ∩ g ∩ (t = w) ⊆ PU.(CD.((q ∪ g) ∩ (t < w))). We consider that

t
∧
= LimFunc − life. We denote:

(q ∪ g) ∩ (t < w) (7.16)

= {definitions(7.14)}

((err = 1 ∩ life = LimFunc) ∪ (life ≤ LimFunc − 1)) ∩ (t < w)

= {definition oft}

((err = 1 ∩ life = LimFunc) ∪ (life ≤ LimFunc − 1))

∩ (life ≥ LimFunc − w + 1)

= {notation}

X

We then have that:

PU.(CD.((q ∪ g) ∩ (t < w)))
= { definitions(7.14), notation(7.16)}

PU.(CD.X)
= { rule (2.7) }

PU.(CD1.(CD2.X))
= { wp rules}

PU.(CD1.(((err = 1 ∩ life = LimFunc − 1)
∪ life ≤ LimFunc − 2)

∩ life ≥ LimFunc − w)
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= { wp rules}
PU.((err = 1 ∩ life = LimFunc − 1

∩ life ≥ LimFunc − w)
∪ (err = 0 ∩ C ≥ max ∩ life = LimFunc − 1

∩ life ≥ LimFunc − w)
∪ (life ≤ LimFunc − 2 ∩ life ≥ LimFunc − w))

= { rule (2.11) }
(∃ C ′.(C < C ′ ≤ C + 2)

∩ (err = 1 ∩ life = LimFunc − 1
∩ life ≥ LimFunc − w)

∪ (err = 0 ∩ C ′ ≥ max ∩ life = LimFunc − 1
∩ life ≥ LimFunc − w)

∪ (life ≤ LimFunc − 2 ∩ life ≥ LimFunc − w))
= { predicate calculus}

((err = 1 ∩ life = LimFunc − 1
∩ life ≥ LimFunc − w)

∪ (life ≤ LimFunc − 2 ∩ life ≥ LimFunc − w))
∪ (∃ C ′.(C < C ′ ≤ C + 2)

∩ (err = 0 ∩ C ′ ≥ max ∩ life = LimFunc − 1
∩ life ≥ LimFunc − w)

⊇ { logic }
(err = 1 ∩ life = LimFunc − 1 ∩ life ≥ LimFunc − w)
∪ (life ≤ LimFunc − 2 ∩ life ≥ LimFunc − w)

⊇ { logic, w ≥ 2 }
¬(err = 1 ∩ life = LimFunc
∩ life ≤ LimFunc − 1
∩ life = LimFunc − w)

= { identification}
¬q ∩ g ∩ (t = w)

This proves that, whenever the system starts in a state of¬q ∩ g, it terminates,
establishingq ∪ g. In our case, termination is triggered by the invalidation ofg
(life = LimFunc), and therefore, at that moment,q holds.

Extracting the Control Strategy. This step is similar to the one in section 7.3.2.
We have proved thatI is an invariant of the action systemDPS, defined by (7.4.3).
Consequently, the statement

{lim ≤ LimFunc ∩ I} ; PU ; {CD.I} ; CD ; {I}

can substitutePU ;CD and become the new body of the loop ofDPS. Hence, we
can rewritePU, by propagating the assertion{CD.I} in PU. If we assumek = 2,
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we get the winning strategy of the angel, with all the unsafe moves eliminated:

PU′ = {C := C ′ | (C < C ′ ≤ C + 2)
∩ (2 ≤ C ′ ≤ max− 2
∪ (r = 0 ∩ C ′ = max− 1)
∪ (r = 2 ∩ C ′ = 1)
∪ (err = 0 ∩ max− 1 ≤ C ′ ≤ max))}

= {simplify, result proved in section 7.3.2, fixed postconditionCD.I}
[C := C ′ | (C < C ′ ≤ C + 2)

∩ (2 ≤ C ′ ≤ max− 2
∪ ((r = 0 ∪ err = 0) ∩ C ′ = max− 1)
∪ (r = 2 ∩ C ′ = 1)
∪ (err = 0 ∩ C ′ = max))]

This strategy does not require any angelic intelligence in deciding the “good”
moves, yet it does not rule out the non-harmful nondeterminism. Therefore, what-
ever choice we select for implementation, such that the boolean condition of the
assignment is satisfied, the correctness of the controller is guaranteed.

The proof of¬q ∩ g ∩ (t = w) ⊆ PU.(CD.((q ∪ g) ∩ (t < w))) shows
only termination and establishment ofq in finite time. We do not need to propagate
the information of assertion{CD.((q ∪ g) ∩ (t < w))}, into statementPU, since
it does not mentionC. Hence,{CD.I} is sufficient for extracting the angelic
winning strategy.

Discussion. As mentioned in the beginning of this section, the additional require-
ments of the presented example could have been easily satisfied if one considered
modifying the buffer capacity. Still, we have proved that the response properties
are met without increasingmax.

Observe that along the deductive procedures, we have also synthesized the
value of the parameterk, and we concluded that the property is satisfied at least two
steps prior to termination, that is,w ≥ 2. This low bound of the possible range of
values forw comes from the fact that the information aboutp is not considered by
the fourth correctness assertion of Lemma 10. That assertion should hold under any
execution scenario. For example, we can imagine that, whenlife = LimFunc−1,
p holds,¬q holds and after one step a new error is encountered (angel loses). This
means thatq does not hold but the system stops. So, the postconditionq ∪ g is not
established, hence the correctness assertion is false.

Thus, we need at least two iterations prior to termination (w ≥ 2), for the
fourth correctness rule to always hold.

7.5 Summary and Related Work

We have tackled the problem of discrete controller synthesis, by modeling the sys-
tem as an action system, and the synthesis process as a zero-sum two-player game.
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The players are the controller, called the angel, and the plant, called the demon,
which make moves sequentially, each according to some statement, respectively.
The goal of the angel, which models the requirement specification, is a safety or a
liveness temporal property. In the first case, the method ends up with a controlling
strategy for invariance, whereas in the second case we synthesize a control strategy
for reachability. In the latter case, we apply the theory for designing controllers for
fault-tolerantsystems, under one-fault scenarios. Full fault-tolerance is desirable,
however, it is rarely achieved in practice. It is often so that, for safety reasons,
the system can not accommodate more than one error during its lifetime; it is then
required that the system maintains its integrity after the error has occurred,which
is equivalent to avoiding another error until termination.

To express this sort of properties in our framework, we have defined anew
temporal operator♦w(p, q). We have characterized it formally, by defining it over
game trees. Proving enforcement of♦w(p, q) reduces to the proof rule that we
have proposed as Lemma 10.

Our work relies on the angel-demon game formalization within the dually non-
deterministic weakest precondition framework [34], and on its later extensions
[35, 37, 38].

In general, relationships between players may involve both cooperation and
competition. To make the synthesis possible, in our case, the angel competes with
the demon.

We have started with an angelic nondeterministic assignment as the model of
the controller, and a demonic update for the behavior of the plant. Any angelic or
demonic nondeterministic behavior can be cast into a nondeterministic assignment,
respectively. Therefore, this way of modeling is comprehensive in expressing any
kind of nondeterministic choice.

In either invariance or reachability case, the synthesis subsumes two main
steps. Firstly, we check whether the angel can enforce the required behavior (A1,
A2 of section 7.3.5, and also the second paragraph of section 7.4.3 show how the
first step is applied in practice). If this first step holds, we extract the angelic win-
ning strategy next (step B in section 7.3.5, and last paragraph of section 7.4.3).

In order to restrict the angelic choices to the ones that establish the safety prop-
erty, by a correctness-preserving transformation, we have used backward propa-
gation of assertions. The assertion is the computed weakest precondition for the
demonic assignment to establish the invariant. This precondition is used to rewrite
the angelic update. The end-result is a correct-by-construction controller, tailored
to the required behavior.

