
Analysis of Software Evolvability in Quality Models

Hongyu Pei Breivold1, Ivica Crnkovic2
1ABB Corporate Research, Industrial Software Systems, 721 78 Västerås, Sweden

hongyu.pei-breivold@se.abb.com
2Mälardalen University, 721 23 Västerås, Sweden

ivica.crnkovic@mdh.se

Abstract

For long-lived systems, there is a need to address

evolvability explicitly. For this purpose, we have in our

earlier work developed a software evolvability

framework based on industrial case studies. With this

as input in this paper we analyze several existing

quality models for the purpose of evaluating how

software evolvability is addressed in these models. The

goal of the analysis is to investigate if the elements of

the evolvability framework can be systematically

managed or integrated into different existing quality

models. Our conclusion is that although none of the

existing quality models is dedicated to the analysis of

software evolvability, we can enrich respective quality

model through integrating the missing elements, and

adapt each quality model for software evolvability

analysis purpose.

1. Introduction
For long-lived industrial software, the largest part of

lifecycle costs is concerned with the evolution of

software to meet changing requirements [2]. In this

context, software evolvability has been recognized as a

fundamental element for increasing strategic decisions,

characteristics, and economic value of the software

[16]. It describes “the ability of a system to

accommodate changes in its requirements throughout

the system’s lifespan with the least possible cost while

maintaining architectural integrity” [15]. We have also

observed the need for greater system evolvability from

various cases in industrial context [5, 7], where

evolvability was identified as a very important quality

attribute that must be maintained.

This paper first recaps briefly the software

evolvability framework from our earlier work [5, 6].

Using this as input, we explore some well-known

quality models in coping with software architecture

evolution and analyzing software evolvability.

Different quality models have been studied: McCall

[12], Boehm [3], FURPS [9], ISO 9126 [10] and

Dromey [8] in an attempt to identify in these models

the aspects that are deemed important for software

evolvability, as well as the aspects that are missing for

managing software evolvability. The rest of this paper

is structured as follows. Section 2 presents briefly our

software evolvability framework. Section 3 describes

the well-known quality models and discusses their

relevance to software evolvability analysis. Section 4

concludes the paper.

2. Software Evolvability Framework
We have seen at ABB examples of different

industrial systems that often have a lifetime of 10-30

years. These systems are subject to and may undergo a

substantial amount of evolutionary changes. For such

long-lived systems, there is a need to address

evolvability explicitly during the entire lifecycle, and to

prolong the productive lifetime of the software systems.

We have in our earlier work [4-6], established a

software evolvability framework illustrated in Figure 1.

Figure 1. Software Evolvability Framework

The framework is used for software evolvability

analysis through the establishment of a software

evolvability model [5] and a method for assessing

evolvability [6]. In addition, software evolvability is

affected by a set of change stimuli. These stimuli are

domain-dependent and have influence to different

characteristics of evolvability. We characterize the

stimuli in relation to technological and business

perspectives; while technological perspective is mostly

related to the system architecture, business-type of

change stimuli can be very different and can

significantly change the system requirements, and

influence the technological stimuli.

2.1 Software Evolvability Model

We outline in [5] a software evolvability model that

provides a basis for analyzing and evaluating software

evolvability, as illustrated in Figure 2. This model

regards software evolvability to be a multifaceted

quality attribute [15], and refines software evolvability

into a collection of subcharacteristics that can be

measured through a number of corresponding

measuring attributes.

Figure 2. Software Evolvability Model
The evolvability model and identified evolvability

subcharacteristics are the results from case studies [5,

6] and are valid for a class of long-lived industrial

software-intensive systems that often are exposed to

many, but in most cases evolutionary changes. Such

systems are characterized by a number of dependability

requirements (such as reliability, availability, possibly

safety), compliance to different standards, complexity,

and a combination of software and systems

requirements. For these types of systems we have

identified the following subcharacteristics:

Analyzability describes the capability of the software

system to enable the identification of influenced parts

due to change stimuli; Architectural Integrity

describes the non-occurrence of improper alteration of

architectural information; Changeability describes the

capability of the software system to enable a specified

modification to be implemented and avoid unexpected

effects; Extensibility describes the capability of the

software system to enable the implementations of

extensions to expand or enhance the system with new

features; Portability describes the capability of the

software system to be transferred from one

environment to another; Testability describes the

capability of the software system to validate the

modified software; Domain-specific Attributes are the

additional quality subcharacteristics that are required

by specific domains.

