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Abstract

The challenges of designirrgactive systemsvhich are supposed to maintain an
ongoing interaction with a possibly unpredictable environment, stem from the need
of ensuring theorrectnes®f the design at the earliest stage possible. An increas-
ingly appealing mathematical approach towards accomplishing this gmaimsl
system constructionWhile enjoying the advantages of a rigorous development
process, it also frees the designer from the burden of taking into account imple-
mentation details, from the beginning.

This thesis proposes a formadethodologythat aims at constructing correct
reactive systems. Our work lies in the area of computerized systems that combine
aspects of discrete control, continuous data values and real-time constraints. We
address the issues from the perspective of a logical framework cafieément
calculus The results are described in terms of various forms of the so-catlémh
systems

Designing for reactivity assumes dealing with composability and concurrency.
Targeting the correct execution of concurrent actions, we introdsgachronized
semantics for the parallel composition of action systems. The construct mimics
the barrier synchronizatiormechanism found as a primitive in concurrent pro-
gramming languages. We prove that the synchronized composition improves the
modular design capabilities of our framework. This translates into being able to
carry out refinements of modules, modeled by action systems, in isolation, without
knowledge about the details of functionality of the other modules of the parallel
environment.

Hybrid control systemare reactive systems characterized by continuous be-
havior interleaved with discrete control decisions. As a precursor to full formal
analysis, simulation of hybrid system models can be used effectively, especially if
the state space is represensgchbolically We present a simulation tool foeontin-
uous action systenf€AS), the timed extension of action systems. The simulator is
implemented irMathematicaa commercial computer algebra package. Our tool
takes a description of any CAS as input, and provides automatically a symbolic
simulation of the system, up to a given maximum time.

To cope with the concurrent behavior of hybrid systems, we extend the syn-
chronization execution environment developed for discrete action systems, to their
hybrid counterparts. The modularity results at the discrete level hold for the syn-



chronized composition of CAS, too.

Many hybrid systems are defined usiparameters The systems are intended
to work correctly under specific parametric conditions. These relationships may be
hard to find by following an intuitive approach alone. We apply the well-known
invariance ruleto the parametric reachability problem of hybrid systems modeled
as CAS. We synthesize constraints on parameters that are sufficient to guarantee
the safety property of a relevant hybrid system example.

When timing requirements are set on top of the functional ones, for any type of
reactive system, be it discrete or hybrid, we need to find a means to cope with them,
in design. This should be done regardless of the respective functional behavior. Be-
ing faithful to this viewpoint, we advance a top-down method for the incremental
construction okcheduled real-time systemgthin the refinement calculus frame-
work. We apply the method on two well-known scheduling algorithms, namely
Deadline-Monotoni@andEarliest-Deadline-Firspolicies.

A viable controller construction method is known in literaturecastroller
synthesis Synthesis is equivalent to computing the most general model of a con-
troller that satisfies the requirements. Here, we propagee-basedhethod for
the synthesi®f invarianceand certairreachabilitycontrollers.
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Chapter 1

Introduction

Unlike transformational systemthat have to produce specific outputs for given
sets of inputsyeactive systemare designed to maintain an ongoing interaction
with their environment. Therefore, they might be subjected to unexpectadjeb

of input stimuli. Typical examples of reactive systems are: air traffic coay®
tems, programs controlling mechanical devices such as trains, planegjang
processes in nuclear reactors (see Figure 1.1).

Control rods steam
generator

Reactor coolant system ‘== Condenser cooling water

Figure 1.1: A nuclear reactor.

Many systems contain a reactive component,@mdrol systembelong to this
class. A control system is equipped witltantroller that observes the state of a
plantvia sensorsBased on the acquired information, the controller communicates
actions to the plant viactuators Furthermore, reactive systems may be purely
discretein nature, meaning that the state space is defined by variables that are
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assigned discrete values. Alternatively, they can contamnéinuouscomponent,
usually described by real-valued variables that evolve according top@defined
laws. A mix of the two mentioned behaviors, that is, discrete and continuous, is
called ahybrid behavior. If timing requirements are added on top of the functional
ones, the respective reactive system igal-time system. This means that its
correct behavior depends on both the accuracy of the output resulielaas on

the time at which the result is delivered.

Since malfunctioning of reactive systems can have dramatic consequénces
is most important to guarantee theorrectness To accomplish this goafprmal
methodscome into picture, with their synergetic paradigms, nanpebgram ver-
ification andprogram constructionIn the first case, correctness is established by
formally proving that the program behaves according to an initial docuroaited
the system specificationlf one aims atonstructinga reactive (control) program
in a provably correct manner, applyingfinementechniques is a feasible option.
Refinement-based approaches implement the given system specificatiopta
gram, after a series of transformations called refinements.

Targeting hybrid control systems construction, the two pillars of modern de-
sign, control theoryand computer sciengenave brought tremendous progress in
the area. The pair stands complementary. The first solvasitistnessssues, by
specifying adequate control laws that ensure optimal performance. eOuthbr
hand, the second answers the question of software correctness, redikign.
Through mathematical modeling, numerical experiments, analytical studies and
other techniques, control theory meets computer science in an attempt tec@rod
reliable hybrid control programs.

1.1 Formal Development of Reactive Systems

A formal-method-based reactive-system construction assumes the egisfehe
following:

e a mathematical formalisnin which the initial system specification is de-
scribed;

e an underlyindogic, where the required properties that the system is expected
to satisfy are formulated,;

e a constructiontechnique, which, if applied, leads to a correct and reliable
program.

Action Systems Formalism. Suitability for rigorous design methods is a crucial
criterion in choosing a specification language. Such a language shoutdesethe
basis for both modeling and rigorous reasoning. It is therefore impdftahthe
language has a close relationship with an underlying logic, but can alsageegl
by software designers [110].



In this thesis, we describe discrete systemsbiyon systemsThe latter is a
useful formalism for modeling systems, due to its expressive power ardoge
mental clarity. It was introduced by Back and Kurki-Suonio [31, 32]pwhovided
an action-based model of system execution. In this model, atomic actiongs(that
actions that are indivisible, such that no intermediate state can be obseared
be executed whenever they are enabled, the selection among them bedegeno
ministic. The standard form of an action system is the following:

Sys(z : Ty) L beginvarz: T,
T =20 R = 20;

doA;| ... |4 ]...]Arod
end : p
Here, A1, ..., A, ..., A, are the actions afys, z the global variables and

x thelocal variables Theparameter represent the constants of the model, thus
they do not change their values during execution. We explain action systems
more detail, in chapter 2.

There are various execution models [62, 97, 115, 127] that are clepiiito
action systems. Out of them, Lamporfemporal Logic of Action§TLA) [115],
and Chandy’s and MisradNITY [62] are quite similar to action systems. UNITY
and TLA use temporal logics for specification purposes.

Originally, action systems also used temporal logic for reasoning. However
later work by Back, Sere, and von Wright led to their formalization within the
refinement calculugR2, 30, 33].

It is important to underline the fact that action systems employ the same nota-
tion for high-level specifications and their implementations.

Continuous Action Systems. As presented in the previous paragraph, discrete
concurrent systems can be modeled by action systems, where a statibédielsg
a collection of state variables) is manipulated by a collection of actions.

Continuous Action SysterfSAS) are an extension of action systems to hybrid
systems, being based on a new approach to describe the state of a syséem. E
tially, the state variables range over functions of time, rather than just aleew,

The variables are expressed uslagibda abstractionfor example(At - ¢ — 2).
Given the functionf, we write f.t for the functionf applied to variable. In our
example,f.t =t — 2.

The CAS formalism has been introduced by Back, Petre and PorresI[2ig]
model allows one to describe both control actions and time advancing bghavio
with the same simple mechanism. Consequently, the hybrid, and real-time systems
that we are looking at, in chapters 4, 5 and 6, respectively, are modeled 8.

The semantics of CAS is given in terms of ordinary action systems, with ex-
plicit time, which is measured by a nonnegative real-valued variafsie In the
action system translation of a CAS, the variahlev is declared, initialized and

3



advanced, accordingly. We give the formal definition and describex®igon of
CAS in chapter 2.

Clockvariables {imerg, which measure the time elapsed since they were set
to zero, can be used in a CAS-based model, especially when we desaiittieme
systems (chapter 6).

Besides CAS, there are many other hybrid formalisms developed to support
the description and analysis of real-time, or hybrid systems. Among ttiereg
automata[9], hybrid automatg[86] and the more general framework lybrid
input/output automatfl20] have gained high popularity.

Refinement-based Construction Technique. Coined by Dijkstra [69] and Wirth
[155], stepwise refinemens a method for constructing programs in a provably
correct manner.

The construction method based on stepwise refinement involves developing
programs through one or more transformations cakdithements The first step
is to describe the system behavior in a precise, yet abstract mannerinitials
form, which is usually nondeterministic, is called theecification Each refine-
ment is then a transformation that adjusts the initial specification, by reducing its
nondeterminism. There are cases in which the system behavior is deduyilaed
deterministic model, from the start; then, refinements can decrease theflatel o
straction, by replacing some parts of the initial program model by more etancr
ones, while preserving correctness properties.

Back proposed theefinement calculuf21] as a further development of step-
wise refinement, based on Dijkstraisakest preconditiosemantics [70, 71] for
the language ojuarded commandsn Dijkstra’s view, the meaning of a guarded
command is defined by its weakest precondition. The latter is a predicate tmmpu
by a function denotedp. This function takes as its first argument a program state-
ment, and as its second a predicate, calledpthetcondition Then,wp(S, q), or
wp.S.q denote the weakest precondition®fo establisly. It represents the largest
set of initial states, such thatS executed inr is guaranteed to terminate in a state
that satisfieg.

Since the meaning of a program statement is interpreted as a predicate over
the program state, it follows that the properties that the program is reqtgre
satisfy can be formulated as predicates. When needed, the requireae@tisc
betemporal propertiesinitially defined by Back and von Wright, within the dually
nondeterministic weakest precondition framework [37, 38].

Later work by Back and von Wright [35] extended and improved Baokig-
inal work on the refinement calculus. The underlying logic of refinemalutue
lus is higher-order logi¢ which allows for quantification over functions, a very
useful feature when reasoning about complex behaviors. Resganmiinement
calculus has been independently carried out by Morris [131], andydfof129],
too. The approach to program refinement promoted by Morgan [13@nisise
and calculational an initial abstract specification is transformed towards an im-
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plementation throughefinement laws Early work of Hoare, who introduced the
notions ofprogram correctnesf95] anddata refinemenf96], has also influenced
the development of the refinement calculus framework.

Formalisms like theVienna Development Methd®DM) [102] and theB
method[3] propose a different approach to proving refinements of system mod
els. One needs to first guess a new program (model), and then veritherh
the created model is indeed a refinement of the previous one. This is called a
verificationbased formal approach.

a. Algorithmic Refinement. In this thesis, each statemefitis identified with
a specificpredicate transformefrom postconditions to weakest preconditions.
Hence, one can writ8.q instead ofwp(S, q), or wp.S.q.

The refinement calculus introducesedinement relatiorbetween statements.
The relation is defined in terms of ordering on predicates. Thissrefined bys’,
denotedS C §’, if and only if:

VgeS.qC Sq

This refinement relation modeddgorithmic refinementwhich preservemotal cor-
rectnesdetween program statements on the same state space. Most often, this type
of refinement decreases the statemesittbegree of nondeterminism.

The refinement relation is preorder (that is, a reflexive and transitive rela-
tion). Due to the transitivity property, programs can be developed byiesseir
refinement steps:

SoESICE...ES,

sinceS; C S, follows from the above.

b. Trace Refinement of Action Systems. The weakest precondition semantics
of action systems does not suffice for capturing reactive behavigrst@s'’s inter-
action with its environment subsumes the necessity of reasoning aboehsegu
of global states. Thus, the semantics of a reactive action system is gitemmis
of behaviorg33], which can also model nonterminating execution. A behavior of
an action system,

b= (20, 20), (¥1,21) - - -,

is a (possibly infinite) sequence of states, where each state has two aamtgpon
The first component is thiecal stateand the second is thglobal state A trace
of a behavior is obtained by removing the local state component in each Etate o
given system, and all finite stuttering (no change of the visible state).

In a general, less formal manner, we say that an action syStegfinesA,
written asA C C, if each trace irC is a refinement of a trace . In practice,
we use a special lemma to protrace refinemenof action systems [29, 33]. The
lemma is presented in chapter 2.

Clearly, trace refinement is more powerful than algorithmic refinement, since
it can change the state space of the system. For example, one might benefit f

5



using an abstract, nonimplementable data structure, in the initial system model.
However, this data structure should be further transformed into a morzaten
efficient representation, which can be implemented in a standard prograraming
guage. The necessary transformations that lead to an implementable dataetru
are performed with respect to abstraction relationwhich relates the initial data
representation to the final one. This type of refinement, calédd refinemenican

be viewed as a particular case of trace refinement.

If, on the other hand, one needs to add functionality to the initial systenifispec
cation, new actions will have to describe the respective behavior. Hotisas are
expected to implement the stuttering actions, in the initial description, with respect
to global variables. Besides introducing new actions, some of the old actiays
be refined, such that the behavioral nondeterminism is reduced. Timement
technique is also a special case of trace refinement, being knosupagposition
refinement

In short, superposition refinement of action systems reduces to the fajjowin
steps:

e Replacing the initial variables by an extended list of variables, e.g.=

x, .

e Changing the initialization of the action system, such that all variablgs in

are assigned initial values.

e Replacing actions!; by actionsC;, which are (algorithmic) refinements of

the old actions with respect tq that is,

A; C begin 2’ * C; end, for some i,
or adding new actions that do not modify variablesjihat is,
skip C begin 2’ * C; end, for some j,

whereskip is the statement that models stuttering.

¢ Introducing a continuation condition, which establishes that any enabled ac
tion in the original action system has a corresponding enabled aCficor
C; in the resulting system.

e Introducing a termination condition @f;, which ensures that the execution

of any new action, taken separately, terminates eventually.

In case we do not change any data representation, and we also dpaohs
pose functionality, but rather need to just decrease nondeterminismiarigthen
we run into classical algorithmic refinement.

As the informal definitions outlined in this paragraph suggest, trace refimeme
is a comprehensive form of refinement, which can be specialized, omdiiméo
data, superposition or plain algorithmic refinement.

Since continuous action systems are special cases of ordinary actiemsys
we can use the proof and refinement techniques developed for grdictzon sys-
tems, for CAS, as well. This allows us to prove correctness of transfomsatib
timed and hybrid models.



1.2 Contributions of this Thesis

The current study presents a methodology for building correct pmugyfar reac-
tive systems, be they discrete systems, hybrid control systems, or realetied- s
ulers. The methodology comprises several techniques for solving tisérgotion
problem, tailored to the nature of the target systems. Blatbedandopenreactive
systems are considered. By closed systems we mean systems that canduke view
in isolation; their behavior can not be influenced from outside. We tregedlo
reactive systems where there is a clear distinction between the reactyrmpro
and the rest of the system. Nonetheless, we also look at compound ¢fstens,
in which the reactive behavior is not modeled separately. In contrastetievior
of open reactive systems is influenced by the external environment.n®y#tat
comprise several components that interact with each other are opeh.c&me
ponent taken apart is an open reactive system. We analyze aspeeisavidy
control and modularity of such reactive systems, which, in addition, angres
to respond concurrently to a set of inputs.

Our contribution uses action systems and its hybrid/real-time extension, con-
tinuous action systems, as the modeling languages for the discrete, hyiatid, a
real-time systems that we consider, respectively. The reasoning emérntiis the
refinement calculus, with its correctness-preserving refinement tea®)jigvhich
we have briefly described in section 1.1.

Even though the present work spans over untimed, and also timed and hybr
systems, we have concentrated on solving the intrinsic, specific constrpctib-
lems of each class of systems. By exploiting the richness of our favoriteafam
at the modeling stage, we carry out the program construction, whededeen-
der the common umbrella of the established refinement methods. The following
sections emphasize the problems that we are analyzing and the main lines of our
contribution.

1.2.1 Behavior Control and Modularity of Reactive Systems

Problem Description. To cope with the complexity of reactive system design,
modular reasonings a necessity. The entire system model is then composed from
smaller parts, thenoduleswhich is desirable to be developed independently. This
desideratum should be supported by adequate rules and techniqidsgudran-

tee that separate module transformations do not alter the entire systentroesse
Moreover, equipped with such reasoning techniques, one may rexseysly de-
signed modules, in a different, yet similar setup.

As detailed in chapter Zyarallel action systemare executed by interleaving
enabled actions. This model of execution is strongly connected with behhvio
nondeterminism. In chapter 3, we exemplify that the interleaved model oficonc
rency may not suffice, as such, for modeling parallel reactive systémensure
the expected behavior, one has to model some sort of communication protoco
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among modules. This, in turn, makes the overall system model cumbersome and
expensive to implement.

Solution. We propose a solution to the above problem, in the formsyfrechro-
nization mechanisnithat mimicsbarrier synchronizatior{84]), implying a new
virtual execution model for action systems, applicable to both discrete amiihy
designs. The extension to hybrid systems represented as CAS is cartied o
chapter 4.

We define the necessary formal concepts, and prove modular refinegaen
sults, for thesynchronized parallel action systemmghich is the actual environment
that we introduce in chapter 3. By employing it, we eliminate intermediate results
that can affect the global state, as the system gives complete answegsripuh
stimuli. One of the main advantages is the fact that we preserve the intemal no
determinism, thus we allow the modules to execute in any order, yet increasing th
external determinacy. Concretely, this means that the observable statsasribe
after an execution cycle, regardless of the internal execution ordergdwunds.

The main results of chapter 3 are the following:

e A barrier synchronization mechanism applied to both discrete and hybrid
models (action systems and continuous action systems). The mechanism is
suitable for designing reactive systems that have to present a simultaneous
global response to sets of input stimuli. To achieve this, we introduce a new
parallel composition operator (shar),that ensures correct outputs to all
sets of inputs, without employing communication channels between mod-
ules. Consequently, using our mechanism bears the advantage ofdass co
effort, in practice. The new execution model requires a certain typeiofac
systems that we caflartitioned action systemwhich separate local actions
from global actions.

e Proofs of the usefulness of our synchronized parallel environmetit,re-
spect to modular design. We show that the capabilities of the action systems
framework, for modularity, are improved. This translates into being able to
carry out (trace) refinements of modules, in isolation, without knowledge
about the invariants of the other modules of the parallel environment. How-
ever, the price to pay is that one has to psaperinvariants for trace refine-
ment. Theorem 3, and Corollary 1 of chapter 3 demonstrate these informal
claims.

The most important contribution of chapter 3 is the proof that barrier sgach
nization can also improve reactive systems modularity, besides their conteol. W
believe that the proposed parallel execution model and its properties loewx-
tended to other state-based formalisms, if one needs to obtain similar benefits.

Related Work. The approximation of concurrency by interleaving is used in
most process algebras like CSP [97], CCS [127], as well as in inputibatp
tomata [121] and UNITY [62]. The nondeterministic behavior induced byirthe
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terleaved model requires solutions for controlling the data flow. On the bémet,
resolving control issues reduces the design independence acrakfetent lev-
els of the design process. Several recent studies have analyzaaisaspcontrol
and / or composability within different formal frameworks, all of which lde#h
a certain interleaved environment.

Cavalcanti and Woodcock [55], and Charpentier [63] needed to beidrea-
soning environments in order to address issues related to correctiessmapos-
ability of (reactive) systems. Both approaches have strong roots in thkeste
precondition semantics of Dijkstra [71].

Bellegarde et al. introduce a similar idea of synchronized parallel compositio
for event-B systems [42].

In the temporal logic of actions of Lamport [115, 116], synchronizatiapex-
ified as a way of applyingoninterleavingto system design. This is reached by
employingjoint actions The author’s conclusion supports our point of view: in-
terleaving “blurs” the distinction between the components used in design.

1.2.2 Hybrid Systems Modeling and Analysis

Problem Description. Hybrid systems combine discrete control with continu-
ous evolutions. The latter are most frequently described by differemjigdtens,
which make the state space of the system infinite. This and other reasorierike,
example, the interaction of the logic controller with the continuous behaviore mak
hybrid systems inherently complex and difficult to analyze automatically.

Such systems may exhibit particular undesired behaviors that are not met in
purely discrete environments. One known behavioral anoméilpedocking time
is prevented from advancing by infinite executions of discrete transitiGoase-
guently, the corresponding modeling formalism should be capable of [inbib
such behaviors.

Tool support is needed in order to carry out hybrid system analy$iereTis
a range of tools that can be used for this purpose: simulators, moddderhec
theorem provers, or combinations of the last two techniques [133].

Simulating a formal model of the hybrid system is very useful, allowing one to
find potential trouble spots before proceeding to full formal verification.

Symbolic simulationintroduced by King [105], refers to performing simula-
tion on sets of states represented symbolically. Thus, symbolic simulatiorsdiffer
from regular simulation in that it simultaneously traverses a number of trajestor
rather than a single trajectory through the state space [151]. This allovsinthe
ulation of a potentially infinite number of trajectories in one symbolic simulation.
Initial logical mistakes can be uncovered by visualizing the behavior of trdemo
or by inspecting lists of symbolic values of discrete-valued and continvalusd
time variables.

The proof automation mentioned above can either be partial or total. In the
partial case, we haveemi-decisiomprocedures. These algorithms may not always
succeed in proving a claim, and may, therefore, require guidance feostr. On
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the other hand, totally automated procedures are guaranteed to terminateewvith a
sult. However, due to the undecidability of most properties of hybrid sysfgns
these algorithms apply only to a restricted class of hybrid systems. Besides, th
are many hybrid systems that contgiarametersn their representation. These
systems are supposed to operate correctly only for certain values oathe@-
ters, or if specific relationships between parameters hold. The relatienstzip
sometimes be easy to guess. If this is the case, we can then formally verifyrthe c
rectness of the guess. Verification of models with parameters is a semi-datisio
process that depends on the number of clocks, parameters, andaribbtes.
Nevertheless, there are also cases where it is not trivial to intuitivefgueor
late the correct parametric relationships, or values of parameters thiat ersure
a correct functioning of the analyzed system. Then, one needs to el¢uem
by means of a verification procedure. This method is cgllachmeter synthe-
sis Since an algorithmic approach to parameter synthesis may sometimes fail to
deliver the expected constraints, it may be useful to tackle such a deslghya
means ofleductive reachability analysis

Solution. Below, we enumerate the contributions of chapters 4 and 5, which try
to address the above mentioned problems.

e In chapter 4 we extend the syntax of continuous action systems [27], such
that the absence timelockss guaranteed. We model tlegecute only once
(at the same time-point) concept, for actions, by adorning transitions in the
original CAS. Rather than complicating the otherwise simple model of CAS,
we push the problem of avoiding timelocks to the implementation level. Our
solution aims at enhancing the class of hybrid/real-time systems that can be
handled within our framework.

e Still in chapter 4, we adapt the synchronization mechanism introduced in
chapter 3, to continuous action systerSynchronized parallel CAl8t one
compose reactive hybrid models, by employing the new parallel composi-
tion operator, #', such that the composition presents a global, concurrent
response to the inputs. The CAS modules synchronize on the update of the
global variables, after a sequence of execution rounds. All the ressits
tablished for the discrete case, and outlined in section 1.2.1, hold for the
continuous case, too. We show that our model is useful for the design of
hybrid systems characterized by behaviors with discontinuities.

e A tool for the symbolic simulatiorof CAS, implemented in Mathematica
[156], is proposed in chapter 5. Mathematica is a powerful computer alge-
bra package, also equipped with plotting facilities. We give the flavor of this
platform, in chapter 2. Various linear models have been simulated. Symbolic
simulation should be used as far as it is possible, or numerical approximation
could be applied instead (for nonlinear cases). Besides graphicasesia-
tion of variables, at the end of the simulation, we also get information about
the exact time moments when discrete transitions have been fired. Lists with
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symbolic values of all model variables at those particular moments complete
the set of simulation results delivered by the tool.

e In chapter 5, we also apply a deductive procedure for parameteresysith
on a relevant linear hybrid system model, that is, a temperature control sys
tem within a nuclear reactor tank. The method is based on superposition of
nonconflicting invariants. It reduces to proving that a certain bad conditio
can not be reached, if certain relationships between parameters hadd. Th
disadvantage is that our method is not automated. The advantage is that one
gets more insight about the system behavior, in comparison to parameter
synthesis carried out by using model-checkers like HYTECH [87, 88], o
TREX [48]. Moreover, the deductive method is not limited by the number
of parameters or clocks. Thus, it might be applied to complex parametric
hybrid systems.

Related Work. Alur and Henzinger have developed an assume-guarantee prin-
ciple for reasoning about timed and hybrid modules [12]. The approses the
concepts ofipdate roundsindtime rounds The former rounds update the global
variables, whereas the latter update all clock variables, by selectingtitufpos-

sibly 0) that the module is prepared to let elapse. In our synchronizetbenv
ments, we do not make the distinction between rounds updating global variable
and rounds updating time. All global variables (be they discrete valuedrtine

uous valued time variables) and time are updated by a sequence of statexhents,
the end of the same cycle.

Many simulation packages have been proposed and applied for the system-
atic analysis of hybrid systems [74, 79, 124, 125]. Out of these,Mh#dab
Simulink/Stateflowiool [124] provides extensive simulation facilities. However,
the conducted simulation is based on Matlab’s numerical routines. The soite co
sists of two modeling languages: Simulink, which is used to model the continuous
dynamics, and Stateflow, used to specify the discrete control logic. Theltaite
guage does not have a precise formal semantics, thus verificationrid bybtems
modeled in Stateflow is hampered.

Analysis and verification of parameterized hybrid models is a difficult proble
since their verification is, in general, undecidable. Therefore, autorpatatheter
synthesis can be applied with limitation. Tools that allow synthesis of parameters
for hybrid systems, such as HYTECH [87, 88], may fail to terminate due {o pa
rameter types, or big number of clocks. Initial bounds on parameters nmsst be
order to limit the size of the generated state space. On the other hand, okssu
TREX [48] useon-the-flystate exploration techniques, thus overcoming nontermi-
nation. However, TREX usdgned automatg9] as the modeling language, which
might be too weak for modeling hybrid systems, since timed automata is a subclass
of linear hybrid automatd486], which is used in HYTECH.

Aiming for generality, a deductive method, based on a mathematical invariance
proof, can be applied as an alternative to algorithmic approaches.dtextorrect
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values or relationships between parameters involved in hybrid desigrsdless
of the number of clocks or parameters. To gain confidence in manudisprge
may mechanize the process, by means of a theorem-prover [65].

1.2.3 Correct-by-Construction Real-Time Schedulers

Problem Description. Schedulingeal-time tasks is by far the research topic that
has received most attention in the real-time systems community. The requirements
of real-time systems include non-functional properties that need to berpees
during execution. These properties refetdsk deadlineswhich are supposed to

be met, at run-time.

In most cases, when building a real-time schedule, it is essential to find a sys
tematic way that guarantees that the tasks are executed such that theywayt al
complete by their deadlines. This way is calledaheduling policy{51, 119].
Hence, task priorities need to be assigned with respect to predefineihaigo

Constructing correct policy-based real-time schedulers is not a tridiasjoce
analyzing the schedulability conditions of sets of real-time tasks reduces,sih mo
cases, to computing fixed points. This technique is notoriously resounseiicn
ing, so that trying to avoid such algorithms might become an attractive idea.

Solution. In consequence, in chapter 6, we propose the following:

¢ A refinement-based method for building correct-by-construction real-time
priority-driven schedulers, for uniprocessor systems. We enfearhedula-
bility properties, as the conjunction of timing requirements (meeting dead-
lines), mutual exclusive execution of tasks, and policy-related priority as
signments. The scheduled system is derived through refinement, starting
from an abstract level. In the end, we reach an implementable level, also de-
scribed as an action system. A decomposition in two separate modules (the
scheduler and the set of tasks) is performed as a last step.

e The application of the technique described above to both fixed-priority (e.g
Deadline-Monotonigalgorithms, as well as to dynamic-priority algorithms
(e.g., Earliest-Deadline-First. Preemptible, sporadic, as well as non-pre-
emptible, periodic task models are considered. Moreover, in the Earliest-
Deadline-First case, the constructed schedule is validated by simulating the
constructed real-time model in Mathematica, up to the least-common-multi-
ple of the task periods.

Related Work. Formal approaches have been recently applied by Kwak et al.
[113], who develop symbolic bisimulation algorithms, and Altisen et al. [4], who
propose synthesis algorithms, for constructing real-time schedules. A digsjor
advantage of these approaches is the practical high complexity of théttabger
Hence, the methods can not accommodate a large number of tasks.
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We were motivated by the mentioned inconvenience to find an alternative so-
lution to the model-checking targeted algorithms. In consequence, we kave d
veloped a general scheduler construction method, which can be applad) to
particular collection of real-time tasks.

A similar work to ours is due to Altisen, &ler, and Sifakis [5], where fixed
point computation algorithms are combined with the incremental application of
priority rules that restrict the initial behavior of the real-time model. Nonetkeles
the authors model the system in a monolithic fashion, the real-time tasks being
represented by uncontrollable transitions in timed automata models. In compari-
son, our method leads eventually to a two-module implementation of the abstract
real-time model.

1.2.4 Controller Synthesis for Discrete Systems

Problem Description. Since many reactive systems are actually control systems,
it is essential to tackle the problem of constructing the controller of suchktarsy

The idea behinaontroller synthesisnvolves changing the level of abstraction of
an initial system model, by computing the most general (maximally nondetermin-
istic) controller that satisfies the requirements. Therefore, it is suffittestart

with a nondeterministic, high-level model of the controller. In principle, sgsith
steps decrease the controller's nondeterminism. In short, one needsisbthd
initial system representation, by restricting the behavior of the contraliehn, that

all possible transitions that could lead to unsafe states are eliminated.

Most of the synthesis approaches known in literature are algorithmic. areey
based on computation of the maximal set of controllable states, bsicigvard
fixed point iteratiorof symbolic predecessaperators [18, 99, 122]. This strategy
implies exploration of the entire state space, in order to find the result. A main
drawback could be excessive memory consumption.

Solution. To address this deficit, in chapter 7, we propose a deductive game-
based method for solving the problem of sequential control. As distingt fhe
research carried out in the previous chapters, chapter 7 opensgately point-

ing to a different direction.

We describe the system as a game between two rival playemsngstand the
demon The angel represents the controller, and the demon models the plant, or the
disturbance. Thus, we work with action systems that contain two kinds aferon
terministic statements, in the form afgelic choicesor angelic nondeterministic
assignmentsanddemonic choicer demonic nondeterministic assignments

Requirements are modeled as temporal properties, initially defined within the
dually nondeterministic weakest precondition framework, by Back and\Waght
[34, 37, 38]. The angelic controller has the obligation to enforce theeotisp
temporal property, if it can, regardless of the actions of the demonic plant.

Our method starts by checking whether the angel has a way to win the game
with respect to the specified requirement. The latter islaaysproperty, when we
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synthesize controllers fonvariance(controllers that must keep the system within

a safe set of states). The requirement is a special foeverituallyproperty, called
weak responsavhen we address synthesis of reliable controllergdachability
(controllers that must guide the system into an intended set of states, in finije time
We show that the response property that we are looking at is enfoycprbiing
adequate invariance and termination properties of a fixed-point statena¢meh
define. From our perspective, this is the main difference between theaabp
presented in chapter 7 and the algorithmic solutions to the controller synthesis
problem (for example the one employimdfernating-time temporal logi¢15]):

we reduce synthesis to correctness reasoning.

If we succeed in proving that there exists such a strategy for the angel, w
extract it, next, by rewriting the respective angelic statement in a certabexdon
resulted from the correctness proofs carried out in the first step.trmsforma-
tion restricts the choices of the angel to those that establish the requireniment. T
result is a correct, implementable (maximally nondeterministic) controller, which
is guaranteed to preserve the required temporal property for any ofaislae
choices.

Below, we summarize the contribution of chapter 7:

e A deductive method for synthesizing controllers for classes of discyste s
tems that can be modeled as games with more than one round.

e The application of our technigue to both invariance and reachability con-
troller synthesis.

e A new inference rule for verifying the existence of angelic winning strate-
gies under a particular case of reachability control. Our study usesprop
gation of context information as the main transformation for extracting the
angelic winning strategy. In both invariance and reachability cases, By pla
ing the angelic nondeterminism against the demonic one, we get, in the end,
a correct-by-construction implementable controller.

Related Work. Viewing a reactive system as a two-player game is not a new idea.
It can be traced back to Ramadge and Wonham [139], and Pnueli amH&37].

The authors developed synthesis algorithms for finite-state discrete systedns
showed that finding a winning strategy for the game was equivalent toesiniing

a controller that satisfied the requirements.

For discrete-event systemshich is one of the most popular (discrete) frame-
works, there are tools for the constructionsofervisory controller§s8, 157].

In order to overcome the state explosion problem encountered in most algo-
rithmic approaches to controller synthesis [18, 99, 122], Tripakis andefltimve
proposedn-the-flyalgorithms [154]. However, their algorithms are applicable to
finite-state systems only.

If compared to dedicated model-checking algorithms, our approach isaajen
and less costly technique in terms of computer memory resources. On the other
hand, it involves the non-trivial task of finding adequate invariants.
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Perhaps the closest work to ours is proposed by Slanina [147], webogps
proof rules for safety and response linear temporal logic [136] ptiggeof con-
current reactive games. However, the equivalent of our secantiessis step, that
is, extracting the angelic winning strategy, is not apparent. We are justiged
that, if the control conditions can be proved valid, by invoking constradtie-
orem proving methods, the extracted program can be used furthertteesize a
control winning strategy. Moreover, the author does not use a tworimhdieter-
minism, he rather relies oexistential Hoare triple$46, 145] to emulate angelic
behavior.

1.3 Organization

The thesis builds on published papers that have appeared in cord@receedings
and journals. Nevertheless, in the current study we extend and improtieeo
results of the papers, providing information that is not available in the pdalish
material. The list of papers that form the core of this thesis is given below, in
chronological order.

e R. J. Back and C. CerschModeling and Verifying a Temperature Control
System using Continuous Action Systeim®roceedings of the5 Interna-
tional ERCIM Workshop on Formal Methods for Industrial Critical Systems
(FMICS’2000), GMD Report 91, pp. 265-286RCIM and GMD 2000.

e R. J. Back, C. Cerschi Seceleanu, and J. Westerh8ymbolic Simulation
of Hybrid SystemsIn Proceedings of the® Asia-Pacific Software Engi-
neering Conference (APSEC 2002), pp. 147 - 158, IEEE Computgetgo
Press, 2002.

e R. J. Back and C. Cerschi Secelear@ontracts and Games in Controller
Synthesis for Discrete Systemis Proceedings of the 11 1EEE Interna-
tional Conference on the Engineering of Computer-Based Systems (ECBS
2004), pp. 307 - 315, IEEE Computer Society Press, 2004.

e C. Cerschi Seceleanu and T. SeceleaBynchronization Can Improve Re-
active Systems Control and Modularitjournal of Universal Computer Sci-
ence (JUCS), 10(10): 1429 - 1468, Springer, 2004.

e C. Cerschi SeceleanuFormal Development of Real-Time Priority-Based
Schedulers In Proceedings of the 12 IEEE International Conference on
the Engineering of Computer-Based Systems (ECBS 2005), pp. 263 - 270
IEEE Computer Society Press, 2005.

e C. Cerschi Seceleanidesigning Controllers for Reachabilityn Proceed-
ings of the 29" Annual International Computer Software and Applications
Conference (COMPSAC 2005), IEEE Computer Society Press, 2005.

The outline of the rest of the dissertation is as follows. Chapter 2 presants th
preliminary notions needed and used throughout this study. The reduléefesd

15



on statements, games, actions systems, and continuous action systemsaas well
the refinement techniques available for such models. The backgroapteckends
with a short overview of the computer algebra tddhthematicgd156].

A new parallel composition operator for action systems, “shan), @nd an
associated execution environment, called sigachronized parallel environment
are introduced in chapter 3. We compose action system modules by emplaying th
“sharp” operator that we define; moreover, we prove the essentipepies that
emerge out of this formal perspective. The modular design and refineshan
digital filter serves as the accompanying case-study.

The extended syntax for CAS and its corresponding implementation are pro-
posed in chapter 4. We close the chapter with siachronized parallel CAS
intended for modular design of timed and hybrid systems.

In chapter 5, we describe and exemplifgyanbolic CAS simulatowhich we
have implemented in Mathematica. The tool is exercised on simulating the be-
havior of a nuclear reactéemperature control systenThe simulation results are
presented as graphs, and also as symbolic lists of state variables valexs. N
we describe and exemplify the iterative invariance-bgsadmeter synthesisp-
proach, intended for the reliable design of hybrid systems with parameters.

The refinement-based methodology for the incremental construction abunip
cessor real-time schedulers is described in chapter 6. Preemptibledisparad
also non-preemptible, periodic task collections are considered for sigdwWe
open the chapter with the main real-time scheduling results already known in the
literature of uniprocessor scheduling theory. Afterwards, we ptebenactual
scheduler construction method. Next, we apply it for constructing a real-time
model scheduled by the fixed-priorieadline-Monotonialgorithm. Trace re-
finement techniques are then used to reach an efficient real-time systern imple
mentation; also, a provably correct decomposition splits the final model in two
distinct modules, the scheduler and the real-time tasks. Last but not |esespply
our correct-by-construction method under the assumption of a dynaioiitypr
scheme, that is, thEarliest-Deadline-Firstpolicy. We show how to validate the
constructed schedule by simulating it up to the least-common-multiple of the task
periods. For this, we use the tool described in chapter 5.

Last but not least, we return to the issue of discrete reactive systetrolcon
Chapter 7 points to a different direction and introduces our game-bagpedazh
to synthesis of controllers for discrete control systems. The first gatsdvith
finding winning strategies for safety games. The second part aims atdingiys
to win a particular type of reachability games. Two relevant examples illustmate th
application of the theoretical results.

We end our dissertation with conclusions, enumerate the limitations of our
methods and also future research directions, in chapter 8.

Some detailed proofs of particular theorems, corollaries, and refinentatad s
throughout the thesis can be found in the Appendix.
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Chapter 2

Background

As already mentioned in the introduction, flieéinement calculug1, 35, 129, 131]
is a logical framework for reasoning about programs.

In principle, we want to know whether a programcisrrect with respect to
a given specification, and how can we improvergiine the higher-level model,
without loss of correctness. Both specifications and programs careheasespe-
cial cases of a more general notion, that afaatractbetween different agents
(programs, modules, systems, users) involved in the computation.

A contract regulates the behavior of an agent, by modeling what the egent
permitted and supposed to do. In the following, we only consider at mosivalo r
agents as participants. Then, the contract reduces to the speciaf stetements
where two distinct kinds of choices are permitted.

In this chapter, we give an overview of statements, and introdotien sys-
temsas a special kind of statement. Next, we pres@mtinuous action systems
the extension of discrete action systems, which targets hybrid and real-tene sy
tems modeling. This is followed by brief formal descriptionscofrectnessand
refinementt both the action and system levels. At the end, we present shortly the
computer algebra tooMathematica

All the notions and the tool description below provide the basis for the remain-
der of the thesis.

2.1 Statements

Our reasoning framework ushi&gher-order logicas the underlying logic. Atate-
mentS is built according to the syntax below:

S = skip (stuttering)
| abort (abort)
| magic (miracle)
|z:=e  (assignment)
| {p} (assertion)
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| [p] assumption)

| S1; .5 sequential composition)

| if g then S; else S, fi deterministic conditional)
| S1U .Sy angelic choice)

| {z :=2'| b} angelic nondeterministic assignment)

| [x:=2"|}] demonic nondeterministic assignment)
| (X = S) angelic recursion)

| (X *S) (demonic recursion)

(
(
(
(
| S1M.Sy (demonic choice)
(
(
(

Here,p ranges ovestate predicate$> — Bool), z := e is astate transformer
(2 — X)), andz := 2’ | bis astate relation(3 — 3 — Bool). In these definitions,
Y is the polymorphic type of the program state. We wyite for function f applied
to argument.

The statemenabort is seen as a failure: the computation has taaberted
because something has gone wrong. This statement does not achies@ndity
tion. On the contrary, statememtgic achieves whatever condition the program is
supposed to, as ifmiraclehas occurred [35].

Theassignmenthanges the state according to the state transfarmere. In
the grammarskip is described astuttering(no change of the observable state).

Theassertion{p} leaves the state unchangedg tfiolds and aborts otherwise (it
behaves likeif p then skip else abort fi ). It then follows thatbort is interpreted
as the assertion that is impossible to satisfy, thaffisise}. The assumptiorp]
also leaves the state unchangeg Holds, but terminatemiraculouslyotherwise
(that is, it establishes any postcondition, eYase). The assumption behaves as:
if p then skip else magic fi . Hencemagic can be interpreted as the assumption
that is impossible to satisfy, that i$alse].

In thesequential compositiof; ; s, statemeng; is first carried out, followed
by So.

An angelic choice5; LIS, allows a controllable entity calletie angeto choose
which statement is to be executedd@monic choice; 1.55 lets an uncontrollable
entity calledthe demorto choose between carrying oSt or S». Note that, if
there is only one type of nondeterminism involved, that is, demonic, we dér®te
respective nondeterministic choice of statementsbf Ss.

The angelic nondeterministic assignmemt angelic update {z := 2’ | b},
models angelic choices of the final state, among those that satisfy the boolean
dition b. In the demonic nondeterministic assignmgdemonic updabe [z :=
x' | b, the choice of the final state is demonic. If no such state exists, then the
angelic update is aborting, while the demonic update is miraculous. In botimassig
ments,x’ characterizes the state after the execution of the statement, and stands for
a bound variable whose value should satisfy

Our language also permitscursive statementas(uX *.S) or (vX * S). In
the first case, the recursive statement is executed s ikaepeated a demonically
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chosen (finite) number of times. B can be executed indefinitely, this infinite
execution is a failureaport) for the angel. In the second case, the execution of
(vX « S) is similar, with the difference that infinite execution is not a bad thing for
our agent.

Semantics of Statements. A predicate transformeis a function that maps pred-
icates to predicategX — Bool) — (¥ — Bool)). We want the predicate trans-
former.S to map postcondition to the set of all initial states from which S is
guaranteed to end in a stateqfThus,wp.S.q is theweakest preconditioaf .S to
establish postconditioq

The pointwise extension of the implication orderirg) on Bool gives us the
ordering on predicates (). Also, conjunction (1), disjunction (J), and negation
(—) on predicates are defined by pointwise extension of the correspoogarg
ations on booleans. Similarly, the ordér)( and operationsT{, LI) on predicate
transformers are lifted from their respective counterparts on predicate

In all the following chapters, except for the last, we choose to use théomta
for booleans, for predicates too, rather than the actual set notation (ergather
thang N r, q,r predicates). In the last chapter, we employ the predicate-specific
notation, as a distinctive feature of the fact that we work with dual nonaétesm.

Predicates form aomplete boolean latticeand so do predicate transformers
[35]. Abort is the bottom () andmagic is the top (") of the predicate transformer
lattice.

Given the fact that Back’s refinement calculus [35] does not maketimalis
tion between program statements and their semantics, each statgisesimply
identified with a specific predicate transformer from postconditions to vetake-
conditions. Hence, one can writgg instead ofwp.S.q.

The intuitive description of statements can be used to justify the following
definition of the weakest precondition semantics:

skip.g 2 ¢ (2.1)

abort.q 2 false (2.2)

magic.q 2 true (2.3)

(x:=¢€)q 2 qlz = €] (2.4)

{pra £ png (2.5)

[pl.g 2 -pUg (2.6)

(S1;82).¢ = S1.(Sa2.q) (2.7)

(if gthen Sy else S3 fi).g 2 (-gUS1.q)N(gUS2q)  (2.8)
(S1USy).q £ S1.qUSyq (2.9)

(S1M85).g £ S1.qNSaq (2.10)

=
©



{z:=2'|blq
[z :=2"]|bl.q

(32" bNglz = 2']) (2.11)
(Va'* b C gz := 2']) (2.12)

A
A

These definitions are consistent with Dijkstra’s original semantics for the lan
guage of guarded commands [71], and with later extensions to it.

Observe that the controllability of the angel is mirrored in the semantics of the
angelic choice: fol5; U S, to establishy, it is enough that one of the statements
does it. In contrast, the uncontrollable demonic behavior shows in the eaugrit
that both alternatives of the choi¢g M S, should establisly, in order for the
demonic choice to do so.

We say that a predicate transfornfeis monotonidf and only if the following
implication holds:

Vp,g*pCqg=SpCSq

Furthermore, a predicate transformgris called strict (or nonmiraculous if it

preservesalse, andterminating(or nonaborting if it preservestrue. Also, S is
said to beconjunctivef it preserves nonempty meets of predicates, disflinctive
if it preserves nonempty joins of predicates:

S.false = false (S strict
S.true = true (S terminating
S(nielsq) = (Niel*S.q), I#0 (Sconjunctive

S(Uielsq) = (Uiel+*Syq), I#0 (Sdisjunctive

A conjunctive specificatiomay be a compound statement where all the con-
stituent statements are conjunctive predicate transformers. The statestmenid
such an example:

{p}; (S1]S2)

Fixed pointsare used to give meaning to recursive definitions. [East fixed
pointof f is denoted by.. f, while thegreatest fixed poiris denoted by. f. The
least fixed point off is characterized by the following two properties:

flu.f) = pf (folding least fixed point)

faCzx = pfCax  (least fixed point induction) (2.13)
The greatest fixed point is characterized by the following dual proertie

f(v.f) = wvf (folding greatest fixed point)

rEfr = xCuf (greatest fixed point induction) (2.14)

Let us consider the functiof\ X - S). The least fixed point of this function is
written as
p-(AX - 5) = (pX - 9)

An important particular case of recursion is thiele loop, which is defined as
the least fixed point of the unfolding function:

while gdo Sod £ (uX *if gthen S; X else skip fi )
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By unfolding, we see thai is repeatedly executed as long as the predigaiads.
Theguarded iteration statemegeneralizes thehile loop. It is defined as

dOgl—>Sll] [Ign—>Sn0d A

while g1 U...Ugpdo[g1]; 511 ...M[gn]; Sn od
This gives thewhile loop as a special case, when= 1:
do g — S od = whilegdo S od

Here, the predicatg is calledthe guardof the loop, assuming th& is strict.

