
Integration of Extra-Functional
Properties in Component Models?

Séverine Sentilles, Petr �St�epán, Jan Carlson, and Ivica Crnković

Mälardalen Research and Technology Centre, Mälardalen University, Väster	as, Sweden
{severine.sentilles, jan.carlson, ivica.crnkovic}@mdh.se

psn08003@student.mdh.se

Abstract. Management of extra-functional properties in component models is
one of the main challenges in the component-based software engineering com-
munity. Still, the starting point in their management, namely their speci�cation
in a context of component models is not addressed in a systematic way. Extra-
functional properties can be expressed as attributes (or combinations of them)
of components, or of a system, but also as attributes of other elements, such as
interfaces and connectors. Attributes can be de�ned as estimations, or can be
measured, or modelled; this means that an attribute can be expressed through
multiple values valid under different conditions. This paper addresses how this
diversity in attribute speci�cations and their relations to component model can be
expressed, by proposing a model for attribute speci�cations and their integrations
in component models. A format for attribute speci�cation is proposed, discussed
and analyzed, and the approach is exempli�ed through its integration both in the
ProCom component model and its integrated development environment.

1 Introduction

One of the core challenges still remaining in component-based software engineering
(CBSE) is the management of extra-functional properties, often expressed in terms of
attributes of components or of systems as a whole. In CBSE, one desired feature is the
integration of components in an automatic and ef�cient way. The integration process
is achieved by �wiring� components through their interfaces. The second aspect of the
integration is the composition of extra-functional properties and this part is signi�cantly
more complex. The problem already appears in the speci�cations of attributes. While
component models precisely de�ne interfaces as a means of functional speci�cation,
speci�cations of attributes in relation to component speci�cation is either not de�ned,
or unclear. Is an attribute a property of a component or the result of interaction between
components, or maybe the result of performing a function that is part of the component
interface, or the result of combining a component and its environment? So far these
questions have not been addressed in a systematic way.

This paper addresses the question of attribute speci�cation in component models.
The speci�cation of attributes has several aspects that we discuss and demonstrate on a
component model.
? This work was partially supported by the Swedish Foundation for Strategic Research via the

strategic research centre PROGRESS, and by the EU FP7 Project Q-ImPrESS.

First, we address the question of the form of attribute speci�cations. Our starting
points are related to Shaw's speci�cation which identi�es the speci�cation of attributes
as a triple containing attribute name, value and credibility information [1]. We re�ne
this de�nition in extension of values and credibility.

The second aspect of attribute speci�cation that we address is related to the com-
ponent and system lifecycle. During the lifecycle of a component an attribute changes
with respect to how the value is obtained and the accuracy (credibility) of its value. In
early phases of the component lifecycle a component is being modelled and then the at-
tribute value can be an estimation or even a requirement. The accuracy of the estimation
during the development process can be changed, as a result of an increasing amount of
information or a change in the way the value is obtained. In the run-time phase (or even
in the development phase in some cases), the attribute value can be measured.

The third aspect of the attribute speci�cations concerns the variations of the values
� not only as a result of different ways of obtaining the value, but also different values
depending on the external context. Some attributes are directly related to the system
context � for example, the execution time of a component does not only depend on
the component behaviour and input parameters, but also on the platform characteristics.
For such cases it is obvious that we need to be able to specify these different values and
the conditions under which the attribute value is valid.

There are also other aspects of integration of component models and their attributes.
By nature the attributes are parts of (i.e., they characterize) components, but they also
can be related to a particular element of a component or a system. For example, an
attribute can be annotated to a component directly, or to a port in the interface of a com-
ponent, or to a connector. In general, a component model that supports the management
of attributes should have the possibility to relate attributes to different architectural ele-
ments of the component model.

The aim of this paper is to analyze the different aspects of attribute speci�cations to
formalize their form and their integration with component models. A formal speci�ca-
tion of an attribute format makes it easier to manage component and system properties.
It also catalyzes the process of integrating extra-functional properties into component
models.

Since attributes are very different, the concrete results can be shown on particular
classes of attributes integrated with particular component models. To illustrate the at-
tribute speci�cations in a component model, we use ProCom [2, 3], and annotations of
attributes as an immanent part of the model. We also provide implementation examples.

The rest of the paper is organized as follows. Section 2 de�nes the attribute spec-
i�cations. Section 3 discuses the attribute speci�cations of composite components in
relation to the attributes of composable components. Since an attribute can include dif-
ferent values, i.e., different versions of an attribute can exist, in a system analysis or
veri�cation process it is important to select a particular version of an attribute. The se-
lection principles and a possible support is discussed in Section 4. The principles of
attribute speci�cations are exempli�ed in the ProCom component model, and a proto-
type tool that manages attributes is demonstrated in Section 5. Section 6 surveys related
work, followed by a short discussion in Section 7, before the paper concludes with a
summary and future work.

