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Abstract— Developing easy to use, intuitive interfaces is
crucial to introduce robotic automation to many small medium
sized enterprises (SMEs). Due to their continuously changing
product lines, reprogramming costs exceed installation costs by
a large margin. In addition, traditional programming methods
for industrial robots is too complex for an inexperienced
robot programmer, thus external assistance is often needed.
In this paper a new incremental multimodal language, which
uses augmented reality (AR) environment, is presented. The
proposed language architecture makes it possible to manipulate,
pick or place the objects in the scene. This approach shifts the
focus of industrial robot programming from coordinate based
programming paradigm, to object based programming scheme.
This makes it possible for non-experts to program the robot
in an intuitive way, without going through rigorous training in
robot programming.

I. INTRODUCTION

For several decades large companies producing mass-
market products have used industrial robots in, e.g. machine
tending, welding, and palletizing. Car manufacturers have
led this trend, and thus have been an important market
for industrial robots. Today industrial robots are perceived
as being mass-market products on their own. Prices for
industrial robots are pressed down, similar to other mass-
market products. At the same time the technology behind
them is getting better and better for every new generation.
Despite this trend, in small medium enterprises (SMEs)
robots are not commonly found. Even though the hardware
cost of industrial robots has decreased, the integration
and programming costs make them unfavorable for many
SMEs. In order to make industrial robots more common
within the SME sector, industrial robots should easily be
(re)programmable by engineers that work in the production
line at a manufacturing plant. Our goal is to give an industrial
robot the ability to communicate with its human colleagues
in the way that humans communicate with each other, thus
making the programming of industrial robots more intuitive
and easy. Consequently, a human-like interaction interface
for robots will lead to a richer communication between
humans and robots.

Traditional way of programming industrial robots is to
use the teach pendant to sequentially move the robots tool
center point (TCP) through the desired points. However the
traditional programming method suffers in three ways: (i)
Jogging an industrial robot with 6 degrees of freedom with a

joystick with two degrees of freedom is very time consuming
and cumbersome; (ii) the operator doesn’t get any visual
feedback of the process result before the program has been
generated and executed by the robot; (iii) many iterations are
needed for even the simplest task [17].

A view of the working environment is presented to
user through a unified system. The system overlays
visuals through augmented reality to the user and also it
receives inputs and commands through a high level multi
modal language. Such an approach would speed up the
programming phase of the industrial robot and also would
utilize the intuitive process knowledge of the operator.

Augmented reality (AR) is a term used for overlaying
computer generated graphics, text and three dimensional
(3D) models over real video stream. Virtual information is
embedded into the real world, thereby augmenting the real
scene with additional information. Augmented reality proved
to be useful in several industrial cases, for visualizations.
Olwal et al. [14] used 3D optical visualization techniques
to visualize the process of a CNC machine to the operator.
AR also provides great opportunities for Human Robot
Interaction (HRI), and has been widely used in tele-robotics
because AR allows the operator to work as if he is present
at the remote working environment [7], [13], [9]. However
AR can be very beneficial for programming industrial robots
as well whether it is remote or local. Through wearable
computers and head mounted displays it is possible to
visualize and generate paths through a pointing device [17].
In their work Chong et al. [6] visually tracked marker to
define collision-free paths for the industrial robot to follow.
Once the path is generated a virtual robot simulates the
behavior of the robot on the screen.

Communication between humans is a multimodal and
incremental process [5]. Multi modality is believed to
produce more reliable semantic meanings out of error-
prone input modes, since the inputs contain complementary
information, which can be used to remove vague information
[16]. For example, if the speech recognition system has “blue
object” and “brown object” as its two best hypotheses, the
wrong hypothesis can be easily ruled out if there is support
from vision system that there is no blue object in the scene.

It is also accepted that some means of communication
are more error-prone to special type of information than
the others [16]. For example, in an industrial environment,



saying ”weld this to that” while pointing at the two objects,
is more reliable than saying “weld the 3cm-wide 5cm-long
piece to the cylinder which is close to the red cube”. That’s
because the speech channel is more error-prone when it
comes to defining spatial information, while visual channel
is more reliable in this case. Studies have shown that humans
tend to use visual channel more often when spatial data is
involved [15].

