
Transaction level control for application execution on theSegBus Platform

Tiberiu Seceleanu
ABB Corporate Research

Väster̊as, Sweden
tiberiu.seceleanu@se.abb.com

Ivica Crnkovic, Cristina Seceleanu
Mälardalen University

Väster̊as, Sweden
{ivica.crnkovic, cristina.seceleanu}@mdh.se

Abstract—We define here a simple, low level control pro-
cedure definition, to support application implementation on a
particular multiprocessor platform, namely the SegBus seg-
mented bus. The approach considers communication as data
package transactions from one device to another. It takes into
consideration the platform characteristics and requires details
of application partitioning and mapping on platform resources.
The dependency between operations are extracted from a SDF-
like representation, and the actual control code is produced
as “application-dependent” VHDL code, grouped in so-called
snippets, application and platform instance dependent. The
obtained code is inserted in a specific section of a (segment
or central level) arbiter. We illustrate the application of our
approach on a small implementation example.

I. I NTRODUCTION

The available transistor technologies made possible the
transition into the on-chip multiprocessing era. Alternative
system architectures are considered in order to cope with the
tremendous advances provided by ever smaller technology
figures. Distributed on-chip architectures, or multi-core, or
multiprocessor system-on-chip(MPSOC) paradigm gains
increasing support from system developers. MPSOC is seen
as one of the major means through which performance
gains are still to be sustained even after Moore’s law may
become decrepit [1]. Today, there is a relatively large set of
MPSOC platforms that answer, in their own way, to multi-
ple challenges raised by technology. Common interconnect
structures arenetwork-on-chip(NOC) [4], and segmented
busplatforms [6], [9].

To fully benefit from the features of MPSOC platforms,
has been a challenge. While there are still important issues
to be solved at the silicon levels, the most important impact
of the MPSOC era is projected on the application, and,
subsequently on the software designer. One of the reasons
behind the difficulties in MPSOC development is the lack
of design methodologies [1]. Due to environmental and
application requirements, the operation and communication
characteristics of the employed devices and architecturalin-
stances may vary greatly from system to system. Regardless
of platform, theoptimality of the design, in the sense of
application-platform matching, is always an issue. Platform
specific characteristics must be taken into consideration for
each application, in order to offer a good match.

The present work analyzes aspects related to design
methodologies for MPSOC, in the (restricted) context of the
SegBusplatform [9]. The main question that the research
addresses regards the definition of control structures and
their realization, in order to successfully implement a given
application on the distributed platform at hand. This is
especially necessary as the platform does not require (or
benefit) from an operating system solution. The answer is
based on a basic transaction specification that captures the
expected scheduling and arbitration policies. Segment and
application specific VHDLsnippetsare developed to be in-
cluded as modules in the arbiter specifications. They support
the granting process and provide mutual exclusion mech-
anisms for intra- or inter-segment transactions. We build
both virtual and actual parallel computing environments
by means of application-specific arbitration / scheduling
policies. A certain acceptable level of non-determinism can
be observed, contributing, however, to the actual implemen-
tation of parallelism. While the approach is expected to be
further improved with automated procedures, we offer here
the basic principles concerning the creation and (application)
semantics of the code.

II. SEGMENTED BUS ARCHITECTURE

A segmented bus is a bus which is partitioned into two or
more segments. Each segment acts as a normal bus between
modules that are connected to it and operates in parallel with
other segments. Neighboring segments can be dynamically
connected to each other in order to establish a connection
between modules located in different segments. Due to the
segmentation of this shared resource, parallel transactions
can take place, thus increasing the performance. A high
level block diagram of the segmented bus system which we
consider in the following sections is illustrated in fig. 1.

The SegBusplatform [9] is thought as having a single
central arbitration unit (CA) and several local segment
arbitration units (SA), one for each segment. TheSA of
each bus segment decides which device within the segment
will get access to the bus in the following transfer burst.

A. Platform communication.

Within a segment, theSAs arbitrating the access to local
resources. The inter-segment communication is a circuit



System

P core ALU

Memory

Block

ALU DSP

DSP
P

core SA

SA

SA

CA
BU

BU

BU

Figure 1. Segmented bus structure.

switched approach, with theCA having the central role. The
interface components between adjacent segments, theborder
units - BUs, are basically FIFO elements with additional
logic, controlled by theCA. The platform communication
is packet based. A brief description of the communication
is given as follows.

