

Abstract

Software is characterized by inevitable changes and increasing complexity,
which in turn may lead to huge costs unless rigorously taking into account
change accommodations. This is in particular true for long-lived systems.
For such systems, there is a need to address evolvability explicitly during
the entire lifecycle, carry out software evolution efficiently and reliably, and
prolong the productive lifetime of the software systems.

In this thesis, we study evolution of software architecture and investigate
ways to support this evolution. The central theme of the thesis is how to
analyze software evolvability, i.e. a system’s ability to easily accommodate
changes. We focus on several particular aspects: (i) what software
characteristics are necessary to constitute an evolvable software system; (ii)
how to assess evolvability in a systematic manner; (iii) what impacts need to
be considered given a certain change stimulus that results in potential
requirements the software architecture needs to adapt to, e.g. ever-changing
business requirements and advances of technology.

To improve the capability in being able to on forehand understand and
analyze systematically the impact of a change stimulus, we introduce a
software evolvability model, in which subcharacteristics of software
evolvability and corresponding measuring attributes are identified. In
addition, a further study of one particular measuring attribute, i.e.
modularity, is performed through a dependency analysis case study.

We introduce a method for analyzing software evolvability at the
architecture level. This is to ensure that the implications of the potential
improvement strategies and evolution path of the software architecture are
analyzed with respect to the evolvability subcharacteristics. This method is
proposed and piloted in an industrial setting.

The fact that change stimuli come from both technical and business
perspectives spawns two aspects that we also look into in this research, i.e.
to respectively investigate the impacts of technology-type and business-type
of change stimuli.

ii

 iii

Acknowledgements

My heartfelt thanks go to my main supervisor Prof. Ivica Crnkovic for
believing in me, and for making the creation of this thesis a thoroughly
constructive and enjoyable experience. You are a great supervisor with a
great sense of humour, and you have been unfailingly generous with your
time and your knowledge, giving me good advice and support when it is
needed.

Many thanks go also to my assistant supervisors Prof. Magnus Larsson and
Dr. Rikard Land, my industrial mentor Dr. Stig Larsson, for your constant
support and encouragement throughout this work. I also appreciate the
opportunities given by Prof. Magnus Larsson and Dr. Fredrik Ekdahl,
introducing me to the journey of research. Very special thanks to Prof.
Judith Stafford, Prof. Nenad Medvidović and Prof. Michel Chaudron for
advice and suggestions in the beginning of my research.

I am grateful to the best team of reviewers, who made time in their very
busy schedules to read and comment on my drafts. I give my sincerest
thanks to each of them, who deserve special recognition for their unique
insights and commentary: Prof. Ivica Crnkovic, Dr. Rikard Land, Dr. Stig
Larsson, Prof. Magnus Larsson, Dr. Anders Wall, Dr. Daniel Sundmark,
Peter Eriksson, Dr. Fredrik Ekdahl and Chuck Connell. Their careful
reading and practical suggestions have led to great improvements of this
work.

I would also like to thank Prof. Hans Hansson for guidance in research
planning, Dr. Gordana Dodig-Crnkovic and Dr. Jan Gustafsson for
introducing me to the research methodology, Dr. Thomas Nolte for advice
on networking and research in general, Harriet Ekwall and Monica Wasell
for helping out. Many thanks go also to colleagues from ABB, people from
the SAVE-IT industrial graduate school and BESS (Business oriented
Engineering of Software intensive Systems) research group for nice
company and discussions. Additionally, the work would not have been
possible without the support from ABB Corporate Research and KKS,
providing me with opportunities and resources for the research study.

iv

I have been lucky to get to know a group of smart and energetic people who
have given much joy and moral support. I especially want to thank Séverine
Sentilles, Aneta Vulgarakis, Dr. Pasqualina Potena, Dr. Cristina Seceleanu,
Dr. Tiberiu Seceleanu, Hüseyin Aysan, Moris Behnam, Yue Lu, Farhang
Nemati, Marcelo Santos, Iva Krasteva, Dr. Mikael Åkerholm, Dr. Dag
Nyström, Stefan Bygde, Anna Östholm, Yina Zhang and Chenyang Steen
for your friendship and nice company.

This work would not be possible without the support of my family. I
especially want to thank my parents for showing me the truths of love,
gentleness, courage and persistence. Thanks to my brother for always caring
about me and supporting me. I want also to express my immense
appreciation to Anita Sletmo, Lasse Sletmo and Stig Lundvall, who have
become one inseparable part of our family through years of deep and
genuine friendship. Thank you so much for all the tremendous help and my
gratitude to you cannot be summarized in a few words alone. Finally, I
would like to dedicate this work to my beloved husband and my wonderful
children, who have been a source of motivation and inspiration for me all
along. Thanks Jon - for your love, patience, encouragement and continued
support. Thanks Johanna, Martin and Elin - you are my sunshine!

Hongyu Pei Breivold

Linz, November, 2008

 v

List of Included Papers

Paper A Analyzing Software Evolvability, Hongyu Pei Breivold, Ivica
Crnkovic, Peter J. Eriksson, Proceedings of the 32nd IEEE
International Computer Software and Applications Conference
(COMPSAC), Turku, Finland, July, 2008

Paper B Analyzing Software Evolvability of an Industrial Automation

Control System: A Case Study, Hongyu Pei Breivold, Ivica
Crnkovic, Rikard Land, Magnus Larsson, Proceedings of the 3rd
International Conference on Software Engineering Advances
(ICSEA), IEEE, Sliema, Malta, October, 2008

Paper C Using Dependency Model to Support Software Architecture

Evolution, Hongyu Pei Breivold, Ivica Crnkovic, Rikard Land, Stig
Larsson, Proceedings of the 4th International ERCIM Workshop
on Software Evolution and Evolvability (Evol’08) at the 23rd
IEEE/ACM Intl. Conf. on Automated Software Engineering, IEEE,
L’Aquila, Italy, September, 2008

Paper D Component-Based and Service-Oriented Software Engineering:

Key Concepts and Principles, Hongyu Pei Breivold, Magnus
Larsson, Proceedings of the 33rd Euromicro Conference on
Software Engineering and Advanced Applications (SEAA),
Component Based Software Engineering (CBSE) Track, IEEE,
Lübeck, Germany, 2007

Paper E Migrating Industrial Systems towards Software Product Lines:

Experiences and Observations through Case Studies, Hongyu Pei
Breivold, Stig Larsson, Rikard Land, Proceedings of the 34th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Software Process and Product Improvement
(SPPI) Track, IEEE, Parma, Italy, September, 2008

vi

Full List of Publications

Conferences and Workshops

• Component-Based and Service-Oriented Software Engineering: Key

Concepts and Principles, Hongyu Pei Breivold, Magnus Larsson,
33rd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Component-Based Software Engineering
(CBSE) Track, IEEE, Lübeck, Germany, August, 2007

• Evaluating Software Evolvability, Hongyu Pei Breivold, Ivica
Crnkovic, Peter Eriksson, 7th Conference on Software Engineering
and Practice in Sweden (SERPS), Göteborg, Sweden, October, 2007

• Analyzing Software Evolvability, Hongyu Pei Breivold, Ivica
Crnkovic, Peter J. Eriksson, 32nd IEEE International Computer
Software and Applications Conference (COMPSAC), Turku,
Finland, July, 2008

• Migrating Industrial Systems towards Software Product Lines:

Experiences and Observations through Case Studies, Hongyu Pei
Breivold, Stig Larsson, Rikard Land, 34th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA),
Software Process and Product Improvement (SPPI) Track, IEEE,
Parma, Italy, September, 2008

• Using Dependency Model to Support Software Architecture

Evolution, Hongyu Pei Breivold, Ivica Crnkovic, Rikard Land, Stig
Larsson, 4th International ERCIM Workshop on Software Evolution
and Evolvability (Evol’08) at the 23rd IEEE/ACM Intl. Conf. on
Automated Software Engineering, IEEE, L’Aquila, Italy,
September, 2008

• Analyzing Software Evolvability of an Industrial Automation

Control System: A Case Study, Hongyu Pei Breivold, Ivica
Crnkovic, Rikard Land, Magnus Larsson, 3rd International

 vii

Conference on Software Engineering Advances (ICSEA), IEEE,
Sliema, Malta, October, 2008

Technical Report

• Using Software Evolvability Model for Evolvability Analysis,
Hongyu Pei Breivold, Ivica Crnkovic, Technical Report ISSN 1404-
3041 ISRN MDH-MRTC-222/2008-1-SE, Mälardalen Real-Time
Research Center (MRTC), Mälardalen University, February, 2008

Tutorial

• Emerging Technologies in Industrial Context – Component-Based

and Service-Oriented Software Engineering, Ivica Crnkovic,
Hongyu Pei Breivold, 31st IEEE International Computer Software
and Applications Conference (COMPSAC), Beijing, China, July,
2007

viii

 ix

Table of Contents

Part 1..1

Chapter 1. Introduction ...3

1.1 Research Motivation ..4
1.2 Research Questions ..5
1.3 Thesis Overview...8

Chapter 2. Research Results..13

Chapter 3. Research Method...21

3.1 Research Process and Method..22
3.2 Validity Discussions...24

Chapter 4. Related Work...31

4.1 Software Evolution...31
4.2 Software Quality Models ...34
4.3 Software Process Models ...38
4.4 Software Architecture Evolution..42
4.5 Software Architecture Evaluation ..44
4.6 Component-Based and Service-Oriented Software Engineering ...47
4.7 Software Product Line Engineering ...48
4.8 Reverse Engineering and Reengineering52
4.9 Software Quality Metrics ...54

Chapter 5. Conclusions and Future Work ...57

5.1 Contributions..57
5.2 Future Research Directions ..58

References..61

x

Part 2..73

Analyzing Software Evolvability...77

Analyzing Software Evolvability of an Industrial Automation Control

System: A Case Study...89

Using Dependency Model to Support Software Architecture Evolution

..113

Component-Based and Service-Oriented Software Engineering: Key

Concepts and Principles ...139

Migrating Industrial Systems towards Software Product Lines:

Experiences and Observations through Case Studies161

Part 1

Chapter 1. Introduction

For long-lived industrial software, the largest part of lifecycle costs is
concerned with the evolution of software to meet changing requirements
[Bennett 1996]. There is a need to change software on a constant basis with
major enhancements within a short timescale in order to keep up with new
business opportunities. This puts critical demands on the software system’s
capability of rapid modification and enhancement to achieve cost-effective
software evolution.

[Lehman et al. 2000] describes two views on software evolution: what and

why versus the how perspectives. The former perspective studies the nature
of the software evolution phenomenon and investigates its driving factors
and impacts. The latter perspective studies the pragmatic aspects, i.e.
technology, methods and tools that provide the means to control software
evolution. In this research, we focus on the how perspective of software
evolution.

According to [Madhavji et al. 2006], the term evolution reflects “a process

of progressive change in the attributes of the evolving entity or that of one

or more of its constituent elements. What is accepted as progressive must be

determined in each context. It is also appropriate to apply the term

evolution when long-term change trends are beneficial, i.e. value or fitness

is increasing over time, and more adapted to a changing environment even

though isolated or short sequences of changes may appear degenerative.”
Specifically, software evolution relates to how software systems evolve over
time [Yu et al. 2008]. It is one term that expresses the software changes
during software system’s lifecycle.

One of the principle challenges in software evolution is the ability to evolve
software over time to meet the changing requirements of its stakeholders
[Nehaniv and Wernick 2007]. In this context, software evolvability is an
attribute that describes the software system’s capability to accommodate
changes. To better explain the term evolvability, we refer to the definition of
Software Evolvability in [Rowe et al. 1994]:

4 Introduction

“Software evolvability is an attribute that bears on the ability of a system to

accommodate changes in its requirements throughout the system’s lifespan

with the least possible cost while maintaining architectural integrity”

1.1 Research Motivation
The evolution of software systems is characterized by inevitable changes
and increasing complexity, which in turn may lead to huge costs unless
rigorously taking into account change accommodations. This is in particular
true for long-lived systems.

The focus of our research is primarily aimed at analyzing software
evolvability for embedded industrial systems that often have a lifetime of
10-30 years. These systems are subject to and may undergo a substantial
amount of evolutionary changes, e.g. software technology changes, system
migration to product line architecture, ever-changing managerial issues such
as demands for distributed development, and ever-changing business
decisions driven by market situations. Therefore, for such long-lived
systems, there is a need to address evolvability explicitly during the entire
lifecycle, carry out software evolution efficiently and reliably, and prolong
the productive lifetime of the software systems. As software architecture
holds a key to the possibility to implement changes in an efficient manner
[Bass et al. 2003], software architecture evolution becomes a critical part of
the software lifecycle.

According to [Weiderman et al. 1997], software evolvability is a
fundamental element for increasing strategic decisions, characteristics, and
economic value of the software. Thus, the need for greater system
evolvability is becoming recognized [Rowe and Leaney 1997]. We have also
observed this need from various cases in industrial context [Breivold et al.
2008; Christian 2006], where evolvability was identified as a very important
quality attribute that must be maintained. However, to our knowledge, there
are no systematic means for evaluating the evolvability of a system and thus
no means to analyze and compare software systems in terms of evolvability.
Therefore, the motivation of this thesis is to build up a software evolvability
model and to investigate ways to analyze the ability to evolve software.

In this thesis, we describe and make contributions to the following aspects:

1. Identify characteristics that are necessary for the evolvability of a
software system;

Introduction 5

2. Assess software evolvability in a systematic manner;

3. Investigate means for quantitatively assessing quality impact through
using specific quality metrics;

4. Analyze the corresponding impacts, given a certain type of change
stimulus.

1.2 Research Questions
We describe in the previous section that software architecture evolution is a
critical part of software lifecycle, and that there is a need to explicitly
address software evolvability. Therefore, the overall question of this thesis
is:

How to analyze the evolvability of a software system?

Before we can determine how to analyze software evolvability, we need to
understand what characteristics of software constitute the evolvability of a
software system, i.e. what characteristics of software make it easier to
change a software system as requirements evolve. To this end, we formulate
the following research question which provides a starting point for further
research:

What subcharacteristics are of primary importance for

the evolvability of a software system? (Q1)

Once we know what subcharacteristics are of primary importance for the
evolvability of a software system, we would like to have the means to assess
software evolvability. Thus, the next question relates to the assessment of
software evolvability in terms of subcharacteristics:

How can software evolvability be assessed in a systematic

manner? (Q2)

According to [Yang and Ward 2003], software evolvability concerns both
business and technical perspectives, as the stimuli of changes in software
evolution can be related to both. Any change stimulus results in a collection
of potential requirements that the software architecture needs to adapt to.
Some examples of change stimuli are changes in environment, organization,
process, technology and stakeholders’ needs. These change stimuli have
impact on the software system in terms of software architecture and its
quality attributes. Thus, the next question relates to the impact analysis of a
given change stimulus:

6 Introduction

Given a certain type of change stimulus, what kind of

impacts need to be considered? (Q3)

1.2.1 Detailed Studies
Detailed studies have been performed with respect to the research questions
Q1 and Q3. We describe in this section the more detailed and specific
research questions that are relevant to Q1 and Q3.

As a continuation of the first research question Q1, one additional
contribution of the thesis is a deeper study of one of the measuring attributes
identified in the answer to the first research question. Part of the answer to
Q1 is an evolvability model which refines software evolvability into a
collection of subcharacteristics that can be measured through a number of
measuring attributes. The next research question is a continuation of Q1 and
further explores one particular measuring attribute, i.e. modularity. The
choice of focusing on software modularity is motivated mainly by the fact
that modularity affects the behavior of a design with respect to most of the
evolvability subcharacteristics, and that not much data has been published
with respect to large scale industrial software systems [LaMantia et al.
2008]. This leads to the following detailed research question:

What modularization means can be used to support

software architecture evolution? (Q1.1)

To answer the research question Q3, we have performed two case studies
that represent two different types of change stimuli, i.e. technology-type and
business-type. This is due to the fact that software evolvability concerns
both technical and business issues [Yang and Ward 2003]. Thus we look
into both technical and business aspects. These two aspects are further
expressed through the subsequent two detailed research questions Q3.1 and
Q3.2.

(1) Investigate the impact of technology-type change stimuli

With frequent advances in software engineering, the need to evolve software
arises. As a consequence, software evolution faces different problems and
challenges as new technologies are introduced. It has been witnessed that
designing and implementing a large scale and complex system is a
challenging task [Crnkovic and Larsson 2002]. In this thesis, we focus on
two of the most well recognized software engineering paradigms coping
with this challenge, i.e. component-based software engineering (CBSE) and

Introduction 7

service-oriented software engineering (SOSE). Thus, the next question
relates to the impact analysis of the advances of technological paradigms:

Given the technology-type change stimulus of introducing

SOSE to CBSE, what impacts need to be considered? (Q3.1)

(2) Investigate the impact of business-type change stimuli

One of the main difficulties of software evolution is that all artifacts
produced and used during the entire software lifecycle are subject to
changes [Mens and Demeyer 2008]. Meanwhile, to keep up with new
business opportunities, the need for differentiation in the marketplace, with
short time-to-market as part of the need, has put critical demands on the
effectiveness of software reuse. In this context, the change stimuli come
from the business perspective. Accordingly, software product line approach
has emerged as one specific type of software evolution, and has become one
of the most established strategies for achieving large-scale software reuse
and ensuring rapid development of new products [Birk et al. 2003].
However, product line development seldom starts from scratch. Instead, it is
very often based on existing legacy implementations [Kotonya and
Hutchinson 2008], and the issue of keeping legacy systems operational
becomes critical. Accordingly, an important and challenging type of
software evolution is how to cost-effectively manage the migration of legacy
systems towards product lines. This leads to the following research
question:

Given the business-type change stimulus of adopting a

product line approach, what impacts need to be

considered from a software evolution perspective? (Q3.2)

8 Introduction

1.3 Thesis Overview
The thesis is divided into two parts. The first part comprises a summary of
the research. Chapter 1 describes the background, motivation and research
questions of the performed research. Chapter 2 describes the research
results, by recapitulating the research questions. Chapter 3 discusses the
method used and the validity of the presented research. Chapter 4 surveys
related work. Chapter 5 concludes the thesis and outlines future work that
formulates potential tracks for further PhD studies.

The second part of this thesis is a collection of peer-reviewed conference
and workshop papers that document details of the answers to the research
questions, methods, and results. The following papers are included in this
part:

Paper A “Analyzing Software Evolvability”. Hongyu Pei Breivold, Ivica
Crnkovic, Peter J. Eriksson. Proceedings of the 32

nd
 IEEE

International Computer Software and Applications Conference

(COMPSAC), Turku, Finland, July, 2008.

This paper contributes to the answer to the first research question
Q1. The paper describes the initial establishment of an evolvability
model as a framework for the analysis of software evolvability.
We motivate and exemplify the model through an industrial case
study of a software-intensive automation system.

I was the main author and contributed with the proposed
evolvability model and the case study. The coauthors contributed
with advices regarding the research method, discussions regarding
the analysis and reviews.

Paper B “Analyzing Software Evolvability of an Industrial Automation
Control System: A Case Study”. Hongyu Pei Breivold, Ivica
Crnkovic, Rikard Land, Magnus Larsson. Proceedings of the 3

rd

International Conference on Software Engineering Advances

(ICSEA), IEEE, Sliema, Malta, October, 2008.

This paper contributes to the answer to the second research
question Q2. The paper describes our work in analyzing software
evolvability of an industrial automation control system, and
presents 1) evolvability subcharacteristics based on the problems
in the case and available literature; 2) a structured method for

Introduction 9

analyzing software evolvability at the architectural level - the
ARchitecture Evolvability Analysis (AREA) method. This paper
includes also the main analysis results and our observations during
the evolvability analysis process in the case study.

I was the main author and contributed with the description of the
proposed evolvability analysis method, the case study, the analysis
results and conclusions. The coauthors contributed with advice
regarding research method, discussions regarding the analysis and
reviews.

Paper C “Using Dependency Model to Support Software Architecture
Evolution”. Hongyu Pei Breivold, Ivica Crnkovic, Rikard Land,
Stig Larsson. Proceedings of the 4

th
 International ERCIM

Workshop on Software Evolution and Evolvability (Evol’08) at the

23rd IEEE/ACM Intl. Conf. on Automated Software Engineering,

IEEE, L’Aquila, Italy, September, 2008.

This paper contributes to the answer to the research question Q1.1.
The paper explores the relationships between software
evolvability, modularity and inter-module dependency, as
designing software for ease of extension and contraction depends
on how well the software structure is organized. Through a case
study of an industrial power control and protection system, we
describe our work in managing its software architecture evolution,
guided by the static dependency analysis at the architectural level.
The paper includes also the main analysis results, experiences and
reflections during the dependency analysis process in the case
study.

I was the main author and led the case study. I contributed with the
description of managing software architecture evolution using the
dependency analysis results as inputs, as well as the analysis and
conclusions. The coauthors contributed with advice regarding the
case description and reviews.

Paper D “Component-Based and Service-Oriented Software Engineering:
Key Concepts and Principles”. Hongyu Pei Breivold, Magnus
Larsson. Proceedings of the 33

rd
 Euromicro Conference on

Software Engineering and Advanced Applications (SEAA),

Component Based Software Engineering (CBSE) Track, IEEE,
Lübeck, Germany, 2007.

10 Introduction

This paper contributes to the answer to the research question Q3.1.
The paper describes a comparison analysis framework of
Component-Based Software Engineering (CBSE) and Service-
Oriented Software Engineering (SOSE), and analyzes them from a
variety of perspectives. We discuss as well the possibility of
combining the strengths of the two engineering paradigms for
improved quality attributes. This paper clarifies the characteristics
of CBSE and SOSE, tries to shorten the gap between them and
bring the two worlds together so that researchers and practitioners
become aware of essential issues of both paradigms. Clarifying the
characteristics of CBSE and SOSE may serve as inputs for further
utilizing them in a reasonable and complementary way.

I was the main author and contributed with the comparison
analysis framework, the analysis and conclusions. The coauthor
contributed with advice and discussions regarding the analysis and
reviews. In addition, Prof. Ivica Crnkovic contributed with
valuable feedback and comments through reviews.

Paper E “Migrating Industrial Systems towards Software Product Lines:
Experiences and Observations through Case Studies”. Hongyu Pei
Breivold, Stig Larsson, Rikard Land. Proceedings of the 34

th

Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Software Process and Product Improvement

(SPPI) Track, IEEE, Parma, Italy, September, 2008.

This paper contributes to the answer to the research question Q3.2.
The paper presents a product line migration method and describes
our experiences in migrating industrial legacy systems into product
lines. The migration method focuses on the migration process
when the migration decision has been made. In addition, we
present a number of recommendations for the transition process.
They are of value to organizations that are considering a product
line approach to their business. The recommendations cover four
perspectives, i.e. business, organization, product development
processes and technology.

I was the main author and contributed with the description of
recommended practices in product line migration, the analysis and
conclusions. The coauthors contributed with advice regarding
research method and reviews.

Introduction 11

In addition, the following report is indirectly related to the thesis. Part of
the results from this report has been used in the preparation of part 1 of this
thesis:

- “Using Software Evolvability Model for Evolvability Analysis”,
Hongyu Pei Breivold, Ivica Crnkovic, Technical Report ISSN 1404-

3041 ISRN MDH-MRTC-222/2008-1-SE, Mälardalen Real-Time

Research Center, Mälardalen University, February, 2008 [Breivold
and Crnkovic 2008]

Chapter 2. Research Results

This chapter provides a brief overview the research results. The details are
presented in the appended papers in the second part of the thesis.

We describe in section 1.2 that the overall question motivating the thesis is:

How to analyze the evolvability of a software system?

We further refine this question into several concrete research questions. For
each of these questions, we present an answer here and relate the research
questions with the individual papers included in this thesis.

What subcharacteristics are of primary importance for

the evolvability of a software system? (Q1)

The subcharacteristics that are of primary importance for software
evolvability in a given context (long-lived software-intensive systems) are
described in paper A and B: Analyzability, Architectural Integrity,
Changeability, Extensibility, Portability, Testability and Domain-specific

Attributes. These subcharacteristics are identified based on the analysis of
the software quality challenges and assessment [Fitzpatrick et al. 2004], the
types of change stimuli and evolution [Chapin et al. 2001], the taxonomy of
software change based on various dimensions that characterize or influence
the mechanisms of change [Buckley et al. 2004], and experiences we gained
in industrial case studies [Breivold and Crnkovic 2008]. Paper A outlines a
software evolvability model, in which subcharacteristics of software
evolvability and corresponding measuring attributes are identified. The idea
with the evolvability model is to further derive the identified
subcharacteristics to the extent when we are able to quantify them and/or
make appropriate reasoning about the quality of the attributes. This model is
established as a first step towards analyzing and quantifying evolvability, a
base and check point for evolvability evaluation and improvement.
Additionally, paper B describes evolvability subcharacteristics, correlating
to the problems in the case of an industrial automation control system.

14 Research Results

How can software evolvability be assessed in a systematic

manner? (Q2)

Paper B describes our work in analyzing an industrial automation control
system, driven by the need to improve its evolvability. A structured method
has been proposed and piloted for analyzing evolvability at the architectural
level, i.e. the ARchitecture Evolvability Analysis (AREA) method. The
method consists of three phases:
Phase 1: Analyze the implications of change stimuli on software

architecture. As change stimuli have impact on the software system in
terms of software structures and/or functionality, this phase analyzes the
impact of change stimuli on the current architecture. Phase 1 consists of the
following two steps:

- Step 1.1: Identify potential requirements in the software

architecture. The aim of this step is to extract potential
requirements that are essential for software architecture to
accommodate change stimuli.

- Step 1.2: Prioritize potential requirements in the software

architecture. All the potential requirements identified from the first
step need to be prioritized, in order to establish a basis for common
understanding of the architecture requirements among stakeholders
within the organization.

Phase 2: Analyze and prepare the software architecture to

accommodate change stimuli and potential future changes. This phase
focuses on the identification of potential improvement proposals for the
components that need to be refactored. Phase 2 consists of the following
four steps:

- Step 2.1: Extract architectural constructs related to the

respective identified requirement. We mainly focus on
architectural constructs that are related to each identified potential
architectural requirement.

- Step 2.2: Identify refactoring components for each identified

requirement. In this step, we identify the components that need
refactoring in order to fulfill the prioritized requirements.

- Step 2.3: Identify and assess potential refactoring solutions from

technical and business perspectives. Potential refactoring
proposals are identified and design decisions are taken in order to
fulfill the requirements derived from the first phase. The change

Research Results 15

propagation of the effect of refactoring need to be considered, as it
provides an input to the business assessment, estimating the cost and
effort in refactoring work.

- Step 2.4: Define test cases. New test cases that cover the affected
component, modules or subsystems are identified.

Phase 3: Finalize the evaluation. In this phase, the previous results are
incorporated, analyzed and structured into a collection of documents.

- Step 3.1: Analyze and present evaluation results. The evaluation
results include (i) the identified and prioritized potential
requirements on the software architecture; (ii) the identified
components/modules that need to be refactored for enhancement or
adaptation; (iii) refactoring investigation documentation which
describes the current situation, the new requirements, potential
improvement proposals and respective rationale to each identified
candidate that need to be refactored, including estimated workload;
(iv) test scenarios; and (v) impact analysis on evolvability in terms
of each subcharacteristic.

Through the evolvability analysis process, the implications of the potential
improvement proposals and evolution path of the software architecture are
analyzed with respect to the evolvability subcharacteristics. The result is
that the architecture requirements, corresponding architectural decisions,
rationale and architecture evolution path become more explicit, better
founded and documented, and that the resulting documentation of
refactoring improvement proposals are widely accepted by the involved
stakeholders.

Detailed Studies

What modularization means can be used to support

software architecture evolution? (Q1.1)

Through an industrial case study in static dependency analysis, paper C
explores the relationship between software evolvability, modularity and
inter-module dependency. Inter-module dependency is one of many
indicators and measures for achieving modularity. One way to visualize
these inter-module dependencies is through the Design Structure Matrix
(DSM), which is a representation and analysis mechanism for system
modeling with respect to system decomposition and integration. Paper C
describes also the experiences and reflections on using dependency model to

16 Research Results

support software architecture evolution. In addition, as part of the
dependency analysis process, some means for providing modularization are
identified, e.g.

- Design principles

- Software engineering paradigms

- Object-oriented design patterns

- Formal specification

- Programming languages

- Modeling techniques

- Architecture styles

These means can be used to support software evolution and to provide one
way to let some part of a system change independently of all other parts. An
additional observation is the potential of combining different means for
improved modularization and quality attributes, thus to support software
evolution.

Given the technology-type change stimulus of introducing

SOSE to CBSE, what impacts need to be considered? (Q3.1)

In order to analyze the impacts of the introduction of SOSE to CBSE, the
first step is to achieve good understandings of the characteristics of and
possibilities provided by the two engineering paradigms. Accordingly,
taking CBSE and SOSE engineering paradigms as examples, paper D
exemplifies the necessity of making analysis and exploration of both
existing and emerging technologies for better understanding and utilization
of both. Paper D presents a comparison framework for component-based and
service-oriented software engineering from the following perspectives:

- Key concepts with respect to module, specification, interface and
assembly;

- Key principles with respect to coupling, self describing, self
contained, state and location transparency;

- Development process;

- Technology concerns with respect to technology neutrality,
encapsulation, and static vs. dynamic;

- Quality concerns e.g. reusability, substitutability and
interoperability;

Research Results 17

- Composition concerns e.g. heterogeneous vs. homogeneous
composition, design time/run time composition and composition
mechanisms, as wells as predictability.

In paper D, a brief discussion of reasonable utilization, combination and
adaptation of the two paradigms is also outlined through looking into a set
of research studies in how they have been used for improved quality
attributes. The result is that as both CBSE and SOSE can co-exist in
enterprise systems and complement each other [Wang and Fung 2004], a
good understanding of both technologies and a thorough analysis of their
impacts on quality attributes will lead to more efficient combination and
adaptation of these paradigms in future software development.

In this thesis, we have only partially answered the research question Q3.1
through providing an explicit clarification of the concepts, principles and
characteristics of CBSE and SOSE. This is the first necessary step before
further exploration in efficient utilization and reasonable combination of
CBSE and SOSE in future applications. It is also a necessary step before
further investigation of the impacts of the introduction of SOSE to CBSE.
However, a continuation of further investigations of the impacts of the
introduction of SOSE to CBSE is not within the focus of this thesis. It
remains to be one of the areas for future work (refer to chapter 5).

Given the business-type change stimulus of adopting a

product line approach, what impacts need to be

considered from a software evolution perspective? (Q3.2)

In order to analyze the impacts of the adoption of a product line approach,
we performed two industrial case studies, driven by the need to transform
the existing legacy systems towards product line architectures in order to
improve evolvability. Paper E describes our work in these two cases and
proposes a structured product line migration method with focus on the
migration process when the migration decision has been made. The method
consists of five steps:

- Step 1: Identify requirements on the software architecture. In
this step, requirements essential for a cost-effective software
architecture transition to product line architecture are extracted.

- Step 2: Identify commonalities and variability. In this step,
common core assets and variability to facilitate product derivation
are identified.

18 Research Results

- Step 3: Restructure architecture. In this step, the product line
architecture is constructed.

- Step 4: Incorporate commonality and variability. In this step,
feasible realization mechanisms and potential improvement
proposals to facilitate the revised product line architecture are
defined.

- Step 5: Evaluate software architecture quality attributes. In this
step, the impact of potential improvement proposals on the quality
attributes of the product line architecture is evaluated.