2 Annotation of Attributes in Component Models

The purpose of attributes is to provide additional information about the components,
complementing the structural information that is provided by the component model.

This additional information is intended to give a better insight in the behaviour and
capability of the component in terms of reliability, safety, security, maintainability, ac-
curacy, compliance to a standard, resource consumption, and timing capabilities, among
many others. In that sense, attributes bridge the gap between the knowledge of what a
component does and its actually capabilities.

2.1 Attributes in a Component Model

As mentioned in [4], the additional information provided by attributes does not nec-
essarily concern the component as a whole, but in fact often points more precisely to
some parts of a component such as an interface or an operation of an interface. In our
view, this relation should not be limited to components, interfaces and operations, but
be extended so that attributes can be associated with other elements of a component
model, including for example ports, connectors or more notably component instances.
For instance, having an extra-functional property on connectors to capture communica-
tion latency, makes it possible to reason about the response time of complex operations
that involve communication between components.

Following this standpoint, we de�ne as attributable an element of a component
model (component, interface, component instance, connector, etc.) to which extra-
functional properties (attributes) can be attached. By this means, all attributable entities
are treated in similar way with regards to the de�nition and usage of attributes. Fig. 1
depicts these relations.

-id:String

AttributeAttributable

Component Interface

1 *

1 0..*

ConnectorOperation

1 *

ComponentInstance

* 1

Fig. 1. The relation between attributes and the elements of a component model.

2.2 Attribute De�nition

The exhaustive list of possible attributes to consider is endless and, as stated in [5],
there is no a priori, logical or conceptual method to determine which properties exist
in a system or in components. Furthermore, a single property can have a multitude of
possible representations. This problem inheres in one of the fundamental characteristics
of extra-functional properties and properties in general: they are issued by humans.
Therefore, different users will consider different types of information important for the

development of the software system, and for the same property they might associate a
different meaning and representation.

Consequently, the de�nition of a suitable format speci�cation for extra-functional
properties able to deal with the great variety of properties possibly of interest remains
a challenge. This de�nition should be generic and �exible enough to handle the het-
erogeneity of properties while being extensible to support the emergence of new ones.
This means that the speci�cation format must be able to cope with different formats and
different levels of formalism.

An informal way to specify these properties is to use annotations. However, it gives
too much freedom concerning the de�nition and this brings problems to manage extra-
functional properties at a large scale or in automated processes such as composition or
analysis.

In order to move towards a precise formalisation of extra-functional properties,
which allows an unambiguous understanding and a precise semantics both with re-
spect to meaning and valid speci�cation format of the value, we de�ne the concept of
Attribute as:

Attribute =
〈
TypeIdenti�er, Value+

〉

Value = 〈Data, Metadata, ValidityCondition∗〉

where:

� TypeIdenti�er de�nes the extra-functional property (i.e. the identi�er property in
Fig. 1);

� Data contains the concrete value for the property;
� Metadata provides complementary information on data and allows to distinguish

between them; and
� ValidityConditions describe the conditions under which the value is valid.

The remaining of this section details these concepts, based on diagrams issued from the
meta-model of our attribute framework (the full meta-model is given in Appendix 8).
However, an important aspect of this de�nition, which is worth noting already at this
point, is the possibility for an attribute to have a several values. This is further explained
in Section 2.5.

2.3 Attribute Type

Similarly to the concept of �class� in object oriented programming, an attribute type
designates a class of attributes. In this respect, an attribute is then comparable to a class
instance, and must comply with the speci�c structure imposed by the attribute type.
An attribute type speci�es thus an identi�er which is a condensed signi�cative name
describing the principal characteristics of the attributes (e.g., �Worst Case Execution
Time�, �Static Memory Usage�, etc.), a list of attributable elements to which the prop-
erty can be attached, and a speci�cation of the data format that the attribute instances
must conform to. As illustrated in Fig. 1, the identi�er of the attribute type is shared by
all the attributes of the same attribute type, and an attribute belongs to a single attribute
type only.

Attribute Type Registry

Type Identifier : Power Consumption
Attributable(s): Component
Data Format : Reference to external model
Documentation: …

...

Type Identifier : Worst-Case Execution Time
Attributable(s): Component , Interface, Operation
Data Format : Integer
Documentation: ...

Type Identifier : Value Range
Attributable(s): Port
Data Format : [Float; Float]
Documentation: ...

Type Identifier : Static Memory Usage
Attributable(s): Component
Data Format : Float
Documentation: ...

Fig. 2. Attribute type registry.

Consequently, the uniqueness of the attribute types must be ensured so that it is
not possible to have two attributes with the same identi�er but different value formats.
This requires techniques outside the de�nition of the attribute concept itself. A simple
technique is to keep a registry of attribute types, where all the declaration of attribute
types are stored to ensure their uniqueness. Fig. 2 illustrates an attribute type registry
containing several attribute types.