Two illustrative case-studies have shown the application of the proposed ap-
proach, in practice. Due to Lemma 7 and the method described in section 7.3.2,
we have synthesized an invariance controller for a producer - consumer - like sys-
tem. Next, by applying the proof rule of Lemma 10, we have constructed a control
strategy to win games intended to modelfault-tolerantsystems.
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Related Work. Viewing a reactive system as a two-player game is not a new idea,
it can be traced back to Ramadge and Wonham [139], and Pnueli and Rosner [137].
The authors developed synthesis algorithms for finite-state discrete systems, and
showed that finding a winning strategy for the game was equivalent to synthesizing
a controller that satisfied the requirements.

Recently, on-the-fly algorithms have been developed, by Tripakis and Altisen,
for solving the issue of controller synthesis for discrete and dense-time systems
[154]. The method is restricted to finite-state systems. In the discrete case, the
algorithms are fully on-the-fly; a strategy is returned as soon as it is found, thus the
state space does not necessarily have to be entirely generated.

Asarin, Maler, and Pnueli also apply concurrent game techniques to construct
discrete controllers. The system is viewed as a timed automaton with trivial contin-
uous dynamics [18]. The authors develop fixed-point algorithms in orderto com-
pute the maximal strategy. The method uses a “predecessor” operator thatmight
imply a resource-consuming implementation, and also the exploration of possibly
unreachable states. Similar algorithms suited for model-checking are proposed by
Maler, Pnueli and Sifakis, who solve the problem of infinite-state controllersyn-
thesis for timed games, symbolically [122].

A deductive approach to controller synthesis is also proposed by Mannaand
Sipma [123]. The authors follow an incremental controller design pattern, applied
to hybrid systems. The system and its environment are modeled asactor phase
transition systems[146]. Verification rules are used to determine whether the sys-
tem together with a control strategy meets the specification. The method is applied
only to the synthesis of invariance controllers.

Slanina [147] develops proof rules for safety and response linear temporal logic
properties of reactive system games. However, the equivalent of oursecond syn-
thesis step, that is, extracting the (angelic) winning strategy, is not apparent. More-
over, the author does not use a two-fold nondeterminism, neither does he apply his
theoretical results on detailed examples.

The idea of refining an initial non-implementable specification towards a cor-
rect implementation, by making successively more transitions explicit, is also ap-
plied by Henzinger, Manna and Pnueli on hybrid control systems modeled asPhase
Transition Systems[91]. The requirement is modeled as ahybrid temporal logic
property. Even if the notion of game is not explicitly used, a stringent form of
refinement is defined such that the controller “wins” no matter how demonically
the environment behaves. However, our angelic-demonic dualism that makes the
two parties (controller - environment) distinguishable is suggested by the authors
through partitioning variables intocontrolled variablesandenvironment variables.

Our synthesis method is general and can be applied as such, to both infinite
and finite systems. This is an immediate consequence of the deductive-based
construction. An elegant way to handle the control of infinite-state concurrent
(multi-player) game structures, based on abstraction, has been proposed by Hen-
zinger et al. [90]. Properties of interest (of the abstracted system) arespecified
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in the alternating-time temporal logic[15]; the ”worst-case“ created abstraction
(less powerful controller, more powerful environment) is then model-checked with
MOCHA [16]. In comparison, our games are sequential. Nevertheless, they have
proved to be a simple, well-suited model for reactive systems. An advantageis the
fact that, even if infinite, the reactive game that we consider need not be abstracted
to a finite instance. Deductive rules apply directly on the (possibly infinite-state)
original model.

As distinct from the fixed-point symbolic synthesis algorithms developed by
various researchers [18, 99, 122], our game-based method is fit forinteractive the-
orem proving (PVS [65, 144], HOL etc.). To support this claim, we have proved
the invariance property of the producer-consumer system, in PVS.

A very useful tool that can increase the level of automation is theweakest
precondition and correctness calculator[56]. One can use this tool for proving the
total correctness conditions needed in both synthesis cases.
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Chapter 8

Conclusions and Discussion

We have presented a methodology for building correct-by-construction reactive
systems, modeled by action systems or their continuous counterparts. The devel-
opment process has served several viewpoints, yet all supported bythe refinement
calculus dedicated correctness-preserving transformations.

Since we have been analyzing reactive systems, we could not avoid the prob-
lems regarding theirbehavior controland compositionality. We have agreed to
meet the challenges by solving the associated problems within our framework by
resorting just to the standard demonic behavior of action systems.

Multiple, simultaneously activecomputing agents that interact with one another
are sine-qua-non parts of any complex reactive system. A feasible, library-based
bottom-up design methodology requires that the designer composes the system
from parallel concurrent components calledmodules. The research presented on
this topic has been motivated by an analysis of control aspects and of modular de-
sign techniques, as supported by the current action systems formal framework. We
have exemplified that the interleaving concurrency paradigm might requiremod-
eling of cumbersome protocols among parallel reactive modules, in order to guar-
antee correctness. Our solution for avoiding the overload on modules comes as
a synchronization mechanism. It implies a new virtual execution model of action
systems, applicable to both discrete and hybrid designs.

Synchronized action systemsare suitable for designing reactive systems that
have to present a simultaneous global response to sets of input stimuli. To achieve
this, we have introduced a new parallel composition operator (sharp,]) that ensures
correct outputs to all sets of inputs, without employing communication channels
between modules. Consequently, our mechanism bears the advantage of less cod-
ing effort, in practice. The new execution model requires a certain type ofaction
systems that we callpartitioned action systems, which separate local actions from
global actions. We recall the important remark that the synchronization operator
increases the external system determinism, while preserving an internal nondeter-
ministic execution of modules.

The proofs on the usefulness of our synchronized parallel environment, with
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respect to modular design have showed that the capabilities of the action systems
framework, for modularity, are improved. This translates into being able to carry
out (trace) refinements of modules, modeled as action systems or continuousaction
systems, in isolation, without knowledge about the invariants of the other modules
of the parallel environment. However, the invariants needed for trace refinement
should also be proper (meaning that they depend only on the system’s own write
variables). Theorem 3, and Corollary 1 of chapter 3 demonstrate these claims.

As a precursor to full formal analysis, simulation of hybrid system models can
be used effectively, especially if the state space is representedsymbolically. This
allows for the modeling of a potentially infinite number of states, and for the sim-
ulation of a potentially infinite number of trajectories in one symbolic simulation.

We have built such a tool using Mathematica, a commercial symbolic manip-
ulation program [156]. The tool takes a description of any CAS as input, and pro-
vides automatically a symbolic simulation of the system, up to a given maximum
time. The restrictions on the simulation are essentially those of Mathematica. Nev-
ertheless, more efficient algorithms for solving the satisfiability problem for action
systems guards, which are boolean conditions, need to be implemented. Further
on, we have used the tool for validation purposes, in chapter 6, while develop-
ing Earliest-Deadline-Firstscheduled systems. An important aspect of our tool
is the fact that it does not require any semantic changes of the model, whichis a
CAS. Moreover, being symbolic, it does not use a fixed- or variable-step numerical
solver, at least for the analysis of linear hybrid systems. Another advantage is that
it does not require abstraction of the continuous component either.

Many reactive systems are defined using parameters. They are intendedto
work correctly under specific parametric conditions. These relationshipsmay be
hard to find by following an intuitive approach alone, especially if we treathybrid
systems, which exhibit a continuous behavior interleaved with discrete control de-
cisions. A combination of analysis tools can therefore be beneficial, at first to help
intuition and rule out bad candidates, and then to verify exhaustively all reachable
configurations. The latter would eventually lead to finding constraints on parame-
ters, defining the set of all possible values for which the parametric systemsatisfies
a property.

In this endeavor, one is helped by model-checkers like UPPAAL [117], HY-
TECH [87, 88] or TREX [48]. The former does not support synthesisof param-
eters as such, it rather verifies one’s guess with respect to their relationship or
range of values. In contrast, both HYTECH and TREX are suitable, in somecases,
for extracting parametric conditions, automatically. For example, as stated by Hen-
zinger et al. [93], systems with complex relationships between multiple parameters
and timing constants can quickly lead to arithmetic overflow, when analyzed with
HYTECH, whereas analysis with a single parameter is often successful.