In addition, applying a software product line approach to legacy systems
requires that care is taken to ensure that critical aspects are considered for a
smooth and successful product line migration. Through the two industrial
cases, observations have been made with respect to business, organization,
development process and technology perspectives when adopting a product
line approach. These observations and experiences from the case studies are
also described in paper E to recommend practices that are particularly
useful. Some examples are:

Business perspective:

- Different triggers for decisions to adopt a product line approach
exist. Business objectives motivate architecture and process
changes. The triggers for these changes might appear different
although the decision to have a product line approach might be the
same.

- Improve risk management through constant progress measuring.

Organization perspective:

- Product managers for different products using the product line
architecture should synchronize needs.

- Define roles, responsibilities and ways to share technology assets.

Process perspective:

- Perform the migration to product lines through incremental
transitions.

- Ensure communication between technology core team and
implementation team.

Technology perspective:

- Use tool support for dependency analysis.

Research Results 19

- Use architecture documentation to improve architectural integrity
and consistency.

- Carefully define variation points and realization mechanisms.

2.1 Summary of Thesis Contributions
The contributions of the thesis are visualized in Figure 1.

Evolvability

QoS

Metrics

Subcharacteristics

Measuring Attributes

-is refined to

-is refined to

-is measured by

-reason about

Change Stimuli

-is influenced by

ARrchitecture

Evolvability Analysis

(AREA) Method

-is assessed by

Business

Perspective

Technology

Perspective

-relates to

-relates to

State-of-the-art and State-of-

the-practice Studies of the

Impacts of the Introduction of

SOSE to CBSE

Case Studies in Migrating

Legacy Systems towards

Product Lines

-is exemplified with -is exemplified with

A Case Study in Using Dependency

Model to Explore One Measuring

Attribute - Modularity, Which Affects

the Behavior of a Design with

Respect to Most of the Evolvability

Subcharacteristics

-is exemplified with

Figure 1. Contributions of the Thesis

We outline in this thesis a software evolvability model that provides a basis
for analyzing and evaluating software evolvability. This model refines
software evolvability into a collection of subcharacteristics that can be
measured through a number of measuring attributes. Moreover, we further
explore one particular measuring attribute, i.e. modularity, which affects the
behavior of a design with respect to most of the evolvability
subcharacteristics. This is because designing software for ease of extension
and contraction depends on how well the software structure is organized,
and modular designs are argued to be more evolvable, i.e. these designs
facilitate making future adaptations.

We introduce a structured method for analyzing evolvability at the
architectural level - the ARchitecture Evolvability Analysis (AREA) method
that focuses on improving the capability in being able to on forehand
understand and analyze systematically the impact of a change stimulus. The
method is studied in an industrial setting.

The fact that change stimuli come from both technical and business
perspectives spawns two aspects that we also focus on in the thesis, i.e. to

20 Research Results

investigate the impact of technology-type and business-type of change
stimuli. For technology-type of change stimulus, we take CBSE and SOSE
engineering paradigms as examples and investigate the impact of the
emergence of a new engineering paradigm. We exemplify the necessity of
making analysis and exploration of both existing and emerging technologies.
For business-type of change stimulus, we focus on managing the migration
of legacy systems towards product lines due to the need for differentiation in
the marketplace, with short time-to-market as part of the need. Two
industrial cases are studied in detail. Observations are made with respect to
business, organization, development process and technology perspectives
when adopting a product line approach. The experiences from the case
studies are also described to recommend practices that are particularly
useful.

Chapter 3. Research Method

This chapter includes an overview of the relevant research methods used in
software engineering and how these methods are used in the research
presented in this thesis. Some of the papers included in the thesis describe
how a specific method is applied in that part of the research. The general
research process and the overall validity of the studies are discussed here.

The ACM SIGCSE committee on teaching Computer Science Research
Methods (SIGCSE-CSRM) [SIGCSE] describes a research process
framework [Holz et al. 2006]. The framework consists of four different
questions that as a whole describe the general research process:

- Question A: What do we want to achieve?

- Question B: Where does the data come from?

- Question C: What do we do with the data?

- Question D: Have we achieved our goal?

To answer these questions in the general research process, different research
methods have been outlined [Holz et al. 2006]. Moreover, Shaw
characterizes software engineering research and develops a research
classification framework, which describes the kind of answers that are of
interest for software engineering research, the research methods that are
adopted and the criteria for evaluating the results [Shaw 2002]. She
classifies research based on the type of the following three aspects:

- Research questions: What kinds of research questions are interesting
for software engineering researchers? This corresponds to question
A in the general research framework, i.e. what do we want to
achieve?

- Research results: A classification of the kind of research results,
which help to answer the research questions. This covers question C
in the general research framework, i.e. what do we do with the data?
This also covers question B, i.e. where does the data come from?

22 Research Method

- Validation techniques: The framework classifies the kind of
evidence that can be used to demonstrate the validity of the result.
This relates to question D in the general research framework, i.e.
have we achieved our goal?

The detailed descriptions of the research questions and the research results
are covered in chapter 1 and chapter 2 respectively. The research process
and method as well as the validity of the research results are discussed in the
following sections.

3.1 Research Process and Method

The research process conducted in this thesis consists of the following steps:

1. Analysis of the state-of-the-art and state-of-the-practice of the existing
software quality models (refer to section 4.2) for software evolution;

2. Analysis of the state-of-the-art and state-of-the-practice of the existing
software process models (refer to section 4.3) for software evolution;

3. Case studies performed to understand subcharacteristics of the
evolvability of a software system;

4. Analysis of the state-of-the-art and state-of-the-practice of component-
based and service-oriented software engineering (refer to section 4.6) to
investigate impacts of technology advances;

5. Case studies performed to investigate impacts of migrating legacy
software systems to the product line software development (refer to
section 4.7).

Through the first two steps, a thorough investigation of the well-known
software quality models is made and the idea of a characterization of
software architecture evolvability is outlined. Afterwards, a characterization
of the evolvability of an industrial software system is studied and created in
the third step. This characterization and the results from the case study are
reported in paper A and B. Furthermore, paper C reports an in-depth study
of one of the measuring attributes identified in the evolvability
characterization. The analysis of the particular measuring attribute is
performed through another industrial case study, in which the software
architecture evolution is supported through the usage of dependency model.
The data collection for paper D is based on literature surveys through the

Research Method 23

fourth step. The fifth step includes two case studies with two different
development organizations in different domains to address the impacts of
product line migration. The migration process and the results from the case
studies are reported in paper E.

A summary of the computing research methods can be found in [Holz et al.
2006]. Among them, the following specific research methods are used in
this thesis for data collection:

- Interview [Benyon et al. 2005]: This is a research method for
gathering information. People are posed questions by an
interviewer. The interviews may be structured or unstructured both
in the questions asked by the interviewer, as well as the answers
available to the interview subject. In the research presented in this
thesis, we performed unstructured interviews.

- Critical Analysis of the Literature [Zelkowitz and Wallace 1997]:
This research method is a historical method, which collects and
analyzes data from published material. Literature search requires the
investigator to analyze the results of papers and other documents
that are publicly available. The research context and background to
paper A (regarding the analysis of existing software quality models)
and paper D (regarding the state-of-the-art and state-of-the-practice
of CBSE and SOSE) are originated from this specific method.

- Lessons-learned [Zelkowitz and Wallace 1997]: Lessons-learned
documents are often produced after a large industrial project is
completed, whether data is collected or not. A study of these
documents often reveals qualitative aspects which can be used to
improve future developments. Parts of the results reported in paper
C (regarding the experiences and reflections through the
dependency analysis) and paper E (regarding the observations and
recommendations in product line migration) are lessons-learned
throughout the case study executions.

- Qualitative Research [Gay and Airasian 1999]: This method is the
collection of extensive narrative data on many variables over an
extended period of time, in a naturalistic setting, in order to gain
insights not possible using other types of research. The results
presented in paper B (regarding the impact analysis of potential
refactoring solutions on evolvability subcharacteristics) belong to
this category.

24 Research Method

- Quantitative Research [Gay and Airasian 1999]: This method is the
collection of numerical data in order to explain, predict and/or
control phenomena of interest. The results presented in paper C
(regarding the inter-module dependencies) belong to this category.

- Case Study [Fenton and Pfleeger 1997]: This is a research technique
in which key factors that may affect the outcome of an activity are
identified and the activity are documented, including its inputs,
constraints, resources and outputs. Two types of case study are
described in [Yin 2003]. They are:

- Single Case: It examines a single organization, group, or system
in detail; involves no variable manipulation, experimental
design or controls. The results presented in paper B (regarding
the software evolvability analysis) are derived from a single
organization and belong to this category.

- Multiple Case Studies: They are as for single case studies, but
carried out in a small number of organizations or context. The
results presented in paper E (regarding the observations and
experiences gained through the product line migration process)
are derived from two organizations in two different domains and
belong to this category.

3.2 Validity Discussions
Based on [Yin 2003] and [Wohlin and Wesslen 2000], four types of validity
are considered in this thesis: construct validity, internal validity, external
validity, and reliability.

Construct validity relates to the collected data and how well the data
represent the investigated phenomenon, i.e. it is about ensuring that the
construction of the study actually relates to the research problem and the
chosen sources of information are relevant. The construct validity can be
increased through the following tactics [Yin 2003]:

- Use multiple sources of evidence;

- Establish chain of evidence;

- Have key informants review draft of case study report.

Internal validity concerns the connection between the observed behavior
and the proposed explanation for the behavior, i.e. it is about ensuring that

Research Method 25

the actual conclusions are true. The internal validity is ‘only a concern for
causal (or explanatory) case studies’ [Yin 2003]. It can be increased through
the following tactics:

- Do pattern-matching;

- Do explanation-building;

- Address rival explanations;

- Use logic models.

External validity concerns the possibilities to generalize the results from a
study. It can be increased through the following tactics [Yin 2003]:

- Use theory in single-case studies;

- Use replication logic in multiple-case studies.

Reliability concerns the possibilities to reach the same conclusions if the
study is repeated by another researcher. It can be increased through the
following tactics [Yin 2003]:

- Use case study protocol;

- Develop case study database.

Because the ways for the data collection and research design vary when we
answer each research question, we go through each research question in the
following subsections and describe respective type of the validation used.

3.2.1 Research Question 1: What subcharacteristics are of
primary importance for the evolvability of a software
system?
The construct validity is addressed through using multiple sources of
evidence, including critical analysis of the existing literature and an
industrial case study [Breivold and Crnkovic 2008]. We collect and analyze
data from published materials. The criteria on which the literature is being
evaluated include software evolution related areas which cover a broad
range of topics, such as software quality models, software process models,
software quality metrics, and software architecture evaluation. In addition,
the industrial case study, though is a single-case, is a representative and
typical case which captures the commonplace situation of large complex
software systems.

Our case study is explorative, and hence less sensitive to the internal

validity which is only a concern for causal (or explanatory) case studies.

26 Research Method

The external validity is addressed through analytical generalizations in the
case study. However, we do not exclude the possibilities that other domains
or cases might have extended or different set of evolvability
subcharacteristics. We cannot with certainty say that this is the case. Further
studies are needed in order to draw such conclusions. For this reason we
precisely defined the scope and the context of the research.

A basis for achieving reliability is to have a well-documented case study
protocol, which is the case in the research presented in this thesis. The
documentation on architectural requirements and quality improvement
requirements is available. However, different people might interpret textual
materials in different ways, which might lead to different set of abstractions
on evolvability subcharacteristics. We address this by having the key
software architect and several researchers to review the documents, e.g.
software architecture requirements, and documents concerning the analysis
of the case study.

3.2.2 Research Question 2: How can software evolvability
be assessed in a systematic manner?
The construct validity is addressed through triangulation, i.e. multiple
sources for the data in the project:

- Architecture workshops with stakeholders to extract potential
architectural requirements; these architectural requirements are
checked against the evolvability subcharacteristics for the
justification of whether the realization of each requirement would
lead to an improvement of the subcharacteristics (or possibly a
decrease, which would then require a tradeoff decision).

- The involvement of software architects and senior software
developers in the analysis process;

- The researchers’ experiences and involvement in the software
product development;

- Discussions with involved stakeholders on software architecture
requirement documents, potential architecture improvement
proposals and their respective quality impact analysis to ensure
software evolvability and to avoid risks to its decrease.

Our case study is explorative, and hence less sensitive to the internal

validity which is only a concern for causal (or explanatory) case studies.

Research Method 27

The external validity is addressed through analytical generalizations in the
case study, in which we perform and pilot the software evolvability analysis
method. A possible consideration is whether the analysis method can be
generalized to a different organization or a different domain. We assume
that the analysis method can be generalized, as the method and the
procedures in performing the method are not constrained by any domain or
organization related factors. However, further studies are needed in order to
further refine and validate the method. Another perspective with respect to
the external validity is to perform new evolvability assessment case studies
and compare the results, including the estimation of the efforts needed to
analyze evolvability. This can be done in stages, i.e. firstly, in the same or
similar domain/context, and secondly, in different contexts. This multiple
case study remains to be done.

Reliability is addressed through the detailed description of the procedures
used in the analysis method, proper documentation of the results in each
performed step in the case study, as well as reviews of the software
architecture requirement documents and the potential architecture
improvement proposals by the involved software architects, senior software
developers and researchers.

3.2.3 Research Question 1.1: What modularization means
can be used to support software architecture evolution?
The construct validity is addressed through triangulation. One of the means
applied in the case study is using dependency model to support software
architecture evolution. The idea is to use inter-module dependency as one of
many indicators and measures for achieving modularity. A subset of the
complete software system is analyzed through using inter-module
dependency to measure its modularity. The modularization is performed
through simulating changes in the dependency model without of making any
modifications to the actual source code. Afterwards, the resulting modularity
is compared with the previous one before the simulated changes.

Our case study is explorative, and hence less sensitive to the internal

validity which is only a concern for causal (or explanatory) case studies.

The external validity is addressed through analytical generalizations in the
case study. The purpose of the analysis in the case study is to visualize
dependencies to provide indications to the hotspots in the software
architecture and software implementation, thus to support the software
architecture evolution. The conclusion of using dependency model to

28 Research Method

support software architecture evolution can be generalized, as the inter-
module dependency is an objectively quantitative indicator.

Reliability is addressed through the detailed description of the procedures
performed in the dependency analysis process, proper documentation of the
resulting dependency model from each step in the case study, as well as
reviews of the software architecture improvement proposals by the
stakeholders and researchers. Our software evolution experiences with
respect to the reflections from the dependency analysis process are gained
through:

- The daily meetings with the stakeholders, e.g. the software architect
and senior software developers to discuss the progress and the
solutions to any encountered problems;

- The researchers’ experiences and involvement in the software
product development;

- The reviewing of software architecture analysis documents and
potential improvement proposals to ensure that the collected data is
relevant.

3.2.4 Research Question 3.1: Given the technology-type
change stimulus of introducing SOSE to CBSE, what
impacts need to be considered?
The construct validity is addressed through critical analysis of the existing
literature with regard to component-based and service-oriented software
engineering, as well as through the reviews from several researchers in these
areas. We collect and analyze data from published materials [Crnkovic and
Larsson 2002; Stojanovic and Dahanayake 2005] and other related
publications. The criteria on which the literature is being evaluated include
component-based and service-oriented software engineering related areas as
well as their utilizations.

Our case study is explorative, and hence less sensitive to the internal

validity which is only a concern for causal (or explanatory) case studies.

The external validity is addressed through analytical generalizations from
the evaluated literatures. We introduce the comparison framework between
CBSE and SOSE, through characterizing the key concepts, key principles,
quality concerns, composition mechanisms, utilization and combination of
both technologies. The conclusion of the paper is ‘a good understanding of
both technologies and a thorough analysis of their impacts on quality

Research Method 29

attributes will lead to more efficient combination and adaptation of these
paradigms in future software development’. This conclusion is based on the
comparison framework and related works that describe how the two
technologies have been combined for improved quality attributes. We
assume that the conclusion from the analysis can be generalized with any
technology-type of change stimuli due to the abstraction level.

Reliability is addressed through well-structured data collection from the
literatures. However, different people might interpret textual materials in
different ways, which might lead to different set of abstractions and slightly
different comparison framework. We address this by having several
researchers to review the proposed comparison framework.

3.2.5 Research Question 3.2: Given the business-type
change stimulus of adopting a product line approach, what
impacts need to be considered from a software evolution
perspective?
The construct validity is addressed through triangulation. The reported
migration experiences and observations are gained through multiple sources
for the data in the project:

- Analysis of two different industrial software systems from two
different domains;

- Analysis of two different organization structures with distributed
development teams;

- The involvement of the stakeholders of different roles (e.g. product
management, software architects and senior software developers)
for each case study;

- The researchers’ experiences and involvement in the software
product development to ensure that the collected data is relevant;

- Regular meetings and workshops for open discussions.

Our case study is explorative, and hence less sensitive to the internal

validity which is only a concern for causal (or explanatory) case studies.

The external validity is addressed through the selection of studied systems
from two different domains, including automation control system, power
protection and control system. Besides, external validity is also addressed
through the selection of different organizations with different organization
structures. The product line development is organized in two ways: (i) in a

30 Research Method

separate product line team – one team develops the core assets while other
teams develop products; or (ii) within the product team – the development
team is responsible for both product and core asset development. Both
organization structures are reflected in the two case studies.

Reliability is addressed through the detailed description of the procedures
used in the product line migration process, proper documentation of the
results from each performed step in the case study, as well as reviews of
these documents by the stakeholders and researchers. However, different
people might interpret textual materials in different ways, which might lead
to slightly different set of observations and experiences. We address this by
having several researchers to review the experience analysis extracted from
the case studies.

Chapter 4. Related Work

This chapter relates the work in this thesis to relevant research and practice
areas, subdivided into a number of sections. In each section, there is also an
explanation of how the thesis is related to each area.

Section 1 presents a brief overview of the observed behavior of software
systems and challenges encountered during software evolution. Section 2
provides a survey of the existing well-known software quality models,
which form the basis for the establishment of our evolvability model.
Section 3 surveys the software process models as software architecture
evolution is inseparably bound to a process context, e.g. the need to cost-
effectively carry out software evolution during the software system’s
lifecycle. Section 4 briefly describes software architecture evolution with
regard to its qualitative and quantitative assessment as well as the
architectural integrity issue which is one of the aspects that we take into
consideration during evolvability analysis. Section 5 presents an overview of
software architecture evaluation methods. Good understanding of their
applicability and limitations is the basis for the proposed software
architecture evolvability analysis method in this thesis. Section 6 presents a
brief overview of component-based and service-oriented software
engineering, as one of the detailed research questions that we try to answer
in this thesis is closely related to this area. Section 7 describes briefly the
software product line engineering methods and process, which are of close
relevance as one of our detailed research questions deals with the adoption
of a product line approach. Section 8 describes reverse engineering and
reengineering, and section 9 describes briefly software quality metrics that
are related to software evolution.

4.1 Software Evolution
The laws of software evolution is formulated in [Lehman 1980; Lehman et
al. 1997], based on the observations of the IBM OS/360 operating system

32 Related Work

and the FEAST project. The term software evolution is deliberately used in
Lehman’s work to address the difference with the post-deployment activity
of software maintenance. He uses the term E-type software to denote
programs that must be evolved because they operate in or address a problem
or activity of the real world. Accordingly, changes in the real world will
affect the software and require subsequent adaptations.

The laws of software evolution encapsulate observed behavior of a number
of evolving systems over the years and are summarized as follows:

- Continuing change An E-type system that is used must be
continually adapted else it becomes progressively less satisfactory.

- Increasing complexity As an E-type system evolves its complexity
increases unless work is done to maintain or reduce it.

- Self regulation Global E-type system evolution processes are self
regulating.

- Conservation of organizational stability Average global activity rate
in an E-type process tends to remain constant over periods or
segments of system evolution.

- Conservation of familiarity The average growth rate of E-type
systems tends to remain constant or to decline.

- Continuing growth The functional capability of an E-type system
must be continually increased to maintain user satisfaction over its
lifetime.

- Declining quality Unless rigorously adapted to take into account
changes in the operational environment, the quality of E-type
systems will appear to be declining.

- Feedback system E-type software processes are multilevel, multi-
loop, multi-agent feedback systems.

The software architecture is inevitably subject to evolution due to the above-
mentioned phenomena of software evolution, for instance continuing
change, increasing complexity, continuing growth and declining quality.

Additionally, the following properties of large software systems are noted in
[Brooks 1987].

- Complexity An essential property of large software systems, leading
to the following problems:

Related Work 33

- Difficulty of communication among development team
members, leading to product flaws, cost overruns and schedule
delays;

- Difficulty of understanding all the possible states of the
program;

- Difficulty of extending programs to new functions without
creating side effects;

- Difficulty of getting an overview of the system, thus impeding
conceptual integrity.

- Conformity Many software systems are constrained by the need to
conform to human institutions and systems.

- Changeability The software entity is constantly subject to pressures
for change.

- Invisibility Software is invisible and unvisualizable. There is no
geometric representation. Instead, there are several distinct but
interacting graphs of links that represent different aspects of the
system.

The properties of large software systems noted in [Brooks 1987], e.g.
software complexity, inevitable changes of software systems and invisibility
in terms of software structure representation, further confirm the software
evolution phenomena and exhibit the intensified need on having evolvable
software systems that accommodate changes in a cost-effective way while
maintaining the architectural integrity. Without active countermeasures, the
quality of a software system will gradually degrade as the system evolves.

Moreover, software aging is inevitable. Parnas uses the metaphor of decay
to describe how and why software becomes increasingly brittle over time
[Parnas 1994]. There are two types of software aging which can lead to
rapid decline in the value of a software product. The first is caused by the
failure of the product’s owners to modify it to meet changing needs; the
second is the result of the changes that are made. Both types of software
aging in turn lead to inadequate evolvability. Following problems are
associated with software aging [Parnas 1994]:

- Inability to keep up with the market due to increasing size and
complexity;

- Reduced performance due to the gradually deteriorating structure;

34 Related Work

- Decreased reliability because of errors introduced when changes are
made.

4.1.1 Relation to the Thesis
In order to keep the system useful as it was, we must continually adapt it to
the ever-changing requirements. This exhibits the need on having an
evolvable software system. Therefore, the software evolution retraces
motivate the reasons for the thesis, i.e. we need to investigate means to
analyze, characterize and measure software evolvability.

4.2 Software Quality Models
A quality model provides a framework for quality assessment. It aims at
describing complex quality criteria through breaking them down into
concrete subcharacteristics. A general description of different quality
models can be found in [Ortega et al. 2003]. In quality models, quality
attributes are decomposed into various factors, leading to various quality
factor hierarchies. Some well-known quality models are McCall’s quality
model [McCall et al. 1977], Dromey’s quality model [Dromey 1996],
Boehm’s quality model [Boehm et al. 1978], ISO 9126 [ISO9126] and
FURPS quality model [Grady and Caswell 1987].

4.2.1 McCall’s Quality Model
McCall’s quality model [McCall et al. 1977] addresses three perspectives
for defining and identifying the quality of a software product:

- Product operation is the product’s ability to be quickly understood,
operated and capable of providing the results required by the user. It
covers modifiability, reliability, efficiency, integrity and usability.

- Product revision is the ability to undergo changes. It covers
maintainability, flexibility and testability.

- Product transition is the adaptability to new environments. It covers
portability, reusability and interoperability.

This model further details the above three perspectives into a hierarchy of
factors, criteria and metrics.

Related Work 35

4.2.2 Boehm’s Quality Model
Boehm’s quality model [Boehm et al. 1978] begins with the software’s
general utility, i.e. the high level characteristics that represent basic high-
level requirements of actual use. The general utility is refined into:

- Portability

- Utility It is further refined into reliability, efficiency and human
engineering.

- Maintainability It is further refined into testability,
understandability and modifiability.

Boehm’s quality model is similar to McCall’s quality model in that it
represents a hierarchical structure of characteristics, each of which
contributes to the total quality.

4.2.3 FURPS Quality Model
FURPS [Grady and Caswell 1987] stands for functionality, usability,
reliability, performance and supportability. Two steps are considered in this
model: setting priorities and defining quality attributes that can be
measured.

4.2.4 ISO 9126 Quality Model
ISO 9126 [ISO9126] specifies and evaluates the quality of a software
product from different perspectives. Product quality is defined as a set of
product characteristics. The characteristics that are observed by the end-user
on the final software product are called external quality characteristics. The
characteristics that relate to software development process and environment
or context are called internal quality characteristics. An external
characteristic can be measured internally, and is determined or influenced by
the internal characteristics. The model categorizes software quality
attributes into six characteristics: functionality, reliability, usability,
efficiency, maintainability and portability. One advantage of this quality
model is that it defines the internal and external quality characteristics of a
software product.

4.2.5 Dromey’s Quality Model
[Dromey 1996] proposes a working framework for evaluating requirement
determination, design and implementation phases. Corresponding to the

36 Related Work

products resulted from each stage of the development process; the
framework consists of three models:

- Requirement model The high-level attributes for the requirement
quality model are accurate, understandable, implementable,
adaptable, and process mature.

- Design model The high-level attributes for the design quality model
include accurate; effective, understandable, adaptable and process
mature.

- Implementation quality model

The information extracted from each model can be used to build, compare
and evaluate the quality of a software product. In Dromey’s quality model,
process maturity is an aspect that has not been considered in previous
models.

4.2.6 Relation to the Thesis
The quality characteristics that are addressed in these quality models are
summarized in Table 1. As shown in Table 1, the term evolvability or
similar is not explicitly used in either of the quality models. Nevertheless,
several quality attributes are correlated to software evolvability, e.g.
adaptability, extensibility and maintainability. However, based on the
definition of evolvability in [Rowe et al. 1994], the multifaceted quality
attribute software evolvability covers more aspects than adaptability,
extensibility or maintainability. Through analyzing the software quality
challenges and assessment [Fitzpatrick et al. 2004], the types of change
stimuli and evolution [Chapin et al. 2001], the taxonomy of software change
based on various dimensions that characterize or influence the mechanisms
of change [Buckley et al. 2004], and experiences we gained in industrial
case studies [Breivold and Crnkovic 2008], we have discovered that only
having a collection of the subcharacteristics of maintainability as defined in
the ISO software quality standard [ISO9126] is not sufficient for a software
system to be evolvable. This poses one of the goals for our research, i.e. to
investigate characteristics that are of primary importance for the evolvability
of a software system, and to outline a software evolvability model that
provides a basis for analyzing and evaluating software evolvability.

Related Work 37

Table 1. Quality Characteristics Addressed in Quality Models

Quality

 Characteristics M
cC

a
ll

B
o

eh
m

F
U

R
P

S

IS
O

 9
1

2
6

D
ro

m
ey

Adaptability x x

Compatibility x

Correctness x

Efficiency x x x x

Extensibility x

Flexibility x

Human Engineering x

Integrity x

Interoperability x x

Maintainability x x x x x

Modifiability x x

Performance x

Portability x x x x

Reliability x x x x x

Reusability x x

Supportability x

Testability x x x

Understandability x x

Usability x x x x

38 Related Work

4.3 Software Process Models
The primary functions of a software process model are to determine the
order of the stages involved in software development and evolution, and to
establish the transition criteria for progressing from one stage to the next
[Boehm 1988]. Several process models have been proposed and gained
widespread acceptance since the late seventies as the term software
evolution was deliberately used and recognized by the research community.
Below is an overview of the process models, with focus on those models
that take constant changes and software evolution into consideration.

4.3.1 Waterfall Model
[Royce 1987] proposes the waterfall lifecycle process for software
development. In this process, several stages are described as taking place in
sequence, i.e. requirement analysis, design, implementation, testing and
maintenance. In this process model, there is no iteration in the process.
Although the waterfall model’s approach helps eliminate many difficulties
previously encountered in software projects, the inherent limitations of this
software process model are that the separation in phases is too strict and
inflexible, and that it is often unrealistic to assume that the requirements are
known before starting the software design phase. The emphasis on fully
elaborated documents as completion criteria for early requirements and
design phases creates a primary source of difficulty when the requirements
continue to change during the entire software life cycle as in many cases.
Moreover, in this process model, the maintenance phase is the final phase of
a software system’s lifecycle. Only bug fixes and minor adjustments to the
software are performed during this phase. Therefore, the maintenance stage
needs to be expanded to represent broader activities, i.e. not only
maintaining the originally designed functions, but also adding new
functions, coping with changing environments and changing requirements.

4.3.2 Change Mini-Cycle Process Model
[Yau et al. 1978] proposes a process model with the so called change mini-
cycle, in which change impact analysis and change propagation are
identified to accommodate the fact that software changes are rarely isolated.
In this process model, software evolution is described in terms of the change
mini-cycle, which consists of several phases:

- Change request;

- Change planning includes:

Related Work 39

- Software comprehension to understand what parts of the
software will be affected by a requested change;

- Change impact analysis to predict the parts that are likely to be
affected by a change.

- Change implementation includes:

- Restructuring for change to improve the software structure or
architecture without changing the behavior;

- Change location;

- Propagation of change due to the non-local impact nature of a
change.

- Validation of change

The assumptions of the proposed process model are that the requirements
continue to change during the entire lifetime of a software project, and that
the knowledge gained during the later phases may become feedbacks to the
earlier phases.

4.3.3 Evolutionary Development Model
Gilb proposed an “evolutionary development model”, in which the key word
is incremental delivery, implying real deliveries to a real user. According to
[Gilb 1981], “You must evolve in small steps towards your goals; large step
failure kills the entire effort. And early frequent result delivery is politically
and economically wise. 2% of total is a small step that you can afford to fail
on.”

The assumption of this model is that the software engineering is, by nature,
playing with the unknown [Gilb 2002]. One way to deal with these many
unknowns is to tackle them in small increments, one at a time. These small
increments are not mere development increments. It is important to note that
they are incremental satisfaction of identified stakeholder requirements.

4.3.4 Spiral Model
The spiral model [Boehm 1988] proposed by Boehm is a risk-driven
approach to the software process rather than a primarily document-driven
approach such as the waterfall model or code-driven process such as the
evolutionary development. A typical cycle of the spiral consists of the
following steps:

- Identification of the objectives of the portion of the product being
elaborated, alternative means of implementing this portion of the

40 Related Work

product, and the constraints imposed on the application of the
alternatives;

- Evaluation of the alternatives relative to the objectives and
constraints to identify risks;

- Risk resolution;

- Development and verification of next level product.

In this process model, prototyping is incorporated as a risk reduction option
at any stage of development. In addition, the model accommodates reworks
or go-backs to earlier stages as new alternatives are identified or as new risk
issues need resolution.

4.3.5 Staged Model
[Bennett and Rajlich 2000] explicitly takes into account the issue of
software aging [Parnas 1994] and proposes the staged model which
represents the software lifecycle as a sequence of the following stages:

- Initial development develops the first version of the software system
to ensure that subsequent evolution can be achieved easily;

- Evolution stage implements any kind of modification to the software
system;

- Servicing stage implements and tests tactical changes to the
software through applying small patches to keep the software up and
running;

- Phase out and close down stages manage the software towards the
end of its life.

In this model, during the initial development, the main need is to ensure that
the subsequent evolution can be achieved easily. During the evolution stage,
the software architecture evolution is essential to respond to unexpected
new user requirements. Meanwhile, we need to extend and adapt functional
and nonfunctional behavior without destroying the integrity of the
architecture.