Although this way of specifying attributes types (or attributes, in a broader sense)
provides the great advantages of being open and extensible so that it can �t the multitude
of extra-functional properties which need to be de�ned, it still requires users to have an
intuitive and common understanding of what the meaning and intended usage of the
attributes were when they were created. Therefore it is important to provide proper
attribute type documentation. This documentation is stored in the attribute type registry
and consists of an informal text written in natural language. Nevertheless, it must supply
enough information to primarily clarify the meaning of the attribute type as well as its
intended usage.

It is reasonable to assume that hundreds of attribute types or more will be intro-
duced. Several classi�cation schemes (e.g., [6] and [7]) have been proposed which can
be used as basis to identify groups of attribute types such as �resource usage�, �reliabil-
ity�, �timing�, etc. These categories could allow navigation across attributes more easily
and possibly hide the whole set of attribute types that are uninteresting for a particular
project. A remaining challenge is in this case to determine appropriate categories, as
the proposed classi�cations are distinct and often non-orthogonal as mentioned in [5].
However, this is not within the scope of this paper.

2.4 Attribute Data

To elicit information on the element of the component model they are associated with,
the part of attributes concerned with expressing data must be represented in an unam-

biguous and well-tailored format. This implies that in addition to supporting primitive
types such as integers, �oats, etc., and structured types such as arrays, complex types
must also be covered. These complex types include representation of value distribu-
tions, various external models, images, etc.

For this, we de�ne a generic data structure, called data, which is specialized into
a number of simple data types and a reference to any complex object, as illustrated in
Fig. 3. This structure can be extended to build more complex data structure such as
records or tuples.

AttributeValue Data

1

-data

1

-value: Integer

IntegerData

-value: String

StringData

-value: Object

RefData

Fig. 3. Attribute data.

2.5 Multiple Attribute Values

Attributes emerge during the software development process as additional information
needs to be easily available either to guide the development, to make decisions on the
next step to follow, to provide appropriate (early) analysis and tests of the components,
or to give feedbacks on the current status. This need for information starts already in
early phases of the development, in which extra-functional properties are considered as
constraints to be met and expected to be satis�ed later on, thus becoming an intrinsic
part of the component or system description.

This implies that through the development process, (i) the meaning of an attribute
typically changes from a required property to a provided/exhibited property, and (ii) its
value changes too as the knowledge and the amount of information about the system
increases. Thus the actual data as well as the appropriate metadata needs to be suc-
cessively re�ned to be replaced by the latest and most accurate value. For example,
an attribute, estimated in a design phase, is replaced with a new value coming from a
measurement after the implementation phase is completed, or with more information
available the analysis become more ef�cient and reliable and therefore the con�dence
in the property, expressed by the accuracy metadata, increases.

However, the gradual re�nement of an attribute towards its most accurate value
is not always the expected way to deal with extra-functional properties. Often, values
which are equally valid in the current development phase, need to exist simultaneously.
In other words, this means that the latest value must not replace the previous one. This
requires an ability for an attribute to have multiple values to cope with information
coming from various context of utilization, to keep different values obtained through
different methods, to keep the required value and a provided value for verifying the

conformity to the initial requirement, or to compare a range of possible values to make
a decision. This ability of an attribute to have multiple values is depicted in Fig. 4.

AttributeValue

-id:String

Attribute

1

-values

1..*

Fig. 4. Multiple attribute values.

2.6 Attribute Value Metadata

Introducing the possibility to have multiple values for attributes also requires the abil-
ity to distinguish between them. Furthermore, it is important to document the way an
attribute value has been obtained to ensure that information about a component (or an-
other element of a component model) is correct and up-to-date. These two functions
are provided by the attribute value metadata, or simply metadata, which role is to cap-
ture the context in which the corresponding attribute value has been obtained: when,
how and possibly by whom. However, the question of determining the complete list of
elements that metadata should cover remains.

We de�ne a partial list of metadata that we consider indispensable to provide a
basic support for the concepts around the attribute de�nition (see Fig. 5). The list con-
sists of the version of the current attribute value, the timestamp indicating when the
attribute value was created or updated, the source of the value (�requirement�, �esti-
mation�, �measurement�, �formal analysis with the tool X�, �simulation�, �generated
from model�, �generated from implementation�, etc.). Other metadata are optional; for
example the accuracy of the value or some informal comments about the attribute value.

AttributeValue
-version:String
-timestamp:Date
-source:String
-accuracy:Float
-comment:Sting
-...

Metadata

1

-metadata

1

Fig. 5. Attribute value metadata.