In general, the semantics of theard ¢S of a statemenb is: ¢S = —S.false
[134], meaning that it characterizes those states from whibehaves non-mira-
culously (S guards against miracles).

Prioritizing composition. This construct, introduced by Nelson [134], and adap-
ted for action systems by Sekerinski and Sere [141], is basically a chpération,
where statements are given certain priorities. If a lower level priority stateme
is enabled, it can be executed only if no other higher level priority stateraent
enabled.

Then, the prioritizing composition of two statements is defined as:

S1 /] Sa L5 | 7951 — S2

In order of decreasing binding power, the operators g}¢/;.

Quantified composition. Any composition operator can lsiantified This ap-
plies to the different compositions of statements. For instance, the quantified n
deterministic choice is defined as follows:

[[ieln]:S] £ Si]...[5

Statements as Games. In a previous paragraph, we have shown how statements
can be interpreted as (monotonic) predicate transformers. In this pphagwe
briefly discuss thgame-baseihterpretation of statements.

Statements can be defined in terms of a game that is played by two participants,
the angel and the demon. Thame semantiagescribes how a statemefiencodes
therulesof agame A play of the gameS is characterized by ainitial state (o)
of the game, and goal (a postconditiony that describes the set of final states that
are winning positions.

A sequence of an angelic and a demonic update is interpretethas@ayer
game with the angel and the demon as players:

{x=dlr <2’ <z+2};[x:=2r <2’ <x+2

In the above game, the angel plays first, after which the demon takes itSthen.
players are rivals. For a given postconditiprthe angel tries to reach a final state
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that satisfieg;, starting from the initial state. The demon tries to prevent this.
In the example, the angelic hondeterministic assignment lets the angel increase
the value of the natural variable with one or two units, whereas the demonic
assignment requires the demon to keeynchanged, or increase its value also by
lor2.

We say that the angel hastategy to wira two-player game, if and only if it
has a way of making its choices insidesuch that the postconditianholds in the
final state, regardless of how the demon resolves its choices. Note thit, tihev
angel must be able to reaghthus nontermination is bad for the angel.

In the above game example, assuming that the initial state satisfie8, the
angel does have a strategy to win the game with the ggak, no matter how the
demon moves. On the other hand, from that same initial state, the angeltcan no
win the game for postconditian = 2.

2.2 Action Systems

Back and Kurki-Suonio proposed tlaetion system$ormalism, as a framework
for specifying and refining concurrent programs [31, 32]. An actigsiem is in
general a collection ddictionsor guarded commandsvhich are executed one at a
time.

The generic action system is built according to the following syntax:

A(z:T,) £ beginvar z:Ty* Init; do A, | ... | A,od end:p (2.15)

Here, A contains the declaration tgcal variablesz (of typeT7), followed by an
initialization statement/nit and theactions A, ..., 4,,, grouped within ado -
od loop. Variables: (of typeT,) areglobalto the action system. The constants
p=p1,-...,pn are called thegparameterof systemA.

An action gQuarded command A; A gi — S;, S; strict, isenabledand its
body.S; is executed, if thguard g; evaluates to true. Otherwise, actidnis called
disabled The chosen actions change the values of the variables in a way that is
determined by the action body.

The initialization statement assigns starting values to the global and local vari-
ables. After thatenabledactions are repeatedly chosen and executed. We as-
sume that actions am@omic that is, they are indivisible. In addition, the guard
of an action systemd given by (2.15) is denoted byg 4, and it is defined as:
gga 4 Vi_, gi- The execution of system terminates when its guard does not
hold anymore, that is, whefgg 4 holds.

In other words, an action system is an initializbol — od loop:

Init;dogy — S1] ... | gn — Sn od
Mg

A
Init; (X *[g1]; S1; XM ..M [gn]; S

s XM [=(g1V ... Vgn))
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An action system is not usually regarded in isolation, but rather as afpart o
more complex structure, the rest of which, that is,éhgironmentcommunicates
with the action system viahared(read and written) variables. In the following,
we assume and extend the notations defined in [28].

The set of state variables accessed by some actigsdenotedvA, and is
composed of theeadvariable set of actiom, denoted-A, and thewrite variable
set of actionA, denotedwA. We have thavA = rA U wA. We can also build
the same sets at the system level, considering the local / global partition of the
variables. Thus, for a given action systetnwe have the access se#, split into
the global read / write variables, denotedoyd/gw.A and the local read / write
variables, denoted bly-.A/lw.A. We say that an actiod of A is eitherglobal, if
gwANwA # 0, orlocal, if wA C lwA.

Action systems occupy a central position in this thesis. We will thus take ad-
vantage of the expressiveness of this formalism, and use it further fdeling
purposes.

Parallel Composition of Action Systems. Several action systems can be com-
bined to form a new action system.
Let our protagonists bd andB, two action systems of the form

A begin var x4 * Inity; dogs — S4 0od end

2 begin var zp* Initg; dogg — Sp od end
Assuming that: 4 andz g are disjoint, the parallel composition [22] df and 5 is
the systenP = A || B:

P(zp) L begin var xp * Inita ; Initg ;do ga — Sa | g5 — Sp od end

The composed action system essentially combines the variables, the initialization
statements and the actions of the two components. The initialization of the com-
mon variables must be consistehtthat is, they are assigned the same initial val-
ues by both initialization statemenis;it 4 andInitg. In principle, initializations
are merely made of assignments; nevertheless, other constructs like aualditio
are allowed only if they do not mention in their guards uninitialized (global) vari-
ables. Some of the previously global variables4fand B may become local
variables ofP. We add these to the reunion of the individual local variabled of
andB, thus obtaining the set of local variables?™f xp. The global variablesp
are defined asp A (zaUzp) —xp.

Given the above formalizatiomd || B is executed by first initializing the local
and global variables, and then interleaving the execution of the enaliledsaof
A andB. Termination occurs when both action systems terminate, which means
that there is no enabled action, in neither of the systems, thatisy ggn = false.

!Alternatively, global variables can have a well-defined value that isesged as a precondition.
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In short, one observes the composition as the single syBtem

Prioritizing Composition of Action Systems. Considering the same action sys-
tems.A and B as above, their prioritizing composition is a new action system
U = A // B, defined by:

U(zu) L begin var xy * Inity ; Initg ;do g4 — Sa // gg — Sp od end

The variablesz;; are the reunion of the local variables,, zg, to which the
variables hidden from the interface &f are added. The global variables =
(z4 U zp) — zy. The choice between the action.dfand the action oB is deter-
ministic in the sense that when both are enabtedis executed.

2.3 Correctness and Refinement of Action Systems

Invariance. We say that a predicatiév A) — I for short — ispreservedy an action
A, if the relation
1= Al

holds. Considering the actiof L g — S, S strict, the above relation translates
into
gNI =51

This means that whenever the actidris enabled, and provided thatholds, the
execution of the action bod§ terminates in a state @t

At the system level, a predicalév.A) (I for short) is arinvariant of the action
systemA, given by (2.15), if:

e it is establishedy Init, that is,

true = Init.I, and if
e it is preservedy each actiod; £ g; — S;, thatis,
gi NI = S;.1, Vi€ [l.n]

Correctness.Proving correctness of programs can be done by applying the infer-
ence rules oHoare logic[95], which hold of any constructs of a programming
language. The logical rules let us reduce the correctness of a prajadement

to the correctness of its components. Dijkstra’s predicate transformer dngtbo
vides an alternative approach aiming for a similar goal.

The approach via Hoare logic is based on primitive assertions of the form
{p} S {q}, wherep, q are predicates anfl a statement. Operationally, this means
that if S is activated in a state whefeis true, theny is true of any state in which
S might halt [134]. The approach to thpartial correctnessnodel via predicate
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transformers definesip.S.q (weakest liberal preconditignto be the weakest
such thaf{p} S {q}.

Refinement calculus is built around the conceptatél correctnessthat is,
(Vq - S.q = S.true A wip.S.q). We say that a predicate transfornteis totally
correct with respect to preconditigrand postcondition, denoted by {| S|} g, if
and only ifp C S.q holds.

For example, for arbitrary statemerfis, Sz, and predicatep, r, andg, the
correctness rule (in the Hoare style) for their sequential composition isfiloevf
ing:

p{Sikr  r{Slq
p{lS1; 520 g

Algorithmic refinement. An action A is (algorithmically) refinedy the actionC,
written A C C, if, wheneverA establishes a certain postcondition, so dod22]:

ACC 2 Vg A.g= Cq

Refinement rules. A refinement ruleallows us to deduce that a certain refine-
mentS C S’ is valid. For example, adding choices to an angelic assignment and
removing choices from a demonic assignment are both valid refinements.

bCH E {x:=2"|b}
VCb | [z =2’ | ]

{z:=2" |V} (2.16)

C
C [z:=2"|V] (2.17)

Equality “=" of statements can be used as refinement.
The rule ofbackward propagation of an assertioor pulling an assertion
through an angelic nondeterministic assignment is given below:

{z:=2"1b};{q} ={x:=2"|bAglz:=2]} (2.18)

We also use the rule @dding context assertiorte a nondeterministic choice
of guarded statements:

{p}§(91—>51|] Hgn_>5'n)
= {p}ig—={aAp}:iSil - [gn — {gn AD};Sn) (2.19)

Dropping an assertion is also a valid refinement:
{p};SCS (2.20)
A local variable introductioris a refinement of the form:
begin var y := ¢’ ; Send C beginvar z,y :=e¢,¢' ; S’ end (2.21)
whereS’ is similar toS, possibly with total assignments toadded.
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Next, we give one refinement rule for guarded iteration statements:

g1 — 51 Egi—>5{/\.../\gn—>sngg;_>5é
/\(giV.--\/g;:gl\/...\/gn)

dogi = S1]...]gn— Snod Cdog; — Si|...]g, — S, od

Other refinement laws that we apply in proofs that are outlined in the Appansl
enumerated there.

Data refinement of actions. When carrying out data refinememthstractdata
structures can be replaced bgncreteones (that is, ones more efficiently imple-
mentable).

Let us consider an action system that contains an atomic adttbat depends
on program variables andz. Variables: are global to the analyzed action system.
Next, letR(a, ¢, z) (simply written asR) be a booleambstractionrelation, which
links theabstractlocal variables: to theconcretelocal variables:. Additionally,
let I(c, z) be a predicate that depends on the concrete and global variables. Then
action A is data refinedby actionC using relationk? and predicatd, that is,
ACp; C,if

Vg* RANINAq= C.(3a* RANINq),

whereq is a predicate on the variablesz, and(3a.R A I A q) is a predicate on
¢, z. If Ris the identity relationR £ a = c), we then writed C; C. Similarly,

if I = true, we write A Cg C. If both are trivial, we run into the usual algorithmic
refinement of actions4 C C, as defined previously.

Trace refinement of action systemsThe semantics of a reactive action system is
given in terms of behaviors [33]. Aehaviorof an action system is a sequence
of states,

b= (1'0,20), (1}1,21) PN

where each state has two components. The first component liscilestateand
the second is thglobal state Behaviors can be finite or infinite. A finite behavior
is calledterminatingif it ends in a proper state, @bortingif it ends improperly,
indicated by the symbal..

A trace, tr(b), of a behaviom, is obtained by removing the local state com-
ponent in each state of a given system, and all finite stuttering (no chénige o
visible state). We denote the set of all traces of an action systémtr(.4). An
abortingtrace corresponds to an aborting behavior.

The order relation over traces is approximation relation<. A tracet ap-
proximates a tracg, ¢t < t/, if eithert = ¢/, ort is aborting and it is a prefix af.
An action systenm\ is trace refinedby an action systerd, A C C, if every trace
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of C has an approximating trace js:
ACC £ Veetr(C) - Jactr(A)-a=c

In practice, we use the following lemma to prove trace refinement of action
systems [29].

Lemma 1 Given the action systems

begin var a * a,z :=ap,29; do A od end

1> >

begin var ¢ * ¢,z :=¢p,20; doC | X od end,

let R(a, c, z) be an abstraction relation andl(c, z) an invariant of systerd. The
concrete systeidi (trace) refines the abstract systedndenoted4 Cr ; C, if:

1. Initialization: R(ag, co, 20) A I(co, z0) = true

2. Main action: ACgrrC

3. Auxiliary action: skip Cpr X

4. Continuation condition: RA I A gA = gC Vv gX

5. Internal convergence: R A I = (do X od ).true |

The first condition of Lemma 1 says that the initializations of the systdrasid
C establish the invariant and the abstraction relatioR. The second condition
requires the abstract actiofh to be (data) refined by the concrete action by
usingl and R. In turn, the third condition indicates that the auxiliary acti&in
is obtained by data refining skip action. This means thaX behaves likeskip
with respect to the global variableswhich are not supposed to be changed in the
refinement. The continuation condition means that whenever the attafrthe
abstract systemd is enabled, provided thdt and/ hold, there must be an enabled
action in the concrete syste@i as well. Finally, the fifth condition states that,
if R and/ hold, the execution of the auxiliary actioX, taken separately, must
eventually terminate.

Observe that, if we do not add any auxiliary actions, meaning that the refine-
ment assumes only rewriting the existing actions, for optimization purposes, we do
not have to check requirements 3, 4 and 5.

Decomposition. One way of developing a concurrent program is to first specify
it without taking parallelism into consideration, and then add parallelism subse-
guently, by decomposing the initial specification.

In this spirit, Sekerinski and Sere [141] introduced a theorenpfritizing
decompositiomf an action system, which we present below in an adapted form.

Theorem 1 If action systen# is of the form

A L beginvar 2,y * [Bo A Cp]; do B g— Cod end,
where variables: do not occur inCy, variablesy do not occur inBy, and further-
more variables: do not occur inC, and for some predicatg,
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1. Initialization: By A Cy = 1,
2. Preservation: B preserved) A (C preserved),

3. Exit condition:I A ~gB A gC = g,

then
ACB//C
where
B(y) L beginvarz* [Bo A Cp]; do B od end
C(y) £ begin [Cy]; doC od end |

The exit conditionensures that, after eliminating actionC' does not become
enabled in3 // C when it was not in4, because thef8 // C would not terminate
when.A would.

2.4 Continuous Action Systems

A continuous action syste(@AS), proposed by Back, Petre and Porres [27], con-
sists of a finite set of variables that can range over discrete or continuous valued
time functions, together with a finite set of actions that act upon the variables. The
variables form the state of the system. A CAS is of the form

C(z:Realy — T) L beginvarz: Real, — T, * Init;

dOgl—>Slﬂ...Hgn—>SnOd (222)
end:p
Here,x = (z1,...,x,) are thelocal variablesof the system/nit is the ini-
tialization statement, whilel; = ¢g; — S;, ¢ = 1,...,n are theactionsof the
system. The variables = (zi,...,z;) are defined in the environment of the
CAS and they are calleglobal variables. As similar to the discrete case, the con-
stantsp = (p1,...,pm) are theparametersof systemC. Real, stands for the

non-negative reals, and it is used as the time domain.

Intuitively, executing a CAS proceeds as follows. There is an implicit variable
now, that shows the present time. Initialpw = 0. The guards of the actions may
refer to the value ohow, as may any expressions in the action bodies (but they can
not changewow). The initialization/nit assigns initial time functions to the local
and global variables. These time functions describe the default future behavior of
the variables. The system will then start evolving according to these functions, with
time (as measured byw) moving forward continuously. However, as soon as one
of the conditiongyy, . . ., g, becomes true, the system chooses one oétiabled
actions, say; — 5;, for execution. The choice is nondeterministic if there is more
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than one such action. The body of the action is then executed. It will usually
change some variables by changing their future behavior. Variables that are not
changed will behave as before. After the changes stipulatet] bsive been done,

the system will evolve to the next time instance when one of the actions is enabled,
and the process is repeated. The next time instance when an action is enabled
may well be the same as the previous, that is, time needs not progress between
the execution of two enabled actions. This is usually the case when the system is
doing some (discrete, logical) computation to determine how to proceed next. It is
possible that after a certain time instance, none of the actions is enabled anymore.
This just means that, after this time instance, time diverges (grows unboundedly).

Note that in our approach actions are selected and executed asynchronously,
compared to the hybrid automata formalism [86] where transitions are fired syn-
chronously.

We write x : — e for an assignment, rather than= ¢, to emphasize that only
the future behavior of the variableis changed to the function The past behavior
(beforenow) remains unchanged.

One of the main advantages of this model for hybrid computation is that both
discrete and continuous behaviors are described in the same way. In particular,
if the variables are only assigned constant functions, then we obtain a discrete
computation.

Let C be the CAS described by (2.22). We explain the meaning oy trans-
lating it into an ordinary action system. Its semantics is given in terms of the
following action systend’:

C(z:Realy — T3) L begin var now : Real,,z : Realy — T} *
now :=0; Init; UT ;
do gi.now — S1;UT
| ... (2.23)
| gn-now — S, ; UT
od
end :p

Here, the variableow is declared, initialized and updated explicitly. It models the
moments of time that are of interest for the system, that is, the starting time and the
succeeding moments when some action is enabled. The value.ofs updated

by the statemerit'T" (Updatelime),

UT £ now:= next.gg.now

Above,gg = g1 V ... V g, andnext is defined by

A min{t’' >t | gg.t'}, ifexistst’ >t such thayg.t’
next.gg.t = .
400, otherwise.
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Thus, the functiomext gives a moment of time when at least one action is
enabled. Only at such a moment can the future behavior of variables be modified. If
no action will be ever enabled, then the second branch of the definition is followed,
and the variableow goes to infinity.

We assume in this thesis that the minimum in the definitiomext always
exists when at least one guard is enabled in the present or future. Continuous
action systems that do not satisfy this requirement are considered ill-defined (for
example, a guard of the formpw > 0 is ill-defined).

We define thduture updater : — e by

Ti—e & z:=x/now/e
where

z/to)e & (At-if t < tothen z.t else e.t fi)

Thus, only the future behavior afis changed by this assignment.

A CAS is essentially a collection of time functions, ..., x, over the non-
negative reals, defined in a stepwise manner. The steps form a sequence of intervals
Iy, I, 1o, ..., where each interval;, is either a left closed interval of the form
[ti...ti+1), Or a closed interval of the forrt,, ¢;], that is, a point. The action
system determines a family of functions,, ..., x,,, which are defined over this
sequence of intervals and points. The extremes of these intervals correspond to the
control points of the system where a discrete action is performed.

The behavior of a hybrid system is often described using a systeatiffer-
ential equations Continuous action systems allow for this kind of definitions, by
introducing the shorthangdl : — f(x). This will assign toz a time function that
satisfies the given differential equation, such that the funatiall evolve contin-
uously.

As an example, iff = (At * v), wherew is a constant value, then we have that

ii—v & x:— (At - z.now + v * (t — now))

We can uselock variablesortimersto measure the passage of time and to correlate
the execution of an action with time. A clock variable measures the time elapsed
since it was set to zero. Assume thas a time variable of typ&eal,.. We then

use the following definition for resetting the cloek

reset(c) Locim (At -t — now)

Since a clock variable is just a regular variable, we can define as many clocks as we
need and reset them independently. It is also possible to do arithmetic operations
with clock variables, e.g., to use time intervals in guards. These features make the
formalism well suited for modeling real-time systems, too.
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2.5 A Brief Description of Mathematica

Mathematica[156] is a computer algebra tool, developed at Wolfram Research,
USA, which integrates a numeric and symbolic computational engine, graphics
system, programming language, documentation system, and advancectivityne
to other applications.

We have chosen Mathematica as a development environment for implementing
a symbolic simulation tool for hybrid systems. The tool is described in chapter
5. Since the continuous laws of evolution within hybrid systems are defined in
terms of differential equations, it is most important to have analysis tools éimat ¢
handle solving such equations. This and other reasons that suppacti@mce are
enumerated below:

¢ Mathematica handles complex symbolic calculations that often involve a
large number of terms.

¢ It has advanced capabilities for plotting and visualizing data.

e One can solve equations, differential equations, and minimization problems,
numerically or symbolically.

e Mathematica has a simple interface, which can be used directly; however,
the package can also be used through a web browser, or by othensyate
a back-end computational engine.

Mathematica as a Programming Language.Programmed computations are of
great help. Mathematica incorporates a range of programming paradidncé, w
facilitate writing programs in a flexible and intuitive manner.

In Mathematica, there is no need to predeclare variable types, or dimen§ions
lists and arrays, to direct memory management, or to compile the programs.
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Chapter 3

Synchronized Discrete Reactive
Systems

Designing for reactivity entails dealing with communication, composability, con-
currency and preemption. Out of thesencurrencyis related to the fundamental
aspects of systems withultiple, simultaneously activeomputing agents that in-
teract with one another. The complexity of such systems comes as an inheren
byproduct, which leads further to problems concerning the correctrigiss steps
performed in the development flow.

In this chapter, we concentrate on two major problems regarding the ddsign o
reactive systems, be they software or hardware-targeted systenasidsetontrol
and modularity. A feasible design methodology requires that the designer co
poses the system from parallel concurrent components qalbeliles Such mod-
ules are modeled here by action systems. We approach aspects offenngand
modular design from the perspective of the system—level integrator vehadtass
to a library of predefined modules. His only task is to appropriately cortheot
in order to get the system functionality.

The built-in interleaving semantics for handling concurrency in action systems
goes together with behavioral nondeterminism. Observations of an intedleav
model are sequential, therefore the updates of two systems executingilelpar
may not be consistent over a set of executions [128]. Hence, tharghtile and
general, this way of modeling large systems can have a negative impact on the
data flow control and theomposabilityof the modules that interact concurrently.
When plugging modules together, one has to specify additional details tit@out
order in which they exchange information. This requirement may comprorése th
data abstraction at the interface of a module. We will illustrate these phenomena
by examples.

In the following, we provide a solution to the above mentioned problems, by
introducing an additional concurrency mechanism for action systemswas/ a
to describe controllable behavior [60, 61]. The mechanism mitnésier syn-
chronization a common technique of reaching thread synchronization, found as

33



a primitive within concurrent programming languages [84]. For this pwpos
define a new parallel composition operator. The concepts that we fornstilate
rely on the established mathematical techniques underlying action systemes. Mor
over, the synchronized environment provides the designer with additiosans
for system development.

Our goal is completed by showing that the new virtual execution environment
also enhances the capabilities of our framework, for modular designulg®cay
be picked up from existing libraries and just plugged into the system remees
tion. The traditional techniques of trace refinement [33], introduced aptehn 2,
are used to ensure that the implementation is correct with respect to a spstem s
ification that faithfully captures the system’s global reaction to all sets oftsapu

We believe that the result of this chapter’s contribution, that is, the positive
effect of the proposed synchronized environments on the design mibygudauld
also be applied to other formal frameworks, to obtain similar benefits.

3.1 Interleaved vs. True Concurrency

In interleaving semantics without fairness assumptions, concurrency is equated
with nondeterministic sequentiality. Informally, this law can be expressed-as be
low:

do Action; || Actions od
= (Action; | Actions) ; (Actiony | Actionsg) ; (Action; | Actions) ;. ..

In true concurrencysemantics [135] this equation does not hold. On the other
hand, interleaving semantics are held to be mathematically more tractable, svherea
true concurrency semantics are better for dealing with certain propestiels,as
fairness.

3.2 Traditional Model of Action Systems Execution

Traditionally, action systems are executed in a sequential manner. Paxaltel e
tions are modeled by interleaving actions, without fairness considerafidrese
also exists a parallel execution model for action systems, with fairnesstioosd
[32]. However, in the following, we assume the truly demonic interleaved imode
as the default one.

The initialization places the system in a stable, starting state. From there, any
enabled action may be selected for execution. Only one action is chosen, in a
(demonically) nondeterministic way. The statements insidelthe- od loop of
a systenm, as illustrated by (2.15), are iterated as long@s = true. Termination
is normal if the exit condition-tgg4) holds.

Thus, the execution of an action system assumes that there exists a wirtual e
nal entity - theexecution controller (controller in short) - which, at any moment,
knows what actions are enabled. After initialization, the controller selecksxto
ecution any of the enabled actions. After the completion of the action execution
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the system moves to a new state. We call this operaticexanution round No-
tice that an execution round is equivalent to the execution of an actior. tAfte
the controller, which behaves demonically, evaluates the new state, ebsbes
enabled actions and starts another execution round.

Next, let us visually exemplify the above mentioned round-based execution
scenario. Consider two action systesiand:

Aza : Ty)
A beginvar x4 : T, * 24 1= 24, ;%4 1= T Ay}
do A1 I] A2 od
end
B(ZB . Tz)
= beginvarxzp: T, * 2p:=2pB,;TB = TB,;
do By | By od
end

An intuitive illustration of the execution a#l, 5 is shown at the upper part of

'S,
exec__ | “nitA |
)

O
\5
j.

Figure 3.1: Execution Visualization of the Traditional Parallel Composition.

Figure 3.1, as statecharts-like descriptions.
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After the initial entry (the transition labelddit), the systemsd and B evolve
either towards the stat& 4, or So4, andS; g, or Sy, respectively, depending on
which action is enabled in each of the action systems. This coincides with the end
of one execution round. The execution continues (if possible) by néegtthe
statesSys , or Sys,, now by taking the (default) transition labelege¢ through
the choice operator. If both actiond{ and A5, or B; and B, respectively) are
simultaneously enabled, the selection at the choice-point is nondeterministically
taken by the controller. The two substatesSgk , or Sys,, are visualized as OR-
states [83].

The parallel composition ofd and B is specified as the action systein:

C = A || B. Observe that, in the corresponding part of Figure 3.1, the states
S1a, 524,518, S2p are collected together as OR sub-statesg@ic-. Any execu-

tion round takes the system into one of the mentioned states, depending on the
enabledness of the composing actions, or on the selection of the controller.

3.2.1 Example: A Digital Filter

Let usillustrate the interleaved execution model by a simple example. We conside
the task of modeling a digitdliter [101]. Briefly, a filter is a module that takes
as input a sequence of samples, performs certain operations on it, lamisdas
output a corresponding sequence of samples. The incoming sequeleseited
asX[n], whereX is the input signal and identifies the sample position; a similar
notation applies to the output sigrig| for which we have the samplé§n]. The
relation between the input and output is giveniby:| = ZkN:‘Ol hlk] x X[n — k|,
where the vectoh[0,..N — 1] contains the filteccoefficients Hence, apart from
the incoming current sample &f, (N — 1) previous samples are stored in a buffer
and can be accessed by the filter. Finally, a filter may have either a software
hardware implementation. From the above informal description of the filteawe c

- X Filter req,,.ack
X JFlller Ls 1 { B X Q- acky
1 [
\i'_ B r— | ack, S, | 1 B2 |
acky|
regr.acky | £ reqq.ackd | Z r_‘
SEER: M1 Wi [
reqg,acky, *
\ LY
L F, F, ] Y
reqs,acksg €Qg,aCkg==r===-*

a) b) c)

Figure 3.2: Simple filter representation.

identify two modules of such a device: the storage First-In-First-OutQlrllike
buffer, and the actual implementation of the filter functionality. In the following,
we model the signal source by systéinthe buffer by systent8, whereas system
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F models the actual filter. This is illustrated in Figure 3.2 a). The complete action
system description is the parallel composition of the available modules, that is,
P = S| B F. The composed system as well as the modules are given below.
Note that the common global variables are initialized in a consistent way, by all
modules. Alsozy andy, model sequences of values, respectively.

S(X:T) (3.1)
L begin X := z¢;
do[X :=X'| X' €T]od
end
B(X,Z[0,.N —2]:T) (3.2)

1>

begin X, Z[0,..N — 2] := ¢, 20 ;
do Z[0], Z[1],..., Z[N — 2] := X, Z[0],..., Z[N — 3] od

end

F(X,Z[0,.N —2],Y : T) (3.3)
begin X, Z[0,..N — 2], Y := x¢, 20, %0 ;

(1>

N—-1
doY := Y h[k] x Z[k — 1] + h[0] x X od
k=1
end : h[0,.N — 1]
Hence, by computin@®, we get:

PY :T) (3.4)
= beginvar X, Z[0,..N — 2] : T+
X, Z[0,..N = 2], Y := x0, 20, Y0 ;
do[X :=X'| X' €T]
| Z[0], Z[1],..., Z[N — 2] :== X, Z[1],..., Z|N — 3]
N-1
Y := hlk] x Z[k — 1] + h[0] x X
k=1
od

end : h[0,.N — 1]

Observe first that the interleaved executiondfdoes not guarantee that every
signal emitted byS is correspondingly received by and F; several executions
of S may be selected, before any Bfor . Moreover, different values can be
assigned td” for the same sequence of samples provided bglepending on the
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order of selection for execution of the systethand.F. Only one of these results
is correct.

Both problems can be solved by specifying a certain order in which the mod-
ules of P should be executed. This can be achieved by introducing the commu-
nication variables-eqs, reqr andackg, ackr, and by devising a communication
protocol such that the desired order is enforced. Hence, the systemisl «now
about the status of the partners, as indicated by the elements of the commuanicatio
channel. The systems may be remodele§a#,, Fi:

Si(reqs, ackg, ackp : Bool ; X : T)
= Dbegin reqg := false ; ackg := false ; ackp := false ; X := x;

do
—(reqs V acks V ackp) /% actionA}gl * /
— [ X =X'| X" €T]; reqs := true
| reqs A acks N\ —ackp /% actionA%l */
— reqg := false
od
end

Bi(reqr,ackp : Bool ; X, Z[0,.N —2]:T)
= begin reqp := false ; ackp :=false ; X := z¢ ; Z[0,..N — 2] := zp;
do
reqr N\ ~ackp /* aC'[iOI’IA}Bl */
— Z[0},Z[1],...,Z[N - 2] := X, Z[0],..., Z[N — 3];
ackp = true

| ~reqr A ackp /+actionA% «/
— ackp = false
od

end

Fi(regs,reqr, acks, ackp : Bool ; X, Z[0,.N —2],Y : T)
= begin reqg := false ; reqr := false ; ackg := false ; ackp := false;
X :=z0;Z[0,..N — 2] :=zp; Y = yo;

do
reqs A —(reqr V ackr) N —ackg / action Ay, */
—Y = Z,]ﬁvzzl hlk] x Z[k — 1] + h[0] x X ; reqp = true
| reqr N ackp /* aC'[ionA%1 * /
— reqp := false ; ackg := true
| —regs A ackg /+ action A3, /
— ackg := false
od

end : h[0,..N — 1]

The result of their parallel compositio®; = S; || B; || F1, is illustrated by the
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block diagram of Figure 3.2 b), where the communication variables arershsw
dotted lines.

By implementing the communication channels, the executid? difecomes a
deterministic sequence of activities, given as:

1 1 1 2 2 2 3 1
Ag — Ap — Ap, — A — Ap, — Ag — Ap — Ag, — ...

The meaning of the sequence is as follows. First, the sySiemdeactivated, after
which F; performs the filtering, and then infornt®, by settingreqr := true,
that it can perform its operation. When this is accomplishgdsignals toF;
(ackp := true). Next, F; signals the end of the operation,$ (ackg := true),
followed by a couple of rounds for resetting the acknowledge signals (by
actionAQBI), andackgs (by Ai}l). Another sample can now be presentedShyand
So on.

Consider further that, in the above exampteis an audio signal an@; mod-
els a low-pass filter. The output ¢f; would go to the woofer speaker of one’s
audio system. We would also like to have a high-pass filter, the output of which
would go to the corresponding speakers of the same audio system. Wéowant
reuse the previously designed modules, and then add one that cantidetieicth
frequencies of the incoming signal. The high-frequency filter is modelethdy
new systemM;:

M (reqs, requr, acksar, ackyr = Bool ; X, Z[0,.N —2],W : T)
begin reqg := false ; reqys := false ; ackgys := false ; ackys := false;
X :=x0;7[0,..N — 2] := 2o ; W := wy;
do
reqs A\ —(reqar V ackyr) A\ —ackgyy
— W= S0 hog[k] x Z[k — 1] + ha[0] x X 5 reqar = true
| reqar N ackpy
— reqy := false ; ackgps := true
| ~reqs A acksns
— ackg)s := false
od
end : hM[O,..N - 1]

1>

Structurally,/; and M, are the same, the difference residing in the values of the
coefficients 4[0,..N — 1] andh/[0,..N — 1], respectively,M; uses the same input
signals,X, Z, andreqgs (to which it answers witlucks ).

In order to accommodate the introduction/ef;, the systeni3; has to wait for
the two filters to read its data, once a new sample has been issugd Bonse-
guently, we have to change the representatio;0fThe same is required fdf,
since it has to communicate with, too. Thus,S; becomesS; (here, we omit
the description of the latter). The new syst®mis described as follows, whereas
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the whole filter is illustrated in Figure 3.2 c).

Ba(reqr, ackp,reqns, ackyy - Bool ; X, Z[0,..N — 2] : T)
= begin reqp := false ; ackp := false ; reqys := false ; ackps := false;
X :=x0; Z[0,..N — 2] := zp;
do
reqr A reqy A —ackp N\ —ackys
— Z[0],...,Z[N = 2]:= X,..., Z|N — 3] ; ackp,ackps := true
[I —reqr A\ —reqyr N ackp A ackys
— ackp,acky; ;= false
od
end

Discussion. The interleaving model of execution brings the benefit of a very sim-
ple concept. In order to reduce the implicit nondeterministic behavior of themod
inappropriate in certain situations, as shown in our example, one may ineroduc
control channels. These ensure that the data emitted by one sourceansset!

by any of the intended targets, or that data is processed in a correcemann

However, there is another aspect of the problem, not yet solved byéme-e
plified introduction of the communication channels. An observer of the coatpos
systemPy = Sz || B2 || Fi1 || M (the listener, in the example) has access to both
output sequences;(n) andW (n) (Figure 3.2 ¢)). Depending on the execution or-
der of 71 and M, until the listener observes the new outpyitn+1), W(n+1)),
it also observes the intermediate state, that is, e{tfién), W (n+1)), or (Y (n+
1), W(n)), which is also an incorrect aspect of the design. A solution is provided,
again, by introducing new communication channels, betweand M, on one
side, and the observer, on the other. What happens if multiple, diffebsatrvers
become necessary in the design?

Any extension / reduction of the design elements requires an internagiehan
of the involved modules. This clearly destroys any hope for a modular mesig
flow and the reuse of components in future projects. We may assign meanings
like “data valid”, “operation finished”, etc., to the signals of the communication
channels, thus the interleaved approaches are suitable for asyoghroesigns
[152]. Unfortunately, these signals are global variables of the modékardware,
generally, this translates into “more wires”; in software, this violates the iptanc
of information hiding [41]. In the following section, we propose a solution ts th
kind of design issues.

3.3 Synchronized Parallel Environments

Synchronized environment. We want to build an environment in which the re-
sponse of the system is a collection of the individual module reactions to the inp
stimuli. The solution that we propose requires that the modules synchrohee w

40



the global variables of the compound system are updated. This is aclgwed
tending the execution round concept, as described in section 3.2,exeantion
cycle A cycle is defined by the activities carried out by the system between two
global states: it is a sequence of rounds in which each participating agstens
updates the local variables, as necessary, followed by a last roundhiéh, si-
multaneouslyall the global variables are updated, accordingly. Note that between
rounds, the global state of the system does not change.

From the controller's point of view, we can imagine the following scenario.
It selects for execution an enabled action from one action system moduhe |
action updates global variables, the system is marked as “executedipasttier
action can be selected from that system. However, the other participaptssi-
ble external observers, do not see the changes yet. Another actiemisdlected,
from an “unexecuted” action system. The process continues until all tloe/les
are marked “executed”. This also signals the end of a cycle, when alldbalg
variables are updated.

3.3.1 Partitioned Action Systems

The translation of the above scenario into our framework requires cetanac-
teristics for the action systems employed in design. These requirements are intr
duced by Definition 1. Recall from chapter 2 tha$ is the set of variables written

by an actionS, gw.A is the set of global variables written by an action sysiém
and/w.A models the local variables written by the same action system.

Definition 1 Consider the action systey
Az : Ty) £ begin var z: T, e Init;do gy — L ] gs — S od end (3.5)
We say that4 is a partitioned action system if:

1. gwA C wS - meaning thatS is the global action ofd. Notice thatwsS
may also contain local variables of.

2. wL C lwA - meaning thatL is the local action ofA4.

3. (dogr, — Lod).(—gr A gs) = true - meaning that the execution of
L, taken separately, terminates, and establishes the precondition fortegsu
[ ]

Notice that the specification, as given by Definition 1, encodes more visibly
than (2.15), the mechanism that triggers the global state changes. Als® in th
above definition we forbid nested loops gib.A is empty, the action systep can

not function as an actuator, since it does not modify any global variable.
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3.3.2 The Synchronization Operator f)

Let us consider. partitioned action systems € [1..n]):
Ak (zr) A begin var e Init; ;do gf — Ly | gg — S; od end, (3.6)

for which we also have thatj, k € [1..n],j # k* ((gwA; N gwA; = 0) A (z; N
r = 0)) (the action systems do not write on the same global variables and they
also have pairwise disjoint local variables).
The synchronized parallel compositiasf the above systems is a new action

systemP = At ... 4A,, given by:

P(z)

A begin var x : T, sel[l,..n] : Bool,run : Nat e Init;
do

ggp
— run = 0 A —sel[l] | selection action

— sel[l] := true;run =1

|  run=0A—seln]
— sel[n] := true ;run :=n

[ run=1Ag; | moduleA;
— 14

[ run=1A-g} Agk
— wSic:=wS; ;51 ;run =0

[ run=1A-gga,

— run =0

| run=nAg} | moduleA,,
— L,
| run=nA-g}Ags
— wSpe:=wSy, ;S s run =0
[ run=nA-gga,
—run:=0
[ selArun=0 | update action
— Update ; sel := false

od
end

The operatorf’ (“sharp”) is called thesynchronization parallebperator.

The setz of global variables of is, initially, the union of the global variables
sets of each modulez = | J,, 2. It may be possible that communication between
some modules oP (the composing systemd;) should not be disclosed at the
interface of P. Therefore, the variables that model such channels wilkidden
within the systemP. They will not be mentioned in.
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Further, the local variables of the new action systerR are the union of the
local variableszy, to which we add the hidden variables. We also add copies
(wSkc) of the original write variables of each action bofy. They replace the
original variableswSj, therefore we havé;, = Si[wS) := wSic]. Finally, the
list 2 is completed by adding the arrayl and the execution indicatorun. The
predicateggp is a short notation for the disjunction of the guards of all the actions
in the systemst;: ggp = \/7 gga,, Wheregga, = gk v gk.

The Init statement is the sequential composition of the individuat; state-
ments, to which we add the initialization of variables,.c, sel andrun:

Init 2 Inity ;... ; Init, ; wSic, ..., wSpc = wS1, ..., wSy;
run := 0 ; sel := false

The actionUpdate is given by:

Update L Updatey ; ... ; Update,, whereUpdatey, L wSy 1= wSie.

The above definition of the” - based composition says that, whenever there is
achange in the input, such a composition of action systems reacts basediatehe
of all its modules. The result is composed of the individual reactions df efihe
modules. The system composition reacts only if at least one module is enabled
(3k € [1..n] * gga, = true). Moving certain variables to the local level, within the
systemP, is motivated by the containment of local communication. The variable
run identifies the system that is selected for execution. The varizblstores the
information on the executing, or already executed systems. Whenevdrth# o
elements of the arrayel becometrue (sel = sel[1] A ... A sel[n]), andrun = 0,
we have reached the end of an execution cycle. At this moment, the assignmen
sel := false is understood as a shorthand notationstdf1] := false;. . .; sel[n] :=
false.

The assignmentSy.c := wS}, that precedes the actidf, takes into account
that the (local) variables afS;, could have been also updated by. As they may
also belong to Sk, their current values must be taken into consideration. In case
actionsL;, do not modifyr Sy, the presence of this assignment is not necessary. The
same applies when there are no local actions in a given partitioned actiemsys

Further, we are able to find useful properties of systenexpressed by the
following theorem (the proof is shown in Appendix A-1).

Theorem 2 Assume that the partitioned action systefisand. A, are of the form
given by (3.5). Then, the synchronized parallel composilofid, satisfies the
following properties:

(@) A; £ As is a partitioned action system¢ preserves partitioning)

(b) A; Ay = Az 8A; (commutativity of) [ ]
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The Update Action. In a more general view, we would avoid imposing the restric-
tion thatVj, k € [1..n],j # k.gwA; N gwA; = (. Designs where the systems
do not have disjoint sets of global write variables are not necessatipghes of
bad designs. A well known example of such situations is the bus-basigph dds
digital systems, where multiple participants in the processing effort shasea c
mon resource, the bus lines. Of course, the situation requires a thoaoagysis,
and there exist multiple solutions that resolve the inevitable conflicts. Thierefo
the actionUpdate might not be merely the action that updates the respective vari-
ables; instead, it can rather be the action that “solves” such conflidisitivaly,
this means that the systef must also allow the designer to separately specify
the actionUpdate. Relaxing the above mentioned assumption is subject to further
studies. Preliminarily, such an approach has been already studieddlg&acand
Garlan [143], for modeling self-adaptive systems, in multimedia environments.
Execution Visualization. A graphical, statecharts-like representation of the exe-
cution model as introduced by the synchronization operator is illustrated ime-ig
3.3. Considering two action systemdsandB, each with a single actiod and B,
respectively, we build the synchronized environmént A f B. After splitting
the original actions ofA and B into local and global actions, the first two illustra-
tions of Figure 3.3 represent the executiondénds, as also discussed in section
3.2. There is one difference, seen in the third representation, residing mutual
exclusion of the transition conditiong/( and g%); therefore, the controller does
not make a selection, the choice being clear. In addition, now, the execntidel
corresponding t@, differently from the one in Figure 3.1, shows an AND-based
statecharts description.

Several execution rounds may be necessary to bring to termination thadscal
tivities of each of the synchronized components. This is reflected by th&ticans
to the border of the corresponding state from the intefnalor Lz OR-states.
Further, before executing the actibipdate in order to reach the stae, p — that
corresponds to the end of an execution cycle - both substhtwsd 5 have to be
exited.

Design Implications. We revisit briefly the example proposed in Section 3.2.1.
Consider that instead of the parallel compositn= S || B || F, we write the
description of our system & = St B § F. Clearly, the modules, B, F are
partitioned action systems, since they have only global actions. When usihgs
composition, we do not have to add communication channels to any of the modules
which all remain simple, as described by (3.1), (3.2), (3.3) and (3.4)., Kistase

of a synchronized environment, the multiplicity of targets stops being an issue f
the systenP. We can introduce as martfy-like systems as required, without mod-
ifying B or S in order to accommodate the presence of the new modules. Addition-
ally, an external observer will always observe only the Stetg: + 1), W (n+1)),
regardless of the order in which the systeffisand the correspondingt (M,
without the communication variables) are selected for execution.
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Figure 3.3: Execution Visualization of the Synchronized Composition.

3.4 Module Refinement in Synchronized Environments

Design Process. Faced with the complexity of modern day devices, the designer
of such systems has to start the design process at higher levels otabsinahich
may provide him with a simpler model of the whole system. A correct partitioning
and identification of the necessary modules is the next step. Crucial to danodu
based design context is the possibility to separately analyze and, if aggess
prove the functionality of the modules, optimize them for a given technolagy, o
map them to existing library elements. All these actions involve, most usually,
certain transformations of the initial representations. One has to certifyhtbat
modifications imposed on the modules represent a correct transformattbe of
initial specification, with respect to behavior. Within the refinement calcuihgs,
correctness of such transformations is ensured by action-level atehsyevel re-
finement rules. In the following, we exemplify how the mentioned rules apply to
system design. We analyze the process, both from an interleavedsarfdoan a
synchronized perspective.

3.4.1 Refinement Example

Let us see next how the refinement procedure is applied to the desigiplexa
outlined in section 3.2.1. Considering a hardware implementation of our exam-
ple, a direct mapping of the filter functionality on hardware elements (regjster
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multipliers, adders, etc) is represented in Figure 3.4 a). Characteristic inthis
plementation of syster is the parallel processing and the large area occupied by
the hardware elements. A functionally equivalent implementation (Figure 3.4 b)
would result out of a serial representation of the filtering device, wiedfuires a
reduced silicon area. We transform the original sysféimto Fg, with the action
system model given as:

Fs(X,Z[0,..N —=2],Y :T)

2 begin var temp : T ; step : [0,..N]

X, Z,Y := zq, 20, Yo ; temp := 0 ; step := 0;
do
step =0
— temp :=0; step := step + 1
| step € [1,..N — 1]

— temp := temp + h[step] x Z[step — 1] ; step := step + 1

| step =N
— Y :=temp+ X x h[0] ; step :=0
od

end : h[0,..N — 1]

Is Fs a correct transformation of? Is the whole system still working accord-
ing to the functional specification?

X
Z[0]

ZIN-3] -
ZIN-2]

h[0] [

hiol ﬂ hi1] |+ L

hIN-2] step

h[N-Z] : h[N-1] [~ L
[N-1]}—
a) implementation of F b) implementation of F,

Figure 3.4: The hardware implementation of the filtérandFs.