4.3.6 Agile Software Development
Agile software development [Cockburn 2002; Martin 2003] is a lightweight
iterative and incremental approach to software development, which is
performed in a collaborative manner and explicitly needs to accommodate
the changing needs of various stakeholders. The introduction of Extreme
Programming [Beck 1999] is widely acknowledged as the starting point for

Related Work 41

various agile software development methods, such as Scrum [Schwaber and
Beedle 2001], Feature Driven Development [Palmer and Felsing 2002],
Dynamic Systems Development Method [Stapleton 1999], Adaptive
Software Development [Highsmith 2000] and Open Source Software
Development [O'Reilly 1999]. These methods attempt to produce working
software at frequent intervals, minimize the comprehensive documentation
at an appropriate level. A key aspect in these methods is responding to
change, i.e. the development group, comprising both software developers
and customer representatives, should consider possible adjustment needs
that emerge during the development process lifecycle, and should be
prepared to make changes. Changing environment in software business
affects the software development processes [Highsmith and Cockburn
2001]. This requires better handling of inevitable changes throughout the
project lifecycle, instead of trying to stop change early.

4.3.7 Evolution and Maintenance Management Model
SYSLAB, the Information Systems Laboratory (http://syslab.dsv.su.se/) is in
the process of developing a comprehensive process model for industrial
evolution and maintenance, and thus, not much data has been published yet.
The model is called Evolution and Maintenance Management Model. It
consists of the following models:

- Process Models within Corrective Maintenance (CM3)

- Front-End Problem Management is a detailed problem
management process model that is utilized at the front-end
support level;

- Back-End Problem Management is a detailed problem
management process model that is utilized at the back-end
support level;

- Emergency Problem Management attends severe emergency
problems that present immediate danger to people, environment,
resource, general welfare or businesses.

- Process Models within Evolution (EM3)

- Education and Training;

- Pre-delivery/Prerelease Maintenance;

- Release Management.

42 Related Work

4.3.8 Relation to the Thesis
The objective of a software process model is to reduce cost, effort and time-
to-market, to increase productivity and reliability, and to support better
quality and more evolvable software [Mens and Demeyer 2008]. A good
understanding of the existing software process models is necessary for us to
obtain insights in how the software changes are integrated in the software
development lifecycle.

In this thesis, we explore the pragmatic aspects of software evolution, i.e.
the methods and tools that provide the means to analyze and control the
software evolution, with focus on the existing software systems. For
instance, the evolvability analysis method proposed in this thesis is applied
on an existing software system. Considering the complete software lifecycle,
there is also the need to apply the analysis method in the early design phase
of a new development effort (refer to Chapter 5).

We acknowledge changes as an essential part of software development. We
also adopt the iterative and incremental change support in, for instance, the
product line migration process (refer to Chapter 2).

4.4 Software Architecture Evolution
Software architectures model the structure and behavior of a system; and
present a high level view of a system, including the software elements and
the relationships between them. Software architectures are inevitably subject
to evolution and they can expose the dimensions along which a system is
expected to evolve [Garlan 2000] and provide basis for software evolution
[Medvidovic et al. 1998].

Software systems undergo two main kinds of evolution [Mens and Demeyer
2008], i.e. internal evolution and external evolution. The thesis deals with
the external evolution.

- Internal evolution models the changes in the topology of the
components and interactions as they are created or destroyed during
execution. It captures the dynamics of the system.

- External evolution models the changes in the specification of the
components and interactions that are required to cope with new
stakeholder requirements. It entails adaptation of the software
architecture.

Related Work 43

There exist several approaches in describing and evolving software
architecture. [Aoyama 2002] proposes cost metrics of change operation for
software architecture evolution and discusses the proposed metrics in
continuous and discontinuous software evolution, which are the evolution
patterns observed from the evolution of several software systems.
Discontinuous evolution emerges between certain periods of successive
continuous evolution.

[Lung et al. 1997] describes a scenario-based approach which captures and
assesses software architectures for evolution and reuse. The approach
consists of a framework for modeling various types of relevant information
and a set of architectural views for reengineering, analyzing, and comparing
software architectures. This framework is used to model several types of
information, i.e.

- Stakeholder information describes stakeholders’ objectives, which
provide boundaries for analysis;

- Architecture information refers to design principles or architectural
objectives;

- Quality information refers to non-functional attributes;

- Scenarios describe the use cases of the system to capture the
system’s functionality. Scenarios that are not directly supported by
the current system can be used to detect possible flaws or to assess
the architecture’s support for potential enhancements. Scenarios are
derived from the stakeholder objectives, architectural objectives,
and desired system quality attributes or objectives.

The software architecture of an evolvable software system should allow
changes in the software and evolve in a controlled way without
compromising system integrity and invariants [Bennett and Rajlich 2000].
However, software architecture evolution often implies integrating
crosscutting concerns. Therefore, architectural integrity is one aspect that
needs to be taken into consideration. Otherwise, these crosscutting concerns
might, if not handled with care, introduce inconsistencies and lead to
evolvability degradation in the long run. To address this inconsistency issue,
[Barais et al. 2004] describes a framework named TranSAT. The framework
uses architectural aspect to describe new concerns and their integration into
the existing architecture. The framework allows the software architect to
design software architecture stepwise in terms of aspects at the design stage.

According to [Jansen and Bosch 2004], an architectural design decision is a
key concept in software architecture evolution. Capturing design decisions

44 Related Work

is therefore essential to address architectural knowledge [Lago et al. 2008]
vaporation issue. Otherwise, the knowledge of the design decisions that lead
to the architecture is lost. Moreover, changes to the software architecture
might cause violation of earlier design decisions, resulting in increased
design erosion [van Gurp and Bosch 2002].

4.4.1 Relation to the Thesis
Knowledge about the implications of the software architecture evolution
ensures a good understanding of the research context, for instance, we focus
on external evolution in this thesis. Understanding software architecture
evolution also provides us the input and background to evolvability
subcharacteristics identification. For example, the architectural integrity is
one aspect that needs to be considered throughout the software architecture
evolution.

4.5 Software Architecture Evaluation
The foundation for any software system is its architecture, which allows or
precludes nearly all of the quality attributes of the system [Clements et al.
2002]. Accordingly, several architecture evaluation methods have emerged
for various purposes, e.g. to compare and identify the strengths and
weaknesses in different architecture alternatives, to identify any
architectural drift and erosion. Experiences of using various assessment
techniques for software architecture evaluation are presented in [Christian
2006], in which scenario-based assessment, software performance
assessment and experience-based assessment are addressed. A general
description of different architecture analysis methods can be found in [Babar
et al. 2004; Dobrica and Niemela 2002].

The following subsections describe briefly four main categories of the
software architecture evaluation methods [Mattsson et al. 2006].

4.5.1 Experience-Based
Experience-based architecture evaluation means that the evaluations are
based on the previous experiences and domain knowledge of developers or
consultants [Avritzer and Weyuker 1999]. Some examples are:

- Empirically-Based Architecture Evaluation (EBAE) [Lindvall et al.
2003] defines a process for defining and using a number of
architectural metrics to evaluate and compare different versions of

Related Work 45

architectures in terms of maintainability. The main steps include (i)
select a perspective for the evaluation; (ii) define and select metrics;
(iii) collect metrics; and (iv) evaluate and compare the architectures.

- Attribute-Based Architectural Style (ABAS) [Klein et al. 1999]
builds on architectural styles by explicitly associating with
reasoning frameworks, which are based on quality-attribute-specific
models. ABAS consists of four parts: (i) problem description
explains the problem being solved by the software structure; (ii)
stimuli and response correspond to the condition affecting the
system and measurement of the activity as a result of the stimuli;
(iii) architectural styles are descriptions of patterns of component
interaction; and (iv) analysis constitutes a quality-attribute-specific
model that provides a method for reasoning about the behavior of
interacting components in the pattern. Examples of these quality-
attribute-specific models are modifiability model, reliability model
and performance model.

4.5.2 Simulation-Based
Simulation-based architecture evaluation means that the evaluations are
based on a high-level implementation of some or all of the components in
the software architecture [Mattsson et al. 2006]. Some examples are:

- SAM [Wang et al. 1999] is a formal systematic methodology for
software architecture specification and analysis. It is mainly targeted
for analyzing the correctness and performance of a software system.

- Argus-I [Vieira et al. 2000] is a specification-based evaluation
method that evaluates performance, dependence and correctness of a
software architecture. It is also used to evaluate an architecture
design with respect to structural analysis, static and dynamic
behavioral analysis, model checking and simulation of architecture.

4.5.3 Mathematical Modeling
Mathematical modeling means that mathematical proofs and methods are
used to evaluate operational quality requirements such as performance and
reliability [Reussner et al. 2003] of the components in the software
architecture. Some examples are:

- Software Performance Engineering (SPE) [Williams and Smith
1998] is a method for building performance into software systems. It

46 Related Work

can be used to evaluate various performance measures, e.g. response
times, throughput, resource utilization and bottleneck identification.

- Layered Queuing Networks (LQN) [Petriu et al. 2000] is often used
to evaluate the performance of a software architecture or a software
system. The layered queuing network model describes the
interactions between components in the architecture and required
processing times for each interaction.

4.5.4 Scenario-Based
Scenario-based architecture evaluation means that quality attributes are
evaluated by creating scenario profiles that force a concrete description of a
quality requirement [Mattsson et al. 2006]. Some examples are:

- Software Architecture Analysis Method (SAAM) [Kazman et al.
1994] is originally created for evaluating modifiability of software
architecture although it has been used for other set of quality
attributes as well, such as portability and extensibility. The main
outputs from a SAAM evaluation include a mapping between the
architecture and the scenarios that represent possible future changes
to the system, providing indications of potential future complexity
parts in the software and estimated amount of work related to the
changes.

- Architecture Trade-off Analysis Method (ATAM) [Clements et al.
2002] is a method for evaluating software architectures in terms of
quality attribute requirements. It is used to expose the risks, non-
risks, sensitivity points and trade-off points in the software
architecture. It aims at different quality attributes and supports
evaluation of new types of quality attributes.

- Architecture Level Modifiability Analysis (ALMA) [Bengtsson et al.
2004] is a method for analyzing modifiability based on scenarios. It
consists of five steps: (i) set the analysis goal; (ii) describe the
software architecture; (iii) elicit change scenarios; (iv) evaluate
change scenarios; and (v) interpret the results. The outputs from an
ALMA evaluation include: (i) maintenance prediction to estimate
the required effort for system modification to accommodate future
changes; (ii) risk assessment to identify the types of changes that the
system shows inability to adapt to; and (iii) software architecture
comparison for optimal candidate architecture.

Related Work 47

4.5.5 Relation to the Thesis
A survey of architecture evaluation methods presented in [Mattsson et al.
2006] indicates that most evaluation methods only address one quality
attribute, and very few can evaluate several quality attributes simultaneously
in the same method. The survey indicates also that no specific methods
evaluate testability or portability explicitly. These quality attributes can be
addressed by the evaluation methods that are more general in their nature,
e.g. ATAM, SAAM and EBAE. However, to analyze software evolvability
which is a multifaceted quality attribute, the scenario-based methods such as
ATAM would require quite a number of evolvability scenarios (to address
and cover each of the seven evolvability subcharacteristics identified in our
research); a more important limitation is that while scenarios are concrete
anticipated events in the system lifetime, evolvability might concern high-
level business requirements at an abstract level which calls for some more
general type of analysis to identify the implications on software architecture
and corresponding evolution path. This poses one of the motivations for our
research to investigate the means to assess software architecture
evolvability.

4.6 Component-Based and Service-Oriented
Software Engineering

Component-based software engineering (CBSE) provides support for
building systems through the composition and assembly of software
components. It is an established approach in many engineering domains,
such as distributed and web based systems, desktop and graphical
applications and recently in embedded systems domains. CBSE technologies
facilitate effective management of complexity, significantly increase
reusability and shorten time-to-market.

While CBSE is an established approach in many engineering domains, the
growing demands for Internet computing and emerging network-based
business applications and systems are the driving forces for the emergence
of service-oriented software engineering (SOSE). SOSE has evolved from
CBSE frameworks and object oriented computing to face the challenges of
open environments. SOSE utilizes services as fundamental elements for
developing applications and software solutions. SOSE technologies offer
feasibility in integrating distributed systems that are built on various

48 Related Work

platforms and technologies, and further push focus on reusability and
development efficiency.

Because of the diverse nature of software systems, it is unlikely that systems
will be developed using a purely service-oriented or component-based
approach [Kotonya et al. 2004]. Therefore, the ability to combine the
strengths of CBSE and SOSE, and use them in a complementary manner
becomes essential. So far, some research has been done in combining the
strengths of CBSE and SOSE for improved quality attributes of software
solutions. [Jiang and Willey 2005] proposes a multi-tiered architecture that
offers flexible and scalable solutions to the design and integration of large
and distributed systems. The architecture makes use of both services and
components as architectural elements, offering flexibility and scalability in
large distributed systems and meanwhile remaining the system performance.
[Wang and Fung 2004] proposes an idea of organizing enterprise functions
as services and implementing them as component-based systems in order to
offer flexible, extensible and value-added services. [Cervantes and Hall
2004] introduces service-oriented concepts into component models to
provide support for late binding and dynamic component availability in the
component models. [O'Brien et al. 2007] explores how service oriented
architecture impacts a number of quality attributes, identifies issues and
tradeoffs related to them. The investigated quality attributes are
interoperability, performance, security, reliability, availability,
modifiability, testability, usability and scalability.

4.6.1 Relation to the Thesis
Designing and implementing a large scale and complex system is a
challenging task. In this thesis, we focus on two of the most well recognized
software engineering paradigms that cope with this challenge, i.e.
component-based software engineering (CBSE) and service-oriented
software engineering (SOSE). One of the detailed research questions that we
intend to address in this thesis is, by taking CBSE and SOSE as an example,
to analyze the technology-type of change stimulus.

4.7 Software Product Line Engineering
A software product line is defined as “a set of software-intensive systems

sharing a common, managed set of features that satisfy the specific needs of

a particular market segment or mission and that are developed from a

Related Work 49

common set of core assets in a prescribed way” [Clements and Northrop
2002]. Product line software engineering aims to reduce cost, time-to-
market, increase productivity and quality through leveraging reuse of
artifacts and processes for similar products in a particular domain [Pohl et
al. 2005]. It has become one of the most established strategies for achieving
large-scale software reuse [Estublier and Vega 2005].

4.7.1 Software Product Line Methods
Within the area of software product line evolution, [Bosch 2000] proposes
methods for designing software architecture, in particular product line
architecture. [Pohl et al. 2005] elaborates two key principles behind
software product line engineering: (i) separation of software development in
domain and application engineering, and (ii) explicit definition and
management of variability of the product line across all development
artifacts. A four-dimensional software product family engineering
evaluation model is described in [van der Linden et al. 2004] to determine
the status of software family engineering, concerning business, architecture,
organization and process.

[Faust and Verhoef 2003] presents metrics for genericity relayering, and
migrates multiple instances of a single information system to a product line.
[Bayer et al. 1999] presents the RE_MODEL method to integrate
reengineering and product line activities to achieve a transition into product
line architecture. A key element in the method is the blackboard, a work
space which is shared for both activities that are done in parallel. The
PuLSETM method [Schmid et al. 2005] addresses the different phases of
product line development, and is used to systematically analyze a
component and to improve its reusability as well as maintainability. The
focus is on one component enabling reuse of that component. In order to
evaluate the potential of creating a product line from existing products,
MAP (Mining Architectures for Product Lines) [Stoermer and O'Brien
2001] focuses on the feasibility evaluation process of the organization’s
decision to move towards a product line. Options Analysis for
Reengineering [Smith et al. 2002] is another method for mining existing
components for a product line. [Maccari and Riva 2002] describes
combining reference architecture and configuration architecture to describe
legacy product family architecture and manage its evolution.

Research is also done in domain analysis methods. Some examples of the
widely used domain analysis techniques are Feature-Oriented Domain
Analysis (FODA) [Kang et al. 1990] and Feature-Oriented Reuse Method

50 Related Work

(FORM) [Kang et al. 1998] through using feature models, in which system
features are organized into trees of nodes that represent the commonality
and variability within a software product line. Another notation is the
orthogonal variability model [Bachmann et al. 2004; Pohl et al. 2005],
which is a graph of variation points and variants.

4.7.2 Software Product Line Evolution
The ever-changing customer requirements, technology advances and internal
enhancements lead to the continuous evolution of a product line’s reusable
assets. According to [Dhungana et al. 2008], product line evolution occurs
in two dimensions as both the meta-model and the variability models can
evolve independently:

- Meta-models evolve due to changes in the scope of the product line;
e.g., new asset types are introduced or the product line itself is
extended to support new business units.

- Variability models are subject to change whenever the product line
changes; e.g., as a result of improving or extending functionality,
changing technology or reorganization.

Explicit architectural knowledge is important in software evolution [Jansen
2008]. [Dhungana et al. 2006] confirms this and reports the experience of
the necessity to capture architectural knowledge and make this knowledge
available appropriately to various stakeholders in the product line
environment. The authors argue that the architectural knowledge need to be
captured by combining both top-down and bottom-up knowledge elicitation
for a software product line infrastructure.

4.7.3 Product Line Engineering Process
According to [Pohl et al. 2005], the product line engineering process is
composed of two sub-processes:

- Domain engineering: The goals of domain engineering are to define
the commonality and the variability of the software product line, to
define the scope of the software product line, define and construct
reusable artefacts that accomplish the desired variability. The
domain engineering process consists of the following five activities:

- Product management defines the scope of the product line, i.e. a
product roadmap that determines the major common and
variable features of future products, as well as a schedule with
their planned release dates. A list of the existing products and

Related Work 51

the development artefacts that can be reused for establishing the
common platform is also defined;

- Domain requirement engineering elicitates and documents the
common and variable requirements for all foreseeable
applications of the product line;

- Domain design defines the reference architecture and a refined
variability model of the product line;

- Domain realization produces the detailed design and the
implementation of reusable software components;

- Domain testing aims to validate and verify the reusable
components.

- Application engineering: The goals of application engineering are to
achieve reuse of the domain assets, to exploit the commonality and
variability of the software product line during the development of a
product line application, to document the application artefacts. The
application engineering process consists of the following four
activities:

- Application requirements engineering develops requirements
specification for the particular application;

- Application design produces a specialization of reference
architecture for the particular application;

- Application realization creates a running application with
detailed design artefacts;

- Application testing aims to validate and verify an application
against its specification.

4.7.4 Relation to the Thesis
Product line development seldom starts from scratch. Instead, it is very often
based on the existing legacy implementations [Kotonya and Hutchinson
2008]. Accordingly, a specific type of software evolution is the adoption of
a product line approach and migrate existing software systems towards
product line architectures. Applying a software product line approach to
legacy systems requires that care is taken to ensure that critical aspects are
considered for a smooth and successful product line migration. In our
research, observations are made with regard to business, organization,
development process and technology perspectives when adopting a product
line approach. This classification has similar dimensions as in [van der

52 Related Work

Linden et al. 2004] though we compliment with more experiences and
practices.

One of the research contributions in this thesis is the proposed product line
migration method with focus on the migration process when the migration
decision has been made. This differs with PuLSETM method [Schmid et al.
2005] which addresses the different phases of product line development.
Additionally, instead of using FODA method [Kang et al. 1990] for domain
engineering, we applied product modeling in our method. The idea of
constructing a federated architecture to migrate multiple instances of a
single information system to a product line described in [Faust and Verhoef
2003] is similar to the way that we have performed in our case studies.

4.8 Reverse Engineering and Reengineering
Reverse engineering [Chikofsky and Cross 1990] is an important activity
within software evolution. It aims at understanding the architecture or
behavior of a software system through recovering and recording high-level
information of a software system. The information represents abstractions
that include the system structure in terms of its components and their
interrelationships, the dynamic behavior of the system, functionality,
modules, documentation and test suites. Reverse engineering is a key to
software reengineering [Arnold 1993], because it ensures to recover an
abstract representation that can be used for subsequent reengineering of an
existing software system.

The goal of reengineering is to reconstitute a software system in a new form
that is more evolvable and possibly has more functionality than the original
software system. The reengineering process is usually composed of three
activities: reverse engineering [Chikofsky and Cross 1990], software
restructuring [Arnold 1989] and forward engineering.

- Reverse engineering is necessary due to incomplete documentation
and relevant references, unavailability of personnel with relevant
knowledge, inconsistency between documentation and
implementation, outdated technological platforms of a software
system, e.g. programming languages, tools and operating systems.

- Software restructuring aims to improve certain aspects of a software
system and it is “the transformation from one representation form to
another at the same relative abstraction level, while preserving the

Related Work 53

software system’s external behavior, i.e. functionality and
semantics” [Yang and Ward 2003].

- Forward engineering implements and builds a software system from
the restructured model.

This reengineering process is captured in the horseshoe process model for
reengineering [Kazman et al. 1998], which consists of three related
processes: (i) code and architecture recovery, and conformance evaluation;
(ii) architecture transformation; and (iii) architecture-based development in
which the new architecture is instantiated.

One approach that assists in software reengineering is refactoring [Fowler
1999], which is a technique for restructuring an existing body of code,
altering and improving its internal structure without changing its external
behavior. The refactoring process consists of a series of small behavior-
preserving transformations. The system is kept fully working after each
small refactoring, reducing the chances that a system becomes broken during
the restructuring. Refactoring is one way to improve software quality as it
helps to improve the design of software, make software easier to understand
and help to find bugs [Fowler 1999]. As stated in [Opdyke 1992], while
refactorings do not change the behavior of a program, they can support
software design and evolution by restructuring a program in a way that
allows other changes to be made more easily.

4.8.1 Relation to the Thesis
The software systems that we work with throughout this research are legacy
systems that represent valuable software assets. They usually have a long
lifetime and most likely have gone through many changes such as
technological platform changes and turnover of the original developers.
Thus they show signs of many modifications and adaptations. They also
have the typical characteristics of legacy systems as described in [Demeyer
et al. 2003], e.g. increasing complexity, poor documentation and lack of
understanding by the current developers. Therefore, reverse engineering is
necessary for understanding the architecture or behavior of a large software
system when the source code is the main information. Additionally, as
refactoring is one key to increase internal software quality during the whole
software lifecycle [Simon et al. 2001], it is one technique that is used in our
research when we identify components that need to be refactored and
potential architectural improvement proposals to improve the software
quality aspects.

54 Related Work

4.9 Software Quality Metrics
Various techniques have emerged to qualitatively or quantitatively assess
quality impact through specific quality metrics. They differ from each other
in terms of principles, concepts and analysis capabilities. For instance,
[Kataoka et al. 2002] proposes coupling metrics to measure the
maintainability enhancement effect of a program refactoring. [Tahvildari
and Kontogiannis 2002] proposes a reengineering transformation framework
using soft goal graph to correlate non-functional requirements with design
patterns to guide transformation process. The soft goals that are refined from
maintainability include coupling, cohesion, modularity, encapsulation,
complexity, consistency and reuse. [Tahvildari and Kontogiannis 2003]
proposes also another framework which combines using metrics for quality
estimation and performing transformation based on soft goal graphs.

To evaluate evolvability, [Ramil and Lehman 2000] proposes metrics based
on implementation change logs. [Lehman et al. 1997] proposes computation
of metrics using the number of modules in a software system. Another set of
metrics is based on software life span and software size [Tamai and
Torimitsu 1992]. [Nary and Chung 2003] proposes a framework of process-
oriented metrics for software evolvability and traces the metrics back to the
evolvability requirements based on the NFR framework [Chung 2000]. An
ontological basis which allows for the formal definition of a system and its
change at the architectural level is presented in [Rowe and Leaney 1997].

[Simon 1962] describes the link between modularity and evolution, and
argues that nearly-decomposable systems facilitate experimentation and
problem solving. [LaMantia et al. 2008] examines the design evolution of
one open source software product and one company software product
platform through the modelling lens of design rule theory and design
structure matrices.

4.9.1 Relation to the Thesis
Software evolvability is a multifaceted quality attribute [Rowe et al. 1994],
which is refined into a collection of subcharacteristics in our research. Each
subcharacteristic is in turn refined into a collection of measuring attributes
that we intend to qualitatively and/or quantitatively measure. One particular
measuring attribute that we have further explored in our research is
modularity. It affects the behavior of a design with respect to most of the
evolvability subcharacteristics, as designing software for ease of extension
and contraction depends on how well the software structure is organized and

Related Work 55

modular designs are argued to be more evolvable [Maccormack et al. 2008].
The way that we perform in our case study is similar to the idea in
[LaMantia et al. 2008], i.e. through using design rules and design structure
matrix. We further enrich the data with experiences and reflections through
our dependency analysis of a complex industrial software system.

Chapter 5. Conclusions and Future Work

The goal of the research presented in this thesis is to understand software
architecture evolution and to investigate ways to analyze software
evolvability to support this evolution. Establishing the evolvability model
and systematically assessing the software evolvability at the architecture
level are the first steps towards analyzing and quantifying evolvability, a
base and check point for evolvability evaluation and improvement. Software
architecture evolution is inevitably subject to various change stimuli from
technological and business perspectives. Accordingly, comprehensive
analysis needs to be performed to obtain knowledge of the potential
implications of these change stimuli.

5.1 Contributions
The main contributions of the presented research are summarized as
follows:

Software evolvability model. In this thesis, we outline a software
evolvability model that provides a basis for analyzing and evaluating
software evolvability. This model refines software evolvability into a
collection of subcharacteristics that can be measured through a number of
measuring attributes. In addition, we further explore one particular
measuring attribute, i.e. modularity, which affects the behavior of a design
with respect to most of the evolvability subcharacteristics. This is because
designing software for ease of extension depends on how well the software
structure is organized and modular designs are argued to be more evolvable,
i.e. these designs facilitate making future adaptations.

Architecture evolvability analysis method. We introduce a structured
method for analyzing evolvability at the architectural level, i.e. the
ARchitecture Evolvability Analysis (AREA) method that focuses on
improving the capability of being able to on forehand understand and

58 Conclusions and Future Work

analyze systematically the impact of a change stimulus. The method is
studied in an industrial setting.

Comparison analysis framework of CBSE and SOSE. We take
component-based and service-oriented software engineering paradigms as an
example to analyze a technology-type of change stimulus, i.e. the
introduction of SOSE to CBSE. We exemplify the necessity of making
analysis and exploration of both the existing and emerging technologies for
better understanding of the implications.

Practices in product line migration. We take the adoption of a product
line approach as an example to analyze the impacts of a business-type of
change stimulus. We focus on managing the migration of legacy systems
towards product lines due to the need for differentiation in the marketplace,
with short time-to-market as part of the need. Two industrial cases are
studied in details. Observations are made with respect to business,
organization, development process and technology when adopting a product
line approach. The experiences from the case studies are also described to
recommend practices that are particularly useful.

Practices in using architecture-level dependency analysis to support

software evolution. We explore the links between evolvability, modularity,
as well as inter-module dependency, and focus on visualizing static
dependencies to identify hotspots in the architecture and implementation,
and to provide direction for future improvement. We perform one industrial
case study and describe a dependency analysis of a complex industrial
power control and protection system, using the inter-module dependency
model. Experiences and reflections are made through the analysis process.

5.2 Future Research Directions
A number of potential tracks for further PhD studies and future research are
identified as follows:

Further refinement and validation of evolvability model. The initial
establishment of the software evolvability model developed in this research
has only been motivated and exemplified through one industrial case study.
We need to continue working on the evolvability model by conducting more
case studies or surveys to confirm and refine the model. A subject that also
needs to be investigated is to identify metrics to quantify evolvability
subcharacteristics in terms of the identified measuring attributes. In the

Conclusions and Future Work 59

research presented so far, we have only looked into modularity which is one
of the measuring attributes. Further we plan to analyze the correlations
among the subcharacteristics with respect to constraints and tradeoffs.

Further validation of evolvability analysis method. The software
evolvability analysis method developed in this research has only been
exemplified and verified through one industrial case study. Future research
includes additional validation of the method using multiple case studies.
Another aspect that needs to be considered is to apply the method to address
evolvability explicitly in the early design phase of a new development effort,
since software architecture that is capable of accommodating change must
be specifically designed for change [Isaac and McConaughy 1994].

Further study of the impacts of change stimuli. In this thesis, we have
taken the introduction of SOSE to CBSE respective the adoption of product
line engineering as examples of technology-type and business-type of
change stimuli. Further studies remain to be done to broaden the question at
issue and look at other representative change stimuli. An alternative is to
enter deeply into the already-selected change stimuli:

- Further investigation of the impacts of introducing SOSE to CBSE.
In this thesis, we have only partially answered the research question
Q3.1 through providing an explicit clarification of the concepts,
principles and characteristics of CBSE and SOSE. More work
remains to be done to further investigate the impacts of the
introduction of SOSE to CBSE.

- Further study of the adoption of product line engineering. As
product line software engineering has become one of the most
established strategies for achieving large-scale software reuse
[Estublier and Vega 2005], its impact on software architecture
evolution and software evolvability becomes a research area worth
further research.

To summarize, future research comprises several tracks that are of different
priorities. A top prioritized direction for further research is to further refine
and validate the software evolvability model, as it lays a foundation for the
rest of the research tracks. This model is a first step towards analyzing and
quantifying evolvability, a base and check point for evolvability evaluation
and improvement.

References

[Aoyama 2002] Aoyama, M.: ‘Metrics and analysis of software architecture
evolution with discontinuity’, ACM, New York, NY, USA, 2002

[Arnold 1989] Arnold, R.S.: ‘Software restructuring’, Proceedings of the
IEEE, 1989, 77, (4), pp. 607-617

[Arnold 1993] Arnold, R.S.: ‘Software reengineering’ IEEE Computer
Society, Press Los Alamitos, Calif, 1993.

[Avritzer and Weyuker 1999] Avritzer, A. and Weyuker, E.J.: ‘Metrics to
Assess the Likelihood of Project Success Based on Architecture Reviews’,
Empirical Software Engineering, 1999, 4, (3), pp. 199-215

[Babar et al. 2004] Babar, M.A., Zhu, L., and Jeffery, R.: ‘A framework for
classifying and comparing software architecture evaluation methods’,
Software Engineering Conference, Australian, 2004, pp. 309-318

[Bachmann et al. 2004] Bachmann, F., Goedicke, M., Leite, J., Nord, R.,
Pohl, K., Ramesh, B., and Vilbig, A.: ‘A Meta-model for Representing
Variability in Product Family Development’, Lecture Notes in Computer
Science, 2004, pp. 66-80

[Barais et al. 2004] Barais, O., Cariou, E., Duchien, L., Pessemier, N., and
Seinturier, L.: ‘TranSAT: A Framework for the Specifcation of Software
Architecture Evolution’, 2004

[Bass et al. 2003] Bass, L., Clements, P., and Kazman, R.: ‘Software
Architecture in Practice’, Addison-Wesley Professional, 2003.

[Bayer et al. 1999] Bayer, J., Girard, J.F., Wurthner, M., DeBaud, J.M., and
Apel, M.: ‘Transitioning legacy assets to a product line architecture’, ACM,
1999

[Beck 1999] Beck, K.: ‘Extreme Programming Explained: Embrace
Change’, Addison-Wesley, Reading, PA, 1999

62 References

[Bengtsson et al. 2004] Bengtsson, P.O., Lassing, N., Bosch, J., and van
Vliet, H.: ‘Architecture-level modifiability analysis (ALMA)’, The Journal
of Systems & Software, 2004, 69, (1-2), pp. 129-147

[Bennett and Rajlich 2000] Bennett, K. and Rajlich, V.: ‘Software
maintenance and evolution: a roadmap’. Proceedings of the Conference on
the Future of Software Engineering, Limerick, Ireland, 2000

[Bennett 1996] Bennett, K.: ‘Software evolution: past, present and future’,
Information and Software Technology, 1996, 38, (11), pp. 673-680

[Benyon et al. 2005] Benyon, D., Turner, P., and Turner, S.: ‘Designing
interactive systems’ Addison-Wesley, New York, 2005.