We have given a general mathematical proof to the parametric reachability
problem, based on traditional forward analysis, applicable even in those cases
where relationships between parameters can not be guessed. The salient point of
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our approach is its capacity to deal with big numbers of parameters and clocks.
The method is based on iterative invariance checking, by superposition oflemmas,
each stating a new predicate as the new hybrid system property. Thus, thepro-
cess would tremendously benefit from mechanization of CAS theory. One could
use, for instance, PVS and its powerful decision procedures to automateinvariance
checking, and also the refinements performed in chapter 6, in the real-time case.
We expect such automation to be instrumental in the assessment of the applicability
of our method to larger case-studies.

When timing requirements are set on top of the functional ones, for any type
of reactive system, be it discrete or hybrid, we need to find a means to copewith
them, in design. This should be done somewhat regardless of the respective func-
tional behavior. Being faithful to this viewpoint too, we have presented a top-down
method for the incremental construction of scheduled systems, within the same
refinement calculus framework. We have applied the existing techniques ofthe
latter, in an innovative way. Our development process starts with a nondetermin-
istic conjunctive specification, and applies refinement rules of propagating context
assertions, in order to enforce the required schedulability, mutual exclusion and
scheduling policy conditions. Next, we take a step further and provide a monolithic
implementation of the constructed system, via trace refinement. After a series of
correctness-preserving transformations, we end up with a two-module implemen-
tation that clearly separate functionality between the scheduler and the tasks.

The last viewpoint is rooted in the opinion that it is beneficial to start with
a nondeterministic high-level model, when approaching the design of a reactive
system. This gives flexibility in modeling and frees the designer from the bur-
den of taking into account implementation details, from the beginning. We have
proposed a game-based method for the synthesis of invariance and certain reach-
ability controllers. The usual approaches to the control problem and the synthesis
of controlling strategies arealgorithmicand can only be applied to finite-state sys-
tems [114]. Our solution fits both infinite state sequences, as well as terminating
ones, without requiringabstraction, as proposed by Henzinger et al., to handle the
control of infinite-state systems [90].

The idea of synthesis carried out by playing games with dually nondetermin-
istic statements has been appealing to us, since our framework supports two kinds
of nondeterminism, angelic and demonic. It came then naturally, to identify the
behavior of the controller with an angelic statement, and the plant’s actions with a
demonic one.

We have aimed at reaching correct controllers for invariance, and reliable con-
trollers for reachability. In each case, the angel is supposed to enforce a tem-
poral property, thus guaranteeing a win under any scenario proposed by the de-
mon. Our approach relies heavily on the recent work of Back and von Wright, who
have defined temporal properties in the extended predicate transformer framework
[37, 38]. Their work made it possible for us to introduce the correctnessrule for
proving enforcement ofweak-responseproperties. These are defined by means of
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extended trace semantics of action systems, namely,game tree semantics.
Our method starts by checking whether the angel has a way to win the game

with respect to the specified requirement. The latter is either analwaysproperty,
when we tackle synthesis of controllers forinvariance, or a special form ofeventu-
ally property, which we callweak responseand denote by♦w(p, q), when address-
ing synthesis of reliable controllers for reachability. In the first case, thecontroller
has to be able to keep the system within a safe set of states. To enforce weak re-
sponse, the angel has to find a way to terminate in a state ofq if conditionp holds.
Alternatively, if¬p is true, then the angel wins if it can keep the system within¬p
until the end of system execution.

If we succeed in proving that there exists such a winning strategy for the angel,
we extract it, next, by rewriting the respective angelic statement, in a certain context
resulted from the correctness proofs carried out in the first step. Thistransforma-
tion reveals the actual choices of the angel. The result is a correct, implementable
model, which is guaranteed to preserve the required temporal property.

Most interesting with respect to this method is the fact that, while applying it
on practical case-studies, new information is extracted on the way. For example,
lower / upper limits on parameters, or even number of iterations needed in order
to establish the requirement result while discharging the proof obligations. This is
an important point that adds to the fact that we avoid usingbackward fixed-point
iterationsof symbolic predecessoroperators, as many of the approaches targeting
the same result do [18, 99, 122]. The experience gathered out of applying our
game-based method on several case-studies reinforced the opinion thatthe level of
generality and insight provided by a deductive analysis method can not beattained
with model-checking.

We came to the conclusion that deductive methods, even more, if supported by
interactive theorem proving, are viable alternatives to algorithmic methods. Timed
automata [9], hybrid automata [86] and state-exploration techniques are invaluable
for quickly analyzing a specific system. On the other hand, as pointed out by
Dutertre, if one is interested in the analysis of certain classes of systems, orinfinite-
state systems, deductive methods prove more powerful [73]. Nevertheless, they
also involve more human effort than their algorithmic counterparts.

Our work on discrete reactive systems, hybrid systems analysis and real-time
scheduler construction proved our initial claim that the action systems framework,
together with the refinement calculus methods are good candidates for a unified,
effective and rigorous development environment. Diagrammatic reasoningand
model-checking tools targeting this formal framework are believed to be a must
for future applications of our methodology to emergent topics regarding systems
research.

Limitations. Each of our construction and analysis approaches has certain limi-
tations, which we underline in the following.
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Invariants are essential for the trace refinements carried out in chapter 3, pa-
rameter synthesis method of chapter 5, and stepwise refinements of the real-time
models of chapter 6. Also, proving the existence of angelic winning strategies
during the process of controller synthesis for discrete systems (chapter 7) involves
coming up with adequate system invariants. This step might not be trivial, espe-
cially for games with complex rules. For the process of finding the right invariants
not to become a stumbling-block, one could for instance consider programming
invariants first, rather than the behavioral specification. Among others, Back advo-
catedinvariant based programming(supported byinvariant diagrams) as being an
easier way to construct both the program and the respective conditions that need to
hold [23]. Alternatively, tools like SAL (Symbolic Analysis Laboratory) [43] can
help in finding a first approximation of the invariant of a state-transition system,
and its further strengthened versions. Given the fact that action systems are indeed
state-transition systems, one could employ SAL in the design process. In SAL, the
underlying technique of invariant construction is based on a combination of least
and greatest fixed-point computation of reachable states [150].

The applicability of the Mathematica-based symbolic simulator introduced in
chapter 5 could possibly benefit from more efficient guard solving algorithms.
Such improvement might consequently speed up the computation of the minimum
time point when some action of the hybrid model under analysis becomes enabled.
Also, in order to properly assess the utility, and discover the limitations of our tool,
one needs to extensively simulate hybrid systems characterized by involved nonlin-
ear continuous evolutions. Last but not least, the simulation tool awaits the design
of a suitable graphical user interface that would use Mathematica as a back-end.

Throughout this study we have discussed and proposed solutions to some of
the issues of reactive system design, from a formal perspective. Unfortunately, the
relatively small case-studies can not answer questions about size and complexity
of our methods when applied to real-world systems. Scalability is clearly not exer-
cised within this context. We can just hope that the presented examples have added
some merit to the theoretical results.

Future Work. The research carried out in this thesis can be extended in several
directions. It could be interesting and helpful to improve on the mechanism of
synchronized composition of action systems, such that the requirement of disjoint
sets of global write variables is removed. This would imply the modeling, within
the global actionUpdate, of a concurrency protocol that regulates the modules’
access to common resources. Preliminarily, such an approach has been studied
by Seceleanu and Garlan [143], for modeling self-adaptive systems, in multimedia
environments. A hierarchy of synchronized partitioned action systems is employed
in order to accommodate various user requirements, while specifying a system that
delivers multimedia services.

Resource sharing (in a real-time environment) and multiprocessor cost-efficient
scheduling are also among prospective lines of research. The refinement techniques
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niques presented in chapter 6 may be adapted to real-time interdependent tasks,
possibly executing on distinct processors. Deductive rules could help infinding
the optimized strategy to produce, for example, a low-power, distributed schedule.