In isolation, one may prove (see Appendix A-4), using Lemma 1, that the sys-
tem Fg is a refinement ofF, 7 C; Fg, under the invariant:

N p—1
I £ (step=1= temp=0)A /\(step =p=temp= Zh[k] x Zk —1])
p=2 k=1
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However, the separate refinement of the modtilis not sufficient;/ must be
an invariant of the whole compositia$ || B || Fs. From a system level point
of view, we should check tha | B || 7 C; S || B || Fs. Unfortunately, as3
does notrespect/, the refinement is not possible (see [39] for details about the
conditions for refinement). This fact has a simple explanation. Since theoten
may choose an enabled action from eitBeor Fg, let us suppose that it chooses
only actions fromFg, until step = N, after which it selectd3 for execution.
Hence, following the update df, the invariant/ is no longer valid. The solution
towards a correct result comes, again, from employing communicatiomelsan
as described in section 3.2.1. The invaridnbas to be rewritten so as to take
into account these channels, and the systems will gain some independéinise in
respect. Still, the same problems arise when one introduces another filtaring u
(M), in which case both the invariant and the system models must be reshaped.

3.4.2 Trace Refinement of Partitioned Action Systems

Definition 2 Any invariant! is a proper! invariant of an action system, if

Vverdvé¢wAdeVz, 2 e
IHwA :=w'Av = 2] = [[wA = w' A v :=7]) (3.7)

In the above definitionw.A is the set of variables updated by the moddle
variablesr A are read byA. The definition says that the computed value of a
proper invariant’ does not depend on the variables updated by other modules. If
the action system is a partitioned one, then the variabteg! should be replaced
by the corresponding set of write variables() of the local action, and also by
the set of write variablesu(S) of the global action. In addition, proving that an
invariant is proper within a synchronized environment reduces to slgavat the
relation (3.7) holds for the global action only. This is due to the fact théabhasy
do not change after the execution of any local action in the mentioned eméra.

Next, we propose a lemma that can be used to prove trace refinementi-of par
tioned action systems.

Lemma 2 Given the partitioned action systems

A(z) £ begin var a * a,z := ag, 20 ;
dogf—>LA[|g§1—>5A0d end,
C(2) A begin var c* ¢,z := cg, 20 ;

dOQg—)LlAﬂggﬁSAngﬁXod end,

1We use the short nanm@operfor any invariant that isuitablefor a synchronized composition
of action systems.
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let R(a, ¢, z) be an abstraction relation anfi(c, z) a proper invariant of the system
C. The system is (trace) refined by the systetn.A Cr ; C, if:

1. Initialization: R(ap, co, 20) A I(co, z0) = true
2. Main actions: (97 — LaCrygf — L))
A (g4 — SaCryrg§ — SY)
3. Auxiliary action: skipCrrgx — X
4. Continuation condition: R A I A (g7 V g8) = ¢¢ vV g5 V gx

5. Partitioning property:  RAI = (dogx — X [ ¢¢ — L', od).
(=(gx vV gf) A g§)

Proof. Since the first four requirements of Lemma 2 are only adaptations of the
original four requirements of Lemma 1, we concentrate here on showihghtha
fifth requirement of Lemma 2 implements the corresponding requirement of the
original trace refinement lemma:

R/\I:>(dogX—>Xﬂgg—>Li40d).(—|(gX\/gg)/\gg)
= RAI= (dogx — X od).true

We consider the definition of the weakest precondition of a loop, to establish
some postconditiof), as given by Dijkstra [71]:

wp(dog — Aod,Q) = Tk >0eH,
Hy QA g, (3.8)
Hy, = HyVwp(g— A Hi 1)

In our context, established by Lemma 2, the new local action of the refined
system () is:
Lnew:gX_)X[lgg_)L;X

We need to prove that
(do Lyeyw od ).(—=(gx V gg) A gg) = (do gx — X od ).true

holds.
In order to computédo L., od ).(=(gx V ¢¢) A ¢5), we apply (3.8):

Hy = -(gx Vgf) A g§
H = H{V(gx — X |gf — Ly).Hj_,
= { wp rule for choice} (3.9)
HyV ((9x — X).Hj_y Agf — Ly).-Hy_y) .
= {logic }

HyVv (9x — X).H_,
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We prove thatf; = H,_, (by induction onk). If k = 0, thenH; = Hj
follows directly from the definition of/] and logic. Fork > 0, we have:

Hj,

{ definition }

(Ho v (9x — X).Hy_y) A (HYV (gF — Ly)-Hy )

= {induction hypothesi#f, , = H;, monotonicity of wp} (3.10)
(Ho V (9x — X).Hp) A (H V(g5 — Ly)-Hy)

= { definition}

/
Hk+1

Next, by applying (3.8), we computelo gx — X od ).true:

Hg
Hi

_'gX
Hg' v (gx — X).Hj,

In a similar manner as above (by induction and monotonicity of wp), we obtain
that

Y = HY, (3.11)

In the following, we prove thatl, = H;* by induction onk. The casé = 0
is easy. Fok > 0 we have

Hj,
= {39}
HyV (gx — X).H),_,
= { induction hypothesis oh =0 } (3.12)
H V (gx — X).H,_,
= { induction hypothesis oh = k£ — 1, monotonicity of wg
He v (9x — X).H

Summing up the results of (3.9),., (3.12), we conclude that
(do Lpew od ).(=(g9x V ¢%) A g§) = (do gx — X od ).true
Thus, considering that the requirements 1 to 5 of Lemma 2 are satisfied, also

the requirements of Lemma 1 are satisfied, hesdcer 1 C. [

Observe that the fifth requirement of Lemma 2 strengthens the originasequ
(given in Lemma 1), by specifying that not only the auxiliary actiph — X,
taken in isolation, must terminate, but that the new group of local actigns;>
X gg — L'y must terminate. Moreover, they must also establish the precondition
for the (possibly) new global actiogg — S’, to execute.
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3.4.3 Modularity
Along the line established by Lemma 2, we prove the following theorem.

Theorem 3 Consider the synchronized environmént L Ait. . A, where
each of the modules preserves the proper invaridpis. ., I,,, respectively. We
then have that

I=I A AN A N\ (sellk] Arun # k= T;)
ke[l..n]

is a proper invariant ofP. Above,l}, 2 I [wSk == wSk]. [

The theorem states that in a synchronized environment, the global pesper
of the system are obtained from the individual properties of the modudds==a
Iy A ... A I,. The additional terms of help us make the connection between the
copies of the write variables and the respective original variables, ahdmeent
when the actioii/pdate is executed. The theorem is proved in Appendix A-2.

Corollary 1 Consider the partitioned action systetds, given by (3.6), and the
abstraction relationR;. Assume that, the systefn preserves its respective proper
invariant ;. Then
Aj Er, 1 Aj
Ao gl B A Ty Adll AN A,

,Vje(l...n]

[ ]

The statement of the corollary follows from Theorem 3 and Lemma 2 (see
Appendix A-3).

The interpretation of Corollary 1 is that each component of a synchmnize
parallel composition may be refined in isolation, without knowledge about the in
variants of the other components. The system designer may then employ the mod
ules without knowing their respective internal details of functionality. Theu®
designer is responsible for improving the performance of the modules, in tota
transparency for the integrator designer. This is a consequence fatctiaat the
systems exchange information at the end of an execution cycle, ratheaftkan
each execution round. Observe thatl;ifs anewinvariant for.A’, it will just be a
new entry in the definition of, as specified by Theorem 3.

A similar conclusion as ours is reached by Back and von Wright for thedlpar
composition of action systems [39]. However, this is achieved while requtiniig
the invariants of all modules are known, and a noninterference relatioreée
them proves to hold. The corresponding noninterference conditicesmonds
to our requirement that the invariant is proper. Still, checking the properness
of an invariant concerns the respective module designer only, whe rimtehave
to get information about the other invariants. Therefore, we have isedethe
independence of the module designer. Nevertheless, the mentioned bemss
at the expense of needing more constrained action system invariants.

50



3.4.4 Refinement Example Revisited

Consider the analysis presented in section 3.4.1. If we clféedk; Fs in the
context of Lemma 2, meaning that we adopt a synchronized perspectitieeo
composition, we will immediately obtain th&t 5 F C; S §f B 1 Fs (notice
thatFs is a partitioned action system). Besides this, a previous addition of module
M would not change the refinement, and we could h&ve B ¢ F t M C;
StBtFst M.

3.5 Summary and Related Work

The research presented in this chapter was motivated by an analysisiafl es-
pects and of modular design techniques, as supported by the cutientsstems
formal framework. We exemplified that the interleaved model of concayreray

not suffice, as such, for modeling parallel reactive systems. Additiarébles

are needed in order to implement the system functionality, correctly. Ouicgolu
comes as a synchronization mechanism, implying a new virtual execution model
of action systems, applicable to both discrete and hybrid designs. Thiddast c

is supported in chapter 4, where we show how to apply the same syncihiioniz
mechanism to models of hybrid systems represented as continuous act&nsys
We eliminate intermediate results that could affect the global state, as the system
gives complete answers to the stimuli provided by the environment. Most impor-
tantly, we prove that the modularity capabilities of synchronized action systems
better than those of the parallel composition of such systems.

Related Work. The approximation of concurrency by interleaving is used in
most process algebras like CSP [97], CCS [127], as well as in inputibatp
tomata [121] and UNITY [62]. The nondeterministic behavior induced by the
interleaved model requires solutions for controlling the data flow. Howeeer
solving control issues reduces the design independence acrossfé¢hendifevels

of the design process. Several recent studies have analyzedsasfpeentrol and

/ or composability within different formal frameworks, all of which deal wih
certain interleaved environment.

Cavalcanti and Woodcock [55], and Charpentier [63] build new meiagoen-
vironments in order to address issues related to correctness and coitifyost
(reactive) systems. Both approaches have strong roots in the weakesndition
semantics of Dijkstra [71]. These aspects are already included in auefvark,
and we have shown how to use them in order to achieve our goals. The raain id
is to isolate the local updates performed by an action system from the gloés| o
which appear to be updates carried out at the same time with the corregpondin
global variables of the other systems. This is consistent with the viewsnpeglse
by Gupta et al. [81], in the framework abncurrent constraint programming

The product operator of Milnersynchronous Calculus of Communicating
SystemgSCCS) [126] offers a somewhat similar approach to synchronization.
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However, while we synchronize on the updates of a group of variathlesSCCS
approach is based on simultaneous execution of actions, which we onlyirea
the last execution round of a synchronized composition. Moreovechsgniza-

tion restrictionsmust be analyzed for each particular synchronized composition,
thus decreasing the possibility of reuse.

Hoare and He use theync operator for modelindulk synchronizationas
a means of controlling concurrent processes [98]. The operatomiargeally
close to oursharp operator. However, the composition is not exploited towards
achieving higher degrees of modularity, it just serves the purpose obuimgr
concurrent behavioral control.

Bellegarde et al. introduce a similar idea of synchronized parallel compuositio
for event-B systems [42]. In contrast to our model, which increasesxteznal
determinacy, while preserving thieternal nondeterminism, the event-B solution
preserves also the external nondeterminism. Moreowgliuiiag invariantis nec-
essary when synchronized modules are refined. This requiremens émnethe
fact that the synchronization is performed only with regard to selectetsvel-
lected in a synchronization specification. Therefore, the supplier of leedbhould
also deliver to the system integrator, besides the modules themselves,¢heosyn
nization specification. From this point of view, the approach is similar to the one
adopted by Back and von Wright [39], where information about the iamés of
all modules must be known in order to perform refinements. A more relgxed a
proach to this problem is given by Butler [53]. The author combines featirthe
state-based action systems and of the algebraic CSP, in search for ritgdular

In the temporal logic of actions of Lamport [115, 116], synchronizatiGapées-
ified as a way of applyingioninterleavingto system design. This is reached by
employingjoint actions The author’s conclusion supports our point of view: in-
terleaving “blurs” the distinction between the components used in design.

Treharne and Schneider [153] employ CSP processes to control Birmac
The basic problems are raised by the interleaved execution semantics ddboth
malisms. Playing the state-based formalism (B), against the event-bagedapp
(CSP), one may get a controllable environment for modeling certain appfisatio
Our study shows, on the other hand, that it is possible, within the same atsdd-b
framework, to obtain the desired control of behaviors.

An execution mechanism quite close to our synchronized environment is de-
scribed by the semantics of STATECHARTS [83]. We can identify the di@tof
local actions that come from a single component, in an execution cycle;@s-a
pound transition- CT. There are as many suobnconflictingCTs, as modules in
a synchronized composition. By adding the initial and final state correlspgpto
a given execution cycle, we obtain a full CT.

In a similar study targeting modular development of hierarchic reactive sys-
tems, Alur and Grosu build their approach based on refinement checkiag b
ssume-guaranteriles [10]. Compared to our work, the authors benefit from un-
restricted compositionality of interleaving composition with respect to refinement.
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This property characterizes the languageeaictive modulegL3], which is used to
describe the respective modules employed in design. However, the mbduies
disjoint sets of variables.

In VHDL [19], the update mechanisms for variables and signals are relativ
similar to our solution concerning local and global variables. The difteasides
in the fact that already executed processes (assimilated to action systeyrns@ ma
rescheduled for execution, within the same VHDL execution cycle. Thisdsipo
ble due to new values of watched signals, assigned by other procéhseslidity
of such an approach is supported by the fact that, targeting a haringlemen-
tation, the VHDL designer may assume that eventually, such reaction-irigger
events will cease to appear (the combinational logic outputs will eventually settle
to some value).

One important remark is that our approach does not necessarily adgres
chronousdesigns. The existence of a common clock signal is not suggested by
any of our constructs. It is true that synchronous designs can lig ebtined
from our models. This is furthermore supported by the underlying “syghhy-
pothesis”, as the time to perform individual actions is assumed to be null. From
this perspective, we are close to the synchronous group of lang(Esfesel [45],
Lustre, Signal, etc.).

By providing the new virtual execution environment, we have tackled two im-
portant problems of system design: behavior control and modularitye3$ential
result of the study is mentioned by Corollary 1. Based on this, we can sty tha
the system level integrator and the module designers gain an increaspdrinde
dency with respect to each other, during the design process. TooRdikeement
Calculator[54] could be used for proving the necessary trace refinements ina syn
chronized context.

We believe that our achievement of using barrier synchronization toasere
the modular design capabilities of the action systems framework is a contribution
that could be easily adapted to other similar formal environments. The trade of
the action systems involved in design have to respect more constrainedrinsar
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Chapter 4

Modeling Hybrid Systems

In the previous chapter, we have focused on techniques suited foigtireus
construction of discrete concurrent reactive systems. It is now time tor&roha
the study of systems that also contain a continuous component. This andthe ne
two chapters will ultimately give a unified view of the discrete and continuous
system design.

Describing hybrid systems by continuous action systems, as introduced by
Back, Petre and Porres [27], bears the advantage of using the saofi¢haory as
for discrete action systems. This is justified by the fact that the implementation of
a CAS is an action system having time as an explicit variable.

Freezing time unless the system execution has finished is an anomaly of a hy-
brid system model, being known #iselocking Due to the way in which time
is advanced in the action system implementation of CAS, such an undesired phe
nomenon might appear. The original definition of CAS does not containaa cle
mechanism that would prevent timelocks from occurring. Therefore jsrctiap-
ter we extend the syntax of CAS, by incorporating éxecute only onceoncept,
for its actions. In this way, we move something that would usually have to be ex-
plicitly expressed in a CAS, to an implementation issue in the corresponding action
system representation. As a result, the timelock-free behavior is edfatute the
CAS model remains simple.

Next, we also adapt the formalization of tharrier synchronization mecha-
nismthat we have developed in chapter 3 for action systems, to CAS models.

We illustrate our modeling techniques on two simple control systems: a hea-
ting-cooling system and a two-tank system.

4.1 Timelocking and Zenoness
When executing a hybrid system, an evolution is followed by a discrete transitio

or a sequence of discrete transitions. If the hybrid system is modeled ASa C
the transitions might trigger a change of the future evolution of some congauou
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valued or discrete-valued time variables. Moreover, in traditional CASsaete
transition does not take time. Therefore, its execution is represented timthe
coordinate as a point.

Hybrid systems can suffer from two undesired behavioral anomaiieslock-
ing [49], andzenones§l]. In principle, we would like to build models that do not
expose the mentioned anomalies, since they might determine unexpectembehav
of the model, or might compromise simulation.

Traditionally, a timelock occurs when the infinitely repeated execution of a dis-
crete transition prevents the execution of a time-advancing statement [d&ie-T
fore, in such cases, the time in the model stops, and some discrete transition re
mains enabled forever. In a CAS, the timelock interpretation is similar to the tradi-
tional one, and this will become apparent in section 4.2.

A Zeno behavior appears in situations when, although time keeps primgress
during the execution of the model, it is prevented from growing unbougpded

Since hybrid models that suffer from zenoness can not be realizegicahly,
we will next give a definition of a nonzeno action system, which lets us ruie ou
zeno candidates.

Definition 3 Assume a CAS denoted Bys and its semantic translatiofys. We
say thatSys is nonzenoif the following condition holds:

Je € Realy - Vnow, now’ € Realy, now’ = min{t’ > now | ggsys.t'} -

/
now — now > €

As also argued by Alur and Henzinger [12], one needs to make surartleaiecu-
tion can be extended to an execution of arbitrary accumulated duration.

4.2 Adorned Continuous Action Systems

Problem description. As presented in chapter 2, any CAS model is explained
in terms of a corresponding action system with explicit time. In the latter, time is
advanced by evaluating the disjunction of constituent action guards. urhent
value of time is measured by variablew. The minimum time point that is at least
equal to the actuatow represents the next transition time. This means that some
action (in particular, an action described by a differential equation) doelelxe-
cuted more than once at the same moment of time, which in turn could prevent the
execution of any other action, if it never becomes disabled. This scengpies

that time is being locked atow. Thus, the system does not evolve, yet it does not
terminate. Note that discrete updates do not suffer from this anomaly.
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To illustrate this sort of behavior, we consider the following heating-cooling
system modeled as a CAS. Below, we give its action system translation.

HC(6 : Real . — Real)
begin var now : Real; *
now :=0;0:— (Xt-4xt);UT,

A}

do
0.now = 10
—0:— (At -0.now— 2% (t —now)) ; UT (1)
| 0.now =5
— 0 :— (At-0.now + 3 (t — now)) ; UT
od
end

In the above model, the first action’s guard holds even after the exeaiftion
the corresponding action body, which is supposed to decrease the &unpér
whenever it reaches the maximum value of 10. Since the temperature starts de
creasing fromp.now = 10, the next minimumow is the same as its immediate
predecessor (atow, 6.t = 6.now = 10). Therefore, looping in the same state
at the same moment of time goes on forever. Consequently, the temperateire ne
gets the chance to actually decrease, and for that matter to increase thatphd-
nomenon triggers nontermination of the execution of the first action. Obyjous
simulating models such as (4.1) is not possible.

Solution. From the above example, one can learn that CAS models should have
a way of preventing the execution of any action more than oneenif has not
changed. In this spirit, we provide a means for modelingekecute only once
(or single invocation at a new time po)ntoncept. The mechanism reduces to
extending the syntax of CAS, by decorating each transition with 1. This single
response problem translates into an implementation issue, within the cormagpon
action system with explicit time. As a result, the CAS model stays simple.

Even if this solution targets mainly time consuming actions, we extend it to
the entire system model, for simplicity and consistency. If an action perfonigs o
a discrete computation, the single invocation at a mexy mechanism does not
compromise functional correctness. It even makes sense, as disuietss dake
no time.

Syntactically, a CAS with adorned transitions is as follows:
C(y : Realy — T)) 4 begin var z : Real, — T, * Init;

dogliSlﬂ...[IgnLSnod (4.2)
end
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4.3 Implementing Continuous Action Systems

Adorning CAS transitions with single response indicators requires thag ker

an actual mechanism that implements this concept. We present here two distinct
CAS implementations and underline the appropriate situations where each could
be employed, respectively.

1. Using a single variablestate. As a first solution, which in fact has been already
used [27], one can add a variaBite that stores the current state of the system.
By keeping track of the system states before and after a discrete trajitaungh
variablestate that is set accordingly, we get self-disabling actions in effect.

Let us see how this applies to the heating-cooling action system (4.1).

HC(6 : Real — Real)

begin var now : Real;, state : Real; — {0,1} ¢
now = 0;
state :— (At - 0);
O:—(\t-4xt);UT;

1>

do
state.now = 0 A 6.now = 10 4.3)
— state :— (At - 1);
0:— (Mt - 0.now — 2 x* (t —now)) ; UT
| state.now = 1 A f.now =5
— state :— (At - 0);
0 :— (At - 0.now + 3 (t —now)) ; UT
od
end

This solution for preventing timelocks works well for systems with a small number
of states and with an obvious discrete transition route.

The same disabling mechanism might be difficult to apply to systems with a
large number of states, or to nondeterministic systems. In such cases it is not
easy, if possible at all, to determine the next state of the system, basedrentcur
information.

Alternatively, one could use actions liketgte.now # 1A... — state:— (At-
1);...), in order to deal with nondeterminism and more complex state machines.
Even so, if two (or more) actions of such an action system do not changgthis
second solution does not prevent waffling back and forth betweee tifons,
forever, yet at the sameow. Hence, the timelocking problem moves from the
action level to the group-of-actions level.

Next, we propose a general modeling solution that overcomes the mentioned
inconveniences.

2. Using variablesuy, . .., u,. We translate a decorated CAS described by (4.2)
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into an action system with time, as follows.

C(y : Realy — Ty)

begin var now, now, : Real;,x : Real; — T},

(1>

U, ..., Uy : Realy — Bool *
now := 0; Init ;uy,...,uy : —(At - false) ; UT ; now, := now;
do
—Uu1.now N gy.now (4.4)
— uyp :— (At -true) ; S1; UT ; Check '
| —up.now A gp.now
— Uy :— (At - true) ; Sy, ; UT ; Check
od
end
where
Check
2L i now #now. thenuy, ..., u, :— (At - false) ; now. := now else skip fi

Describing the state of the system by local variahlgs . . , u,, forces each ac-
tion to execute just once at the sameav. After one execution, any action becomes
disabled until time is advanced. Observe that, by employing this solution, vee hav
eliminated the need of computing next states based on current ones.

In order to avoid the premature termination of system execution, statement
Check resets the variables, . .., u,, provided thatvow # now.. Here,now,
is the copy of the current time. Consequently, a new execution cycle iseghab
Otherwise, ifnow = now,, the status-quo is maintained by executikig. Hence,
the system continues its execution only if time progresses, otherwise it terminate

Thew - variables CAS implementation (4.4) could be applied to a hybrid con-
trol system with nondeterministic state transitions, like the one that we are going
to outline in the next section.

4.3.1 Example: A Two-Tank System

The example system of Figure 4.1 has also been studied by Slupphaufld8al.
however our version is simplified. It consists of two tanks, that is, thesbaifid
the supply, a pump with three modes (off, low speed, high speed) usednp pu
water from the buffer tank into the supply, and two on/off valves, positiatehe
inlet of the buffer, and at the outlet of the supply, respectively. Thetpkceives
liquid from an input stream and has to deliver the liquid to an output target.

The safety requirement is equated to keeping the level of the liquid in both
tanks between 1 m and 9 m, hence preventing emptying, as well as oveglowin
of the tanks. In chapter 5 we introduce a simulation tool for CAS. With this tool
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Figure 4.1: Two-tank system.

at hand, we would like to simulate various execution scenarios of the two-tank
system. This could help in figuring out control strategies that would, famgpte,
prevent the system from swinging periodically between the minimum and the max-
imum level. Such a degree of freedom during simulation means that it is desirab
to model the system as nondeterministically as possible, in the beginning. In this
way, the designer will be able to explore different possible trajectoriég. uber

will have to resolve the nondeterministic choices whenever it is the casepatito
ically or interactively. The gain out of simulating such a nondeterministic model is
an increased intuition for further possible improvements, tailored to onadgipal
needs.

System modeling. Depending on the liquid levels in the buffer and the supply,
the controller should set the valves and use the pump appropriately. Itésdoty
regulate the levels in both tanks without violating the safety requirement medtione
above { < levelp,s <9), (1 < levelgy, < 9).

Below, we enumerate the model variables:

e 13, x5 : Real, — Real - denote the liquid levels in the buffer and the supply,
respectively;

® ujy, Uy : Realy — {0,1} - denote the positions of the inlet and the outlet
valves, respectively0(- closed,1 - opened);

e u, : Realy — {0, 1,2} - models the position of the pump ¢ off, 1 - low
speed? - high speed).

The inflow rate {;), outflow rate {,), and pump capacity factorf are the
parameters of the system. For the current analysis we assume, thatv, =
a=1 m3/min. Nevertheless, we do not substitute the parameter values in the
continuous evolutions of variablag, =, of the model. We rather use the param-
eters as such, for one to be able to run the simulation under differenhpta
instantiations.
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The differential equations that describe the continuous behaviog ahdx,
are the following:

Ty = 1/3.5% (v % ujp — vk up)
s = 1/2% (a*up — v * Ugy)

In the equations abova,5 (m?) is the buffer (bottom) area, arxd(m?) is the
supply area. Observe that levelsvary inversely proportional to these areas.

Rather than presenting the whole CAS model of the two-tank system, we will
enumerate and describe formally only some of its possible actions. Sinceewe ar
simulating the model in the next chapter, we will give the translated versioreof th
entire CAS there. Note that we do not make a distinction between the controller
and the plant in our model; we are in fact modeling a closed hybrid system.

e For example, the system may be in a state where the liquid in the buffer tank
has reached the maximum of 9 m. At the same time, suppose that the level of the
liquid in the supply isl <z, < 9. Provided that the inlet valve is closed,{ = 0)

— to avoid the overflow of the buffer tank — one could use the pump on either lo
(up = 1) or high speed«, = 2). The outlet valve should be opened,{ = 1)

for the liquid to be delivered continuously. The timed representations of the tw
actions that correspond to this situation are given below.

zp.now = 9N 1 < xs.now <9

Loeim (At -t —now) ; ug :— (At - 0);
Up i— (AL 1) 5 ugy :— (AL - 1);
Ep:— 1/3.5 % (v * ujpy — % up)
Tg:— 1/2% (o up — Vo * Uoy)

zp.now = 9A1 < zz.now <9
Lo (At -t —now) ; ujpy :— (At-0);
Up i— (AL 2) 5 ugy :— (AL - 1);
Ep:— 1/3.5 % (v; * Uiy — Q% uyp)
Tg:i— 1/2% (o up — Vo * Ugy)
Observe that the actions contain the linear differential equations thatataar
ize the behavior ofy, x,, rather than their respective analytic solutions.
e Even in situations whem, = 1, if 1 < zs.now < 9, the pump could be
working at low speed, provided that the inlet valve is opened. This iskesmly
under the assumption of = v, = «. The action below models such a behavior:

rpnow =1A1<zgnow <9

Loeim (At -t —now) ; ug :— (At~ 1);
up i— (At 1) 5 upy :— (AL - 1);
&p:— 1/3.5 % (vj * ujp — % up)
Tg:— 1/2% (o up — Vo * Uoy)

o If u;y = up = uy = 1, the controller can decide to close the pump or use it
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at high speed, depending on whether the liquid level in each tank is abbedoav
half of maximum, respectively:

1 < zpnow <4.5N4.5 < xs.now < IA
Ujp.now = 1 N up.now =1 A ug.now =1
i>c:—()\t-t—now);up:—()\t-O);
&pi— 1/3.5 % (v * ujp — @ up)
Bgi— 1/2% (% up — Vo * Ugy)

4.5 < xp.now < 9A 1 < xg.now < 4.5N
Ujy.now = 1 A up.now =1 A ugy.now =1
Lo (At -t —now);up:— (At-2);
Ep:— 1/3.5 % (v; * Wiy — Q% Up)
Tg:i— 1/2% (o % Up — Vo * Ugy)

4.4 Synchronized Hybrid Models

As in discrete reactive systems, concurrency, in all its flavors, playsportant
role in hybrid designs. The parallel composition of CAS, as describedapteh2
uses interleaving as the underlying execution mechanism. Thus, compeHdiaig ¢
hybrid modules might imply a similar effort for controlling their behavior, as in
the discrete case. From a modular design perspective, there ares dasstrid
systems for which the implementation of CAS (4.4) helps in reducing this effort.

4.4.1 Parallel Composition of Hybrid Models with Discontinuties

In the following, we analyze situations that may appear in the behavior of, CAS
when employing a traditional parallel operator between two modules. As we will
see, certain malfunctions may be exposed due to the interleaved modektaf exe
tion, combined with particular timed evolutions.

In practice, there are situations where hybrid systems manifest the so called
“discontinuities” with infinite bandwidth, or “sudden changes” [107]. ¥ heay be
found for instance, when analyzing relays switching and mechanical @oemps
engaging/disengaging [149], or in processes that observe hystkkesbehaviors
[158].

The example that we illustrate in the following paragraphs is deliberately small
and simple. This makes it easier to discuss implementation issues, without being
affected by the actual complexity of a practical example. Therefore,nlyegive
a hypothetical behavioral description of a hybrid system, willing to analyze o
action system models in the presence of discontinuities.

Let us consider next the abstract model of a hybrid control system,hwhic
evolves according to the function plotted in Figure 4.2, above the time axis. The
outputY is either increased or decreased, at different spegds,, respectively.
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The system under analysis behaves according to the following CAS:

S1(Y : Realy — Realy)
L begin var dir : Real, — Bool * Y :— (At -0) ; dir :— (Mt - true);

do
Y.now =0 /* actionAl x/
Ly.— (At - vy * (t — now));
dir :— (At - true)
| (Yonow = Yy Adirnow) V Y.now =Yy /[ actionA? x/
Ly.- (At - Yy — vg % (t — now));
dir :— (At - false)
| Yonow=Y /* actionA$ x/
5 (Y :— (M- Y1 4+ v * (t — now))
1Y :— (At Y1 — vy (t — now)))
od
end

< <
[ TN

BAWN—- O

[ counter

\

Figure 4.2: The timed evolutions of systesisandSs.

Notice, in the graphical representationfif that the output” evolves between
0 and a maximal valu®z;. A second characteristic is the “jump” and the change of
direction at poinfY.now = Yp; this happens in every instance of the execution. A
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descending trend is taken every time the system reaXhesy = Y. However,
another direction change may happen at pbinbw = Y7, where the system may
choose to switch again to an ascending trend towErd®r to continue descending
towards0. The number of direction changes at this point is arbitrary. Observe
that the value of local variabléir helps discriminating between time moments
represented b#; or t,.

As observers, we are interested in counting how many times the outputleariab
Y reaches certain values. Concretely, in our analysis, we identify ortevalice
with Yy. Consequently, we attach 1§ a system that counts the events when
Y =Y. This system may be described as

S2(Y : Realy — Realy, counter : Real; — Nat)
L begin counter :— (At-0);Y :— (At - 0);

do
Y.now =Yy /* action Al x/
L counter :— (At - counter.now + 1)
od
end

Even if the composed system, hybrid system plus counter, is simple enough to
be designed as a compound, we choose to design it modularly. This is justified
by the fact that we want to create the premises for further extensioosndiy,

the counter systeri; is not regarded as a required functional unit, under normal
circumstances.

Interleaved model. At first, we follow the traditional parallel execution model
approximated by interleaving, &f = S; || So. At some moment in timet(, ¢3,t5

in Figure 4.2), wherY.now = Yj, actionsA? and A} are simultaneously enabled.
If the controller chooses to execute the actidf, first, the variableY” will be
updated td’y. This disablesil. Thus, the counter misses to record this trajectory
change. At time stamp&,t4, whenY = Y; also holds, the interleaved model
allows a correct update of the variakleunter, as the action of the counter is the
only enabled one.

This situation can be solved by adding extra information to the modules, re-
garding their communication, or by employing other operators on CAS, which
could determine the modules to react in a way that produces a correct.outpu
However, either of the solutions implies extra modeling effort. Such a solution
also deteriorates the system’s modularity, since it requires a thorougtssnafly
both of the composing action systems, as also illustrated in chapter 3.

Let us see how the synchronized perspective on the composition of CAS mo
ules solves the issues exposed above.
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4.4.2 Synchronized Continuous Action Systems

In this section, we give the definition of the synchronized composition of ,CAS
which is similar in spirit to the one defined for the discrete case, in chapter 3.
Nevertheless, the timed compaosition bears some particular features.

Firstly, we introducepartitioned continuous action systenis/ the following
definition.

Definition 4 Consider a CAS of the form:

A(z: Realy —»T.) £ begin varz: Real, — T, * Init ;
do g, 5> L]gs— S od (4.5)

end

We say that4 is a partitioned CAS if:

1. gwA C wS - meaning thatS is the global action of4. Notice thatwS may
also contain local variables ofl.

2. wL C lwA - meaning thatL is the local action of4.

3. (do g1 L Lod ).gs = true - meaning that the execution éfestablishes
the precondition for executing. ]

Observe that in (4.5), we have separated the local actions from thd gldilmas in
the same way as for partitioned action systems. Moreover, we impose reguise
similar to those stated by Definition 1.

In Definition 4, the notationlo g, L L od stands for
do —uy.now A gr.now — ug, : —(At - true) ; L; UT od

whereUT £ now := min{t' > now | gg.t'}. The fact that the local action is
executed only once at some momaeiaty eliminates the need to require that the
corresponding loop terminates. Hence, it is sufficient dway, L I od enables
the global actiort after it executes.

We emphasize the fact that one needs to employ as maiike variables as
there are choices in the local actidn This ensures that the execute-only-once
concept is implemented for all (possible) sub-actiong.of he procedure does not
apply to the global actiod, in which case a single-variable suffices.

The meaning of a partitioned CAS is given by its translation into the following
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action system:

A(z : Realy — T)
A begin var now, now, : Realy,z : Realy — Ty,
ur,ug : Realy — Bool *
now := 0; Init ;ur,ug : —(At - false) ; UT ; now, := now;

do
—ur.now A gr,.now
—ur : —(At-true); L; UT (4.6)
| —us.now A gg.now
— ug: —(Xt-true); S;UT
| now # now,
— up,ug : —(\t - false) ; now. := now
od
end

Synchronized CAS. Let us considem partitioned CAS of the form given by
(4.5). Theirsynchronized parallel compositionis a new systen? = A1 . .. {A,.
Its definition is given in terms of the action systém

P(z : Realy — T7)
L begin var z : Realy — Ty, sel[l..n],
u},...,ul : Realy — Bool,
run : Real;y — Nat, now, now, : Real®
now := 0; Init ; UT ; now, := now;
do

run.now = 0 A —sel[l].now | selection action
— sel[l] :— (At - true) ;run :— (At - 1)

| run.now =0 A —sel[n].now
— sel[n] :— (At - true) ; run :— (At - n)
| run.now = 1A —u}.now A g} .now ‘ module A;
e (4.7)
— Ly ;up :— (At - true)
| run.now=1A ﬂug.now A gé.now
A (ut.now V —gt.now)
— wSic:—wS1; S8 srun:— (M- 0) s ul :— (Mt - true)
| runnow=1A ﬁu}q.now N —gga, .now
— run:— (At -0);us :— (M - true)

| run.now =n A —u}.now A g} .now | moduleA,,
— Ly ;ulf :— (At - true)
| run.now =nA-ud.now A gg.now
A (u} .now V —g} .now)
— wSpe:—wSy;S), s run i — (At - 0) 5 ud :— (At - true)
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| run.now=nA —ug.now A —=gga,, .now
— run :— (At -0);ul :— (At - true)
[ sel.now A run.now =0 | update action
— Update ; UT;
if now # now,
then ul, ... , g, sel :— (At - false) ; now, := now
else skip
fi
od
end,
Init = Inity;...;Init, ; wSic,...,wSyc:— wSy, ..., wSp;
run:— (At-0);sel,u},...,ul:— (Mt - false)
Update 2 Updatey ;... ; Update,, whereUpdate;, L wSy 1 — wSke
S;. 2 Sk[wSk : — wSk(]
T A

Recall that the set of global variables of is, initially, the union of the global
variables sets of each module: = |J, ;. If the communication among some
modules ofP should not be disclosed at the interfacé®the variables that model
such channels will baiddenwithin the systeniP.

Further, the local variables = |, xx, to which we add the hidden variables.
We also add copies(Sic) of the original write variables of each action bo#ly.
They replace the original variablesSy,, therefore we havs;, = Si.[wSy:— wSjc].
Finally, the listx is completed by adding the arrayl and the execution indicator,
run.

The above definition of thet” - based composition of CAS says that, whenever
there is a change in the input, the composed system reacts based on theadtate o
its modules.

Observe that time is not advanced unless all the modules have given their re
spective responses to the input. As distinct from the discrete casenitleregized
parallel composition of partitioned CAS does not need to ggst upon the en-
trance of the loop. This is motivated by the fact tRatannot executekip actions
forever. The conditional statement followidgpdate enforces termination if time
has not been advanced by any of the module actions.

Since CAS semantics is given in terms of ordinary action systems, all the mod-
ularity results proved in chapter 3 hold for the composition defined by (t@),
Consequently, due to Corollary 1, any module can be trace refined imdiepity,
provided that its invariant iproper.

4.4.3 Example Revisited - Synchronized Design Approach

Let us now compose the systefisandSs, defined in section 4.4.1, by using the
‘" operator. It is easy to check th&t andS, are partitioned CAS. As a result, we
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get the new partitioned CAS,,.., = Si § So. Next, we translate, .., into S,,c.,
by applying the definition (4.7).

Snew(counter : Real — Nat)

S begin var Y, Y, : Real; — Realy, counter., run : Real; — Nat,
sel[l..n],u1,us : Realy — Bool, now, now, : Realy *
counter, countere, run,Y, Y. :— (At - 0);
sel,uy,ug :— (At - false) ; UT ; now, := now;
do

=sel[l].now A run.now = 0
— sel[l] :— (At - true) ;run :— (At - 1)
| —sel2].now A run.now = 0
— sel[2] :— (At - true) ;run :— (At - 2)
| (run.now =1 A —uj.now A Y.now =0
— Yo :— (At - vy % (t — now));
dir :— (At - true)
| run.now=1A—uj.now A
((Yinow = Yy A dir.now) V Y.now = Yy )
—Ye:— (M- Yy —ve * (t — now));
dir :— (At - false)
| run.now =1A—uj.nowAY.now =Y
— Yeo:— (M- Y1+ v % (t — now))
| Yo:— (At- Y1 — w2 % (t — now)));
run :— (At-0);up :— (At - true)
| run.now =1A —uj.nowA
—(Y.now =0V Y.now =YV
((Y.now = Yy A dir.now) V Y.now = Yg))
— run:— (At-0);ug :— (At - true)
|  run.now =2 A —uz.now A Y.now =Y
— counter. :— (At - counter.now + 1);
run :— (At-0) ; ug :— (At - true)
| run.now =2 A —ug.now A Y.now # Yy
— run:— (At - 0) ; ug :— (At - true)
| sel.now A run.now =0
— Y :— Y. ; counter :— counter. ; UT}
if now # now,
then
sel,uy, ug :— (At - false) ; now, := now
else skip
fi

od
end

If we repeat the previously described scenario, at moments, ¢s, . . ., when
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Y.now = Yy, the definition ofS,,., lets us preserve the old valuesiof Hence, the
synchronization mechanism enables the sysferto update the variableounter
correctly, even wheis, is selected for execution aftét;. The order of system
execution ceases to be a correctness issue.

It is possible that one can find a solution by considering the traditional@ara
composition ofS; andSs. One could try, for instance, to bring the variaklie
to the interface ofS;, so that it may be read b§,, which in turn could take a
correct decision. However, as concluded also in chapter 3, sudhtaoeaequires
exposure of internal functionality and presumes knowledge of the inteehavior
of modules (in our case, d,). Moreover, for such a trick to work, one has to first
detect which are the time points when the system’s functioning requires a detaile
analysis. This would be necessary in order to avoid potential disconticaitged
errors [107]; in our example, one has to detect the possible malfunctitimeof
counter system in points similar to thig (Y}) tuple.

In comparison, due to the synchronized semantics, one can design th# ove
system modularly, by simply plugging, andS, together, and without encoding
any kind of communication between these modules. Also, in case one neelds to a
similar modules to the composed system, the synchronized composition lets one
reuse the existing modules. At the same time, the global behavior is undeslcontr
barrier synchronization ensures correct outputs to all inputs.

4.5 Summary and Related Work

In this chapter we have extended the syntax of continuous action syst@&jis/[2
modeling the concept of single point invocation of an action. As a resultmodel
does not allow the infinite execution of an enabled continuous action, aathe s
time point. The issue of preventing timelocks is moved to the implementation
level. We have proposed a general solution that uses an executiorr ritar&ach
action, namely, a boolean variable that is set true after the respectiva hesso
been executed. Assuming a particular momes, new execution rounds are
allowed as long as there is at least one flag on false. If the executedsadtiorot
consume time, that is,ow remains unchanged, and all flags are true, the execution
terminates. On the other handiibw changes, all flags are reset. Consequently,
any formerly selected action can be reselected in the future.

Last but not least, we have proposebaarier synchronization mechanisfor
CAS, similar to the one developed in chapter 3, for discrete systems. Employing
the synchronization operator allows for compositionality and modular reagoh
an important class of hybrid systems, that is, systems eigtbontinuous changes
in continuous variable valuesThese arise, in general, in complex systems, such
as aircrafts, which often operate in different modes of continuousvileh&Vvhen
mode changes occur, the continuous dynamics may change abruptlye yetrih
troller should identify the event and react in consequence. We havenshow
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synchronized CAS can faithfully model such systems, at the same time allowing
for a modular design perspective.

Related Work. The CAS language is suited for modeling and verification of
mission-critical systems, since it allows for the explicit failure of the systendfmo
eled by the “abort” statement). It also allows references to historical saliithe
variables in guards and expressions (e.g., X.(now - 1)). Such feataneot appear

in modeling languages like, for exampleybrid automatg6, 86] or hybrid 1/0
automatg[120].

Ronkkd and Li have introducelinear hybrid action systemas a way of mod-
eling hybrid systems with linear continuous behavior [140]. The apprzatiore
restrictive than CAS since only smooth functions (without discontinuities)hean
handled. We have shown through the example of section 4.4.1 that CAS allows
any type of function to describe the continuous evolutions. Moreov@nkk's
and Li’s approach uses an implicit notion of time, hence the formalism is not in-
tended for modeling real-time systems. Our model facilitates the description of
real-time systems, as chapter 6 demonstrates.

The composition of timed systems expressed as communicating processes is
also analyzed by Bornot and Sifakis [47], who striverizeiximal progresswhen-
ever interleaving and synchronization are both possible, synchromizatipre-
ferred. In our approach, the property holds by default when ondogmghe syn-
chronization operator for composing CAS modules.

CHARON is an environment that supports structured hierarchial modefing o
hybrid systems [11]. In CHARON a system is described by a collectiagehts
that communicate with their environment via shared variables; the behavaor of
agent is called anodeand it is basically a hierarchical state machine. CHARON
has a formal compositional semantics with a notion of refinement: traces of a
mode can be computed from traces of its submodes. The approach assumes
interleaving semantics of discrete updates, whereas updates of andkgges
must be synchronized. Synchronized (continuous) action systems altbwnbon-
hierarchical and also hierarchical perspectives. In the latter caseathe shared-
variable mechanism can be used for communication among modules.

Compositionality of concurrent hybrid behaviors is also central to models su
as hybrid I/O automata [120] arfrgybrid module$12]. In the latter, Alur and Hen-
zinger have developed an assume-guarantee principle for reasdodogtaned
and hybrid modules. The authors separate the so caiddte roundswhich take
no time, where discrete or clock variables are updated by the modules ier env
ronment, fromtime rounds which have specified durations. Each update round
consists of several subrounds. From this point of view, this apprisasimilar to
our synchronized hybrid environment, yet ours differs in that we dowake the
distinction between rounds updating global variables, and rounds ugdatia.

All global variables (be they discrete valued or continuous valued timehlash
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and time are updated by a sequence of statements, at the end of the same cycle
Moreover, the timed modules employed by Alur and Henzinger are partially or-
dered, and the respective update rounds follow that ordering. Thispecklly

valid whenawait dependenciesccur. We do not use the clauseaitsin our mod-

els, thus the order of module execution is permitted to be nondeterministic but this
internal nondeterminism does not affect the visible state.

The hybrid constraint languagepproach (Hybrid cc) [82] to modeling and
verification of hybrid systems assumes that various aspects of the giled Au-
tomaton are expressed as constraints. The technique supports logicatreocy
for program construction, allowing a similar preemption construction to Hstere
[45].

71



72



Chapter 5

Hybrid Systems Analysis

Hybrid control systems can be quite difficult to build, due to the interaction of
the continuous system behavior with the discrete controller. Hence, simuéating
formal model of the system is most useful, allowing one to find potential trouble
spots before proceeding to full formal verification.

In this chapter, we first introduce a symbolic simulation tool for continuous
action systems, as a means of analyzing high-level models [25]. We hiivihbu
tool in Mathematica [156], a powerful computer algebra package, alsip@ed
with good plotting facilities.

The main problem in carrying out formal analysis of hybrid system models is
their infinite state space, which, in turn, is a result of the continuous evotution
involved. There are uncountably many successor states from a dgatenas a
hybrid system. Furthermore, checking whether a hybrid system evehaga bad
state is undecidable.

Such issues can be overcome by finding suitable abstractions of the cugtinu
dynamics, or of both the discrete transitions and continuous flows, whictténd
transition systems that can be model-checked for certain properties [h5dr]n-
ciple, the result of such a procedure is just an assertion that the mdudeldseas
expected, with respect to the verified property.

