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Abstract

In this paper we present a new simplified natural
language that makes use of spatial relations between
the objects in scene to navigate an industrial robot for
simple pick and place applications. Developing easy to
use, intuitive interfaces is crucial to introduce robotic
automation to many small medium sized enterprises
(SMEs). Due to their continuously changing product
lines, reprogramming costs are far more higher than
installation costs. In order to hide the complexities
of robot programming we propose a natural language
where the use can control and jog the robot based on
reference objects in the scene. We used Gaussian kernels
to represent spatial regions, such as left or above. Finally
we present some dialogues between the user and robot to
demonstrate the usefulness of the proposed system.

1 Introduction

Companies producing mass market products such
as car industries have been using industrial robots for
machine tending, joining, and welding metal sheets for
several decades. Thus, in many cases an investment
in industrial robots is seen as a vital action that will
strengthen a company’s position in the market since such
investments will increase their productivity. However,
in small medium enterprises (SMEs) robots are not
commonly found. Even though the hardware cost
of industrial robots has decreased, the integration and
programming costs make them unfavorable for many
SMEs. In order to make industrial robots more favorable
in the SME sector, the issues of flexibility has to be
resolved. Typically for those SMEs, that have low volume
production and frequently changing applications, it is
quite expensive to afford a professional programmer or
technician, therefore a human robot interaction solution
is strongly demanded in order to let the user to program
these systems in an intuitive way. Using a high-level
natural language, which hides the low-level programming
from the user, will enable a task expert who has
knowledge in manufacturing process to easily program

∗This work described in this paper is supported by Robotdalen and
Sparbanksstiftelsen.

the robot and let the robot to switch between previously
learned tasks. Thus, the goal is to eventually bring robot
programming to a stage where it is as easy as teaching the
task to a new member of the work team.

One of the problems associated with this idea is that,
how the structure of the language can be kept as simple as
in daily spoken language, while maintaining the accuracy
and precision required for industrial applications. Our
daily spoken language is extremely powerful. There
are several ways of saying even the simplest thing. A
conversation in a natural language is strongly connected
to individuals involved, the context and even the culture.
All aspects obviously mean that we simply can not treat a
full natural language as a mean of communication with an
industrial robot system.

There is a large and diverse literature on spatial
representation in humans and other species. Landau and
Jackendoff [8] gives a detailed overview of the spatial
terms and cognition. They divide spatial processing into
object recognition, and specifying paths and locations. In
this paper we focus on object recognition and specifying
locations for selection of object in cluttered scenes.

Spatial relations have been widely used in mobile
robot navigation. Skubic et al. [10] investigated
the use of spatial relationships to establish a natural
communication between people and robots. Using
linguistic spatial terms, a high-level spatial description is
generated which describes the overall environment, and
a detailed description is also generated for each object.
Their work mostly focuses of positions of the objects in
the environment, relative to the robot. Tellex and Roy [12]
uses a set of spatial routines to develop a speech controlled
wheelchair that understands high level natural language
commands. In their work the same command may lead to
different actions depending on the environment. Gorniak
et al. [9] propose a situated language to be used in
computer games, where the semantic meaning of the
commands depend on the situation.

Spatial commands is used to select objects in the scene
as well. Sugiyama et al. [11] in their work, propose
a system that indicates to a listener which object is
currently under consideration by using pointing gestures
and reference terms as ‘this’ and ‘that’. In cases of
ambiguity they use other properties of the objects, such
as color, as a reference term. Kurnia et al. [7] makes use



of spatial commands in order to help the robot to select
or recognize certain objects in the scene. In their work
they make use of color, relative size and relative shape as
input features. The system asks the user questions in way
minimize the least number of questions. Depending on
the user’s answer the system eliminates irrelevant objects
and asks a new question to the user until the number of
possible objects are reduced to one.

In the case of industrial robots Haage et al. [4]
developed a prototype that can manipulate a robot through
speech interface. In their work they provide commands for
jogging the robot, and adding and removing control points
to define and refine a path.

Spatial terms and languages have often found
application area in mobile robotics, where the world can
be represented in two dimensions (2D) and the movement
of the robot is restricted in this 2D plane. However
industrial robots can move in a three dimensional (3D)
world, and yet capable of more complex movements
compared to mobile robots. The purpose of this paper
is to introduce spatial relations in to the world of
industrial robot programming, with the hope of making
the programming phase more easy and intuitive.

The organization of the paper is as follows; In Section
2 we give an overview explanation of proposed system
architecture; automatic speech recognition, simulation
environment, spatial terms and the reasoning system. In
Section 3 we present test cases and Section 4 provides
discussion and conclusion.

2 Architecture

The proposed system has an speech driven interface.
The user commands via voice and receives feedback from
the robot in speech format. The commands are parsed and
passed to the reasoning system which eventually drives
the robot to perform the necessary actions and commands.
requested by the user. Figure 1 presents an overview of the
system architecture.