2.7 Validity Conditions of Attribute Values

Reusability is a desired feature of component-based software engineering, which im-
plies that a component is assumed to be (re-)useable in many different contexts. As an
intrinsic part of components, revealing what the component is capable of, attributes are

intended to be reusable too. This means that the validity of their information must still
be accurate in the new context in which the component is reused. Hence, to keep con-
sistent all the information concerning the component, both its expected behaviour and
capabilities, and the actual ones, it is necessary to specify in what type of contexts an
attribute value is valid, i.e., fully or partially reusable.

We refer to these speci�cations of context restrictions as validity conditions. The
validity conditions explicitly describe the particular contexts in which an attribute value
can be trusted. Different types of contexts exist and, as with attribute types, an attempt
to identify them all is bound to fail. They include, at least, constraints on the underlying
platform, speci�cation of usage pro�le, and dependencies towards other attributes, as
illustrated in Fig. 6.

With the intentions of developing an automated process to select only valid values
for the current context, the validity conditions must be de�ned in a strict manner and
it is important that they are publicly exposed. However, strictly ensuring the respect
of all the validity conditions is a too restrictive approach since in this case, only the
attribute values for which the validity conditions are fully satis�ed would be reusable.
For instance, a component might be reused even though some of its attribute values are
not trustworthy for the current design. This reuse might require a manual intervention to
lower the con�dence in the provided values. We envision that, as a conscious decision,
some attribute values could be reused regardless of their validity conditions not being
satis�ed, but it would typically affect the values. For example, the value might be reused
with a lower accuracy, or with the data modi�ed to add some safety margins.

AttributeValue ValidityConditions

1

-validityconditions

0..*

Platform UsageProfile AttributeDependency

Fig. 6. Validity conditions of attribute values.

3 Attribute Composition

So far, the attributes has been in focus, and the attributable elements have simply been
viewed as black-box units of design or implementation, to which attributes can be at-
tached. However, the existence of hierarchical component models that also include com-
posite components � components built out of other components � in�uences the ways
in which the values of attributes can be established.

Ideally, all attributes of a composite component should be directly derivable from
the attributes of its sub-components. While this is easily achievable for some attribute
types, e.g., static memory usage, others depend on a combination of many attributes of
the sub-components, or on software architecture details [5].

Component A

Component B Component C

• value: 15, ko
• source: estimation
• ...

• value: 25, ko
• source: composition
• ...

Static
Memory
Usage

• value: 15, ko
• source: measurement
• ...

Static
Memory
Usage

• value: 10, ko
• source: measurement
• ...

Static
Memory
Usage

+

Fig. 7. A composite component with co-existing explicit and derived attribute values.

Even for composable attributes, we argue that it is bene�cial to allow them to also be
stated explicitly for the composite component as such. In particular, this allows analysis
of the system also at an early stage of the development when the internals of a composite
component under construction are not fully known, or not fully analyzed with respect
to all attributes required to derive the attributes of the composite component.

The ability of the proposed attribute framework to store multiple values for a single
attribute permits explicitly assigned information to co-exist with information generated
by composition. To distinguish between them, the metadata �eld source can be given
the value composition to indicate that the value was derived from the sub-components.

Speci�cation of attributes of a composite is illustrated in Fig. 7. The composite
component has been explicitly given an estimated value for the attribute representing
static memory usage, and another value is provided by composition, which for this
attribute simply means a summation over the sub-components.

Attribute composition can be viewed as the responsibility of the development pro-
cess, i.e., it should specify when and how attribute values should be derived for compos-
ite components, possibly supported by automated functions in the development tools.
An interesting alternative, in particular for easily composable attributes such as static
memory usage, is to include the speci�cation of a composition operator in the attribute
type registry.

4 Attribute Con�guration and Selection

From the previous sections we realize that an attribute can have many values. The ques-
tion is which value of an attribute is of interest for a particular analysis, and what is the
criteria to select it? The second question, related to the consistency of de�nition when
using several attributes, reads: Which values of different attributes belong together?

This problem is addressed in version- and con�guration management, and we apply
the principles from Software Con�guration Management (SCM). SCM distinguishes
two types of versioning: (i) versions (also called revisions) that identify evolution of an

item in time. Usually the latest version of an item is selected by default, but also an old
version can be selected, for example using a time stamp (select the latest version created
before a speci�c time); and (ii) variants which allow existence of different versions of
the same item at the same time. The versions and variants can be selected according to
certain selection principles, such as: state (select the latest version with the speci�ed
state), version name, also called label or tag (select a version designed by a particular
name). The latter is explicit since version names are unique, while states are not.

We adopt these principles in management of attributes. Since an attribute can have
many values, each value is treated as an attribute version. A developer has two possibil-
ities of managing attribute versions.
Attribute navigation The possibility to navigate through different versions of an at-

tribute (i.e., through different values), and update the selected value (changing data,
or metadata information, or modifying the validity conditions).

