
Multiprocessor Synchronization and Hierarchical Scheduling∗

Farhang Nemati, Moris Behnam , Thomas Nolte
Mälardalen Real-Time Research Centre

P.O. Box 883, SE-721 23 Västerås, Sweden
farhang.nemati@mdh.se

Abstract

Multi-core architectures have received significant inter-
est as thermal and power consumption problems limit fur-
ther increase of speed in single-cores. In the multi-core re-
search community a considerable amount of work has been
done on real-time multi-core scheduling algorithms where
it is assumed tasks are independent. However, synchroniza-
tion of dependent tasks executing on multi-cores has not
received as much attention, even though typical real-time
systems in practice include tasks that share resources.

In this paper we propose a synchronization protocol for
hierarchically scheduled multi-core systems, and we present
a comparison between the presented protocol and existing
multi-core synchronization protocols. The presented proto-
col groups dependent tasks that directly or indirectly share
mutually exclusive resources into independent components.
Within a component dependent tasks use classical unipro-
cessor synchronization protocols, such as the Stack-based
Resource allocation Protocol. The components are then
scheduled on the cores by a global scheduler.

There are two major approaches for scheduling multi-
core: partitioned and global scheduling. While most exist-
ing multi-core synchronization protocols support only one
category, the protocol presented in this paper is developed
to handle both scheduling approaches. The presented ap-
proach is developed to allow for co-execution of existing
legacy real-time applications along with new applications,
i.e., a legacy application is put into one or more components
preserving its own (original) scheduling and synchroniza-
tion protocols.

1 Introduction

Due to the problems with power consumption and related
thermal problems, processor architects are moving toward
multi-core designs. A multi-core processor is a combina-
tion of two or more independent cores on a single chip, and

∗The work in this paper is supported by the Swedish Foundationfor
Strategic Research (SSF), via the research programme PROGRESS.

multi-core is today the dominating technology for desktop
computing.

Real-time systems can benefit highly from the multi-core
processors, as critical functionality can be assigned dedi-
cated cores, and independent tasks can execute concurrently
to improve the performance and thereby enable new func-
tionalities. Moreover, since the cores are located on the
same chip and typically have shared memory, communi-
cation between cores is very fast. The performance im-
provements of using multi-core processors depend on the
nature of the applications as well as the implementation of
the software. To take advantage of the concurrency offered
by a multi-core architecture, appropriate scheduling algo-
rithms and synchronization protocols are required. How-
ever, in the research community, scheduling has received
much more attention than synchronization [8]. Thus there
is a need for further research efforts to achieve efficient and
adequate synchronization techniques.

In this paper, we propose a synchronization protocol
MHSP (Multiprocessor Hierarchical Synchronization Pro-
tocol) that can be used in multi-core systems.

1.1 Multi-core scheduling

There are two main approaches for scheduling sporadic
and periodic task systems on multi-core systems [2, 4,
11, 15] which are inherited from multiprocessor systems;
global and partitioned scheduling. Under global schedul-
ing, e.g., G-EDF (Global Earliest Deadline First), tasks are
scheduled based on their priorities by a single scheduler and
each task can be executed on any core. A single global
queue is used for storing jobs. A task as well as a job can be
preempted on one core and resumed on another core (migra-
tion of tasks among cores is permitted). Under partitioned
scheduling tasks are statically assigned to cores and tasks
within each core are scheduled by uniprocessor schedul-
ing such as FPS (Fixed Priority Scheduling) or EDF (Ear-
liest Deadline First). Each core is associated with a sepa-
rate ready queue for scheduling task jobs. A combination
of global and partitioned scheduling is the two-level hybrid
scheduling [11], which is very useful for systems in which



some tasks cannot migrate between cores while other tasks
can migrate. An efficient multiprocessor scheduling ap-
proach based on hierarchical scheduling framework is pre-
sented by Shin et al. [22], however, the approach is suitable
for independent tasks, i.e., tasks are not allowed to share
mutually exclusive resources.

2 Related work

The uniprocessor synchronization protocols PCP (Prior-
ity Ceiling Protocol) [21] and SRP (Stack-based Resource
allocation Protocol) [3] are two of the best known methods
for synchronization in uniprocessor systems. Both proto-
cols avoid deadlocks, and blocking times are limited to at
most the duration of one outermost critical section.

In the context of uniprocessor hierarchical scheduling,
there have been studies on allowing for sharing of mutually
exclusive resources within components [1, 16] and across
components [9, 7, 12].