In contrast, a deductive, iterative approach to formal analysis ofdhylwdels
provides the designer with important insights on the overall system behavier
drawback is the lack of a “push-button” technique; on the other handjaimein
understanding is necessary, if one wants to improve the system rejaiteseat
later design stages.

For parametric models, the outcome of the analysis consists of constraints on
parameters, or relationships between parameters, which define thealigiaxfsi-
ble values guaranteeing that some system property holds for any pdssfilaleior.

In the following, we also present a deductive way of synthesizing cbpa
rameter values, by using superposition of nonconflicting invariants [Bdktra-
tive examples show the proposed approaches at work.
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5.1 Symbolic Simulation of Hybrid System Behavior

Prior to, or as an alternative to verification, the simulation of a hybrid systedemo
brings many benefits to the designer, by paving the way towards an execal-
straction. A lot of effort has been devoted to developing simulation toolsyfiorid
systems, targeting various modeling languages. Such tools include the I@ytirid
simulator [40], Dymola [74], Shift [79], and Simulink [124].

The contribution of this section is to show howsimnulatethe behavior of hy-
brid systems that are modeled as CAS. The simulation technique that we use is
symbolic. Given the simulation parameters, we represent states usingapesdic
and we construct the exact analytic functions that describe the beludvrar hy-
brid system over time (rather than just numeric approximations of the behavior
The simulation method is based on calculating symbolically the next time point
when at least one action is enabled, using the minimization capabilities of some
programming language. This means that our simulation method is not dependent
on choosing a fixed sampling interval, but that the simulation rather protesds
one interesting time point to the next. These interesting time points can be very
dense in times when the behavior changes rapidly, and be sparse atrotser

The Generic CAS Simulator. In this paragraph, we describe the CAS simulator
in a generic setting, independent of the programming language usedsdromith
its usability certainly benefitting from having as powerful language asipess

The symbolic simulation of a CAS consists of three major steps, as follows:

1. Solving each guard separately and finding a list of times in the future when
the guard will evaluate to true.

2. Extracting the least of the times in the list for each guard.

3. Collecting the results from step one and two, from all guards, andndieter
ing a globally minimal next time. Having found it, one has simultaneously
determined whether there is one or several guards satisfied at thetiespe
time moment. If just one guard is satisfied, the corresponding action body is
executed, thus changing some of the program variables. If thereemabke
guards simultaneously true, then the user is asked to supply the choice of ac
tion to be taken. It is also possible that the machine makes a random choice
among the enabled actions.

In the first step, the computation of the solution list for the guards can be ar-
bitrarily complicated depending on the structure of the guards. The guayd ma
involve the solution of higher order algebraic equations, or nonlineagrdifitial
equations, or both, in which case analytic solutions to the guards arebyaira
possible to obtain. In this case, one has to resort to a numerical solutioe of th
guards, e.g., integrate differential equations forward in time using som®-app
priate numerical scheme. Then, we can still obtain an approximated corginuou
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solution by interpolating the numerical solution with linear functions between the
numerically obtained values.

In case the list of minimum values for the guard from step one is a collection
of finite analytic expressions, we will be able to proceed to step two withost los
of accuracy. The identification of the minimum value in step two, that is, sorting
the list of solutions to a guard, may be numerically cumbersome. The expressio
in the list can easily have the tendency of becoming increasingly complicated as
time goes on; then, in the end we have to resort to evaluating the minimum values
numerically. This immediately makes the comparison of values very close to each
other prone to mistakes. The third step is in principle as hard as step two,amnly n
we are comparing the minimum values for each guard with each other.

The usability of the symbolic simulator is thus largely dependent on whether
we are able to pass through step one to three, using symbolic expressions.

The main function of the simulator is given below, in pseudocode.

So(); (* initialize variables *)
now = 0; (* start at timet =0 *)
Max_now = 100; (* simulate until Max_now *)
while ( now < Max_now ) (* loop until Max_now*)
{ (* loop through all guards *)

(* and find min time when some guard holds *)

for (i =1 ;i <m; i =i+1)
{

(* list of solutions to guard i *)
sol list = Sol veGuard(i);

(* find the earliest tinme in solution list *)
Tent ati veNext Now = Extract M nTi ne(sol _list);

Next Acti onTi me = Max_now;,
NoCOf Next Acti ons = O;

(* find the globally minimal next time *)

(* and the corresponding actions*)

(* check for any solution *)
if ( I'sNunmeric(TentativeNextNow) == Fal se )
conti nue;

(* check for later solution *)
if ( NextActionTine < TentativeNext Now )
conti nue;
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(* we have several guards with earliest time *)

(* formlist of possible next actions *)
if ( NextActionTinme == TentativeNext Now )
{
NoOr Next Acti ons = NoOF Next Actions + 1;
Next Acti onLi st[ NoOf Next Actions | =1i;
conti nue;

}

(* new earliest time *)

if ( NextActionTime > TentativeNext Now )

{

Next Acti onTi me = Tent ati veNext Now,

NoCf Next Actions = 1;

Next Acti onLi st[ NoOf Next Actions ] = i;

conti nue;

}
¥

(* take appropriate next action *)

(* no next now avail able *)
if ( NoOFNext Actions == 0 ) break;

(* no next now within maximmlimt *)
if ( NextActionTinme == Max_now ) break;

(* next tine available, it is unique *)
if ( NoOF NextActions == 1)
{

now = Next Acti onTi ne;
SNextActionList[l] ;

}

(* next tine available, it is not unique *)
if ( NoOF Next Actions > 1)
{
now = Next Acti onTi ne;
Acti on_Choi ce =
User Sel ect (NoOf Next Act i ons, Next Acti onLi st);

SAction,Choice;

¥
(* end of while loop *)
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5.1.1 Mathematica-based Simulation of Continuous Action Sstems

We have chosen to implement the simulatdviathematicd156], a powerful com-
puter algebra package. Besides allowing us to get symbolic solutions to the time
varying behavior of the hybrid system, Mathematica also provides goddiésc

for visualizing the system evolution as graphs.

The state variable functions are often described by differential eqsatidre
differential equation solver of Mathematica is then very useful, in partidolar
those cases where it is easy to find an exact solution. If we do not gahan
Iytic solution, we can still get a numeric approximation of the time functions, and
use these approximations in our simulation. The approximation will introduce an
uncertainty into the simulation, but still allows us to carry out the simulation inde-
pendently of a fixed sampling interval.

Our tool [25] performs simulation of CAS fully automatically. It is essentially
an interpreter with plotting capabilities for CAS, written in the programming lan-
guage of Mathematica. Our experiences with this tool have been very [mgmis
Besides providing a good visualization of the behavior of hybrid systenmssit
also been quite efficient in harnessing the power of Mathematica.

Most of the simulation tools for hybrid systems use either a fixed-step or a
variable-step numerical solver to approximate the differential equatiordiffea
ence equation [151]. One of the main strengths of our tool is the fact tHagst
in the linear case, we do not need to provide a suitable discretization oftitin-co
uous system dynamics. As a result, we perform the simulation on the corginuou
time model, without tolerances.

The tool is parametric, in the sense that the number of guarded actionseand th
number of functions that are evaluated and plotted are set by the upendieg
on the system that one wants to analyze. These parameters are dengted by
ablesNoOfGuards, NoOfFuncs, respectively. There is also an upper bound for the
simulation time, denoted bgnd Time, in case the simulation goes on forever.

To run a simulation, the user has to:

e Supply the values dEndTime, NoOfGuards, andNoOfFuncs.
e Specify the initial conditions by giving initial values to all the variables.

¢ Input the guards and the corresponding action bodies as simple ASG]I file
yet using valid Mathematica commands.

The simulation tool then computes the behavior of the model, under thesespecifi
choices.

We have applied our simulation technique to a small collection of hybrid sys-
tems. In the coming sections, we describe two applications in more detail. The
first one models a heat producing nuclear reactor with two cooling rodithee
second one is the two-tank system introduced in chapter 4. The tool d\aedio
be very useful in these and other cases that we have tried. It haslguay way
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of exploiting nondeterminism in specifications, and at most times it has confirmed
the a priori intuition about the system behavior.

5.1.2 Linear Hybrid Models: A Nuclear Reactor Temperature Con
trol System

The current case-study has also been analyzed by Alur et al. [@]hyilbrid system

is a temperature control system (TCS, for short) for a heat produeswgar. It is
described by the temperature as a function of tiifi¢. The reactor starts from the
initial temperatureédy and heats up at a given rate. Whenever the core reaches
the critical temperatur@,,, it is designed to be cooled down by inserting into the
core either of two rods, modeled by variablegt) andxs(t). These are in fact
clocks that measure the time elapsed between two consecutive insertiores of th
same rod, respectively. The cooling proceeds atwata v, depending on which

rod is being used; the cooling stops when the reactor reaches a given minimu
temperaturd,,, by releasing the respective inserted rod. The rod used for cooling
is then unavailable for a prescribed tirfie after which it is again available for
cooling.

The object of the simulation is to ascertain that the reactor never reaches the
critical temperaturé,, without at least one of the rods available, otherwise a shut-
down will be initiated.

The action systerf CS (where time is explicitly advanced) consists of a set
of initializing statements and a collection of guards and their correspondiiog ac
bodies (see Figure 5.3). The last action (action 5)dbast as its body, indicating
that the shutdown state is not desired.

Let A8 = 6, — 6,,. Obviously, the time that the coolant needs to increase its
temperature fromd,,, to 6, is

T, = A0/ vy,
and the cooling times usingd1 androd2 are
T = A@/Ul andfg = AQ/’L)Q,

respectively.

The sequence of heating and cooling times is shown in Figure 5.1.

Observe that in our modé&CS we have used variablgart, which denotes
the moment when the system starts evolving in a new state. Also, in order to aid
intuition about the system’s continuous behavior, we have given both tigtian
solutions of the differential equations, as well as the actual differergiz#ons
that they satisfy. As an alternative representation of the behavibCs¥, we give
its state transition diagram, in Figure 5.2.

Clearly, if 7. > T (the temperature rises at a rate slower than the time of

recovery of the rods), then tl#hutdownstate is not reachable. However, this can
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Figure 5.1: The heating and cooling times
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Figure 5.2: The state transition diagram of the temperature control system.

be atoo strong condition for not running into the undesired state. Insgd&gare
5.1 one can find a weaker condition [7]:

2T, + 1 > T A21 + 10 >T (5.1)

Relation (5.1) claims that the shutdown state will never be reached if the time
between two insertions of the same rod is greater than or equal to the timalneede
for the rod to recover.

To get a first assurance that condition (5.1) is indeed sulfficient, veepdowith
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7CS
begin var x1,x2,c: Realy — Realy;
0 : Real; — Real; state : Real; — {0,1,2,3};
start, now : Realy * now := 0;
state :— (At -0);c:— (At -t — now);
x1:— (M-Ty+et);xg:— (M- Th + c.t);
0:— (At -0y + v, * c.t);
start ;= now ; now := min{t’ > now| gg.t'};
do {actionl : cool with rod1}
state.now = 0 A 8.now = Oy A x1.now > T
—c:— (M-t —now) ; /xé=1
9:—()\t-0M—'U1*C.t); /*9:—01
state :— (At - 1);
start := now ; now := min{t’ > now| gg.t'}
| {action2: release rodl}
state.now = 1 A 0.now = 0,,
—c:— (M-t —now) ; /xé=1
x1:— (At -t —now) ; /*xx1 =1
O:— (MO v 5ct); [/x0=0,
state :— (At - 0);
start := now ; now := min{t’ > now| gg.t'}
| {action3: cool with rod2}
state.now = 0 A 8.now = Oy A x9.now > 1T
— c:— (M-t —now) ; /xé=1
O:— (M -Op —vgxct); [+0=—uy
state :— (At - 2);
start := now ; now := min{t’ > now | gg.t'}
| {action4 : release rod2}
state.now = 2 A\ §.now = 0,,
—c:— (M-t —now) ; /xée=1
x9:— (At -t — now) ; [ *xg =1
O:— (M- Op+uv.xct); [/+0=u,
state :— (At - 0);
start := now ; now := min{t’ > now | gg.t'}
| {action5 : shutdown}
state.now = 0 A @.now = Op; AN x1.now <T A xg.now <T
— state :— (At - 3) ; abort
od
end : 90, Gm, QM, Ur, V1, V2, Tl, TQ, T

Figure 5.3: The TCS action system model
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the simulation of the TCS model for two sets of parameters: the first setrchmse
satisfy condition (5.1), the second set chosen not to satisfy the samié@ondhe
simulation results should either confirm or deny our assertion. In the dexse,
at some point in time, the simulation should run iatwort by executing the action
5 of the7 CS action system.

5.1.3 Simulating the Behavior of the Temperature Control Sykem in
Mathematica

The starting point for the formulation of the simulation is to take the initializing
expressions and the expressions of the guarded actiGgh8®fs such, with as few
numerical or logical manipulations as possible. This confirms our basicgtrate
simulating the model as given, thus exposing any possible modeling errois like
the spelling of the model, or in the logic of the guarded actions. The initialization
of 7CS is implemented in the language of the symbolic manipulation program as

now = 0

ct_] = t— now;
xi[t-] = Ti4clt];

X [t—] = Tr+clt];
0t_] = 0o+ v xclt];
state[t_] = O;

In Mathematicat_ signifies the fact that is the variable in the function that
is being defined. We assume that we startiate0, with the rods 1 and 2 both
available for cooling, hence the clocks andx, are initialized to the (constant)
valuesT; andT> (time units), respectively.

As usual, the guards are boolean conditions, which we test for the Vialueo
In the implemented TCS model, the first guard has the form

guardlsolution = InequalitySolve|
state [t] == 0 &&
0[t] == 0u &&
X1 [t] >=T &&
t >= start && t <= EndTime,t

]

Here, we are using the Mathematica built-in functinequalitySolve to deter-
mine the next moment or moments in time at or aftetw, when all the conditions
of guard 1 become true: the system is in state 0, it has reached the criticalrtemp
ature and rod1 is available. As a result of solving the simultaneous inequaléies
obtain a list callecdyuardisolution, which contains the empty set, or a collection
of discrete times and/or finite or infinite ranges of times for which the conditions
hold. This list is passed to a subroutine that picks out the earliest time at which
guard 1 becomes true.
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Similarly, the body of action 1, should we decide to take that action, is given
by the following expressions:

clt_] = t— now;

0t_] = 0w —uvxclt];
state[t_] = 1;

start = now

The main task of the simulation is to go through the guards one by one and deter-
mine whether they will become true at some point in time in the future. In case
there are several solutions to a guard, the minimum of these times is selected, be
it a discrete value or the starting value for a closed range. After this, the nmmimu
times for all guards are compared, and the smallest of these with the aordesp

ing action body (or actions bodies) is (are) chosen. In case the ntxh @& one
particular action, we will take that action, update the value@b and solve the
guards over again. In case several guards become true at thestartimof time,

all corresponding action bodies are of course possible, and the @sieid to sup-

ply the choice of action to be taken. In addition, a random mode is programmed,
in which case a choice among multiple possible actions is made by the simulator.

5.1.4 Simulation Results

The essential information gained by the above procedure is a list of time moments
at which some action has been taken in the model, a corresponding list afsactio
and lists with symbolic values for the discrete and continuous functions ofGlge T
hybrid model: the system state, the temperature of the re@gtpas a continuous
piecewise linear function, and similar functions for the cloek&) andzo(t). An
artificial upper time limitt,,,,,. = 100 was supplied in case the simulation would

go on forever. The results presented below are all computed automaticittiy
seconds.

Parameter set 1.Given the parameter values
T1=6,Ty=2T=60v =4,03=30,=6,00=0,6,, = 3,0, = 15,
which satisfy condition (5.1), two of the lists mentioned above are the following:

now = {0,5/2,11/2,15/2,23/2,27/2,33/2,37/2,
45/2,49/2,55/2,59/2,67/2,71/2,77/2,
81/2,89/2,93/2,99/2,103/2,111/2,115/2,
121/2,125/2,133/2,137/2,143/2,147/2,
155/2,159/2,165/2,169/2,177/2,181/2,
187/2,191/2,199/2}
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theta(t) : {6t,25 — 4t, —30 + 6t,75/2 — 3t, —66 -+ 6,
69 — 4t, —96 + 6t,141/2 — 3¢, —132 + 6t,
113 — 4t, —162 + 6t,207/2 — 3¢, —198 -+ 6,
157 — 4t, —228 + 6t,273/2 — 3t, —264 + 6t,
201 — 4¢, —294 + 6¢,339/2 — 3t, —330 + 6t,
245 — 4t, —360 + 6¢,405/2 — 3t, —396 + 6t,
289 — 4t, —426 + 6t,471/2 — 3t, —462 + 6t,
333 — 4t, —492 + 6,537/2 — 3t, —528 + 6t,
377 — 4t, —558 + 6t,603/2 — 3t, —594 + 6t}

Using the first parameter set, the graphical results of the simulation are the
plots in Figures 5.4 to 5.6. The vertical lines in the graphison(t) andstate(t)
are purposely drawn to guide the reader’s eye. In this first caseinidasion did
not reveal any unexpected behavior, instead it showed a regular tietedibr of
the state variables.

theta action
4
14
12 3
10
8 2
6
4 1
2
t t
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Figure 5.4: The timed behavior 6fand the executed actions (parameter set 1)
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t t
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Figure 5.5: The timed behaviors of clocks andzs (parameter set 1)

Parameter set 2. Under a different set of values that violate the condition (5.1),
that is, the same set as above excEpt 8, the simulation shows that the reactor
will reach the shutdown state. Action 5 becomes enabled atttime7/2, since
neither of the rods is available (see Figure 5.7). Similar to the first caseweer
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also get the graphical representations in time, of all the model variablesteBig
5.7, 5.8 and 5.9 show the respective graphs.

20 40 60 80 100

Figure 5.6: The state as a function of time (parameter set 1)

Consequently, the simulation GfCS confirmed our guess: if the parameters
do not satisfy condition (5.1), the system will eventually reach the shutdtate.
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Figure 5.7: The timed behavior 6fand the executed actions (parameter set 2)
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Figure 5.8: The timed behaviors of clocks andz, (parameter set 2)

Parameter set 3.Now, let us replace the heating rate= 6, with v, = 2, in the
first parameter set, while keeping the other parameters the same. Thig ¢fiew)
rise to a simulated situation of having both cooling rods simultaneously available,
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at some point. Formally, this translates into actions 2 and 4, of the model in Figure
(5.3), becoming enabled at some same moment. This scenario is exposed by

the simulator, which presents the user with the choice dialog box, updated to the
current situation. This particular case is shown in Figure 5.10.

state

t
2.5 5 7.5 10 12.5 15 17.5

Figure 5.9: The state as a function of time (parameter set 2)
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Figure 5.10: The dialog box corresponding to nondeterministic choice.
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5.1.5 Simulation of the Two-Tank Action System

We return to the two-tank example of chapter 4 and give its complete actiomsyste
model. Observe that here, the analytic solutions to the differential equatiens
given, rather than the equations themselves.

Tanks (5.2)
= begin var z;,z : Real; — Real,

up : Real; — {0,1,2},
Uiy, Ugy : Realy — {0, 1},
Uy, ...,u14 : Realy — Bool,
¢ : Real; — Realy, now, now, : Real; ¢

now:=0;c:— (X-t);ap:— (At-1) ;25 :— (M- 1/2%axct);

Wiy, Up i — (At~ 1) 5 Upp :— (AE-0) s ut, ..., uta : — (A - false) ;

now = min{t' > now| gg.t'} ; now. := now ;

do[ [1<i<14:A;;UT;Check]od

end : v;, v,

where:

Ay = —wur.now Al < zp.now <IN xzg.now =1
— up :— (At - true) ;c:— (At -t — now);
Uiy :— (AL 1) 5up :— (AL 1) 5 upy :— (AL - 0);
xp i — (At - xp.now + 2/7 * (v; — ) * c.t);
Tgi— (At-1+1/2%axc.t)

Ay = —ug.now A1l < zpnow < IN1 < xzg.now <9
— ug:— (At -true);c:— (At -t — now);
Uiy, Up, Uoy = — (AL - 1);
xp :— (At - zp.now + 2/7 % (v; — @) * c.t);
xs:— (At - zgnow + 1/2 % (a0 — o) * c.t)

As = —wus.now A (zp.now > 9V xsnow > 9)
— abort

Ay = —~ug.now A1 < zp.now <4.5AN4.5 < xs.now < 9A
Ujy.nOowW = 1 A up.now =1 A ugy.now =1
— ug:— (At -true);c:— (At -t — now);
up :— (At - 0);
xp 1 — (At - zp.now + 2/7 x v; * c.t);
Ts:— (At zs.now — 1/2 % v, * c.t)
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As

Ag

Ao

—us.now A 4.5 < xp.now < 9N 1 < zs.now < 4.5A
Ujp.now = 1 A up.now =1 Aug.now =1
— ug :— (At - true) ; c:— (At -t — now);
up :— (At - 2);
xp i — (At - xp.now — 2/7 x (v; — @) * c.t);
Ts:— (At - ze.now + 1/2 % (o0 — v,) * c.1)

—ug.now A1 < xp.now < 9A xgnow =9
— ug:— (At -true);c:— (At -t — now);
Uiy 1 — (At~ 1) jup i — (AL 0) 5 ugy :— (AL - 1);
xp 1 — (At - xp.now + 2/7 x v; * c.t);
xg:i— (A9 —1/2%v, % c.t)

—ur.now N xp.now = 1 A xg.now =1
— w7 :— (At-true);c:— (At -t — now);
Uiy i — (At - 1) 5up i — (At 0) 5 Ugy :— (AL - 0);
xp:— (At- 1+ 2/Txv; % c.t);
xs:— (At - z5.n0W)

—ug.now A rp.now =1 A1 < xg.now <9
— ug :— (At - true) ;c:— (At -t — now);
Uiy :— (AL 1) jup :— (AL 1) 5 upp :— (AL - 1);
xpi— (M- 142/7% (v; — @) xc.t);
xs:— (At - zg.now + 1/2 % (a0 — v,) * c.t)

—ug.now A xp.now =1 A xg.now =9
— ug :— (At - true) ; c:— (At -t — now);
Uiy :— (AL 1) jup :— (AL 0) 5 upy :— (AL - 1);
xp:— (A 1+ 2/7 % v; % c.t);
Ts:— (A9 —1/2% v, c.t)

—u19.now A xp.now = 9 A xg.now =1

— up :— (At - true) ;c:— (At -t — now);
Uiy 1 — (AE-0) s up :— (AL - 2) 5 Ugy :— (AL - 0);
xp:— (At-9—4/T* axc.t);
xs:— (M- 1+axct)

—u11.now A rp.now = 9N 1 < xs.now < 9

— uyp i— (At -true) ;c:— (At -t — now);
Uiy :— (AL 0) 5up :— (AL 1) 5 upp :— (AL - 1);
xp:i— (A9 —2/T*axc.t);
Ts:— (M- zg.now + (o — v,) /2 * c.t)
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Ao = —upg.now A xp.now =9A1 < xzgnow <9
— ujg:— (At - true) ;c:— (At -t — now);
Uiy :— (AL 0) s up i — (AL - 2) 5 Ugy :— (AL - 1);
xpi— (A9 —4/Txaxc.t);
zs:— (At zs.now + (a0 — v,/2) * c.t)

A3 = —uyz.now A xp.now = 9 A xg.now =9
— uyg:— (At - true) ;¢ :— (At -t — now);
Uiy :— (AL 0) 5up :— (AL 0) 5 upy :— (AL - 1);
xp 1 — (At - xp.now);
Ts:— (At-9 —1/2% v, xc.t)

A1y = —ug.now A xp.now < 1
— abort

Check = if now # now. then uy,...,u14 :— (At - false) ; now, := now
else skip

In order to visualize the behavior of (5.2), we have implemented the model
(5.2) in the language of Mathematica, and simulated it up £ 300 time units,
with our symbolic tool introduced in section 5.1.1.

In the scenario that we describe here, we assume that, initially, there is a mini-
mal amount of liquid in the buffet;;, = 1 m; the inlet valve is opened, the outlet
valve is closed, and the pump functions at low speed and transfers liquié to th
supply. The liquid level in the supply increases as follows— (At-1/2xax*c.t).

Also v;, v,, o have their nominal values, that is,= v, = o = 1 m3/min.

Without changing the semantic model (5.2), we implement the aCthenk as
anlf statement, available in Mathematica’s programming language. The statement
below is executed after each computatiomofv:

If [now ! = nowcopy, ui[t_],...,u1aft_] =0,
(u1[t=] = u1[t] ;... ; u1a[t_] = u1a[t] ; nowcopy = now)]

The corresponding lists with the simulation results for the described scenario
are given in Figure 5.11.

The continuous evolution of variables, =, and clocke, as well as the actions
of (5.2) that were executed during simulation, are all drawn as graphigimds
5.12 and 5.13.

If one refines (5.2), so as to strengthen some of the guards and skethede-
havioral nondeterminism, one may attempt to identify the upper and lower bound
of the system parameters, by simulation. Such information might be usefugen ca
one wants to change parameter values for optimization purposes. Smarafios
have been simulated, out of which it results, as expected, thatif).5 m? /min,
for nominal values; = v, = 1 m3/min, the levels in both tanks exceed the max-
imum of 9m. Hence, actiords becomes enabled and the system aborts execution.
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now list : { 0, 2, 30, 38, 54, 54, 54, 54, 68, 82,
98, 112, 112, 126, 126, 142, 158, 170, 170, 182,
198, 214, 222, 222, 230, 246, 246, 260, 274, 290, 300}
clock list : { t, -2+t, -30+t, -38+t, -54+t, -54+t, -54+t,
-54+t, -68+t, -82+t, -98+t, -112+t, -112+t, -126+t,
-126+t, -142+t, -158+t, -170+t, -170+t, -182+t, -198+t,
-214+t, -222+t, -222+t, -230+t, -246+t, -246+t, -260+t,
-274+t, -290+t, 10}
xpb list : { 1, 0.428571 + 2t/7, 26.1429 - 4t/7, -6.42857 + 2t/7,
9, 39.8571 - 4t/7, 24.4286 - 2t/7, 39.8571 - 4t/7,
-18.4286 + 2t/7, 5, -23 + 2t/7, 41 -2t/7,
-73 - 4t/7, -35 + 2t/7, -35 + 2t/7, 5.57143,
-39.5714 + 2t/7, 57.5714 - 2t/7, 106.143 - 4t/7, -49.8571 + 2t/7,
6.71429, -54.4286 + 2t/7, 72.4286 - 2t/7, 135.857 - 4t/7,
-61.2857 + 2t/7, 79.2857 - 2t/7, 149.571 - 4t/7, -73.2857 + 2t/7,
5, -77.8571 + 2t/7, 7.85714}
xs list : | 0.5 t, 1, -29 + t, 28 - t/2, -26 + t/2,
-53 + t, 1, -26 + t/2, 42 - t/2, -40 + t/2,
58 - t/2, 2, -54 + t/2, 72 - t/2, 72 - t/2,
-70 + t/2, 88 - t/2, 3, -82 + t/2, 100 - t/2,
-98 + t/2, 116 - t/2, 5, 106 + t/2, 124 - t/2,
1, -122 + t/2, 138 - t/2, -136 + t/2, 154-t/2, 4}
Figure 5.11: Two-tank simulation results as symbolic lists.
XS
xb
8
8
6
6
4
4
2 2
t t
50 100 150 200 250 300 50 100 150 200 250 300
Figure 5.12: Timed evolutions afy, x;.
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Figure 5.13: Timed evolutions efand the executed actions.

However, in order to confirm or refute this claim, one should proceedrtodb
verification, as done in the TCS case-study. The overflow situation issepted
graphically in Figure 5.14.

We have also observed that the system tends to swing less between extreme
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Figure 5.14: Overflow in both tanks (= 0.4 andv; = v, = 1).

values if initially 2, > 1.

Discussion. Complex continuous system dynamics can be describetbhin-
ear differential equations. To be able to simulate and reason about sucimsyste
one needs to find the solutions of the respective equations. Solving tieensyt
equations at run-time is more complicated.

For example, in Mathematica, one can use the fundii@olve to find sym-
bolic solutions to ordinary differential equations. Solving a differentialagpn
consists essentially in finding the form of an unknown functi@&olve returns
as its result a rule, which gives the independent variable as a purgofunchen,
by applying the respective rule to all occurrences of the independgiatle in a
certain differential equation, by using the Mathematica comnesmpd/. rule, one
can extract the solution as a function of time.

For simulating nonlinear CAS models, we have to apply such a procedure at
run-time. Our experience has shown that it may be successful only$terss
with simple nonlinearities. For more complicated cases, the tool is not able to
carry out the simulation by using symbolic solutions. In such cases, onddsho
perhaps resort to numerical solutions, and apply interpolation.

5.2 Parameter Synthesis

As seen in section 5.1.2, the temperature control system is parametric in, nature
meaning that it is supposed to work correctly only for specific values ohitam-
etersvy, v2, Uy, O, Ops.
Let us now assume that we are confronted with a situation where it is not triv

ial to guess the sufficient relation between parameters, which wouldesosuect

and safe system functioning. In such cases, one needs to find a vegyntoe-
sizingthe right parameter values or relationships. To accomplish this goal, here
we apply the well-known deductive method of reachability analysis by pgoaim
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invariance property. We show next how invariance checking can éx tasdeter-
mine the weakest relationships between model parameters. This method is mixed
with an incremental way of constructing a sufficiently strong invariant, tjred
information to an initial property. The latter encapsulates an approximatioreof th
basic behavior of the hybrid system under analysis.

A states’ is reachable from the stateif there is a run of the hybrid system that
starts inc and ends i’ [7]. Usually, we want to prove that some bad condition
is not reachable. This we can do by proving that some conditigman invariant
of the system, and thdt = —g. Since the target system is parametric, we expect
that/ = —g is not satisfied unless some relatiBrbetween parameters holds. As
every reachable state satisfieghis then shows that every reachable state satisfies
—g, that is, a state whergholds cannot be reached.

Formalizing the above scenario, we describe next the proposed paragrete
thesis method.

Deductive Reachability Analysis. Assume the action system

A .
= begin var start,now : Real;,x : Realy — T, ¢

Sys(z : Real, — T))
now = 0; start := now ; Sy ; UT ;
do g1.now — S1;UT | ... | gn.now — abort od

end:plv" -y Pm

with pq, ..., p,, parameters, and
UT £  start :=now ; now := min{t’' > now | gg.t'}

Also, assume thaf is a fixed invariant ofSys. This means that the following
conjunction holds:

(true {{now := 0; start :== now ; Sy ; UT|} I) A
(g0 AT ISt UTH D) Ao A (gt AT 1Sur s UTT 1)

Then, the problem of synthesizing the conditions that the parameters should
satisfy reduces to finding a sufficient relatiB(ps, . . . , p, ), other tharfalse, such
that
(I = —~gn) < R(p1,- .-, Pm)

The construction of the invariant mentioned above follows an incremerital pa
tern, which starts with a basic invariant that characterizes the functiehalvior
of the hybrid system. Then, this initial invariant is strengthened by other non
conflicting invariants (that isl, == —1;). Each added property incorporates new
information with respect to a state variable.

Hence, our method follows closely the deductive approaches to verificatio
which therule of invariancds applied for proving an invariance property [44, 104].
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Although the method is suited for such purposes, the creativity requirGddisg
sufficiently strong invariants makes it more difficult to apply.

Abstract interpretatiorj66] carried out through predicate abstraction has been
recently applied by many researchers, for computing approximations of d time
model [89, 142]. The approximation predicates are computed via stepsfise-r
ment. One could for instance use this method as an automated way of finding
suitable invariants for parametric CAS.

Alternatively, symbolic reachability analysis techniques, as implemented in the
model-checker TREX [48] can be applied for parameter synthesis. fedpol
HYTECH [87, 88] could be employed for a similar task. Nonetheless, model-
checking algorithms may fail to terminate due to several potential causes:enumb
of clocks, parameter types and ways in which parameters are related.

5.2.1 Applying Deductive Synthesis on the Temperature Contl Sys-
tem

Returning to our nuclear reactor example, we recall that if the temperadeeseto
its maximum and can not decrease because no rod is available, a comptete shu
down is required.

Let us remind the reader that the following relations hold:

A0 = 0y —6,  (maximum temperature difference
. = Af/v, (time to increasé from 6,,, to 6,/)
n = Af/v (cooling time using rod}L
T = Af/ve (cooling time using rod?

Here, we assume that we could not figure out the correct relationghgr,than
T > T, of parameters,., 7, 7o, T', which guarantees that the shutdown condition
never holds. Consequently, we embark on synthesizing the respesttiem, by
applying the combined method of incremental invariant construction, and-inva
ance proof. The problem is to find theeakesparameter relationship. According
to the method presented in the previous section, we need to build an invaaant th
satisfies

I = —(state.now = 0 A O.now = Oy A z1.now < T A xg.now < T)
<~ R(TT7T17T27T) (53)

Proof Technique. In general, as also demonstrated in the previous chapters, one
should employ the weakest precondition semantics of statements for proong p
erties of (continuous) action systems. However, here we decide td repooving
invariance byforward analysiswhich assumes computationsstifongest postcon-
ditionsof statements, with respect to a given precondition.

Our decision is justified by the fact that timed weakest precondition compu-
tations are long and difficult to follow (see Appendix A-5). Even if, in piite,
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forward analysis is weaker then backward analysis, we are backed iohtbice
by the fact that all the statements that we are reasoning about, in this particula
example, are assignments, hence they terminate. Also, since there ardeio un
fined expressions, one does not run the risk of not catching abortiexeoution
of statements. The third reason has to do with lack of automation - currently, we
do not have a tool for performing weakest precondition computationsAd C

Let us assume the Hoare trip} S {¢}, p, ¢ predicates, denoting ttgartial
correctness of with respect to preconditiop and postconditiorg. Introduced
by Dijkstra and Scholten [72], th&trongest postcondition predicate transformer
denoted byp.S.p, holds in those final states for which there exists a computation
controlled bysS, which belongs to the clasmitially p” . Proving the Hoare triple
reduces then to showing thaip(S.p = ¢) holds. Thestrongest postcondition
rulesfor the assignment statement, and for sequential composition are as follows:

sp.(x:— (Mt-e))plx) = z=A-e)A 3z p(x))
sp.(S1;52).p = sp.S2.(sp.S1.p), Vp

In the following, we apply this technique as such.
Basic Invariant. We start by generating the statechart of the temperature control
system, just to get a first approximation of the invariant. Then, we keeipgdd
information to the system states, in order to figure out an invariant stramggén
to ensure safety, provided that some relatitir,, 71, 72, T") holds.

Figure 5.2 shows the states that the system can be in, and the properties that
hold in each state. It is essentially a hybrid automaton view of the temperature
control system, and it describes a first system property as follows:

I £ (vte[start,now) (5.4)
(state.start = 0 = (state.t =0 A
df/dt = v, A
dzry/dt = 1A
dxa/dt =1 A

0.start = O, A (x1.8tart = 0V xg.start = 0)))
A (state.start =1 = (state.t =1 A

do/dt = —v1 A
dl’l/dt =1A
dl‘g/dt =1A

0.start = Opr A\ xy.start > T))
A (state.start = 2 = (state.t =2 A

df/dt = —vgy A

dxy/dt = 1N
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d:l)g/dt =1A
0.start = Oy A\ xo.start > T))
A (state.start = 3 = (0.start = Oy Axy.start < T Axg.start < T)))

Lemma 3 The predicatel defined by (5.4) is an invariant of the action system
TCS, described in Figure 5.3. [

The invariant thus shows the basic continuous behavior in each statell as w
the discrete transitions. It is easy to check th&tS has the properties mentioned
in (5.4). By inspecting each guard and action body'6fS, the fact thatl is an
invariant follows trivially.
Finding a Stronger Invariant. The invariant/ that we have just extracted is not
good enough, as condition (5.3) is not satisfied for &ty,, 71, 72, T') other than
false. Thus, we need to strengthérurther.

Adding information on top of the basic behavior, encapsulated in predicate
(5.4), leads to a new invariant. We add the propérty 6,,, which is part of the
safety condition, to each state, respectively. Then, we get:

I' = (Vte [start,now)*
(state.start =0 = (6.t < by A

state.t = 0 A
df/dt = v, A
dey/dt =1 A
dxa/dt =1 A
f.start = O, A (z1.start = 0V za.start = 0)))

A (state.start =1 = (0.t < Op A
statet = 1A
df/dt = —vy A
dxy/dt =1 A
dxo/dt =1 A
f.start = Oy A\ x1.start > T))

A (state.start =2 = (6.t < Oy A
state.t =2 N
df/dt = —vy A
dxi/dt =1A
dxa/dt =1 A
0.start = Oy N xa.start > T))

A (state.start = 3 = O.start = Oy A xy.start < T A xa.start < T))
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Lemma 4 Predicatel’ is an invariant of’C'S.
Proof. Let us show that:

I, & (Vt € [start,now) *
(state.start =0 = (0.t < Op1 A state.t =0))
A (state.start =1 = (0.t < Oy A state.t =1))  (5.5)
A (state.start =2 = (0.t < Oy A state.t = 2)))

is a property of the temperature control system.

We apply standard forward analysis (of computing strongest postcomsl&i®
shown above) on the translated model of the TCS. Thus, we have to traive
Iy, given by (5.5), is established by the initialization statement, and that it is also
preserved by each action. We show here the proofs for the initializatitenstat
and for action 1 (cooling with rod1). The calculationg@f needed in the proof is
also outlined. We assume that, vy, v, € Realy — {0},6,, > 0,05 > 0, and
0y < 6. We also assume that the choice of the rod to use as coolant is demoni-
cally nondeterministic, in case both rods are available.

(5.5 a) Initialization. We have to prove thatue {.Sy; UT'[} Iy holds, where5 is
the initialization statement &f C'S. Becauses, ; UT terminates, we will actually
prove that{true} Sy ; UT {1} holds.

The initialization statement establishes the following strongest postcondition,
sp.(So ; UT).true:

now =0
state = (At - 0)
c=(At-t)

xr1 = (/\t~T1 —i—C.t)
To = (/\t'TQ—i-C.t)
0= (N-0g+vrxt)

start = now

> > > > > >

A now' = min{t' > now | gg.t'}

We assume thatp.(Sy ; UT).true holds. Next, we need to make sure that the
partial invariantly is satisfied after the initial assignments. Thus, we have that

Iy[start :== 0,now := now’, state :— (At - 0),0 :— (At - Oy + v, * t)]
= { substitute updated variables in the invarjant
(Vt € [0,now’)

(At-0).0=0= (At-0g+v,%t).t <Oy A(A-0).t =0
AE-0).0 =1 = (At -0+ vy % ).t < Oy A (M- 0).t =
ANE-0).0 =2 = (At~ 0g + v, % 1)t < Opr A (M- 0).t = 2)
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{ A reduction, logic}

(Vt € [0,now’) * Oy + v, xt < Opr)

true

{now’ = min{t’ > 0|0y + v, xt' = Oy}, assumptiordy < 0}
(Vt,() <t< (HM —
= {logic }

00)/vr * vp %t < (01 — bo))

In the outlined proof, we had to evaluate the disjunction of the guards, at time
t’, to be able to depict the exaebw’. To make the calculation explicit, let us first
see what the expressigg.t’ actually translates into:

ggt =
A
A
A

&~ &~

o~ o~ o~ o~ o~

At - statet =0AN0t =0y Azt >T)t'V

statet =1 N0t =0,,).t'V

statet =0N0.t =0y ANxot >T)t'V

- statet =2 N 0.t = 0,,).t'V

At -statet =0AN0.t =0y Aoyt <T Axot <T).t

Returning to our particular case, we then have:

gg.t'[0 :— (At - Oy + v, x t)]

ggl0 :— (At -0y + v, x )]t/

{(state.t' =0 N (At -
(state.t’ = 1A (Mt -
(state.t’ =0 A (Mt -
(state.t’ =2 A (Mt -
(state.t’ =0 A (At -

Op + v xt)t' =0y Azt >T)V
Op + vy % t).t' = 0,) V
Op +vp %)t =0y ANaot! >T)V
Op + vy % t).t' = 0,) V

Ho—l—UT*t). IZQM/\.%‘l.t/ <T/\33‘2.t/ < T)}

gg0 :— (Mt -0y + v, x t), state :— (At - 0)].t/

{A-reductior}

0=0A0g+vxt' =0y N1t/ >T)V
0=1A0+v. 5t =0,)V
(0=0A0p+v.xt =0y ANxot! >T)V
(0=2A0p+v, xt =0p,)V
0=0A0+v.xt' =0y Ayt <T Aot <T)

{logic}

(0=0A0)+v.xt' =0n)

{logic}
O+ v, %t =0y
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Thus,Iy holds after the initialization, which means that it holds from moment 0
until the next moment wheth= 6,,. In the following, we compute the verification
condition for the first action (cooling with rodl) and show that it preseme
invariant.

(5.5 b) Cooling with rod1. We assume thafy holds on[start, now), thatg; is
true and that the local variables have been updated by the assignmembotith
of action 1. Thus, we affirm the strongest postconditipriactionl).ly:

(3 start, now, state, 0, c - (¥t € [start,now) - Iy))
state.now = 0 A @.now = Oy A x1.now > T

d = (\t-t—now)

0" = (Mt -0y — vy % c.t)

state’ = (Mt - 1)

start’ = now

> > > > > >

now' = min{t' > now | gg.t'}

We now check whether the added informatikyris true after the assignments
of action 1. Hence, we have that

Iy[start := start’,now := now',c:— c,0 :— @, state : — state’]
{ definition of I}
(Vt, start’ <t < now'
state’ .start’ =0 = (0'.t < 0y A state’ t =0) A
state’ .start’ =1 = (0.t < 0y A state’ t = 1) A
state’ .start’ =2 = (0.t < 0y A state' .t = 2)
{ replace updated variablesute’, §', A\-reduction,

computenow’ = now + 7 }
(Vt,now <t < (now + 1) *
1=0= Oy —v1 x(t —now) <Oy A1 =0) A
l=1= Oy —v1x(t—now) <Oy AN1=1)A
1=2= (Op —v1 % (t —now) <Oy AN1=2)
= {logic}
(Vt,now <t < (now +11) * Oy — v1 % (t — now) < Oyr)
= {0 =0y — v1 x (t — now) is decreasing starting frofin,, v; > 0,
(t — now) > 0}

true
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The calculation ofyg.t’, in this case, is as follows.

gglstate :== (At - 1)].t/

= {(M- D)t =0A0t =0y N1 ' >T)V
(M-t =0n0t =0,V
(M-t =0AN0 =0y Aot >T)V
(M-t =0A0 =0,,)V
(MDA =0A0 =0y ANzt <T Aagt! <T)}
= {A-reductior}
1=0A0t =0y Aot >T)V
M 1 =
(1=1A01=0,)V
1=0A04t =0y ANaat! >T)V
(
(1=2A0t =60,V
(1=0A0t =0y N1t <T ANaot' <T)
= {logic}
0.t =0,
0 1
0=0yrx; 2T
40/ dt=v, T ode/di=-v,
dx, /dt=1 0=0, dx, /dt=1
dx,/dt=1 dx, /dt=1
x;:=0
0<0y 0<0y
=0, 0= 0y
X120 A%y T 0=0yrx;<TAXx,<T
y
2
do/dt=-v, 3
dx, /dt=1
dx,/dt=1 shutdown
6< 6y,

Figure 5.15: TCS state transition diagram with added prop@ryf,;.

Given the above, we have proved that action 1 presefyesConsequently,
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now, I’ = I A Iy is preserved after transitioitate0 — statel. The proofs for the
other possible safe transitions are similar, and are omitted here. The uptitted
transition diagram is shown in Fig. 5.15. [ |

Constructing the Final Invariant and Synthesizing the Constraints on Param-
eters. Our final goal is to provide sufficient assurance that the system es/olve
the safe side. Recall that the safety property reduces to proving fatsintany
state,d < 6,,. Moreover, whenever the system isdtute0 andd = 6,,, there
should always be (at least) one rod available for cooling:

state =0NO0 =0y = (x1 >TVay>T)

The latest invariant’ is still too weak to fulfill requirement (5.3), for any other
R exceptR = false. Thus, we keep on adding information and strengthening
the invariant. Clearly, the information that is missing addresses clocksd -,
which measure the elapsed time since the latest use of rod1 and rodZ2tikedpe

0
1

do/dt=v, 0=0yAx, 2T
dx, /dt=1 AN d6/dt=-v,
dx,/dt=1 gxljgtzl
X, /dt=1
now — start =1,
0=06, now —start =,
Vt € [start, now) ® 0.t <Oy A « =0
((x).t = t—start A X,.t =T, + T, + t — start) I Vt € [start, now) *
V (Xt = t—start A X;.t 2 T, + T, + t — start)) 0.t< Oy A Xyt 2T, + t — start
A
0=0, 06
=0yAx, 2T
Xy =0 Mo 0=0yAx; <TAX,<T
v

2

do/dt=-v,
dx, /dt=1

dx,/dt=1 false

now — start =T,

Vt € [start, now) ®
0.t <Oy A Xt 2T, + t—start

Figure 5.16: TCS statechart with properties regardingc.

Besides properties af; andz,, we also add corresponding information about
the time interval betweestart andnow, in each state. For example, considering
state0, one knows that any transition from this state to any other reachable state is
triggered by the equalit§ = 6,. The necessary time férto increase td,, is 7,
therefore it is obvious thatow — start = 7,.) is a property ofstate0. We carry
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out similar judgements fastatel andstate2, and we add this new information to
the latest system diagram. As a result, we get the diagram of Fig.5.16.