Whenever oneSA recognizes that a request for data trans-
fer targets a module outside its own segment, it forwards
the request to theCA. This one identifies the target segment
address and decides which segments need to be dynamically
connected for establishing a link from source to destination.
When this connection is available, the initiating device is
granted the bus access. It starts filling the buffer of the
appropriate bridge with the package data. The latter is taken
into account by the corresponding next segmentSA which
forwards it further. When the package reaches its destination
segment, the respectiveSA routes the package to the own
segment lines, to be collected by the targeted device.

A transfer from the initiating segmentk to the target
segmentn is represented in fig. 2. The figure stresses
the relatively long duration of an inter-segment transfer:
whenever the data has arrived in theBU FIFOs, such a
transaction collides with on-going local activities. Here, the
inter-segment transfer has to await the end of the local
communication.

Figure 2. Inter-segment package transfer.

B. Present design methodology

In the following, we give a brief description of theSegBus
design methodology [12] with the help of a (simplified)
stereo mp3 decoder (layer III) [8] application.
The Packet SDF. The specification of the application itself
starts with aPacket SDF(PSDF) model. PSDF is a cus-
tomized version of Synchronous Data Flow diagrams [7].
The approach is intended to facilitate the mapping of the

application to the architecture due to the similarity between
the operational semantics of the PSDF and that of the
SegBusarchitecture, thus allowing us to cope in a more
detailed manner with the communication characteristics of
our platform.

A PSDF description comprises two elements:processes
and data flows; data is organized in packets. Processes
transform input data packets into output ones, and packet
flows carry data from one process to another. Atransaction
represents the sending of one data packet by one source
process to another, target process, or towards the system
output. A packet flowis a tuple of two values,P andT .

The P value represents thetransaction count, that is, the
number of successive, same size transactions emitted by the
same source, towards the same destination; theT value is the
transaction index, that is, a relative ordering number among
the (package) flows in one given system.

Thus, a flow is understood as the number of packets issued
by the same process, targeting the same destination and
having the same ordering number.

The PSDF of a certain system is a sequence of
packet flows,< (P1, T1), . . . , (Pn, Tn) >, where ∀i, j ∈
{1, . . . , n} · Pi 6= Pj andT1 ≤ T2 ≤ . . . ≤ Tn.

The non-strictness of the relation betweenT values of the
above definition models the possibility of several flows to
coexist at moments in the execution of the system. In the
case of theSegBusplatform, this most often will describe
local flows, that is flows where the source and the destination
are situated in the same segment. However, considering
a segment number larger than 3,global flows, where the
source and the destination are in different segments, are also
possible to be characterized by the same ordering number.
In this case, it means that theCA, if possible, allows a
simultaneous execution of transactions from all the “same
number” global flows.
Application modelling. The specification starts with the
context diagram of the application, where the interactions
between the application (depicted as a process) and the
external environment are modeled in terms of input/output
data-flows. In subsequent steps the top-level process is
decomposed hierarchically into less complex processes and
the corresponding data-flows between these processes.

The decomposition process is based on designer’s expe-
rience and ends when the granularity level of the identified
processes maps to existent library elements or devices that
can be developed by the design team. We adopt the activity
diagrams of UML (ver. 2.0) to represent the PSDF. The mp3
example is given in fig. 3. In brief, processP0 represents
frame decoding,P1/P8 - scaling on the left / right channel,
P2/P9 - dequantizing left / right, etc. The represented flows
consider packets of 36 data items

The application is furtherpartitioned (processes to run
as software or hardware), and we obtain thepartitioned
application model(PAM). At the same time, decisions on



MP3 decoder

P3

P5

P14

P13P12P9 P11P10

P4

P8

P7P6P2P1

P0

36

1,5

16,6

15,2

15,4

15,2

15,3 16,7

16,7

1,3

1,3 15,4

1,4

1,4

16,1

1,5
16,8

16,6

15,3

16,1

16,8

32,0

9, 32

Figure 3. Application specification diagram (PAM).

the platform characteristics are taken (number of segments,
topology, etc) and grouped into theinitial platform model
(IPM). Having an application model and theSegBuscon-
figuration at our disposal, next, the PAM is mapped onto
the IPM. Considering a device-to-device communication
matrix, we use a dedicated utility, thePlaceTool [10], in
order to optimally place processing elements (one process
is identified here with one device) on the IPM. The result is
a segmented application model(SAM), where all the devices
are assigned to a given segment.