[Birk et al. 2003] Birk, A., Heller, G., John, I., Schmid, K., von der Massen,
T., and Muller, K.: ‘Product line engineering, the state of the practice’, IEEE
Software, 2003, 20, (6), pp. 52-60

[Boehm et al. 1978] Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M.,
MacLeod, G.J., and Merritt, M.J.: ‘Characteristics of software quality’,
North-Holland, 1978.

[Boehm 1988] Boehm, B.W.: ‘A spiral model of software development and
enhancement’, Computer, 1988, 21, (5), pp. 61-72

[Bosch 2000] Bosch, J.: ‘Design and use of software architectures: adopting
and evolving a product-line approach’, ACM Press/Addison-Wesley
Publishing Co., 2000.

[Breivold and Crnkovic 2008] Breivold, H.P. and Crnkovic, I.: ‘Using
Software Evolvability Model for Evolvability Analysis’, Mälardalen Real-
Time Research Center, Mälardalen University, 2008

[Breivold et al. 2008] Breivold, H.P., Crnkovic, I., and Eriksson, P.J.:
‘Analyzing Software Evolvability’, COMPSAC, 2008

[Brooks 1987] Brooks, F.P.: ‘No Silver Bullet’, IEEE Computer, 1987, 20,
(4), pp. 10-19

[Buckley et al. 2004] Buckley, J., Mens, T., Zenger, M., Rashid, A., and
Kniesel, G.: ‘Towards a taxonomy of software change’, Journal of Software
Maintenance and Evolution: Research and Practice, 2004

[Cervantes and Hall 2004] Cervantes, H. and Hall, R.S.: ‘Autonomous
adaptation to dynamic availability using a service-oriented component
model’, IEEE Comput. Soc, 2004

References 63

[Chapin et al. 2001] Chapin, N., Hale, J.E., Khan, K.M., Ramil, J.F., and
Tan, W.G.: ‘Types of software evolution and software maintenance’,
Journal of Software Maintenance and Evolution: Research and Practice,
2001, 13, (1), pp. 3-30

[Chikofsky and Cross 1990] Chikofsky, E.J. and Cross, J.H.: ‘Reverse
engineering and design recovery: a taxonomy’, Software, IEEE, 1990, 7, (1),
pp. 13-17

[Christian 2006] Christian, D.R.: ‘Continuous evolution through software
architecture evaluation: a case study’, Journal of Software Maintenance and
Evolution: Research and Practice, 2006, 18, pp. 351-383

[Chung 2000] Chung, L.: ‘Non-Functional Requirements in Software
Engineering’, Springer, 2000.

[Clements et al. 2002] Clements, P., Kazman, R., and Klein, M.: ‘Evaluating
Software Architectures: Methods and Case Studies’, Addison-Wesley, 2002.

[Clements and Northrop 2002] Clements, P. and Northrop, L.: ‘Software
Product Lines: Practices and Patterns. 2002’, Addison-Wesley, 2002

[Cockburn 2002] Cockburn, A.: ‘Agile Software Development’, Addison-
Wesley Boston, 2002.

[Crnkovic and Larsson 2002] Crnkovic, I. and Larsson, M.: ‘Building
Reliable Component-Based Software Systems’, Artech House, 2002.

[Demeyer et al. 2003] Demeyer, S., Ducasse, S., and Nierstrasz, O.M.:
‘Object-Oriented Reengineering Patterns’, Morgan Kaufmann, 2003.

[Dhungana et al. 2006] Dhungana, D., Rabiser, R., Grunbacher, P., Prahofer,
H., Federspiel, C., and Lehner, K.: ‘Architectural Knowledge in Product
Line Engineering: An Industrial Case Study’, 32nd EUROMICRO
Conference on Software Engineering and Advanced Applications, 2006, pp.
186-197

[Dhungana et al. 2008] Dhungana, D., Neumayer, T., Grünbacher, P., and
Rabiser, R.: ‘Supporting Evolution in Model-based Product Line
Engineering’, 12th Int'l Software Product Line Conference, Limerick,
Ireland, 2008

[Dobrica and Niemela 2002] Dobrica, L. and Niemela, E.: ‘A survey on
software architecture analysis methods’, IEEE Transactions on Software
Engineering, 2002, 28, (7), pp. 638-653

64 References

[Dromey 1996] Dromey, R.G.: ‘Cornering the Chimera’, IEEE Software,
1996, 13, (1), pp. 33-43

[Estublier and Vega 2005] Estublier, J. and Vega, G.: ‘Reuse and variability
in large software applications’, Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering, 2005, pp. 316-325

[Faust and Verhoef 2003] Faust, D. and Verhoef, C.: ‘Software product line
migration and deployment’, Software-Practice and Experience, 2003, 33,
(10), pp. 933-955

[Fenton and Pfleeger 1997] Fenton, N. and Pfleeger, S.L.: ‘Software
metrics: a rigorous and practical approach’, PWS Publishing Co. Boston,
MA, USA, 1997.

[Fitzpatrick et al. 2004] Fitzpatrick, R., Smith, P., and O'Shea, B.: ‘Software
Quality Challenges’, Proceedings of the Second Workshop on Software
Quality at the 26th International Conference on Software Engineering, 2004

[Fowler 1999] Fowler, M.: ‘Refactoring: Improving the Design of Existing
Code’, Addison-Wesley Professional, 1999.

[Garlan 2000] Garlan, D.: ‘Software architecture: a roadmap’, ACM Press
New York, NY, USA, 2000

[Gay and Airasian 1999] Gay, L.R. and Airasian, P.W.: ‘Educational
Research: Competencies for Analysis and Applications’, Prentice Hall,
1999.

[Gilb 1981] Gilb, T.: ‘Evolutionary development [software]’, SIGSOFT
Software Engineering Notes, 1981, 6, (2), pp. 17

[Gilb 2002] Gilb, T.: ‘The 10 Most Powerful Principles for Quality in
Software and Software Organizations’, Cross-Talk, Nov, 2002

[Grady and Caswell 1987] Grady, R.B. and Caswell, D.L.: ‘Software
metrics: establishing a company-wide program’, Prentice-Hall, Inc. Upper
Saddle River, NJ, USA, 1987.

[Highsmith and Cockburn 2001] Highsmith, J. and Cockburn, A.: ‘Agile
Software Development: The Business of Innovation’, 2001

[Highsmith 2000] Highsmith, J.A.: ‘Adaptive software development: a
collaborative approach to managing complex systems’, Dorset House
Publishing Co., Inc. New York, NY, USA, 2000.

References 65

[Holz et al. 2006] Holz, H.J., Applin, A., Haberman, B., Joyce, D., Purchase,
H., and Reed, C.: ‘Research methods in computing: what are they, and how
should we teach them?’, Annual Joint Conference Integrating Technology
into Computer Science Education, 2006, pp. 96-114

[Isaac and McConaughy 1994] Isaac, D. and McConaughy, G.: ‘The Role of
Architecture and Evolutionary Development in Accommodating Change’,
1994

[ISO9126] ISO9126: ‘ISO/IEC 9126-1, International Standard, Software
Engineering. Product Quality – Part 1: Quality Model’

[Jansen and Bosch 2004] Jansen, A. and Bosch, J.: ‘Evaluation of Tool
Support for Architectural Evolution’, 2004

[Jansen 2008] Jansen, A.G.J.: ‘Architectural Design Decisions’, PhD thesis
(to appear), 2008

[Jiang and Willey 2005] Jiang, M. and Willey, A.: ‘Architecting systems
with components and services’, Institute of Electrical and Electronics
Engineers Computer Society, Piscataway, NJ 08855-1331, United States,
2005

[Kang et al. 1990] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E.,
Peterson, A.S.: ‘Feature-Oriented Domain Analysis (FODA) Feasibility
Study’, the Institute of Software Engineering, 1990.

[Kang et al. 1998] Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., and Huh,
M.: ‘FORM: A feature-; oriented reuse method with domain-; specific
reference architectures’, Annals of Software Engineering, 1998, 5, pp. 143-
168

[Kataoka et al. 2002] Kataoka, Y., Imai, T., Andou, H., and Fukaya, T.: ‘A
quantitative evaluation of maintainability enhancement by refactoring’,
IEEE Comput. Soc, 2002

[Kazman et al. 1994] Kazman, R., Bass, L., Abowd, G., and Webb, M.:
‘SAAM: A Method for Analyzing the Properties of Software Architectures’,
International Conference on Software Engineering, 1994, 16, pp. 81-81

[Kazman et al. 1998] Kazman, R., Woods, S.G., and Carriere, S.J.:
‘Requirements for Integrating Software Architecture and Reengineering
Models: CORUM II’, Working Conference on Reverse Engineering, 1998,
pp. 154–163

66 References

[Klein et al. 1999] Klein, M., Kazman, R., Bass, L., Carriere, J., Barbacci,
M., and Lipson, H.: ‘Attribute-Based Architecture Styles’, Kluwer, BV
Deventer, the Netherlands, 1999.

[Kolb et al. 2005] Kolb, R., Muthig, D., Patzke, T., and Yamauchi, K.: ‘A
Case Study in Refactoring a Legacy Component for Reuse in a Product
Line’, Proceedings of the 21st IEEE International Conference on Software
Maintenance, 2005, pp. 369-378

[Kotonya et al. 2004] Kotonya, G., Hutchinson, J., and Bloin, B.: ‘A Method
for Formulating and Architecting Component and Service-Oriented
Systems’, Stojanovic, Z. et al.(Hrsg.), 2004, pp. 155-181

[Kotonya and Hutchinson 2008] Kotonya, G. and Hutchinson, J.: ‘A
component-based process for modelling and evolving legacy systems’,
Software Process Improvement and Practice, 2008, 13, (2), pp. 113-125

[Lago et al. 2008] Lago, P., Avgeriou, P., Capilla, R., and Kruchten, P.:
‘Wishes and Boundaries for a Software Architecture Knowledge
Community’, WICSA, 2008

[LaMantia et al. 2008] LaMantia, M.J., Cai, Y., MacCormack, A., and
Rusnak, J.: ‘Analyzing the Evolution of Large-Scale Software Systems
Using Design Structure Matrices and Design Rule Theory: Two Exploratory
Cases’, 2008

[LaMantia et al. 2008] LaMantia, M.J., Cai, Y., MacCormack, A.D., and
Rusnak, J.: ‘Analyzing the evolution of large-scale software systems using
design structure matrices and design rule theory: Two exploratory cases’,
Institute of Electrical and Electronics Engineers Computer Society,
Piscataway, NJ 08855-1331, United States, 2008

[Lehman 1980] Lehman, M.M.: ‘On understanding laws, evolution, and
conservation in the large-program life cycle’, Journal of Systems and
Software, 1980, 1, (3), pp. 213-221

[Lehman et al. 1997] Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry,
D.E., and Turski, W.M.: ‘Metrics and laws of software evolution - the
nineties view’, IEEE Comp Soc, Los Alamitos, CA, USA, 1997

[Lehman et al. 2000] Lehman, M.M., Ramil, J.F., and Kahen, G.: ‘Evolution
as a noun and evolution as a verb’, SOCE 2000 Workshop on Software and
Organisation Co-evolution, 2000, pp. 12-13

References 67

[Lindvall et al. 2003] Lindvall, M., Tvedt, R.T., and Costa, P.: ‘An
Empirically-Based Process for Software Architecture Evaluation’, Empirical
Software Engineering, 2003, 8, (1), pp. 83-108

[Lung et al. 1997] Lung, C.H., Bot, S., Kalaichelvan, K., and Kazman, R.:
‘An approach to software architecture analysis for evolution and
reusability’, IBM Press, 1997

[Maccari and Riva 2002] Maccari, A. and Riva, C.: ‘Architectural evolution
of legacy product families’, Springer-Verlag, 2002

[Maccormack et al. 2008] Maccormack, A., Rusnak, J., and Baldwin, C.Y.:
‘the Impact of Component Modularity on Design Evolution: Evidence from
the Software Industry’, 2008

[Madhavji et al. 2006] Madhavji, N.H., Fernandez-Ramil, J., and Perry, D.:
‘Software Evolution and Feedback: Theory and Practice’ John Wiley &
Sons, 2006.

[Martin 2003] Martin, R.C.: ‘Agile Software Development: Principles,
Patterns, and Practices’, Prentice Hall PTR Upper Saddle River, NJ, USA,
2003.

[Mattsson et al. 2006] Mattsson, M., Grahn, H., and Mårtensson, F.:
‘Software Architecture Evaluation Methods for Performance,
Maintainability, Testability, and Portability’, QoSA, 2006

[McCall et al. 1977] McCall, J.A., Richards, P.K., Walters, G.F., United, S.,
Electronic Systems, D., Force, A., Rome Air Development, C., and Systems,
C.: ‘Factors in Software Quality’ NTIS, 1977.

[Medvidovic et al. 1998] Medvidovic, N., Taylor, R.N., and Rosenblum,
D.S.: ‘An Architecture-Based Approach to Software Evolution’, 1998

[Mens and Demeyer 2008] Mens, T. and Demeyer, S.: ‘Software Evolution’
Springer, 2008.

[Nary and Chung 2003] Nary, S. and Chung, L.: ‘Process-oriented metrics
for software architecture evolvability’, IEEE Comput. Soc, 2003

[Nehaniv and Wernick 2007] Nehaniv, C.L. and Wernick, P.: ‘Introduction
to Software Evolvability’, Third International IEEE Workshop on Software
Evolvability, 2007

[O'Brien et al. 2007] O'Brien, L., Merson, P., and Bass, L.: ‘Quality
attributes for service-oriented architectures’, Institute of Electrical and

68 References

Electronics Engineers Computer Society, Piscataway, NJ 08855-1331,
United States, 2007

[O'Reilly 1999] O'Reilly, T.: ‘Lessons from open-source software
development’, Communications of the ACM, 1999, 42, (4), pp. 32-37

[Opdyke 1992] Opdyke, W.F.: ‘Refactoring Object-Oriented Frameworks’,
University of Illinois, 1992

[Ortega et al. 2003] Ortega, M., Pérez, M., and Rojas, T.: ‘Construction of a
Systemic Quality Model for Evaluating a Software Product’, Software
Quality Journal, 2003, 11, (3), pp. 219-242

[Palmer and Felsing 2002] Palmer, S. and Felsing, M.: ‘A Practical Guide to
Feature Driven Development.’ Prentice Hall, 2002

[Parnas 1994] Parnas, D.L.: ‘Software aging’, Proceedings of 16th
International Conference on Software Engineering, 1994, pp. 279-287

[Petriu et al. 2000] Petriu, D., Shousha, C., and Jalnapurkar, A.:
‘Architecture-Based Performance Analysis Applied to a Telecommunication
System’, IEEE Transactions on Software Engineering, 2000, pp. 1049-1065

[Pohl et al. 2005] Pohl, K., Böckle, G., and van der Linden, F.: ‘Software
Product Line Engineering: Foundations, Principles, and Techniques’
Springer, 2005.

[Ramil and Lehman 2000] Ramil, J.F. and Lehman, M.M.: ‘Metrics of
software evolution as effort predictors - a case study’, Institute of Electrical
and Electronics Engineers Inc., Piscataway, NJ, USA, 2000

[Reussner et al. 2003] Reussner, R.H., Schmidt, H.W., and Poernomo, I.H.:
‘Reliability prediction for component-based software architectures’, The
Journal of Systems & Software, 2003, 66, (3), pp. 241-252

[Rowe et al. 1994] Rowe, D., Leaney, J., and Lowe, D.: ‘Defining systems
evolvability-taxonomy of change’, Change, 1994, pp. 541-545

[Rowe and Leaney 1997] Rowe, D. and Leaney, J.: ‘Evaluating evolvability
of computer based systems architectures-an ontological approach’, IEEE
Computer Society, 1997

[Royce 1987] Royce, W.W.: ‘Managing the development of large software
systems: concepts and techniques’, Proceedings of the 9th International
Conference on Software Engineering, 1987, pp. 328-338

References 69

[Schmid et al. 2005] Schmid, K., John, I., Kolb, R., and Meier, G.:
‘Introducing the PuLSE approach to an embedded system population at
Testo AG’, Association for Computing Machinery, New York, NY 10036-
5701, United States, 2005

[Schwaber and Beedle 2001] Schwaber, K. and Beedle, M.: ‘Agile Software
Development with Scrum’, Prentice Hall PTR Upper Saddle River, NJ,
USA, 2001.

[Shaw 2002] Shaw, M.: ‘What makes good research in software
engineering?’, International Journal on Software Tools for Technology
Transfer (STTT), 2002, 4, (1), pp. 1-7

[SIGCSE] SIGCSE: ‘http://www.sigcse.org/’, the ACM Special Interest
Group on Computer Science Education (SIGCSE)

[Simon et al. 2001] Simon, F., Steinbruckner, F., and Lewerentz, C.:
‘Metrics based refactoring’, 5th European Conference on Software
Maintenance and Reengineering, 2001

[Simon 1962] Simon, H.A.: ‘The architecture of complexity’, Proceedings
of the American Philosophical Society, 1962, 106, (6), pp. 467-482

[Smith et al. 2002] Smith, D., O'Brien, L., and Bergey, J.: ‘Using the
Options Analysis for Reengineering (OAR) method for mining components
for a product line’, Springer-Verlag, 2002

[Stapleton 1999] Stapleton, J.: ‘DSDM: Dynamic Systems Development
Method’, Technology of Object-Oriented Languages and Systems, 1999, pp.
406-406

[Stoermer and O'Brien 2001] Stoermer, C. and O'Brien, L.: ‘MAP - mining
architectures for product line evaluations’, IEEE Comput. Soc, 2001

[Stojanovic and Dahanayake 2005] Stojanovic, Z. and Dahanayake, A.:
‘Service-oriented Software System Engineering: Challenges and Practices’
IGI Global, 2005.

[Tahvildari and Kontogiannis 2002] Tahvildari, L. and Kontogiannis, K.: ‘A
methodology for developing transformations using the maintainability soft-
goal graph’, IEEE Comput. Soc, 2002

[Tahvildari and Kontogiannis 2003] Tahvildari, L. and Kontogiannis, K.: ‘A
metric-based approach to enhance design quality through meta-pattern
transformations’, IEEE Comput. Soc, 2003

70 References

[Tamai and Torimitsu 1992] Tamai, T. and Torimitsu, Y.: ‘Software lifetime
and its evolution process over generations’, IEEE Comput. Soc. Press, 1992

[van der Linden et al. 2004] van der Linden, F., Bosch, J., Kamsties, E.,
Kansala, K., and Obbink, H.: ‘Software product family evaluation’,
Springer-Verlag, 2004

[Van Gurp and Bosch 2002] van Gurp, J. and Bosch, J.: ‘Design erosion:
problems and causes’, The Journal of Systems & Software, 2002, 61, (2),
pp. 105-119

[Wang and Fung 2004] Wang, G. and Fung, C.K.: ‘Architecture paradigms
and their influences and impacts on component-based software systems’,
Institute of Electrical and Electronics Engineers Computer Society,
Piscataway, NJ 08855-1331, United States, 2004

[Wang et al. 1999] Wang, J., He, X., and Deng, Y.: ‘Introducing software
architecture specification and analysis in SAM through an example’,
Information and Software Technology, 1999, 41, (7), pp. 451-467

[Weiderman et al. 1997] Weiderman, N.H., Bergey, J.K., Smith, D.B., and
Tilley, S.R.: ‘Approaches to Legacy System Evolution’, 1997

[Vieira et al. 2000] Vieira, M.E.R., Dias, M.S., and Richardson, D.J.:
‘Analyzing software architectures with Argus-I’, Proceedings of the 22nd
international conference on Software engineering, 2000, pp. 758-761

[Williams and Smith 1998] Williams, L.G. and Smith, C.U.: ‘Performance
evaluation of software architectures’, Proceedings of the 1st international
workshop on Software and performance, 1998, pp. 164-177

[Wohlin and Wesslen 2000] Wohlin, C. and Wesslen, A.: ‘Experimentation
in Software Engineering: An Introduction’, Springer, 2000.

[Yang and Ward 2003] Yang, H. and Ward, M.: ‘Successful Evolution of
Software Systems’, Artech House, 2003.

[Yau et al. 1978] Yau, S.S., Collofello, J.S., and MacGregor, T.: ‘Ripple
effect analysis of software maintenance’, IEEE, 1978

[Yin 2003] Yin, R.K.: ‘Case Study Research: Design and Methods’ Sage
Publications Inc, 2003.

[Yu et al. 2008] Yu, L., Ramaswamy, S., and Bush, J.: ‘Symbiosis and
Software Evolvability’, IT Professional, 2008, 10, (4), pp. 56-62

References 71

[Zelkowitz and Wallace 1997] Zelkowitz, M.V. and Wallace, D.:
‘Experimental validation in software engineering’, Information and
Software Technology, 1997, 39, (11), pp. 735-743

Part 2

Paper A

ANALYZING SOFTWARE EVOLVABILITY

Hongyu Pei Breivold, Ivica Crnkovic, Peter J Eriksson

Presented at the 32nd IEEE International Computer Software and

Applications Conference (COMPSAC)
Turku, Finland, July 2008

Abstract

Software evolution is characterized by inevitable changes of software and

increasing software complexities, which in turn may lead to huge costs

unless rigorously taking into account change accommodations. This is in

particular true for long-lived systems in which changes go beyond

maintainability. For such systems, there is a need to address evolvability

explicitly during the entire lifecycle. Nevertheless, there is a lack of a model

that can be used for analyzing, evaluating and comparing software systems

in terms of evolvability. In this paper, we describe the initial establishment

of an evolvability model as a framework for analysis of software

evolvability. We motivate and exemplify the model through an industrial

case study of a software-intensive automation system.

1. Introduction

Software maintenance and evolution are characterised by their huge cost and
cumbersome implementation [1]. The systems’ capability to cost-effectively
accommodate various changes has become essential. Accordingly, there is a
strong need to carry out software evolution efficiently and reliably, and
prolong the productive life of a software system. In this paper, we use
evolution to refer to the particular evolution stage as described in the staged
model by Bennett and Rajlich [1]. We refer to the evolvability definition in
[18], since it expresses the dynamic behaviour during a software system’s
lifecycle and supports the staged model: “An attribute that bears on the

ability of a system to accommodate changes in its requirements throughout

the system’s lifespan with the least possible cost while maintaining

architectural integrity.”

1.1 Motivations

The need to explicitly address software evolvability is becoming recognized
[5]. There are examples of different industrial systems that often have a
lifetime of 20-30 years. These systems are subject to and may undergo a
substantial amount of evolutionary changes, e.g. software technology

78 Paper A

changes, software systems merge due to organizational changes, demands
for distributed development, system migration to product line architecture,
etc. The evolution problems we have observed came from different cases. In
this paper, we exemplify and analyze in particular one industrial case study
that was carried out on a large automation control system at ABB. The
controller software consists of more than three million lines of code written
in C/C++ and a complex threading model, with support for a variety of
different applications and devices. It has grown in size and complexity, as
new features and solutions have been added to enhance functionality and to
support new hardware, such as devices, I/O boards and production
equipment. Such a complex system is difficult to maintain. It is also
important and considerably more difficult to evolve. Due to different
measures such as organizational and lifecycle process improvements, the
system keeps the maintainability, but the evolvability becomes more
difficult since the increased complexity in turn leads to decreased flexibility,
resulting in problems to add new features. Consequently, it would become
costly to adapt to new market demands and penetrate new markets.

Our particular system is delivered as a single monolithic software
package, which consists of various software applications developed by
distributed development teams. These applications aim for specific tasks in
painting, welding, gluing, machine tending and palletizing, etc. In order to
keep the integration and delivery process efficient, the initial architectural
decision was to keep the deployment artifact monolithic; The complete set
of functionality and services is present in every product even though not
everything is required in the specific product. As the system grew, it
became more difficult to ensure that the modifications of specific
application software do not affect the quality of other parts of the software
system. As a result, it becomes difficult and time-consuming to modify
software artifacts, integrate and test products. To continue exploiting the
substantial software investment made and to continuously improve the
system for longer productive lifetime, it has become essential to explicitly
address evolvability, since the inability to effectively and reliably evolve
software systems means loss of business opportunities [1]. We want to
emphasize here that the problem raised is not a problem of maintainability.
The major problems arise when brand new (very different) features or
different development paradigms, shifting business and organizational goals
are introduced, so the problems related to the software evolvability – a
fundamental element for increasing strategic and economic value of the
software [21].

Paper A 79

To solve the problems presented above, we need to handle several research
issues: (i) which characteristics are necessary for a software system to be
evolvable; (ii) how to assess evolvability in a systematic manner; (iii) how
to achieve evolvability; and (iv) how to measure evolvability. Accordingly,
we outline a software evolvability model in section 2, where necessary
subcharacteristics of software evolvability and corresponding measuring
attributes are identified. This model is established as a first step towards
analyzing and quantifying evolvability, a base and check points for
evolvability evaluation and improvement. Further in section 3, we present
the structured way of evolvability evaluation that we used in the case study,
and a brief analysis of the evolvability subcharacteristics. Section 4 presents
related work. Section 5 concludes the paper and outlines the future work.

2. Software evolvability model

Software evolvability is a multifaceted quality attribute [18]. Based on the
definition in [18], the software quality challenges and assessment [8], the
types of change stimuli and evolution [4], and experiences we gained
through industrial case studies, we have discovered that only having a
collection of the subcharacteristics of maintainability as defined in the ISO
software quality standard [11] is not sufficient for a software system to be
evolvable. Therefore, we have (i) complimented and identified
subcharacteristics that are of primary importance for an evolvable software
system, and (ii) outlined a software evolvability model that provides a basis
for analyzing and evaluating software evolvability. The idea with the
evolvability model is to further derive the identified subcharacteristics to the
extent when we are able to quantify them and/or make appropriate reasoning
about the quality of service, as in Figure 1.

Figure 1. Concept of the evolvability model

80 Paper A

The identified subcharacteristics are summarized in Table 1. They are a
union of quality characteristics having to do with changes, and are relevant
for characterization of evolution of software-intensive systems during their
life cycle. With these subcharacteristics in mind, we have a basis on which
different systems can be examined and compared in terms of evolvability.
Any system that does not explicitly address one or more of these
subcharacteristics is missing an element that probably will undermine the
system’s ability to be evolved.

Table 1. Subcharacteristics of evolvability

The additional quality subcharacteristics that are required by specific

domains [8].

Domain-specific

attributes

The capability of the software system to enable modified software to
be validated [11].

Testability

The capability of the software system to be transferred from one

environment to another [11].

Portability

The capability of the software system to enable the implementation of
extensions to expand or enhance the system with new capabilities and

features with minimal impact to the existing system (based on [11]).

Extensibility

The capability of the software system to enable a specified

modification to be implemented and avoid unexpected effects (based

on [11]).

Changeability

The non-occurrence of improper alteration of architectural information

(based on [12]).

Integrity

The capability of the software system to enable the identification of

influenced parts due to change stimuli (based on [11]).

Analyzability

DescriptionSub-

characteristics

The additional quality subcharacteristics that are required by specific

domains [8].

Domain-specific

attributes

The capability of the software system to enable modified software to
be validated [11].

Testability

The capability of the software system to be transferred from one

environment to another [11].

Portability

The capability of the software system to enable the implementation of
extensions to expand or enhance the system with new capabilities and

features with minimal impact to the existing system (based on [11]).

Extensibility

The capability of the software system to enable a specified

modification to be implemented and avoid unexpected effects (based

on [11]).

Changeability

The non-occurrence of improper alteration of architectural information

(based on [12]).

Integrity

The capability of the software system to enable the identification of

influenced parts due to change stimuli (based on [11]).

Analyzability

DescriptionSub-

characteristics

These subcharacteristics serve as a catalog of check points for evaluation.
Each subcharacteristic is motivated and explained below in conjunction with
the case study. Examples of measuring attributes for each subcharacteristic
are given.

Analyzability The release frequency of the controller software is twice a
year, with around 40 various new requirements that need to be implemented
in each release. These requirements may have impact on different attributes
of the system, and the possible impact must be analyzed before the
implementation of the requirements. This requires that the software system
must have the capability to be analyzed and explored in terms of the impact
to the software by introducing a change.

Paper A 81

Description: Many perspectives are included in this dimension, e.g.
identification and decisions on what to modify, analysis and exploration of
emerging technologies from maintenance and evolution perspectives.

Measuring attributes include modularity, complexity, and documentation.

Integrity A strategy for communicating architectural principles that we
found out from various case studies was to appoint members of the core
architecture team as technical leaders in the development projects. However,
this strategy although helpful to certain extent, did not completely prevent
developers from insufficient understanding and/or misunderstanding of the
initial architectural decisions, resulting in violation of architectural
conformance. This may lead to evolvability degradation in the long run.

Description: Architectural integrity is related to understanding and
coherence to the architectural decisions and adherence to the original
architectural styles, patterns or strategies. Taking integrity as one
subcharacteristic of evolvability does not mean that the architectural
approaches are not allowed to be changed. Proper architectural integrity
management is essential for the architecture to allow unanticipated changes
in the software without compromising software integrity and to evolve in a
controlled way [1].

Measuring attributes include architectural documentation.

Changeability Due to the monolithic characteristic of the controller
software, modifications in certain parts of the software package may lead to
ripple effects, and requires recompiling, reintegrating and retesting of the
whole system. This results in inflexibility of patching and customers have to
wait for a new release even in case of corrective maintenance and
configuration changes. Therefore, it is required that the software system
must have the ease and capability to be changed without negative
implications or with controlled implications to the other parts of the
software system.

Description: Software architecture that is capable of accommodating change
must be specifically designed for change [10].

Measuring attributes include complexity, coupling, change impact,
encapsulation, reuse, modularity.

Portability The current controller software supports VxWorks and
Microsoft Windows NT. There is a need of openness for choosing among
different operating system vendors, e.g. Linux and Windows CE.

82 Paper A

Description: Due to the rapid technical development on hardware and
software technologies, portability is one of the key enablers that can provide
possibility to choose between different hardware and operating system
vendors as well as various versions of frameworks.

Measuring attributes include mechanisms facilitating adaptation to different
environments.

Extensibility The current controller software supports around 20 different
applications that are developed by several distributed development centers
around the world. To adapt to the increased customer focus on specific
applications and to enable establishment of new market segments, the
controller, like any other software systems, must constantly raise the service
level through supporting more functionality and providing more features [3].

Description: One might argue that extensibility is a subset of changeability.
Due to the fact that about 55% of all change requests are new or changed
requirements [15], we define extensibility explicitly as one subcharacteristic
of evolvability. It is a system design principle where the implementation
takes future growth into consideration.

Measuring attributes include modularity, coupling, encapsulation, change
impact.

Testability The controller software exposed huge number of public
interfaces which resulted in tremendous time merely on interface tests. One
task was therefore to reduce the public interfaces to around 10%. Besides,
due to the monolithic characteristic, error corrections in one part of the
software requires retesting of the whole system. One issue was therefore to
investigate the feasibility of testing only modified parts.

Description: According to statistics [7], software testing spends as much as
50% of development costs and comprises up to 50% of development time.
Hence, testability is a key feature permitting high quality to be combined
with reduced time-to-market.

Measuring attributes include complexity, modularity.