Multimodal nature of human communication and benefits
of using such systems in HRI has made it an interesting
field of research for years. Since the introduction of “Media
Room” in Richard A. Bolts paper [4], many other systems
have been implemented which are based on multimodal
interaction with the user. Researchers have employed
different methods in implementation of such systems [5], [8],
[11]. All multimodal systems are common in the sense that
they receive inputs from different modalities and combine the
information to build a joint semantic meaning of the inputs.

On a higher lever of abstraction, speech modality alone
has been used by Pires [18] to command an industrial robot
through switching between preprogrammed asks. Also Marin
et al. [13], [12] combined both augmented and virtual reality
environments together with higher level voice commands to
remote operate an industrial robot.

In this paper a context dependent multi modal language
which is backed up by an augmented reality interface that
enables the operator to interact with an industrial robot
is proposed. The proposed language architecture makes it
possible to manipulate, pick or place the objects in the
scene. Such a language shifts the focus of industrial robot
programming from coordinate based programming paradigm
to object based programming scheme.

The rest of the paper is organized as follows: In Section
II we give an overview explanation of proposed system
architecture; augmented reality module, reasoning system
and the multi modal language. In Section III we present test
cases and Section IV provides discussion and conclusion.

II. ARCHITECTURE

The hardware components of the proposed system is
shown in Figure 1 and include a 6-Degree of Freedom
(DoF) ABB IRB140 arm, a pneumatic-gripper, a robot
controller, a desktop-PC, a desktop based display and a
stereo camera. The software components behave as follows;
The augmented reality module acts as a front and to
the user together with synthesized speech, the incremental
multimodal language module is responsible for receiving
inputs and semantically analyzing them, and finally the
reasoning system is responsible for turning the given
commands into actions.

A. Augmented and Virtual Reality environments

The augmented reality (AR) module presented in this
paper is an extension of the virtual reality (VR) and
simulation environment described in [3]. The augmented
reality environment consists of the virtual models of the
physical entities that are around the robots operating range,

Fig. 1. Hardware ad software components of the system.

such as other robots, work-objects, tools, work-benches, etc.
The objects and the robots are defined in local coordinate
systems, therefore allowing the system to represent drop
zones and gripping locations in object coordinates. Parent
child relations are also kept for every object and their
sub-objects. When an object is put into another object or
over another object, it becomes its child object, and its
coordinates and orientation are represented in its parents
coordinate system, which enables the system to track the
objects location. If the parent object is moved then all the
child objects follow the parent object.

By putting the camera on the gripper of the robot
and making the OpenGL camera follow the real camera,
the virtual simulation environment can be used as an
augmented fronted to the operator. As will be explained
in the multimodal language section, the augmented reality
environment allows the user to select the objects as well
as drop-locations in the scene. Also by having the camera
on top of the robot, the full working range of the robot
can be supervised through a single camera. While reducing
the installation costs, the single-camera solution also adds
flexibility to the system. In this work the camera is used by
the user to monitor the workbench. Based on the view from
the camera the user gives instructions to the robot. Note that,
the camera is not used for object recognition even though this
possibility exists, since the primary objective of this work is
to evaluate the multimodal language.

Augment reality can also be used as a mean for visual
feedback to the user. It can be used to display text
information about selected objects such as coordinates and
orientations as well as display meta information associated
with that object such as shape, color, weight, etc. Also
the path planned by the robot is overlaid with the scene
image from the camera. Figure 2 shows a screenshot of
the augmented reality front end. On the left side of the
image the AR part could be seen. Yellow lines shows the
path to be taken by the robot, red cubes hints the user that
there will be a gripper operation and the selected objected is
highlighted with red color. On the right side of the image,
system messages and automatically generated RAPID code



is shown.

Fig. 2. Screenshot of the system. Yellow lines represents the path
the to be taken by the robot and the red cubes represent a gripper
action, whether grip or release.