Con�guration Values are selected, for one or several attributes, according to a given
selection principle (e.g., based on version name or timestamp).
The con�guration �lter is important as it can be applied to the entire system, or to

a set of components, and then all architectural elements expose particular versions of
the attributes that match the �lter. This is important when some system properties are
analyzed using consistent versions of several attributes (for example in an analysis of a
response time of a scenario performed on a particular platform).

The con�guration �lter is de�ned as a combination of attribute metadata and validity
conditions, and the use of the following keywords:
Latest The latest version.
Timestamp The latest version created before the speci�ed date.
Versionname A particular version designated by a name.

Metadata and validity conditions are equivalent from the selection point of view. In
the selection process the �lter de�nes constraints over metadata or validity conditions
in the same way. The difference is however in understanding the �ltering mechanism
and in helping the developer in recording possible problems if the validity conditions
that are �ltered are contradictory (for example if the developer speci�es to use attribute
values valid for �platform X� and �platform Y�).

The con�guration �lter is de�ned as a sequence of matching conditions combined
with AND or OR operators. The conditions are tested in order, and if a condition is not
ful�lled the next one is examined. The con�guration �lter is speci�ed in the following
format:

Condition1 [AND Condition2 . . .] OR
Condition3 [AND Condition4 . . .] OR

...
The conditions within a line are combined by AND operator, while lines are combined
with the OR operator. A concrete example of the con�guration �lter is the following:

(Platform: X) AND (Source: Measurement) OR
(Release 2.0) OR
Latest

• value: 10, kB
• version: 1
• timestamp: 080120#17:44
• source: estimation

• value: 15, kB
• version: 2
• timestamp: 080220#10:00
• source: measurement
• platform: X

• value: 30, clock cycle
• version: 2
• timestamp: 090105#15:00
• source: estimation

• value: 25, clock cycle
• version: 1
• timestamp: 090128#11:00
• source: analysis
• platform: X

Static
Memory
Usage

Worst
Case

Execution
Time

Static
Memory
Usage

• value: 15, kB
• version: 2
• timestamp: 080220#10:00
• source: measurement
• platform: X

Worst
Case

Execution
Time

• value: 30, clock cycle
• version: 1
• timestamp: 090128#13:00
• source: measurement
• platform: X

Component 2

Component 1

Fig. 8. Attribute value selection.

In this example the con�guration �lter will select �rst all values with validity condi-
tions matching �Platform: X� and with �Source: Measurement� in the metadata. If such
values exist, the latest one is selected; if not, the �lter will select the latest version la-
beled with �Release 2.0�. If no such version was found, simply the latest version of
the attribute will be selected. The selected attributes values are shown as gray boxes in
Fig. 8.

5 A Prototype for ProCom and the PROGRESS IDE

This section concretizes and exempli�es the proposed attribute framework in the context
of ProCom, a component model for distributed embedded systems [2, 3]. The charac-
teristics of this domain make component-based development particularly challenging.
For example, the tight coupling between hardware and platform, and high demands on
resource ef�ciency, are to some extent con�icting with the notion of general-purpose
reusable components.

ProCom applies the component-based approach also in early phases of develop-
ment, when components are not necessarily fully implemented. Already at this point,
however, it is bene�cial that the components are treated as reusable entities to which
properties, models and analysis results can be associated. Safety and real-time demands
are addressed by a variety of analysis techniques, in early stages based on models and
estimates, and later based on measurements, source code and structural information.

Table 1. Examples of attributes in ProCom.

Identi�er Attributable(s) Data format Documentation (short)

Static memory Component,
Subsystem Int

The amount of memory (in kB) stat-
ically allocated by the component or
subsystem.

WCET Service Int
The maximum number of clock cycles
the service can consume before termi-
nating.

Value range Port [Int;Int] Upper and lower bounds on the values
appearing on the port.

Resource model Subsystem External �le A REMES model specifying resource
consumption.

Ef�ciency is achieved by a deployment process in which the component-based sys-
tem design is transformed into executables that require only a lightweight component
framework at runtime.

This extensive analysis support throughout the design and deployment process re-
quires a large amount of information to be associated with various entities at different
stages of the development. Information that is of interest to more than one type of anal-
ysis, or which should be reused together with the entity, is captured by attributes. Con-
cretely, ProCom is based around two main structural entities � components and sub-
systems � both of which are attributable (as de�ned in Section 2.1). The attributable
elements also include component services, message ports, and communication chan-
nels, among others.

The initial set of attribute types is in�uenced by the envisioned analysis of timing
and resource consumption, and includes information about execution times, static and
dynamic memory usage, and complex behavioral models handled by external model
checking tools. Table 1 lists some of the attribute types used in ProCom.

To ease the development in ProCom, an integrated development environment called
PROGRESS IDE is being developed. It is a stand-alone application built on top of the
Eclipse Rich Client Platform, and includes a component repository, architectural editors
to independently design components and systems, a C development environment, and
editors to specify behaviour and resource utilization.