2.1 Speech Recognition
In this project we used Microsoft Speech API 5.1

(SAPI 5.1) [6], both to recognize the commands given
to the robot and to synthesize speech in order to give
feedback to the user. Even though the automatic speech
recognition (ASR) engines has come a long way, they are
still far from perfect. SAPI 5.1 functions in two modes;
Free dictation mode, and command & control (C&C)
mode. In free dictation mode, the ASR engine recognizes
word in any context, therefore recognition accuracy is low,
because the engine is selecting from a huge vocabulary
set, that is not constrained by any grammar rules. On the
other hand command and control mode works through a
set of grammar rules and a limited vocabulary therefore
increasing the accuracy of recognition process. In this
project C&C mode is used with a hand generated grammar
rules, based on the natural language processing (NLP)

Figure 1. Block diagram of the proposed system.

grammar to listen to user commands. For providing
feedback to the user, the text to speech (TTS) functions
of SAPI is used.

2.2 Visual Simulation Environment and High Level
Movement Functions

A simulation environment which can simulate a
general 6 Degree of Freedom (6DoF) industrial robot
has been created in an OpenGL environment in order
to simulate the behavior of the robot in a noise free
environment where objects’ positions and orientations are
known. Besides providing a quick test environment, it
also acts as a visual feedback to the user. The simulator
wraps around basic movement functions of ABB RAPID
[1] language. Basically the simulator provides a similar
programming interface as the RAPID language provides.
Upon calling the robot manipulation functions including
basic movement and gripper functions, these calls are first
tested for reachability along the path. If a point along the
path is not reachable, or the orientation requested is not
achievable or if the robot exceeds its joint limitations in
any part of the path then the test fails. If the reachability
test fails then the command is rejected from the queue,
otherwise it is added to the job queue and the path of the
tool center point is shown in the OpenGL environment.
When the “execute” function is called all the functions in
waiting the queue are played in the simulator and if the
application is connected to an ABB controller then the
queued functions are converted to a RAPID module and
send to the controller and executed automatically in the
virtual or the real controller.

On a higher level of abstraction, commands issued
by the user, such as picking up an object is realized



through a set of low-level movement functions. Given
the position, the orientation of an object and the gripping
pattern to be used in order to pickup that object,
the Higher Level Movement Commands generates the
necessary sequence of low-level movement functions for
approaching, grasping and retracting. If any of the
sub commands fail the test for reachability in the given
grasping pattern, then the high level command and all
the sub commands are revoked from the execution queue.
A failure code is returned back to the reasoning system,
where it can ask the user to select another object to pick
or try to pick the object using a different grasping pattern.

2.3 Spatial Terms
In English, representation of an objects

position/location requires three elements; the object
to be located or namely figure, the reference object and
their relationship [8]. The figure and the reference object
are encoded as noun phrases and the spatial relationship
between these objects are encoded as prepositional
phrases that clarifies in which region the figure is in, in
respect to the reference object.

In our daily spoken language prepositional terms often
have a vague meaning. The meaning of spatial terms
such as; left or behind cannot be divided into discrete
regions, it is difficult to determine where the notion of
left starts and where it ends. The size as well as other
structural properties of the figure or the reference object
affects the meaning encoded in the sentence. For example
two pencils can be regarded as, one being on the left of the
other one if the distance between them is relatively small,
like e.g. 30-40cm. On the other hand two automobiles that
are meters apart from each other can be regarded as next
to each other as well. Also depending on the context such
spatial notions can lose their meaning or helpfulness if the
spatial relation between the reference and the figure are
relatively weak or dominated by other spatial relations.
For example in Figure 2, it can be easily seen that the
green object is on the right of the red object. But it is not
clear that one can call the blue object to be on the right of
a red object even though it lies on the same vertical line
as the green object. In this case behind region dominates
over right region.

In order to overcome the complexities stated above
we represent the spatial regions using Gaussian kernels,
hence turning the problem into a multi-class classification
problem. The object is assigned to a region represented by
the respective Gaussian kernel based on its Mahalanobis
distance to the kernel [3]. If the objects Mahalanobis
distance is close to both kernels such as left and front
then it is assigned to both. Figure 3 shows four Gaussian
kernels overlaid around a reference object. According
to the figure the green object is on the right of the red
object and the blue object is in front of the red object. A
multivariate Gaussian kernel can be expressed as,

N(µ, Σ) =
1

(2π)N/2|Σ|1/2
e(−

1
2 (x−µ)>Σ−1(x−µ)). (1)

Figure 2. Example showing weak spatial relations.