Domain- specific attributes The controller software has critical real-time
calculation demands. It is also required to reduce base software code size
and runtime footprint.

Description: Different domains may require additional quality
characteristics that are specific for a software system to be evolvable.

Measuring attributes depend on the specific domains.

Paper A 83

3. Case Study

We conducted the following structured evaluation steps shown in Figure 2.
The involved stakeholders expressed that they were pleased with this
systematic approach, as it made architecture requirements and
corresponding design decisions more explicit, better founded and
documented.

Phase 1. Analyze the implications
of change stimuli on software

architecture

Phase 2. Analyze and prepare the

software architecture to
accommodate change stimuli
and potential future changes

Step 1. Identify requirements on the software architecture

Step 2. Prioritize requirements on the software architecture

Step 3. Extract architectural constructs related to the
identified issues from phase 1

Step 4. Identify refactoring components for each identified
issue

Step 5. Identify and assess potential refactoring solutions

from technical and business perspectives
Step 6. Identify and define test cases

Phase 3. Finalize the evaluation Step 7. Present evaluation results

Figure 2. Evaluation steps

The evaluation results included (i) the identified and prioritized
requirements on the software architecture; (ii) identified
components/modules that need to be refactored for enhancement or
adaptation; (iii) refactoring investigation documentation which describes the
current situation and solutions to each identified candidate that need to be
refactored, including estimated workload; and (iv) test scenarios.

3.1 Analysis of evolvability subcharacteristics

Analyzability was addressed through refining activities for each identified
requirement. Integrity was addressed through extracting rationale for each
design decision; and providing training, guidelines and code examples for
software developers and using tactics that enable the achievement of a
certain quality characteristic. Changeability was addressed through
restructuring the original function-oriented architecture to product-line
architecture. Extensibility was addressed through the definition of a Base
Software SDK (Software Development Kit), consisting of well-documented
API (Application Programming Interface), wizards and tools for developing
application-specific extensions. Portability was handled through the

84 Paper A

portability layer which encapsulates infrastructure technology choices and
provides interfaces for application software in the controller. Testability
was addressed through defining test scenarios and applications to support
platform testing. Domain-specific attribute was planned with respect to
functionality partition of the controller software.

4. Related work

To evaluate evolvability, Ramil and Lehman proposed metrics based on
implementation change logs [16] and computation of metrics using the
number of modules in a software system [13]. Another set of metrics is
based on software life span and software size [20]. In [19], a framework of
process-oriented metrics for software evolvability was proposed to
intuitively develop architectural evolvability metrics and to trace the metrics
back to the evolvability requirements based on the NFR framework. The
best known quality models for evaluating quality include McCall [14],
Boehm [2], FURPS [9], ISO 9126 [11] and Dromey [6]. However, the term
evolvability is not explicitly addressed in any of the quality models. An
ontological basis which allows for the formal definition of a system and its
change at the architectural level is presented in [17]. [18] proposed a
taxonomy to address change as factors and classify evolvability into several
aspects, e.g. generality, adaptability, scalability and extensibility. However,
it does not cover all the types of software evolution, e.g. concerns of product
line development.

5. Conclusions and future work

This paper proposes and demonstrates an evolvability model and an
evaluation approach, which were applied into complex industrial context to
assist software evolvability analysis. By establishing the evolvability model,
we hope to have improved the capability in being able to on forehand
understand and analyze systematically the impact of a change stimulus.
This, in turn, helps us to prolong the evolution stage.

We intend to continue working on the evolvability model by conducting
more case studies to confirm and refine the model. Further we plan to
analyze the correlations among the subcharacteristics with respect to
constraints and tradeoffs.

Paper A 85

References

[1] Bennett, K. and Rajlich, V., “Software Maintenance and Evolution: a
Roadmap”, The Future of Software Engineering, Anthony Finkelstein (Ed.),
ACM Press 2000.

[2] Boehm, B. W. et al., Characteristics of Software Quality, Amsterdam, North-
Holland, 1978.

[3] Bosch, J., Design and Use of Software Architectures – Adopting and Evolving a
Product-Line Approach, Addison-Wesley, 2000.

[4] Chapin, N. et al., “Types of Software Evolution and Software Maintenance”,
Journal of Software Maintenance and Evolution: Research and Practice, 2001.

[5] Ciraci, S. and Broek, P., “Evolvability as a Quality Attribute of Software
Architectures”, the International ERCIM Workshop on Software Evolution,
2006.

[6] Dromey, G., “Cornering the Chimera”, IEEE Software (January): 33-43, 1996.

[7] Eickelmann, N. S. and Richardson, D. J., “What Makes One Software
Architecture More Testable Than Another”, SIGSOFT Workshop, 1996.

[8] Fitzpatrick, R. et al., “Software Quality Challenges”, 26th International
Conference on Software Engineering, 2004.

[9] Grady, R. and Caswell, D., Software Metrics: Establishing a Company-Wide
Program, Englewood Cliffs, NJ, PrenticeHall, 1987.

[10] Isaac, D. and McConaughy, G., “The Role of Architecture and Evolutionary
Development in Accommodating Change”, Proceedings of NCOSE’94, 1994.

[11] ISO/IEC 9126-1, International Standard, Software Engineering, Product Quality
– Part 1: Quality Model, 2001.

[12] Laprie, Dependable Computing and Fault-Tolerant Systems. Vol. 5,
Dependability: Basic Concepts and Terminology. Laprie, J.C. (ed.). New York:
Springer, 1992.

[13] Lehman, M. M. and Ramil, J. F. et al., “Metrics and Laws of Software
Evolution – The Nineties View”, IEEE Computer Press, pp 20-32, 1997.

[14] McCall, J. A., Richards, P. K. and Walters, G. F., Factors in Software Quality,
National Technical Information Service, 1977.

[15] Pigoski, T. M., Practical Software Maintenance, Wiley Computer Publishing,
1996.

[16] Ramil, J. F. and Lehman, M. M., “Metrics of Software Evolution as Effort
Predictors – A Case Study”, ICSM, 2000.

86 Paper A

[17] Rowe, D. and Leaney, J., “Evaluating Evolvability of Computer Based Systems
Architectures – an Ontological Approach”, Proceedings of International
Conference and Workshop on Engineering of Computer-Based Systems, 1997.

[18] Rowe, D. and Leaney, J., “Defining Systems Evolvability – a Taxonomy of
Change”, Proceedings of the IEEE Conference on Computer Based Systems,
1998.

[19] Subramanian, N. and Chung, L., “Process-Oriented Metrics for Software
Architecture Evolvability”, 6th IWPSE, 2002.

[20] Tamai, T. and Torimitsu, Y., “Software Lifetime and its Evolution Process over
Generations”, ICSM, 1992.

[21] Weiderman, N. H. et al., “Approaches to Legacy Systems Evolution”, Technical
Report CMU/SEI-97-TR-014, 1997.

Paper B

ANALYZING SOFTWARE EVOLVABILITY OF AN

INDUSTRIAL AUTOMATION CONTROL

SYSTEM: A CASE STUDY

Hongyu Pei Breivold, Ivica Crnkovic, Rikard Land, Magnus Larsson

Presented at the 3rd International Conference on Software

Engineering Advances (ICSEA)

Sliema, Malta, October 2008

Abstract

Evolution of software systems is characterized by inevitable changes of

software and increasing software complexity, which in turn may lead to

huge maintenance and development costs. For long-lived systems, there is a

need to address evolvability (i.e. a system’s ability to easily accommodate

changes) explicitly in the requirements and early design phases, and

maintain it during the entire lifecycle. This paper describes our work in

analyzing and improving the evolvability of an industrial automation

control system, and presents 1) evolvability subcharacteristics based on the

problems in the case and available literature; 2) a structured method for

analyzing evolvability at the architectural level - the ARchitecture

Evolvability Analysis (AREA) method. This paper includes also the main

analysis results and our observations during the evolvability analysis

process in the case study. The evolvability subcharacteristics and the

method should be generally applicable, and they are being validated within

another domain at the time of writing.

1. Introduction

Studies indicate that more than 50% of the total life cycle cost is spent
after the initial development [18]. Therefore, it becomes essential to cost-
effectively carry out software evolution. In order to prolong the productive
life of a software system, the need to explicitly address software evolvability
is becoming recognized [6]. There are examples of industrial systems with a
lifetime of 20-30 years. These systems are subject to and may undergo a
substantial amount of evolutionary changes, e.g. shifting business and
organizational goals, software technology changes, software systems merge
due to organizational changes [16], demands for distributed development,
system migration to product line architecture, etc. The evolution problems

90 Paper B

we have observed came from various cases in industrial context, where
evolvability was identified as a very important quality attribute that must be
maintained. In order to preserve and improve evolvability, we need to (i)
analyze the system with respect to evolvability; and (ii) perform
architectural transformation. It is generally acknowledged that the
software’s architecture holds a key to the possibility to implement changes
in an efficient manner [1]. Therefore, in this paper, we analyze evolvability
at the architecture level and identify the evolvability subcharacteristics of
interest in an industrial case study, where a large automation control system
at ABB was evolved from a monolithic architecture towards a product line.
We present our experiences of the development of the product line
architecture in the form of a general method, which we have constructed
from data in the manner of grounded theory research [25]. In addition, the
risk of bias has been further decreased through the involvement of other
researchers in the analysis of the experiences.

The remainder of this paper is structured as follows. Section 2 describes the
context of the case study. Section 3 presents our architecture evolvability
analysis method - AREA. Section 4 presents the case study, in which the
method was applied to analyze, evaluate and improve the software
architecture of the automation controller software system. Section 5
discusses the experiences we gained through the case study. Section 6
reviews related work. Section 7 concludes the paper.

2. Context of the case

This section presents the case to motivate evolvability analysis and describe
seven evolvability subcharacteristics from the case perspective.

2.1 Motivating Evolvability Analysis

The case study was based on a large automation control system at ABB and
focused on the latest generation of the controller. The controller software
consists of more than three million lines of code written in C/C++ and uses a
complex threading model, with support for a variety of different applications
and devices. It has grown in size and complexity, as new features and
solutions have been added to enhance functionality and to support new
hardware, such as devices, I/O boards and production equipment. Such a
complex system is difficult to maintain. It is also important and considerably
more difficult to evolve. Due to different measures such as organizational
and lifecycle process improvements, the system keeps the maintainability,

Paper B 91

but the evolvability becomes more difficult since the increased complexity
in turn leads to decreased flexibility, resulting in problems to add new
features. Consequently, it becomes costly to adapt to new market demands
and penetrate new markets.

Our particular system is delivered as a single monolithic software package,
which consists of various software applications developed by distributed
development teams. These applications aim for specific tasks in painting,
welding, gluing, machine tending and palletizing, etc. To keep the
integration and delivery process efficient, the initial architectural decision
was to keep the deployment artifact monolithic. The complete set of
functionality and services is present in every product even though not
everything is required in the specific product. As the system grew, it became
more difficult to ensure that the modifications of specific application
software do not affect the quality of other parts of the software system. As a
result, it became difficult and time-consuming to modify software artifacts,
integrate and test products. To continue exploiting the substantial software
investment made and to continuously improve the system for longer
productive lifetime, it has become essential to explicitly address
evolvability, since software evolvability is a fundamental element for
increasing strategic and economic value of the software [28]. The inability
to effectively and reliably evolve software systems means loss of business
opportunities [2].

2.2 Evolvability Subcharacteristics from Case Perspective

In our previous work [21], we have identified subcharacteristics that are of
primary importance for an evolvable software system. Definitions and
detailed explanations of evolvability subcharacteristics are provided in [21].
The derivation of evolvability subcharacteristics are based on survey and
analysis of literatures (see related work section), problems we have observed
and experiences from several earlier case studies. We do not exclude the
possibilities that other domains or cases might have slightly extended set of
subcharacteristics. Each subcharacteristic is explained below in conjunction
with the case.

Analyzability The release frequency of the controller software is twice a
year, with around 40 various new major requirements that need to be
implemented in each release. These requirements have impact on different
attributes of the system, and the possible impact must be analyzed before the
implementation of the requirements. This requires that the software system

92 Paper B

must have the capability to be analyzed and explored in terms of the impact
to the software by introducing a change.

Architectural Integrity A strategy for communicating architectural
decisions that we found out from various case studies was to appoint
members of the core architecture team as technical leaders in the
development projects. However, this strategy although helpful to certain
extent, did not completely prevent developers from insufficient
understanding and/or misunderstanding of the initial architectural decisions,
resulting in unconscious violation of architectural conformance. This may
lead to evolvability degradation in the long run. Therefore, it is important to
record rationale for each design decision, strategy and architectural solution.

Changeability Due to the monolithic characteristic of the controller
software, modifications in certain parts of the software package lead to some
ripple effects, and requires recompiling, reintegrating and retesting of the
whole system. This results in inflexibility of patching and customers have to
wait for a new release even in case of corrective maintenance and
configuration changes. Therefore, it is strongly required that the software
system must have the ease and capability to be changed without negative
implications or with controlled implications to the other parts of the
software system.

Portability The current controller software supports VxWorks and
Microsoft Windows NT. There is a need of openness for choosing among
different operating system (OS) vendors, e.g. Linux and Windows CE, and
possibly new OS in the future.

Extensibility The current controller software supports around 20 different
applications that are developed by several distributed development centers
around the world. To adapt to the increased customer focus on specific
applications and to enable establishment of new market segments, the
controller, like any other software systems, must constantly raise the service
level through supporting more functionality and providing more features [4],
while keeping some important extra-functional properties, such as
performance, or reliability.

Testability The controller software exposed huge number of public
interfaces which resulted in tremendous time merely on interface tests. One
task was therefore to reduce the public interfaces to around 10% of the
original public interfaces. Besides, due to the monolithic characteristic, error
corrections in one part of the software requires retesting of the whole

Paper B 93

system. One issue was therefore to investigate the feasibility of testing only
modified parts.

Domain- specific attributes The controller software has critical real-time
calculation demands. It is also expected to reduce the base software code
size and runtime footprint.

3. Overview of the ARchitecture Evolvability Analysis

(AREA) method

The steps that we performed in the case are divided into three main phases
as shown in Figure 1.

Figure 1. Steps of ARchitecture Evolvability Analysis (AREA) method

Phase 1: Analyze the implications of change stimuli on software

architecture.

This phase analyzes the architecture for evolution and understands the
impact of change stimuli on the current architecture. Software evolvability
concerns both business and technical issues [29], since the stimuli of
changes come from both perspectives, e.g. environment, organization,
process, technology and stakeholders’ needs. These change stimuli have
impact on the software system in terms of software structures and/or
functionality.

94 Paper B

Step 1.1: Identify potential requirements in the software architecture.

Any change stimulus results in a collection of potential requirements that
the software architecture needs to adapt to. The aim of this step is to extract
these requirements that are essential for software architecture enhancement
so as to cost-effectively accommodate to change stimuli. Architecture
workshops can be conducted, where the stakeholders discuss and identify
the potential architecture requirements. Each requirement is concretized
with a collection of identified refined activities. Afterwards, each identified
requirement must be checked against the evolvability subcharacteristics so
as to ensure the consistency and completeness.

Step 1.2: Prioritize potential requirements in the software architecture.

In order to establish a basis for common understanding of the architecture
requirements among stakeholders within the organization, all the potential
requirements identified from the first step need to be prioritized. We do not
propose any general criteria for requirement prioritization that apply to all
the software systems evolution, since the criteria might be different from
case to case depending on factors such as development and organizational
constraints, the probability of potential requirements becoming mandatory
requirements that the architecture must adapt to, etc.

Phase 2: Analyze and prepare the software architecture to accommodate

change stimuli and potential future changes.

This phase focuses on the identification and improvement of the
components that need to be refactored.

Step 2.1: Extract architectural constructs related to the respective identified

requirement.

We mainly focus on architectural constructs that are related to each
identified requirement. In order for the architecture to allow changes in the
software without compromising software integrity and to evolve in a
controlled way, documentation of architectural decisions and their rationale
play a key role.

Step 2.2: Identify refactoring components for each identified requirement.

In this step, we identify the components that need refactoring in order to
fulfill the prioritized requirements.

Step 2.3: Identify and assess potential refactoring solutions from technical

and business perspectives.

Paper B 95

Refactoring solutions are identified and design decisions are taken in order
to fulfill the requirements derived from the first phase. The change
propagation of the effect of refactoring need to be considered and provided
as an input to the business assessment, estimating the cost and effort on
applying refactorings. In some cases, the refactoring of a certain component
is straightforward if we know how to refactor with only local impact. When
the implementation is uncertain and might affect several subsystems or
modules, prototypes need to be made to investigate the feasibility of
potential solutions as well as the estimation of implementation workload. As
part of this step, an assessment regarding the compatibility of the refactoring
solutions and rationale with earlier made design decisions is made to ensure
architectural integrity.

Step 2.4: Define test cases.

New test cases that cover the affected component, modules or subsystems
need to be identified.

Phase 3: Finalize the evaluation.

In this phase, the previous results are incorporated, analyzed and structured
into a collection of documents.

Step 3.1: Analyze and present evaluation results.

The evaluation results include (i) the identified and prioritized requirements
on the software architecture; (ii) the identified components/modules that
need to be refactored for enhancement or adaptation; (iii) refactoring
investigation documentation which describes the current situation, rationale
and solutions to each identified candidate that need to be refactored,
including estimated workload; (iv) test scenarios; and (v) impact analysis on
evolvability.

4. Applying the AREA method

The main focus of the analysis in our case was to assess how well the
architecture would support potential forthcoming requirements and
understand their impact. Through the analysis process, we identified
potential flaws and defined an evolution path of the software system. The
identification and analysis of the architectural requirements was performed
by the architecture core team which consists of 6-7 persons. It was a
continuous maturation process from the first vision to concrete activities that
took approximately one calendar year including analysis, identification of
architecture evolution path and partial refactoring. 2-3 persons from the

96 Paper B

architecture core team identified the refactoring solution proposals for the
components in the Basic Services subsystem. These proposals were
discussed with the main technical responsible persons and architects,
documented as evolution path for the architecture and transferred further to
the implementation teams.

4.1 Phase 1 - Step 1.1: Identify potential requirements on the

software architecture

The change stimuli to the controller software came from the following
emerging critical issues related to software evolution: (a) time-to-market
requirements, such as building new products for dedicated market within
short time; (b) improvement of software system evolvability; and (c)
increased ease and flexibility of distributed development of products in
combination with the diversity of application variants. We list below the
main potential architecture requirements that were identified from the
change stimuli. The refined activities for each requirement are presented as
well.

R1. Improved modularization of architecture.

a) Enable the separation of layers within the controller software: (i) a
kernel which comprises of components that must be included by all
application variants; (ii) common extensions which are available to and
can be selected by all application variants; and (iii) application
extensions which are only available to specific application variants.

b) Investigate dependencies between the existing extensions.

R2. Reduced architecture complexity.

a) Define interfaces and reduce public interface calls.
b) Add support for task isolation and task management.

R3. Enable distributed development of extensions with minimum
dependency.

a) Build the application-specific extensions on top of the base software
(kernel and common extensions) without the need of modification to the
internal base source code.

b) Package the base software into SDK (Software Development Kit),
which provides necessary interfaces, tools and documentation to support
distributed application development and separate release cycles of the
SDK and application-specific extensions.

Paper B 97

R4. Improved portability.

Investigate portability across target operating system platforms and across
hardware platforms.

R5. Impact on product development process.

a) Investigate the implications of software restructuring on product
integration and testing.

R6. Minimized software code size and runtime footprint.

a) Investigate enabling mechanisms, e.g. properly partitioning
functionality.

The above architecture requirements should be checked against the
evolvability subcharacteristics to justify whether the realization of each
requirement would lead to an improvement of the subcharacteristics (or
possibly a decrease, which would then require a tradeoff decision), as
summarized in Table 1. Besides, the choice of component refactoring and
implementation solution proposals for fulfilling each requirement might
cause tradeoffs against some other subcharacteristics, as detailed in section
4.7.

Table 1. Mapping between evolvability subcharacteristics and

architecture requirements

Subcharacteristics Requirements

Analyzability R1. Improved modularization of architecture.

R2. Reduced architecture complexity.

Architectural Integrity not related to any particular architectural requirement,
but rather to whether the architectural choices and
rationale for handling these requirements are
documented

Changeability R1. Improved modularization of architecture.

R2. Reduced architecture complexity.

Extensibility R3. Enable distributed development of extensions
with minimum dependency.

Portability R4. Improved portability.

Testability R5. Impact on product development process.

Domain-specific
attributes

R6. Minimized software code size and runtime
footprint.

98 Paper B

4.2 Phase 1 - Step 1.2: Prioritize potential requirements on the

software architecture

Due to the monolithic characteristics of the architecture, the individual
products are burdened with functionalities and components that are not
necessary for the specific individual products. Accordingly, the main idea
was to apply the product line approach, transform the existing system into
reusable components that can form the core of the product-line
infrastructure, and separate application-specific extensions from the base
software. With the consideration of not disrupting the ongoing development
projects, the criteria for requirement prioritization were: (i) enable building
of existing types of extensions after refactoring and architecture
restructuring; (ii) enable new extensions and simplify interfaces that are
difficult to understand and may have negative effects on implementing new
extensions. Based on these criteria, R1, R2 and R3 were prioritized potential
architectural requirements.

4.3 Phase 2 - Step 2.1: Extract architectural constructs related to

the respective identified requirement

Over years of development, a lot of functionality has been added to the
system to support new requirements. It becomes easy to unconsciously
violate the original good design decisions. To prevent this, it is important to
extract design decisions and rationale through documentation of
architectural constructs. In this way, potential architectural flaws can be
discovered. For instance, in the case study, some implementation violations
were discovered, such as improper use of conditional compilation in case of
environment changes, direct access to OS native APIs, etc. Additional
efforts have been put to provide training, guidelines/rules and code
examples for software developers in writing code and using tactics that
enable the achievement of a certain quality characteristic. We exemplify
with R3 and extract architectural constructs in form of the original coarse-
grained architecture as depicted in Figure 2.

Paper B 99

Figure 2. A conceptual view of the original software architecture

The lower layer provides an interface to the upper layer and allows the
source code of the upper layer to be used on different hardware platforms
and operating systems. The main problem with this software architecture
was the existence of tight coupling among some components that reside in
different layers. This led to additional work required at a lower level to
modify some existing functionality and add support for new functionality in
various applications. For instance, the system is required to perform certain
tasks during start-up and shutdown in the controller. Some routines for
handling such tasks had to be hard-coded, i.e. the application developers had
to edit in the source code of e.g. Support Services subsystem in the lower
layer, which is developed by another group of developers. Accordingly,
source code updates had to be done not only on the application level, but
through several layers, several subsystems and components. Recompilation
of the whole code base was required. This required that application
developers need to have a thorough knowledge of the complete source code.
It also constituted a bottleneck in the effort to enable distributed application
development.

100 Paper B

4.4 Phase 2 - Step 2.2: Identify refactoring components for each

identified requirement

To cope with the architectural problems identified in the previous step, the
strategy of separate concerns need to be applied to isolate the effect of
changes to parts of the system [11], i.e. separate the global functions from
the hardware, and separate application-specific functions from generic and
basic functions as illustrated in Figure 3.

Figure 3. A revised conceptual view of the software architecture

Accordingly, some components need to be adapted and reorganized to
enable the architecture restructuring, e.g. some components within the low-
level Basic Services subsystem for resource allocations, including
semaphore ID management component, memory allocation management
component to separate functionality from resource management and to
achieve the build- and development-independency between the kernel and
extensions.

Paper B 101

4.5 Phase 2 - Step 2.3: Identify and assess potential refactoring

solutions from technical and business perspectives

Due to space limitations and company confidentiality, we exemplify with
one component example (inter-process communication component) that
needed to be refactored to represent and illustrate for the many various
discussions and solutions that occurred during the analysis. We discuss in
terms of the following views: (i) problem description: the problem and
disadvantages of the original design of the component; (ii) requirements: the
new requirements that the component needs to fulfill; (iii) improvement
solution: the architectural solution to design problems; (iv) rationale and
architectural consequences: the rationale of the solution proposal and
architectural implications of the deployment of the component on quality
attributes; and (v) estimated workload: the estimated workload for
implementation and verification.

4.5.1. Inter-Process Communication

This component belongs to Basic Services subsystem and it includes
mechanisms that allow communication between processes, such as remote
procedure calls, message passing and shared data.

Problem Description. All the slot names and slot IDs that are used by the
kernel and extensions are defined in a C header file in the system. The
developers have to edit this file to register their slot name and slot ID, and
recompile. Afterwards, both the slot name and slot ID have to be specified
in the startup command file for thread creation. There is no dynamic
allocation of connection slot.

Requirements. The refactoring of this component is related to R3. It should
be possible to define and use IPC slots in common extensions and
application extensions without the need to edit the source code of the base
software and recompile. The mechanism for using IPC from extensions must
be available also in the kernel, to facilitate move of components from kernel
to extensions in the future.

Improvement Solution. The slot ID for extension clients should not be
booked in the header file. Extensions should not hook a static slot ID in the
startup command file. The command attribute dynamic slot ID should be
used instead. The IPC connection for extension clients will be established
dynamically through the ipc_connect function as shown in Figure 4. It

102 Paper B

will return a connection slot ID when no predefined slot ID is given. An
internal error will be logged at startup if a duplicate slot name is used.

Figure 4. The inter-communication component after refactoring

Rationale and Architectural Consequences. The revised IPC component
provides efficient resource booking for inter-process communication and
enables encapsulation of IPC facilities. Accordingly, distributed
development of extensions utilizing IPC functionality is facilitated. The use
of dynamic inter-process communication connections addressed resource
limitations for IPC connection. In this way, limited IPC resources are used
only when the processes are communicating. However, the use of IPC
mechanisms requires resources, which are limited on a real-time operating
system. Therefore, the overheads due to resource description processing
may be the offset against efficiency [22], since the overall real-time
performance may be degraded if the cost of creating and destroying IPC
connections is too high.

Estimated Workload. It was estimated around 2 man weeks which includes
the IPC component refactoring and moving IPC client from kernel to
extension.

Paper B 103

4.6 Phase 2 - Step 2.4: Define test cases

The corresponding test cases were derived based on the selected
improvement solution proposal to each component that needed refactoring.
For instance, the architectural test cases for the IPC component are given by
the ThreadCreation class creating dynamic slot ID, as shown in Figure 5.

Figure 5. Test cases for IPC management component

4.7 Phase 3 - Step 3.1: Present evaluation results

In this step, the implications of the potential improvement strategies and
evolution path of the software architecture are analyzed with respect to the
evolvability subcharacteristics as illustrated in Table 2.

104 Paper B

Table 2. Impacts of the IPC component on evolvability

subcharacteristics (+ positive impact, - negative impact)

 Consequences of changing IPC component

Analyzability – due to less possibility of static analysis since definitions are
defined dynamically

Architectural

Integrity

+ due to documentation of specific requirements, architectural
solutions and consequences

Changeability + due to the dynamism which makes it easier to introduce and
deploy new slots

Portability + due to improved abstraction of Application Programming
Interfaces (APIs) for IPC

Extensibility + due to encapsulation of IPC facilities and dynamic
deployment

Testability No impact

Domain-

specific

attributes

+ resource limitation issue is handled through dynamic IPC
connection

– due to introduced dynamism, the system performance could
be slightly reduced

5. Reflections

This section summarizes our observations and experiences of applying
AREA.

5.1 Experiences

By applying AREA method, we have improved the capability in being able
to on forehand understand and analyze systematically the impact of a change
stimulus. This, in turn, helps us to prolong the evolution stage [2]. Besides,
we list below two observations that concern visible improvements in the
organization. They were perceived and informally reported by the
stakeholders themselves.

Documentation of architecture is improved, including the architecture’s

evolution path. Architecture transformation and suggestions for refactoring
solutions were part of the analysis process. This was performed by the
architecture core team. As a result of the analysis and refactoring activities,
the documentation of design and implementation solution proposals has

Paper B 105

been improved. The final refactoring analysis investigation report was
distributed for inspection and was approved after a few iterations. This
document served as an input and blueprint to the implementation teams. In
this way, the architecture core team and implementation teams shared the
same view on the evolution path of the software architecture.

High-level business goals lead to architectural requirements. In the case
study, the potential requirements on the architecture were derived from the
high-level business goals through the first phase, where the potential
requirements on the architecture were identified based on the change
stimuli. Such derivation provides an understanding on how the intended
software system and its evolving artifacts reflect and contribute to the
strategic goals. Together with the documentation of architecture evolution
path, it would enrich architectural models and facilitate the traceability of
software architecture evolution back to the various business constraints and
assumptions [15].

5.2 Suggestions

Due to continuously changing requirements and evolutions of new
technologies, the software architecture needs to be evolvable to cost-
effectively accommodate changes. Thus, we suggest routine evolvability
analysis that should be applied as an integral part during the whole software
lifecycle.

Another remark is that the process of making the impact analysis of
component refactoring in terms of estimated workload was not an easy task.
One principle that was applied during the component refactoring process
was to preserve the external behavior of the system despite the number of
changes to the code. This required a comprehensive understanding of the
dependencies among different components within different subsystems.
Good tool support that assists in impact analysis of ripple effects would be
helpful.

6. Related works

To evaluate evolvability, Ramil and Lehman proposed metrics based on
implementation change logs [23] and computation of metrics using the
number of modules in a software system [17]. Another set of metrics is
based on software life span and software size [27]. In [26], a framework of
process-oriented metrics for software evolvability was proposed to

106 Paper B

intuitively develop evolvability metrics and to trace the metrics back to the
evolvability requirements based on the NFR framework [5]. However, they
do not explicitly address the evolvability analysis at architectural level. The
best known quality models e.g. McCall [20], Boehm [3], FURPS [10], ISO
9126 [12] and Dromey [9], do not explicitly address evolvability. An
approach was described in [19] to measure software architecture’s quality
characteristics through identified key use cases, based on the customization
of the ISO 9126 standard. An ontological basis which allows for the formal
definition of a system and its change at the architectural level is presented in
[24].

Kolb et al. [14] presented a case study in refactoring an existing software
component for reuse in a product line using the PuLSE approach.
Experiences of using various assessment techniques for software
architecture evaluation were presented in [8], where scenario-based
assessment, software performance assessment and experience-based
assessment were addressed. The scenario-based methods such as ATAM [7]
would require quite a number of evolvability scenarios (to address and cover
each of the seven subcharacteristics); a more important limitation is that
while scenarios are concrete anticipated events in the system life-time,
evolvability might concern high-level business requirements at an abstract
level which calls for some more general type of analysis to identify
implications on software architecture and corresponding evolution path.

7. Concluding remarks

In this paper, we described an analysis of a complex industrial control
system, driven by the need to improve its evolvability. A set of evolvability
subcharacteristics were described from the case perspective: analyzability,
architectural integrity, changeability, portability, extensibility, testability
and domain-specific attributes. In addition, an architectural evolvability
analysis method (designated as AREA method) was applied to the complex
industrial system. The method made the architecture requirements,
corresponding design decisions, rationale and architecture evolution path
more explicit, better founded and documented, and the resulting
documentation of refactoring improvement proposals was widely accepted
by the involved stakeholders. The analysis results served as an input and
blueprint to the implementation teams. We want to point out that the
commitment from the organization to perform such a total restructuring of a
large system signifies the importance of software evolvability.

Paper B 107

The AREA method is presently being applied in another case within ABB,
through which we plan to further refine and validate the method. Another
aspect that we are considering is to apply the method to address evolvability
explicitly in the early design phase of a new development effort, since
software architecture that is capable of accommodating change must be
specifically designed for change [13].