A variant of the proposed attribute framework is included in the PROGRESS IDE,
in the form of two plugins: one for the core concepts that are required e.g., by analysis
tools interested in, or producing, attribute values; and one for the graphical user inter-
face through which the developer can view and edit attributes. In its current version,
the prototype does not support validity conditions, nor is the selection mechanism fully
implemented. For a detailed presentation of the attribute framework prototype, see [8].

The graphical part of the framework consists of an additional tab in the property
view, where the attributes of the currently selected entity are presented. In Fig. 9, a
component is selected in the top editor, and its attributes (Resource model and WCET)
are shown in the property view below. In the depicted scenario, each attribute has two
values, distinguished by the metadata timestamp.

Fig. 9. The Attribute framework integrated in the PROGRESS IDE.

The attribute type registry is realized by an extension point that allows other plu-
gins to contribute new attribute types. In addition to the information speci�ed in Sec-
tion 2.3 (e.g., data format and documentation), the extension can also de�ne how the
new attribute type is handled by the graphical interface, by de�ning classes for viewing,
editing and validating its data.

6 Related Work

Although a lot of work has been done studying extra-functional properties in gen-
eral, few component models actually integrate support for specifying and managing
extra-functional properties. When this support exists, it concerns speci�c types of extra-
functional properties such as temporal properties or resource-related properties and is
intended for reasoning and predictability purposes.

The relation between extra-functional properties and functional speci�cations of
component models was �rst explicitly addressed in the Prediction-Enabled Compo-
nent Technology project (PECT) [9]. In PECT, extra-functional properties are handled
through �analytical interfaces� conjointly with analytical models to both describes what
are the properties that a component must have and the theory that should support the
property analysis.

In Robocop [10] the management of extra-functionality is done through the cre-
ation of models: a resource model describes the resource consumption of components
in terms of mathematical cost functions and a behavioural model speci�es the sequence
in which their operations must be invoked. Additional models can be created.

The support for extra-functional property proposed by Koala [11] handles only static
memory usage of components. The information about this property is provided through

an additional analytic interface which must be created and �lled for every components
existing in the design. It is not possible to add information about this property to al-
ready existing components. Moreover, through diversity spreadsheets, Koala proposes
a mechanism outside the analytical interface to deal with dependencies between at-
tributes.

Contrary to our approach, which allows various elements of a component model
to have attributes, these components models manage extra-functional properties on
component- or system-scale only.

The closest approaches to our concept of attributes are those which de�ne extra-
functional properties as a series of name-value pairs; for example Palladio [12] and
SaveCCM [13]. Palladio uses annotations and contracts to specify extra-functional prop-
erties concerned with performance prediction of the system under design. SaveCCM
follows the concept of credentials proposed by Shaw [1], where extra-functional prop-
erties are represented as triples 〈Attribute, Value, Credibility〉 where Attribute de-
scribes the component property, Value the corresponding data, and Credibility speci�es
the source of the value. Similarly to our registry of attribute types, these credentials
should be used conjointly with techniques to manage the creation of new credentials.

Other approaches not related to a particular component model have also been pro-
posed. Zschaler [14] proposes a formal speci�cation for extra-functional properties with
the aim to investigate architectural elements and low-level mechanisms such as tasks
and scheduling policies that in�uence particular extra-functional properties. In this
speci�cation, extra-functional properties are split between intrinsic properties which
are inherited from the implementation and are �xed, and extrinsic properties which are
properties which depend on the context. In [15], a speci�cation language for specifying
the quality of service of component-based systems is proposed. The language supports
speci�cation of derived attributes for composites, and links between attribute speci�ca-
tion and measurement.

Comparing with what exists for UML, our approach relates to the MARTE sub-
pro�le for non-functional properties [16] which extends UML with various constructs
to annotate selected UML elements. Similarly, extra-functional properties are de�ned in
a �library� as types with quali�ers and used in the models. Attribute values can be spec-
i�ed through a Value Speci�cation Language, which also de�nes value dependencies
between attributes through symbolic variables and complex expressions. Dependencies
involving more than one element are expressed through constraints. MARTE also ac-
knowledges the need for co-exisisting values from different sources, but the associated
information is not as rich as our metadata concept, and the selection mechanism is
not elaborated. However, MARTE does not support component-based development and
design space exploration, nor provide means to manage re�nement of non-functional
properties. Our work could gain in integrating the generic data type system and also
in integrating the value speci�cation language for supporting the speci�cation of the
attribute values, which are now left to the creator of the attributes.

Our approach also relates to work on service level agreements (SLA) in service-
oriented systems [17], although our motivation for capturing non-functional properties
comes mainly from the need to perform analysis, rather than as the basis for negotiation
of quality of service between a service provider and consumer. In the context of SLA,
non-functional properties are used in the formal speci�cation of services, de�ning, e.g.,

the availability of a service or the maximum response time, while we associate non-
functional properties with architectural entities to facilitate predictable reuse.