Thecomplete platform model(CPM) represents the SAM
mapped onto the IPM. Following this, and a selection of
library units, one finally reaches thesynthesizable platform
model(SPM), a “ready to deploy” stage.

However, the platform is not yet ready to execute the
application. This, as the arbitration policies are not yet spec-
ified. Such specification follows acode generation process
which we describe in the following section.

III. A RBITRATION VIA VHDL SNIPPETS

We remind the reader here that theSegBusplatform has a
two level arbitration mechanism. The segment level is con-
trolled by theSAs, while the inter-segment communication is
directed by theCA. Without considering details, the control
flow of both SAs and of theCA is represented in Fig. 4.

Arbitration

Grant

Access Control

Remove grant

Granted ?

Finished ?

No Yes

Yes

Start

No

Figure 4. Arbiter control flow.

Arbiter structure. TheSAs and theCA are VHDL defined
modules, with a similar structure. The code implements the
operational flow of Fig. 4, running with multiple parame-
ters as required by the platform specification. We see the
application as a set of correlated transactions that must be
ordered in their execution by the arbiters. The specification

of the schedule - as supplied by the PSDF representation,
is provided by a snippet introduced in theSA or the CA
codes, representing the projection of the application flow at
the respective level and location.

The intended structure of the arbiters is depicted in fig. 5.
The “Module SetUP” and the “Arbitration & Supervision”
blocks are concerned with application-independent proce-
dures, such as reading the input signals, selecting the granted
master, counting the number of transactions performed in a
granted activity, etc. Our intention here is to develop the
middle, “Arbitration specification” block, in such a way
that it will bring in the application specific requirements
for scheduling grant decisions. The resulting snippet will
characterize the given application as mapped on a given
instance of the platform.

The snippet is part of the actual arbiter VHDL code, and,
as such, will be executed. The addressed variables will be
read or written by the other arbitration code blocks.

Module SetUp

Application specification (snippet)

Arbitration & Supervision

Sequential execution

Figure 5. Arbiter code structure.

A. SA level arbitration

The segment level arbitration is similar to any traditional
bus situation. Activities in the segment are sequential, the
SA deciding which device can access the bus lines. Any
attachedBU behaves like a local master, but the respective
requests will have the highest priority. A master willing to
transfer data on the bus raises the request line, while it also
specifies the segment to which it wants to communicate. The
SA identifies the target and, if it is outside the own segment,
it forwards the request to theCA, otherwise it proceeds to
granting it (or not).
Code generation.The deliverable of the code generation
process is theapplication control code(ACC) which will
drive the SegBuscommunication strategy at runtime. The
ACC is basically a binary matrix where each line controls
the granting algorithm such that the “right” master obtains
the access to the bus. Next, we describe the generation of
the ACC content.



MP3 decoder

P3

P5

P14

P13P12P9 P11P10

P4

P8

P7P6P2P1

P0

36

1,5

16,6

15,2

15,4

15,2

15,3 16,7

16,7

1,3

1,3 15,4

1,4

1,4

16,1

1,5
16,8

16,6

15,3

16,1

16,8

32,0

9, 32

Segment 2
Segment 1

Segment 0

Segment 3

Figure 6. Segmented application model (SAM), four segment platform.

We start by considering each transfer operation as an
“execution line”. Such line is one element in the ACC, and
the number of lines corresponding to an application is passed
as a parameter (nrLines) to the arbiter. The transfers that can
be executed in parallel (they are independent of each other
- such asP1 → P2 and P8 → P9) are identified by the
second figure in the PSDF description.

Of importance for every granting action is the information
on request source (the master), the destination (the slave and
its segment number), and the number of packets the transfer
is to be repeated. We can extract the specified information
from the previously obtained SAM model.

Thus, we can already identify a few elements of the ACC,
as follows (all the variables are of a natural type).
• source. Identifies the requesting master.
• dest. Identifies the target slave.
• dest seg. Identifies the target slave’s segment.
• count. The number of packets the master has to send to the
specified slave (the first number in the PSDF description).