3. Software Evolvability in Quality Models
In quality models, quality attributes are decomposed

into various factors, leading to various quality factor

hierarchies. Some well-known quality models are

McCall [12], Dromey [8], Boehm [3], ISO 9126 [10]

and FURPS [9]. These models are intended to evaluate

the quality of software in general; none of them is

specialized in or dedicated for evolvability analysis. It

is thus likely that certain evolvability subcharacteristics

are disregarded or not explicitly addressed in these

models. We discuss each quality model regarding their

relevance to the software evolvability analysis, and

investigate if elements of the evolvability framework

can be integrated into existing quality models.

3.1 McCall’s Quality Model

McCall’s quality model [12] defines and identifies

the quality of a software product through addressing

three perspectives: (i) Product operation is the

product’s ability to be quickly understood, operated

and capable of providing the results required by the

user. It covers correctness, reliability, efficiency,

integrity and usability criteria. (ii) Product revision is

the ability to undergo changes, including error

correction and system adaptation. It covers

maintainability, flexibility and testability criteria. (iii)

Product transition is the adaptability to new

environments, distributed processing together with

rapidly changing hardware. It covers portability,

reusability and interoperability criteria.

Not all the software evolvability subcharacteristics

are explicitly addressed in this model. Analyzability is

not explicitly included as one of the perceived aspects

of quality. However, as the model is further detailed

into a hierarchy of factors, criteria and metrics, some of

the measurable properties and metrics are related to the

achievement of analyzability, e.g. simplicity and

modularity. Architectural integrity is not covered in the

model. The integrity mentioned in the model describes

the protection of the program from unauthorized

access, and does not have the same essence as what we

mean by architectural integrity. Moreover, none of the

factors or quality criteria in the model is related to

architectural integrity with respect to the understanding

and coherence to the architectural decisions. This

model is proposed for general application systems, and

thus the domain-specific attributes are not explicitly

addressed in the scope of the model.

3.2 Boehm’s Quality Model

Boehm’s quality model [3] represents a hierarchical

structure of characteristics, each of which contributes

to the total quality. The model begins with the

software’s general utility, i.e. the high level

characteristics that represent basic high-level

requirements of actual use. The general utility is

refined into a set of factors and each factor is

composed of several criteria which contribute to it in a

structured manner. The factors include: (i) portability;

(ii) utility which is further refined into reliability,

efficiency and human engineering; and (iii)

maintainability which is further refined into testability,

understandability and modifiability.

Neither in the Boehm quality model is all the

software evolvability subcharacteristics explicitly

addressed. Analyzability is partially addressed through

the characteristic understandability, which describes

that the purpose of the code is clear to the inspector.

However, none of the factors or measurable properties

describes the capability to analyze the impact at the

software architecture level due to a change stimulus.

Architectural integrity is not covered in the model.

Extensibility is not perceived as an explicit quality

aspect, but is instead aggregated within the scope of

characteristic modifiability, which describes that the

code facilitates the incorporation of changes, once the

nature of the desired change has been determined.

Domain-specific attributes are not explicitly addressed

in the model.

3.3 FURPS Quality Model

The characteristics that are taken into consideration

in FURPS model [9] are: (i) Functionality includes

feature sets, capabilities and security; (ii) Usability

includes human factors, consistency in the user

interface, online and context-sensitive help, wizards,

user documentation, and training materials; (iii)

Reliability includes frequency and severity of failure,

recoverability, predictability, accuracy, and mean time

between failure (MTBF); (iv) Performance prescribes

conditions on functional requirements such as speed,

efficiency, availability, accuracy, throughput, response

time, recovery time, and resource usage; (v)

Supportability includes testability, extensibility,

adaptability, maintainability, compatibility,

configurability, serviceability, installability, and

localizability/internationalization.

Architectural integrity is not covered in the model.

None of the characteristics or subcharacteristics in the

model is related to architectural integrity with respect

to the understanding and coherence to the architectural

decisions. Moreover, one disadvantage of this model is

that it fails to take account of the software portability

[13]. Domain-specific attributes are not addressed

either in the model.