One can think of developingcontroller synthesis algorithmsfor action systems.
These could then be implemented in a model-checker for action systems, to provide
automated support. In this way, by combining the method introduced in chapter 7,
with the algorithmic one, one might be able to perform controller construction
for finite-state systems, automatically, and for infinite-state systems, interactively,
within the same formal framework.

Another possible direction targets game-based synthesis of controllers for real-
time and hybrid systems. In these cases, the game techniques need to take into
consideration the time-advancing statement, too. Therefore, the simple sequence
of nondeterministic assignments might not suffice anymore.
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Chapter 9

Appendix

Preliminaries

Before presenting the proofs (in a calculational format) of some of the statements
of chapter 3, we introduce those particular results that help us achieve our goals.
• We will make use of Corollary 27 proved in [36]:

Corollary 2 Assume thatG and H are conjunctive predicate transformers and
thatg ∧ h ≡ false. Then

do g → G [] h → H od = do h → H od ; do g → (G ; do h → H od ) od

In the above, intuitively speaking, the conditiong ∧ h ≡ false states that the
statementsG andH exclude each other, that is, they cannot be enabled simultane-
ously.
• We will also make use of the Theorem 31 proved in [36]:

Theorem 5 Assume thatG andH are conjunctive predicate transformers. Assume
further thatH.true ≡ true ∧ g /∈ wH, which means that statementH terminates
and preservesg. Then

do g → G [] ¬g ∧ h → H od = do g → G od ; do h → H od (A-1)

• We recall some of the weakest precondition rules [71], which we apply:

1. wp rule for guarded action:(g → S).Q
∧
= g ⇒ S.Q

2. wp rule for choice:(S1 [] S2).Q
∧
= S1.Q ∧ S2.Q

3. wp rule for assignment statement:(x := e).Q
∧
= Q[x := e]

4. wp rule for sequential composition:(S1 ; S2).Q
∧
= S1.(S2, Q)
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• We additionally recall the definition of a loop as the least fixed point of the
unfolding function [35]:

while g do S od
∧
= (µX · if g then S ; X else skip fi ) (A-2)

We also havedo g → S od = while g do S od .
• We state here another helpful theorem, and three loop transformation rules(g, α
predicates), as follows.

Theorem 6 Assume thatG, H and W are conjunctive predicate transformers.
Then

(G [] H) ; W = (G ; W ) [] (H ; W )

• Loop elimination rule [35].

{¬g} ; do g → S od = {¬g} (A-3)

• Remove one iteration loop.

{g} ; do g → S ; {¬g} od = S ; {¬g} (A-4)

Proof.

{g} ; do g → S ; {¬g} od

= { definition(A − 2), unfolding}
{g} ; if g then S ; {¬g} ; do g → S ; {¬g} od else skipfi

= {logic}
S ; {¬g} ; do g → S ; {¬g} od

= {loop elimination rule(A − 3)}
S ; {¬g}

• Propagation of assertion inside loop [35]:

{α} ; do g → S od = {α} ; do g → {α} ; S od (A-5)

A-1 Proof of Theorem 2 (chapter 3)

(a) By Definition 3.6, the synchronized parallel composition of the partitioned ac-
tion systems

A1(z1)
∧
= begin var x1 • Init1 ; do g1

L → L1 [] g1
S → S1 od end

A2(z2)
∧
= begin var x2 • Init2 ; do g2

L → L2 [] g2
S → S2 od end
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is given by the system

P(z)
∧
= begin var x ; sel[1..2] : Bool ; run : Nat • Init;

do ggA →
run = 0 ∧ ¬sel[1] → sel[1] := true ; run := 1

[] run = 0 ∧ ¬sel[2] → sel[2] := true ; run := 2
[] run = 1 ∧ g1

L → L1

[] run = 1 ∧ ¬g1
L ∧ g1

S → wS1c := wS1 ; S′
1 ; run := 0

[] run = 1 ∧ ¬ggA1
→ run := 0

[] run = 2 ∧ g2
L → L2

[] run = 2 ∧ ¬g2
L ∧ g2

S → wS2c := wS2 ; S′
2 ; run := 0

[] run = 2 ∧ ¬ggA2
→ run := 0

[] sel ∧ run = 0 → Update ; sel := false

od

end

We denote the actions ofP as (wherej ∈ [1..2]):

Sel
∧
= run = 0 → Sel1 [] Sel2

Sel1
∧
= ¬sel[1] → sel[1] := true ; run := 1

Sel2
∧
= ¬sel[2] → sel[2] := true ; run := 2

Aj
∧
= A1

j [] A2
j [] A3

j

A1
j

∧
= run = j ∧ gj

L → Lj

A2
j

∧
= run = j ∧ ¬gj

L ∧ gj
S → Cj ; S′

j ; run := 0

A3
j

∧
= run = j ∧ ¬ggAj

→ run := 0

Cj
∧
= wSjc := wSj

U
∧
= sel ∧ run = 0 → Update ; sel := false

Notice that the compositionL
∧
= ggA → Sel [] A1 [] A2 forms the local action of

P, while the actionU is its global action. The first two requirements for showing
thatP is a partitioned action system are immediate. We just have to analyze the
third one, that is, to prove that(do L od ).(¬gL ∧ gU) ≡ true.

We start by observing that only the situation whenggA ≡ true is of interest,
otherwise the whole systemP is disabled. Therefore, we only have to show that

(do Sel [] A1 [] A2 od ).(¬gL ∧ gU) ≡ true

We proceed as follows:

do Sel [] A1 [] A2 od

= { Corollary 2}
do Sel od ; do A1 [] A2 ; do Sel od od

(A-6)
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w {Init or A2
j [] A3

j establishesrun = 0 , {p} v skip

introduce assertions}
{run = 0} ; do run = 0 → Sel1 [] Sel2 ; {run 6= 0} od ;

do A1 [] A2 ; do Sel od od

= { rule (A-4), drop assertion}
(Sel1 [] Sel2) ; do A1 [] A2 ; do Sel od od

= { Theorem 6}
(Sel1 ; do A1 [] A2 ; do Sel od od )

[] (Sel2 ; do A1 [] A2 ; do Sel od od )
= { Theorem 6,

notation:Choice2
∧
= (Sel2 ; do A1 [] A2 ; do Sel od od )}

(Sel1 ; do A1 ; do Sel od [] A2 ; do Sel od od ) [] Choice2

= { Corollary 2}
(Sel1 ; do A1 ; do Sel od od ;

do A2 ; do Sel od ; do A1 ; do Sel od od od ) [] Choice2

We continue by focusing on the sequenceSel1 ; do A1 ; do Sel od od :

Sel1 ; do A1 ; do Sel od od

= { definition ofA1, Theorem 6}
Sel1 ; do A1

1 ; do Sel od [] A2
1 ; do Sel od [] A3

1 ; do Sel od od

= { Theorem 5 w.r.t.A1
1 ; do Sel od [] A2

1 ; do Sel od andA3
1}

Sel1 ; do A1
1 ; do Sel od [] A2

1 ; do Sel od od ;
do A3

1 ; do Sel od od

= { Theorem 5 w.r.t.A1
1 ; do Sel od andA2

1 ; do Sel od }
Sel1 ; do A1

1 ; do Sel od od ; do A2
1 ; do Sel od od ;

do A3
1 ; do Sel od od

(A-7)

Next, sinceggA ≡ true, the last element of the sequencedo A3
1 ; do Sel od od

can be replaced byskip. We focus on the first two terms of the sequence:

Sel1 ; do A1
1 ; do Sel od od

= { run /∈ wA1
1 }

Sel1 ; do A1
1 ; {run = 1} ; do Sel od od

= { definition ofSel, rule (A-3), drop assertion}
Sel1 ; do A1

1 od

(A-8)

We already know (A1 is partitioned) thatdo g1
L → L1 od terminates and es-

tablishes¬g1
L ∧ g1

S . Hence,(run = 1 → (do g1
L → L1 od )) = do A1

1 od

terminates and establishesrun = 1 ∧ ¬g1
L ∧ g1

S . As sel[1] /∈ wA1
1, we actually

have that, after executingdo A1
1 od , sel[1] ∧ run = 1 ∧ ¬g1

L ∧ g1
S holds.