Considering the above, the schedule of the transfers in the
first segment (Segment 1 - fig. 6) looks like this:

execution line source dest dest seg count
(program index)

0 0 1 1 16

1 0 8 1 16

2 1 2 1 15

3 8 9 1 15

4 1 3 1 1

5 8 3 1 1

6 2 3 1 15

7 9 3 1 15

8 3 10 3 1

9 3 11 2 15

10 3 5 2 15

11 3 4 0 1

We model each execution line as values of a multidimen-
sional vectorprogramas in the VHDL snippet:

-- SA segment 1 snippet_1
program(0) <= (source => 0, dest => 1,

dest_seg => 1, count => 16);
program(1) <= (source => 0, dest => 8,

dest_seg => 1, count => 16);
program(2) <= (source => 1, dest => 2,

dest_seg => 1, count => 15);
...

The arbiter then “scans” the snippet and tries to select a
single line that will offer support in granting the bus. At this

stage, the only basis on which it can take this selection is
to check if the source master has requested the bus access,
towards the specified destination. If the master specified in
one of the execution lines above is granted access, the arbiter
decreases thecountvalue of the respective line.

Observe however, that multiple masters may request at a
given moment the access to the bus. For instance, the arbiter
is not able to differentiate from the program lines 1 and 2
above, as both masters 0 and 1 may have their request signals
raised. Additional information is thus necessary in order to
enforce the selection of a single master.

As a solution, we add anenabling / disablingmechanism,
materialized by additional execution line values:
• guard. Whenguard = 0, the respective line isenabled,
that is, the arbiter may consider it for selection. When
guard > 0, the line is disabled, that is, it cannot be
considered in the arbitration. The arbiter marks a line as
executedwhenever the respectivecountvalue reaches0, by
establishingguard = nrLines.
• enables. Whenever a line is markedexecuted, theSA will
enablethe line specified by this field, by subtracting1 from
it’s currentguard value. In order to become enabled, a line
with an initial guard > 1 will require that several previous
operations (execution lines) to have finished. If, for a given
line, enables = nrLines, then the arbiter does not try
to enable any other line, when the current one is marked
executed.

The application execution ends when all the lines are
marked executed. That is, we haveprogram index =
nrLines − 1 and, for all lines,guard = nrLines. This
triggers the arbiter to restore the initial values of the ACC
content. The ACC table becomes then:

execution line guard source dest dest seg count enables
(program index)

0 0 0 1 1 16 2

1 0 0 8 1 16 3

2 1 1 2 1 15 4

3 1 8 9 1 15 5

4 1 1 3 1 1 6

5 1 8 3 1 1 7

6 1 2 3 1 15 8

7 1 9 3 1 15 8

8 2 3 10 3 1 9

9 1 3 11 2 15 10

10 1 3 5 2 15 11

11 1 3 4 0 1 12



The VHDL code corresponding to the above table is:
-- SA segment 1 snippet_2
program(0) <= (guard => 0, source => 0, dest => 1,

dest_seg => 1, count => 16, enables => 2);
program(1) <= (guard => 0, source => 0, dest => 8,

dest_seg => 1, count => 16, enables => 3);
--------------------------------------------------
program(2) <= (guard => 1, source => 1, dest => 2,

dest_seg => 1, count => 15, enables => 4);
program(3) <= (guard => 1, source => 8, dest => 9,

dest_seg => 1, count => 15, enables => 5);
--------------------------------------------------
...
--------------------------------------------------
program(8) <= (guard => 2, source => 3, dest => 10,

dest_seg => 3, count => 1, enables => 9);
program(9) <= (guard => 1, source => 3, dest => 11,

dest_seg => 2, count => 15, enables => 10);
program(10) <= (guard => 1, source => 3, dest => 5,

dest_seg => 2, count => 15, enables => 11);
program(11) <= (guard => 1, source => 3, dest => 4,

dest_seg => 0, count => 1, enables => 12);

Observe that, at several moments in the execution of a
snippet, multiple ACC lines may be enabled. The arbiter
will consider the first one matching the condition, after
which exits the selection process. For instance, the firsts
two program lines above can be concurrently selected. In
practice, we see an interleaved execution of the two lines.

The execution flow of the arbitration activity, considering
the ACC, is illustrated in fig. 7.

Arbitration

Not granted

guard = 0Yes

No

source_request = ‘1’

No

Yes

Destination 

match?

Yes

No Next line

Decrease count count = 0 Yes

No

Operate on enable

program _index 

= nrLines-1 ?

No

Yes

Restore initial AAC

Grant

Parameter: nrLines

grant = 

nrLines?

No

Yes

Figure 7. Arbitration flow.