We denote the new property Wy:

I, (5.6)
= (Vt € [start, now) *
(state.start=0=
(((x1.t =t — start N\ xa.t > 7 + 11 +t — start)
V(zo.t =t — start \ x1.t > 7, + 12 +t — start))
A(now — start = 7,)))
A (state.start = 1 =
((xo2.t > 7 + t — start) A (now — start = 11)))
A (state.start = 2 =
((x1.t > 7 + t — start) A\ (now — start = 12)))
A (state.start = 3 = false))

Then, we can claim the following lemma.

Lemma5 The predicatdy = I’ A I, is an invariant of7CS.

Proof. For brevity, we are going to prove that condition (5.6) is preserved igfter
leasing rodl, that is, after transitietutel — state0, whenz; is reset. The proofs
for the initialization statement, and for cooling with rod1 or rod2 are simpler, thus
we omit them. However, one needs to choose the valug€$ ahdT5, so thatl,
holds right from the beginning. This means that we can have eifher(r, + »
andTy = 0), or (I, = 7 + 71 andT; = 0). Even without this choice, the invariant
will hold after both rods have been used once.

We assume the following strongest postcondition:

(3 start, now, state, 8, c, x1,xo - (Vt € [start,now) - I' A I,))
state.now = 1 A @.now = 0,,

d = (\t-t—now)

i = (M-t — now)

0" = (Mt - O + vy % C.t)

state’ = (Mt - 0)

start’ = now

> > > > > > >

now’' = min{t’ > now | gg.t'}

100



After the respective updates, we have that

I.[start := start’,now := now', state :— state’, x1 : — z]
= (Vt € [start’,now’) *
state'.start’ =0 =
(2.t =t — start’ Nxo.t > 1.+ 11 +t — start’)
V(xo.t =t — start’ ANx|.t > 1. + 1o +t — start’))
A state'.start’ =1 = (x9.t > 7, +t — start’)
A state’ start’ = 2 = (z1.t > 7 + t — start’)
A state’ .start’ = 3 = false)

{start’ = now, state’.now = 0, logic}
(Vt € [now,now’) *
(z)t =t —now A zo.t > 7+ 7 +t—now)
V(zgt =t —now Azt > 7.+ 1+t —now))
{substitutingz} .t = t — now, logic}
(Vt € [now,now') * xo.t > 7, + 71 + t — now)

{state.start = 1,z9.t > (1, + t — start) in [start, now),

thuszs.now > (7'7« “+ now — start) = T9.MOW > T, + T1,
dxo/dt = 1in [now,now’)}

true

Above,

gglstate :— (At - 0)].t/
{substitutior}

O=0A0t =0y ANzt >T)V
0=1A04=0p)V
(0=0A0.t' =0y ANaot' >T)V
(

(

0=2A0t=6,)V

0=0A0t =0y Ax1.t' <T Axot' <T)
{logic}

0.t =0

Therefore, we have proved our claim.
Action 4 (release rod2) is symmetric to action 2, hence, following the same
line of proof, the invariant also holds after transitigiate2 — state0. [ |

We are left with showing thalt; is sufficient to satisfy (5.3), that is

(If = _'95) <~ R(T'I’>7_177-2a T) (57)
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Condition (5.7) reduces to:

(Vt € [start,now) *
state.t =0 = (((x1.t =t — start A xo.t > 7, + 11 + t— start)
V(ze.t =t — start N x1.t > 7,4+ 7o+ t— start))
A now — start = ,))

= —(state.now = 0 A 0.now = Oy A z1.now < T A xg.now < T)

{now — start = 7, in state0}
(x1.now = 7, A xe.n0W > 27, + 11) V
(xg.now = 7, A x1.n0W > 27, + T3)
= (x1.mow > TV z9.now >T)
= {logic}
(xg.now > 27, + 71 V x1.n0Ww > 27, + T3)
= (z1.now > TV xe.now >1T)
{logic}
2T, + T > T A2, +19 > T

This result implies further that, if parametearg v, v, andT" are chosen to
satisfy the synthesized relation, the undesired shutdown state is noabéachm

5.3 Summary and Related Work

In this chapter we have, first of all, presented a simulation tool for hylysd s
tems modeled as CAS. We have built the tool using Mathematica, a commercial
program [156]. The tool takes a description of any CAS as input, aadges
automatically a symbolic simulation of the system, up to a given maximum time.
The restrictions on the simulation are essentially those of Mathematica. Never-
theless, more efficient algorithms for evaluating action systems guardsmbed
implemented.

Symbolic manipulation is an efficient way of simulating a model execution.
Plotting the discrete and also continuous model variables as functions of tithe, w
infinite precision, makes the simulation available even without knowing the sam-
pling period to be used for the actual implementation. Thus, in many casebur to
eliminates the need for introducing tolerances in the model. This is true especially
when the physical phenomena of the hybrid system are described bydiffea
ential equations. In case the hybrid model is nonlinear, Mathematica cdukl so
the respective nonlinear differential equations either symbolically or riaadigr
It then follows that, in case we get a numerical solution, we need to intradiice
erances in our action system model and rely on an approximation of theibeha
of the variables.
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We have applied our simulation technique on two case studies: the tempera-
ture control system of a nuclear reactor core, which uses two indeperatls for
cooling, and a two-tank control system. In the first example, given aicestd
of parameters, the objective of the simulation has been to make sure that the re
actor never reaches a critical temperature without at least one of thiagconds
being available, to avoid a shutdown of the reactor. The simulation resultschelp
in correlating the model with the actual system behavior.

One of the main advantages of using CAS for modeling hybrid systems is that
we now have both a solid proof technique for proving properties of theesys,
as well as a powerful simulation technique that we can use to analyze plode=x
the systems. Simulation can either be used as a precursor to more compeehens
proofs, to iron out bugs in the model, or as an alternative to a completectoess
proof.

Still in this chapter, we have showed how the usual deductive technique of
proving inductive invariants is applied on action systems with explicit time. We
have done this in order to synthesize sufficient parametric conditions tlaat g
antee a correct operation of the analyzed hybrid system. The methodaelies
strengthening an initial invariant, by adding information regarding systein va
ables. We stop when the invariant is strong enough to make the undegir@d se
states not reachable. We show that this happens if a certain parametimnrela
ship holds. The relationship follows from proving that the invariant implies the
negation of the abort condition. Nevertheless, there is no guaranteaé¢hstic-
cessive strengthening steps will ever achieve this goal, nor is thereusshgnge
as to which predicates to use for strengthening. Even so, the fact thaethed
seems to work on complex hybrid system models might lure one into employing
an additional tool that would facilitate finding suitable predicates. Details on this
issue are provided in the next paragraph.

We have applied the above method for temperature control, giving a formal
proof for a safety property.

Related Work. Many simulation packages have been proposed and applied for
the systematic analysis of hybrid systems [74, 79, 124, 125]. Complieaensr-
views and comparisons of some of the most popular simulation tools for hylsrid s
tems, such as DYMOLA, SHIFT, SIMULINK/STATEFLOW, GPROMS, BASI

etc. are given by Kowalewski et al. [109], and Mosterman [132].

Reachability analysis for hybrid systems is among the most important and diffi-
cult problems. Alur, Henzinger et al. propose algorithmic analysis of systems,
modeled as hybrid automata [7, 14]. Their techniques are based onueximgtr
the reachable region of linear hybrid models. The authors also provaigadhe-
ity and undecidability results for classes of linear hybrid systems (seeldl§})]

For general hybrid systems, the algorithmic analysis can be applied witlincerta
limitations.

Alur et al. [7] use symbolic model-checking techniques, for reachabiligy-an
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ysis of timed automata (see also [92]). The construction techniques areaiiabtr
on the temperature control system that we have also analyzed. The tON®R
[67]is used to automate the computation of the characteristic set of stategpesdic
under particular values of the parameters.

In comparison with the cited approaches, we give a general mathematioél pr
to parametric reachability problem. The method is based on traditional sttonges
postcondition computation, and it is applicable even in those cases wheiarela
ships between parameters can not be guessed. Parametric verificatios ltan-
dled by model-checking tools like UPPAAL [117], and parameter synthasibe
automatically carried out by, for example, HYTECH [87, 88] or TREX [48P-
PAAL can not be used to synthesize constraints on parameters, orld ghesgs
the respective parametric relationship instead, and instantiate it for veoific®n
the other hand, model-checkers HYTECH and TREX are able to perfaranp
eter synthesis, in some cases. For example, as stated by Henzinger @8]Jal. [
systems with complex relationships between multiple parameters and timing con-
stants can quickly lead to arithmetic overflow, when analyzed with HYTECH. In
contrast, analysis with a single parameter is often successful.

Whenever reachability construction fails, the reachability verification method
can be applied [94]. First, the user has to guess (heuristically) thealglaategion,
and then verify that the guess is correct. The method is almost fully automated
(there are no automated guess heuristics), but in case the guessedisegin
directly inductive, new variables and constraints have to be added.

In principle, dedicated model-checking techniques [7] provide only aaras
tion that the hybrid system model satisfies a safety property. Our appriee
other deductive approaches to reachability verification, relies on gy@arinnvari-
ance property. The method offers useful key insights on the systeavioehln
practice, this may be important if one wants to improve the functionality of the sys-
tem, at later stages. Adding information to system states might ease the pybcess
refinement. A major drawback is the task of finding appropriate invariamsis T
for guided invariant generation, like the one within SAL [43] can help tregiesr
overcome this shortcoming. In SAL, the underlying technique of invariant c
struction is based on a combination of least and greatest fixed-point tatiopu
of reachable states [150].

The verification methodology based abstractecautomata developed by Puri
and Varaiya [138] faces the inconvenience that the created abstsadgpend on
the property to be proved. Different properties may require diffeabstractions
of the same hybrid system.

Recently, important progress has been done in the emergent arealalviizy
analysis of hybrid systems vjaedicate abstractiofB, 43]. The technique is based
on abstracting the infinite state-space of a hybrid system into a finite repaese
tion, by identifying each state of the abstract state space with a truth assignmen
to the abstraction predicates [80]. Then, if a temporal logic formula holdghéo
abstracted system, it also holds for the original one.
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Chapter 6

Building Uniprocessor
Priority-driven Real-Time
Schedulers

As proved in chapter 3, in a concurrent system, it is not necessaretifgphe
exact order in which processes execute. The general behavice pfagram ex-
hibits significant nondeterminism. If the program is correct then its fundtiona
outputs will be the same regardless of internal behavior or implementation details

While the program’s outputs will be identical to all the possible interleavings,
the timing behavior will vary considerably [52]. If one of the processesdistrict
deadline, then perhaps only interleavings in which that process is egdiratavill
meet the program’s temporal requirementgeal-time systemeeds to restrict the
nondeterminism found within concurrent systems [52]. This processowik@s
scheduling

A real-time schedulecan be seen as a controller of sets of real-time tasks. It
establishes the order in which tasks are dispatched, decides the starting time o
execution, for each individual task, and it also regulates the taskesado shared
resources.

Task priorities are assigned with respect to predefined algorithms. Howev
their programming discipline is not well supported by existing development tools
[78]. Thus, a mathematically proven correct-by-construction methoduiddibg
generic real-time schedulers could be beneficial. We introduce, in thigechap
such a precise method [58]. Nevertheless, this requires work at a highok
abstraction, that is, without consideration of functionality.

Consideringn real-time tasks7 (1),7(2),...,7 (n) that we assume schedu-
lable, we want to derive a scheduler that controls the tasks such thdtth&io
executions complete by the respective deadlines. We call this conditiaimtée
liness conditiorand we model it as predicate. Given the fact that the scheduler
gives priorities to tasks according to some scheduling algorithm, we denote this
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policy conditionas predicatey,,;. We should also require from the scheduler to
grant the CPU to no more than one task at a time. This isrthially exclusive
execution conditiong, .

In short, we start with a conjunctive specification of the collection of taBkis
model asserts the specific initial states that the system should start frotheif-ur
we enforcethe above mentioned predicates that guarantee a correctly scheduled
system, by applying the refinement rules of assertion propagation apglindgoan
assertion (see chapter 2). Consequently, the resulting system raptieseis free
of assertions, which is indeed what we aim for.

The correctness conditions that should be enforced by the schedeilerod-
eled asalwaysproperties (the scheduler should resgedy; A gme A ¢por)). TO
be able to construct a correct scheduler, we generalize to CAS thetedpesult
proved by Back and von Wright [38]: enforcementabfvaysproperties reduces to
invariance proofs on action systems.

The method leads, eventually, to an implementation of the real-time system
model. We exemplify the proposed construction strategy o#ealine-Monoto-
nic (DM) scheduling policy, which is described in the following section. We con-
sider tasks to be independent; we also disregard any other resouaaiatichan
the CPU.

Employing a similar technique, we also tackle the developmeiaofiest -
Deadline - First(EDF) scheduling programs, for periodic tasks (the mechanism
underlying the EDF algorithm is also discussed in section 6.1). The cotistrie
completed by a simulation-based validation method, where the constructed model
is simulated up to the least-common-multiple of the periods of the participating
tasks. The simulation is carried out with our CAS symbolic simulator introduced
in chapter 5.

6.1 Uniprocessor Scheduling of Real-Time Tasks

In this section, we review the definitions and results of the real-time scheduling
theory, which are essential to understanding the rest of the chapter.

Real-time systems are systems whose correctness depends on bothitheyaccu
of the output result, as well as on the time at which the latter is delivered.

A real-time taskZ (¢) is in general characterized by the following attributes:

e minimum inter-arrival time P[],
e worst-case execution timé&[i],
e deadline D[i], and
e priority, pr[i].
We restrict our analysis to tasks witb[i| < P[i].

The temporal requirements ofterd real-time system imply thatll the par-
ticipating tasks complete the execution by their deadliSedtreal-time programs
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accept arbitrary omissions in meeting deadlines, at run-time, yet within samne pr
defined tolerances with respect to completion times. Moreover, the systénpe
mance degrades directly proportional to tardiness.

Tasks may beperiodic meaning that they arrive at fixed intervals equal to
the periodsP(i], respectively; they can also Isporadic that is, the tasks arrive
irregularly, yet no sooner thaR[i| (the minimum inter-arrival time). The timing
behavior of a sporadic task is exemplified in Figure 6.1 [20].

Ti) released D[i] (i) released DJi] T(i) released

P[] ' P[]

Figure 6.1: The execution of a sporadic task.

With priority-based scheduling, a high-priority process may be releaséuad
the execution of a lower priority one. There are cases when tasks rumtple-
tion without interruption, no matter if a higher-priority task is waiting while the
current task is executing; such tasks are catied-preemptibleWhen a task can
be interrupted from running, at any time, by a higher priority task, we sayttie
respective task ipreemptible

A fixed-priorityscheduling policy relies on assigning priorities to tasks, offline.
These priorities do not change during system execution. One of the mosiap
such algorithm is th®eadline-Monotoni¢gDM) scheme, introduced by Leung and
Whitehead [118].

Deadline-Monotonic. Let us consider that preemptible (hard) real-time tasks,
78 ={7(1),..,7(n)} execute on a single CPU. Under the mentioned assump-
tion, D[i] < P[i],Vi € [1..n], an optimal set of priorities can be obtained such that
(D[i] < D[j] VvV (D[i] = D[j] Ni < j)) = prli] > pr[j], for all tasksT (i), 7 (j).

This means that the priorities of tasks are in the reverse order from thesir de
lines. If the CPU is free, the highest priority process among the waitingepses

is scheduled.

We say that a task ifeasible(or schedulablgif any of its instances finishes
execution before or at most at its deadline. Joseph and Pandaygpfbp8ked a
method to determine thieasibility (or schedulability of a task by computing its
worst-case&ompletion timgresponse time), according to the equation:

Rli] = E[]+Bli]+ Y [Rl)/P})]*E[) (6.1)
j€hp(i)

Above,hp(i) is the set of higher priority tasks th&n(:), andB(7) is the maximum
blocking time caused by a concurrency control protocol protectingsldata. The

107



ceiling value[ R[i]/ P[j]] is the smallest integer greater or equaRt@|/ P[j]. The
lastterm §_ o) [ Rli]/ P[j]] + E[j]) of equation (6.1) measures the interference
of higher priority tasks with the execution of tagK:). The interference consists
of the computation time of all higher priority tasks that are released béigile
[20]. The (smallest) solution of equation (6.1) can be obtained by computing th
sequence|i]”, n € Nat defined by the recurrence relation below:

e[l = E[i] + B[]+ Y [r[il"/P[j]] * E[j] (6.2)
j€hp(i)

Above, r[i]® is given an initial value of 0. The computation stops when a fixed
point is reached, that is;[i]"*! = r[i]”. This value is the worst-case response
time R[i]. Atask7 (i) is feasible ifR[i] < D[i]. If all the participating tasks are
feasible then the entire task set is declaseledulabldy the DM algorithm.

Task priorities can also be decided online, by employirdyaamic priority
scheduling policy.

Earliest-Deadline First. Fordynamicpriority schedulers, the priority of a task is
recomputed at run-time. If scheduled by tharliest-Deadline-Firs{ EDF) algo-
rithm, the runnable processes are executed in the order determineddistiiate
deadlines of the processes, the next process to run being the one wathotitest
(nearest) deadline. Although it is usual to know the relative deadlinesobf gro-
cess (e.g. 10 ms after release), the absolute deadlines are calculaiaediater,
hence the scheme is described as dynamic.

Within the context of uniprocessor scheduling, it has been shown byridu a
Layland [119] that EDF, which at each instant of time chooses for exacthe
currently-active job with the smallest computed deadline, is@imal algorithm.
This means that any feasible task system is guaranteed to be successiediyled
using EDF.

Schedulability analysigs the process of determining whether a collection of
tasks can be scheduled in such a manner that all task instances will complete b
their deadlines. When assumifyi] < P[i], the EDF schedulability analysis turns
out to be somewhat less straightforward than in the fixed-priority case.

6.2 Generic Approach
6.2.1 Enforcing the Required Conditions

To facilitate the formal analysis, we start by specifying the real-time system as
an unscheduled collection of tasks. Next, we construct a correct, implabien
scheduled system, under the assumption that the tasks are schedulableeby s
supported algorithm. In the end, we decompose the obtained real-time sygtem, b
refinement, into two modules: the CAS that models the set of tasks and the CAS
that models the scheduler.
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Assume that we have a way of describing the timeliness, policy and mutual ex-
clusion predicates, ag, g0, ¢me, respectively. We will show later in this chapter
their formal definitions. Since all three correctness conditions have tdtiodohy
behavior of the system, it follows intuitively that they can be expressedyksbal
“always ([OJ) temporal property:

A
Dq =0 (Qt A Qme N onl>

Given the definition of the “always” property over discrete behavid8j,[we can
extend it totimed behaviors
A timed behavior is a sequence of states, where each state is a tuple ofthe for
(x,y), with = : Real; — T, the local variables, angl : Real, — T, the global
ones. We can say that, for éilned behavior$, we have:
bEOg iff (Vi-b; € q),

whereq is a predicate.

In order to effectively enforce the scheduling predicates on setsabtinee
tasks, we apply the invariant-based inference rule for proving esrficeat of “al-
ways” properties [38], to the timed case. This is shown in Lemma 6.

Lemma 6 Assume the following action system
RTS £ begin var start,now : Real,z : Realy — T * Init; UT ;
do gi.now — S1;UT | ... [ gn-now — S, ;UT od end

Then, scheduler correctness properties can be proved using imisyias follows

p=1 ginowNI {{S1;UT|} I...gnnowNI {{Sp,;UT[} I I=q
p{ do gi.now — S1;UT | ... | gn-now — S,;UT od [} Og

wherep, ¢ are predicates that depend on time, and

UT £ start :=now ; now := min{t’' > now | gg.t'}

The variable “start” denotes the beginning of the next time interval triggdng a
discrete transition.

Proof.

p{do g1.now — S1;UT | ... | gn.now — S, ;UT od [} Ogq
{correctness rule [38], rule (2.10)
p= (vx-qA(—ginowV S1.(UT.z))A...A(=gnnowV S,.(UT.x)))
< {assumptionsp = 1,1 = ¢}

I= (ve-INA(—grnowV S1.(UT.x))A...A(—gp.nowV S,.(UT.x)))
< {greatest fixed point induction rule (2.34)
I= 1A (=ginowV S1.(UTI))A...NA(=gpnowV S, (UT.I))
{logic, assumptiong;.now A I = S;.(UT.I),Vi € [1..n]}
true |
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Even if the result of the above lemma is not at all surprising, it is nevertheles
useful. If the correctness assertions required by the rule of Lemma Gitfoltbws
that the required constraints are enforced. Consequently, a feasliidldude can
be constructed.

The first step is to find a predicafe 4 It A Ime N I Predicatel; = ¢
has to be an invariant in order to guarantee timely completion of tasks exexution
In addition, two other types of constraints have to be enforced, for tieinee
system to operate correctly. They are the mutual exclusion, and theusiciged
policy conditions, that iS[,.c = ¢me, @andlp, = gpor, respectively. The first one
ensures that no more than one task at a time is granted the CPU, while thd secon
imposes the order in which tasks are given priorities for execution.

Since we aim for a scheduler that preserves the predicdgscribed above,
we model the loop of the systeRT S asdo {Choice.I} ; Choice od, where

Choice 2 ginow — S1;UT | ... | gnnow — S, ; UT

Here,{Choice.I'} represents the initial states that we are interested in. The infor-
mation supplied by the computed preconditigtihoice.l} is then used to refine
the initial model, as shown in section 6.2.2.

Rather than carrying out the schedulability analysis on a complete real-time
system model, we assume that the set of tasks is schedulable and proaséeto
wise, correctness-preserving scheduler development. Then, alisgo construct
a scheduler that schedules the system to meet all deadlines, accordiegstpth
ported scheduling algorithm. In case tasks are to be scheduled by gfireitly
policy, we use the existing results of scheduling theory, presented a¢gfirening
of this chapter.

For a dynamic-priority scheme, the priorities are assigned at run-time, thus th
schedulability of the task set can not be checked offline, unless wédeormsly
integer points [159]. So, there is no established schedulability conditiorwtat
can assume when starting to build the scheduled system. However, it iglargue
that one approach for validating the schedulability of a task set isithelationof
the model, for a sufficiently long time, until the real-time system is in the periodic
state [52]. This interval of time is called tHeasibility interval We apply this
method of validation, by simulating the real-time CAS model that we construct,
for the Earliest-Deadline-Firsprotocol. To accomplish this goal, we use the CAS
symbolic simulation tool, built in Mathematica.

6.2.2 Deriving the Final Scheduler Model by Refinement

As mentioned previously, our method of constructing the real-time systemmassu
that, initially, we specify the latter ato {Choice.I};Choice od, whereChoice

is the nondeterministic model of the task set. Next, we apply stepwise refinement,
targeting a final representation that is scheduled by the rules of a parpaliey.
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The generic refinement steps are as follows:

{Choice.I}; (g1.now — S1;UT | ... | gn.now — Sy, ; UT)
= {rule(2.19)}

{Choice.l} ; (g1.now — {g1.now A Choice.I}; Sy ; UT |

... | gn-now — {gn.now A Choice.I}; Sy, ; UT)

C {rewrite in context, strengthen guads
{Choice.I} ; (g).now — {g1.now A Choice.I}; S1;UT | (6.3)
.. | g, -now — {gn.now A Choice.I}; Sy, ;UT)
C {rule (2.20}
gymow — S1;UT | ... | g,.now— S, ;UT
= { notation}
Choicey

The idea is to remove all assertions, yet ensuring fhaolds after dropping
them. The result is an implementable model. In order to decrease the level of ab
straction, and eventually reach a more efficient implementation, we go oreaed tr
refine the real-time model that contains the labpChoicey od. These transfor-
mations are supported by trace refinement rules for CAS. The rulestardtined
later in this chapter.

As a last step, we decompose the refined real-time system, in two modules.
We thus get a two-module implementation of the initial model, which consists of
the scheduler and the real-time tasks. In principle, the separate reptesenf
the online scheduler gives one the possibility to improve the performanoeaiid
functionality to the scheduler, without necessarily modifying the task modeis,Th
a two-module description increases the flexibility in design, and the reusability
of the real-time system components, by decoupling scheduling issues fsm ta
behavior. In order to decompose the real-time system model correctlypphe a
the prioritizing decomposition theorem, introduced by Sekerinski and 3édd, [
and presented in chapter 2.

In short, the development method that we propose combingsréttendition
analysistechnique wittprogram derivatior[35].

6.3 Preemptible Task Model

By definition, a preemptible task is one that can be interrupted from runiiing a
some point in time. We model a generic preemptible, sporadicask i € [1..n],
as a choice among five guarded actions defined by (6.4).

The model below does not encode any explicit scheduling algorithm, itrrathe
assumes a virtual scheduler. We abstract from the functional behawioe it is
not relevant within this context. Each task can be in one of the four possdiks,
sl (sleeping, wt (waiting for the CPU), ex (executing, andpt (preemptell If no
task has been released, #reival clock ¢, measures the time frofto each task’s
release; after that, the same clock records the time elapsed between teoutves
arrivals of each task. The vector variabfe denotes tharrival offsetof each task,
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that is, the arbitrary number of time units (including 0) beyd?id|, which might
pass before the next occurrenceZdfi). We record the execution time of each task
by clocke., and the task preemption time, by clogk All three clocksc,, c., and

cp are vectors of length equal to the number of tasks.
A

T3) = state[i].now = sl A cq[i].now = Pli] + ofs[i].now
— cgli] := (At -t — now) ; state[i] :— (At - wt) ; UT
| state[i].now = wt
— celi] :— (At -t — now) ; state[i] :— (At - ex) ; UT
| state[i].now = ex A c.[i].now = Eli
— celi] :— (At - 0) 5 ¢pli] :— (At - 0);
[ofs]i] :— 2’ | Vt > now - 2.t € Real J;
stateli] :— (At -sl); UT (6.4)
| state[i].now = ex A c[i].now < Ei]
— celi] 1= (At - celi].now);
cplt] :— (At - ¢p[i].now + t — now);
stateli] :— (At - pt) ; UT
| stateli].now = pt
— celi] :— (At - celi].now + t — now);
cplt] :— (At - ¢pli].now) ; stateli] :— (At - ex) ; UT
now =0 Calil.now >= P[i] + ofsi].now

- sl
Cali] - t Celi]:-0 Cpli] -0
[ofs[i] :- x | x in Real+ ]

wt
Cali] :- t - now

Ce[i].now = E[i]

Celi].now < E[i]

ex pt

Celi] :- (Ce[i].now + t - now)
Cpli] :- Cp[il.now

Celi] :- Ce[i]l.now
Cpli] :- (Cplil.now +t - now)

Figure 6.2: Preemptible task behavior as an STD.

Since the tasks are sporadic, their actual arrival times are not periodiead,
successive arrivals of the same task are separated by no lesB[thaime units,
respectively. We model this behavior by requiring the clogk] to be equal to
P[i] + ofs[i].now, for the taskZ (i) to become available. If we consider the col-
lection of available tasks, and the initial model of a task (6.4), sh@uld wait
for the CPU, it could start executing right away (the guard of the seaatidn
holds) or, in case some other tasks are simultaneously waffifig,could be post-
poned for an arbitrary time (since the choice of an action out of seveedlled
ones is nondeterministic). When selected, the task changes its state aod
clock ¢ [7] is reset. Upon completion of execution, whef].t is E[i], the respec-
tive task returns to statd, the execution and preemption clocks are both sét to
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and the offset variable is nondeterministically assigned a nonnegative real value.
If the task is executing and, implicitly, its permission is removed by the virtual
scheduler, the task takes the transition to spatehe execution clock is frozen,
celi] : = (At - celi].now), andc,|i] starts increasing linearly with time. When the
scheduler restores the task’s permission to execute, the latter ret@xsim the
clock c.[i] starts evolving again while,[i] is frozen. The vector variableate
stores the current state of each task. Note that, in (6.4), we assume the worst-
case execution time of the task, thus, we checkcf¢i].now = Ei], in order
to establish if the task has finished its execution. Observe also that the choice is
deterministic, since the guarded actions of tdgk) are mutually exclusive. The
described task behavior is graphically represented as the state-transition diagram
(STD) of Figure 6.2.

By employing the quantified nondeterministic choice operator on the partici-
pating tasks, we can further describe the real-time task set, as the action system:

RTS £ begin var start,now : Real,,
state : array [1..n] of (Realy — {sl,wt,ex,pt}),
ofs, Cq, Ce, Cp @ array [1..n] of (Real; — Realy)
now := 0; state :— (At - wt) ; cq:— (AL - 1)
[;1<i<n-|ofs]i]:—a’ |Vt -2'.t € Real; ]]; (6.5)
CesCpi— (AL-0);UT;
do[[|1<i<n-{7(i).I1};7T(i)] od
end

Initially, the tasks are deemed to share a critical instant. That is whypat= 0,
they are all waiting for execution. The initial future assignments of clagks
¢p Stand for[ ; i - ce[i], cpli] : — (At - 0), (At - 0) ]. The arrival clock elements
cq[t] start increasing linearly with time, and the offsefs]:| are assigned arbitrary
nonnegative real values.

6.4 Fixed-Priority Scheduling: The Deadline-Monotonic
Algorithm

The generic procedure outlined in the previous sections is applied first to the con-
struction of a real-time system scheduled by the Deadline-Monotonic algorithm.

6.4.1 Enforcing Conditions for Correct Scheduling

Timeliness, Mutual Exclusion, and DM Policy Conditions as Safety Require-
ments. We work under the following assumptions:

o the tasks are preemptible;

e R[i] < D[i], whereR]i] is the worst-case completion time of each task,
and is computed by applying equations (6.1) and (6.2).
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When checking schedulability of a set of real-time sporadic tasks, we can ap-
proximate each sporadic task with a periodic one, of period equa):td20].

The second assumption implies that the set of tasks under analysis is schedula-
ble. Nonetheless, there also exists theorem-prover support for verifying schedula-
bility of sets of preemptible sporadic tasks, as the concurrency protoEoiafty-

Ceiling has been formalized and verified in PVS [73].

According to the method introduced in sections 6.2.1 and 6.2.2, we construct
the DM scheduled system by following the steps below.

e Firstly, we define the timeliness property that we want to enforce on the action
system (6.5). We express this condition as the following predicate:

@ £ Vi-Vte [start,now) -
state[i].start = ex = ¢4[i].t + R[i] — (ce[i].t + ¢pli].t) < DIi
In the above relation, we require that, if a task has just started to execute
(stateli].start = ex), the clocke,[i].t should ensure that at the end of execu-
tion the deadlineD[i] is not exceeded, even under the worst-case response-time
scenario (that is, time to completion equ&lg]). The case when the task has been
preempted (at least once) and it returns to execution is also considered, by adding
the value of the preemption clock, i, to the current value of the execution clock
celt]. Next, we need to find a predicafe = ¢;, and then comput& (:).l;. We
choose:
I, = Yi-Vte [start,now) -
(state[i].start = ex =
(stateli].t = ex A cqli].t — (celi].t + cpli].t) < D[i] — R[i] A
cali].t = cqli].start +t — start))
A (stateli].start = ex A ccli].start = 0 = ¢p[i].t = 0)
e Secondly, we perform the precondition analysis step. By successive application
of rules (2.10), (2.7), (2.4), the computed weakest precondifign). I, is as fol-
lows.
T(i).1
= {succesive application of rules (2.10), (2.7), (2.6), (2.4)
(Vj # i T(i).I})
A (state[i].now = wt =
(Vnow' - now" = min{t' > now | c.[i|.t' < E[i]} =
(Vt € [now, now")- ¢4li].t—(t — now) < D[i] — R[i] A
cali]-t = ¢qli].now +t — now)))
A (state[i].now = pt =
(Vnow' - now’ = min{t’ > now | c.[i].t' < Eli]} =
(Vt € [now, now'y
cali].t—(ce[i].now+(t — now) + ¢plil.now) < D[i] — R[i] A
cali]-t = ¢qli].now +t — now)))
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where

Il = Vit e [start, now) -
(state[j].start = ex =
(state[j].t = ex A cqlj].t — (celjg]-t + ¢pljl.t) < D[j] — R[j] A
calj]-t = eqlj]-start +t — start))
A (state[j].start = ex A cc[j].start = 0 = cp[j].t = 0)

The detailed computation can be found in Appendix A-5.

e Thirdly, we derive the real-time model that preseryes We do this by prop-
agating the available context information, given as assertions, into thectesp
guards, as outlined in section 6.2.2. We returfR@S and work on the generic
task model;7 (i). Out of refining in context, the nondeterministic behavior of the
entire set of tasks is constrained with respeci;toThis reflects in strengthening
the second and fifth action guards of each task described by (6 g¢ctesly, by
imposing upper bounds on clockg|i], for guard two, and[:] — (c.[i] + ¢p[i])

for the last guardi(e [1..n]).

Let us denotenew_now 2 now' = min{t' > now | c.[i].t' < E[i]}. We
then have:

(T0).0} : T()
C {substitute task model, rule (2.19), weaken asseiboyic}
zLT(i)-Ith
I]I:S’;fate[i].now = wt
— { Vnow' - new_now = (Vt € [now, now')-
cali]-t — (t — now) < D[i] — R[i] A
Calt]-t = cqli].now + (t — now))

b
celi] :— (At - t — now) ; state[i] :— (At - ex);
start := now ; now := min{t' > now | gg.t'} (6.6)

‘[|‘s'tate[7j].now = pt
— {V now' - new_now = (Vt€ [now, now')-
Cali]-t = cqli].now + (t — now)) A
calt]-t — (celi].now + (t — now) + ¢,i].now) < D[i] — R]i]

b
celi] :— (At - celi].now + t — now) ; cpli] : — (At - ¢pli].now);
stateli] :— (At - ex) ; start := now;

now = min{t' > now | gg.t'}
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C {pull assertions through guards, drop assertjons
| state[i].now = wt A ¢4[i].now < DJi] — R]i]
— celi] :— (At -t — now) ; state[i] :— (At - ex);

start := now ; now := min{t’ > now | gg.t'}

'ﬂ‘s.tate[i].now = pt A cqli].now — (c[i].now + ¢,i].now) < D[i]— R][i]

— celi] :— (M- celi].now + (t — now)) ; ¢pli] : — (At - ¢pli].now);
state[i] : — (Mt - ex) ; start := now ; now := min{t' > now | gg.t'}
= {notatior}
T'(i)

Due to Lemma 6, if we replace the new task foffri(:), of (6.6), in (6.5), we get
a real-time system model where the safety property holds. The “three-step”
technique has led to a representation that preserves the timeliness préditade
easy to check on the refined version of (6.5), where one replaggsvith 77 (),
thatI; is indeed an invariant).

The refinement for timeliness is summarized in table (6.7).

0
action initial guard guard strengthening predicate
wt — ex | state[i].now = wt cqli].now < D[i] — RJi]
pt — ex | state[t].now = pt | cali].now — (celi].now + cpli].now) < D[i] — RJi

(6.7)

Nevertheless, not only deadline-related constraints matter, but alsodigang
to ensure, for each real-time task, the mutually exclusive access to Celtces.
Consequently, we are not happy with a scheduled system that lets twoetasks
cute simultaneously. Therefore, we go on and enforce the mutual exclesiety
condition.

Gme = Vi-Vte [start, now) -
stateli].start = ex = (¥j # i - state[j].t # ex)

An important system property is the fact that its state does not changeydhen
time interval[start, now). Hence, conditiom,,. is added with this property to get

Ie:

Ime = Yi-Vt € [start,now) -
(state[i].start = ex = (Vj # i - state[j].t # ex))
A (stateli].start = s = stateli].t = s), s € {sl,wt,pt}
Following a similar line of refinement as in (6.6), after propagation of the cor-
responding context information, that i5(7)./,,., we get an improved version of
the task model, which guarantees mutually exclusive execution. The vigeikes
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condition for the task (i) to establish,,. is given below:

T (1) Ime
= {succesive application of rules (2.10), (2.7), (2.6), (.4)
(Vi # i - T (i) Tne)
A (state[i].now = wt =
(Vnow' - now’ = min{t’ > now | c.[i].t' < E[i]} =
(Vt € [now,now’) - (Vj # i - state[j].t # ex))))
A (stateli].now = pt =
(Vnow' - now = min{t’ > now | c.[i].t' < E[i]} =
(Vt € [now,now’) - (Vj # i - state[j].t # ex))))

In the above],. is similar tol,,., with the difference that the indexs replaced

by j.
Table (6.8) shows the guards that are affected by the second refinement.

0
action 7T (z) guard guard strengthening predicate
wt — ex statelt].now = wt Vg # i - state[j].now # ex
A ¢qli].now < D[i] — RJ[i] (6.8)
pt — ex stateli].now = pt Vj # i - statelj].now # ex
A cqlt].now — (celi].now + ¢pli].now)
< D[i] — RJ[{]

We agree with the fact that the result of enforcing mutual exclusion is straightfor-
ward, thus we could have added this condition from the start, when modeling the
preemptible task. However, for the sake of consistency, we have chosen to carry
out a similar refinement as for the timeliness predicate.

Enforcingq; andq,,. on the task set is still not enough for ensuring a correct
scheduling. The first condition does guarantee that each task, taken separately,
terminates before or at its deadline, but it does not ensure the same in case multi-
ple tasks are simultaneously waiting for their turn. Not only deciding on the right
dispatch time of each task, but also the correct task execution order, based on pri-
orities, falls into the responsibility area of the embedded scheduler. Consequently,
we introduce the vector variabje- that models the fixed priority of each task,
respectively and we define the policy-related conditign. The latter specifies
that the task chosen for execution is always the one with the highest priority of all
waiting or already preempted tasks.

Qpol L ovi-Vte [start, now) -
(state[i].start = ex =
(Vj # i - (state[j].start = sl A cq[j].start < P[j]) V
((state[j].t = wt V state[j].t = pt) A pr[j].t < prli].t)))
A (state[i].start = pt =
(35 # i - state[j].t = wt A prli].t < pr[j].t))
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Once atask (i) has started to execute, all the other tasks with lower priorities than
7 (1) are either waiting or being preempted, or else they have not been rejedsed
that is, state[j].start = sl A cq[j].start < P[j]. In this way, the list of waiting
tasks is updated when the scheduler selects the highest priority tasletartiex.

We choosd,,; = ¢, as follows:

Ipol = Gpol
A (Vj # i - prljl.start < pri].start = pr[j].t < pr[i].t)

Next, we conduct a combined technique of precondition calculation argigno
derivation, as for the other two properties. The refinement is shown itakie of
Figure (6.3).

By applying logic, we can simplify the first and the third guards in Figure
6.3. Hence, the predicat®j # i - state[j].now # ex) can be dropped from the
corresponding guards of actiong — ex andpt — ex.

@)
action T’ (¢) guard guard strengthening predicate
wt — ex state[i].now = wt Vj # i - (state[j].now = sl A ¢q[j].now < P[j])
A cgli].now < D[i] — RJ[i] V ((statelj].now = wt V state[j].now = pt)
A (Vj # i - state[j].now # ex) A prlj].now < prli].now)
exr — pt state[i].now = ex 3j # i - state[j].now = wt
A celi].now < Eli A prli].now < pr[j]l.now
pt — ex stateli].now = pt Vi # 1 - (state[j].now = sl A ¢g[j].now < P[j])
Ncgli).now— (ce[i].now+cpli].now)<D[i]-R[i] | V ((state[j].now = wt V state[j].now = pt)
A (Y] # i - state[j].now # ex) A prj].now < prli].now)

Figure 6.3: Task refinement for policy-related propdify.

Out of the above successive refinements, we get the final form oflteelaled
preemptible task

To(i) 2 AL|AL|AL] AL AL

Al = state[i].now = sl A ¢q[i].now = Pli] + ofs[i].now
— cgli] :— (Mt -t — now) ; state[i] :— (At - wt) ; UT

g = state[i].now = wt A ¢g[i].now < DIi] — RJ[i]
gbo = (V) #i- (statej].now = sl A cq[j].now < P[j]) V
((state[j].now = wt V state[j].now = pt) A
pr[j].now < prlil.now))
Ay = g Agh

— celi] :— (At -t — now) ; state[i] :— (At -ex) ; UT
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AL = state[i].now = ex A cc[i].now = Eli]
— celi] :— (At-0) ;5 ¢pli] : — (At - 0);
[ofs[i] :— 2’ | Vt > now - 2.t € Real, |;
stateli] :— (At - sl); UT

gy = stateli].now = ex A celi].now < Ei] A
(3j # i - state[j].now = wt A prli].now < prlj].now)

Ay = g

— cei] :— (At - celi].now) ; ¢pli] :— (Mt - ¢pli].now + t — now);
stateli] :— (At - pt) ; UT

gt, = stateli].now=pt A cg[i].now —ce[i].now —c,[i].now < D[i] — R]i]
gty = (V] #i- (state]j].now = sl A cg[j].now < P[j]) v
((state[j].now = wt V state[j].now = pt) A
' ‘ ~ prljl.now <prli].now))
A5 = 951 N\ g5

— celi] i— (At - celi].now + (t — now)) ; ¢pli] : — (At - ¢pli].now);
state[i] :— (At - ex) ; UT

Combiningn such tasks results in the correct-by-construction scheduled real-time
system.

Last, we refine the system model (6.5), by introducing the local varjahle
which is initialized such that tasks are assigned priorities in the reversefarde
their deadlines. These fixed values are established by a demonic nomidettc
assignment. The scheduled real-time system is described as follows:

S

RTS

begin var start, now: Real,

1>

state: array [1..n] of (Real; — {sl,wt, ez, pt}),
ofs, Cq, Ce, Cp = array [1..n] of (Real; — Realy),
pr: array[l..n] of (Real; — Nat) *
now = 0; state :— (At - wt) ; ce,cpi— (At-0) ;¢4 :— (At 1)
[;1<i<n-|[ofs[i]:— 2’ |Vt >now 2'.t € Realy|]; (6.9)
[pr:—p |Vt >now Vi -p[i]t #A0A(Vje[l.n]-
(Dli] < D[j] v (Dli] = D[j] Ai < j)) = p'lilt > p'j]4) | UT 5
do [ [1<i<n-(A7[Ay]A3] A5 A5)] od

end

By simple inspection of the above actions, one can concluddtl@aﬂt A Ipo
is indeed an invariant of the real-time system described by (6.9): it is estatlis
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by the initialization and it is preserved by each action (as a consequertg of
development method).
Based on Lemma 6, the invariance property is sufficient for inferring that

Dq é 0 (Qt/\q;)ol)

has been enforced on the initial real-time system model, generating thetborre
scheduled systeR7S".

Although correct, the real-time model (6.9) does not provide an efficient im-
plementation. For example, one needs to compare pairs of tasks, in asgxhau
manner, in order to pick up the one with the highest priority, and selectéxietu-
tion. This is a time consuming operation, especially when dealing with large sets of
tasks. Therefore, we would like to optimize the system representationnget-e
ing that the correctness properties, which we have just enforcefdreserved. To
accomplish this goal, we apply trace refinement. As a result, the task-copparin
operation is replaced by a functidftax that establishes, quicker and simpler, the
highest priority task, out of ist of waiting (or preempted) tasks. For example, in
Mathematica, there exists such a function that picks up the maximum element of
an array, and delivers it as output.

6.4.2 Trace Refinement of Continuous Action Systems

In this section, we adapt the main proof obligations that one should dischéite
carrying out trace refinement of action systems, to CAS.

As explained in chapter 2, a trace of an action system is a sequence of ob-
servable states. Within the context of CAS, the observable states are lyive
evaluating the state functions at consecutive moments recorded by variaile

Here, we introduce the notions béhaviorandtracefor CAS. A behavior of a
CAS is a sequence of states observed at consecutive momeints

b = ((x.nown, z.nowy), . .., (r.nowy, z.nowy,), . . .)

Above,z denotes théocal state, and theglobal state, andrfown, . . . , nowy, . . .)
is a sequence of consecutive (not necessarily different) transition.times

A trace of behaviob is obtained by removing the local state component in each
state of a given CAS, and all finite stuttering (no change)in

Assume that two CASA and(C are translated into their respective semantic
definitions given by action systero§ andC. Let us further suppose that the local
variables oC, z¢ = x4 Uy, wherex 4 are the local variables od andy are some
auxiliary variables. We assume next thatis the auxiliary action that modifies
variables ofy, and that/ is a predicate over the observable states of the concrete
systemC. This means thaf refers only to the values of the system variables at
momentnow.
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We denote byS 4 ; UT the action ofA4, and bySe ; UT the one ofC. Then,
we say thaid is (trace) refined by (usingl), A C; C, if the following conditions
hold:

true = (Initc;UT).I (6.10)

I = (Se;UT).I (6.11)
(S4:UT) C; (Sc;UT) (6.12)
IANganow = genowV gx.now (6.13)
skip Ty X (6.14)

I = (do X od).true (6.15)

Above,

(S4;UT)Cr (Se;UT) = (Vte-Nq- TN (Syq;UT).q= (Sc;UT).(INq))

The first two relations ensure thats established atow = 0, and preserved
by the actions of the concrete systémwhich is necessary to guarantee that the
system evolves towards the nexw starting from a state of. Condition (6.12)
requires that the main action of the abstract system is refined by the main@afction
the concrete system, usidg Relation (6.13) guarantees that whenever an action
is enabled in the abstract system, one of the actions of the concrete systém, b
a refinement of the old action or the fresh auxiliary action, is also enableid. T
means that once an initial real-time model is free of deadlocks, the refisezhsy
is also free of deadlocks. The last but one condition says that the ayxdlition
behaves likeskip with respect to the global variables, while preserving-inally,
the last condition says that the execution of the auxiliary action, takenatelyar
terminates eventually, wheneveholds.

6.4.3 Implementing the Real-Time System

Getting back to our target, that is, an efficient implementation of the real-time
system model (6.9), we perform the transformations presented below.

e Step 1.We introduce the auxiliary local vector varialgewhich stores the tasks’
priorities, respectively; when a tagkis in statewt, its priority is added tgy, at

q[i]; when the same task has finished execution, its priority is removeddrdm
assignmeng[i] :— (At - 0). The actions that modify[i| are as follows.