Since the camera is mounted on the gripper of the robot,
it is not always possible to visualize the paths to be taken
by the robot, because the robot is not fully visible in the AR
view. In such cases it is easier for the user to switch to virtual
reality view, observe the path to be taken by the robot and
switch back to AR view. Figure 3 shows two screenshots of
the system, one in AR and the other in VR view.

Fig. 3. Screenshots from Augmented and Virtual reality operating
modes of the system.

B. Reasoning System

Reasoning system functions as the control unit of the
robot. While interpreting the speech commands given by
the user, it plans and executes necessary motor tasks to
realize the commands. For this project a Prolog engine has
been selected to implement the resoning system and the
knowledge-base [19].

The reasoning system is tightly connected with the
simulation environment. With the low-level movement
and manipulator commands offered by the simulation
environment the reasoning system is responsible for
sequencing these functions to support higher level
functionality which works at the level of objects instead of
coordinates.

Upon calling the robot manipulation functions including
basic movement and gripper functions, these calls are first
tested for reachability along the path. If a point along the path
is not reachable, or the orientation requested is not achievable
or if the robot exceeds its joint limitations in any part of the

path then the test fails. If the reachability test fails then the
command is rejected from the queue, otherwise it is added to
the job queue and the path of the tool center point is shown in
the AR environment. When the “execute” function is called
all the functions in the execution queue are translated in
to RAPID [1] code and sent to the controller as a RAPID
module where it is executed automatically.

As objects are inserted into the simulation
environment,information about the objects are asserted
into the knowledge-base. Only structural relations about the
objects are kept in the knowledge-base, where as, position
and orientation are not stored. Within this framework the
objects around the robot are put into five sub categories: (i)
manufacturing parts; (ii) movable tools; (iii) non-movable
machines used by robots and/or humans; (iv) working
benches; (v) miscellaneous objects [2]. Upon recognition,
each object in the scene is assigned to one of the relevant
categories or sub-categories derived from these main
categories, while inheriting the default properties of this
category. Additional properties can also be defined that
is only relevant to this object or base properties can be
overridden. Assigning the objects to a functional group is
very useful in several ways. It limits the operations that are
allowable on the objects, therefore eliminating the risks of
the robot to perform irrelevant tasks, such as; picking up
a workbench or trying to palletizing a CNC machine. It
increases the overall robustness and security of the system.

On a higher level of abstraction, commands issued by
the user, such as picking up an object is realized through
a set of low-level movement functions. Given the position,
the orientation of an object and the gripping pattern to be
used in order to pickup that object, the necessary sequence
of low-level movement functions for approaching, grasping
and retracting is generated.

C. Multimodal language

The main characteristic of proposed system approach for
language analysis is its incremental disposition. This means
that the system will process different modality inputs as they
are being received and builds up the syntactic and semantic
representation of those inputs in an incremental fashion. It
also means that the process will continue in higher levels
of the reasoning system such as action planner and dialog
manager. These parts will start to build up a plan and a
dialog response (if needed) to incompletely perceived inputs.
Our current system involves two different modalities however
its design allows for integration of additional without the
need for a change in the main system. This can be achieved
by developing two external components for each modality.
One of the components will be responsible for gathering
input information and sending it to the central parser and
the other one is responsible for parsing the inputs of the
specific modality upon request from the central parser. These
modality-specific parsers act on a unified multimodal input.
Since users tend to employ multimodal commands mostly
for spatial control [15], a speech/mouse system as the first
step for a multimodal interface has been developed. In this



setup the user shares the view of the robots camera and can
select objects or locations by clicking on the view while
giving verbal commands. In a complex setup which may
contain several objects, such commands make a more robust
system compared to a system which only acts verbally [16].
Speech recognition is performed by Microsoft Speech API
5.0 (SAPI) in command and control mode. In this mode
SAPI relies on external grammar definitions in XML format.
Since the grammar needs to address all the modalities, a
multimodal grammar definition language has been created
named “3MG”. Grammars written in this format can directly
be used by the parsers or can be converted to modality-
specific grammars when required. The latter has been the
case only for SAPI, since it is an external component and its
requirements should be fulfilled. For each modality there is
a modality-specific parser, which collaborates with the main
parser to build up the final syntactic outcome of the inputs.
Grammar language and parsers are discussed in the coming
sections, followed by a brief description of the approach for
modality fusion.