As an additional exemplification, we show below the ACC
of the segment 3. Here,RFL stands forRequest From Left,
that is, a request coming from the leftBU, identified as a
local master.

-- SA segment 3 snippet
program(0) <= (guard => 0, source => RFL, dest => 10,

dest_seg => 3, count => 1, enables => 1);
program(1) <= (guard => 1, source => 10, dest => 11,

dest_seg => 2, count => 1, enables => 2);

B. CA level arbitration

A similar approach is taken with respect to the VHDL
code to be generated for theCA operations. The difference
is that, instead of considering as source and destinations
the actual devices, theCA code only needs information
regarding the initiating segment and the target segment.

Hence, thesourcefield identifies the requesting segment,
and thedestfield is not necessary.

Consider a platform level allocation as in Fig. 8.

1, 0

30,0

1, 1
1,0

1,1

Segment 2

15,4P3

1,4

15,4

1,4

Segment 0

1, 5

1,4

P4

Segment 1

P5

1, 5

P1115,4

15,4 1,5

Segment 3

P10

1,5

1, 4

Figure 8. Global transfers view.

Following the specifications described in the previous
section, we obtain theCA ACC code as follows.

-- CA snippet
program(0) <= (guard => 0, source => 1,

dest_seg => 3, count => 1, enables => 4);
program(1) <= (guard => 0, source => 1,

dest_seg => 2, count => 30, enables => 5);
program(2) <= (guard => 0, source => 1,

dest_seg => 0, count => 1, enables => 3);
--------------------------------------------------
program(3) <= (guard => 1, source => 0,

dest_seg => 2, count => 1, enables => 5);
program(4) <= (guard => 1, source => 3,

dest_seg => 2, count => 1, enables => 5);

C. Discussion

When the platform is composed of four or more segments,
the CA may provide opportunities for actual parallel ex-
ecutions. In our example, once the first ACC line above is
markedexecuted, the fifth line becomesenabled. This offers
the real possibility that theCA allows for two simultaneous
transfers to execute, from segment 1 to segment 0 (line 3)
and from segment 3 to segment 2 (line 5).

The above is supported by the snippet parsing activity
performed by theSA arbitration module(s) and theCA
arbitration module. In the first case, once an ACC line is
considered for arbitration, the parsing stops, and the read
information is used by the procedures in the arbitration
block. As a consequence, at the level of segments, we
can only havevirtual parallelism, created by the alterante
selection of simultaneously enabled ACC lines. In the case of
the CA, the parsing does not stop after the first opportunity
is established; instead, additional possibilities are analyzed
until the whole code is parsed. As discussed, this allows for
actual parallel executions (inter-segment transfers).

Observe further that ACC lines with the same value (0)
for thegrant fields can be used for arbitration. However, the
selection is not determinisitic. Moreover, lines corresponding
to transfers with the same transaction index (from the PSDF
description) can be written in any order. This is the case
with the lines 8 to 11 ofSA segment 1 snippet2, for
instance. While this does not raise issues from an application
execution flow point of view, the designer may want to
provide a (possibly) more performance oriented solution,
based on the platform characteristics. In the mentioned case,



we have selected the described order such that the longer and
then the larger inter-segment transfers are favored.

The “snippet-based” approach to the control of transac-
tions on the platform can be (intuitively, at this moment)
extended to cover multiple applications to be deployed on an
instance of the platform. One can imagine information from
different application SAMs being interleaved in a “system
ACC”. Application dependent constraints will be further
necessary to define, wherever applicable, a priority scheme,
either at the segment (SA) or at the platform (CA) levels.

Related work. From a software perspective, Sutter and
Larus [11] observe that the most important obstacle in
mapping applications on MPSOC seems to be the difficulty
to reason about concurrency. Granularity of parallelism,
new language designs and better suited abstractions will be
strongly necessary in order to support MPSOC approaches.
However, the view stops somewhere high above the under-
lying hardware platform, hence does not address optimality
of the solution. Moreover, homogeneous (and even “general
use”) processing elements are somehow implied.

Van der Wolf et al. [13] introduce the concept of abstract
hardware - software interfaces, as a means to accommodate
application models on MPSOC architectures. The mentioned
study defines several types of such abstractions, suitable
for different kinds of application requirements. While the
proposed solution addresses well heterogeneous MPSOC
designs, the means of control are embedded in the mod-
ule code, thus hindering the use of off-the-shelf IPs. In
comparison, our approach places the control into the two
layers of arbiters, and builds a “glueing” control block that
can be adapted to any application, while the platform may
employ various IP block (the common requirements being
functionality and platform suitability).