In summary, our approach differs from previous in focusing on reuse of attribute val-
ues, proposing an attribute concept allowing to have multiple values and a mechanism
to select among them, and encompassing context dependencies that must be satis�ed
for a value to be valid in a new context.

7 Discussion

Our purpose with this attribute model is to provide a structure for managing extra-
functional properties closely interconnected to the component model elements with
the long-term vision of supporting a seamless integration and assessment of extra-
functional properties in an automatized and ef�cient way. This structure is intended
to be used throughout a component-based development process from early modelling
to deployment steps (for an overview of this development process, see [18]). In partic-
ular, it should be possible for reused components with extensive, detailed information
to co-exist with components in an early stage of development, and for analysis to treat
the two transparently.

With regards to other models, our proposition is characterized by the support for
multiple attribute values. Although for some simple attributes such as number of lines
of code, one and only one value is correct at a given point in time, for other attributes
the value vary according to the methods or techniques used to obtain it, and it is not
always possible to say that one value is more correct than another. An example of such
attributes is the worst-case execution time for which different analysis techniques give
different values, all of which can be considered equally true in the characterization of
the attribute. For instance, a �safe� static analysis technique gives a higher number than
a probabilistic method but the con�dence in the fact that the value cannot be exceeded
is higher. For components in an early stage of development, even a simple attribute such
as lines of code could be estimated by several approaches, and thus have multiple values
that are equally correct at the time.

One possible way to manage multiple property sources would be to create a sepa-
rate attribute type for each variant of the property, treating e.g., estimated worst case
execution time and measured worst case execution time as two separate attribute types.
However, viewing them as a single attribute with multiple values facilitates analysis
that use attributes as input. For example, analysis that derives the response time of an
operation can be based on the execution time attribute without having to deal with the
different possible sources of this information. Thus, the same response time analysis
can be performed based on early execution time estimates, safe values from static code
analysis, or measurements. Multiple values also signi�cantly reduces the amount of
properties types which can be de�ned (in the case in which the methods provide results
for the same property) while preserving the source of information through the metadata
and the usage context through the ValidityConditions.

Another noticeable characteristic of our model is the speci�cation of validity con-
ditions for individual attribute values. Many attributes depend on factors external to the
entity, such as underlying middleware or hardware. When a component is reused in the
same, or similar, context, the attribute value can also be reused without restrictions. If,

on the other hand, the component is reused in a context that does not match the validity
condition, the value will not be used (e.g., in analysis) unless proceeded by a conscious
decision by the developer. For example, the value can be used with lower con�dence as
an early estimate, or fully reused if the developer believe that it still applies in the new
context.

The approach presented in the papers aims for increasing analysability and pre-
dictability of component-based systems. It however introduces a complexity in the de-
sign process. By having many attribute types and different versions of attributes, there
is a need for a selection of a �proper� attribute version. There is also a need for ensur-
ing consistency between attributes of different types. We propose that this is handled
outside the attributable entity, by a con�guration management-like mechanism in the
development environment. This allows the developer to specify which attribute version,
from a number of currently �correct� ones, that should be used in the analysis performed
at this point. The attribute version can be determined by different parameters, such as
speci�cation of the context (identi�ed by ValidityConditions).

The de�ned infrastructure for attributes facilitates a complete analysis that includes
analysis of different properties and relations between them, including a trade-off anal-
ysis. For example, by simple changes of the con�guration �lters, the process of the
analysis and presentation of the results for all attributes is simpler, and consistent.

8 Conclusion

Providing a systematic way of attribute speci�cations and their integration into a com-
ponent model is important for an ef�cient development process; it enables building
tools for attribute management, such as speci�cation, analysis, veri�cation, and �rst of
all ef�cient management of different attributes, or the same attributes attached to dif-
ferent components. It also facilitates integration of different analysis tools. This paper
proposes a model for attribute speci�cation which is expandable in the sense of allow-
ing speci�cation of new attribute types or new formats of attribute presentations. The
model distinguishes attribute types (de�ned by a name and a data type), attribute values
which include metadata and speci�cation of the conditions under which the attribute
value is valid. The main challenge in the attribute speci�cation formalization is to pro-
vide a �exible mechanism to cover a large variety of attribute types and their values,
and keeping them manageable. This is the reason why the model is extensible.

The proposed model has been integrated into ProCom, a component model aimed
for development of component-based embedded systems for which the modeling, es-
timation and prediction of extra-functional properties are of crucial importance. The
prototype, developed and integrated in the PROGRESS IDE, covers both introduction of
new attribute types and speci�cation of attributes for components and other modeling
entities, with data formats ranging from primitive types to complex models handled by
external tools.