The Gaussian kernel is governed by two parameters,
the mean µ and covariance matrix Σ. One can change
the size of the region governed by the respective Gaussian
by adjusting the values. This is very advantageous for
representing spatial terms. The mean and the covariance
can be adjusted depending on the size of the reference
object. If the reference object is the workbench or the
robot itself then larger values for mean and covariance
should be selected, if the reference object is work-objects
or relatively small sized tools then smaller values should
be used for the mean and the covariance. Also by
adjusting the shape of the Gaussian kernel, it is possible
to give more importance to some attributes of the spatial
term. For example for a sentence like “Pick up the objects
from the container on your left”, an sphere like ellipsoid
would give a better representation of the region, where as
for a sentence like, “Put the objects along a line” a very
elongated ellipsoid would be more advantageous.

Figure 3. A view from the top of the table, overlaid
with gaussian kernels representing left, right, behind and
infront regions for the red object.

In this paper we implemented the spatial terms; behind,



in front of, to the left of, to the right of, over, and under.
A full list of prepositions in English can be found in
Landau’s work [8].

2.4 Knowledge Base and Reasoning System
Reasoning system functions as the system brain. While

interpreting the speech commands given by the user
it plans and calls necessary motor functions to realize
the commands. For this project a Prolog engine has
been selected to implement the knowledge-base and
the reasoning system [13]. Prolog is a declarative
programming language with its roots in logic. A call
to Prolog with a predicate becomes a statement that the
Prolog engine tries to proof. Sometimes a call can results
in more than one solution. This means that the Prolog
engine can return more than one solution to a given query
while it tries to prove the correctness of a statement. We
found this unique property of the language as well as its
simple grammar valuable enough to motivate its use as
system brain in this project.

As objects are inserted into the simulation
environment, or recognized by vision system which
is currently under development, information about the
objects are asserted into the knowledge-base. Only
structural relations about the objects are kept in the
knowledge-base, where as, position and orientation are
not stored. Spatial relations between the objects are also
not stored in the knowledge base. They are computed
by the visual simulation environment on demand. This
makes the knowledge-base more manageable otherwise
the number of relations between the objects would grow
exponentially as the number of objects increase. The most
important predicate in the knowledge-base is the property
predicate. It is used to define structural information of the
objects. It can also be used to define the type of an object;
such as defining whether the object is a workbench or
a manufacturing object or of any other object type [2].
Based on these types different actions can be allowed on
this object. A manufacturing-object can be flagged as
safe for picking up, where as a workbench should not be
picked up. An example definition for a red, cylindrical,
manufacturing object is as follows:

object(object12). % object identifier
property(object12, color, red).
property(object12, shape, cylindrical).
property(object12, type, manufacturing).

Also sub-locations for these objects can be defined as a
property. Defining sub-regions are also defined similarly
to the objects. Their location and orientation relative to
the parent object are kept in the simulation environment.
A cylindrical hole that is a sublocation of object20 can be
defined as;

object(object21).
property(object21, sublocation, object20).
property(object21, shape, cylindrical).

Spoken command Purpose
pick up Picks up a specified object
put selection/it Puts the object
apply selection Ends selection phase
it is/they are Declares new properties for the

selection
execute Begins executing the path
cancel Clears out the execution queue

Table 1. List of commands to control the robot.

The reasoning system receives text input from
automatic speech recognition engine and converts it
into Prolog predicates using the set of grammar rules
defined by the Natural Language Processor (NLP).
These generated predicates capture information about the
structural properties of the object such as color, shape
or any other property that is defined for that object type
as well as cues revealing relative spatial positions of the
objects in the scene. A command like: “Pick up a red
object which is behind a cubic object.”, would translate to
Prolog predicates as:

object(X), property(X, color, red),
object(Y), property(Y,shape, cubic),
spatialpos(X,Y,behind), pickup(X).

Based on the predicates generated, the reasoning
system searches for possible matches. As the user gives
new descriptions, the engine updates its search criteria
with this new information until only one object remains
or the user approves the selection by saying “Apply to
selection”. In case of an ambiguity or an error the
reasoning system initiates a call to the text to speech
engine and asks the user to clarify the situation.

In the proposed language there are commands for
object manipulation, object selection, and managing
the job queue. Table 1 shows the list of available
commands in command set. Manipulation and declaration
phrases are followed by a noun phrase describing the
structural properties of the object or they are followed
by prepositional phrase, giving a reference object and its
spatial relation with the figure object.

3 Experimental Results

In order to demonstrate the usefulness of the proposed
system, we designed test cases that utilizes the industrial
robot for simple palletizing/depalletizing tasks. The
simulated testing environment consists of one ABB IRB-
140 robot, one workbench and two conveyor bands on
each side of the robot. Figure 4 presents a view of
the robot and the working environment around it. In
Figure 4 the robot is asked to pick up all blue objects
and put them on the conveyor to the left of the robot.
Over the workbench 18 manufacturing-objects with 4
different colors and 2 different shapes and a cassette
with 4 holes of 2 different shapes are present. Figure 5
shows a detailed layout of the objects on the workbench.