1) Grammar definition language: The grammar definition
language is a modified version of Johnstons [11], [10]
unification based grammar. Our modifications give us the
freedom of having as many modalities as needed and also
help us to implement an easier interface for communicating
with Prolog language interpreter which is used by semantic
analysis and action planning systems. It also supports
definition of optional and wildcard phrases. Optional phrases
are special inputs which may be perceived but are not
an integral part of a sentence. Wildcards have the same
definition but they differ from optional phrases in the way
that we have no hint on what they may be and therefore
accept any input in their place. These are two features of
SAPI which may help us in implementation of a more robust
system. Figure 4 shows a sample of the grammar language
which is named 3MG. Braces define optional phrases and
colons define different modality inputs.

Fig. 4. A sample of the 3MG language.

2) Multimodal Parser: The multimodal parser is capable
of receiving inputs from unlimited number of input

modalities and extracts the syntactic meaning of them by
using dedicated parsers for each modality. The fusion takes
place at the same time with the help of multimodal grammar
graph. Figure 5 shows a graphical representation of the
subsystems involved.

Fig. 5. Multimodal parser and its subsystems in our speech/mouse
setup.

The central parser constructs a grammar graph based on
the 3MG grammar definition file. The graph nodes contain
required data for different modalities as well as additional
information regarding optional and wildcard phrases. This
design allows for in-time fusion of inputs from different
modalities.

Central parser also holds a pool of hypotheses. All the
hypotheses in the pool have multimodal representations
and therefore can be used by modality-specific parsers if
needed. The central parser checks hypotheses pool after each
incremental parse session and removes invalid hypotheses
from the pool. It also looks for any fully parsed sentence
and terminates the parse session upon finding one.

Dedicated modality parsers are modality-specific parsers
which have access to the hypotheses pool. When a new parse
request is received from the central parser, they try to fit the
new input in the current active hypotheses and update them
accordingly.

Input registrars are other modality-specific objects which
are responsible for gathering input data, packing and sending
it to the central parser.

Both input registrars and modality-specific parsers are
designed in a way that implementing new modalities can
be done with ease and without requirement of any change in
the core components of the system.

3) Modality Fusion: The central parser is also responsible
for combining different modality inputs into a single final
statement. The multimodal grammar graph has the key role
in this process. As mentioned before, the grammar supports
definition of optional phrases in it. This means that all
the modality-specific parsers have the ability to skip over
optional phrases if they are not perceived. The central parser
takes advantage of this feature for modality fusion.

When a new input arrives in central parser, it checks the
hypothesis pool to get a list of next possible phrases. If
the next phrase is of the received input type the parse will
continue in the modality-specific parser. But, in cases where
the next phrase is of other modality than the one perceived,
then the central parser makes that node as an optional node



and therefore allows the modality-specific parser to continue
its parser with the newly received data.

This approach allows for later integration of skipped
phrases without any strict limitations on time-span and order
of inputs for different modalities. Limitations only apply
when the inputs belong to previous utterance or have no
effect on the final outcome.

Another benefit from this design is its flexibility. Users
will not have to comply with the exact definition of the
grammar and the system accepts inputs if they have pauses
in their speech. For example in order to give a command for
moving an object to a new place, any of the following is
acceptable:

• speech:“move”, click on object, click on location
• speech:“move”, click on location, click on object
• speech:“move it”, click on object, click on location

III. EXPERIMENTAL RESULTS

To demonstrate the usefulness of the proposed system, a
test scenario has been created. The subject have been asked
to pick and place wooden blocks according to the tasks given
to them (Fig. 6).. The palette has been designed so that it
has 10 drop-locations. Nine of them are organized as a 3x3
matrix, whereas the tenth drop-location is places further away
from the others towards right. In each location the robot can
place a wooden block. The wooden blocks themselves have a
drop-location over their top so that the blocks can be stacked
on top of each other. The experiments are carried out with
four subjects. Two of them are expert robot programmers,
and two are engineers not having previous experience in
robot programming. Preceding each experiment the subjects
received oral instructions on what they will perform; similar
to how it would be in an industrial environment. The goal
was also to keep the instructions to a minimum, and let the
subject discover the system by testing it. Oral instructions
were, thus, limited to 5 minutes for each subject.