Our plan is to further develop the model and the tool. The validity conditions can
be further formalized to enable automatic selection of attribute values depending on
the context in the development process. The same is true for the �lter selection mech-
anism that should enable the developers an easy selection process. Further, we plan to

develop an attribute navigation tool that will be able to show differences between dif-
ferent attribute values and validity conditions. Finally, a set of prede�ned attributes will
be speci�ed for the ProCom component model, which will improve the ef�ciency and
simplicity of attribute management.

Appendix A: Attribute Framework Meta-model

Below, the full attribute framework meta-model is presented.

AttributeValue
Data

1

-data

1

-id:String

Attribute

1

-values 1..*

-value: Integer

IntegerData

-value: String

StringData

-value: Object

RefData

Attributable

Component Interface

1 *

ConnectorOperation

1 *

ComponentInstance

* 1

-version:String
-timestamp:Date
-source:String
-accuracy:Float
-comment:Sting
-...

Metadata 1

-metadata

1

ValidityConditions

1

-validityconditions

0..*

Platform UsageProfile AttributeDependency

1

0..*

References

1. Shaw, M.: Truth vs Knowledge: The Difference Between What a Component Does and What
We Know It Does. International Workshop on Software Speci�cation and Design (1996) 181

2. Sentilles, S., Vulgarakis, A., Bure�s, T., Carlson, J., Crnković, I.: A component model for
control-intensive distributed embedded systems. In Chaudron, M.R., Szyperski, C., eds.:
Proceedings of the 11th International Symposium on Component Based Software Engineer-
ing (CBSE2008), Springer Berlin (October 2008) 310�317

3. Bure�s, T., Carlson, J., Crnković, I., Sentilles, S., Vulgarakis, A.: ProCom � the Progress Com-
ponent Model Reference Manual, version 1.0. Technical Report MDH-MRTC-230/2008-1-
SE, Mälardalen University (June 2008)

4. Crnković, I., Larsson, M.: Building Reliable Component-Based Software Systems. Artech
House, Inc., Norwood, MA, USA (2002)

5. Crnkovic, I., Larsson, M., Preiss, O.: Concerning Predictability in Dependable Component-
Based Systems: Classi�cation of Quality Attributes. In: Architecting Dependable Systems
III. Volume 3549 of LNCS. Springer Berlin (2005) 257�278

6. ISO/IEC: Information Technology - Software product quality - Part 1: Quality model. Re-
port: ISO/IEC FDIS 9126-1:2000 (2000)

7. Bertoa, M.F., Vallecillo, A.: Quality attributes for COTS components. In: 6th Inter-
national Workshop on Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE'2002. (2002)

8. �St�epán, P.: An extensible attribute framework for ProCom. Master's thesis, Mälardalen
University, Sweden (2009)

9. Hissam, S., Moreno, G., Stafford, J., Wallnau, K.: Packaging predictable assembly with
prediction-enabled component technology. Technical Report: CMU/SEI-2001-TR-024
(2001)

10. Maaskant, H. In: A Robust Component Model for Consumer Electronic Products. Volume 3
of Philips Research. Springer (2005) 167�192

11. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala component model
for consumer electronics software. Computer 33(3) (2000) 78�85

12. Koziolek, H.: Parameter dependencies for reusable performance speci�cations of software
components. PhD thesis, Oldenburg, University (2008)

13. 	Akerholm, M., Carlson, J., Fredriksson, J., Hansson, H., H	akansson, J., Möller, A., Pet-
tersson, P., Tivoli, M.: The SAVE approach to component-based development of vehicular
systems. Journal of Systems and Software 80(5) (May 2007) 655�667

14. Zschaler, S.: Formal speci�cation of non-functional properties of component-based soft-
ware. In: In: Proc. Workshop on Models for Non-functional Aspects of Component-Based
Systems. (2004)

15. Aagedal, J.Ø.: Quality of Service Support in Development of Distributed Systems. PhD
thesis, Faculty of Mathematics and Natural Sciences, University of Oslo (2001)

16. Espinoza, H., Dubois, H., Gérard, S., Pasaje, J.L.M., Petriu, D.C., Woodside, C.M.: Anno-
tating UML models with non-functional properties for quantitative analysis. In Bruel, J.M.,
ed.: MoDELS Satellite Events. Volume 3844 of LNCS., Springer (2005) 79�90

17. Bianco, P., Lewis, G.A., Merson, P.: Service level agreements in service-oriented architecture
environments. Technical Report CMU/SEI-2008-TN-021, Carnegie Mellon (2008)

18. Land, R., Carlson, J., Larsson, S., Crnković, I.: Towards guidelines for a development process
for component-based embedded systems. In: Workshop on Software Engineering Processes
and Applications (SEPA) in conjunction with the International Conference on Computational
Science and Applications (ICCSA), Springer (June 2009)