References

[1] Bass, L., Clements, P., Kazman, R., Software Architecture in Practice, Addison-
Wesley, 2003.

[2] Bennett, K., Rajlich, V., “Software Maintenance and Evolution: a Roadmap”,
the Future of Software Engineering, Anthony Finkelstein (Ed.), ACM Press,
2000.

[3] Boehm, B.W. et al., Characteristics of Software Quality, Amsterdam, North-
Holland, 1978.

[4] Bosch, J., Design and Use of Software Architectures – Adopting and Evolving a

Product-Line Approach, Addison-Wesley, 2000.

[5] Chung, L. et al., Non-Functional Requirements in Software Engineering,
Kluwer Academic Publishers, 2000.

[6] Ciraci, S., Broek, P., “Evolvability as a Quality Attribute of Software
Architectures”, ERCIM Workshop on Software Evolution, 2006.

[7] Clements, P., Kazman, R. and Klein, M. Evaluating Software Architectures:

Methods and Case Studies, Addison-Wesley, 2002.

[8] Del Rosso, C., “Continuous Evolution through Software Architecture
Evaluation: a Case Study”, Journal of Software Maintenance and Evolution:
Research and Practice, 2006.

[9] Dromey, G., “Cornering the Chimera”, IEEE Software (January): 33-43, 1996.

[10] Grady, R., Caswell, D., Software Metrics: Establishing a Company-Wide

Program. Englewood Cliffs, NJ, PrenticeHall, 1987.

[11] Hofmeister, C., Nord, R., Soni, D., Applied Software Architecture, Addison-
Wesley, 2000.

[12] ISO/IEC 9126-1. International Standard, Software Engineering: Product
Quality, Part 1: Quality Model, 2001.

[13] Isaac, D., McConaughy, G., “The Role of Architecture and Evolutionary
Development in Accommodating Change”, Proceedings of NCOSE’94, 1994.

108 Paper B

[14] Kolb, R., Muthig, D., Patzke, T. and Yamauchi, K., “Refactoring a Legacy
Component for Reuse in a Software Product Line: a Case Study”, Journal of
Software Maintenance and Evolution: Research and Practice, 2006.

[15] Lago, P., van Vliet, H., “Explicit Assumptions Enrich Architectural Models”,
ICSE, 2005.

[16] Land, R., Crnkovic, I., “Software Systems In-House Integration: Architecture,
Process Practices and Strategy Selection”, Journal of Information and Software
Technology, vol 49, nr 5, p419-444, Elsevier, September, 2006.

[17] Lehman, M.M, Ramil, J.F. et al., “Metrics and Laws of Software Evolution: The
Nineties View”, IEEE Computer Press, pp 20-32, 1997.

[18] Lientz, B., Swanson, E., Software Maintenance Management, Addison-Wesley,
Reading, MA, 1980.

[19] Losavio, F. et al., “ISO Quality Standards for Measuring Architectures”, the
Journal of Systems and Software, 2004.

[20] McCall, J.A., Richards, P.K. and Walters, G.F., Factors in Software Quality,
National Technical Information Service, 1977.

[21] Pei Breivold, H., Crnkovic, I. and Eriksson, P. J., “Analyzing Software
Evolvability”, Proceedings of the 32nd IEEE International computer Software
and Applications Conference, 2008.

[22] Quecke, G., Ziegler, W., “Mesch - an approach to resource management in a
distributed environment”, In Proceedings of the First IEEE/ACM International
Workshop on Grid Computing, Springer-Verlag, pp. 47–54, 2000.

[23] Ramil, J.F., Lehman, M.M., “Metrics of Software Evolution as Effort Predictors
- A Case Study”, Proceedings of ICSM, 2000.

[24] Rowe, D., Leaney, J., “Evaluating Evolvability of Computer Based Systems
Architectures – an Ontological Approach”, Proceedings of International
Conference and Workshop on Engineering of Computer-Based Systems, 1997.

[25] Strauss, A. and Corbin, J. M., Basics of Qualitative Research: Techniques and

Procedures for Developing Grounded Theory (2nd edition), ISBN 0803959400,
Sage Publications, 1998.

[26] Subramanian, N., Chung, L., “Process-Oriented Metrics for Software
Architecture Evolvability”, Proceedings of IWPSE, 2002.

[27] Tamai, T., Torimitsu, Y., “Software Lifetime and its Evolution Process over
Generations”, Proceedings of ICSM, 1992.

[28] Weiderman, N.H. et al., “Approaches to Legacy Systems Evolution”, Technical
Report CMU/SEI-97-TR-014, 1997.

Paper B 109

[29] Yang, H., Ward, M., Successful Evolution of Software Systems, Artech House
Publishers, London, 2003.

Paper C

USING DEPENDENCY MODEL TO SUPPORT

SOFTWARE ARCHITECTURE EVOLUTION

Hongyu Pei Breivold, Ivica Crnkovic, Rikard Land, Stig Larsson

Presented at the 4th International ERCIM Workshop on Software

Evolution and Evolvability (Evol’08) at the 23rd IEEE/ACM Intl.

Conf. on Automated Software Engineering

L’Aquila, Italy, September 2008

Abstract

Evolution of software systems is characterized by inevitable changes of

software and increasing software complexity, which in turn may lead to

huge maintenance and development costs. For long-lived systems, there is a

need to address and maintain evolvability (i.e. a system’s ability to easily

accommodate changes) during the entire lifecycle. As designing software for

ease of extension and contraction depends on how well the software

structure is organized, this paper explores the relationships between

evolvability, modularity and inter-module dependency. Through a case

study of an industrial power control and protection system, we describe our

work in managing its software architecture evolution, guided by the

dependency analysis at the architectural level. The paper includes also the

main analysis results, our experiences and reflections during the

dependency analysis process in the case study.

1. Introduction

The role of software architecture in the evolution of software-intensive
systems is being recognized and becoming increasingly important, as
software architecture allows or precludes nearly all of the system’s quality
attributes [2, 11]. The evolution of software architecture implies integrating
changing requirements and coping with stakeholders’ concerns with respect
to business, technology, process and organizational perspectives, which in
turn may result in increased complexity. These phenomena of continuous
change and increasing complexity in software systems were recognized by
Lehman and expressed in his laws of software evolution [23]. In addition,
one property of software systems noted by Brooks [5] is invisibility of
software structure representation, which further negatively affects the
software architecture evolution. Therefore, a lot of research has been done

114 Paper C

in exploring the relationship between the design of a complex system and
the manner in which this system evolves over time [27]. We describe in our
earlier work [34] an evolvability model which refines software evolvability
into a collection of subcharacteristics that can be measured through a
number of measuring attributes. This paper is a continuation of our earlier
work [34] and further explores one particular measuring attribute, i.e.
modularity, which affects the behavior of a design with respect to most of
the evolvability subcharacteristics, as designing software for ease of
extension and contraction depends on how well the software structure is
organized and modular designs are argued to be more evolvable [27, 33], i.e.
these designs facilitate making future adaptations. Although the value of
modularity has been long recognized [41], not much data has been published
with respect to large scale industrial software systems [22]. To enrich the
knowledge in this direction, we describe our experiences through an
industrial case study, with respect to (i) exploring the relationship between
software evolvability, modularity and inter-module dependencies; (ii) using
dependency model to support software architecture evolution; and (iii) to
share industrial software evolution experiences with respect to reflections
from the dependency analysis process.

The remainder of this paper is structured as follows. Section 2 summarizes
our evolvability model and in particular explores the relationship between
software evolvability, modularity and inter-module dependencies. Section 3
presents the methodology that we used in the case study. Section 4 presents
the case study of an industrial control and protection software system and
describes our work in managing the software architecture evolution through
dependency analysis. Section 5 discusses the experiences we gained through
the case study. Section 6 reviews related work and finally section 7
concludes the paper.

2. Evolvability, Modularity and Inter-Module Dependencies

This section summarizes first the evolvability model from our earlier work
[34] and secondly, explores further the relationships between modularity,
evolvability subcharacteristics and inter-module dependencies.

2.1. Evolvability Model

Software evolvability is a multifaceted quality attribute [35]. Based on the
definition of evolvability in [35], analysis of various quality models [4, 13,
16, 21, 29], the software quality challenges and assessment [15], the types of

Paper C 115

change stimuli and evolution [9], and experiences we gained through
industrial case studies, we have identified subcharacteristics that are of
primary importance for an evolvable software system, and outlined a
software evolvability model that provides a basis for analyzing and
evaluating software evolvability. The idea with the evolvability model is to
further derive the identified subcharacteristics to the extent when we are
able to quantify them and/or make appropriate reasoning about the quality of
service, as in Figure 1.

Figure 1 Elements of the evolvability model

The subcharacteristics and examples of their measuring attributes described
in [34] are summarized in Table 1. Definitions of these subcharacteristics
are provided in section 2.2. Failing in achieving any of these
subcharacteristics probably will undermine the system’s ability to be
evolved.

Table 1 Subcharacteristics of evolvability and measuring attributes

Subcharacteristics Measuring Attribute

Analyzability modularity, complexity, documentation

Architectural Integrity architectural documentation

Changeability modularity, complexity, coupling, change
impact, encapsulation, reuse

Extensibility modularity, coupling, encapsulation, change
impact

Portability mechanisms facilitating adaptation to different
environments

Testability modularity, complexity

Domain-specific

attributes
depend on the specific domains

116 Paper C

2.2. Modularity and Subcharacteristics of Evolvability

This section explains the relationship between modularity and evolvability
subcharacteristics. Modularity is a concept by which a piece of software is
grouped into a number of distinct and logically cohesive subunits,
presenting services to the outside world through a well-defined interface
[12]. Modularization is a mechanism for improving the flexibility and
comprehensibility of a system while allowing the shortening of its
development time [32].

Modularity and analyzability Analyzability is the capability of the
software system to enable the identification of influenced parts due to
change stimuli, such as changes in environment, organization, process,
technology and stakeholders’ needs. Modularity plays an important role
because an analysis of independent modules in isolation is easier to perform
than in an analysis where a module is heavily dependent on other modules.
Components that have excessive and unexpected dependencies are hard to
work with because they cannot be understood easily in isolation. Statistics
show that between 50% and 90% of software maintenance involves the
understanding of the software being maintained [40], which implies the
essence of modularity to achieve software analyzability.

Modularity and architectural integrity Architectural integrity is the non-
occurrence of improper alteration of architectural information. A direct
connection between modularity and architectural integrity does not exist.
However, the modularization mechanisms and techniques, tactics and
rationale for each design choice need to be documented to ensure
architectural integrity. This documentation process is essential for the
architecture to allow unanticipated changes in the software without
compromising software integrity and to evolve in a controlled way [3].

Modularity and changeability Changeability is the capability of the
software system to enable a specified modification to be implemented and
avoid unexpected effects. Modularity plays an important role in software
changeability because it reduces the probability that a change to one module
propagates to other modules, and vice versa, to keep outside modifications
from propagating into the module. According to [2], modularity increases
the range of manageable complexity and accommodates uncertainty.
Components that have excessive and unexpected dependencies are hard to
work with because changes to functionality cannot be easily localized.
Modularity determines software quality in terms of changeability [18].

Paper C 117

Complex relationships between components make it difficult to anticipate
and identify the ripple effects of changes [14].

Modularity and extensibility Extensibility is the capability of the software
system to enable the implementation of extensions to expand or enhance the
system with new capabilities and features with minimal impact to the
existing system. Modularity plays an important role in extensibility because
it supports separating concerns and enables definition of extension points
[10] based on such considerations as coupling, cohesion. Components that
have excessive and unexpected dependencies are hard to work with because
the impact of extensions to functionality cannot be easily localized, and may
adversely impact the capability of the software system to handle future
additions without the need to rewrite existing functionality.

Modularity and portability Portability is the capability of the software
system to be transferred from one environment to another. Modularity plays
an important role in portability because it enforces information hiding
behind a platform-independent interface, and ensures that the interface does
not expose functions that are dependent on a particular platform.

Modularity and testability Testability is the capability of the software
system to enable modified software to be validated. Modularity plays an
important role in testability because it supports separating concerns among
the parts of the system through coupling, cohesion and the likelihood of
changes, so that different parts of the system can be tested separately
without being interfered by each other. Monolithic characteristic in design
may result in additional efforts in testing, as error corrections in one part of
the software might require retesting of the other parts or the whole system.
Having to link in many different libraries also leads to increased testing
effort, particularly in the case of cyclic dependencies, where unit testing and
releasing become difficult and error-prone.

Modularity and domain-specific attributes Domain-specific attributes are
the additional quality subcharacteristics that are required by specific
domains. The relationship between modularity and domain-specific
attributes depends on the particular attribute and domain context. For
instance, component exchangeability in the context of service reuse [26] is
one domain-specific attribute within the distributed domain, e.g. wireless
computing, component-based and service-oriented applications. In this
context, modularity plays an important role because encapsulation
mechanism shields the business logic and implementation from the outside
world and thus enables component exchangeability.

118 Paper C

2.3. Modularity and Inter-Module Dependency

Inter-module dependency is one of many indicators and measures for
achieving modularity. Excessive inter-module dependencies have long been
recognized as an indicator of poor software design [37]. They diminish the
ability to reason about components of the software architecture in isolation.
It becomes also difficult to assess and manage change impacts.

One way to visualize these dependencies is the Design Structure Matrix
(DSM)1, which is a representation and analysis mechanism for system
modeling with respect to system decomposition and integration. Several
architectural styles and dependency types, e.g. cyclic and hierarchical
dependencies, are detectable in this matrix. There are two main categories of
DSMs: static and time-based [6]. Static DSMs represent system elements
and are analyzed with clustering algorithm. Time-based DSMs represent
activity flows and are analyzed with sequencing algorithms. In this paper,
we focus on static DSMs to reveal software structure problems during
software evolution and explore alternative architectures to improve the
evolvability of the software system.

3. Research method

We designed and conducted the dependency analysis of the control and
protection system software which consists of more than one million lines of
C and C++ code. The approach described in [37] was applied and we
performed the following steps:

Step 1: Understand application and Dependency Structure Matrix
representation.

Step 2: Create preliminary Dependency Structure Model of the application,
using the hierarchical structure of the code’s own namespace.

Step 3: Create conceptual architecture.

Step 4: Organize the Dependency Structure Model to reflect the intended
conceptual architecture.

Step 5: Define design rules, specifying external library usage and
application interdependencies.

1 http://www.dsmweb.org

Paper C 119

Step 6: Perform dependency management during software evolution.

Two potential parser alternatives were considered, i.e. Doxygen and
Microsoft Browser (BSC). Doxygen was in the end not selected for
analyzing and parsing the source files. The reason is that it does not
correctly resolve dependencies when the symbol names are not unique, i.e.
Doxygen can mix up a local variable reference for a global variable
reference if they have the same name. It also has problems with symbol
names used in multiple contexts. The BSC module was instead chosen to be
used as input for generating the initial dependency model. It processes
source code written in both procedural and object-oriented languages (e.g.,
C and C++), capture indirect calls (dependencies that flow through
intermediate files), run in an automated fashion and output data in a format
that could be input to a DSM. The BSC module analysis is file based and
supports member level expansion of the files displayed in the dependency
model.

We used Lattix2, a source code level DSM derivation tool to extract code
dependencies and examined the following kinds of dependencies:

Class reference: If class A refers to class B, e.g. as in an argument in a
method, then A depends on B.

Invokes: If a function in class A calls to a function or a constructor of class
B, then A depends on B.

Inherits: If class A is a subclass of class B, then A depends on B.

Data member reference: If a function in class A makes reference to a data
member of class B, then A depends on B.

Three persons were actively involved in and performed the analysis process
– one researcher from the research center, one software architect and one
key software developer from the development unit of the analyzed system.
The focus of the researcher was to apply the tool and analysis approach on
the analyzed software system, attain an overview of the dependency
situation and identify hotspots in the architecture and implementation. The
software architect and the key software developer from the development unit
have provided with information through daily meetings to make the
conclusions objective. They also supported with their comprehensive

2 http://www.lattix.com

120 Paper C

domain knowledge, especially during the iterative process of creating a
conceptual architecture for the analyzed system, where they identified the
subsystems and modules in each layer. The risk of bias has been further
decreased through the involvement of other researchers in the analysis of the
experiences. The dependency analysis process took approximately three
weeks. The architecture hotspots and refactoring solution proposals for the
evolution path of the software system were identified. These proposals were
discussed with the main technical responsible persons and architects,
documented and transferred further to the implementation teams.
Additionally, the experiences described in section 5.1 are summaries of the
opinions of the involved stakeholders from the development unit.

4. Case study

The power control and protection system is built up from a basic system
which handles communication, I/O and services, and from application
functions that are combined to define various products. Software
development is performed by several different development teams from two
separate business units and across different geographical locations. We
focused on the basic system which is the platform for different product
types, i.e. control and protection as well as combinations of these.

The main problem with the original software architecture was the existence
of tight coupling among components, which has led to additional work to
modify some existing functionality and add support for new functionality in
various products. This problem was discussed during the architecture
workshops with the stakeholders, including people from product
management, software architecture team and key software development
team. Thus, inventory of candidates for modularization through dependency
analysis was identified as the first top priority architecture requirement.
Accordingly, the main focus of our case study was to analyze the software
architecture in terms of inter-module dependencies, and to achieve a precise
dependency overview for supporting software evolution. We identified
potential flaws in architecture, implementation violations and defined an
evolution path of the software architecture. In addition, we succeeded to
convince the management of the effectiveness of using dependency model to
guide and support software architecture evolution.

Paper C 121

4.1. Examples of Analysis

We performed static software analysis using DSM models based on source
code dependencies to extract dependency relations. Since the complete
assessment of components cannot be presented due to space limitations, we
select a subset and exemplify with two examples from the case to illustrate
component evolution through inter-module dependency analysis. The
examples are chosen to be understandable for people outside the power
technology domain, while still representative and illustrative for the many
various discussions and solutions that occurred during the analysis. The
identified hotspots are analyzed in terms of the following views: (i) problem
description: the problem and disadvantages of the original design of the
component; (ii) requirements: the new requirements that the component
needs to fulfill; (iii) improvement solution: the architectural solution to
design problems; and (iv) rationale and architectural consequences: the
rationale for design decisions and architectural implications of the
deployment of the component.

4.1.1. Example 1 - Web Server

The Web Server subsystem is used to monitor the process and status of
devices with respect to measurements, events and alarms. It consists of three
main parts: a third-party software module, web client application and the
software interface between client and server applications. The web client
application is a combination of static and dynamic web pages, client-side
scripts and style sheets.

Problem Description. Two cyclic dependency problems exist and these
dependencies need to be removed, since we cannot change anything to either
the module without possibly affecting the others. Accordingly, they prevent
us from developing, testing or releasing modules independently.

(1) The Web Server subsystem existed within the Base system as shown in
Figure 2a). It consists of third-party software, which is intertwined with the
control and protection system’s product family. As a result, the code size of
Base increases, and the Base is affected by the third-party software because
Base needs to be updated and recompiled once there is any update or change
of the third-party software in the Web Server subsystem. However, simply
moving Web Server outside Base creates a problem of cyclic dependencies
between Web Server and Base as shown in Figure 2b). The dependency
matrix in Figure 4a) illustrates also the cyclic dependencies between Web

122 Paper C

Server and Base, i.e. the number in the first row indicates that Base uses
Web Server, and vice versa as indicated by the number in the fourth row.
Figure 4a) illustrates the dependencies among the components and
visualizes the dependency violations, i.e. the implementation and
architectural violations that are against design rules and design decisions.
These violations are shown by the dependencies above the diagonal in the
matrix (refer to [36, 31] for details). The numbers in the cells indicate the
dependency strengths.

(2) The Data component encapsulated in HMI Variant subsystem is used by
both the HMI Variant and the Web Server subsystem as shown in Figure 2a).
To reduce the coupling between Web Server and HMI Variant, the Data
component needs to be moved outside of HMI Variant. However, this
creates another problem of cyclic dependencies between HMI Variant and
Data as shown in Figure 2b). The dependency matrix in Figure 4a)
illustrates also the cyclic dependencies between Data and HMI Variant, i.e.
the number in the second row indicates that Data uses HMI Variant, and
vice versa as indicated by the number in the third row.

a) b)

Figure 2. Conceptual view of the original correlations between Web

Server and HMI components

Paper C 123

Requirements. The Web Server must be isolated and moved outside Base.
The Data component must be moved outside HMI Variant. In addition, the
dependencies from Base to Web Server, as well as dependencies from Data
to HMI Variant need to be removed.

Improvement Solution. The original architecture is transformed by
partitioning the HMI Variant and Base respectively so that the cost for
component modification is reduced. The revised conceptual architecture is
illustrated in Figure 3.

Figure 3. Conceptual view of the refactored correlations

Rationale and Architectural Consequences. The dependencies from Web
Server to Base exist because some files in the Web Server component are
used by the start-up sequence files in the Base. Accordingly, the
implementations in the start-up sequence files were modified, and equivalent
function was implemented in the application main module instead in order
to remove the dependencies from Base to Web Server as illustrated in Figure
4b). In this process, we break the cyclic dependencies between Web Server
and Base by moving the classes and functions that they both depend on into
the application main module. The dependencies from Data to HMI Variant
are caused by dead codes that are not in use any more.

The revised system architecture consists of a number of cohesive, modular
subsystems and components with their implementations hidden behind well-
defined interfaces. The probability that a change to one module (e.g. HMI

Variant or Web Server) propagates to other modules is reduced.

124 Paper C

 a) b)

Figure 4. Dependencies before a) and after refactoring b)

4.1.2. Example 2 – Base

The Base software is used to provide a collection of services, as well as a
platform that provides means of instantiation and configuration of
application functions.

Problem Description. The Base software is a mixture of components that
were traditionally implemented as function-oriented subsystems. They were
not ordered according to any architectural styles. Direct connections and
dependencies existed among components. If a change is made for a
component, this implies changes to other components as well. The original
coarse-grained architecture is depicted in Figure 5.

Figure 5. A conceptual view of the original software architecture

The initial DSM is created after loading the code base as in Figure 6.

Paper C 125

Figure 6. Initial DSM for the code base

The x-axis and the y-axis of the matrix represent the same subsystems which
are numbered sequentially. The dependencies for each subsystem are read
down a column. Reading column 1, we see that subsystem1 depends on
subsystem23 with dependency strength of '2'. This figure reveals the tight
couplings among components and violations of design decisions (shown by
the dependencies above the diagonal in the matrix).

Requirements. Clear boundaries between different parts of the system need
to be defined. Late source code changes should not impose ripple effects
through the system.

Improvement Solution. The revised conceptual architecture is illustrated in
Figure 7. It consists of three layers including Utility layer, Middle Layer and
Application Layer. The conceptual architecture was attained through an
iterative process, i.e. daily discussions with the software architect and key
software developer, with respect to what-if scenarios (what is the impact if

126 Paper C

we change) based on the dependency information provided by the inter-
module dependency model.

Figure 7. A conceptual architecture of the Base system

Rationale and architectural consequences. The original architecture is
restructured into layered architecture, as the layers architectural pattern
helps to structure applications to be decomposed into groups of subtasks at a
particular level of abstraction [7]. The layered organization of software
components offers a number of benefits such as reusability, changeability
and portability [38]. In addition, cyclic dependencies across layers are
identified as illustrated in Figure 8. For instance, reading column 6, we see
that Utility layer depends on Middle layer with dependency strength of '57',
indicating architectural layering violations.

Paper C 127

Figure 8. Dependencies after restructuring

The figure is a snapshot of the dependency model during the analysis
process. The dependency violations are visualized by the dependencies
above the diagonal in the matrix. As cyclic dependencies would make layers
monolithic and inseparable, it is essential to break the cyclic dependencies.
Two primary mechanisms [28] exist: (i) apply the dependency inversion
principle; and (ii) create a new module or package, and move the classes that
the cyclic dependent modules depend on into the new package.

5. Experiences and Reflections

This section presents firstly the benefits that were perceived by the involved
stakeholders and secondly, our reflections through performing the inter-
module dependency analysis.

5.1. Perceived Benefits of Performing Dependency Analysis

Using Dependency Model

We summarize below visible benefits that were perceived and reported by
the involved stakeholders in the organization.

a) It becomes easy to achieve a good overview of dependencies within the
whole software system;

b) The software architects and software developers have increased
potentials to do pre-studies in exploring different architectural and
implementation solutions, due to the possibility of simulating changes in the
dependency model without the necessity of making any modifications to the
actual source code and due to the corresponding quick feedback on
modifications from dependency analysis;

128 Paper C

c) It enables a better and faster understanding of unfamiliar modules from
dependency perspective; For instance, the development of Web Server
subsystem was originally outsourced to another development unit located in
another country. After the initial development, the original developers have
changed their job and no one in the organization has the complete
knowledge of the subsystem. However, the visualization of inter-module
dependencies through the dependency model provides support for
understanding the interaction of this subsystem with other parts of the
system.

d) It facilitate discovery of implementation violation and perform quality
check between various revisions; Design rules can be defined in the
dependency model. Thus, it is possible to monitor if any implementation
violations occur in the consecutive revisions to continuously check the
quality of the architecture.

e) The possibility for reuse is increased; Excessive and unexpected
dependencies reduce the reusability of components in different contexts and
complicate the evolution of respective components, since each extension of
components might affect other components. An example is managing inter-
module dependencies in product line architecture. When a component is
shared across multiple products, all components that this component
depends on will also have to be shared or replicated in all of those products.

f) The time to do modularization work is shortened due to the quick
visualization feedback from the dependency model.

5.2. Experiences and Reflections

We list below our reflections during the dependency analysis.

Gain management support Senior management generally has limited
technical understanding to see the direct benefits of refactoring software
architecture for improved quality, especially when there is a lack of
economic models visualizing the benefits of investment. Although the
software architects see the need for architecture restructuring, they usually
do not have the roles of personnel resource management to execute the
restructuring. In the case study, the three week dependency analysis
succeeded to convince the management of the priority of architectural
refactoring through the measure of dependency model. As a result, the

Paper C 129

management determined to continue with software architecture quality
improvement activities instead of only focusing on providing functionalities.

Document rationale for each design decision Although the representation
in the dependency structure matrix demonstrates the design decisions
through the definition of design rules, e.g. the can-use and cannot-use rules,
there is still a lack of explicit documentation of rationale behind the
architectural decisions. Therefore, the dependency model needs to be
complemented with design rationale information.

Apply routine dependency analysis as a quantitative indicator for

judging the necessity of software refactoring and for supporting the

choice of design decisions The software architecture needs to evolve to
accommodate changes. Meanwhile, it is also essential to define design rules
and monitor if any implementation violations occur during the software
evolution process. Thus, we suggest routine dependency analysis as an
integral part and quantitative indicator for continuously judging the
necessity of performing software refactoring. In this sense, the process is
close to the idea of agile software development in terms of continuous
reengineering.

In addition, the choice of any design decisions can be supported by the
quantitative measures from dependency analysis. It is a challenging task to
make appropriate architectural decisions especially when there is a lack of
quantitative measurement of the corresponding impacts on the system.
Although there exist design tactics that assist in making design decisions,
their corresponding impact within a particular system is still on an intuitive
and qualitative level. Therefore, we suggest complementing with
dependency analysis to better support design decisions, i.e. qualitatively
reason about and quantitatively measure the impacts to make more accurate
estimation on workload when making architectural changes.

Combine static code analysis with dynamic information extraction The
case study shows that it is beneficial to perform static dependency analysis
of source code to assist in software architecture evolution. Another aspect
that is of interest is to identify and analyze the runtime structure and
behavior of the software, and identify the runtime components and their
dependencies. An example is to reconstruct software architectures in terms
of pattern recognition. Patterns whose implementation involves dynamic
mechanisms will require extraction of dynamic information [17]. This

130 Paper C

suggests a combination of extracting dynamic information of a system at run
time and static source code analysis.

Combine different means for improved modularization In the case study,
there have been discussions about techniques and means to increase
modularization, as well as the potentials of combining different approaches
for improved modularization and quality attributes. For instance, studies
[20, 30] have shown that aspect-oriented software development can be
applied in conjunction with object-oriented programming in order to achieve
better modularity, reuse and adaptability in complex software systems [31].
As part of the dependency analysis process, we have identified some means
for providing modularization (as shown in Table 2) to support software
evolution and to provide one way to let some part of a system change
independently of all other parts. A modularization technique benefits a
design only when the potential changes to the design can be well
encapsulated by the technique [8]. In the case study, the improved
modularization was achieved through applying several design principles,
e.g. separation of concerns, encapsulation boundaries and architectural
coupling reduction, together with object-oriented software engineering and
layered architecture style.

Paper C 131

Table 2. Examples of Means to Increase Modularization

Means to

Increase

Modularization

Examples

Separation of concerns

Information hiding

Encapsulation boundaries

Narrow component interfaces

Design
Principles

Architectural coupling reduction

Object-oriented software engineering

Component-based software engineering

Service-oriented software engineering

Aspect-oriented software engineering

Software
Engineering
Paradigms

Feature-oriented programming

Object-oriented
Design Patterns

e.g. model-view-controller

Specification of interfaces between components Formal
Specification Assembling of components with compatible specifications

Programming
Languages

e.g. coding guidelines for enabling modularization in
programming languages

Architectural description languages, e.g. ACME Modeling
Techniques UML being enhanced with additional modularity

mechanisms and abstraction, e.g. aspects, features

Architecture
Styles

e.g. layer architectural style

132 Paper C

6. Related work

The link between modularity and evolution was described by Simon [39]
who argued that nearly-decomposable systems facilitate experimentation
and problem solving. [22] examined the design evolution of one open source
software product and one company software product platform through the
modelling lens of design rule theory and design structure matrices. The idea
of using design rules and DSM was similar to the way that we have
performed in our case study. We further enrich the data with experiences
and reflections through our dependency analysis of a complex industrial
software system.

There exist different ways to visualize dependencies. [27] describes the
concept of DSM and the application of design rules to identify violations,
and to keep the code and its architecture in conformance with one another.
Checking the conformance between design and implementation has been
explored in [19]. Li [24] proposed object-oriented system dependency graph
to calculate the impact of changes made to a class, with focus on three
relationships, i.e. containment, use/reference and inheritance. Sullivan et al.
[41] and Lopes et al. [25] have presented that DSM modeling can capture
Parnas’ information hiding criterion [32] and is valuable for software
design. [1] formalizes this reasoning by showing that modularity creates
design options.

The Architecture Tradeoff Analysis Method (ATAM) [2] is a method for
evaluating software architectures in terms of quality attribute requirements
to achieve better architecture. It is used to expose the possible areas of risks,
non-risks, sensitivity points and trade-off points in the software architecture.
Since it relies on the knowledge of the architect and has no provision for
code inspection, it is not a precise instrument [2] as it is possible that some
risks remain undetected. As a dependency model has the feature of being
able to quantitatively and thus objectively visualize the inter-module
dependencies, it can be used as a complementary approach to ATAM when
there is existence of code.

7. Conclusions and future work

In this paper, we explored the links between evolvability, modularity, as
well as inter-module dependency, and described a dependency analysis of a
complex industrial power control and protection system, using the inter-
module dependency model. The analysis was driven by the need of

Paper C 133

improving software evolvability, and it was performed by three persons (one
researcher, one software architect and one key software developer), taking
approximately three weeks. The purpose of the analysis is to visualize
dependencies to provide direction to hotspots in the architecture and
implementation. The resulting analysis documentation was widely accepted
by the stakeholders involved in the analysis process and became a blueprint
for further implementation improvement. Besides, the management was
convinced of the effectiveness of using dependency model as a means to
guide and support software architecture evolution. Additionally, the
quantitative results also convinced them of the priority of improving
architecture for better quality, instead of only focusing on functionality.