We continue with the analysis ofdo A2
1 ; do Sel od od . Considering the
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above, we have

{sel[1] ∧ run = 1 ∧ ¬g1
L ∧ g1

S} ; do A2
1 ; do Sel od od

= {general rule:{p ∧ q} = {p} ; {q}}
{sel[1]} ; {run = 1 ∧ ¬g1

L ∧ g1
S} ; do A2

1 ; do Sel od od

= { rule (A-5), assel[1] /∈ wA2
1 }

{sel[1]} ; {run = 1 ∧ ¬g1
L ∧ g1

S};
do A2

1 ; {sel[1]} ; do Sel od od

= { A2
1 establishesrun = 0, strengthen assertion}

{sel[1]} ; {run = 1 ∧ ¬g1
L ∧ g1

S} ; do A2
1;

{sel[1] ∧ run = 0} ; do Sel od od

= { definition ofSel, rewrite using context
information ({sel[1] ∧ run = 0}) }

{sel[1]} ; {run = 1 ∧ ¬g1
L ∧ g1

S} ; do A2
1 ; {sel[1] ∧ run = 0};

do run = 0 → Sel2 od od

= { introduce assertion{run 6= 0}}
{sel[1]} ; {run = 1 ∧ ¬g1

L ∧ g1
S} ; do A2

1 ; {sel[1] ∧ run = 0};
do run = 0 → Sel2 ; {run 6= 0} od od

= { rule (A-4), drop assertions}
do A2

1 ; Sel2 od

(A-9)

The above loop terminates, since bothA2
1 and Sel2 terminate. Moreover,

(do A2
1 ; Sel2 od ).(run = 2 ∧ sel[2]) ≡ true. Applying a similar reasoning

for the actionChoice2, we eventually come to the conclusion that:

(do Sel [] A1 [] A2 od ).(sel ∧ run = 0) ≡ true

which means that the local action terminates, and it enables the execution of the
global action of the systemP.It is easy to check that the other requirements of
Definition 1 are also satisfied, thus,P is a partitioned action system.

(b) Follows from the commutativity of the choice operator.

A-2 Proof of Theorem 3 (chapter 3)

We assume the systemP as being the synchronized composition of two action
systems:
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P(z)
∧
= begin var x ; sel[1..2] : Bool ; run : Nat • Init;

do ggA →
run = 0 ∧ ¬sel[1] → sel[1] := true ; run := 1

[] run = 0 ∧ ¬sel[2] → sel[2] := true ; run := 2
[] run = 1 ∧ g1

L → L1

[] run = 1 ∧ ¬g1
L ∧ g1

S → wS1c := wS1 ; S′
1 ; run := 0

[] run = 1 ∧ ¬ggA1
→ run := 0

[] run = 2 ∧ g2
L → L2

[] run = 2 ∧ ¬g2
L ∧ g2

S → wS2c := wS2 ; S′
2 ; run := 0

[] run = 2 ∧ ¬ggA2
→ run := 0

[] sel ∧ run = 0 → Update ; sel := false

od end

First, we give, without proof, one simple invariant of systemP:

(
∨

j∈[0..2](run = j)) ≡ true (A-10)

We state further that

I1
0

∧
= I1 ∧ (sel[1] ∧ run 6= 1 ⇒ I ′1) (A-11)

is an invariant of the systemP, where

• I1 is the proper invariant respected by the systemA1. Therefore, we also
have thatI1[wS1 := w′S1, v := z] ≡ I1[wS1 := w′S1, v := z′]).

• I ′1 = I1[wS1 := wSc
1]

In the following, we show thatI1
0 is an invariant of every action ofP.

1. I1
0 is preserved by actionA1

∧
= ¬sel[1] ∧ (run = 0) → sel[1] := true ;

run := 1. We have:

A1.I
1
0

≡ {definition ofA1, wp rules for guarded action,
sequential comp., assignment}

sel[1] ∨ run 6= 0 ∨ I1
0 [sel[1] := true, run := 1])

≡ {definition ofI1
0 , sel, run do not appear inI1 or in I ′1, logic}

sel[1] ∨ run 6= 0 ∨ I1

⇐ {definition (A-11), logic}
I1
0
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2. I1
0 is preserved by actionA2

∧
= ¬sel[2] ∧ (run = 0) → sel[2] := true ;

run := 2. We have:

A2.I
1
0

≡ {definition ofA2, wp rules for guarded action,
sequential comp., assignment}

sel[2] ∨ run 6= 0 ∨ I1
0 [sel[2] := true, run := 2]

≡ {definition ofI1
0 , sel, run do not appear inI1 or in I ′1, logic}

sel[k] ∨ run 6= 0 ∨ (I1 ∧ (sel[2] ⇒ I ′1))
⇐ {logic, relation (A-10)}

I1
0

3. ThatI1
0 is preserved by the actionA3

∧
= (run = 2) ∧ g2

L → L2, follows
from the fact thatA3 does not write any of the variables mentioned byI1

0 ,
therefore the latter is an invariant, trivially.

4. I1
0 is preserved by the actionA4

∧
= (run = 1) ∧ g1

L → L1 comes from the
fact thatI is an invariant ofg1

L → L1.

5. I1
0 is preserved by the actionA5

∧
= (run = 1) ∧ ¬g1

L ∧ g1
S → wS1c :=

wS1 ; S′
1 ; run := 0, where S′

1 = S1[wS1 := wS1c]. We first have that:

(x := y ; S[y := x]).Q[y := x]
≡ (x := y).(S[y := x].Q[y := x])
≡ (x := y).(S.Q)[y := x])
≡ ((S.Q)[x/y])[x := y]
≡ S.Q

(A-12)

Next, we get:

A5.I
1
0

≡ {wp rules for guarded action, sequential composition, assignment}
run 6= 1 ∨ g1

L ∨ ¬g1
S ∨ (wS1c := wS1 ; S′

1).I
1
0 [run := 0]

≡ {definition ofI1
0 , run does not appear inI1, or in I ′1}

run 6= 1 ∨ g1
L ∨ ¬g1

S ∨ (wS1c := wS1 ; S′
1).(I1 ∧ (sel[1] ⇒ I ′1))

≡ {wp rule for conjunctive statements, wS1c does not appear inI1}
run 6= 1 ∨ g1

L ∨ ¬g1
S ∨ (I1 ∧ (wS1c := wS1 ; S′

1).(sel[1] ⇒ I ′1))
≡ {wp rule for sequential composition}

run 6= 1 ∨ g1
L ∨ ¬g1

S ∨ (I1 ∧ (wS1c := wS1).(S
′
1.(sel[1] ⇒ I ′1)))

≡ {definition ofI ′1, relation (A-12),sel does not mentionwS1, wS1c}
run 6= 1 ∨ g1

L ∨ ¬g1
S ∨ (I1 ∧ S1.(sel[1] ⇒ I1))

⇐ {S1.(¬sel[1] ∨ I1) ⇐ (S1.I1 ∨ S1.(¬sel[1]))}
run 6= 1 ∨ g1

L ∨ ¬g1
S ∨ (I1 ∧ (S1.I1 ∨ S1.¬sel[1]))
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⇐ {logic}
run 6= 1 ∨ g1

L ∨ ¬g1
S ∨ (I1 ∧ S1.I1)

⇐ {I1 is invariant of the original system:I1 ⇒ S1.I1, logic}
I1

⇐ {definition ofI1
0 , logic}

I1
0

6. The fact thatI1
0 is preserved by the actionA6

∧
= (run = 1)∧¬g1

L∧¬g1
S →

run := 0 follows the lines of the previous proof.