A} = stateli].now = sl A cli].now = Pli] + ofsi].now
— cgli] :— (At -t — now) ; state[i] : — (At - wt) ; q[i] :— pr[i] ; UT
A = state[i].now = ex A c.li].now = Eli]

— celi] :— (At-0) 5 ¢pli] :— (M- 0) 5
[ofs[i] :— 2" | Vt > now - 2".t € Real, ]
state[i] :— (At - sl); q[i] :— (At-0); UT
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e Step 2.We conduct the following refinements:

where
I

and

17

1p)

17
Aj
17

94

17
Ay

/4

gs

1
AS

AyCr Ay, AYCp A} ALCrAY,

Vi - Vnow -
(state[i].now = sl = q[i].now = 0)
A ((prli].now = Max(q.now) A prli].now = q[i].now
A (Vj # i - (state]j].now = sl A cg[j].now < Plj])
V ((state[j].now = wtV state[j].now = pt)
A prlj].now < prli].now A q[j].now = pr{jl.now)))
V (pr[i].now # Max(g.now) A prli].now = ¢li].now
A (35 # i - state]j].now = wt A pr(j].now > pr[i].now
A glf]-now = prlflnow))

prlil.now = Max(q.now) A

(Vg # i - (state[j].now = sl A ¢q[j].-now < P[j]) V
state[j].now = wt V state[j].now = pt) A

state[i].now = wt A ¢g[i].now < DIi] — RJ[i]

1
92
— celi] :— (At - t — now) ; state[i] :— (At - ex) ; UT

prli].now # Max(q.now) A

state[i].now = ex A c[i].now < EIi]

g1
— celi] :— (At - ce[i].now) ; cpli] 1 — (At - ¢pli].now + (t — now)) ;
stateli] :— (At - pt) ; UT

prli].now = Max(qg.now) A
(Vj # i - (state[j].now = sl A ¢4[j].now < P[j]) V
state[j].now = wt V state[j].now = pt) A
state[i].now =pt A ¢,[i].now —(c[i].now+cy[i].now) < D[i] — R[i]
95
— celi] :— (At - celi].now + t — now) ; ¢pli] :— (At - ¢pli].now) ;
state[i] :— (At - ex) ; UT
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For example, proving the truth of relatiot, —; A% boils down to showing
that the relations below hold:

TAgl = g (6.16)

Vg - TAGY A (cefi] :— (Mt -t — now) ; state[i] :— (Mt - ex) ; UT).q
= (celi] : = (At -t — now) ; stateli] :— (At -ex) ; UT).(I Nq) (6.17)
A similar decompaosition into refinement of guards and action bodies applies to the
other two refinements, that is, of action$ and A%, respectively.

Since relation (6.17) can be easily proved, we are left to dischargeaeatgnt
(6.16), for the refinememt’, =, A to be valid. The proof is sketched below:

I A priil.now = Maz(g.now) A

(Vg # i - (state[j].now = sl A cg[j].-now < P[j]) V
state[j].now = wt V state[j].now = pt) A

state[i].now = wt A ¢gli].now < D[i] — RJ[i])

{substitute/, logic}

prli|.now = Max(q.now) A prlil.now = q[i].now A

(Vg # 1 - (state[j].now = sl A ¢q[j].now < P[j]) V

((state[j].now = wt V state[j].now = pt) A
prij].now < prii].now A q[j].now = pr(jl.now))) A
(state[i].now = sl = q[i].now = 0) A
stateli].now = wt A cgli].now < D[i] — R[i] A ...

state[i].now = wt A ¢g[i].now < DI[i] — R[i] A
(V4 # i - (state[j].now = sl A ¢q[j].now < P[j]) V
((state[j].now = wtV statelj].now = pt) Apr[j].now < pr[i].now))

The dots in the above proof stand for the part/dhat treats all the other tasks
except7 (i). We have also checked thaf, C; A} and AL C; AZ are met;
however, we omit the proofs here. Consequently, requirement (6.1#jiiied.

By replacing the refined actions in the real-time system model (6.9), we get the
new scheduled action system as:

/s

RTS

begin var start,now : Real,

(6.18)

1>

state : array [1..n] of (Realy — {sl,wt,ex,pt}),
ofs, Ca; Ce, Cp : array [1..n] of (Real; — Realy),

pr,q : array[l..n] of (Realy — Nat)*
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now := 0 state :— (At - wt) ;¢ :— (M- 1); | Init
Ce, Cp:— (AL~ 0);
[;9- [ofs[i] :— 2’ |Vt-2'.t € Realy | ];
[pr:—p |Vt > now Vi -p[i]t £0A (V€ [l.n]

(D[i] < D[j] v (D[i] = D[] Ai < j)) = p'li].t > p'[j].1) ];

(13- qli] :—prli] ];

[1];UT;

do

. [[1<i<n:(AT|AY] A AT ] AY)]
end

In (6.18), the array; is initialized with the task priorities, respectively, since
all tasks are concurrently waiting for the CPU, at timev = 0.

The initialization statement assumes the predi¢aWe are doing this because,
essentially,/ requires a correct implementation of the functibfuz and we as-
sume that this requirement holds of any programming language that/hasas
a built-in function. Hence, relation (6.10) is fulfilled. Along the same line, rela-
tion (6.11) also holds, meaning that each (new) actioR 1S preserved. We
give here only the sketch of the respective proofAdr The rest of the proofs are
similar.

g NI
= {substitutey/’}
(state[i].now = sl A cgli].now = P[i] + ofs[i].now) A I
= {computeA’.T}
(now=min{t’ > now | stateli].t' = wt At'—now < D[i]—R]i]} =
(prli].now = Max(qg.now) A
(Vj # i - (state[j].now = sl A ¢g[j].now < P[j]) V
((state[j].now = wt V state[j].now = pt) A
prijl.now < prli].now A q[j].now = pr[j].now))) A
(state[i].now = sl = q[i].now = 0)
NG #i- 1))
The predicatd’ incorporates the information ihabout tasks indexed bjy+
i, which is not modified by the assignmentsA#.

Considering the fact that we have proved relations (6.10), (6.11) and (6.12), we
conclude that

RIS C; RTS”

Note that requirements (6.13), (6.14) and (6.15) need not be checked, since we
have not introduced any auxiliary actions. Hence, one can W&ws © as a more
efficient representation of the constructed maglelS”’.
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6.4.4 Deriving the Scheduler Component

The real-time scheduled systeﬁTSf that we have constructed is based on the
simplistic assumption of independent tasks. Clearly, this should be relaladrat
stages of design, as task interaction is needed in many meaningful appbcation
Processes can interact safely by either some form of protected sthati@dqus-

ing, for example, semaphores, monitors or protected objects), or diresilyg(
some form of rendezvous) [52]. Therefore, extra requirements toalve added to
the real-time scheduled system, regarding resource management proatioofis
which are connected to scheduling.

As one might immediately imagine, new refinements need to be carried out;
in principle, they would mostly affect the behavior of the scheduler. Utiier
scenario, the single-block real-time system model would ultimately become much
more complicated. Hence, it can be beneficial to get a modular descripttbe of
system, which might ease future design tasks.

Targeting a two-module implementation, we carry out the following refinement
steps on modeR7S"”:

¢ Introduce a local variablek : array [1..n] of (Realy — Bool). This vector
variable encodes the permission for execution given by the schedukecho e
task;ok[i] is set or reset according to the DM scheduling policy rules.

e Strengthen the guards of action§, A%.
e Consider the following predicaté (€ [1, ..n]):

I, = Yi-VYnow-
(okl[i].now A state[i].now = wt =
(prli].now=Max(g.now)Acyi].now < D[i]—R[i] A
(Vj # i - (state[j].now = sl A ¢q[j].now < P[j]) V
state[j].now = wt V state[j].now = pt)))
A (ok[i].now A stateli].now = pt =
(prli].now = Max(q.now) A
calt].now — (ccli].now + ¢,i].now) < D[i]— R[] A
(V4 # i - (state[j].now = sl A ¢q[j].now < P[j]) V
state[j].now = wt V state[j|.now = pt)))
A (—okli].now A state[i].now = ex =
(prli].-now # Max(q.now)A celi].now < Ei]))

By using;, which can be easily shown to satisfy relations (6.10),(6.11) on
RTS"™ given below, we can prove

7 7 " 7 17 [
A2 Ln A22m7 A4 Lrn A42mﬂ A5 Lrn A52m
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The actionsdy,, ., A%, and AL, = are also described below. The proofs that the
conditions (6.10 - 6.15) of trace refinement are met are sketched in ApE@no).

Eventually, the successive application of the above steps leads to theiffigllow
refinement

RTS”
Cy,  {rule (2.21), trace refinemehnt
RTS"
where

m

RTS

= begin var start,now : Real,

(6.19)

state : array [1..n] of (Real; — {sl,wt, ex,pt}),
ofs, Cq, Ce, Cp : array [1..n] of (Real; — Realy),
pr, q : array[l..n] of (Realy — Nat),

ok : array[1..n] of (Real; — Bool) *

now := 0; state : — (At - wt) ; cq :— (AL - 1); Init
Ce, Cp:— (AL~ 0) ; 0k :— (At - false);
[;-[ofs]i] :— 2’ |Vt > now - 2'.t € Real; | |;
[pr:—p' |Vt > now -Vi-p'li|.t #0A (V] € [1..n]-

(D[i] < Dj] v (Dli) = Dj Aé < ) = plilt > pl71.0)
[5-qli] :— pr{i]};
[]; UT;
do

Aillm I] Afmm I] A%lm [I A%Qm) ]

od
end,

Cm = —ok[i].now A state[i].now = sl A cqli].now = Pli] + ofs[i].now
— coli] :— (Mt -t — now) ; state[i] :— (At - wt) ; q[i] :— pri] ; UT
lom = Ok[i].now A stateli].now = sl
— ok[i] :— (Mt - false) ; UT
Yim = —0k[i].now A pri].now = Max(qg.now) A
(Vj # i - (state[j].now = sl A ¢g[j].-now < P[j]) V
state[j].now = wt V state[j].now = pt) A
state[i].now = wt A ¢g[i].now < DI[i] — RJ[i]
— ok[i] :— (At - true) ; UT
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Yom = Ok[i].now A state[i].now = wt

— Celi] :— (At -t — now) ; stateli] :— (At -ex); UT
L. = okl[i]l.now A state[i].now = ex A c,[i].now = Eli]
— celi], cpli] :— (M- 0), (At - 0) ;[ ofs[i] :— 2’ | VE - 2'.t € Realy ]
stateli] :— (At - sl);qli] :— (A\t-0); UT

Y = OK[i].now A prli]l.now # Maz(g.now) A
stateli].now = ex A cc[i].now < Eli
— ok[i] :— (Mt - false) ; UT

Yom = —ok[i].now A state[i].now = ex
— cei] : = (At - celi].now) ; ¢pli] :— (Mt - ¢pli].now 4+t — now) ;
state[i] :— (At - pt) ; UT

L = —0k[i].now A prli].now = Maz(q.now) A
(Vj # i - (state[j].now = sl A ¢q[j].now < P[j]) V
state[j].now = wt V state[j].now = pt) A
stateli].now=pt A cqli].now—(celi].now+cpli].now) < D[i] — R[i]
— ok[i] :— (At - true) ; UT

AL, = okl[il.now A state[i].now = pt
— celi] : = (At - celi].now + t — now) ; ¢pi] : — (At - ¢p[i].now) ;
stateli] :— (Mt - ex) ; UT
It is easy to observe that we can rewrite the looRAFS as follows.

do
” g — (A212m [I 221m [I Ailm [I AlBlm)
od

where
i

A 4 ; i i i
g=-ggl | 1<i<n- (Al [ Asp | Asp | Abom [ As2m) |

By gg we denote the disjunction of the respective action guards.
Our goal is to decompose7 S, correctly. For this, we apply therioritizing
decompositionheorem (see chapter 2).
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Let us consider the trivial invariarf, = true. We identify the conditiory,
mentioned in Theorem 1, with within the loop (6.20). Next, we identify guards
gB andgC of the same theorem, as follows:

Under these assumptions, it is easy to verify that the requirements oférheor
1 are straightforwardly met. Since the invariant is trivial, it is established &y th
initialization of R7S""; also the actions of the new loop (6.20) presehvbecause
they terminate. The exit conditiongB A ¢C' = g is also immediate. Thus, we
can safely decompose the action system (6.19), without loss of corssctne
Eventually, due to Theorem 1, we end up with a two-module implementation of
the real time systel®®7 S, which has been our design goal. The actual scheduler
is one of the modules, and the collection of tasks is the other one, eachaniae
by a corresponding CAS. The whole system description is given as

RTS™ =18 // Sched,
with

7S (ok : array[1..n] of (Realy — Bool),
state : array[l..n] of (Real} — {sl,wt,ex}),
Ca, Ce, Cp - array [1..n] of (Real; — Realy),

pr, q : array[l..n] of (Real; — Nat))

= begin var ofs : array [1..n] of (Real; — Real; ) *
ok :— (Mt - false) ; state : — (At - wt); | Init
Cai— (At-1t) ;e cpi— (AL-0), (At-0);
[pr:—p' |Vt -Vi-p'li]l.t #0A (V- (DJi] < D[j]V

(Dli] = DIj Ai < ) = plilt > DL
%I,]z qli] :—pr[i]] s [; 0 - [ofs[i] :— 2’ | Vt - 2'.t € Real{]];

do[] 1<i<n-T™(i)] od

end,

™)

state[i].now = sl A ¢q[i].now = Pli] + ofs[i].now A —ok[i].now
— cgli] :—= (At -t — now) ; state[i] :— (At - wt) ; q[i] :— pr]i]

| okl[i]l.now A state[i].now = wt
— celi] :— (At -t — now) ; state[i] : — (Mt - ex)
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| okl[i]l.now A state[i].now = ex A c[i].now = Ei]
— Cefi] :—= (M- 0) 5 ¢p[i] :— (AL~ 0) 5 g[i] : = (AL 0) 5
[ofs[i] :— 2’ | Vt > now - 2’ .t € Realy] ; state[i] :— (At - sl)
| —okli].now A stateli].now = ex A celi].now < EIi]
— celi] i— (At - ce[i].now) ; ¢pli] : — (At - ¢p[i].now + t — now) ;
stateli] :— (At - pt)
| okl[i]l.now A state[i].now = pt
— celi] i— (At - cefi].now + t — now) ; ¢pi] : — (At - ¢pli].now) ;
stateli] :— (At - ex),

Sched (ok : array[1..n] of (Realy — Bool),
state : array[l..n] of (Realy — {sl,wt,ex}),
Cas Ce, Cp : array [1..n] of (Realy — Real,),
pr,q : array[1l..n] of (Realy — Nat))
= begin Init/;
do[[1<i<m
—ok[i].now A prli].now = Max(g.now)A
(Vg # i - (state[j].now = sl A\ cg[j]l.now < P[j])V
state[j].now = wt V statelj].now = pt)A
state[i].now = wt A ¢g[i].now < DI[i] — RJi]
— ok[i] : — (At - true)
| ok[i].now A state[i].now = sl
— ok[i] :— (Xt - false)
| ok[i].now A prli].now # Maz(q.now)A
state[i].now = ex A c[i].now < Eli]
— ok[i] :— (Xt - false)
| —ok[i].now A prli].now = Maz(q.now)A
(Vj # i - (state[j].now = sl A cqlj].now < P[j])V
state[j].now = wt V state[j|.now = pt)A
state[i].now = pt Acq[i].now—(c.[t].now+cp[i].now)<D[i]—-R]i]
— ok[i] :— (At - true)
]
od
end

Note thatinit’ of Sched is the initialization statement &S, without the assignment
of variableofs, which is local to7S.

6.5 Non-Preemptible Task Model

Assume that we are givem periodic, non-preemptible real-time tasks. A simple
model of a task (¢) that belongs to such a collection is as follows.
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T(G) £ state(i].now = sl A ¢q[i].now = Pi]
— cgli] :— (At -t — now) ; state[i] :— (At - wt) ; UT
| state[i].now = wt
— Ce[i] :— (At -t — now) ; stateli] :— (At -ex) ; UT (6.21)
| stateli].now = ex A c.[i].now = Ei
— ¢celi] :— (At - 0) ; statei] :— (At - sl) ; UT

Distinctly from the preemptible model, each non-preemptible task can be in
one of three possible stateg,(sleeping, wt (waiting for the CPV), andex (exe-
cuting). The clocke, measures the time between two consecutive arrivals of each
task, respectively. We record the execution time of each task by clotérvec

The tasks are periodic, therefore they arrive strictlyPat, respectively. In the
initial model (6.21), if the tasi (7) is waiting for the CPU, it could start executing
right away. Alternatively, given the fact that the real-time system consiistsuch
tasks and that the choice among the waiting ones is nondetermiffigiiccould
also wait an arbitrary time before starting execution. Since the guard oétoad
action holds, the task eventually changes its statertcand clocke,[i] is reset.
Upon completion of execution, when|i].t is E[i] (worst-case execution time),
the respective task returns to sleep.

In the next section, we proceed to the incremental construction of an EDF
scheduled system. However, since the steps are similar to the ones of the pre
viously analyzed fixed-priority case, we will just highlight the key pointghed
construction method, underlying their specificity.

6.6 Dynamic-Priority Scheduling: The EDF Algorithm

Recall from the beginning of the chapter that éiymamicpriority schedulers, the
priority of a task is recomputed at run-time. If scheduled byEhdiest-Deadline-

First algorithm, the runnable tasks are executed in the order determined by the
absolute deadlines of the processes, the next process to run beingethétlo the
shortest (nearest) deadline.

The real-time system model employing non-preemptible tasks is, initially, close
to the one given by (6.5), with the difference that now we quantify the ehoie
non-preemptible tasks of the kind modeled by (6.21). We also remove the initial
assignment of task priorities, since in this case the priorities are decideé.onlin

RTS £ begin var start, now : Real, (6.22)
state : array [1..n] of (Realy — {sl,wt,ex}),
Ca, Ce : array [1..n] of (Realy — Realy) *
state :— (At -wt) ;cq:— (M- t)5¢e:— (At-0);UT;
do[ [1<i<n:{7(i).I};7T(i)] od

end
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Note that we initialize the system similarly to the DM real-time system: at time
0, all tasks are in the ready state, waiting for the permission to execute.

6.6.1 Enforcing Conditions for Correct Scheduling

Enforcement of the correctness conditions proceeds in the same way te f
fixed-priority case.
We model the timeliness condition as follows.

@ £ Vi-Vte[start,now)-
state[i].start = ex = cqi].t — ce[i].t < D[i] — EJi]

Along the lines described in section 6.2¢1,is enforced if we find an action
system description, starting from (6.22), such that some predigate ¢; is an
invariant of the transformed action system. Conditiprs the following:

I, = Vi-Vte [start,now) -
stateli].start = ex =
(state[i].t = ex A cqli].t — celi].t < D[i] — EJi] A
cali].t = cqli].start +t — start)

The EDF policy predicate is:

Lo = VYi-Vte [start,now) -
(state[i].start = ex =
(Vg # i - (state[j].start = sl A cq[j].start < Plj]) V
(state[j].t = wt A D[j] — calj]-start > DI[i] — c,[i].start)))
A (stateli].start = s = stateli].t = s), s € {sl, wt}

The condition/,,,; requires that any task in state remains in that state during
the interval[start, now); besides, a task has either been the only task waiting, or
if other tasks have also been simultaneously waiting, the task that has sterted e
cuting has the shortest absolute deadline (that is, the smallest differetvoecn
the relative deadlin®|i] and the arrival time) of them all.

Next, we need to refine the initial action system (6.22), in the context given
by the computed weakest preconditi¢@ (7)./}, such that/;, and I,,,; become
invariants of the refined system. We enforce the above predicates omtai
(6.21), by propagating7 (i)./ }. For brevity, we skip the refinement process, but
we present its result. After having carried out enforcement, we gebtlmving
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transformed model, with a strengthened guard:

(i)
= stateli].now = sl A ¢gli].now = PJi
— cgli] :— (At -t — now) ; state[i] :— (At - wt) ; UT
| state[i].now = wt A ¢,[i].now < DIi] — E[i]A
(Vj # i - (state[j].now = sl A cqlj].now < P[j])V (6.23)
(state[j].now = wt A D[j] — calj].now > D[i] — ¢4[i].now))
— celi] :— (At -t — now) ; stateli] :— (At - ex); UT
I state[i}].now = ex A celi].now = Ei]

(At -0); state[i] :— (Xt - sl); UT

— Celi

Let us exemplify in the next paragraph, how we can confirm or denyctiedsi-
lability of a simple three-task real-time system, scheduled by EDF.

6.6.2 \Validating the EDF Scheduled System

As tasks are periodically released, the schedule has an infinite lengthto Bhee
periodicity of tasks, the whole schedule is also periodic of pefled LC M (P[1],

.., P[n]), whereLC'M is the least-common-multiple of the tasks periods (feasi-
bility interval). Then, the feasibility (or schedulability) analysis problem can b
solved by simulation of the scheduling algorithm (in our case EDF) until the task
set is in the periodic state [52]. This implies further that, if all tasks complete by
their deadlines during the feasibility interval, there will be no unpleasaptises
in the future.

Example. We consider building an EDF schedule for the task set of Figure 6.4.

The correct model of our three task real-time system is an instantiation of the
generic model (6.22), where each constituent task is of the form givéh 23). In
order to validate this model, we use the simulation technique. As outlined above,
we need to simulate (6.22), up to the least-common-multiple of task periods, which
ist = 60, in our case. For this purpose, we use our CAS symbolic simulator.

As previously, one has to translate the guards and action bodies of tlee thre
task model, in the language of Mathematica. Then, the main routine goes through
the guards, evaluates their boolean expressions, and based orutte cesnputes
the minimum moment of time as the nextw.

Task | Period | Deadline | Execution Time
T1 | 20 16 3
T2 | 15 15 3
T3 10 10 4

Figure 6.4: Three Periodic Tasks.

Implementation of the Model. In the Mathematica implementation, we have
modeled the possible values], wt, ex, of the discrete-valued time variables
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statel, state2, state3, of each task, a8, 1, 2, respectively. The continuous-valued
time variables are the arrival clocks, denotec:by, ca2, ca3.

The simulation time limit,,,.. = 60 was supplied to the tool, and so were the
task parameterd)[i], E[i], P[i], as given in Figure 6.4.

For example, thel — wt (that is,0 — 1) action guard and body, of the first
task, are implemented by:

solution = InequalitySolve|
statel [t] == 0 &&
cal [t] == P1 &&
t >= start && t <= EndTime,t

}

and
cal|t_] = t— now;
statel [t_] = 1;
start = now

The guard of the action that schedules each task, respectively, is implemented
by using task comparison of absolute deadlines.

Surely, for larger number of tasks, we need to first refine the model in order to
get a more efficient representation (as we have done for the DM scheduled system).
Then, we can use the Mathematica functidim, on the list variable that contains
the difference®]i] — ca[i].now, Vi € [1..3], of the current waiting tasks.

The actual implementation of the alternative solution mentioned above (tai-
lored to our example) is as follows. We model the queue of waiting tasks as the
variableq[t_] and we initialize it to:q[t_] = {D1,D2,D3}. Next, we introduce
a list containing all three arrival clocksa = {cal|t], ca2[t], ca3]t]}, where each
clock is modeled as the respective function of timagt_], i € {1..3}. The list
with the differenceD]i] — ca[i].now is implemented by the following structure:
list = Table[{ }, {i, Length[q]t]]}]. Since the tasks are all waiting at time 0, we fill
the list accordinglylist = Insert[list, Simplify[q[i] — ca[i]], i].

Whenever a task (i) has arrived, it's deadline is inserted ¢ at position
i. Also, the difference between its deadline and its arrival clock is inserted into
the corresponding list. If a task has completed execution, it is droppeddrom
After that, one needs to shift the positions of the remaining tasks, accordingly,
however we do not show this part in the code excerpt presented below. When
the scheduler decides the maximum priority task, it computes the minimum of all
current elements dist.

Below, we give the Mathematica code of the above actions, for the first task
only.
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e Body of action sl— wit:

callt-] = t— now;
statel[t_] = 1;
qt_] = Insert[q[t], D1, 1]
list = Insert[list, Simplify[q[1] — ca[1]], 1]
start = now

e Guard of action wt — ex

solution = InequalitySolve|
statelt] == 1 &&
cal[t] <= D1 — E1 &&
D1 — calt] == Minllist, {i, Length][list]}]
t >= start && t <= EndTime,t

]

e Body of action ex— sl:

celft_] = 0
statel[t_] = O0;
qlt ] = Droplaft], {1}
Length[q[t]] = Length[q[t]] —1
start = now

The implemented model has three guarded actions that abort the simulation in case
any of the deadlines is missed. For example, the guard of such action that checks
for overrun of deadline, for task 1, is as follows:

solution = InequalitySolve|
statel [t] == 2 &&
cel [t == E1 &&
t —start > D1 &&
t >=start && t <= EndTime,t

]

and its body
Print[“Stop, taskl missed deadline”, now];
Abort] |

Simulation results. The essential information delivered by the simulation proce-
dure contains: a list of time momentsow) at which an action has been executed

in the model, a corresponding list of actions (which we omit here), and lists with
symbolic values for the state of each task at each particular transition time, and for
the clockscal, ca2, ca3d as (continuous) linear functions of time. Figure 6.5 shows
the mentioned symbolic lists.
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One can see, in Figure 6.5, based on the values of variabiesl, state2,
state3, at each momentow given in the correspondingow list, the order in
which tasks have been executed. The tasks share their critical instéiniedd.
Thus, initially, all of them are istate = 1, waiting for the CPU. So, as expected,
the first to execute is task 3, since at time 0 it has the earliest deadline, hftér w
task 2 and task 1 follow. Notice that, at timew = 60, the simulation scenario
starts repeating.

At the end of the simulation period, we also get the functions of tishelel,
state2, state3, cal, ca2, ca3, represented as graphs. The plotted functions are
presented in Figures 6.6 - 6.8.

now list :
{0,0,4,10,10,13,13,15,16,16,20,20,20,20,23,23,27,30,30,30,33,33,37,40,40,40,43, 45,45,
49,50,50,53,53,57,57,60,60}

statel : {1,1,1,1,1,1,2,2,0,0,1,1,1,1,1,1,1,1,1,2,0,0,0,1,1,1,1,1,1,1,1,2,0,0,0,0,0}
state2 : {1,1,1,1,2,0,0,1,1,1,1,1,1,2,0,0,0,1,1,1,1,1,1,1,1,2,0,1,1,1,1,1,1,1,1,2,0}
state3 : {1,2,0,1,1,1,1,1,1,2,2,0,1,1,1,2,0,0,1,1,1,2,0,0,1,1,1,1,2,0,1,1,1,2,0,0,0}
cal :
{t,t,t,t,t,t,t,t,t,t,-20+t,-20+t,-20+t, -20+t, -20+t, -20+t, -20+t, -20+t, -20+t, -20+t,
-20+t,-20+t, -20+t, -40+t, -40+t, -40+t, -40+t, -40+t, -40+t, —40+t, -40+t, -40+t, —-40+t, -40+t,
—40+t,-40+t, 20}

ca2 :
{t,t,t,t,t,t,t,-15+t,-15+t, -15+t, -15+t, -15+t, -15+t, —-15+t, -15+t, -15+t, -15+t, -30+t,
-30+t,-30+t,-30+t,-30+t,-30+t, -30+t,-30+t, -30+t, -30+t, -45+t, -45+t, -45+t, -45+t, -45+t,
-45+t,-45+t,-45+t,-45+t, 15}

ca3 :
{t,t,t,-10+t,-10+t,-10+t,-10+t,-10+t, -10+t,-10+t, -10+t,-10+t, -20+t, -20+t, -20+t,

-20+t,-20+t,-20+t, -30+t, -30+t, -30+t, -30+t, -30+t, -30+t, -40+t, -40+t, -40+t, -40+t, -40+t,
-40+t,-50+t, -50+t,-50+t, -50+t, -50+t, -50+t, 10}

Figure 6.5: The symbolic lists fotow, statel, state2, state3, cal, ca2, ca3.

statel state2
2 — — — 2 — — — —
1.5 1.5
1 1—
0.5 0.5
t t
10 20 30 40 50 60 10 20 30 40 50 60

Figure 6.6: The graphs atatel, state2.

In Figure 6.9, we present the timing diagram of our constructed schetiue.
schedule is based on the results of the symbolic simulation; we have just repre
sented the task execution order and the specific transition times that the $ool ha
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state3 cal

2 - = 20
1.5 15
1 — | = 10
0.5 5
t t
10 20 30 40 50 60 10 20 30 40 50 60

Figure 6.7: The graphs afate3, cal.

ca2 ca3
10
14
12 8
10 6
8
6 4
4 2
2 t
t 10 20 30 40 50 60

10 20 30 40 50 60

Figure 6.8: The graphs efi2, ca3.

# In execution
~—D1=16——

Waiting
Task 1 . . .
>
t
«—D2=15———
Task 2 .
>
1315 0 t
k—D3 = 10—

-B [ EEmIEE

10 16 20 23 27 30 33 37 40 45 4950 53 57

Figure 6.9: The three tasks’ schedule.

136



computed, graphically, to aid visualization of the solution.

Because all the imposed timing constraints hold during the feasibility interval,
assuming worst-case execution times of participating tasks, we can deeléaskh
set of the example, schedulable.

6.7 Summary and Related Work

We have presented a new method for the incremental construction oféetisgs-
tems, within the correctness-preserving framework of continuous acfgiamns
and refinement calculus. Unlike most of the previous related work, oelale
ment process starts with a nondeterministic conjunctive specification, phidsap
refinement rules of propagating context assertions, in order to entfioeaequired
schedulability, mutual exclusion and scheduling policy conditions.

The main schedulability goal of a real-time task set is to provide a guarantee
that the deadlines are never missed at run-time. Consequently, we mobed su
condition as a property of the model, more concretelglamaystemporal property.

This can be enforced into the initial incomplete task model, by means of Lemma 6,
which we have introduced to show that enforcing safety properties diGddels
reduces to being able to prove certain invariants.

For the DM scheduling algorithm, we carry out successive refinemeintis, u
we reach an efficient implementation of the correct-by-construction, hysttact
model. Next, we continue the refinement process by applying the decompositio
theorem of Sekerinski and Sere [141], which provides us with a twoufedohple-
mentation. Thus, we have managed to extract the real-time scheduler asatesep
module, which can turn into an advantage if further transformations adedee

Next, we have applied our technique also to the EDF scheme, still under the
umbrella of Lemma 6, which gives us sufficient conditions for enforcindithe-
liness and policy predicates. By simulating the EDF model of a simple set of three
real-time tasks, in Mathematica, we get symbolic lists of transition time moments,
and of variable values. As a plus, one can visualize the timed behavior tbiall
discrete and continuous functions of the model, as graphs. Based cmtipeited
data, we have actually constructed the scheduling solution, as a timing diagram.

Related Work. Formal approaches for constructing real-time schedulers have
been recently applied by Kwak et al. [113], and Altisen et al. [4]. Kwa&l epro-

pose symbolic bisimulation algorithms that can be used for deciding the schedula
bility of a collection of real-time tasks. For the same purpose, Altisen et al. use
algorithms based on the controller synthesis paradigm. A major disadvaritage o
these approaches is the practical high complexity of the algorithms. Furtteermo
in both papers, the authors use two different formal frameworks irr togeerform

the schedulability analysis of the task set. One formalism is used for modeling pu
poses, whereas a different one is employed for giving semantics togpecte/e
model.
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Although the semantics of CAS is given in terms of ordinary action systems,
we also need at some point to employ two languages. In order to use autgmation
for the EDF algorithm, we are forced to translate the real-time action system into
the language of Mathematica.

As an alternative solution to model-checking algorithms, we have solved the
problem of scheduler construction, generally. The analysis of articplar set
of real-time tasks comes down to an instantiation of our generic correabis~-c
truction models.

The closest work to ours is due to Altisenp@er, and Sifakis [5], where fixed
point computation algorithms are combined with the incremental application of
priority rules that restrict the initial behavior of the real-time model. The agugro
is very general; it provides a rich priority model, and can handle task s#is w
complex timing characteristics. However, the construction method does net allo
the separation of the scheduler as an actual component. Initially, theudehed
being represented by uncontrollable transitions in timed automata models. Nev-
ertheless, the concept of tagkgencyused by the authors is non-existing in our
approach.

Timed automata [9] have also been used for solving hon-preemptive {-sh
scheduling problems [2, 100]. Schedules are computed based on #wreaalted
out of reachability analysis of locations that specify the schedulabilitygrtgp

Alur and Henzinger have specified preemptive schedulers as hyldthata
[14]. Their methods use model checking algorithms for verifying safetyliae-
ness properties.

Braberman and Felder have proposed timed automata based schedulahility ve
ification of preemptive schedulers [50]. The authors have specifieithtivey con-
straints as minimum or maximum distances between events. As such, they embrace
a conservative perspective, as we also do in this chapter.

The integration of real-time scheduling theory with program refinement has
also been studied by Fidge et al. [76]. Moreover, Fidge and Wellings imeale
time systems by combining Z specifications with action systems [77]. In compar-
ison, we handle the task within the action systems framework alone. The swthor
use a global variable that measures absolute time, and a “tick action” fanadv
ing time. A step further is taken by Fidge, Hayes and Watson, who introduce a
deadlinecommand, which allows for the specification of arbitrary deadlines that
must be met at run-time [75]. A summary on the advances made in developing a
refinement calculus for real-time prograrisspresented by Hayes [85]. Real-time
refinement laws targeting timing constructs such as delays and deadlivesl] as
as rules for handling infinite iterations are proposed.

Real-time scheduling of distributed action systems has been analyzed by Kurk
Suonio et al. [112]. The idea of constructing the real-time concurrestesyby
enforcing specific real-time properties via refinement has been investigade to
inherent limitations in specifying the real-time requirements, the scheduling prob
lem has been revisited later by Kurki-Suonio and Katara [111]. This tinad; re
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time properties have been specified in TLA [1]. Safety conditions are indpmge
strengthening action guards, and deadlines are introduced througtpsesition
refinement. However, no actual schedules are computed.

As far as automation is regarded, TAXYS [64] and TIMES [17] are two meatu
tools that support the design and analysis of real-time embedded systerns. Als
the theorem prover STeP has been applied to the deductive verificatieal-dime
systems [46]. Nonetheless, to our knowledge, checking EDF schéddylbly
simulating a formal model that is guaranteed to be correct, provided thatsttee ta
are schedulable, has not been applied before.

We do not claim that our refinement-based method is a panacea, we just be-
lieve it might serve as a useful alternative approach to model-checkiogthigs.

A combination of the two well-known methods of theorem-proving and model-
checking could perhaps provide the designer with the best developinmgpsmea

Let us analyze next how can we use both angelic and demonic behavior of
statements, in order to construct sequential game-like reactive programs.
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Chapter 7

Controller Synthesis for Discrete
Systems

A control system is usually a reactive system, made of a computer-bastrdller
that observes plant We have already seen in previous examples that the plant’s
behavior is adjusted according to the control actions issued by the logic controller,
as a result of its reaction to certain changes in the environment. The control events
thus modify the system execution, such that some desired property holds. The
construction of a correct controller is thus crucial.

A viable controller construction method is known in literatureastroller syn-
thesis Synthesis is equivalent to computing the most general model of a controller
that satisfies the respective requirements. Therefore, itis helpful to start with a non-
deterministic, high-level model of the controller that abstracts away from control
implementation details. The result of carrying out synthesis steps is a decrease in
controller's nondeterminism, such that in the end all possible transitions that could
lead to unsafe states are eliminated.

We are interested in synthesizing controllers iftrarianceand reachability.

The invariance controller has to keep the discrete system within a so called “good”
set of states, whereas the reachability controller has to guide the system into an
intended set of states, in finite time. In the latter case, we focus on the synthesis of a
particular case of reachability controllers, with possible application to the design of
fault-tolerantsystems that accekfaults (¢ > 1), and especiallfail-safesystems.

The former maintain their integrity, for a limited time, while accepting one or more
errors in their operation. On the other hand, fail-safe systems are able to terminate
in a safe state, if they have suffered a serious damaggl(ae) and need to halt

their operation [52].

Many studies deal with controller synthesis by applying symbolic model check-
ing algorithms to restrict the inputs of the controlled system so as to eliminate
undesired computations [18, 99]. Backward analysis is often employed, as being
most useful. Unfortunately, it is also an expensive algorithm, in terms of memory
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resources. Moreover, there are situations in which the systems are isfaite
thus they need to be abstracted in such a way that the properties of treectdubtr
finite model hold in the concrete model too [106, 133].

Being motivated by the importance and usefulness of controller synthadis, a
challenged by its difficulty, we have tried to find an alternative deductigtisa
to this problem [26, 59]. Our solution could, for instance, be employechwihe
traditional model-checking approach fails. Furthermore, the method is apjdic
as such for controller construction of either finite or infinite state discretieB)s.

The behavior of a discrete control system can be adequately modeled by a
repetitive sequence of actions carried out by the controller, and theluisite,
respectively. We take advantage of the dual nondeterminism in our modkting
guage, and identify the control system with a two-player game havingrigel
and thedemonas players. By identifying the angel with the controller and the de-
mon with the disturbance, we are able to exploit further the mentioned dualism,
while playing the angel against the demon. Having defined the system madel, w
specify the requirement, next. It is a temporal property, which shoulchfozced
by the controller (that is, the angel) during system execution, in spite ofdtstddn
actions of the disturbance.

The dilemma that rises within this context is whether the angel can face the
challenges of the demon, and win the game by ensuring the intended oystatths
behavior.

We focus, in the current chapter, upon solving this dilemma. To check aheth
the temporal property that specifies the reachability control can beoeuffdry
the angel, we propose an inference rule that reduces enforcementréatness
reasoning. Moreover, in case of a positive outcome, we show how tacétire
angelic winning strategy. We do this through a correctness-preseraingfdorma-
tion, that is, assertion propagation. Two illustrative examples, a memorgrbuff
controller and a data-processing system serve as the case-studies.

7.1 Game Tree Semantics of Action Systems

Back and von Wright have developed a semantics for action systems ttetiie
izes the traditional behavioral action systems semantics [37]. We presenthe
basic notions, which we use in the rest of the chapter.
An (infinite) action games a pair(p, 7') wherep is theinitial predicateandT
is theaction(a monotonic predicate transformer). An execution of the action game
starts from some (demonically chosen) initial state,imnd then the actioff’ is
repeatedly executed atomically, as a game between the angel and the demon.
By agame treeve mean a tree witpredicate nodeglabeled with predicates,
that is, sets of states, from which the demon is to select a state) and stase node
(labeled with states, from which the angel is to decide what the next pteda
in strict alternation, where
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e the root node is a predicate node,

e a predicate node is labeled with a predicaiéand only if for eacho € p,
there is exactly one child (a state node) labeled witdnd

e leaf nodes occur as follows:

— A leaf node labeled™ follows after any predicate node containing the
empty predicatéalse (this models miraculous termination), and

— A leaf node labeled. can occur as the only node following any state
node (this models abortion).

A game tree may be infinitely branching and it may contain infinite paths. Figure
7.1 illustrates a game tree. Here, state nodes (states) are shown as #ulets (
predicate nodes (predicates) as circlgs (

Figure 7.1: Game Tree.

We will now describe how an action game= (p, T') generates a game tree,
when the actiorf” is thought of as executed as a two-step game, according to its
normal form. This means that in any given state

1. the angel first chooses a predicagich thatl".p.c holds (if there is no such
predicate then the execution has aborted), and

2. the demon then chooses a statn p (if p is empty, then the execution has
become miraculous)

and then step 1 is repeated for stateetc. Thus, the possible executions of the ac-
tion systemA = (p, T') give rise to a game tree which is exactly the tree generated
by T with rootp. This tree is thgame treej (A) generated by thaction gameA.
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We recall the fact that the state spgce's extended with two elements (which
we callimproper states L (standing for abortion or nontermination) andstand-
ing for a miracle). Theaugmented state spade, = > U{L, T} is a complete
lattice when ordered by the followirgpproximation relation

o=<ao o c=1Vo=dvVve =T

A behavioris a sequence= (tg, t1, .. .) of states (including. and T). Behaviors
can be

¢ infinite, containing only proper states,
e aborting that is, ending with an infinite repetition of, or
e miraculous that is, ending with an infinite repetition Gf.

A strategyf (for the angel) for game tre@ is a rule that resolves all the angelic
choices in the game tre&. Thus, f.G is a tree where every state node has exactly
one child.

Every path in a game tree gives rise to a behavior; we simply remove every
predicate node in the path, and if the path endd. ior T, we repeat that final
improper state indefinitely. Thus, the tr¢&s can also be interpreted as a set of
behaviors (state sequencesE f.G holds if and only ift is the result of removing
all predicate nodes from a complete path in the tfe& and repeating the final
(improper) state indefinitely if the path is finite.

Temporal Properties. Let ¢t be a behavior and a predicate. Back and von
Wright [37] define thealways(CJ) temporal property over discrete behaviers
as follows:

t=0q iff  (Vi-t; €q)

The above formula describes what it means for the behatimsatisfythe property
Lgq.

By extending the satisfaction of temporal formulas to game trees, we have that
G = ¢ holds if and only if there is a strategfy over G for the angel such that
t &= ¢, for everyt € f.G. Thus,G = ¢ means that the angel camforcethe
property¢, that is, make sure that it becomes true.

An action gamed = (p, T') is said to satisfy a temporal propetyif G(A) =
¢. Assuming that predicate and monotonic predicate transformiErare given,
the following formula characterizaseakest temporal preconditioiithe weakest
predicate such tha(p, T') satisfiesp) for alwaysproperties:

wtp(T, Oq) L (veeqgNT.x)
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7.2 Generic Approach to Synthesis

Given the structure of a control system, it follows naturally that it can beeteod
as a game between two players, the controller and some disturbance. Weeass
that the behavior of the disturbance is hostile, thus we would like the controller
to guarantee the requirements despite the action of the disturbance. Weecall th
controllerthe angel and the disturbandhe demonDuring the game, the goal of
the angel is to force the system to remain inside a certain desired subsestdtih
space, whereas the demon’s goal is to force the system to leave this dzsat su

Let us assume that ttdiscrete systeris modeled by an action system of the
form

Sys(y : Ty) al begin var z:7,* Init; dog— A; D od end (7.1)

Here, statemend contains angelic choices afldemonic ones. The values of the
variables are chosen sequentially, first by the controller and then bystiietiance.
Consequently, the compositioh; D models a two-player game where each player
has complete information about the moves of its rival.

Before proceeding to synthesis, one needs to specify the controirspsie
its requirements. Here, theontroller is defined by an angelic nondeterministic
assignment, as follows:

A={z:=12"| b}

Dually, the behavior of thelisturbanceis described by a demonic nondeter-
ministic assignment:
D =[z:=2"|by]

As previously mentioned, we focus on constructing controllers for inmega
and reachability. Hence, in the first case thquirementis encoded as aafety
property, whereas in the second case itlisenesgroperty.

Safety is an always property and has the foril ¢, wheregq is a set of states
(predicate). The goal of the controller is to continually observe the pladtface
control events at appropriate times, such that the plant always remains thi¢h
safe set of stateg, Such controllers are callédvariancecontrollers.

Traditional liveness properties are modeledaghtually ($¢) temporal pro-
perties. However, here we look at a variant of liveness propertighwil defined
later in this chapter. Controllers that can enforce liveness propertesadied
reachability controllers. Their duty is to guide the system towards the intended
reachable set;, in finite time.

Assuming that at each round of the game, sequential angelic and demonic
choices determine the next state of the game, we can intuitively split the signthes
problem into two sub-problems:

(a) Checking whether the angel can enforce the safety or livenessrprolmeour
case, this process reduces to correctness proofs.
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(b) In case the correctness conditions hold, it follows that the angel haséngin
strategy. Therefore, extracting the angelic winning strategy is the ngxt ste
This second step is equivalent to the actual controller construction.

7.3 Synthesis of Controllers for Invariance

7.3.1 Enforcing the Safety Property

As pointed out, designing a controller for invariance implies the specificafion o
some safety property that should be enforceable by the angel dustegrsgxecu-
tion. We express this property as aalWays () temporal property.

In the following, we show how we can compute the precondition for the angel
to enforce the propertyl ¢ in the action systenSys, given by (7.1). Applying the
result proved by Back and von Wright [38], to our case, we get theviong:

p{dog— A;Dod[}0q = pC (vX-{q};lg];A;D;X)false (7.2)

Formula (7.2) shows that we can reduce the question of whethealivays
temporal property can be enforced for an action system, to the questidrettier
a certain goal can be achieved. In this case, the fysd cannot really be es-
tablished, so success can only be achieved by miraculous terminationnonby
termination caused by the demon.

As an immediate consequence of equation (7.2), we get the correcthefs ru
safety, at the predicate level:

p{{dog— A;Dod|}0¢q = pC(vzeqn(-gUA.(D.x))) (7.3)

For generalized action systems, Back and von Wright show how to prduece-
ment of temporal properties by using usual invariant-based methodsri@Bégr
than employing costly fixed-point computation algorithms. By adapting their re-
sult to our case, we get the rule shown in Lemma 7.

Lemma 7 Assume the following action system
Sys(y:Ty) = begin var z:T,* Init; dog— A;D od end

Then, always-properties can be proved using invariants, as showrebgference
rule below
pCI gNI{A;D}I ICgq
p{dog— A;Dodl[Ogq

wherep, ¢ are predicates.
Proof. Similar to the proof of Lemma 6. ]
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The inference rule of Lemma 7 states that proving thlevays property for
the loop of the action systellys is in fact equivalent to showing that a predicate
I C qis an invariant ofSys. Even if this is an expected result, the presence of
the angelic nondeterminism makes the process slightly more complicated. We will
dwell on this issue in the next section.