3.4 ISO 9126 Quality Model

ISO 9126 [10] specifies and evaluates the quality of

a software product in terms of internal and external

software qualities and their connection to attributes.

The model follows the factor-criteria-metric model [12]

and categorizes software quality attributes into six

independent high-level quality characteristics:

functionality, reliability, usability, efficiency,

maintainability and portability. Each of these is broken

down into secondary quality attributes, e.g.

maintainability is refined into analyzability,

changeability, stability, testability and compliance to

standards, conventions or regulations.

The ISO 9126 quality model does not explicitly

address all the software evolvability subcharacteristics.

For instance, architectural integrity is not considered.

None of the quality characteristics or subcharacteristics

in the model is related to architectural integrity with

respect to the understanding and coherence to the

architectural decisions or strategies. Moreover,

extensibility is not addressed as an explicit

characteristic to represent future growths in this model.

One may also argue if the enhancement-with-new-

features type of change is embedded within the types of

modifications defined in the quality model, i.e.

corrections, improvements or adaptations of the

software to changes in environment, requirements and

functional specifications.

3.5 Dromey’s Quality Model

Dromey [8] proposes a working framework for

evaluating requirement determination, design and

implementation phases. The framework consists of

three models, i.e. Requirement quality model, Design

quality model and Implementation quality model. The

high-level product properties for the implementation

quality model include: (i) Correctness evaluates if

some basic principles are violated, with functionality

and reliability as software quality attributes; (ii)

Internal measures how well a component has been

deployed according to its intended use, with

maintainability, efficiency and reliability as software

quality attributes; (iii) Contextual deals with the

external influences on the use of a component, with

software quality attributes in maintainability,

reusability, portability and reliability; (iv) Descriptive

measures the descriptiveness of a component, with

software quality attributes in maintainability,

reusability, portability and usability.

In this model, characteristics with regard to process

maturity and reusability are more explicit in

comparison with the other quality models. However,

not all the evolvability subcharacteristics are explicitly

addressed in this model. Analyzability is only partially

covered within the contextual and descriptive product

properties at individual component level, though none

of these product properties describes the capability to

analyze the impact at the software architecture level

due to a change stimulus. Architectural integrity is not

fully addressed despite the design quality model takes

into account explicitly the early stages (analysis and

design) of the development process. The focus of the

design quality model is that a design must accurately

satisfy the requirements, and be understandable,

adaptable in terms of supporting changes and

developed using a mature process. However, it is not

sufficient for capturing architectural design decisions.

Extensibility is not addressed as an explicit

characteristic to represent future growths. Testability is

implicitly embedded in the internal product property.

Domain-specific attributes are not addressed.

Moreover, one disadvantage of the Dromey model is

associated with reliability and maintainability, as it is

not feasible to judge them before the software system is

actually operational in the production area [14].

3.6 Evolvability Analysis in Quality Models

None of the available quality models explicitly

considers all the subcharacteristics of software

evolvability. Table 1 summarizes the evolvability

subcharacteristics coverage in each quality model,

indicating if a certain evolvability subcharacteristic is

partially, implicitly, explicitly addressed or not

addressed at all in a quality model.
Table 1. Evolvability Coverage in Quality Models

not

present

not

present

not

present

not

present

not

present

Domain-specific

Attributes

implicitexplicitexplicitexplicitexplicitTestability

explicitexplicitnot

present

explicitexplicitPortability

implicitimplicitexplicitImplicitexplicitExtensibility

explicitexplicitexplicitexplicitexplicitChangeability

partiallynot

present

not

present

not

present

not

present

Architectural

Integrity

partiallyexplicitexplicitpartiallypartiallyAnalyzability

DromeyISO9126FURPSBoehmMcCallEvolvability
Subcharacteristics

not

present

not

present

not

present

not

present

not

present

Domain-specific

Attributes

implicitexplicitexplicitexplicitexplicitTestability

explicitexplicitnot

present

explicitexplicitPortability

implicitimplicitexplicitImplicitexplicitExtensibility

explicitexplicitexplicitexplicitexplicitChangeability

partiallynot

present

not

present

not

present

not

present

Architectural

Integrity

partiallyexplicitexplicitpartiallypartiallyAnalyzability

DromeyISO9126FURPSBoehmMcCallEvolvability
Subcharacteristics

In general, we can claim that when using these

quality models, additional attention should be given in

the analysis of architectural integrity and domain-

specific attributes. Most of the quality models, except

the Dromey’s quality model, are more driven towards

the final coded software product, and do not take into

account explicitly the analysis and design stage [11].