Lahiri et al. [6] address design optimality for a segmented
bus platform similar to theSegBus. The architecture is, how-
ever,memoryless, different to our case, where the segments
are separated by storage devices. Moreover, the protocols
are fit to one application, and contentions can be extracted
following a higher level simulation. The approach introduces
a valuable simulation-based trace extraction, to indicatethe
communication patterns, considered consistent, after which
an algorithmic solution is found to the allocation problem.
Arbitration issues are not specifically addressed, and hence,
possible contention problems, precedence relations and con-
trolling aspects are not analyzed. The VHDL snippets, in our
case, solve both the contention and the precedence issues,
offering control over the platform level operations.

Bouchebaba et al. [5] deal with program complexity (loop
parallelization), targeting optimization of memory accesses.
As, most probably, memory blocks are to be accessed from
devices placed on the same segment, this may become a
“local” optimization issue and not platform specific. Thus,
our focus is on wider platform control challenges.

IV. CONCLUSIONS

We have hereby introduced the control procedures that im-
plement applications on a distributed platform, the SegBus.
The solution comes in the form of VHDL code snippets that
provide the transfer schedule, such that arbiters at segment
and platform levels organize the execution following the
application specification. The snippets are viewed as the
application-dependent part of the arbiter structure and are
based on PSDF representations.

The approach allows for virtual (interleaved) parallelism
at segment level, and actual parallelism at platform level.
Concurrency is modeled byenabling / disablingmecha-
nisms. Multiple applications can be modeled in this way, and
deployed on the same platform. Their corresponding ACC
snippets must be correlated such that individual application
flows are followed and timing constraints fulfilled.
Future work. We are at the moment building an automated
tool to provide the ACC specification out of UML based
application representations. Additional activities willfocus
on the construction of a formal support for application
mapping and scheduling, considering the transaction based
specifications introduced here. This is will be further useful
in the analysis of multiple application deployment on the
same platform solution.

REFERENCES

[1] International Technology Roadmap For Semiconductors.2007 Edition.
[2] www.omg.org.UML Superstructure Specification, v2.0.
[3] The Intl. Forum on Application-Specific Multi-Processor SoC.

http://www.mpsoc-forum.org/
[4] A. Jantsch and H. Tenhunen (Eds.)Networks on ChipKluwer

Academic Publishers, 2003.
[5] Y. Bouchebaba et al.MPSoC Memory Optimization Using Program

Transformation. ACM Trans. Des. Automat. Electron. Syst. 12, 4,
Article 43 (September 2007)

[6] K. Lahiri, A. Raghunathan, S. Dey.Design Space Exploration for
Optimizing On-Chip Communication Architectures. IEEE Trans. on
Computer-aided Design og Integrated Circuits and Systems,Vol. 23,
No. 6, June 2004. pp. 952-961.

[7] E.A. Lee and D.G. Messerschmitt.Synchronous data flow.IEEE
Proceedings, Sept. 1987.

[8] C. Park, J. Jung, S.Ha.Extended Synchronous Dataflow for Efficient
DSP System Prototyping.Design Automation for Embedded Systems
Journal,Springer, Vol. 6, N. 3, 2002, pp. 295-322.

[9] T. Seceleanu. The SegBus Platform - Architecture and Com-
munication Mechanisms. Journal of Systems Architecture,
doi:10.1016/j.sysarc.2006.07.002

[10] T. Seceleanu, V. Leppänen, O. Nevalainen.Improving the Perfor-
mance of Bus Platforms by Means of Segmentation and Optimized
Resource Allocation.To appear (2009), in the EURASIP Journal of
Embedded Systems.

[11] H. Sutter and J. Larus.Software and the concurrency revolution.
ACM Queue, Vol. 3, No. 7, pp 5462, September 2005.

[12] D. Truscan, T.Seceleanu, H. Tenhunen, J. Lilius.A Model-Based
Design Process for the SegBus Distributed Architecture.The 15th

Annual IEEE Intl. Conference on the Engineering of ComputerBased
Systems, 2008. pp. 307 - 316.

[13] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer,G. Essink.
Design and programming of embedded multiprocessors: an interface-
centric approach.The Intl. Conference on Hardware/Software Code-
sign and System Synthesis, 2004, pp.206- 217.