7. I1
0 is preserved by the actionA7

∧
= (run = 2) ∧ ¬g2

L ∧ g2
S → wS2c :=

wS2 ; S′
2 ; run := 0, whereS′

2 = S2[wS2 := wS2c]:

A6.I
1
0

≡ {wp rules for guarded action, sequential comp., assignment}
run 6= 2 ∨ g2

L ∨ ¬g2
S ∨ (wS2c := wS2 ; S′

2).I
1
0 [run := 0]

≡ {definition ofI1
0 , run, wS2c, wS2 do not appear inI1, or in I ′1}

run 6= 2 ∨ g2
L ∨ ¬g2

S ∨ (I1 ∧ (sel[1] ⇒ I ′1))
⇐ {logic, relation (A-10)}

I1
0

8. The fact thatI1
0 is an invariant of the actionA8

∧
= (run = 2)∧¬g2

L∧¬g2
S →

run := 0 has a similar proof to the one for actionA7.

9. Proof of the fact thatI1
0 is preserved by the actionU

∧
= sel∧ (run = 0) →

wS1 := wS1c ; wS2 := wS2c ; sel := false:

U.I1
0

≡ {wp rules for guarded action, sequential comp., assignment}
¬sel ∨ run 6= 0 ∨ (wS1 := wS1c ; wS2 := wS2c).I

1
0 [sel := false]

≡ {definition ofI1
0 , succesive application ofwp rules}

¬sel ∨ run 6= 0 ∨ (I1[wS1, wS2 := wS1c, wS2c] ∧ run 6= 1)
≡ {relation (A-10):run 6= 0 ≡ (run = 1 ∨ run = 2)}

¬sel ∨ run 6= 0 ∨ I1[wS1, wS2 := wS1c, wS2c]
≡ {I1 is proper}

¬sel ∨ run 6= 0 ∨ I1[wS1, wS2 := wS1c, wS2]
≡ {drop assignmentwS2 := wS2}

¬sel ∨ run 6= 0 ∨ I1[wS1 := wS1c]
≡ {notation}

¬sel ∨ run 6= 0 ∨ I ′1
⇐ {logic,¬sel ≡ ¬sel[1] ∨ ¬sel[2],

run 6= 0 ≡ (run = 1 ∨ run = 2)}
I1
0
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The above show thatI1
0 is an invariant of the systemP. In a similar manner,

we can show that

I2
0

∧
= I2 ∧ (sel[2] ∧ ¬(run = 2) ⇒ I ′2)

is also an invariant ofP. Hence,I
∧
= I1

0 ∧ I2
0 is an invariant ofP.

Properness.Notice further that:

I1
0 [wS1, wS2 := wS1c, wS2c, sel := false, v := v′]

≡ {definitionI1
0} (A-13)

I1[wS1, wS2 := wS1c, wS2c, v := v′]

≡ {v, wS2 /∈ wA1, I1 is proper}

I1[wS1, wS2 := wS1c, wS2, v := v]

≡ {I1 is proper}

I1[wS1 := wS1c]

≡ {sel, wS2 /∈ wA1, I1 is proper}

I1[wS1, wS2 := wS1c, wS2c, sel := false]

≡ {logic}

(I1 ∧ (sel[1] ∧ run 6= 1 ⇒ I ′1))[wS1, wS2 := wS1c, wS2c, sel := false]

≡ {notation}

I1
0 [wS1, wS2 := wS1c, wS2c, sel := false]

Hence,I1
0 is a proper invariant ofP.

Repeating the above proof for the other invariantI2
0 and summing up, we reach

the conclusion thatI
∧
= I1

0 ∧ I2
0 is a proper invariant ofP.

The results can be generalized to the synchronized composition ofk, k > 2
partitioned action systems.

A-3 Proof of Corollary 1 (chapter 3)

Suppose that we have the partitioned action systemAj , as part of the synchronized
compositionP = A1 ] . . . ] An. Additionally, Ij is some invariant respected by
Aj , and we also have thatAj vRj ,Ij

A′
j , following the requirements of Lemma 2.

Thus,A′
j is a partitioned action system, too. Consequently [39],I ′j

∧
= Rj ∧ Ij

is an invariant ofA′
j . As Rj does not introduce any new global variables, it is

independent of other variables than those ofAj ,A
′
j , and using a similar line of

proof as in (A-13), one can prove thatI ′j is proper.
We do not insist here on the (trivial, given the above assumptions) task ofshow-

ing thatP v P ′ (P ′ ∧
= A1 ] . . . ] A′

j ] . . . ] An). Relevant is to show that, using

the notations of Appendix A-2,I ′
∧
= I1

0 ∧ . . . ∧ I ′j0 ∧ . . . ∧ In
0 is an invariant of
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P ′. This is solved by following the same steps as in Appendix A-2. Moreover, we
have

I ′j
∧
= Rj ∧ Ij

⇒ { notation:Qj
∧
= (sel[j] ∧ run 6= j) ⇒ I ′′j ,

I ′′j
∧
= R ∧ I ′j [wS1 := wS1c],

definition (A-11):I ′j0
∧
= Rj ∧ Ij ∧ Qj , logic}

I ′j0 ⇒ Ij
0

⇒ {logic}
I1
0 ∧ . . . ∧ I ′j0 ∧ . . . ∧ In

0

⇒ I1
0 ∧ . . . ∧ Ij

0 ∧ . . . ∧ In
0

⇒ {notation}
I1 ∧ Q1 ∧ . . . ∧ I ′j ∧ Qj ∧ . . . ∧ In ∧ Qn

⇒ I1 ∧ Q1 ∧ . . . ∧ Ij ∧ Qj ∧ . . . ∧ In ∧ Qn

⇒ {logic}
I1 ∧ . . . ∧ I ′j ∧ . . . ∧ In

⇒ I1 ∧ . . . ∧ Ij ∧ . . . ∧ In

The above illustrate the fact thatP vRj ,Ij
P ′, and thatP ′ still preserves the

properties of each of the original action systemAk, k ∈ [1..n], as expressed by the
conjunctionI1 ∧ . . . ∧ Ij ∧ . . . ∧ In.

A-4 Refinement ofsys F (chapter 3)

We consider the systems:

F(X, Z[0, ..N − 2], Y : T )
= begin X, Z[0, ..N − 2], Y := x0, z0, y0;

do Y := h[0] × X +
∑N−1

k=1 h[k] × Z[k − 1] od

end : h[0, ..N − 1]

and

FS(X, Z[0, ..N − 2], Y : T )
= begin var temp : T ; step : [0, ..N ] •

X, Z, Y := x0, z0, y0 ; temp := 0 ; step := 0;
do step = 0 → temp := 0 ; step := step + 1

[] step ∈ [1, ..N − 1] → temp := temp + h[step] × Z[step − 1];
step := step + 1

[] step = N → Y := temp + X × h[0] ; step := 0
od

end : h[0, ..N − 1]
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We denote the actions of the above systems as:

A
∧
= Y := X × h[0] +

N−1
∑

k=1

h[k] × Z[k − 1]

C
∧
= C1 ; C2,

C1
∧
= step = N → Y := temp + X × h[0],

C2
∧
= step := 0

A1
∧
= step = 0 → temp := 0 ; step := step + 1,

A2
∧
= step ∈ [1, ..N − 1] → temp := temp + h[step] × Z[step − 1] ;

step := step + 1,

We first show that

I
∧
= (step = 1 ⇒ temp = 0) ∧

N
∧

p=2

(step = p ⇒ temp =

p−1
∑

k=1

h[k] × Z[k − 1])

is an invariant ofFS .
Observe first, thatI[step := 0] ≡ true. Hence,C.I ≡ true, thereforeI ⇒

C.I holds, trivially. The same is valid for the actionA1. We analyze next the
situation that concerns the actionA2.

A2.I

≡ {wp rules for guarded action, sequential composition, assignment}

step ∈ [1, ..N − 1] ⇒ I[step := step + 1, temp := tempnew]

≡ {assumestep + 1 = p + 1 ∈ [2, ..N ], substitution}

step ∈ [1, ..N − 1] ⇒

(step = p ⇒ temp =

p−1
∑

k=1

h[k] × Z[k − 1])

⇐ { logic}

step = p ⇒ temp =

p−1
∑

k=1

h[k] × Z[k − 1])

⇐ {logic}

(step = 1 ⇒ temp = 0)

∧
N
∧

p=2

(step = p ⇒ temp =

p−1
∑

k=1

h[k] × Z[k − 1]

≡ {definition}

I
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In order to prove the above specified refinement, we go through the require-
ments of Lemma 1:

1. Initialization:I[step := 0, temp := 0, Z := z0] ≡ true

2. Main action: We have to prove thatA vI C. For this, we have to show that:
I ∧ A.Q ⇒ C.(I ∧ Q),∀Q. We proceed as follows.