A. Experiment 1

As an introductory warm up task, the subjects were
asked to stack the wooden blocks to make a stack. In
this experiment the subject would choose a drop-location,
and move wooden blocks placed in other drop-locations to
the target drop-location. Note that the target drop-location
does not have to be empty prior to the experiment, i.e.
it may be occupied by one or more wooden blocks as in
Figure 7. The purpose of this task is to make the users
familiar with the commands and the operation logic of
the system. Once the users have gained experience, they
easily moved the wooden blocks around, and build stacks
with them. After roughly 5 minutes of testing the subjects
felt that they can interact with the robot easily. In this
initial experiment there were no differences between the
performance of experienced robot programmers, and other
subjects. Thus, all four subjects find the interaction the robot
straightforward using the instructions.

Fig. 6. Experimental setup consisting of.

Fig. 7. Setup for experiment 2, where the users were asked to build
stacks of wooden blocks.

B. Experiment 2

In this experiment the subjects perform a more complex
task. They were asked to sort the numbered wooden blocks
in sequential order starting from WoodenBlock 1 top-left to
WoodenBlock 9 bottom-right as shown in Figure 8. Prior
the experiment wooden blocks are placed randomly on top
or each other, or on empty drop-locations. This task is more
challenging than Experiment 1, since it requires a temporary
storage area. In addition, the problem solving skills of the
subjects plays an important role, since different strategies
could be utilized for solving the problem. The simple and
naive way would be to swap the blocks using the empty space
on the wooden board one by one. However, this requires
many code execution operations. A more efficient way to
solve the problem would be to stack the wooden blocks
in an ascending order on the empty space on the board
while freeing up the target locations and then move them
into the desired drop-locations. Using such a method it is
possible to give multiple pick ad place commands in one
execution batch. Which method to be followed depends on
the experience and intuitive of the operator.

This simple task demonstrated how subjects just



Fig. 8. Setup for experiment 2, where the users were asked to sort
the numbered wooden blocks in an ascending order.

immediately after the start of the experiment constructed a
mental model of the problem and solved it. Obviously, based
on background the solutions differed considerably. One thing
was common to all subjects though. They all could solve the
problem as they planned initially, and without feeling that
they are limited by the system.

IV. CONCLUSION

The proposed system demonstrates an alternative method
for interaction between industrial robots and humans. Using
natural means of communication is definitely an interesting
alternative to well-established robot programming methods.
These methods require considerable larger amount of time,
and perhaps more importantly, a programming expert. In
the experiment it is demonstrated that efficient collaboration
between the robot and its human peer can help to clarify
vague situations easily. Multimodal language seems to allow
the system to understand the user’s intentions in a faster
and more robust way. There is no doubt that additional tests
have to be carried out to fully test the system. It is, however,
evident that the users with robot programming background
do not feel that they are restricted due to the interaction
method. Users with no experience in robot programming
experience that they are as fast at robot programming as
their expert counterparts.

This language also makes it possible for the user to assist
the robot. This means that some of the computational load
is shifted to the user. One example is when the user pointing
out regions in robot’s operational space through the clicking
modality. There is, thus, no need for a lengthy description of
the location. In addition the clicking modality also help to
reduce the search space of the object recognition module (not
demonstrated here). Thus, with multimodal communication
both the robot and the operator can help each other in the
way they are best at. This opens new possibilities for human-
robot interaction in industrial environments, and hence is
an evidence for the usefulness of this paradigm shift. In

the near future work the multimodal language and the AR
environment will be integrated even further. The system will
also make use of the camera in object recognition as well as
spatial reasoning.
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