The Gaussian kernel parameters for objects are entered
manually depending on the size of the object, so that the
kernels span a region in space twice the width of the object
in the relevant direction.

During the experiments we asked the users to select
and pickup a specific manufacturing object from the
workbench and put it either in the cassette or over one
of the conveyor-bands by trying to define the object using
the spatial commands. Since the testing environment is
a simulation and we have no information about where
the user is the commands are given in reference to the
robot itself, which means that the user should adjust the
commands as if he/she is standing in the place of the robot.

Figure 4. Screenshot of the simulator where the robot
is asked to pick and place all the blue objects over the
conveyor band.

Figure 5. Layout of the objects

A dialog between the robot and a user is given below.
In this given case the user is trying to pick up the green
object (G11) on the upper left corner. The user does not
specify the color or the shape of the object but only relies
on its spatial relation with the surrounding objects.

User: Pick up an object.
Robot: I see five objects that fit the description.

Which one?
User: It is behind a blue object.
Robot: I see two objects that fit the description.
User: It is on the left of a blue object.

(One object remains in the selection
therefore a path is generated and showed
to the user in the simulation window)

User: Execute
Robot: (picks up the desired object)
User: Put it over the conveyor band
Robot: I see two objects that fit the description.

Which one?
User: It is on the left of you.
User: Execute
Robot: (Leaves the object over the conveyor

band.)

A second case to present is when the user wants to
select the yellow object (Y16) which has the exact same
immediate and secondary neighbors as the yellow object
(Y13). It is, thus, more difficult to describe the object
through its immediate neighbors, however its relation with
the cassette in the middle can be used to select the object,
since the cassettes Gaussian kernels are big enough to
cover the area for the object (Y16). The dialog is given
below:

User: Pick up a yellow object.
Robot: I see five objects that fit the description.

Which one?
User: It is behind a red cylindrical object.
Robot: I see two objects that fit the description.
User: It is on the left of a cassette.
User: Put it in hole three
User: Execute
Robot: (picks up the desired object and puts it in

hole three).

On a higher level of abstraction the user may operate on
a selection of objects. He/she may pick up all the green
objects on the workbench and put them into a matching
hole in the cassette. This kind of a dialog is more close
to palletizing or assembly. The cassette may be seen as an
object to be assembled or a palette where the objects are
to be put into. The dialog between the user and the robot
is given below;



User: Select all red objects.
Robot: I see four objects that fit the description.
User: Apply selection.
Robot: Four objects are selected.
User: Put selection into cassette.
User: Execute
Robot: (picks up the selected objects and puts

them into the cassette by respecting the
shapes)

4 Discussion

In this paper, we demonstrated a high-level restricted
language in order to command an industrial robot for
simple pick and place applications. The proposed
language can handle attributes of the objects in the
environment, such as shapes, colors, and other features
in a natural way, it is also equipped with functions for
handling spatial information enabling the user to be able
to relate objects spatially to static objects, robots, table,
etc. as well as to other work objects.

The proposed language may seem limited in its
vocabulary and command set, however, as in the case
with natural languages it is possible to describe complex
patterns through use of the proposed command set.
The system allows the user to expend the knowledge
base as well. Thus, it is possible to add previously
unknown properties of manufacturing objects as well as
new manufacturing objects.

In the near future we intend to increase the scope of
this language used for human robot interaction as well
as introduce a gesture based system that relies on hand
movements to overcome some of the problems introduced
by using a speech driven system [5] . In the current
model there are no distinctions between two objects
inside a spatial region, e.g. if two objects fulfill the
relationship “to the left” it is not straightforward to say
which one is “more to left” or “closer to” the reference
object. This problem can be solved by changing the
size of the Gaussian kernels iteratively. Yet another
restriction in the current language is that solely the objects
are represented, neither the workbench or other types of
objects, such as manufacturing machines and tools used in
the manufacturing process are represented. Adding these
objects into the model is essential. A typical command
using the workbench would be “Move all red objects to the
upper left corner of the workbench” or “Clear the center
of the workbench”. In most cases there will be a CNC
machine in the robot cell, thus there is a natural need
of increasing the vocabulary with words associated with
such machines. Sensors are becoming an essential part
of a industrial robots and a robot cells. We are in the of
a process of integrating a 3D camera with the industrial
robot. The 3D camera system will be integrated with the
proposed simulation environment. Obviously there are a
number of challenging research questions associated with

this approach. The environment created in this way will
consist of virtual as well as real objects and machines,
tools. Handling these relationships will require a richer
language. Another essential part of the work that is in
front of us is to test the system on broad range of users.
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