C.(I ∧ Q)

⇐ {logic, wp rule for sequential composition:C
∧
= C1 ; C2}

I ∧ C1.(C2.(I ∧ Q))

≡ {wp rule for assignment}

I ∧ C1.(I[step := 0] ∧ Q[step := 0])

≡ {Q does not mentionstep, I[step := 0] ≡ true}

I ∧ C1.Q

≡ {wp rules for guarded action, assignment}

I ∧ (step = N ⇒ Q[Y := temp + X × h[0]])

≡ {notation:IN−1
0

∧
= (step = 1 ⇒ temp = 0)

∧
N−1
∧

p=2

(step = p ⇒ temp =

p−1
∑

k=1

h[k] × Z[k − 1])}

IN−1
0 ∧ (step = N ⇒ temp =

N−1
∑

k=1

h[k] × Z[k − 1])

∧ (step = N ⇒ Q[Y :=
N−1
∑

k=1

h[k] × Z[k − 1] + X × h[0]])

⇐ {replacement oftemp, logic}

IN−1
0 ∧ (step = N ⇒ temp =

N−1
∑

k=1

h[k] × Z[k − 1])

∧ (step = N ⇒ Q[Y :=
N−1
∑

k=1

h[k] × Z[k − 1] + X × h[0]])

⇐ {logic}

IN−1
0 ∧ (step = N ⇒ temp =

N−1
∑

k=1

h[k] × Z[k − 1])

∧ Q[Y :=
N−1
∑

k=1

h[k] × Z[k − 1] + X × h[0]]
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≡ {definitions ofI, IN−1
0 }

I ∧ Q[Y := X × h[0] +

N−1
∑

k=1

h[k] × Z[k − 1]]

≡ {wp rule for assignment}

I ∧ A.Q

3. Auxiliary action. For the auxiliary actionsA1, A2, we have thatwA1, wA2

∈ {step, temp}, therefore they behave likeskip with respect to the global
variables. Hence,skip vI A1 ∧ skip vI A2.

4. Continuation condition:

I ∧ gA ⇒ gC ∨ gA1 ∨ gA2

≡ {gA1 ∨ gA2 ∨ gC ≡ true}

I ∧ gA ⇒ true

≡ {logic}

true

5. Internal convergence. It is easy to observe thatA1 terminates after one exe-
cution as it disables itself, whileA2 disables itself afterN − 1 executions.

From the above we have that, inisolation, the systemFS is a refinement ofF ,
under the invariantI: F vI FS .

In addition, even if not necessary in this context, yet needed when dealing
with the same refinement in a synchronized environment, we also show thatI is a
proper invariant. For this, we only check what happens when the globalaction (C)
is executed.

I[wC := wC ′, v := z]

≡ {computation}

I[step := 0, Y := temp + X × h[0], v := z]

≡ true

≡ I[step := 0, Y := temp + X × h[0], v := z′]

≡ I[wC := wC ′, v := z′]

Hence,I is a proper invariant of the systemFS .
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A-5 Computation of weakest preconditionT (i).It (chap-
ter 6)

We give the detailed computation of the weakest precondition for a preemptible
real-time task to establish the timeliness condition. The task model is as follows:

T (i)
∧
= state[i].now = sl ∧ ca[i].now = P [i] + ofs[i].now

→ ca[i] :− (λt · t − now) ; state[i] :− (λt · wt) ; UT
[] state[i].now = wt

→ ce[i] :− (λt · t − now) ; state[i] :− (λt · ex) ; UT
[] state[i].now = ex ∧ ce[i].now = E[i]

→ ce[i] :− (λt · 0) ; cp[i] :− (λt · 0);
[ ofs[i] :− x′ | ∀t ≥ now · x′.t ∈ Real+ ];
state[i] :− (λt · sl) ; UT

[] state[i].now = ex ∧ ce[i].now < E[i]
→ ce[i] :− (λt · ce[i].now);

cp[i] :− (λt · cp[i].now + t − now);
state[i] :− (λt · pt) ; UT

[] state[i].now = pt
→ ce[i] :− (λt · ce[i].now + t − now);

cp[i] :− (λt · cp[i].now) ; state[i] :− (λt · ex) ; UT

The timeliness predicate is as follows

It ≡ ∀i · ∀t ∈ [start, now) ·

(state[i].start = ex ⇒

(state[i].t = ex ∧ ca[i].t − (ce[i].t + cp[i].t) ≤ D[i] − R[i] ∧

ca[i].t = ca[i].start + t − start))

∧ (state[i].start = ex ∧ ce[i].start = 0 ⇒ cp[i].t = 0)

We denote:

Ij
t ≡ ∀t ∈ [start, now) ·

(state[j].start = ex ⇒

(state[j].t = ex ∧ ca[j].t − (ce[j].t + cp[j].t) ≤ D[j] − R[j] ∧

ca[j].t = ca[j].start + t − start))

∧ (state[j].start = ex ∧ ce[j].start = 0 ⇒ cp[j].t = 0)
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The actualwp computation is

T (i).It

≡ { substituteT (i), It, rule (2.10),

actionssl → wt, ex → sl, ex → pt satisfy the invariant, trivially}
(∀j 6= i · T (i).Ij

t ) ∧
(state[i].now = wt → ce[i] :− (λt · t− now) ;

state[i] :− (λt · ex) ;
start := now ; now := min{t′ ≥ now | gg.t′}).It

∧ (state[i].now = pt → ce[i] :− (λt · ce[i].now + t− now) ;
cp :− (λt · cp[i].now) ;
state[i] :− (λt · ex) ;
start := now ; now := min{t′ ≥ now | gg.t′}).It

≡ { rules (2.6), (2.4), (2.7)}
(∀j 6= i · T (i).Ij

t ) ∧
(state[i].now = wt ⇒

(∀t ∈ [start,min{t′ ≥ now | gg.t′}) ·
(ce[i] :− (λt · t− now) ; state[i] :− (λt · ex) ; start := now).It))

∧ (state[i].now = pt ⇒
(∀t ∈ [start, now = min{t′ ≥ now | gg.t′}] ·

(ce[i] :− (λt · ce[i].now + t− now) ; cp :− (λt · cp[i].now) ;
state[i] :− (λt · ex) ; start := now).It))

≡ { rules (2.7), (2.4), computegg.t′ ≡ (ce[i].t′ ≤ E[i]) }
(∀j 6= i · T (i).Ij

t ) ∧
(state[i].now = wt ⇒

(∀ now′ · now′ = min{t′ ≥ now | ce[i].t′ ≤ E[i]} ⇒
(∀t ∈ [start, now′) · (ce[i] :− (λt · t− now) ;

state[i] :− (λt · ex)).It[start := now])))
∧ (state[i].now = pt ⇒

(∀ now′ · now′ = min{t′ ≥ now | ce[i].t′ ≤ E[i]} ⇒
(∀t ∈ [start, now′) · (ce[i] :− (λt · ce[i].now + t− now) ;

cp[i] :− (λt · cp[i].now) ; state[i] :− (λt · ex)).
It[start := now])))

≡ { substitutestart = now, rules (2.7), (2.4),

substitutestate[i].start = ex in It}
(∀j 6= i · T (i).Ij

t ) ∧
(state[i].now = wt ⇒
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(∀ now′ · now′ = min{t′ ≥ now | ce[i].t′ ≤ E[i]} ⇒
(∀t ∈ [now, now′) · (ce[i] :− (λt · t− now)).