Therefore, proving the safety propergyby proving an invariance property
subsumes the following obligations:

1. Find a predicaté, such thatl C ¢ holds.

2. Prove thaf is established by the initializatiomit, that is,p C I, wherep
is the predicate that holds afténit.

3. Prove that is preserved by the action— A ; D, thatis

gNICA(D.I)
= {substituteA, D, rule(2.7), rule(2.12), rule(2.11) (7.4)
gNIC (3 -b,N(D.I)[x:=2])

It then follows that, if the above conditions hold, the angel has a winning stra
egy, 4, thus a controller for invariance can be synthesized.

7.3.2 Extracting the Control Strategy for Invariance

After having established that the angel can enforce the requiredibehane needs
to extract its respective winning strategy.

In principle, the process of controller synthesis should constrain theliang
behavior; on the other hand, usual refinement seems not to do the job,te@
refinement rule of angelic assignments (2.16) says that only by addimgpshean
we get a refinement of such statements. However, in the following, we sbaw
to reduce the angelic nondeterminism, with respect to the enforced progarsy
correctness-preserving transformation.

Given the fact that we have provddto be an invariant of the action system
Sys defined in Lemma 7, we know, due to the correctness rule for sequerntial co
position, recalled in chapter 2, that the new statement

S
= g—{I};A;{D.I};D;{I}
= {rule (2.19}
g—{9gnI}; A;{D.I};D;{I}

can replace the statement— A; D ofthedo — od loop. This is correct, sincé
preserves the invariant, trivially. Within this context, we can rewditey using the
information supplied by assertiofD.1}, such that the angel is forced to restrict
its choices to the ones that establish
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In our caseA = {x := 2’ | b, }, thus, we can propagafeé).l} backwards. In
this way, we strengthen the boolean condition of the angelic nondeterministic as
signment. As a result, the angelic choices are reduced, according totfegpted
information. The actual transformation is as follows:

{z:=12"|b};{D.I}

= {(2.18) (7.5)
{x:=12"| by N D.I[z:=2]}
= Af

At first glance, this seems a transformation that does not actually favor ou
agent; it rather serves the interests of the demon, since it decreases diérsal
states that the angel can choose from.

However, rewriting in the specified context makes the behavior of thel ange
implementable. To support this claim, we prove that the angelic nondeterminism
within A is in factequivalentto demonic nondeterminism, within the analyzed
context.

The correctness rule of the sequerdgen I} ; Ay ; D ; {I} with respect to
preconditiong N I and postconditiod is

gNI{{gnI}; A} DI DI{D;{I}} I
gNI{{gnI};Ap; Di{I}} 1

We have that

({gn1};Ay).(D.I)
= {substituted}
{gnI};{zx:=2"|b,N(D.I)[x:=2']}).(D.I)
= {wp rules for angelic assignment, sequential composition, and asgertion
gNINn @Gz -b,N(D.I)x:=2"])
{logic}
g N INtrue
= {rewritetrue}
gNINNx' b, N (D.I)x:=2") C(D.I)x:=2])
= {wp rules for demonic assignment, seq. composition, and assertion
{gn1I};[x:=2a"|b,N(D.I)[z:=2']]).(D.I)

N

We also have that

({gn1}; Ap)-(D.)
= {substituted}
{gn1};{z:=2"|b,N(D.I)[x:=2]}).(D.I)

148



= {wp rules for angelic assignment, sequential composition, and asgertion

gNIN @2 b, N (D.I)x:=2'])

{(74):gN I C 32" -byN(D.I)[x:=2'])}

gnNINtrue

= {rewritetrue}
gNINNz -byN(D.I)x:=2") C(D.I)x:=2])

= {wp rules for demonic assignment, seq. composition, and assertion
{gnI};[x:=2"|b,N(D.I)x:=2"]]).(D.I)

U

]

Hence, for whatever choice the angel picks, such that it stays withinable p
of states denoted by, N D.I[z := 2'], the final predicatd holds, no matter how
the demon chooses to play.

The idea of implementing angelic nondeterminism by systematically trans-
forming angelic nondeterministic statements into demonic nondeterministic state-
ments, or deterministic statements is advocated by Celiku and von Wright [57].
Rules that guarantee the correctness of such transformations asedopyet
without targeting synthesis of controllers that need to meet (various) tammgor
quirements.

7.3.3 Example: A Producer-Consumer Application

Let us assume that we are given the task of designing a controllerRstan-
First-Out (FIFO) memory buffer (or dast-In-First-Outbuffer, for that matter). A
specificproducerprocess adds data to the buffer, while a particatarsumetakes
away data from the buffer, with respect to predefined rules. This Kipipelined
controller could be useful, for instance, in the design of hardware égvic

Our goal is to ensure that the producer can always provide at leashew
input to the buffer, that is, the buffer is never full after the consumesffinished its
round. We choose to show our proposed methodology perameterizednodel,
where the parameter is the capacity of the buffer.

In the example that we present, we suppose that the producer placestitems a
one end of the buffer, and the consumer removes items at the other eark(Fig
a)). However, this is just a modeling point of view, since the methodologirezpp
also if they operate at the same end of the buffer (Figure 7.2 b)).

System Modeling. We start by imagining a game between the controller (pro-
ducer), represented by the controllable variables, and the plantufoeny mod-

eled by the uncontrollable ones. The players take turns and make moves with
respect to the following rules:

e each time the system executes, the producer has to add one or two items into
the virtual buffer (it can not add zero);
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Consumer

a) b)

Figure 7.2: The producer-consumer example: a) FIFO, b) Stack (LIFO)

e the consumer may choose to remove at most two items at a time, or leave the
number of items unchanged, depending on the sizes of the respective data
packages:

- the consumer is allowed to remove zero items, if it has removed one
item from the buffer, in the immediate previous step;

- if the consumer has removed zero in the previous round, it has to re-
move two items, in the current one;

- if the consumer has removed two items, it is mandatory that it removes
only one item during the current round.

Note that an external observer sees the start of each round and the end of it,
without noticing the intermediate states.

The goal of the controller is to find a way to enforce the required property,
during the execution of the system. For instance, such property is the requirement
to “never exceed the capacity of the buffedr “if an error has occurred, keep the
buffer within certain limits”.

The variables that describe the system state are as follows:

e (' : Nat - models the number of items in the buffer, as updated by the con-
sumer, at the end of each round of the game; it represents the observable
value;

e 7:{0,1,2 - represents the number of items removed by the consumer, from
the buffer;

e max . Nat- models the capacity of the buffer (maximum number of items),
yet not less than 4 locationsngx > 4), for the buffer to be sufficiently
large.
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The goal of the producer is a postcondition formalized as an “always”desthp
property:

O¢=0(0 < C < mazx),

The property can be interpreted in terms of the game: the producer loses the
game if the consumer manages to leave the buffer full, after its respectiateup
By enforcing ¢, we ensure that there is a continuous activity at the producer end
of the buffer.

In spite of the partly nondeterministic moves of the consumer, the producer
should be able to enfordelq. Having a way to keep itrue during the entire
execution of the system is equivalent to synthesizing a controller foriamae.

Hence, we focus on synthesizing such a controller, within the mentiongal setu

7.3.4 The Producer-Consumer Model as an Action System

The process of controller synthesis is gradual; it starts with a nondetetiminis
model of the controller, which has to be further adjusted correctly, inrdabe
brought closer to the implementable level. This justifies our decision to specify
the actions of the producer, as an angelic nondeterministic assignment.tfid&us
behavior of the controller is described as follows:

Prod={C:=C"|C <C'<C+2} (7.6)

The boolean condition of the assignment ensures that the produceoiaelds
or two items to the buffer. Should we not require this condition to hold, the basic
angelic behavior is not enforced.

As the consumer is partly uncontrollable, it behaves demonically. Conse-
guently, it is modeled by a demonic nondeterministic assignment:

Cons = [r,C:=1",C"|(r=0Cr" =2)
Nr=1<r €{0,1,2})
Nr=2Cr =1)

NC' =C -7/ (7.7)
= [r=r|(r=0Cr" =2)
Nr=1<r" €{0,1,2})
N(r=2Cr=1)];
C:=C-r

The statemenCons regulates the moves of the consumer, according to the
rules mentioned in section 7.3.3.

The producer is responsible for enforcing the safety propergy formalized
previously. At each turn, it should choose an appropriate number of ti@edd
to the buffer, such that the latter can never be left fully occupied, bydhsumer.
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The property should be guaranteed, regardless of the demonic nonuhétac
moves.

Further, we model the producer and the consumer, together, as the ytion
tem below, where we substitute statement (7.6)Hood, and (7.7) fotCons. The
system terminates upon the completion of the process. This is decided by an ex
ternal device, modeled by some statem®rt. For simplicity, we choose here
to model a non-terminating loop. At will, the guatebe can be replaced by a
non-trivial one.

Buf S begin var r : {0,1,2},C : Nat *
r:=0;C:=0;[mazx > 4];
do true — Prod ; Cons ; Dev od
end : max

(7.8)

7.3.5 Applying the Synthesis Method

According to the theory, we first check whether the safety propgeiy given as

0(0 < C < max), can be enforced by the producer. In case this is possible, we

move along the line established in section 7.3.2, to extract the winning strategy.
Given the system model as the action systeuyi defined by (7.8), we proceed

as follows:

Al) Firstly, we need to find a predicafeC ¢q. We choosd as being

I = (r=0n0<C <maz)U
(r#0N0<C <mazx—1)

Proving that/ C q is straightforward. ]

A2) Next, I has to be an invariant of the action syst&mf. We assume that the
statementDev preserves the invarianf { Dev[}I holds), since it does not
interfere with the variables mentioned In The invariant is established by
the initialization statement:

b
A r=0NC=0Nmaz >4
c {logic}
I [ ]

Then, we prove that is preserved by the action of the loop, that is,
I C Prod.(Cons.I)
Since statemerdevpreserves the invariant trivially, the relation

I C Prod.(Cons.I) = I C Prod.(Cons.(Dev.I))
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holds. Hence, if we are able to prove the left-hand side of the above impli-
cation, the right-hand side follows. The proof is shown below.

Prod.(Cons.I)
= {substitute statement Cons
Prod.(([r ="
(r=0Cr=2)n
(r=1Cr" €{0,1,2})n
(r=2Cr"=1)];C:=C-r).I)
= {rules (2.7), (2.4), (2.12)
Prod.(Vr'« (r=0C " =2)N
(r=1Cr €{0,1,21)N
(r=2Cr =1))
CI|C:=C—=r)[r:=1"]
= {substitute statement Prod, simplify
{C:=C"|C<C <C+2}.
(r=0C2<C <max)N
(r=1C2<C<max—1)N
(r=2C1<C <max—1))
= {rule (2.11}
3C-C<C' <C+2n
(r=0C2<C"<mazx)N
(r=1C2<C" <max—1)N
(r=2C1<C" <maz—1)))
= {case analysis

o {witnessC’ = C' + 1}
(C'=C+1)N
(r=0C2<C" <mazx)N
(r=1C2<C" <max—-1)N
(r=2C1<C" <mar—1))

2 {logic}

IN(C>2)

e {witnessC’' = C + 2}
(C'=Cc+2)n
(r=0C2<C"<max)N
(r=1C2<C" <max—1)N
(r=2C1<C" <max—1))

2 {logic, assumptiomnax > 4}
In(0<C<1)

{logic}

InO<Cc<1)UuIn(C=>2)

= {logic}

1

19
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We have also proved the invariant with tReototype Verification System
(PVS) [65]. The PVS specification &rod, Cons and the mechanized proof
of invariance are shown in Figures 7.3 and 7.4, respectively. Coastygu
irrespective of the chosen value ofthe producer has a way of enforcing
Ogq.

B) Within this step, we apply rule (7.5) for rewriting the statemBnbd, given by
(7.6). The rewriting procedure uses backward propagation of tlestess

{Cons.I'}

{(r=0<C2<C < max)
Nr=1C2<C <mazxr—1)
N(r=2C1<C<max—1)}

Below, we show the one-step derivation that leads to the winning strategy of
the producer:

{C:=C"|C<C'<C+2};{Cons.I}
= {rule (7.5}
{C:=C"|C<C'<C+2
N(r=0C2<C <mar)
N(r=1C2<C <mazx—1)
Nr=2C1<C" <mar—1)}
= {notatior}
Prody (7.9)
= { result proved in section 7.3.2, fixed postcondit@ons.I }
C:=C"|C<C' <C+2
N(r=0C<C2<C <mar)
Nr=1C2<C" <mar—1)
Nr=2C1<C" <maz—1)]

The statemenPrody, given by (7.9), represents the winning strategy of the pro-

ducer, which guarantees thats true, for all possible executions. Depending on

the current value of’, as updated by the consumer, the lower and upper bounds on

C’ may force the angel to add either one item striafl{,= C + 1, or two items

only (C" = C + 2), or may allow for bothC' + 1 andC + 2 as valid alternatives.

The strategy ensures a win for the angel, for whatever demonic choices.
Consequently, as discussed in section 7.3.2, the final model is implementable.

By strengthening the boolean condition of the angelic nondeterministic assignme
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Prod, given by (7.6), with the information available as the assertions., we
have eliminated the angelic choices that would not estalilishthe producer can
blindly select its moves, yet satisfyifigq, which has been our design target. Now,
we can safely replacBrod by Prody in the action systenBuf.

An interesting extension of the analyzed example is to try to keep the content
of the buffer within certain specified limits. In this case, additional information,
which describes the conditions at the other end of the buffer, shouldrisgdered
also.

For example, let us assume that a safety property that tolerates neither a fu
nor an empty buffer, should be enforced®uf:

O ¢new = 0(1 < C < max)

The conditiong,,., requires an ongoing activity at both ends of the buffer.
Applying the same technique as for synthesizing a controlleq,fare need to
find an invariant that implieg,..,. The respective predicate is as follows:

ITL@'LU
= (r=0n1<C < maz)U
(r£0N1<C <mar—1)

Note that only the lower bound @' has been modified, accordingly. It can be
proved that the winning strategy of the producer, which guaranmiggs for any
possible choice, is

{C:=C"|C<C'<C+2
N(r=0C3<C <max)
N(r=1C3<C <mazr—1)
Nr=2C2<C" <mar—1)}

Should we decide to always maintain the buffer filled at leakications, and at
mostmax — N locations, we then have, by induction, that:

Igen
= (r=0Nn<C<max—N)U
(r#0Nn<C < (max —N)—1)

and the winning strategy:

{C:=C"|C<C'<C+2
N(r=0Cn+2<C <mazx— N)
N(r=1Cn+2<C < (max—N)-1)
N(r=2Cn+1<C < (max—N)-1)}

155



The ideas introduced here might be applied to a more general produtss-c
mer problem. This would indeed lead to the construction of a correct andleelia
template for such a class of systems; then, not only the capacity, but alsorthe
ber of inputs and outputs, that is, the choices of the producer and tiseroen
respectively, should be parameterized.

Producer-Consumer Specification in the Language of the Prototye Verifica-
tion System. The Prototype Verification Syste(RVS, in short) [65, 144] offers
mechanized support for formal program specification and verificatidras been
developed at SRI International, and it comprisespacification languagand a
rich built-in prelude made of theories that contain useful definitions and theorems.
The PVS specification language builds on classical typed higher-omgier lo

PVS specifications are packagedtasoriesthat can be parametric in types and
constants. The built-in prelude and loadable libraries provide standacifisp-
tions and proved facts for a large number of theories.

fifo: theory

begin
nat_4 : TYPE+ = {n: nat | 4 <= n} CONTAINING 4

N: nat_4

C, CO: wvar nat

r, rO: var {n: nat | n < 3}

I(r, (C: int)): bool = (r = 0 and 0 <= C and C < N) or

(r /= 0 and 0 <= C and C <= N - 2)
prod(C, CO): bool = C < CO and CO <= C + 2

cons (r, r0): bool =

(r = 0 => r0 = 2) and
(r = 1 => r0 < 3) and
(r = 2 =>1r0 = 1)

invariant: lemma I(r, C) => exists CO: prod(C, CO) and

(forall rO: cons(r, r0O) => I(r0, CO - r0))
wp: lemma (forall r0O: cons(r, r0) => I(r0, C - r0)) =
((r = 0 => 2 <= C and C <= N) and
(r =1 =>2 <= C and C <= N - 1) and
(r = 2 =>1 <= C and C <= N - 1))

end fifo

Figure 7.3: PVS specification &frod, Cons

Proofs in PVS are presented in a sequent calculus. The atomic commainels of
PVS prover includeuantifier instantiation, automatic conditional rewriting, sim-
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plification using arithmetic and equality decision procedures and type infooma
and propositional simplification using binary decision diagrarm$ie SKOSIMP
command, for example, introduces constants of the fdirfor universal quanti-
fiers, andASSERT combines rewriting with decision procedures.

Finally, PVS has a strategy language for combining atomic inference steps
into more powerful proof strategies. The stratégyiND, for example, combines
rewriting with propositional simplification usingnary decision diagram@DDs)
and decision procedures.

|_
(skosimp)
|
I_
(expand "I")
|
|_
(expand|"prod")
|
I_
(expand |"c0ns")
|
|_

(case ”C!|1 <=1")
/\
- -
(inst 1"CI1 + 2") (inst2"Cl1 +1")
| |
- -
(ass|ert) (assert)
| |
= =

(grind) (grind)

Figure 7.4: PVS proof of invariance.

Since all we need to do is to prove an invariance property, we haveedduc
the predicate transformer model of the producer and the consumer, weabo
specification in PVS. This lighter model, as can be seen in Figure 7.3, bféey
premises for a more intuitive, less intricate mechanized proof.

At first, we have proved the/p lemmawhich verifies the correctness of the
computed weakest preconditi6fons.I. The proof is carried out in 4 steps: invoke
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the quantifier ruleSKOLEM!, expand the definition of'ons, then of, and last,
use the rule for simplification with decision procedut@R|IND.

The main lemma callethvariant checks for the validity of the invariant, after
executing the sequenéerod ; Cons. We have verified that predicafémplies the
existence of &0 (C’ in (7.6)), such that for any number of items removed by the
consumekons(r,r0), the invariant is preserved in the end. The proof is given in
Figure 7.4 and follows a similar pattern to the pen-and-paper proof.

7.4 Synthesis of Controllers for Reachability

Reachability controllers have to guide the system into a specified set of taies
any initial state, or provided that some nontrivial condition is fulfilled. Onthef
possible applications of the latter isfawult-tolerantsystems.

Even if we agree with the point of view that the best way to deal with faults is
not to have them, it is not possible to mak@ysystem 1004 fault-free. Therefore,
full fault-tolerance is desirable. However, most systems can perform reliphty
a limited number of faults, with a possible decrease in performance.

For example, in order to guarantee reliability of fault-tolerant systems, one
may wish to encode the requirement that a system fault (or an accepte@mnoinb
faults) should not be followed by other faults, during the system’s life-time.

As distinct from the previously mentioned fault-tolerant systems, fail-safe s
tems should be able to terminate in a safe state, if they suffer a serious damlage a
need to halt their operation. Failures result from many causes, suegeidtion,
overloading, design errors etc. Besides minimizing the chances of a faluee
should also strive to reduce its effect. This means that a system has teigeatk
such that, if a failure occurs, its controller issues commands that lead toimgsto
safety and termination.

In the following, we address the design of reachability controllers suited fo
classes of fault-tolerant systems as described above.

7.4.1 Characterizing Enforcement of Response Properties iAction
Systems

Formal Definition of Weak Response. Let us consider a reactive system de-
scribed by an action system given by (7.1). In principle, for designomgect
reachability controllers, the angel has to guarantee liveness propertidsled as
“eventually () properties. Here, we focus on an eventuality property that we de-
note by the temporal operatdr, (p, q), p, ¢ predicates. We call this propenyeak
response

The weak response property holds if:

o the system has reached a state in the set of reachablestatdsthe angel
has a way of ensuring that the system execution terminates in a staterof
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e if the angel can keep the system in a statepfforever.

As proved by Back and von Wright [38], foafways and “until” properties,
enforcement of temporal properties is reduced to traditional correcimeper-
ties of special fixed-point statements. To be able to further charactgyize, q),
we define the following recursive statement, which subsumes the existetvee o
loops:

WRes.p.q
S WX -[opl;lg); A D XN [pl; (Y - [~q]5 {g} s A; DY)

In fact, WRes.p.q is a weak iteration that is necessarily terminating, if the particular
conditionp holds.

We can say that the stateméfiRes.p.q is aninterpreterfor ., (p, q); it exe-
cutes the constituent statements for determining whether the weak respopse p
erty is valid. The behavior dfVRes.p.q is shown in Figure 7.5.

(7.10)

Figure 7.5: An interpreter for WRes.p.q

The diagram shows the angelic choices as empty circles and the demonieschoic
as filled circles. A grey circle means that we do not know whether the climice
angelic or demonic.

For mission-critical systems (e.g., in avionigsan model a failure that, once
encountered, has to be followed by the restoration of the safe state,ramdae
tion in such a state (wherg holds). The fail-safe systems attempt to limit the
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amount of damage caused by a failure [52]. Termination whieolds is compul-

sory. To achieve this, we need to specifically add a guarded action that disables the
respective action system wheneyen ¢ holds. The action should have the form

p A g — S, whereS is an assignment that makes the guard of the system false.

To help intuition, we give a practical example described by Burns and Wellings,
in their book on real-time systems [52]: “The A310 Airbus’s slat and flap control
computers, on detecting an error on landing, restore the system to a safe state and
then shut down. In this situation, a safe state is having both wings with the same
settings; only asymmetric settings are hazardous in landing”. Informalty=if
(error on landing), then the airplane controller should enfgree(equal settings
for both wings), at landing. Otherwise jifdoes not hold (no error on landing has
occurred)g need not necessarily hold.

We translate the informal descriptions presented above into a formal lemma,
which characterizes the weakest precondition of a statement with respect to the
weak-response property.

Lemma 8 Assume that predicates ¢, and the monotonic predicate transformer
S are given. Then, the weakest predicate such that the game tree generaied by
satisfies®, (p, q) is:

SQuw(p,q) = (vre(puUSz)N(-pU(uy*qUSy)))

Proof. We follow the proof line of Lemma 2, in [37]. Let us considgr =
(ve e (pUSz)n(—pU(uy * qU Sy))). Consider also the game tree with
rootpy = S.$w(p, q) generated bys.

The angel must be able to choose a predipageich that

(Voo (poVSp.o)A(—poV(p.o= ligl da+1-0)))

holds andp’, S) satisfies(.,(p, q).
In the above, the approximationg are defined by:

qo = false
Go+1 = (¢ U S-Q(x
do = (UB < a-qp), forlimitordinalsa

The approximatiory, characterizes those states for which the angel can guar-
antee that, if we set a “counter” atand decrease it after each time the demon has
made a choice, thepwill be established before the counter runs out. Thus, the
limit of these approximations is exactly the set of states that guargntee

Sincepy is the greatest predicate with this property, we have:

ocEp) = (cepVv @ Sp.onp Cm)) (7.11)
Ao €-pV (3 *p CpoAp.o=1lim(qoV S.q..0)))
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Further, we have:

g € po
{ argument (7.11}
(cepv (@ Sp.anp Cpo))
ANoe-pVv @@ ep CpoAp.o= liCryn(q.U V 5.40.0)))

= { S monotonic}
(c €pV Spo.o)N (6 €—-pV(py.o= licryn(q.a V 5.¢0.0)))

{ set notation}
(0 €pUSpo) A (0 €-pU(p = lim(qU S.qa)))

Since this holds for alt, we get:
po= (pUS.po)N(—pU lién(q US.qa))
Thus,pg = S.$w(p, ¢) is a fixed point of

Az (pUSa)N (=pUp.(Ay*qUSy)))

To see thapy is the greatest fixed point, it is sufficient to show thatC p.
The latter follows from proving thak (¢, S) = $w(p, q).

For this, we note that the root 6{¢’, S) is¢’ = (pUS.¢")N(—pU(uy-qUS.y)),
which means that every state that the demon can choose is eithgolirin —p.
After that, the angel can choogéas the next predicate. If the demon chooses
a state inp, given the fact that the angel choosgs (uy - ¢ U S.y) holds. If
the demon chooses a state-gf, it follows that S.q¢’ holds. Thus, by induction,
(pUS.¢)N(—pU (uy-quUS.y)) will hold in every state if the angel follows the
strategy “always choose the predicaté [ |

The characterization in Lemma 8 of the weakest precondition gives us the fol-
lowing result for action game satisfaction of weak response.

Theorem 4 Assume thab is a monotonic predicate transformer apgl, p, ¢ are
predicates. Then

G(po, S) E Quwlp,q) iff po C (vre(puUSx)N(=pU(uy*qUSy)))

Proof. Follows from Lemma 8. [}

This shows how reasoning about weak response is reduced to fixed point reasoning
about predicate transformers.
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Correctness Lemma for Weak Response. Here, we formulate enforcement of
weak response, as a correctness property.
Since

Voeo{dog— A;Dod [} $u(p,q) = (WRes.p.q).false.o,

we can further claim the following result.

Lemma 9 Let statementsgl, D, and predicate®, ¢ be the same as above. Then

po{dog— A;Dod[ ulp,q)
=po © (WX * [7p]5[g]5 A5 D X0 [p]; (Y = [-a] 5 {9} A5 DY) false

7.4.2 Proving Enforcement of Weak Response

Invariant-based Proof Rule. Below, we propose an inference rule for checking
whether the angel can enforce weak response properties in the particular case of an
action system of the form given in the following lemma.

Lemma 10 Assume the following action system
Sys(y:T,) = begin var x:T,* Init; dog — A;D od end

Then, weak-response properties can be proved using invariants, and termination
arguments, as follows

Do C 1
gnl {|A;D|} I
pNI Cc qUyg

—qNgN(t=w) {|A;D[} (qUg)N(t<w)
po{ldog — A; D od [} $uw(p,q)

Here, p, ¢ are predicates, and the state functibranges over some well-founded
set.

Proof.

po{ldog— A;D od |} Qu(p,q)
= {correctness rule - Lemmg9
po € (WX [-plslgl; A D X0 [pls (Y- [~q) 5 {g}; A; DY) false
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= {successive application of rules (2.7), (2.6), (2.10), (.5)
po C (v - (pU-gUA.(D.z))N(-pU(py-qU(gNA.(Dy)))))

< {assumptiorpy C I}
IC(vz-(pU—gUA(D.x))N(-pU(py-qU(gNA(Dy)))))

< {greatest fixed point induction rule (2.34)
IC(pU-gUA(D.I)N(-pU(py-qU(gNA.(D.y))))

< {assumptioynlI C A.(D.I)}

IC(pU~gU(@gnI))n(=pU(uy-qU(gnA.(D.y))))

{logic}

IC(pU-gUl)N(=pU(uy-qU(gNA.(D.y)))

< {logic}

IC—pU(py-qU(gnA(D.y)))

{logic}

pNIC (uy-qU(gNA(Dy)))

< {assumptiopnNI C qUg}
qUg C (ny-qU(gNA(D.y)))

< {least fixed point rule (2.13)
Vw - (qUg)N(t=w)CqU(gNA(D.((gUg) N (t <w))))

< {shunting, simplificatioh
Vw-—=qgNgn(t=w)CA(D.((qUg)N(t <w)))

< {last assumptioh

true

The rule of Lemma 10 shows the proof obligations when carrying out déartro
synthesis for weak response. The predidataight include states of, or states
of —p. Provided that the angel has started from a stateqafi g, one can prove
that it has a winning strategy if it can find a way to keep the systei or lead
the system into a state @fU g, trying to decrease This means that the controller
is forced to make appropriate moves, such that at the end of the gamggets
established, after a finite number of iterations(w).

Let us see, next, how these theoretical results apply to a concrete example

7.4.3 Example: A Data Processing System

In this section, we analyze the operation of an abstract, distributed datasgro
ing system. The input data is produced by one uBll), and transferred, via a
limited capacity channel, to a collection of collector devic€®j) that process it
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further. The channel is similar to a buffer that contaimaxlocations. A graphical
representation of the system is given in Figure 7.6.

CcD

|
_@_

A

max >

T

Figure 7.6: The data processing system

The example resembles, in some sense, the one introduced and analyzed in
section 7.3.2: th@U is the producer, th€D replaces the consumer of the respec-
tive example. The methodology described in section 7.3 allows us to build a safe
system where the margins of the buffer are not exceeded, in eithex. sens

As distinct from the specification of the mentioned example, now, the buffer
may be in service only for a limited period of time (however large), measured
by the number of transactions between Bi¢ andCD. In addition, thePU also
specifies which collector device should process the current data itene @th
end of the buffer. Even if we are not modeling this feature here, wertimless
need to take it into consideration. A monitor / controller identifies this address a
consequently directs the data towards the approp@&teA costly, from certain
points of view, implementation of the system would add, on top of the necessary
data locations in the buffer, the number of locations required to store thet targ
address as issued BU'. Hence, instead afax buffer locations, one needs to
employmax + mlocations (wheren € {1,2,...} is the number of slots storing
the address, assuming that each slot is of length 1). For simplicity, in the fojow
we consider that each address occupies one slot only, thatis,1.

From a safety point of view, it would be enough if the designer of sugisi@m
integratesn extra locations into the buffer, thus increasing its capacity; then, one
could apply the solution found in section 7.3.2 (wittwmax = max + m. How-
ever, one could think of optimizing the usage of the buffer, such that its diimes
remain the samar{ay. We are helped in this quest by an additional assumption:
built with its own safety considerations, the monitor / controller that recelves

1An also somewhat costly implementation would use an extra variable to stoagltiiess.
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target address from theU, may reconstruct it, once, during the life time of the
system, even if the necessary data is missing or corrupted.

Let us see how this additional assumption can be satisfied in practice. Based
on the fault-tolerant feature, one may think of a system that works “norinadly
til it falls into the undesired erroneous state (from where the addres® ofetkt
processingCD may not be extracted by the monitor / controller). If this is the first
time that the event occurs, the error is detected and repaired by the mangosin
cedures. After this, the system must be protected from reaching the gaat®n
again, during its life time. The resulting system is illustrated in Figure 7.7.

Ccb

| CD1

CD2

|
_@_

4——————max - —P

§  CDn

[

_—

Figure 7.7: The data processing system, with shorter buffer

System Modeling. Here,PU is the angelic program, whil€D behaves demon-
ically. Hence, the incoming signals are modeled as angelic updates, whiegeas
removal of the buffer content is viewed as a disturbance. As in the exavhple
section 7.3.2, the angdbU, adds one or two data elements to the buffer (apart
from the newly required target address). The capacity of the buéfevden the
two components is represented by the parameter (max > 4).

The variables in the system are as follows:

e life : Nat - records the functioning time of the system. It is incremented at
the end of an execution round (after both angel and demon have plaied th
turns).

e (C : Nat - models the number of packages in the buffer. Whenever its value
goes over the valuewax — 1, thus violating the requirement of reserving
the last location for the target address, an error message is set. &onigr
some partk locations) of the buffer content are automatically cleared (bring-
ing the buffer to the level of' — k). The valid range of values for parameter
k will result while discharging the corresponding proof obligations.
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e r:{0,1,2 - represents the number of items removediiy.

e err : Nat - models the error message is initialized to 0 and incremented
by one every time the conflicting situation appears.

The behavior of the demon is similar to the behavior of the consumer in the
producer-consumer model presented in section 7.3.2. The removal of data pack-
ages is arbitrary, within some given rules. For simplicity, we choose the rules to be
exactly the same as the ones in statendénis (see (7.7)).

The angel wins in two situations:

1. if the system reaches the end of its life time (expressed in the model by the
constantLim Func) and there has not been any conflict between placing the
data packages and the target address. Concretely, the angel wims=f
0 N life = LimFunc holds, or

2. if after one error has been signaled, the angel is able to keep the buffer filled
within the limits0 andmax — 1, until life = LimFunc. Hence, the angel
avoids the occurrence of a second, similar error. Consequently= 1N
life = LimFunc is enforced.

The angel loses if, after one error has been signaled, it does not manage to
maintain the buffer occupied betweérandmaz — 1. This means that a second
conflict target address - data input can not be avoided,dhus- 1 holds.

The behavior of the angel is represented by the statement below:

PU £ {C:=C'|C<C' <C+2} (7.12)

The demonic behavior is captured as follows:

cp 2 (C>maxNerr=0—err:=err+1;C:=C—k

NC>maxNerr >0 —err:=err+1

N C < max — skip);

[r:=7"|(r=0C1" =2) (7.13)
N(r=1C+ €{0,1,2})
Nr=2Cr=1)J;

C:=C—r;life:=life+1

The additional information that we need is given as:

(err = 1) N (life = LimFunc)

life < LimFunc — 1

(err > 0) N (life < LimFunc)

= (err=0)N((r=0)N(0<C <mar—1) (7.14)
U(r#0)n(0<C <mazx—2))

Uerr>0)N((r=0)n(0<C <mazx—2)
Ur#0)n(0<C <mazx—3))

(1> 11> 1>

~" e
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One can notice that the above definition lofncludes the invariant used in
section 7.3.2. The old invariant ensures that, in case there exists an avigalitg
strategy, we get a model in which the capacity of the buffer is not exdeéltee
choice is also motivated by reusability of previous designs. The currestiamt,
however, takes into account the presence of the error messages, too.

The overallPU-CD system is then described as the following action system:

DPS £ beginvarr e {0,1,2},C,life,err : Nat
r,C, life,err :=0,0,0,0 ; [maz > 4];
do (life < LimFunc—1) — PU; CD od
end : max

Applying the Synthesis Method for Weak Response. In order to find a winning
strategy for the angel (if any), we have to first check the validity of ttieviong
relations.

1. pg C I. Immediate proof, after replacingwith its definition (7.14) and also
consideringyg = (err =0Nr=0NC = 0Nlife = 0N maz > 4). [ |

2. pn I C qUg. From definitions (7.14) we have, at first, that

aJvyg
= { definitions (7.14)
(err = 1 Nlife = LimFunc) U (life < LimFunc — 1)

The proof of the required relation is immediate. [ ]

3. gnI CPU.(CD.I). We start by denoting:

cDh1 £ C>maxNerr=0—err:=err+1;C:=C—-k
NC>maxNerr >0—err:=err+1
NC < max — skip
cD2 2 [r=r"|(r=0Cr =2)
N(r=1<r €{0,1,2})
N(r=2<Cr=1)J;
C:=C—r;life:=life+1
We compute:
CD.I
= {rule (2.7),CD £ CDI1;CD2}
CD1.(CD2.1)
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{rules (2.4),(2.7), (2.12), logjc
CDL.(((r=0Cerr=0n (2<C <mazx))
N(r=1Cerr=0n (2<C <mazx—1))
N(r=2Cerr=0n (1<C <mazx—1)))
U((r=0Cerr=0n (2<C <max—1))
N(r=1Cerr=0n (2<C <mazx—2))
N(r=2Cerr=0nN (1 <C <max—2))))

{logic}

CDIL.2<C<mar—2U (err=0 N C =mazx —1)
Uerr=0nNr=0n C=max)

U(r=0n C=max—1)
U(r=2n:c=1))

{logic}

CD1L.2<C<mar—2U (err=0nN C =mazx —1)
U(r=0nNer=0n C=maz)
U(r=0nC=max—1)
U(r=2n<c=1))

{notatior}

CD1.1

{wp rules}

(C >max N err =0) C Iylerr :=err +1,C := C — k))

N ((C > maz N err >0) C Lerr :=err+1])

N (C < maz C I)

{logic}

2<C<mar—-2U (r=0n C=mazx—1)
Ur=2NC=1U(err=0nN C=max—1)
Uerr=0NC=mazx N (k+2<C <mazx+k—2)

We can write further that:

V)

PU.(CD1.I») (7.15)
{definition}
3C"-(C<C'<C+2) N CDL.L[C =]
{case spli}
o {witnessC’ = C + 1}
(C"=C+1nNn2<C <mar—2)
U(r=0NnC'=maz—-1U (r=2nC" =1)
U(err=0 N C" = max — 1)
Ulerr=0NC'=max N k+2<C" <mazx+k—2)
2 {2 <k <mazx—2}
INnC>2
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e {witnessC’' = C + 2}
(C"=C+2n2<C" < maz —2)
U(r=0NnC"=max—1)

U(r=2nC"=1) U (err=0 N C" =max — 1)
Ulerr=0nN C'=max) N (k+2<C <max+k—2)
2 {max > 4}
IN(0<C<1
= {logic}
INno<C<l)uUu(IncC>2)
= {logic}
1
{logic}
gnlI

U

Notice the extraction of parametér its range of values is limited to the
interval [2..max — 2]. By showing thaty N I C PU.(CD.I), the above
derivation (7.15) completes the invariance proof. [ ]

4. -gnNgnN(t = w) C PU.(CD.((¢gUg) N (t < w))). We consider that
t £ LimFunc — life. We denote:

(qUg)N(t <w) (7.16)
= {definitions(7.14)}

((err = 1Nlife = LimFunc) U (life < LimFunc—1))N (t < w)
= {definition of¢}

((err = 1 Nlife = LimFunc) U (life < LimFunc — 1))

N (life > LimFunc —w + 1)

= {notatior}

X

We then have that:

PU.(CD.((qUg) N (t <w)))
= { definitions(7.14), notation(7.16) }
PU.(CD.X)
= {rule(2.7) }
PU.(CD1.(CD2.X))
= {wprules}
PU.(CD1.(((err = 1N life = LimFunc — 1)
U life < LimFunc — 2)
N life > LimFunc — w)
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= {wprules}
PU.((err = 1N life = LimFunc — 1
N life > LimFunc — w)
U (err =0NC > maz N life = LimFunc — 1
N life > LimFunc — w)
U (life < LimFunc — 2N life > LimFunc — w))
= {rule(2.11) }
Fo.(C<Cc<C+2)
N (err = 1N life = LimFunc — 1
N life > LimFunc — w)
U (err =0NC" > maxz N life = LimFunc — 1
N life > LimFunc — w)
U (life < LimFunc — 2N life > LimFunc — w))
= { predicate calculu$
((err = 1N life = LimFunc — 1
N life > LimFunc — w)
U (life < LimFunc — 2N life > LimFunc — w))
u@Ec.(C<C <C+2)
N (err =0NC" > maz N life = LimFunc — 1
N life > LimFunc — w)

2 {logic}
(err = 1N life = LimFunc — 1N life > LimFunc — w)
U (life < LimFunc — 2N life > LimFunc — w)

D {logic,w >2}

—(err = 1N life = LimFunc
N life < LimFunc — 1
N life = LimFunc — w)
= {identification}
—qN gN (t=w) ]

This proves that, whenever the system starts in a statg of g, it terminates,
establishingg U ¢g. In our case, termination is triggered by the invalidationyof
(life = LimFunc), and therefore, at that momentholds.

Extracting the Control Strategy. This step is similar to the one in section 7.3.2.
We have proved thatis an invariant of the action systeRPS, defined by (7.4.3).
Consequently, the statement

{lim < LimFunc N I};PU;{CD.I};CD;{l}

can substitut®U ; CD and become the new body of the loopIoPS. Hence, we
can rewriteP U, by propagating the asserti¢@€D.I} in PU. If we assumé = 2,
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we get the winning strategy of the angel, with all the unsafe moves eliminated:

PU = {C=C'|(C<C' <C+2)

N2 <C <max—2
U(r=0nC" =max—1)
U(r=2ndc=1)
U(err=0 N maz —1<C" < max))}

= {simplify, result proved in section 7.3.2, fixed postcondit{oD./ }
[C:=C'|(C<C <C+2)

N2<C <mar—2
U({(r=0Uerr=0)NC"=max — 1)
U(r=2nc =1)
U (err =0NC" = max))]

This strategy does not require any angelic intelligence in deciding the “good”
moves, yet it does not rule out the non-harmful nondeterminism. Therefore, what-
ever choice we select for implementation, such that the boolean condition of the
assignment is satisfied, the correctness of the controller is guaranteed.

The proof of-¢ N g N (t = w) € PU.(CD.((¢ Ug) N (t < w))) shows
only termination and establishmentqin finite time. We do not need to propagate
the information of assertiofiCD.((¢ U g) N (¢t < w))}, into statemenPU, since
it does not mentiorC. Hence,{CD.I} is sufficient for extracting the angelic
winning strategy.

Discussion. As mentioned in the beginning of this section, the additional require-
ments of the presented example could have been easily satisfied if one considered
modifying the buffer capacity. Still, we have proved that the response properties
are met without increasingazx.

Observe that along the deductive procedures, we have also synthesized the
value of the parametér, and we concluded that the property is satisfied at least two
steps prior to termination, that is, > 2. This low bound of the possible range of
values forw comes from the fact that the information abgus not considered by
the fourth correctness assertion of Lemma 10. That assertion should hold under any
execution scenario. For example, we can imagine that, Whes LimFunc—1,

p holds,—¢ holds and after one step a new error is encountered (angel loses). This
means thag does not hold but the system stops. So, the postcondition is not
established, hence the correctness assertion is false.

Thus, we need at least two iterations prior to terminationX 2), for the
fourth correctness rule to always hold.

7.5 Summary and Related Work

We have tackled the problem of discrete controller synthesis, by modeling the sys-
tem as an action system, and the synthesis process as a zero-sum two-player game.
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The players are the controller, called the angel, and the plant, called theademo
which make moves sequentially, each according to some statement, respective
The goal of the angel, which models the requirement specification, is ty safe
liveness temporal property. In the first case, the method ends up withtrldiog
strategy for invariance, whereas in the second case we synthesia@ strategy

for reachability. In the latter case, we apply the theory for designing albets for
fault-tolerantsystems, under one-fault scenarios. Full fault-tolerance is desirable,
however, it is rarely achieved in practice. It is often so that, for safe#gons,

the system can not accommodate more than one error during its lifetime; it is then
required that the system maintains its integrity after the error has occwinézh

is equivalent to avoiding another error until termination.

To express this sort of properties in our framework, we have defineeha
temporal operatof,, (p, ¢). We have characterized it formally, by defining it over
game trees. Proving enforcement®f,(p, q) reduces to the proof rule that we
have proposed as Lemma 10.

Our work relies on the angel-demon game formalization within the dually non-
deterministic weakest precondition framework [34], and on its later extesisio
[35, 37, 38].

In general, relationships between players may involve both cooperatibn an
competition. To make the synthesis possible, in our case, the angel comjibtes w
the demon.

We have started with an angelic nondeterministic assignment as the model of
the controller, and a demonic update for the behavior of the plant. Anyliarge
demonic nondeterministic behavior can be cast into a nondeterministic assignmen
respectively. Therefore, this way of modeling is comprehensive inessprg any
kind of nondeterministic choice.

In either invariance or reachability case, the synthesis subsumes two main
steps. Firstly, we check whether the angel can enforce the requinedibe (A1,
A2 of section 7.3.5, and also the second paragraph of section 7.4.3 shothé
first step is applied in practice). If this first step holds, we extract thelangin-
ning strategy next (step B in section 7.3.5, and last paragraph of secti@).7

In order to restrict the angelic choices to the ones that establish the safpty p
erty, by a correctness-preserving transformation, we have uséavaat propa-
gation of assertions. The assertion is the computed weakest preconditithre f
demonic assignment to establish the invariant. This precondition is used tterewr
the angelic update. The end-result is a correct-by-construction denttailored
to the required behavior.

Two illustrative case-studies have shown the application of the propgsed a
proach, in practice. Due to Lemma 7 and the method described in section 7.3.2,
we have synthesized an invariance controller for a producer - comsuike sys-
tem. Next, by applying the proof rule of Lemma 10, we have constructedteoton
strategy to win games intended to motillt-tolerantsystems.
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Related Work. Viewing a reactive system as a two-player game is not a new idea,
it can be traced back to Ramadge and Wonham [139], and Pnueli anéRd37].

The authors developed synthesis algorithms for finite-state discrete systedns
showed that finding a winning strategy for the game was equivalent toesjiniing

a controller that satisfied the requirements.

Recently, on-the-fly algorithms have been developed, by Tripakis ancgeAJtis
for solving the issue of controller synthesis for discrete and dense-tistersg
[154]. The method is restricted to finite-state systems. In the discrete case, th
algorithms are fully on-the-fly; a strategy is returned as soon as it is fabus the
state space does not necessarily have to be entirely generated.

Asarin, Maler, and Pnueli also apply concurrent game techniques straoh
discrete controllers. The system is viewed as a timed automaton with trivial eontin
uous dynamics [18]. The authors develop fixed-point algorithms in dedeom-
pute the maximal strategy. The method uses a “predecessor” operatariginht
imply a resource-consuming implementation, and also the exploration of possibly
unreachable states. Similar algorithms suited for model-checking are pbpgs
Maler, Pnueli and Sifakis, who solve the problem of infinite-state contrellar
thesis for timed games, symbolically [122].

A deductive approach to controller synthesis is also proposed by Mamha
Sipma [123]. The authors follow an incremental controller design pattpplica
to hybrid systems. The system and its environment are modeladtasphase
transition systemfl46]. Verification rules are used to determine whether the sys-
tem together with a control strategy meets the specification. The method is applied
only to the synthesis of invariance controllers.

Slanina [147] develops proof rules for safety and response lineaotaipgic
properties of reactive system games. However, the equivalent cfemond syn-
thesis step, that is, extracting the (angelic) winning strategy, is not apipiere-
over, the author does not use a two-fold nondeterminism, neither dogplyehés
theoretical results on detailed examples.