Thus, these models are not focused on the capability of

capturing architectural design decisions for consistency

of architectural integrity. Additionally, most of these

models are generic models and are proposed for

general application systems [1]. Thus, the domain-

specific attributes are outside the scope of the quality

models since they cannot be generalized. However, as

various quality models cover a wide range of different

quality characteristics, some of these quality

characteristics might become domain-specific attributes

in a certain context. Therefore, our claim is that

domain-specific attributes need to be explicitly

identified and considered in the evolvability analysis in

relation to change stimuli. Changeability, portability

and testability are addressed explicitly in most of the

quality models. Extensibility is explicitly addressed in

McCall and FURPS models, but not in the others.

By analyzing the evolvability subcharacteristics

coverage in the quality models, we can recognize the

subcharacteristics that are overlooked in a quality

model. In this way, we can enrich respective quality

model through integrating the missing elements, and

adapt each quality model for software evolvability

analysis purpose.

4. Conclusions
In order to address evolvability explicitly, we have,

in our earlier work, developed a software evolvability

framework based on industrial case studies. From the

analysis of several quality models we can conclude that

although none of these quality models is dedicated to

the analysis of software evolvability, we can enrich

respective quality model through integrating the

missing elements, and adapt each quality model for

software evolvability analysis purpose. This means that

several evolvability subcharacteristics need to be

explicitly considered, and that several additional

system properties must be analyzed, e.g. architectural

integrity and domain-specific attributes in relation to

possible change stimuli.

References
[1] Arun, S., Rajesh, K., and Grover, P.S.: ‘Estimation of

quality for software components: an empirical approach’,

SIGSOFT Softw. Eng. Notes, 2008, 33, (6), pp. 1-10

[2] Bennett, K.: ‘Software evolution: past, present and

future’, Information and Software Technology, 1996.

[3] Boehm, B.W., et al.: ‘Characteristics of software quality’

(North-Holland, 1978.)

[4] Breivold, H.P., and Crnkovic, I.: ‘Using Software

Evolvability Model for Evolvability Analysis’,

Mälardalen University, 2008.

[5] Breivold, H.P., Crnkovic, I., and Eriksson, P.J.:

‘Analyzing Software Evolvability’, COMPSAC 2008.

[6] Breivold, H.P., Crnkovic, I., Land, R., and Larsson, M.:

‘Analyzing Software Evolvability of an Industrial

Automation Control System: A Case Study’, ICSEA2008.

[7] Christian, D.R.: ‘Continuous evolution through software

architecture evaluation: a case study’, J. Softw. Maint.

Evol.: Res. Pract, 2006, 18, pp. 351-383

[8] Dromey, R.G.: ‘Cornering the Chimera’, IEEE Software,

1996, 13, (1), pp. 33-43

[9] Grady, R.B., and Caswell, D.L.: ‘Software metrics:

establishing a company-wide program’ (Prentice-Hall,

Inc. Upper Saddle River, NJ, USA, 1987.)

[10] ISO9126: ‘ISO/IEC 9126-1, International Standard,

Software Engineering. Product Quality – Quality Model’

[11] Losavio, F., Chirinos, L., and Perez, M.A.: ‘Quality

models to design software architectures’, Technology of

Object-Oriented Languages and Systems 2001.

[12] McCall, J.A. et al.: ‘Factors in Software Quality’ (NTIS,

1977.)

[13] Ortega, M., Pérez, M., and Rojas, T.: ‘Construction of a

Systemic Quality Model for Evaluating a Software

Product’, Software Quality Journal, 2003.

[14] Rawashdeh, A., and Matalkah, B.: ‘A New Software

Quality Model for Evaluating COTS Components’,

Journal of Computer Science, 2006, 2, (4), pp. 373-381

[15] Rowe, D., Leaney, J., and Lowe, D.: ‘Defining systems

evolvability-a taxonomy of change’, Change, 1994.

[16] Weiderman, N.H., Bergey, J.K., Smith, D.B., and Tilley,

S.R.: ‘Approaches to Legacy System Evolution’, 1997.