(ca[i].t− (ce[i].t + cp[i].t) ≤ D[i]−R[i]
∧ ca[i].t = ca[i].now + t− now

∧ ce[i].now = 0 ⇒ cp[i].t = 0)))
∧ (state[i].now = pt ⇒

(∀ now′ · now′ = min{t′ ≥ now | ce[i].t′ ≤ E[i]} ⇒
(∀t ∈ [now, now′) · (ce[i] :− (λt · ce[i].now + t− now) ;

cp[i] :− (λt · cp[i].now)).
(ca[i].t− (ce[i].t + cp[i].t) ≤ D[i]−R[i]

∧ ca[i].t = ca[i].now + t− now

∧ ce[i].now = 0 ⇒ cp[i].t = 0)))
≡ { successive application of rules (2.7), (2.4), substitutecp[i].t, ce[i].t}

(∀j 6= i · T (i).Ij
t ) ∧

(state[i].now = wt ⇒
(∀now′ · now′ = min{t′ ≥ now | ce[i].t′ ≤ E[i]} ⇒

(∀t∈ [now, now′)· ca[i].t−(t− now) ≤ D[i]−R[i] ∧
ca[i].t = ca[i].now + t− now)))

∧ (state[i].now = pt ⇒
(∀now′ · now′ = min{t′ ≥ now | ce[i].t′ ≤ E[i]} ⇒

(∀t∈ [now, now′)· ca[i].t = ca[i].now + t− now ∧
ca[i].t−(ce[i].now+(t− now) + cp[i].now) ≤ D[i]−R[i])))

A-6 Proof of RT S ′s v RT Sm
(chapter 6)

Given the predicate

I1 ≡ ∀i · ∀now ·
(ok[i].now ∧ state[i].now = wt ⇒

(pr[i].now=Max(q.now)∧ca[i].now ≤ D[i]−R[i] ∧
(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

state[j].now = wt ∨ state[j].now = pt)))
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∧ (ok[i].now ∧ state[i].now = pt ⇒
(pr[i].now = Max(q.now) ∧

ca[i].now − (ce[i].now + cp[i].now) ≤ D[i]−R[i] ∧
(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

state[j].now = wt ∨ state[j].now = pt)))
∧ (¬ok[i].now ∧ state[i].now = ex ⇒

(pr[i].now 6= Max(q.now)∧ ce[i].now < E[i]))

andk ∈ [1..n], we have to proveRT S ′s vI1 RT S
m

.
Since trace refinement conditions (6.10), (6.14) and (6.15) are immediate (the

auxiliary variableok is a local variable, and the auxiliary actions are self-disabling,
thus they terminate), we concentrate on proving the remaining three.

• I1 is preserved by the actions of the concrete systemRT Sm
(requirement (6.11)).

We sketch the proof for one of the actions only, namely for

Ai
21m = ¬ok[i].now ∧ pr[i].now = Max(q.now) ∧

(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨
state[j].now = wt ∨ state[j].now = pt) ∧

state[i].now = wt ∧ ca[i].now ≤ D[i]−R[i]
→ ok[i] :− (λt · true) ; UT

We have thatI1 = I1[1] ∧ . . . ∧ I1[n]. Below, we consider onlyI1[i].

I1[i]
⇒ Ai

21m.I1[i]
≡ {substituteI1, rules (2.7), (2.4), assumenow = min{. . .}}

(¬ok[i].now ∧ pr[i].now = Max(q.now) ∧
(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

state[j].now = wt ∨ state[j].now = pt) ∧
state[i].now = wt ∧ ca[i].now ≤ D[i]−R[i])

⇒ ((state[i].now = wt ⇒
(pr[i].now = Max(q.now) ∧ ca[i].now ≤ D[i]−R[i] ∧

(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨
state[j].now = wt ∨ state[j].now = pt)))

∧ (state[i].now = pt ⇒
(pr[i].now = Max(q.now) ∧

(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨
state[j].now = wt ∨ state[j].now = pt) ∧

ca[i].now − (ce[i].now + cp[i].now) ≤ D[i]−R[i]))))
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≡ {logic}
ok[i].now ∨ pr[i].now 6= Max(q.now) ∨ state[i].now 6= wt

∨ (∃j 6= i · ¬(state[j].now = sl ∧ ca[j].now < P [j]) ∧
state[j].now 6= wt ∧ state[j].now 6= pt))

∨ ca[i].now > D[i]−R[i] ∨ state[i].now 6= pt

∨ (pr[i].now = Max(q.now) ∧
(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨
state[j].now = wt ∨ state[j].now = pt) ∧
ca[i].now − (ce[i].now + cp[i]) ≤ D[i]−R[i])

≡ {state[i].now 6= wt ≡
(state[i].now = sl ∨ state[i].now = pt ∨ state[i].now = ex),
logic}

true

• We prove just one condition of the type (6.12), that is

A′i2 vI1 Ai
22m

The other two refinements are similar.
The bodies of the above actions are identical. Therefore, we are left with prov-

ing refinement of guards:

I1[i] ∧ ok[i].now ∧ state[i].now = wt

⇒ (pr[i].now = Max(q.now) ∧ state[i].now = wt ∧
(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨

state[j].now = wt ∨ state[j].now = pt) ∧
ca[i].now ≤ D[i]−R[i])

≡ {logic}
pr[i].now 6= Max{q[k].now} ∨ ca[i].now > D[i]−R[i]

∨¬ok[i].now ∨ state[i].now 6= wt

∨(∃j 6= i · ¬(state[j].now = sl ∧ ca[j].now < P [j]) ∧
state[j].now 6= wt ∧ state[j].now 6= pt)

∨(pr[i].now = Max{q[k].now} ∧ ca[i].now ≤ D[i]−R[i] ∧
(∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j]) ∨
state[j].now = wt ∨ state[j].now = pt))

≡ {logic}
true
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• In order to fulfill requirement (6.13) of trace refinement of CAS, we have to prove
that

I1 ∧ ggRT S′s ⇒ ggRT Sm ∨ ggX

We identify

ggRT S′s ≡
n∨

i=1




(state[i].now = sl ∧ ca[i].now = P [i] + ofs[i].now)
∨ (state[i].now = ex ∧ ce[i].now = E[i])
∨ (state[i].now = ex ∧ ce[i].now < E[i]

∧ pr[i].now 6= Max(q.now))
∨ (state[i].now = wt ∧ ca[i].now ≥ D[i]−R[i]

∧ pr[i].now = Max(q.now)
∧ (∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j])
∨state[j].now = wt ∨ state[j].now = pt))

∨ (state[i].now = pt
∧ ca[i].now − (ce[i].now + cp[i].now) ≤ D[i]−R[i]
∧ pr[i].now = Max(q.now)
∧ (∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j])
∨state[j].now = wt ∨ state[j].now = pt))




ggRT Sm ≡
n∨

i=1




(¬ok[i].now ∧ state[i].now = sl
∧ ca[i].now = P [i] + ofs[i].now)

∨ (¬ok[i].now ∧ state[i].now = ex)
∨ (ok[i].now ∧ state[i].now = ex

∧ ce[i].now = E[i])
∨ (ok[i].now ∧ state[i].now = wt)
∨ (ok[i].now ∧ state[i].now = pt)




ggX ≡
n∨

i=1




(¬ok[i].now ∧ pr[i].now = Max(q.now)
∧ state[i].now = wt ∧ ca[i].now ≤ D[i]−R[i]
∧ (∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j])
∨ state[j].now = wt ∨ state[j].now = pt))

∨(ok[i].now ∧ state[i].now = sl)
∨(ok[i].now ∧ pr[i].now 6= Max(q.now)

∧ state[i].now = ex ∧ ce[i].now < E[i])
∨(¬ok[i].now ∧ pr[i].now = Max(q.now)

∧ state[i].now = pt
∧ ca[i].now − (ce[i].now + cp[i].now) ≤ D[i]−R[i]
∧ (∀j 6= i · (state[j].now = sl ∧ ca[j].now < P [j])
∨ state[j].now = wt ∨ state[j].now = pt))




By inspecting the above conditions one can notice that the continuation condition
holds.
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