The idea of refining an initial non-implementable specification towards a cor-
rect implementation, by making successively more transitions explicit, is also ap-
plied by Henzinger, Manna and Pnueli on hybrid control systems modgRiokese
Transition Systemf@1]. The requirement is modeled asgbrid temporal logic
property. Even if the notion of game is not explicitly used, a stringent fofrm o
refinement is defined such that the controller “wins” no matter how demonically
the environment behaves. However, our angelic-demonic dualism thatsntizd
two parties (controller - environment) distinguishable is suggested by therauth
through partitioning variables intwontrolled variablesandenvironment variables

Our synthesis method is general and can be applied as such, to both infinite
and finite systems. This is an immediate consequence of the deductive-based
construction. An elegant way to handle the control of infinite-state coacur
(multi-player) game structures, based on abstraction, has been pidmosten-
zinger et al. [90]. Properties of interest (of the abstracted systengpaefied
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in the alternating-time temporal logi¢15]; the "worst-case” created abstraction
(less powerful controller, more powerful environment) is then modetia with
MOCHA [16]. In comparison, our games are sequential. Neverthelesghtve
proved to be a simple, well-suited model for reactive systems. An advaisttue
fact that, even if infinite, the reactive game that we consider need nditsbeaeated
to a finite instance. Deductive rules apply directly on the (possibly infinite)sta
original model.

As distinct from the fixed-point symbolic synthesis algorithms developed by
various researchers [18, 99, 122], our game-based method isifitéoactive the-
orem proving (PVS [65, 144], HOL etc.). To support this claim, we hawoved
the invariance property of the producer-consumer system, in PVS.

A very useful tool that can increase the level of automation isvirakest
precondition and correctness calculat@6]. One can use this tool for proving the
total correctness conditions needed in both synthesis cases.
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Chapter 8

Conclusions and Discussion

We have presented a methodology for building correct-by-constructiactive
systems, modeled by action systems or their continuous counterparts. vidte de
opment process has served several viewpoints, yet all supportbe bgfinement
calculus dedicated correctness-preserving transformations.

Since we have been analyzing reactive systems, we could not avoidotiie pr
lems regarding theibehavior controland compositionality We have agreed to
meet the challenges by solving the associated problems within our framework b
resorting just to the standard demonic behavior of action systems.

Multiple, simultaneously activeomputing agents that interact with one another
are sine-qua-non parts of any complex reactive system. A feasibleylbazsed
bottom-up design methodology requires that the designer composes the syste
from parallel concurrent components calledules The research presented on
this topic has been motivated by an analysis of control aspects and of mddula
sign techniques, as supported by the current action systems formahfoakné\Ve
have exemplified that the interleaving concurrency paradigm might remdgce
eling of cumbersome protocols among parallel reactive modules, in ordeate g
antee correctness. Our solution for avoiding the overload on modulesscasne
a synchronization mechanism. It implies a new virtual execution model of action
systems, applicable to both discrete and hybrid designs.

Synchronized action systerage suitable for designing reactive systems that
have to present a simultaneous global response to sets of input stimulihi€wec
this, we have introduced a new parallel composition operator (sf)ahat ensures
correct outputs to all sets of inputs, without employing communication channels
between modules. Consequently, our mechanism bears the advantagge afde
ing effort, in practice. The new execution model requires a certain typetain
systems that we caflartitioned action systemsvhich separate local actions from
global actions. We recall the important remark that the synchronizatioratgpe
increases the external system determinism, while preserving an intenddteo
ministic execution of modules.

The proofs on the usefulness of our synchronized parallel envirofymgth

175



respect to modular design have showed that the capabilities of the acttemsys
framework, for modularity, are improved. This translates into being ablerty ca
out (trace) refinements of modules, modeled as action systems or contauiious
systems, in isolation, without knowledge about the invariants of the otherlgsdu
of the parallel environment. However, the invariants needed for trditeeneent
should also be proper (meaning that they depend only on the system’s iit@n w
variables). Theorem 3, and Corollary 1 of chapter 3 demonstrate tlagesc

As a precursor to full formal analysis, simulation of hybrid system models ca
be used effectively, especially if the state space is repressgtedolically This
allows for the modeling of a potentially infinite number of states, and for the sim-
ulation of a potentially infinite number of trajectories in one symbolic simulation.

We have built such a tool using Mathematica, a commercial symbolic manip-
ulation program [156]. The tool takes a description of any CAS as inpudtpao-
vides automatically a symbolic simulation of the system, up to a given maximum
time. The restrictions on the simulation are essentially those of Mathematica. Nev-
ertheless, more efficient algorithms for solving the satisfiability problemdto=
systems guards, which are boolean conditions, need to be implementederFurth
on, we have used the tool for validation purposes, in chapter 6, whilelaev
ing Earliest-Deadline-Firstscheduled systems. An important aspect of our tool
is the fact that it does not require any semantic changes of the model, iskdach
CAS. Moreover, being symbolic, it does not use a fixed- or variableratenerical
solver, at least for the analysis of linear hybrid systems. Another sayars that
it does not require abstraction of the continuous component either.

Many reactive systems are defined using parameters. They are intended
work correctly under specific parametric conditions. These relationshéysbe
hard to find by following an intuitive approach alone, especially if we thgatid
systemswhich exhibit a continuous behavior interleaved with discrete control de-
cisions. A combination of analysis tools can therefore be beneficial, etifinelp
intuition and rule out bad candidates, and then to verify exhaustivelyaaheble
configurations. The latter would eventually lead to finding constraints camper
ters, defining the set of all possible values for which the parametric systtsfies
a property.

In this endeavor, one is helped by model-checkers like UPPAAL [11Y}, H
TECH [87, 88] or TREX [48]. The former does not support synthesiparam-
eters as such, it rather verifies one’s guess with respect to their rekipoar
range of values. In contrast, both HYTECH and TREX are suitable, in sages,
for extracting parametric conditions, automatically. For example, as statedrpy H
zinger et al. [93], systems with complex relationships between multiple parameter
and timing constants can quickly lead to arithmetic overflow, when analyzed with
HYTECH, whereas analysis with a single parameter is often successful.

We have given a general mathematical proof to the parametric reachability
problem, based on traditional forward analysis, applicable even in thasesc
where relationships between parameters can not be guessed. Thesaheof
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our approach is its capacity to deal with big numbers of parameters andsclock
The method is based on iterative invariance checking, by superpositiemofas,
each stating a new predicate as the new hybrid system property. Thysothe
cess would tremendously benefit from mechanization of CAS theory. Guid c
use, for instance, PVS and its powerful decision procedures to automat@&nce
checking, and also the refinements performed in chapter 6, in the real-tsae ca
We expect such automation to be instrumental in the assessment of the aliglicab
of our method to larger case-studies.

When timing requirements are set on top of the functional ones, for any type
of reactive system, be it discrete or hybrid, we need to find a means tondtipe
them, in design. This should be done somewhat regardless of the resgant-
tional behavior. Being faithful to this viewpoint too, we have presenteg-altavn
method for the incremental construction of scheduled systems, within the same
refinement calculus framework. We have applied the existing techniquie of
latter, in an innovative way. Our development process starts with a nondete
istic conjunctive specification, and applies refinement rules of propagedimext
assertions, in order to enforce the required schedulability, mutual éxclasd
scheduling policy conditions. Next, we take a step further and provide alittoo
implementation of the constructed system, via trace refinement. After a series of
correctness-preserving transformations, we end up with a two-modulenrapie
tation that clearly separate functionality between the scheduler and the tasks

The last viewpoint is rooted in the opinion that it is beneficial to start with
a nondeterministic high-level model, when approaching the design of tiveeac
system. This gives flexibility in modeling and frees the designer from the bur-
den of taking into account implementation details, from the beginning. We have
proposed a game-based method for the synthesis of invariance ard oesth-
ability controllers. The usual approaches to the control problem and/ittbesis
of controlling strategies at@gorithmicand can only be applied to finite-state sys-
tems [114]. Our solution fits both infinite state sequences, as well as terminating
ones, without requiringbstraction as proposed by Henzinger et al., to handle the
control of infinite-state systems [90].

The idea of synthesis carried out by playing games with dually nondetermin-
istic statements has been appealing to us, since our framework supporiadiso k
of nondeterminism, angelic and demonic. It came then naturally, to identify the
behavior of the controller with an angelic statement, and the plant’s actions with a
demonic one.

We have aimed at reaching correct controllers for invariance, andletan-
trollers for reachability. In each case, the angel is supposed to enfotem-
poral property, thus guaranteeing a win under any scenario profnsene de-
mon. Our approach relies heavily on the recent work of Back and vaghtymwho
have defined temporal properties in the extended predicate transfoemeaviork
[37, 38]. Their work made it possible for us to introduce the correctndssfor
proving enforcement oiveak-responsproperties. These are defined by means of
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extended trace semantics of action systems, namaiye tree semantics

Our method starts by checking whether the angel has a way to win the game
with respect to the specified requirement. The latter is eithex\@aysproperty,
when we tackle synthesis of controllers fovariance or a special form oéventu-
ally property, which we callveak responsand denote by}, (p, ¢), when address-
ing synthesis of reliable controllers for reachability. In the first caseconéroller
has to be able to keep the system within a safe set of states. To enfolkeenea
sponse, the angel has to find a way to terminate in a staté cbndition p holds.
Alternatively, if —p is true, then the angel wins if it can keep the system within
until the end of system execution.

If we succeed in proving that there exists such a winning strategy fontpe ,a
we extract it, next, by rewriting the respective angelic statement, in a ceotiatient
resulted from the correctness proofs carried out in the first step.tiEmsforma-
tion reveals the actual choices of the angel. The result is a correct, imphgneen
model, which is guaranteed to preserve the required temporal property.

Most interesting with respect to this method is the fact that, while applying it
on practical case-studies, new information is extracted on the way. Bonp,
lower / upper limits on parameters, or even number of iterations neededen ord
to establish the requirement result while discharging the proof obligatidns.ig
an important point that adds to the fact that we avoid ubsiagkward fixed-point
iterationsof symbolic predecessaperators, as many of the approaches targeting
the same result do [18, 99, 122]. The experience gathered out bfirgpour
game-based method on several case-studies reinforced the opinitretlee! of
generality and insight provided by a deductive analysis method can radtaieed
with model-checking.

We came to the conclusion that deductive methods, even more, if suppgrted b
interactive theorem proving, are viable alternatives to algorithmic methaa&dl
automata [9], hybrid automata [86] and state-exploration techniques ataaine
for quickly analyzing a specific system. On the other hand, as pointedyout b
Dutertre, if one is interested in the analysis of certain classes of systeimfnibe-
state systems, deductive methods prove more powerful [73]. Nevestheley
also involve more human effort than their algorithmic counterparts.

Our work on discrete reactive systems, hybrid systems analysis antineal-
scheduler construction proved our initial claim that the action systems frarkew
together with the refinement calculus methods are good candidates foredunifi
effective and rigorous development environment. Diagrammatic reasamadg
model-checking tools targeting this formal framework are believed to be a must
for future applications of our methodology to emergent topics regardistpiss
research.

Limitations. Each of our construction and analysis approaches has certain limi-
tations, which we underline in the following.
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Invariants are essential for the trace refinements carried out in chapter 3, pa-
rameter synthesis method of chapter 5, and stepwise refinements of the real-time
models of chapter 6. Also, proving the existence of angelic winning strategies
during the process of controller synthesis for discrete systems (chapter 7) involves
coming up with adequate system invariants. This step might not be trivial, espe-
cially for games with complex rules. For the process of finding the right invariants
not to become a stumbling-block, one could for instance consider programming
invariants first, rather than the behavioral specification. Among others, Back advo-
catedinvariant based programmin@supported bynvariant diagram$ as being an
easier way to construct both the program and the respective conditions that need to
hold [23]. Alternatively, tools like SAL $ymbolic Analysis Laboratoyy43] can
help in finding a first approximation of the invariant of a state-transition system,
and its further strengthened versions. Given the fact that action systems are indeed
state-transition systems, one could employ SAL in the design process. In SAL, the
underlying technique of invariant construction is based on a combination of least
and greatest fixed-point computation of reachable states [150].

The applicability of the Mathematica-based symbolic simulator introduced in
chapter 5 could possibly benefit from more efficient guard solving algorithms.
Such improvement might consequently speed up the computation of the minimum
time point when some action of the hybrid model under analysis becomes enabled.
Also, in order to properly assess the utility, and discover the limitations of our tool,
one needs to extensively simulate hybrid systems characterized by involved nonlin-
ear continuous evolutions. Last but not least, the simulation tool awaits the design
of a suitable graphical user interface that would use Mathematica as a back-end.

Throughout this study we have discussed and proposed solutions to some of
the issues of reactive system design, from a formal perspective. Unfortunately, the
relatively small case-studies can not answer questions about size and complexity
of our methods when applied to real-world systems. Scalability is clearly not exer-
cised within this context. We can just hope that the presented examples have added
some merit to the theoretical results.

Future Work. The research carried out in this thesis can be extended in several
directions. It could be interesting and helpful to improve on the mechanism of
synchronized composition of action systems, such that the requirement of disjoint
sets of global write variables is removed. This would imply the modeling, within
the global actiorlUpdate of a concurrency protocol that regulates the modules’
access to common resources. Preliminarily, such an approach has been studied
by Seceleanu and Garlan [143], for modeling self-adaptive systems, in multimedia
environments. A hierarchy of synchronized partitioned action systems is employed
in order to accommodate various user requirements, while specifying a system that
delivers multimedia services.

Resource sharing (in a real-time environment) and multiprocessor cost-efficient
scheduling are also among prospective lines of research. The refinement techniques
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niques presented in chapter 6 may be adapted to real-time interdepenétsnt tas
possibly executing on distinct processors. Deductive rules could hdipdimg
the optimized strategy to produce, for example, a low-power, distributeztistdn

One can think of developingpntroller synthesis algorithnfer action systems.
These could then be implemented in a model-checker for action systems, itbeprov
automated support. In this way, by combining the method introduced in chapter 7
with the algorithmic one, one might be able to perform controller construction
for finite-state systems, automatically, and for infinite-state systems, intedgctiv
within the same formal framework.

Another possible direction targets game-based synthesis of controlieesfo
time and hybrid systems. In these cases, the game techniques need to take into
consideration the time-advancing statement, too. Therefore, the simplenseque
of nondeterministic assignments might not suffice anymore.
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Chapter 9

Appendix

Preliminaries

Before presenting the proofs (in a calculational format) of some of thenstaits
of chapter 3, we introduce those particular results that help us achiegoals.
¢ We will make use of Corollary 27 proved in [36]:

Corollary 2 Assume thatz and H are conjunctive predicate transformers and
thatg A h = false. Then

dog—G|h— Hod =doh— Hod ;dog— (G;doh — Hod) od

In the above, intuitively speaking, the conditigm h = false states that the
statements; and H exclude each other, that is, they cannot be enabled simultane-
ously.
¢ We will also make use of the Theorem 31 proved in [36]:

Theorem 5 Assume thatz and H are conjunctive predicate transformers. Assume
further that H.true = true A g ¢ wH, which means that statemeHt terminates
and preserveg. Then

dog—G|—-gANh— Hod =dog— God ;doh — H od (A-1)
¢ We recall some of the weakest precondition rules [71], which we apply:
1. wp rule for guarded actiofy — $).Q £ g = 5.Q
2. wp rule for choice(S; | S2).Q A S1.Q N S2.Q
3. wp rule for assignment statemefit::= ¢).Q £ Qlz := €]
4. wp rule for sequential compositiofS; ; S5).Q £ S;.(S2, Q)
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e We additionally recall the definition of a loop as the least fixed point of the
unfolding function [35]:

while g do S od a (uX - if gthen S; X else skip fi) (A-2)

We also havelo g — S od = while gdo S od .
¢ We state here another helpful theorem, and three loop transformatior{gutes
predicates), as follows.

Theorem 6 Assume thaty, H and W are conjunctive predicate transformers.
Then

(GIH);W=(G;W)[(H;W)
e Loop elimination rule [35].
{~g};dog— Sod = {~g} (A-3)
e Remove one iteration loop.

{9};dog — S;{—-g}od =5;{~g} (A-4)
Proof.

{g};dog — S;{~g}od
= { definition(A — 2), unfolding}

{g9};if gthen S; {—g};do g — S;{—g} od else skipfi
= {logic}

S;{~g};dog— S;{-g}od
= {loop elimination rulg A — 3)}

S {~g}

e Propagation of assertion inside loop [35]:

{a};dog — Sod ={a};dog— {a};Sod (A-5)

A-1 Proof of Theorem 2 (chapter 3)

(a) By Definition 3.6, the synchronized parallel composition of the partitioned ac-
tion systems

begin var z; e Init; ;do gi — Ly | g}g — S7 0od end

Al (21)
Aa(z2)

> 1>

begin var x; e Inity;do g7 — Ly | g% — Sy od end
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is given by the system

P(z)
A begin var x ; sel[1..2] : Bool ; run : Nat e I'nit;
do gga —
run = 0 A —sel[l] — sel[l] := true ;run =1

| run = 0 A —sel[2] — sel[2] := true ; run = 2
[run=1Ag} — Ly
| run = 1/\ﬁgi/\g}g—>wSlc::w51;Si;run =0
| run =1 A —gga, — run:=0
[ run =2A g2 — Lo
[ run =2 A =g? A g% — wSac:=wSs ; S, 5 run =0
| run =2 A —gga, — run =0
| sel A run =0 — Update ; sel := false

od

end

We denote the actions @t as (whergj € [1..2]):

Sel 2 run=0-— Sely | Sely
Sely, £ =sel[l] — sel[l] := true; run := 1
Sel, £ —sel]2] — sel[2] := true; run := 2
A
o Lo
A]l = run:jAgiﬁLj'
AJQ- a run = j A -gp A gy — Cj; 855 run =0
Ag? L pun = JA—g9ga; — run =0
C; a wSjc = wS;
U L2 selArun=0— Update ; sel .= false

Notice that the compositioh £ gga — Sel | A1 | A2 forms the local action of
‘P, while the actionU is its global action. The first two requirements for showing
that P is a partitioned action system are immediate. We just have to analyze the
third one, that is, to prove thétlo L od ).(—gL A gU) = true.

We start by observing that only the situation when, = true is of interest,
otherwise the whole syste is disabled. Therefore, we only have to show that

(do Sel | Ay | A2 0d ).(—gL A gU) = true
We proceed as follows:

do Sel I] A1 [I A2 od
= { Corollary 2} (A-6)
do Sel od ;do A; | A2 ;do Sel od od
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I

{Initor A% | A? establishesun = 0, {p} C skip
introduce assertions
{run =0} ;do run = 0 — Sel; | Sely ; {run # 0} od ;
do A, | Ay ;do Sel od od

= { rule (A-4), drop assertioh

(Sely | Selz) ;do A; | A2 ;do Sel od od
= { Theorem 6}

(Sel; ;do A; | A2 ;do Sel od od)

| (Sela;do A; | A2 ;do Sel od od)

= { Theorem 6,

notation:Choices = (Sely ;do A; | Ay ;do Sel od od )}

(Sel; ;do A; ;do Sel od | Az ;do Sel od od ) | Choices
= { Corollary 2}
(Sely ;do A; ;do Sel od od ;

do Ay ;do Sel od ;do A; ;do Sel od od od ) | Choices

We continue by focusing on the sequerteé; ; do A; ; do Sel od od:

Sely ;do A; ;do Sel od od
= { definition of A;, Theorem 6}
Sel; ;do Al ;do Sel od | A?;do Sel od | A3 ;do Sel od od
= {Theorem 5w.r.tAl ;do Sel od | A?;do Sel od andA3}
Sely ;do Al ;do Sel od | A? ;do Sel od od ; (A-7)
do A3 ; do Sel od od
= {Theorem5w.r.tA};do Sel od andA?;do Sel od }
Sely ;do Al ;do Sel od od ;do A? ;do Sel od od ;
do A3 ; do Sel od od

Next, sincegga = true, the last element of the sequende A3 ; do Sel od od
can be replaced bskip. We focus on the first two terms of the sequence:

Sel; ; do A% ;do Sel od od
= {run ¢ wAl}

Sely ;do Al ; {run =1} ;do Sel od od (A-8)
= { definition of Sel, rule (A-3), drop assertioh

Sel; ;do Al od

We already know 4, is partitioned) thaido g — L; od terminates and es-
tablishes—g; A gi. Hence,(run = 1 — (dog; — Ljod)) = do A} od
terminates and establishesn = 1 A =g} A g&. Assel[l] ¢ wA], we actually
have that, after executingo A{ od , sel[1] A run =1 A =g} A gi holds.

We continue with the analysis @fo 47 ; do Sel od od . Considering the
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above, we have

{sel[1] Arun =1 A =g} A gt};do A} ;do Sel od od
= {generalrule{p A ¢} = {p}; {q}}
{sel[1]}; {run = 1 A =g} A gi};do A?;do Sel od od
= {rule (A-5), assel[l] ¢ wA? }
{sel[1]}; {run = 1 A =g A g}
do A?; {sel[1]} ; do Sel od od
= { A? establishesun = 0, strengthen assertign
{sel[1]} ; {run = 1 A =g} A gt} ; do AT;
{sel[l] Arun =0} ;do Sel od od
= { definition of Sel, rewrite using context
information {sel[1] A run = 0}) }
{sel[1]}; {run =1 A =g} A gl};do A% {sel[l] A run = 0};
do run =0 — Sely; od od
= {introduce assertiofrrun # 0}}
{sel[1]}; {run =1 A ~gl Agl};do A?; {sel[l] A run = 0};
do run = 0 — Sely ; {run # 0} od od
= {rule (A-4), drop assertionp
do A?; Sely od

(A-9)

The above loop terminates, since boﬁ and Sely terminate. Moreover,
(do A% ; Sels od ).(run = 2 A sel[2]) = true. Applying a similar reasoning
for the actionChoices, we eventually come to the conclusion that:
(do Sel | Ay | A2 od ).(sel A run = 0) = true
which means that the local action terminates, and it enables the execution of the

global action of the syster®.It is easy to check that the other requirements of
Definition 1 are also satisfied, thuB,is a partitioned action system. |

(b) Follows from the commutativity of the choice operator. [ ]

A-2 Proof of Theorem 3 (chapter 3)

We assume the systefd as being the synchronized composition of two action
systems:
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P(z)
L begin varz; sel[1..2] : Bool ; run : Nat e Init;

do gga —
run = 0 A —sel[l] — sel[l] := true ;run :=1
run = 0 A —sel[2] — sel[2] := true ; run := 2

od en

[
Jrun=1Ag} — Ly

| run = 1A =g} A gy — wSic:=wSy; S);run:=0
| run =1A —gga, — run:=0

[ run=2A g% — Lo

| run =2 A =g% A gk — wSsc :=wSs ; Sh 5 run := 0
| run =2 A —gga, — run :=0

| sel A run =0 — Update ; sel := false

d

First, we give, without proof, one simple invariant of syst®m

(Vjepo..g (run = j)) = true (A-10)

We state further that

I} L2 LA (sell]Arun#£1= 1)) (A-11)

is an invariant of the systef, where

e [ is the proper invariant respected by the systdm Therefore, we also
have thatl; [wS; := w'S1,v := 2] = L[wS] = w'S1,v := 2']).

o [} = L[wS; := wSy]

In the following, we show that} is an invariant of every action .

1. I} is preserved by actior, L —sel[l] A (run = 0) — sel[l] := true ;
run = 1. We have:

Ay}
{definition of Ay, wp rules for guarded action,
sequential comp., assignmént
sel[1] V run # 0V I}[sel[1] := true, run := 1))
{definition of I}, sel, run do not appear i, or in I, logic}
sel[l] Vrun #0V I,
{definition (A-11), logi¢
1}
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2. 1} is preserved by actior L —sel[2] A (run = 0) — sel[2] = true;
run = 2. We have:

Ao 1}
{definition of Ay, wp rules for guarded action,
sequential comp., assignmént
sel[2] V run # 0V I}[sel[2] := true, run := 2]
= {definition of I}, sel, run do not appear i or in I, logic}
sel[k] Vrun # 0V (I1 A (sel]2] = 17))
< {logic, relation (A-10}
I

3. ThatI} is preserved by the actiaf; £ (run = 2) A g2 — Lo, follows
from the fact thatd; does not write any of the variables mentionedfy
therefore the latter is an invariant, trivially.

4. 1} is preserved by the actiafl, a (run = 1) A gt — L; comes from the
fact that! is an invariant oy} — L.

5. I} is preserved by the actiods £ (run = 1) A =gl A gl — wSic =
wSy ;81 ;5 run := 0, where S7 = S1[wS1 := wSic]. We first have that:

(z:=y; Sy = 2]).Qly := 7]
= (2:=y).(Sly :=2].Qly := z])
= (z:=9).(5.Q)y =] (A-12)
= ((9.Q)z/y])[z ==y
= 50
Next, we get:
As.T2

= {wp rules for guarded action, sequential composition, assignment
run # 1V g} V =g V (wSic == wSy 3 S7). I run == 0]
{definition of I}, run does not appear ify, orin I}
run # 1V g} V =gd V (wSic = w8y ; S7).(I1 A (sel[1] = I7))
{wp rule for conjunctive statementsv.S; c does not appear ify }
run # 1V gt V =gs V (I A (wSic :=wSy 3 S7).(sel[l] = I}))
{wp rule for sequential compositign
run # 1V gi V =gs V (I A (wSie := wSy).(S].(sel[1] = 1))
{definition of I1, relation (A-12),sel does not mentiow Sy, wS;c}
run # 1V g; V —gs V(I A Sy.(sel[l] = 1))
<= {Sl.(ﬂsel[l] vV [1) <+ (Sl.fl V Sl.(ﬁsel[l}))}

run # 1V gi V ﬁgé vV (Il VAN (51.11 vV Sl.ﬁsel[l]))
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< {logic}
run # 1V gl v —|g}g V(I A S1.1h)

< {I is invariant of the original systenTy = S;.1;, logic}
I

< {definition of I}, logic}
I

6. The fact thaf] is preserved by the actiols = (run = 1) A—gl A—gL —
run := 0 follows the lines of the previous proof.

7. 1} is preserved by the actio; £ (run = 2) A g2 A g% — wSac :=
wSsy ; S ;s run := 0, whereS, = Sy[wSs := wSac]:

Ag 1}
= {wp rules for guarded action, sequential comp., assignjnent
run # 2V g2 V —gi V (wSsc := wSs 3 S4). I run = 0]
{definition of I}, run,wSac, wSs do not appear iy, orin I}
run # 2V g2 V —gi Vv (I1 A (sel[l] = I}))
< {logic, relation (A-10}

Iy

8. The factthaf]l is an invariant of the actiods = (run = 2)A—g2 A—~g% —

run := 0 has a similar proof to the one for acticty.

9. Proof of the fact thaf] is preserved by the actidn 2 sel A(run =0) —
wS7 := wSic; wSy := wSse ; sel := false:

U.1}
{wp rules for guarded action, sequential comp., assigninent
—sel Vrun # 0V (wSy = wSic; wSs := wSac). I} [sel := false]
{definition of I}, succesive application afp rules}
—sel Vrun # 0V (I1[wSy, wSs := wSic,wSac] Arun # 1)
= {relation (A-10):run # 0 = (run = 1V run = 2)}
—sel Vorun # 0V I1[wSy, wSs := wSic, wSac]
{I; is propet
—sel Vrun # 0V I [wSy, wSy := wSie, wSs)
{drop assignmeni S, := wSs}
—sel Vrun # 0V [ [wSy := wSic]
= {notatior}

—sel Vorun # 0V I
< {logic, wsel = —sel[1] V —sel[2],

run # 0= (run =1V run=2)}
1
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The above show thak! is an invariant of the systef. In a similar manner,
we can show that

22 I A (sel]2] A—(run = 2) = T)

is also an invariant oP. Hence,/ £ I} A 12 is an invariant ofP.
Properness.Notice further that:

I& [wS1, wSs := wSic, wSsc, sel := false, v := v/

{definition 1} } (A-13)
I [wSy, wSs := wSic,wSac,v := ']

{v,wSy ¢ wA,, I, is propet

L[wSy,wSs :== wSic,wSs, v = v]

{I, is prope}

L[wSy :=wSi(]

{sel,wSy ¢ wA;, I is propes

L[wSy,wSs := wSic,wSac, sel := false]

{logic}

(I A (sel[1] Arun # 1 = I1)) [wSy, wSs := wSic, wSsc, sel = false]
{notatior}

I& [wS1,wSy := wSic,wSae, sel := false]

Hence,l} is a proper invariant oP.

Repeating the above proof for the other invarighind summing up, we reach
the conclusion that £ I} A I2 is a proper invariant oP.

The results can be generalized to the synchronized compositibnkof- 2
partitioned action systems. [ ]

A-3

Proof of Corollary 1 (chapter 3)

Suppose that we have the partitioned action systenas part of the synchronized
composition? = A; ¢...4 A,. Additionally, I; is some invariant respected by
Aj;, and we also have that; Cr, 1, A}, following the requirements of Lemma 2.

Thus,A;- is a partitioned action system, too. Consequently [319],2 R; A 1
is an invariant ofA;. As R; does not introduce any new global variables, it is
independent of other variables than those4f .A’., and using a similar line of
proof as in (A-13), one can prove th@tis propetr.

We do not insist here on the (trivial, given the above assumptions) tasioof-
ing thatP C P/ (P’ £ A, t...4 AL £.. ¢ Ay). Relevantis to show that, using

the notations of Appendix A-2/ £ A I(')j A ... NI is aninvariant of
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P’. This is solved by following the same steps as in Appendix A-2. Moreover, w
have
I],~ A R]’ /\Ij
= { notation:Q; L (sel[j] Arun # ) = 17,
Il L R A LwSy == wSicl,
definition (A-11): 17 £ R; A I; A Q;, logic}
=1
= {logic}
A NI A AT
SIEA AN NI
= {notatior}
Il/\QlA...AI;AQjA...AInAQn
=HLHANNAN. . NLANQjN... NIy ANQyp
= {logic}
Il/\.../\I](/\.../\In
é[l/\.../\fj/\.../\fn

The above illustrate the fact th@t Cg, /, P’, and thatP’ still preserves the
properties of each of the original action systém & € [1..n], as expressed by the
conjunction/y A ... AL A ... A T. ]

A-4 Refinement ofsys F (chapter 3)
We consider the systems:

F(X,Z[0,.N —2,Y : T)
= begin X, Z[0,..N — 2|, Y := x0, 20, Yo;
doY := h[0] x X + 0" hlk] x Z[k — 1] od
end : h[0,..N — 1]

and

Fs(X,Z[0,.N —2],Y :T)
= begin var temp : T ; step : [0,..N]
X, Z)Y := xq, 20, Yo ; temp := 0 ; step := 0;
do step =0 — temp := 0 ; step := step + 1
| step € [1,..N — 1] — temp := temp + h[step] x Z[step — 1];
step := step + 1
| step =N — Y :=temp+ X x h[0]; step :==0
od
end : h[0,..N — 1]
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We denote the actions of the above systems as:

N-1
A £ Y =X xh0]+ ) nlk] x Z[k - 1]
k=1
C £ Oy
C; 2 step=N—Y :=temp+ X x h[0],
Cy £ step :=0
Ay L step = 0 — temp := 0 ; step := step + 1,
Ay L stepe [1,..N — 1] — temp := temp + h[step] x Z[step — 1] ;
step := step + 1,
We first show that
N p—1
I £ (step=1= temp=0)A /\(step:p=> temp = Zh[k} x Zk —1])
p=2 k=1

is an invariant ofFg.

Observe first, thal [step := 0] = true. Hence,C.I = true, thereforel =
C.I holds, trivially. The same is valid for the actiof,. We analyze next the
situation that concerns the actign.

As.d
{wp rules for guarded action, sequential composition, assignment

step € [1,..N — 1] = I[step := step + 1, temp := temppey|
{assumestep + 1 = p+ 1 € [2,..N], substitutior}
step € [1,..N — 1] =

p—1
(step =p = temp = Z hlk] x Z[k —1])
k=1
< {logic}
p—1
step = p = temp = Zh[k] x Zk —1])
k=1
< {logic}
(step =1 = temp = 0)
N p—1
A /\(step =p=temp = Zh[/c] x Zk —1]
p=2 k=1
= {definition}
1
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In order to prove the above specified refinement, we go through th&eequ
ments of Lemma 1:

1. Initialization: I[step := 0,temp := 0, Z := zy] = true

2. Main action: We have to prove thdtC; C. For this, we have to show that:
INAQ= C.(INQ),VQ. We proceed as follows.

C.INQ)

{logic, wp rule for sequential composition el ; Oa}
INC.(Ca(INQ))

{wp rule for assignmerjt

I ANCy.(I[step := 0] A Q[step := 0])

{Q does not mentiontep, I[step := 0] = true}
INC.Q

{wp rules for guarded action, assignmgnt

I A (step=N = Q[Y :=temp + X x h[0]])

{notation: 73’ ~* L (step =1 = temp = 0)

N-1 p—1
A /\ (step = p = temp = Zh[kz] x Zk —1])}
p=2 k=1
N-1

YA (step = N = temp = Z hlk] x Z[k —1])
k=1

A (step =N = QY = - hlk] x Z[k — 1] + X x h[0]])
=1

ol

{replacement ofemnp, logic}

N-1
IV A (step= N = temp = Z hlk] x Z[k — 1))
N-1 =
A (step = N = Q[Y := hlk] x Z[k — 1] + X x h[0]])
k=
{logic} 1
N-1
VYA (step= N = temp = Z hlk] x Z[k —1])
N-1 =
AQLY = hik] x Z[k — 1] + X x h[0]]

T

1
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= {definitions of7, 1Y "1}

N-1
I A QY =X xh0]+ Y hlk] x Z[k — 1]]
k=1
= {wp rule for assignmerjt

IAAQ

3. Auxiliary action. For the auxiliary actiond;, A5, we have thatv A1, wA-
€ {step,temp}, therefore they behave lik&ip with respect to the global
variables. Hencekip C; A1 A skip C; Aos.

4. Continuation condition:

INgA= gCVgALV gAs
{gA1V gAs V gC = true}
I A gA = true

{logic}

true

5. Internal convergence. It is easy to observe thaterminates after one exe-
cution as it disables itself, whild, disables itself afte’V — 1 executions.

From the above we have that,igolation the systen¥g is a refinement of,
under the invariant: F C; Fg. [ ]

In addition, even if not necessary in this context, yet needed when dealin
with the same refinement in a synchronized environment, we also showithat
proper invariant. For this, we only check what happens when the géatiah (')
is executed.

IwC = wC', v := 2]

{computatior}

I[step :==0,Y :=temp + X x h[0],v := 2]
= true

= I[step:=0,Y :=temp+ X x h[0],v := 2]
= J[wC :=wl v:=7

Hence,l is a proper invariant of the systef.
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A-5 Computation of weakest precondition7 (¢)./; (chap-
ter 6)

We give the detailed computation of the weakest precondition for a preemptible
real-time task to establish the timeliness condition. The task model is as follows:

7T (1) L stateli].now = sl A cgli].now = Pl[i] + ofsi].now
— cgli] :— (At -t — now) ; state[i] : — (At - wt) ; UT
| stateli].now = wt
— Celi] :— (At -t — now) ; stateli] :— (At -ex) ; UT
| stateli].now = ex A c[i].now = Ei]
— celi] i — (At -0) ; cpli] 1 — ()\t 0);
[ofs[i] : —x’|Vt>now x'.t € Realy |;

stateli] :— (At - sl) ; UT
| state[i].now = ex A c[i].now < Eli]
— Ce[i] :— (At - ce[i].now);
cpli] :— (At - ¢pli].now + t — now);
stateli] :— (At -pt); UT
| state[i].now = pt
— Ce[i] :— (At - cet].now + t — now);
cpli] : = (At - ¢pli].now) ; statefi] : — (At - ex) ; UT

The timeliness predicate is as follows

I, = Vi-Vte[start,now) -
(state[i].start = ex =
(stateli].t = ex A cqli].t — (celi].t + ¢pli].t) < D[i] — R[i] A
cqli].t = cyli].start +t — start))
A (stateli].start = ex A ccli].start = 0 = ¢,i].t = 0)

We denote:

Il = Vie[start, now) -
(state[j].start = ex =
(state[j].t = ex A cajlt = (cels]-t + ¢plj]4) < D[] = R[] A
caljlt = cqlj]-start +t — start))
A (state[j].start = ex A ce[j].start =0 = c¢p[j].t = 0)
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The actuakvp computation is
7 (3).Iy
= { substitute7 (¢), I;, rule (2.10),
actionssl — wt, ex — sl, ex — pt satisfy the invariant, trivially}
(Vj #i-T(@).I]) A
(state[i].now = wt — celi] :— (At -t — now) ;
stateli] :— (Mt - ex);
start := now ; now := min{t' > now | gg.t'}).I;
A (state[i].now = pt — c.[i] :— (At - ce[i].now + t — now) ;
cpi— (At - ¢pli].now) ;
stateli] :— (At - ex) ;
start := now ; now := min{t' > now | gg.t'}).I;
{ rules (2.6), (2.4), (2.7)
(Vj #i-T(@).I]) A
(state[i].now = wt =
(Vt € [start, min{t' > now | gg.t'}) -
(celi] : — (At - t — now) ; stateli] :— (At - ex) ; start := now).1}))
A (state[i].now = pt =

(Vt € [start,now = min{t' > now | gg.t'}] -
(celi] :— (Mt - celi].now +t — now) ; ¢p : — (At - ¢p[i].now) ;
stateli] : — (At - ex) ; start := now).I;))
{rules (2.7), (2.4), computgy.t’ = (c.[i].t' < E[i]) }
(Vj # i T(i).I}) A
(state[i].now = wt =
(V now’ - now’ = min{t’ > now | c.[i].t' < E[i]} =
(Vt € [start,now’) - (ce[i] :— (M -t — now) ;
stateli] :— (Mt - ex)).Iy[start := now))))

A (state[i].now = pt =
(V now' - now’ = min{t' > now | c.[i].t' < Eli]} =
(Vt € [start,now’) - (celi] :— (M - ce[i].now + t — now) ;
cplt] : = (At - ¢pli].now) ; stateli] :— (At - ex)).
Ii[start := now))))
= { substitutestart = now, rules (2.7), (2.4)

substitutestate[i].start = ex in I, }
(V) # i T(i).I}) A
(stateli].now = wt =
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(V now’ - now” = min{t’ > now | c.[i].t' < E[i]} =
(Vt € [now,now’) - (celi] :— (At -t — now)).
(Cald]-t = (celd]-t + epli].t) < DIi] — R[]
A cqli]-t = eqli].now 4+t — now
A celi].now = 0 = ¢pli].t = 0)))
A (state[i].now = pt =
(V now’ - now” = min{t' > now | c.[i].t' < E[i]} =
(Vt € [now,now') - (ce[i] :— (At - celi].now + t — now) ;
epli] = (AL - ¢p[i].now)).
(Cald]-t = (celi]-t + ¢pli].t) < DIi] — R[]
A cqli]-t = eqli].now + t — now
A celi].now = 0 = ¢pli].t = 0)))
= { successive application of rules (2.7), (2.4), substityfg.t, c.[:].t}
(Vj # i T(i).I]) A
(state[i].now = wt =

Eli]} =
D[i] = R[i] A

(Vnow' - now’ = min{t’ > now | c.li].t' <
(Vt € [now, now’)- ¢4 i].t—(t — now) <
Cali]-t = cqfi].now + t — now)))
A (stateli].now = pt =
(Vnow' - now’ = min{t' > now | c.[i].t' < E[i]} =
(Vt € [now, now’)- ¢,[i].t = c4li].now +t — now A
cali].t—(ce[i].now+(t — now) + ¢p[il.now) < DJi] — RJ[i])))

A-6 Proofof RTS C RTS (chapter 6)

Given the predicate

I, = VYi-Vnow-
(okli].now A state[i].now = wt =
(prli].now=Max(q.now)Acyi].now < D[i|—R[i] A
(Vj # i - (state[j].now = sl A cqlj].now < P[j]) V
statelj].now = wt V state[j].now = pt)))
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A (ok[i].now A state[i].now = pt =
(prli].now = Max(g.now) A
calt]-now — (celi].now + ¢,i].now) < Di]— R[] A
(Vj # i - (state[j].now = sl A ¢q[j].now < P[j]) V
state[j].now = wt V state[j].now = pt)))
A (—ok[i].now A stateli].now = ex =
(prli].now # Max(g.now)A c.[i].now < Eli]))
andk € [1..n], we have to provlR7 S~ Cj, RTS.
Since trace refinement conditions (6.10), (6.14) and (6.15) are immediate (the

auxiliary variableok is a local variable, and the auxiliary actions are self-disabling,
thus they terminate), we concentrate on proving the remaining three.

e I, is preserved by the actions of the concrete systeht " (requirement (6.11)).
We sketch the proof for one of the actions only, namely for
Y = —0k[i].now A prli].now = Max(q.now) A
(Vg # i - (state[j].now = sl A ¢q[j].now < P[j]) V
state[j].now = wt V statelj].now = pt) A
state[i].now = wt A ¢g[i].now < DIi] — R][i]
— ok[i] :— (At - true) ; UT
We have thaf; = I1[1] A ... A I;[n]. Below, we consider only; [i].
I [d]
= AL, .Ii[i]
{substitutel, rules (2.7), (2.4), assumew = min{...}}
(—ok[i].now A prli].now = Maz(q.now) A
(Vj # i - (state[j]l.now = sl A cq[j].now < P[j]) V
state[j].now = wt V state[j].now = pt) A
state[i].now = wt A ¢gli].now < D[i] — RJ[i])
= ((state[i].now = wt =
(prlil.now = Max(qg.now) A ¢4[i].now < DI[i] — R[i] A
(Vg # i - (state[j].now = sl A ¢g[j].now < P[j]) V
state[j].now = wt V state[j|.now = pt)))

A (statei].now = pt =
(prli].now = Max(g.now) A
(Vg # i - (state[j].now = sl A ¢q[j].now < P[j]) V
state[j].now = wt V state[j].now = pt) A
cqlt].now — (ccli].now + ¢,i].now) < D[i] — R[i]))))
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{logic}
ok[i].now V prli].now # Max(g.now) V state[i].now # wt
V (35 # i - —(state[j].now = sl A cq[j].now < P[j]) A
state[j].now # wt A statelj|.now # pt))
V cgli].now > D[i] — R[i] V state[i].now # pt
V (pr[i].now = Max(g.now) A
(W # 1 - (state[j].now = sl A ¢g[j].-now < P[j]) V
state[j].now = wt V state[j].now = pt) A
cali]-now — (celi].now + ¢,i]) < D[i] — R[i])
= {state[i].now # wt =
(state[i].now = sl V stateli].now = pt V state[i].now = ex),
logic}
true

¢ \We prove just one condition of the type (6.12), that is
A/21 Lo Aé?m

The other two refinements are similar.
The bodies of the above actions are identical. Therefore, we are left with prov-
ing refinement of guards:

I [i] A okli].now A state[i].now = wt
= (prli].now = Maz(q.now) A stateli].now = wt A
(Vj # i - (state[j].now = sl A cqlj].now < P[j]) V
state[j].now = wt V state[j].now = pt) A
¢cqli].now < DIi] — RJi])
{logic}
prli].now # Maz{q[k].now} V ¢,[i].now > D[i] — R]i]
V=-okli].now V state[i].now # wt
V(37 # i - —(state[j].now = sl A ¢q[j].now < P[j]) A
state[j].now # wt A statelj|.now # pt)
V(prli].now = Maz{q[k].now} A cq[i].now < D[i] — R[i] A
(Vg # i - (state[j].now = sl A ¢q[j].-now < P[j]) V

state[j].now = wt V statelj].now = pt))
= {logic}

true
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e In order to fulfill requirement (6.13) of trace refinement of CAS, we have to prove
that

I N 997575+ = 99775 V 99X

We identify
(stateli].now = sl A cgli].now = Pli| + ofs[i].now)
V (state[i].now = ex A c[i].now = Eli])
V (state[i].now = ex A c[i].now < Eli]
A prlil.now # Max(q.now))
vV (stateli].now = wt A cqli].now > D[i] — R]i]
n A prli].now = Max(q.now)
99575 = \/ A (Vj # i - (statelj].now = sl A cq[j].now < P[j])
i=1 Vstatelj|.now = wt V state[j].now = pt))
vV (stateli].now = pt
A cqli].now — (cli].now + ¢pli].now) < D[i] — R]i]
A prli].now = Maz(q.now)
A (Vj # i - (statelj].now = sl A cq[j].now < Pj])
Vstatelj|.now = wt V state[j].now = pt))
(—ok[i].now A stateli].now = sl
A cgli].now = Pli] + ofs[i].now)
n |V (—ok[i]l.now A state[i].now = ex)
99775 = \/ V (okli].now A state[i].now = ex
i=1 A celi].now = Eli])
V (okli].now A state[i].now = wt)
J

V (okli].now A state[i].now = pt)

(—okli].now A prli].now = Max(q.now)
A stateli].now = wt A cgli].now < D[i] — R]i]
A (Vj # i - (state[j].now = sl A cg[j].now < P[j])
V state[j].now = wt V state[j].now = pt))
V(ok[i].now A stateli].now = sl)
_ V(ok[i].now A prli].now # Maz(q.now)
99X = \/ /\state[]nzzw—ex A ce[]n((])w<E[])
V(—okli].now A prli].now = Max(q.now)
A state[i].now = pt
A cgli].-now — (celi].now + ¢pi].now) < D[i] — R]i]
A (Vg # i - (state[j].now = sl A ¢g[j].now < P[j])
V state[j].now = wt V state[j].now = pt))

=1

By inspecting the above conditions one can notice that the continuation condition
holds. |
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