Our plans are to apply dependency model in new cases and in new domains,
and further complement the static analysis with dynamic execution analysis.
In addition, we need to consider the impact with respect to the software
system’s behavior, quality and any possible tradeoffs when we introduce
any modularization mechanism and technique. Thus, another research area
that is of interest is to investigate the impact of the choice of modularization
mechanisms, as they might have consequences for flexibility and other
concerns, such as runtime qualities, e.g. performance and scalability, etc.

References

[1] Baldwin, C. Y., Clark, K. B., Design Rules, vol 1, The Power of Modularity,
MIT Press, 2000.

[2] Bass, L., Clements, P., Kazman, R., Software Architecture in Practice. Addison-
Wesley, 2003.

[3] Bennett, K., Rajlich, V., “Software Maintenance and Evolution: a Roadmap”,
the Future of Software Engineering, Anthony Finkelstein (Ed.), ACM Press,
2000.

[4] Boehm, B. W. et al., Characteristics of Software Quality, Amsterdam, North-
Holland, 1978.

[5] Brooks, F. P. “No Silver Bullet”, IEEE Computer, Vol. 20, No. 4. 1987.

[6] Browning, T. R., “Applying the Design Structure Matrix to System
Decomposition and Integration Problems: A Review and New Directions”,
IEEE Transactions on Engineering Management, 2001.

[7] Buschmann, F. et al., Pattern-Oriented Software Architecture: A System of
Patterns. Chichester, NY: Wiley, 1996.

[8] Cai, Y. and Huynh, S., “An Evolution Model for Software Modularity
Assessment”, Fifth International Workshop on Software Quality, 2007.

134 Paper C

[9] Chapin, N. et al., “Types of Software Evolution and Software Maintenance”,
Journal of Software Maintenance and Evolution: Research and Practice, 2001.

[10] Clements, P., Bachmann, F., Bass, L. et al., Documenting Software

Architectures – Views and Beyond, 2007.

[11] Clements, P., Kazman, R., Klein, M., Evaluating Software Architectures:

Methods and Case Studies, Addison-Wesley, 2002.

[12] Developing Architecture Views. http://www.opengroup.org/architecture/togaf8-
doc/arch/chap31.html, visited 2008.

[13] Dromey, G., “Cornering the Chimera”, IEEE Software (January): 33-43. 1996.

[14] Feng, T., Zhang, J., Li, W., “Applying Change Impact Analysis and Design
Metrics in CBR Based Software Design Improvement”, Proceedings of ISCIT,
2005.

[15] Fitzpatrick, R. et al., “Software Quality Challenges”, 26th International
Conference on Software Engineering, 2004.

[16] Grady, R. and Caswell, D., Software Metrics: Establishing a Company-Wide

Program. Englewood Cliffs, NJ, PrenticeHall, 1987.

[17] Guo, G. Y., Atlee, J. M., Kazman, R., “A Software Architecture Reconstruction
Method”, WICSA, 1999.

[18] Huynh, S. and Cai, Y., “An Evolutionary Approach to Software Modularity
Analysis”, 1st International Workshop on Assessment of Contemporary
Modularization Techniques, 2007.

[19] Huynh, S., Cai, Y. et al., “Automatic Modularity Conformance Checking”,
ICSE, 2008.

[20] Improve modularity with aspect-oriented programming.
http://www.ibm.com/developerworks/java/library/j-aspectj/, visited 2008.

[21] ISO/IEC 9126-1. International Standard, Software Engineering – Product
Quality – Part 1: Quality Model, 2001.

[22] LaMantia, M. J., Cai, Y. et al., “Analyzing the Evolution of Large-Scale
Software Systems using Design Structure Matrices and Design Rule Theory:
Two Exploratory Cases”, WICSA, 2008.

[23] Lehman, M., “Laws of Software Evolution Revisited”, Software Process
Technology, 5th European Workshop EWSPT, 1996.

[24] Li, L., Change Impact Analysis for Object-Oriented Software, PhD thesis,
George Mason University, Virginia, USA. 1998.

[25] Lopes, C. V., Bajracharya, S. K., “An Analysis of Modularity in Aspect
Oriented Design, Proceedings of AOSD, 2005.

[26] Lüer, C. et al., “The Evolution of Software Evolvability”, Proceedings of
IWPSE, 2001.

Paper C 135

[27] MacCormack, A., Rusnak, J., Baldwin. C. Y., “The Impact of Component
Modularity on Design Evolution: Evidence from the Software Industry”, HSB
Working Knowledge, 2008.

[28] Martin,R., Acyclic Dependency Principle -Granularity.
http://www.objectmentor.com/resources/articles/granularity.pdf, visited 2008.

[29] McCall, J. A., Richards, P. K., Walters, G. F., “Factors in Software Quality”,
National Technical Information Service, 1977.

[30] Mens, T., Demeyer, S., Software Evolution, Springer, 2008.

[31] Padayachee, A., Eloff, J.H.P., “The Next Challenge: Aspect-oriented
Programming”, Proceedings of the Sixth IASTED International Conference on
Modelling, Simulation, and Optimization, 2006.

[32] Parnas, D. L., On the Criteria to be used in Decomposing Systems into Modules,
1972.

[33] Parnas, D. L., “Designing Software for Ease of Extension and Contraction”,
IEEE Transactions on Software Engineering, 1979.

[34] Pei Breivold, H., Crnkovic, I., Eriksson, P., “Analyzing Software Evolvability”,
Proceedings of COMPSAC, 2008.

[35] Rowe, D., Leaney, J., “Defining Systems Evolvability – a Taxonomy of
Change”, Proceedings of the IEEE Conference on Computer Based Systems,
1998.

[36] Sangal, N., Expressing Software Architecture with Inter-module Dependencies,
EclipseZone, http://www.eclipsezone.com/articles/lattix-dsm/, visited 2008.

[37] Sangal, N., Jordan, E., Sinha, V., and Jackson, D., “Using Dependency Models
to Manage Complex Software Architecture”, OOPSLA, 2005.

[38] Sarkar, S., Rama, “A Method for Detecting and Measuring Architectural
Layering Violations in Source Code”, 2006.

[39] Simon, Herbert A., “The Architecture of Complexity”, Proceedings of the
American Philosophical Society 106: 467-482, repinted in idem, (1981) the
Sciences of the Artificial, 2nd ed. MIT Press, Cambridge, MA, 193-229, 1962.

[40] Stoermer, C., O'Brien, L., Verhoef, C., “Moving Towards Quality Attribute
Driven Software Architecture Reconstruction”, Proceedings of the 10th
Working Conference on Reverse Engineering, 2003.

[41] Sullivan, K., Cai, Y., Hallen, B., Griswold, W. G., “The Structure and Value of
Modularity in Software Design”, SIGSOFT Software Engineering Notes, 2001.

Paper D

COMPONENT-BASED AND SERVICE-ORIENTED

SOFTWARE ENGINEERING: KEY CONCEPTS

AND PRINCIPLES

Hongyu Pei Breivold, Magnus Larsson

Presented at the 33rd Euromicro conference on Software

Engineering and Advanced Applications (SEAA), Component

Based Software Engineering (CBSE) Track

Lübeck, Germany, August 2007

Abstract

Component-based software engineering (CBSE) and service-oriented

software engineering (SOSE) are two of the most dominant engineering

paradigms in current software community and industry. Although they have

continued their development tracks in parallel and have different focus, both

paradigms have similarities in many senses, which also have resulted in

confusion in understanding and applying similar concepts or the same

concepts designated differently. In this paper, we present a comparison

analysis framework of CBSE and SOSE and analyze them from a variety of

perspectives. We discuss as well the possibility of combining the strengths of

the two paradigms to meet non-functional requirements. The contribution of

this paper is to clarify the characteristics of CBSE and SOSE, shorten the

gap between them and bring the two worlds together so that researchers

and practitioners become aware of essential issues of both paradigms,

which may serve as inputs for further utilizing them in a reasonable and

complementary way.

1. Introduction

Today, designing and implementing a large scale and complex system has
been a challenging task. Two of the most well recognized software
engineering paradigms coping with this challenge are: component-based
software engineering and service-oriented software engineering.

Component-based software engineering (CBSE) provides support for
building systems through the composition and assembly of software
components. It is an established approach in many engineering domains,

140 Paper D

such as distributed and web based systems, desktop and graphical
applications and recently in embedded systems domains. CBSE technologies
facilitate effective management of complexity, significantly increase
reusability and shorten time to market. On the other hand, the growing
demands for Internet computing and emerging network-based business
applications and systems are the driving forces for the evolvement of
service-oriented software engineering (SOSE). Service-oriented design
utilizes services as fundamental elements for developing applications and
software solutions. Service-oriented design technologies offer great
feasibility of integrating distributed systems that are built on various
platforms and technologies and further push focus on reusability and
software development efficiency.

SOSE has evolved from CBSE frameworks and object oriented computing
[16] to face the challenges of open environments. Therefore, CBSE and
SOSE are similar to each other in many senses. Both use similar approaches
and technologies. Both have software architecture as the common source
and base. Meanwhile, both paradigms have continued with their
development tracks in parallel and have different focus. Consequently, the
mixture of similarities and specialized utilization of concepts in CBSE and
SOSE have also resulted in confusion in understanding and applying
concepts in a correct way. This may lead to less efficient utilization and
combination of these paradigms. Furthermore, since both CBSE and SOSE
can co-exist in enterprise systems and complement each other [17], any
divided understanding and different interpretation of the terminologies
would lead to less efficient combination and adaptation of these paradigms
in future software development. For these reasons, it is important to clarify
the concepts, principles and characteristics of CBSE and SOSE, shorten the
gap between them and bring these worlds together so that researchers and
practitioners can become aware of both sides. This clarification may serve
as inputs to the subsequent investigation in how to take advantages of the
strengths of these two paradigms, how to adapt and integrate the component-
based and service-oriented technologies, concepts and their strengths so that
both component-base and service-oriented software engineering can
complement each other to the ultimate extent.

The goal of this paper is to provide a clarification framework of the
component-based and service-oriented software engineering to avoid any
misunderstandings and misuses. A brief discussion of reasonable utilization,
combination and adaptation of the two paradigms is also outlined through
looking into a set of research studies in how they have been used. These

Paper D 141

studies have exampled the benefits of improved quality attributes of
software solutions through combining CBSE and SOSE. Since both
paradigms are evolving rapidly, there exists increasing research interest in
further exploration of their combination potentials. We contend that a good
understanding of respective characteristics is a necessary step for this
exploration.

The remainder of the paper is structured as follows. Section 2 presents
overview of component-based and service-oriented software engineering.
Section 3 gives a comparison analysis framework of the two paradigms from
different perspectives, including key concepts and principles, process,
technology and composition. Section 4 discusses state of the art research in
combining the strengths of CBSE and SOSE. Section 5 concludes the paper.

2. Overview of component-based and service-oriented

software engineering

Component-based software engineering (CBSE) is a software engineering
paradigm that aims to accelerate software development and promote
software reusability and maintenance through assembling components to
software systems that meet certain business requirements. The prerequisite
requirements that enable components to be integrated and work together are
component models and component framework [20]. Component models
specify the standards and conventions that components need to follow
during component composition and interaction. Component framework
provides design time and run time infrastructure.

Numerous component models exist nowadays. Some examples are
COM/DCOM/COM+, .Net component model, JavaBeans, Enterprise
JavaBeans and CORBA component model. Examples of component models
that have been developed specifically for applications to embedded systems
include Koala [11], Rubus [21], PECOS [18].

Important areas of research within CBSE include, but not limited to,
determination and specification of QoS (Quality of Service), predictability
of non-functional properties, component interference and process related
activities such as component classification, identification and selection,
component adaptation, testing and deployment techniques.

Although CBSE has proved to be successful for software reuse and
maintainability, it does not address all of the complexities software
developers are facing today, such as varying platforms, varying protocols,

142 Paper D

various devices, the Internet, etc [7]. Service-oriented software engineering
paradigm has emerged to address these issues.

Service-oriented software engineering (SOSE) is a software engineering
paradigm that aims to support the development of rapid, low-cost and easy
composition of distributed applications even in heterogeneous environments
[13]. It utilizes services as fundamental elements for developing applications
and solutions.

Important areas of research within SOSE include service foundations,
service composition, service management and monitoring and service-
oriented engineering [13]. Service foundations provide service-oriented
communication technologies to support run time service-oriented
infrastructure and connect heterogeneous systems and applications. These
communication technologies provide the communication mechanisms
between service providers and service requesters; they differ with respect to
service description techniques and messaging functions [6]. Service
composition encompasses necessary roles and functionality to support
service composition [13]. The dynamic composition feature in SOSE makes
QoS a major challenge. Different initiatives have emerged such as
orchestration and choreography. Service management encompasses the
control and monitoring of SOA-based applications throughout life cycle.

A key element in SOSE is the service-oriented interaction pattern, i.e.
service-oriented architecture (SOA), which enables a collection of services
to communicate with each other. SOA is a way of designing a software
system to provide services to applications or other services through
published and discoverable interfaces. The basic elements of service-
oriented architecture are illustrated in Figure 1.

Figure 1. Service-oriented interaction pattern

Paper D 143

As shown in Figure 1, SOA has three main actors: a service provider, a
service requester and a service registry. The service provider defines service
descriptions of a collection of services, supplies services with functionalities
and publishes the descriptions of the services so as to make the services
discoverable. The service registry contains service descriptions and
references to service providers and provides mechanisms for service
publishing and discovery [14], e.g. Universal Description, Discovery and
Integration (UDDI). The service requester is a client that calls a service
provider. It can be an end-user application or other services. A service
requester searches in the service registry for a specific service via the
service interface description. When the service interfaces match with the
criteria of the service requester, the service requester will use the service
description and make a dynamic binding with the service provider, invoke
the service and interact directly with the service.

3. Classification of component-based and service-oriented

software engineering

The main concepts and principles of CBSE and SOSE may look similar at
the first sight, but differences exist in mechanisms, approaches and
implementations. Therefore, we group particular characteristics that have
similar concerns to describe the same or related aspects of CBSE and SOSE.
The categories in the comparison framework that we are going to address
are: key concepts and principles, process concerns, technology concerns,
quality and composition.

3.1. Key concepts

A summary of the key concepts in CBSE and SOSE is listed in Table 1.

Table 1. Comparison of key concepts in CBSE and SOSE

Concepts CBSE SOSE

Module Component Service

Specification Component contract Service description

Interface Component interface Service interface

Assembly Component composition Service composition

144 Paper D

3.1.1. Module

In CBSE, components are the building blocks that can be deployed
independently and are subject to composition by third party [4]. Based on
the formulation by Clemens Szyperski [15], a software component is a unit
of composition with contractually specified interfaces and explicit context
dependencies only. It can be both fine-grained providing specific
functionality and coarse-grained encompassing complicated logics.

In SOSE, services are the building blocks that can be reused and offer
particular functionalities. They are generally implemented as coarse-grained
discoverable software entities [2], operating on larger data sets,
encapsulating business functionality and exposing the functionality to any
source that requests the functionality through well-defined interfaces. Thus,
the services can be reused and accessed at various levels of the enterprise
application and even across enterprises boundaries.

3.1.2. Specification

In CBSE, the component specification provides for the clients the definition
of the component’s interface, i.e. the operations and context dependencies.
Furthermore, an abstract definition of the component’s internal structure is
specified for the component providers [4].

In SOSE, the service description is a service contract that advertises the
following information: (i) service capabilities - stating the conceptual
purpose and expected results of the service; (ii) interface - describing the
service signatures of a set of operations that are available to the service
requester for invocation; (iii) behavior - describing the expected behavior of
a service during its execution; and (iv) quality - describing important
functional and non-functional service quality attributes [12].

3.1.3. Interface

Although both CBSE and SOSE are interface-based in the sense that
interfaces are the specifications of access points, the separation between
service descriptions and service implementation is more explicit than the
separation between component specification and implementation.

Paper D 145

3.1.4. Assembly

In CBSE, component composition is the process of assembling components
using connectors or glue code to form an assembly, a larger component or
an application. The components are assembled through the component
interfaces and the composition is made out of several component instances
that are connected and interact together.

In SOSE, the composite services are built by composing service
descriptions. The realization of the service composition is during run time
when the service providers are discovered and bound.

3.2. Key principles

A summary of the key principles of implementation in CBSE and SOSE is
listed in Table2.

Table 2. Comparison of key principles of implementation in

CBSE and SOSE

PRINCIPLES CBSE SOSE

Coupling Loose and tight coupling Loose coupling

Self describing Component specification Service descriptions

Self contained yes yes

State Stateless/stateful Stateless/stateful

Location transparency
In some component models
e.g. DCOM

yes

3.2.1. Coupling

CBSE enables both loose coupling and tight coupling. As a component is
used within the scope of a component model, it needs to conform to the
rules specified by the component model. A component model often uses one
particular interaction style, such as broadcasting, asynchronous connection
and connection-oriented style. All these interaction styles imply some kind
of coupling between components, such as referential coupling and temporal
coupling.

146 Paper D

In contrast to CBSE, SOSE enables only loose coupling, with minimized
dependencies between service providers and service requesters. The service
providers need not to know anything about the service requesters or any
other services. They have great flexibility in choosing their design and
deployment environment to offer their services. Likewise, the service
requesters or calling applications need not to know anything about
underlying logic of the service implementation and service deployment
except the service descriptions. The service descriptions are the only
communication channel between service requesters and service providers.
Service loose coupling is enabled through the use of service descriptions
that allow services to interact within predefined parameters [5].

3.2.2. Self describing

Both CBSE and SOSE share the same self describing characteristic with
their own specialization. In CBSE, the component specification is the key to
the component’s self describing characteristic and specifies the rules that the
components must conform to.

In SOSE, the service description is the key to the service’s self describing
characteristic. The service provides its clients with all the relevant
information in the service descriptions, which contain combinations of
syntactic, semantic and behavioral information.

3.2.3. Self contained

In CBSE, components can be self contained. For example, for CCM, a
component is ‘a self-contained unit of software code consisting of its own
data and logic, with well-defined connections or interfaces exposed for
communication. It is designed for repeated use in developing applications;
either with or without customization’ [22].

In SOSE, services are self contained. The services provide the same
functionality regardless of the other services, even if any other services may
fail for some reason.

3.2.4. Stateless

Both components and services can be stateful or stateless. In SOSE, stateless
services are used to meet the performance requirements and in some
circumstances, the stateless property is optimal for services’ reusability. As

Paper D 147

a result, the services should minimize the amount of state information they
manage and the duration for holding the message information. Otherwise,
the services would not be able to timely correspond to other service
requesters. On the other hand, there are circumstances when stateful services
are necessary so as to maintain states across several method calls by the
same service requester. The service object creation policy determines
whether a stateful service can be returned.

3.2.5. Location transparency

In CBSE, some component models can provide location transparency, e.g.
DCOM allows component-based applications to be distributed across
memory spaces or physical machines using proxies and stubs.

In SOSE, since services have their descriptions and location information
stored in the service registry through e.g. UDDI, which is accessible to a
variety of service requesters, services can be invoked by service requesters
from different locations.

3.3. Development process concerns

Three aspects related to development process are identified for further
comparison.

3.3.1. Building from pre-existing entities (components or

services)

The main idea for CBSE is to build systems from pre-existing components.
This feature applies in the same way for SOSE in the sense that systems can
be built from composing appropriate pre-existing services to meet certain
business functionality.

3.3.2. Separation of development process of system and

entities (components or services)

In CBSE, the development process of component-based systems is separated
from the development process of components. This feature applies in the
same way for SOSE in the sense that services can be developed by various
service providers across organizational boundaries and the service
requesters need only to discover and invoke the services.

148 Paper D

3.3.3. Development process

In CBSE, engineering a component-based software system is a process of
finding components, evaluating and selecting proper components, testing,
adapting if necessary and integrating the components into the software
system, e.g. in the COTS-based development process. In SOSE, engineering
a service-oriented computing system is a process of discovering and
composing the appropriate services to satisfy a specification [8]. The
process of service discovering, matching, planning and composing is
essential. Service-oriented engineering process focuses more on run-time
activities, such as dynamically adding, discovering and composing services
illustrated in Figure 2.

Figure 2. Comparison of typical activities during development process

in CBSE and SOSE

3.4. Technology concerns

Three aspects are identified for further comparison: technology neutrality,
encapsulation and static or dynamic behavior.

3.4.1. Technology neutrality

In CBSE, components need to conform and follow the rules that are set up
by a specific component model. As a result, the feasibility to compose
components of different component models is relatively limited. On the
other hand, compliance to a certain technology may also lead to advantages

Paper D 149

in the sense that many solutions can be optimized since they can be directly
supported by the specific technology.

In contrast to CBSE, SOSE provides the feasibility for services to be
implemented in diverse technologies and for multiple applications running
on different platforms to communicate with each other. This feasibility is
enabled through applying commonly accepted message standards for
interface descriptions to the services. Hence, the enterprise applications or
solutions can cut across technology and platform boundaries, performing
business functionalities by composing services from different sources of
service providers.

3.4.2. Encapsulation

Encapsulation means that the business logic and implementation are
shielded from the outside world. CBSE supports a variety of encapsulation
types, ranging from white box exposing all the implementation, or gray box
exposing parts of component implementation to black box. In the cases of
white box and gray box, the component clients have the flexibility to make
modifications to the component in order to meet specific needs in their
solutions.

In contrast to CBSE, SOSE supports only black box encapsulation. The
logical view of a service consists of one or a set of service interfaces and
service implementation. A service can be regarded as a business logic entity
which can be accessed and executed through the well-defined and formal
interfaces by any service requester that wants to use the service. This is
called the service interface level abstraction [5], which enables the services
to act as black boxes, leading to the inflexibility of service requesters to
modify services.

3.4.3. Static vs. dynamic

Two aspects are concerned:

(1) Binding

There are two types of binding: early binding and late binding. Early
binding allows clients to obtain compile-time type information from the
component’s type library. Late binding allows clients to bind to components
at run time and the compiler has no clue during build time about the method
calls that are to be made at run time.

150 Paper D

CBSE allows static early binding and supports dynamic late binding in some
component models. An example is early and late binding to COM
components. In early binding, the components are instantiated as needed and
invocations of operations are based on the interface definitions, statically
checked and bound to by the compiler. In late binding, components are
bound by invoking IDispatch methods in COM that redirects dynamically to
the sought interface. The choice of static or dynamic binding has both pros
and cons, and consequently need to be taken into consideration during
design. Static binding between components may lead to the disadvantage of
less flexibility in facilitating changes, but it allows for stronger type
checking during compile time and is much faster than the late binding
approach.

SOSE allows only dynamic binding. The service requesters make targeted
named calls and search in the service registry for a specific service. When
the service requesters find the services that match certain criteria, the
service requester will use the service description to make a dynamic binding
with the service provider.

(2) Dynamic discovery and availability

Discovery implies the ability that an entity (component or service) is
discovered for use. Availability is the ability that an entity (component or
service) is operational or accessible when required for use. In CBSE,
dynamic discovery and dynamic availability of components are not the
major concerns [3].

In SOSE, services exhibit the feature of dynamic availability, since they can
be added or removed from the service registry at any time. Consequently,
services are readily available running entities and need to be dynamically
discovered and composed in run time.

3.5. Quality concerns

Quality attributes can be classified into life cycle properties and run time
properties. Hundreds of quality properties exist and we can not analyze all
of them. Therefore, we choose only quality attributes that are of common or
related interest to CBSE and SOSE.

Paper D 151

3.5.1. Reusability as life cycle property

CBSE emerged to accelerate reusability of software. However, there are
some constraints in achieving component reusability, such as component
specification should be explicit, no architectural mismatches among
composed components, etc.

Similar to CBSE, services can be reused to construct applications. In SOSE,
the concern in having similar architecture needs not to be taken into
consideration because of the technology neutrality, platform independence
and interoperability characteristics of SOSE. On the other hand, extra
emphasis is put on having explicit service descriptions.

There are several factors that contribute to the reusability of components
and services. Firstly, both components and services are composable. This
implies that the level of granularity of components and services need to be
considered when taking reusability into account. The design of operations
should be in a standardized manner and with appropriate level of granularity
[5] so that the components or services can be reused and composed.
Secondly, the separations between component/service development and
applications also promote component and service reusability.

Recently, researchers have been active in investigating the possibilities of
enhancing service reusability with service-oriented architectures. One study
is presented by Zhu in [19], where he proposed the idea that services are
new types of components and service-oriented architectures may provide
more chances for the development of reusable components.

3.5.2. Substitutability as life cycle property

Substitutability means that alterative entity (component or service)
implementation may be used with the constraints that the system can still
meet the requirements on functional level and non-functional level.
According to [15], white box and gray box reuse very likely prevents the
component substitutability. In such cases, explicit conventions about the
implementation information and changes that are made in components are
required to achieve substitutability [4].

In SOSE, since the service-oriented interaction pattern enables the loose
coupling characteristic between a service requester and service providers,
services can be substituted with new services as long as the service
descriptions fulfill the criteria from service requesters.

152 Paper D

3.5.3. Interoperability as runtime property

The main idea in CBSE is to assemble components together to perform
certain functionality. However, each component conforms to a certain
component model that specifies different rules from another component
model. Therefore, interoperability between heterogeneous components is
still a challenging issue in CBSE. Although in some circumstances,
interoperability can be achieved through implementing wrapper class or
proxies.

On the other hand, broad interoperability among different vendors’
applications and solutions can be achieved in SOSE through the use of well
accepted standards. For instance, WSDL, UDDI, SOAP, XML [23]. These
descriptions are independent of underlying platform, programming
languages and implementation details and therefore promote
interoperability.

3.6. Composition concerns

Three aspects are concerned.

3.6.1. Heterogeneous vs. homogeneous composition

In CBSE, components can only be assembled according to the rules
specified by a specific component model; there is not much feasibility to
assemble components that conform to different component models.

In SOSE, services which access and combine information and functions
from different sources of service providers can be assembled into composite
services to perform particular tasks [12]. The service-oriented software
engineering principles, such as services are platform independent and
loosely coupled, offer the feasibility that services from different sources of
service providers can be used in the same composite service.

3.6.2. Design time/run time composition and composition

mechanisms

In CBSE, components can be composed at design time and run time. Design
time composition allows for optimization [4]. A component detaches its
interface from its implementation, and conceals its implementation details,
hence permitting composition without need to know the component

Paper D 153

implementation details [1]. The mechanisms for component composition
vary from method calls, to pipes and filters or event mechanism [4].
Furthermore, component models provide also general architecture and
mechanism for component composition. For example, component models
require components to support introspective operations to enable component
composition at assembly time or run time [17], e.g. the functionality and
properties of the components can be discovered and utilized automatically at
assembly time or run time.

In SOSE, services are composed at run time. Several mechanisms exist to
compose services, such as pipe and filter which can direct the output of one
service into the input of another service, orchestration and choreography.
Orchestration utilizes a high-level scripting language to control the sequence
and flow of service execution. It describes the behavior and interactions of a
specific service provider with other involved services. BPEL4WS (Business
Process Execution Language for Web Services) and WSCI (Web Service
Conversation Interface) are examples of web service orchestration
languages. Choreography describes the interactions between service
providers that are collaborated for achieving business functionality. WS-
CDL (Web Service Choreography Description Language) [24] is one
example of choreography languages.

3.6.3. Predictability

In CBSE, the predictability of non-functional properties of the composition
components from the properties of components remains to be a challenging
issue. However, compared with SOSE, the use of static binding in CBSE
may provide to a certain extent better predictability because of the
clarification of interface-based design during assembly time.

To some extent, SOSE faces even more challenges in predictability because
of its dynamic discovery and dynamic availability behaviors. Some of the
examples of the challenges include how to predict the quality of service
when services are discovered and invoked dynamically during run time, how
to predict the quality properties when services are composed at run time?
These are still interesting open research issues.

Based on the above comparison analysis, the main similarities and
differences between CBSE and SOSE are summarized in Table 3.

154 Paper D

Table 3. Summary of similarities and differences of CBSE and SOSE

 CBSE SOSE

P
ro

ce
ss

Building system from pre-existing
components. Separate development
process of components and system.
More activities involved in design time

Building systems from pre-existing
services. Separate development
process of services and system. More
activities involved in run time

T
ec

h
n

o
lo

g
y

Constrained by component models.
Ranging from white box, gray box to
black box. Static and dynamic binding
between components. Dynamic
discoverability is not a major concern

Platform independency. Black box.
Only dynamic binding between
services. Dynamic discoverability

Q
u

a
li

ty
 Interoperability concern between

heterogeneous components. Achieve
component substitutability through
explicit specifications. Better
predictability

Interoperability through universally
accepted standards. Achieve service
substitutability through service
descriptions. Predictability issue

C
o

m
p

o
si

ti
o

n

Homogenous composition. Design time
and run time composition and design
time composition allows for
optimization. Pipe and filter; event
mechanism etc. Composition is made out
of several component instances

Heterogeneous composition. Services
are composed at run time. Pipe and
filter; orchestration etc. Composite
services are built by composing service
descriptions

4. Discussions

Because of the diverse nature of software systems, it is unlikely that systems
will be developed using a purely service or component-based approach [10].
Therefore, the ability to combine the strength of CBSE and SOSE and use
them in a complementary manner becomes essential. So far, a lot of research
has been done in combining the strength of CBSE and SOSE for improved
quality attributes of software solutions. Jiang and Willey proposed a multi-
tiered architecture [9] that offers flexible and scalable solutions to the
design and integration of large and distributed systems, where the
architecture makes use of both services and components as architectural
elements, offering flexibility and scalability in large distributed systems and
meanwhile remaining the system performance. Wang and Fung [17]
proposed an idea of organizing enterprise functions as services and
implementing them as component-based systems in order to offer flexible,

Paper D 155

extensible and value-added services. Cervantes and Hall [3] addressed
introducing service-oriented concepts into component model to provide
support for late binding and dynamic component availability in component
models. Since CBSE and SOSE keep on developing rapidly, exploring their
combination potentials is still one interesting research topic.

5. Summary

In this paper, we have presented a comparison framework for component-
based and service-oriented software engineering and discussed briefly the
research efforts that have been done in combining the strengths of CBSE
and SOSE for improved quality attributes.

An explicit clarification of the concepts, principles and characteristics of
CBSE and SOSE is the first necessary step before further exploration in
efficient utilization and reasonable combination of them in future
applications. Discussions on state of the art research with respect to how to
combine the two technologies in a complementary way can be helpful for
further investigation of the long term advantages in introducing service-
oriented architecture into component-based development, and integrating
component-based and service-oriented architecture to offer added value in
system development.

6. References

[1] Aoyama, M., “New Age of Software Development: How Component-Based
Software Engineering Changes the Way of Software Development”,
Proceedings of the first workshop on Component Based Software Engineering,
1998.

[2] Brown, A., Johnston, S. and Kelly, K., “Using Service-Oriented Architecture
and Component-Based Development to Build Web Service Applications”, A
Rational Software White Paper, 2002.

[3] Cervantes, H. and Hall, R. S., “Autonomous Adaptation to Dynamic Availability
Using a Service-Oriented Component Model”, 2004.

[4] Crnkovic, I. and Larsson, M., Building Reliable Component-Based Software

Systems, Artech House Publishers, 2002.

[5] Crnkovic, I., Larsson, S. and Chaudron, M., “Component-Based Development
Process and Component Lifecycle”, Information Technology Interface, 2005.

[6] Dijkman, R. M. et al, “The State of the Art in Service-Oriented Computing and
Design”, 2003.

156 Paper D

[7] Hashimi, S., “Service-Oriented Architecture Explained”,
http://www.ondotnet.com/, 2003.

[8] Huhns, M. N. and Singh, M. P., “Service-Oriented Computing: Key Concepts
and Principles”, IEEE Internet Computing, Service-Oriented Computing Track,
2005.

[9] Jiang, M. and Willy, A. “Architecting Systems with Components and Services”,
Information Reuse and Intergration, 2005.

[10] Kotonya, G., Hutchinson, J. and Bloin, B., “A Method for Formulating and
Architecting Component and Service-Oriented Systems”,
http://scse.comp.lancs.ac.uk/pubs/KotonyaHutchinsonBloin_SOSEBook.pdf,
visited 2007.

[11] van Ommering, R., van der Linden, F. and Kramer, J., “The koala component

model for consumer electronics software”, In IEEE Computer, pages 78–85.
IEEE, March 2000.

[12] Papazoglou, M. P., “Service-Oriented Computing: Concepts, Characteristics and
Directions”, Proceedings of the Fourth International Conference on Web
Information Systems Engineering (WISE), 2003.

[13] Papazoglou, M. P., Traverso, P., Dustdar, S. and Leymann, F., “Service-
Oriented Computing Research Roadmap”, 2006.

[14] Stojanovic, Z. and Dahanayake, A., Service-Oriented Software System

Engineering: Challenges and Practices, Idea Group, U.S, 2004.

[15] Szyperski, C., Component Software – Beyond Object-Oriented Programming,
Addison-Wesley, 2002.

[16] Tsai, W. T., “Service-Oriented System Engineering: A New Paradigm”,
Proceedings of the 2005 IEEE International Workshop on Service-Oriented
System Engineering (SOSE), 2005.

[17] Wang, G. and Fung, C. K., “Architecture Paradigms and Their Influences and
Impacts on Component-Based Software Systems”, Proceedings of the 37th
Hawaii International Conference on Systems Sciences, 2004.

[18] Winter, M., Zeidler, C., Stich, C., “The PECOS Software Process”, Workshop
on Components-based Software Development Processes, ICSR 7 2002.

[19] Zhu, H., “Building Reusable Components with Service-Oriented Architectures”,
Information Reuse and Integration, 2005.

[20] Component-Based Design and Integration Platforms, http://www.artist-
embedded.org/, 2002.

[21] Arcticus Systems, Rubus component model, http://www.arcticus-systems.com

Paper D 157

[22] OMG. CORBA Components. Report ORBOS/99-02-01.

[23] W3C. World-Wide-Web Consortium: XML, SOAP, WSDL,
http://www.w3c.org/

[24] W3C World Wide Web Consortium, Web Services Choreography Working
Group, http://www.w3.org.

Paper E

MIGRATING INDUSTRIAL SYSTEMS TOWARDS

SOFTWARE PRODUCT LINES: EXPERIENCES

AND OBSERVATIONS THROUGH CASE

STUDIES

Hongyu Pei Breivold, Stig Larsson, Rikard Land

Presented at the 34th Euromicro Conference on Software Engineering

and Advanced Applications (SEAA), Software Process and Product

Improvement (SPPI) Track

Parma, Italy, September 2008

Abstract

Software product line engineering has emerged as one of the dominant

paradigms for developing variety of software products based on a shared

platform and shared software artifacts. An important and challenging type

of software maintenance and evolution is how to cost-effectively manage the

migration of legacy systems towards product lines. This paper presents a

structured migration method and describes our experiences in migrating

industrial legacy systems into product lines. In addition, we present a

number of specific recommendations for the transition process which will be

of value to organizations that are considering a product line approach to

their business. The recommendations cover four perspectives: business,

organization, product development processes and technology.

1. Introduction

Today, technical, business and environment requirements change at a
tremendous speed [2]. The ability to launch new products and services with
major enhancements within short timeframe has become essential for
companies to keep up with new business opportunities. The need for
differentiation in the marketplace, with short time-to-market as part of the
need, has put critical demands on the effectiveness of software reuse. In this
context, software product line approach has become one of the most
established strategies for achieving large-scale software reuse and ensuring
rapid development of new products [4]. However, product line development
seldom starts from scratch. Instead, it is very often based on existing legacy
implementations [14], as legacy systems represent substantial corporate

162 Paper E

knowledge and investment [Tilley 1999]. These legacy systems are usually
critical to the business in which they operate [Ransom et al. 1998].
Therefore, they are maintained and evolved to fit existing and expanding
markets and customer needs. However, not much data has been published
with respect to experiences and lessons learned in product line migration
[21]. To enrich the knowledge in this direction, we describe our experiences
and observations through two industrial case studies, with respect to (i)
migrating legacy systems to product line architecture, and (ii) observations
with respect to business, organization, process and technology perspectives
during product line transition process. The contribution of this paper is to
provide experiences through industrial examples in product line migration
that can be shared within the software industry, and can enable future
application and utilization of the product line concept to be additionally
efficient and effective.

The remainder of this paper is structured as follows. Section 2 describes the
research method and the context of the two industrial cases including the
motivations for product line migration. In section 3, we present the
migration method that we applied in the transition process and exemplify
with one case to demonstrate the usage of the method. Section 4 discusses
our observations and recommendations made in the two case studies, with
respect to business, organization, development processes and technology
perspectives. Section 5 reviews related work and section 6 concludes the
paper.

2. Research method

This research is based on two industrial cases. The first two authors took
part in the development of a product line architecture in both cases. All
experiences are thus first-hand; in addition, other participants in the cases
have provided us with material to make the conclusions less subjective. The
risk of bias has been further decreased through the involvement of other
researchers in the analysis of the experiences. We present our experiences
from cases in the form of a general method and generally applicable
recommendations, which we have constructed from data in the manner of
grounded theory research [23] and will be detailed in conjunction with the
case descriptions. The results should therefore be seen as a valuable
generalization of experiences but not yet scientifically validated on
additional, independent cases.

Paper E 163

The rest of this section presents the cases. Although the systems belong to
different domains – automation and power technology domains respectively,
having specific focus and facing different issues, the decision was in both
cases to transform the existing systems towards product line architectures.

2.1. Case 1

The first case is an industrial automation control system which consists of
more than three million lines of C and C++ code. All the source code is
compiled into a single binary software package, which has grown in size and
complexity as new features and solutions are added to enhance functionality
and to support new hardware, such as sensors, I/O boards and production
equipment. The software package also consists of various software
applications, aiming for specific tasks that enable the automation controller
to handle various applications such as painting, welding, gluing, machine
tending and palletizing. However, the software package is monolithic, i.e.
the complete set of functionalities and services is included in every product
even though not everything is required in each specific application. As the
system is expanding, it has become more difficult to ensure that the
modifications of specific application software do not affect the quality of
other applications. The original coarse-grained architecture is depicted in
Figure 1.

Figure 1. Original Conceptual Architecture

164 Paper E

The main problem with the software architecture is the existence of tight
coupling between some components that reside in the different layers. As a
consequence, source code updates have to be done not only on the
application level, but through several layers, several subsystems and
components. Recompilation of the whole code base is necessary. This
requires that application developers have a thorough knowledge of the
complete source code, and additionally, it constitutes a bottleneck in the
effort to enable distributed application development. Therefore, there is a
need to transform the existing system into reusable components that can
form the core of the product-line infrastructure, and separate application-
specific extensions from the base software.

2.2. Case 2

The second case is a power control and protection system which consists of
more than two million lines of C and C++ code. It is built up from a basic
system which handles communication, I/O and services, and from
application functions that are combined to define various products. These
application functions are built as components for specific functionality in an
IEC 1131 fashion, including functions such as monitoring of current and
voltages, and control of breakers. The application functions are included in
the system builds through definition files, resulting in a specific binary
software package for each product. Software development is performed by
several different development teams from two separate business units and
across different geographical locations. The main problem in this case is not
apparently architecture-related as in the first case. It is more related to the
product development management problems, i.e. the occurrence of
overlapping development functionality, lack of traceability of product
features and decreased reusability, as the product variants are implemented
in new or version-branched source code files that are scattered in different
parts of the code repository. All the projects fetch the base software source
code from the repository to start their respective development of various
products. The results of the changed software artifacts are not integrated
back into the repository. New projects might start and continue from the
results from an earlier project and establish new branches of configuration
management paths. This leads to additional effort required for maintenance
of diverging software and software testing. Therefore, instead of making
branches of the core assets for each product variant, there is a need to
improve the handling of the common set of core assets through explicit
definition of commonalities and variabilities, and build a common platform,

Paper E 165

from which products can be efficiently developed and launched to the
market.

3. Migration Method

The method we devised and used in the two cases is illustrated in Figure 2.
It starts with a migration decision, consists of five steps with a proposal for
the new architecture and a plan for the implementation/transition process.
To explain the steps of the method and demonstrate how the method can be
used, we illustrate using the first case as an example; however the method as
presented here draws on the experiences from both cases.

Figure 2. Migration Method of Legacy Systems to Product Lines

3.1. Step 1: Identify requirements on the software architecture

In this step, requirements essential for a cost-effective software architecture
transition to product line architecture are extracted. Architecture workshops
need be conducted, where the stakeholders discuss about the underlying
business forces for migration, and identify architecture requirements and
corresponding migration activities. In order to establish a basis for common
understanding of the architecture requirements among the stakeholders
within the organization, all the identified requirements need to be
prioritized. In the first case, the main focus is to identify components that

166 Paper E

need to be refactored to facilitate a product line architecture and to define an
evolutionary path of the software system development. The identification
and analysis of the architectural requirements was performed by the
architecture core team consisting of 6-7 persons. We list below the
identified main requirements on the software architecture:

R1. More modularized software architecture.

R2. Reduced complexity of the architecture structures.

R3. The architecture needs to support distributed development with
minimum dependency between the development sites.

3.2. Step 2: Identify Commonalities and Variabilities

In this step, common core assets and variabilities to facilitate product
deployment are identified. The common core asset identification can be
based on either a top-down approach, where the product line architecture
comprises of union of merged product functionality, or a bottom-up
approach where the product line architecture comprises of the functionality
shared among the products and exclude product-specific features [4]. There
are different ways to identify commonalities and variabilities, e.g. using
application-requirements matrix, priority-based analysis and/or checklist-
based analysis [18]. The output is a catalog of shared product line assets
common for all the applications or products, in terms of requirements, use
cases, components and test artifacts.

In the first case, the application-requirements matrix approach was applied,
i.e. the dependency analysis between applications and base services was
performed to identify commonalities and variabilities. The use of the matrix
proved useful as a tool for the architects. Table 1 gives an example of the
dependency analysis between specific applications extensions and base
services, where x represents the expected presence of a dependency and
nothing for its absence.

Paper E 167

Table 1. Analysis Matrix Example for Commonalities and Variabilities

etc

etc

XXXXPicking, Packing

XXXXPainting

XXXArc welding

device configurationipcerror logalarmApplication Extensions

Services

etc

etc

XXXXPicking, Packing

XXXXPainting

XXXArc welding

device configurationipcerror logalarmApplication Extensions

Services

To perform the dependency analysis, sufficient overview of product features
is required. The identification of variation points can be based on the
architecture description and design documents, source code, compiled code,
linked code and running code [Svahnberg et al. 2001], user documentation
and user expectations, requirement specifications, log files and comments of
changes as well as workshops with concerned development organizations.
Accordingly, modules, components and functions that are essential for all
applications were identified as candidates for commonalities, designated as
included in the kernel. Software artifacts that are only mandatory for a small
set of applications were identified as candidates for variable artifacts,
designated as common extensions. The kernel and common extensions form
up the building blocks for all applications and they can be packaged into a
software development kit (SDK), which provides necessary tools and
documentation for application development.

3.3. Step 3: Restructure Architecture

In this step, the product line architecture is constructed. The architecture
describes the high level design for the applications of the intended software
product line. Architecture workshops need to be conducted, where the
architecture core team members and technical leaders in the development
projects reach a common understanding of how the entire product line
should be structured to fulfill the identified architecture requirements. In the
first case, to cope with R3, the architecture needs to support distributed

development with minimum dependency between the development sites, and
the architectural problems described in section 2.1, the strategy of separate
concerns was applied to isolate the effect of changes to parts of the system
[10]. The strategy was to separate the global functions from the hardware,
and separate application-specific functions from generic and basic functions
as illustrated in Figure 3.

168 Paper E

Figure 3. Revised Conceptual Architecture

The identified core assets from the previous step provide input to the
definition of global generic functions and application-specific functions.
Accordingly, some components need to be adapted and reorganized to
enable the restructuring of the architecture. Some examples in the first case
were the components for resource allocations within the low-level Basic

Services subsystem, e.g. semaphore ID management component, and
memory allocation management component. These components needed to be
adapted because functionality needed to be separated from resource
management, to achieve the build- and development-independency between
the kernel and extensions.

3.4. Step 4: Incorporate Commonality and Variability

In this step, feasible realization mechanisms and implementation proposals
to facilitate the revised product line architecture are defined. Potential
refactoring proposals are identified from technical and business
perspectives. Technical assessment takes into consideration change
propagation and the effect of refactoring, while keeping some important
extra-functional properties such as performance or reliability. Business
assessment includes the estimation of the cost and effort on
implementations. We exemplify with one component example from the first

Paper E 169

case– the Inter-Process Communication (IPC) component that needed to be
refactored. IPC belongs to Basic Services subsystem and it includes
mechanisms that allow communication between processes, such as remote
procedure calls, message passing and shared data. We focus on the technical
assessment and present the example in terms of three views - problem,
concrete requirements and implementation proposal.

Problem: All the slot names and slot identities (ID) used by the kernel and
extensions were defined in a C header file in the system. The developers had
to edit this file to register their slot name and slot ID, and recompile the
system. Afterwards, both the slot name and slot ID had to be specified in the
startup command file for thread creation. There was no dynamic allocation
of connection slot. The problem was related to requirement R3.

Concrete implementation requirements: It should be possible to define
and use IPC slots in common extensions and application extensions without
the need to edit the source code of the base software and recompile.

Implementation proposal: The slot ID for extension clients should not be
booked in the header file. Extensions should not hook a static slot ID in the
startup command file. The command attribute dynamic slot ID should be
used instead. The IPC connection for extension clients will be established
dynamically through the ipc_connect function as shown in Figure 4.

Figure 4. IPC component after refactoring

170 Paper E

3.5. Step 5: Evaluate Software Architecture Quality Attributes

In this step, the impact of implementation proposals on the quality
requirements of the product line architecture is evaluated. This is needed as
the choice of component refactoring proposals for fulfilling each
requirement might lead both to an improvement of some quality attributes,
and to a degradation of another quality attribute, which would then require a
tradeoff decision. Various assessment techniques [5] can be applied, e.g.
scenario-based assessment, software performance assessment and
experience-based assessment. Besides the qualitative evaluation, test
scenarios and prototypes can also be used as additional ways for evaluating
the feasibility and suitability of implementation proposals. In the first case,
the experience-based assessment and logic reasoning was applied, and the
proposed solutions were evaluated with respect to quality characteristics that
were of interest to the stakeholders, i.e. analyzability, changeability,
extensibility, testability and real time performance. Table 2 gives an
example of the IPC component evaluation.

Table 2. Architectural Consequence Evaluation

 Consequences of changing the Inter-Process

Communication

Analyzability Degraded due to decreased possibility of static analysis
because of dynamic definitions

Changeability Improved due to the dynamism which makes it easier to
introduce and deploy new slots

Extensibility Improved due to encapsulation of IPC facilities and
dynamic deployment

Testability No impact

Real time

performance

Improved as resource limitation issue is handled
through dynamic IPC connection

Degraded due to introduced dynamism the system
performance could be slightly reduced

The revised IPC component provides efficient resource booking for inter-
process communication and enables encapsulation of IPC facilities.
Accordingly, distributed development of extensions utilizing IPC
functionality is facilitated. The use of dynamic IPC connections handles
resource limitations, since limited IPC resources are used only when the
processes are communicating. However, the use of IPC mechanisms requires

Paper E 171

resources, which are limited on a real-time operating system. Therefore, the
overhead due to resource description processing may be an offset against
efficiency [19], since the overall performance may be degraded if the cost of
creating and destroying IPC connections is too high.

4. Observations and Recommendations

Applying a software product line approach to legacy systems requires that
care is taken to ensure that critical aspects are considered for a smooth and
successful product line migration. The application of the migration method
provided a structured way to cover these critical aspects and handle the
product line transition. Through applying the method in our industrial cases,
observations have been made with respect to business, organization,
development process and technology when adopting a product line
approach. We also use the experiences from the case studies to recommend
practices that proved particularly useful.

4.1. Business

We list below observations and recommendations that concern business
perspective.

- Observation: Different triggers for decisions to adopt a product line

approach exist. Business objectives motivate architecture and process
changes [15]. The triggers for these changes might appear different although
the decision to have product line approach was the same for both case
studies. The trigger in the first case was to improve software quality and
enable distributed product development. In the second case, the main trigger
was to build a common platform that can be shared between two business
units and enable component reusability. Our conclusion is that the concept
of product lines can be a solution to different types of business goals.

- Recommendation: Improve risk management through constant

progress measuring. Product line migration concerns a collection of factors
[7], such as resources involved, management support and involvement, level
of product line expertise, and priority balancing among various projects. A
careful and comprehensive risk assessment is therefore necessary. Through
the case studies, we observed the benefit of setting up reasonable,
achievable, and measurable targets to constantly monitor the progress. For
instance, in the first case study, a metric was the number of exposed public
interfaces. Constant monitoring of this metric was conducted on a regular

172 Paper E

interval. It was helpful in measuring progresses and provided signal
indication on analyzing the reason for trend of increasing number of
interfaces when this happened. This in turn provided a source of input to
risk judgments.

4.2. Organization

According to [4], product line development can be organized in two ways:
(i) in a separate product line team – one team develops the core assets while
other teams develop products; or (ii) within the product team – the
development team is responsible for both product and core asset
development. Both organization structures were reflected in the two case
studies and we observed advantages and disadvantages with both structures.
In the first case study, there was one core asset development team
centralized at one site and product development teams were geographically
distributed. A risk identified for this organizational structure was that the
core assets development might not be aligned with the product development
schedule. In the second case study, the development of common platform
components was part of the concrete product development projects. The
development teams were also geographically distributed in several
countries. Much focus was on product development, especially when there
was a tight schedule on product deliveries. Enhancements and adaptations of
platform components were executed in the context of the related product
development projects. Accordingly, a risk was reduced reusability of core
assets. Another risk was parallel or duplicate development of functions,
especially when there are several product development projects running in
parallel. However, there is no clear answer on which organization structure
is better [6].

- Recommendation: Product managers for different products using the

product line architecture should synchronize needs. Our experience in
handling the risk in the first type of organization structure was that the
product managers need to synchronize to achieve a common understanding
of the priorities of product requirements. Synchronization among various
product development teams was also required.

- Recommendation: Define roles, responsibilities and ways to share

technology assets. The risks for the second type of organization structure
was handled through the definition of repository handling strategies, clear
ownership of the core assets and clear division of responsibilities for the
core asset development. Communication and synchronization between the

Paper E 173

development teams play a substantial role. For instance, in the second case
study, there was a white paper defining the ownership and responsibility
areas of existing core assets. Meanwhile, communication channels were
open for emerging new functionality and software assets.

4.3. Process

We list below observations and recommendations concerning the process
perspective. Additional aspects from case 1 can be found in [15], e.g.
regarding configuration management and build processes.

- Recommendation: Perform the migration to product lines through

incremental transitions. Despite of the assumption that it requires an
upfront investment of 2 to 3 products worth of development effort in order
to see return on these investments [7], it is generally required to minimize
the upfront investment and to facilitate quick incorporation of product line
technology into an organization [26]. In this sense, we assume that
incremental transition strategy is a preferred choice to fulfill this
requirement without disrupting the ongoing projects. For instance, in the
first case study, the criteria for requirement prioritization were set up as: (i)
enable building of existing types of extensions after refactoring and
architecture restructuring; and (ii) enable new extensions and simplify
interfaces that are difficult to understand and may have negative effects on
implementing new extensions. Based on these criteria, architectural
requirements and components that needed to be refactored could be
categorized into different priorities. In addition, one requirement during the
component refactoring process in the case studies was to preserve the
external behavior of the system despite the number of changes to the code.
Accordingly, a sequence of incremental code transformation steps was
identified, performed and verified before being integrated.

- Recommendation: Ensure communication between technology core

team and implementation team. The vision of migrating legacy systems
towards product lines comes quite often from analysis results of a
technology core team consisting of very few people. The technology core
team needs to communicate the vision on a regular basis with
implementation teams, in order to introduce a common understanding and
acceptance of what should be accomplished with the transition. The
outcome of this is an organization that is informed and prepared for the
product line transition process.

174 Paper E

4.4. Technology

We list below observations and recommendations that concern technology
perspective.

- Recommendation: Use tool support for dependency analysis. Software
complexity is due to the inherent complexity in the problem domain and
defects in software design [6], e.g. insufficient modularization, which in turn
leads to decreased analyzability and changeability. Although the domains of
the two cases were very different, the components/modules were not
prepared for direct migration in any of the cases. Some components needed
to be adapted and reorganized to enable the product line transition. Through
the refactoring process, we noticed that coupling and interface definition
were two common issues that needed to be handled. We also experienced
the need to reduce inter-module dependencies [17], since excessive inter-
module dependences in software can make modules hard to develop and
maintain. For instance, in the first case, the refactoring solutions were
sometimes straightforward and we knew how to refactor with only local
impact. When the implementation was uncertain and might affect several
subsystems or modules, prototypes were made in order to investigate the
feasibility of potential solutions as well as the estimation of implementation
workload. In this sense, it would be helpful to have good tool support to
facilitate quantitative dependency analysis and impact estimation on
workload when making architectural changes.

- Recommendation: Use architecture documentation to improve

architectural integrity and consistency. We found out from the two case
studies that a strategy for communicating architectural decisions was to
appoint members of the core architecture team as technical leaders in the
development projects. Although helpful to certain extent, this strategy did
not completely prevent developers from insufficient understanding and/or
misunderstanding of the initial architectural decisions. This may result in
uninformed violation of architectural conformance and lead to architecture
quality degradation in the long run. In addition, variation points change
during the software life cycle. It is essential to document these changes with
respect to what does vary, why it varies and how it varies [Pohl et al. 2005],
and to record rationale for each design decision, strategy and architectural
solution.

- Recommendation: Carefully define variation points and realization

mechanisms. Having pre-determined variation points makes it relatively
easy to introduce changes during software evolution [12]. Variation points

Paper E 175

help to keep the impact of changes small by enforcing separation of
concerns among variants. Missing identification of variation points and
realization mechanisms in the beginning might lead to extra implementation
efforts later. For instance, in the second case, operation data could be
transferred over a number of communication protocols, such as IEC 61850,
IEC 60870, LON, DNP, and Modbus. However, the mechanism to facilitate
this variability was missing. This resulted in extra efforts for adding new
communication protocols and additional amount of rework for modifying
existing ones.

On the other hand, we need to consider the impact with respect to the
software system’s behavior, quality and any possible tradeoffs when we
introduce any variation point and realization mechanism. For instance, the
choice of binding mechanisms and binding time has consequences for
flexibility and other concerns [8]. In the second case, the original
architecture applied ‘reduce computational overhead’ principle, which
resulted in inclusion of several application functional components in the
base software and making direct calls to them instead of using an
intermediary layer. The reason for this was mainly performance related.
This became a performance versus modifiability tradeoff point.

- Recommendation: Use the described method iteratively to handle

software evolution. Software evolves as well as businesses and
environments. It is therefore necessary to iterate over the five steps during
the software lifecycle when certain decisions need to be made, e.g. to
determine if any new features added to a product should be incorporated
into the product line architecture or restricted to the particular product.

5. Related work

Software product line has emerged as one of the dominating paradigms for
cost-effectively developing software products. A great amount of research
has been done in this area. Bosch [Bosch 2000] proposes methods for
designing software architecture, in particular product line architecture. Pohl
et al. [Pohl et al. 2005] elaborated two key principles behind software
product-line engineering: (i) separation of software development in domain
and application engineering, and (ii) explicit definition and management of
variability of the product line across all development artifacts. A four-
dimensional software product family engineering evaluation model is
described in [27] to determine the status of software family engineering

176 Paper E

concerning business, architecture, organization and process. Our
observations are classified into similar dimensions.

Faust et al [9] presented metrics for genericity relayering, and migrated
multiple instances of a single information system to a product line. The idea
of constructing a federated architecture was similar to the way that we have
performed in our case studies.

Bayer et al [1] presents the RE_MODEL method to integrate reengineering
and product line activities to achieve a transition into a product line
architecture. A key element in the method is the blackboard, a work space
which is shared for both activities that are done in parallel. This is similar to
the way that we have performed in our case studies, with a common
repository for all information, both for reengineering activities and for
product line activities.

A case where a component was refactored to fit into a product line context
was presented by Kolb et al in [Kolb et al. 2005]. The PuLSETM method was
used to systematically analyze the component and to improve its reusability
as well as maintainability. The focus was on one component enabling reuse
of that component. The usage of PuLSE in an embedded environment was
described in [21], where the method’s technical components addressed the
different phases of product line development. Our approach focuses on the
migration process when the migration decision has been made. In [25], the
FODA method [11] was used for domain engineering whereas we applied
product modeling in our method. In order to evaluate the potential of
creating a product line from existing products, MAP (Mining Architectures
for Product Lines) was described in [22], which focuses on the feasibility
evaluation process of the organization’s decision to move towards a product
line. Options Analysis for Reengineering [3] is another method for mining
existing components for a product line. [16] describes combining reference
architecture and configuration architecture to describe legacy product family
architecture and manage its evolution.

6. Conclusions and Future Work

In this paper, we presented our product line migration method which was
devised through our participation in two industrial migration projects.
Throughout the use of the method, the architecture requirements and
corresponding design decisions for the transition towards product line
architecture become more explicit, better founded and documented. The
resulting documentation of refactoring proposals was in the cases widely

Paper E 177

accepted by the stakeholders involved in the migration process. Our
experiences shows the importance of synchronizing needs, defining roles,
communication between core team and implementation team for
architectural integrity, and using proper tools for dependency analysis. Also,
the business and process contexts require the transition to be incremental,
and the architecture therefore needs to support this through explicit
definition of implementation proposals.

Our plans are to apply the migration method in new cases and in new
domains, and collect additional experiences in product line migration.

This work was partially supported by the Swedish Foundation for Strategic
Research (SSF) via the strategic research centre PROGRESS and by the
KK-foundation (KKS) through the SAVE-IT project.

References

[1] Bayer, J. Girard, J. F., Wûrthner, M., DeBaud, J. M. and Apel, M.,
"Transitioning legacy assets to a product line architecture," Proceedings of the
7th European Software Engineering Conference. Toulouse, France, Springer,
1999.

[2] Bennett, K. and Rajlich, V., “Software Maintenance and Evolution: a
Roadmap”, 2000.

[3] Bergey, J. O'Brien, L. and Smith, D., "Using options analysis for reengineering
(OAR) for mining components for a product line", Proceedings of Second
Software Product Line Conference, volume 2379, pp. 316-327. Springer, 2002.

[4] Birk, A. Heller, G. John, I. and Schmid, K. et al, "Product Line Engineering:
The State of the Practice," IEEE Software, 2003.

[5] Bosch, J., Design and use of software architectures: adopting and evolving a

product-line approach, ACM Press/Addison-Wesley Publishing Co., 2000.

[6] Bosch, J., "Product-Line Architectures in Industry: A Case Study", ICSE 1999.

[7] Clements, P. and Northrop, L., Software Product Lines: Practices and Patterns,
Addison-Wesley Professional, 2001.

[8] Coplien, J., Multi-Paradigm Design for C++, Addison-Wesley, Boston,
Massachusetts, 1998.

[9] Faust, D. and Verhoef, C., "Software product line migration and deployment",
Journal of Software Practice and Experiences, 33(10):933955, Aug. 2003.

[10] Hofmeister, C., Nord, R. and Soni, D., Applied Software Architecture, Addison-
Wesley, 2000.

178 Paper E

[11] Kang, K. C. et al, "Feature-Oriented Domain Analysis (FODA) Feasibility
Study", Technical Report CMU/SEI-90-TR-21, SEI, Carnegie Mellon
University, 1990.

[12] Kolb, R., Muthig, D., Patzke, T. and Yamauchi, K., "A Case Study in
Refactoring a Legacy Component for Reuse in a Product Line," Proceedings of
ICSM '05, 2005.

[13] Kolb, R., Muthig, D., Patzke, T. and Yamauchi, K., "Refactoring a legacy
component for reuse in a software product line: a case study," Journal of
Software Maintenance and Evolution: Research and Practice, vol. 18, pp. 109-
132, 2006.

[14] Kotonya, G. and Hutchinson, J., "A Component-based Process for Modelling
and Evolving Legacy Systems", Software Process: Improvement and Practice,
13(2), pp. 113-125, 2008.

[15] Larsson, S. Wall, A. and Wallin, P., "Assessing the Influence on Processes when
Evolving the Software Architecture," Proceedings of IWPSE 2007, Dubrovnik,
Croatia, 2007.

[16] Maccari, A. and Riva, C., "Architectural evolution of legacy product families",
Proceedings of the Fourth International Workshop on Product Family
Engineering, 2001.

[17] Parnas, D. L., “Designing Software for Ease of Extension and Contraction”,
Transaction on Software Engineering, SE-5(2), 1979.

[18] Pohl, K. Böckle, G. and v. d. Linden, F. J., Software Product Line Engineering:

Foundations, Principles and Techniques, Springer, 2005.

[19] Quecke, G., Ziegler, W., "Mesch - an approach to resource management in a
distributed environment", Proceedings of the First IEEE/ACM International
Workshop on Grid Computing. Springer-Verlag, pp. 47–54. 2000.

[20] Ransom, J., Sommerville, I. and Warren, I., "A Method for Assessing Legacy
Systems for Evolution," presented at Reengineering Forum '98, Florence, Italy,
1998.

[21] Schmid, K., John, I., Kolb, R. and Meier, G., "Introducing the PuLSE Approach
to an Embedded System Population at Testo AG", ICSE, 2005.

[22] Stoermer, C. and O'Brien, L., "MAP - mining architectures for product line
evaluations", Proceedings of WICSA'01, pages 35-44. IEEE Computer Society
Press, Aug. 2001.

[23] Strauss, A. and Corbin, J. M., Basics of Qualitative Research: Techniques and

Procedures for Developing Grounded Theory (2nd edition), ISBN 0803959400,
Sage Publications, 1998.

Paper E 179

[24] Svahnberg, M., Gurp, J. V. and Bosch, J., "On the Notion of Variability in
Software Product Lines," Proceedings of WICSA'01), Amsterdam, The
Netherlands, 2001.

[25] Thiel, S., Ferber, S. et al., "A Case Study in Applying a Product Line Approach
for Cae Periphery Supervision Systems", Proceedings of In-Vehicle Software,
SP-1587, pp. 43-55, 2001.

[26] Tilley, S., "The Net Effects of Product Lines," in SEI Interactive, 1999.

[27] van der Linden, F., Bosch, J., Kamsties, E., Kansala, K. and Obbink, H.,
"Software Product Family Evaluation", Proceedings of SPLC, 2004.