For multiprocessor systems, Rajkumar present MPCP
(Multiprocessor Priority Ceiling Protocol) [20], which ex-
tends PCP to multiprocessors hence allowing for synchro-
nization of tasks sharing mutually exclusive resources using
partitioned FPS. Gai et al. [13] present MSRP (Multiproces-
sor SRP), which is an EDF-based synchronization protocol
for multiprosessors. The shared resources are classified as
either (i) local resources that are shared among tasks as-
signed to the same processor, or (ii) global resources that are
shared by tasks assigned to different processors. In MSRP,
tasks synchronize local resources using SRP and access to
global resources is guaranteed a bounded blocking time.
Lopez et al. [19] present an implementation of SRP under
P-EDF (Partitioned EDF). The tasks that directly or indi-
rectly share resources, called macrotasks, shall be assigned
to the same processor. This method is, however equivalent
to MSRP with no global resources. Devi et al. [10] present
a synchronization technique under G-EDF. The work is re-
stricted to synchronization of non-nested accesses to short,
simple objects, e.g., stacks, linked lists, and queues. In ad-
dition, the main focus of the method is on soft real-time
systems. Block et al. [8] present FMLP (Flexible Multipro-
cessor Locking Protocol), which is the first synchronization
protocol for multiprocessors that can be applied to both par-
titioned and global scheduling algorithms, i.e., P-EDF and
G-EDF.

Since we will compare our protocol to other multiproces-
sor synchronization protocols we will discuss three of them
in more detail:

2.1 MPCP

MPCP works as follows: The local resources are pro-
tected using PCP. A task blocked on a global resource sus-
pends and makes the processor available for the local tasks.

The duration of time a task is blocked includes remote
blocking where a task is blocked by tasks (with any priority)
running on another processor (core). However, the remote
blocking of a task is bounded and is a function of the du-
ration of critical sections of other tasks. MPCP makes this
possible by assigning global critical sections (gcs) a ceiling
greater than the highest priority among all tasks, hence agcs
can only be blocked by anothergcsand not by a non-critical
section. The blocked global critical sections on a global
resource are added to a prioritized queue. Global critical
sections cannot be nested in local critical sections (lcs) and
vice versa. Global resources potentially lead to high block-
ing times, thus tasks sharing the same resource have to be
assigned to the same processor as long as possible.

2.2 MSRP

Under MSRP, when a task is blocked on a global re-
source it performs spin lock (busy wait). This means that
the processor is kept busy without doing any work, hence
the duration of spin lock should be as short as possible
which means locking a global resource should be reduced
as far as possible. To achieve this goal under MSRP,
the tasks executing in global critical sections become non-
preemptable. The tasks blocked on a global resource are
added to a FIFO queue. Global critical sections are not al-
lowed to be nested under MSRP. Gai et al. [14] compare
MSRP and MPCP. They point out the complexity of imple-
mentation is one of the disadvantages of MPCP while wast-
ing local processor time (due to busy wait) is a disadvantage
of MSRP. They have performed two case studies for the
comparison and the results show that MPCP works better
when the duration of global critical sections are increased
while MSRP outperforms MPCP when critical sections be-
come shorter. Also they show that for applications where
tasks access many resources, and resources are accessed by
many tasks, using MPCP results in more pessimism com-
pared to using MSRP, which can be considered as a signifi-
cant advantage for MSRP.

2.3 FMLP

Using FMLP, resources are categorized into short and
long resources which are user defined. There is no lim-
itation on nesting resource accesses, except that requests
for long resources cannot be nested in requests for short
resources. Under FMLP and using P-EDF or G-EDF, the
tasks that are blocked on short resources perform busy wait
and are added to a FIFO queue. Tasks that access short
resources execute non-preemptively. Tasks blocked on a
long resource are added to a FIFO queue. A task holding
a long resource under G-EDF, executes preemptively using
priority inheritance, i.e., it inherits the priority of highest
priority task that the running task blocks. Under P-EDF a



task holding a long resource executes non-preemptively us-
ing local priority inheritance, i.e., priority is inherited only
from tasks assigned to the same processor. Note that under
P-EDF the concept of short and long resources is only ap-
plied to global resources. SRP can be used for sharing local
resources. In FMLP, deadlock is prevented by grouping re-
sources. A group includes either global or local resources,
and two resources are in the same group if a request for one
of them may be nested in a request for the other one. A
group lock is assigned to each group and only one task at
any time can hold the lock.

3 System model and background

This paper focuses on synchronization of tasks that share
mutually exclusive resources in a multiprocessor system
consisting ofm identical processors. We assume a general
multiprocessor scheduling which can be either partitioned
or global scheduling. The following sections explain our
corresponding task model and approach for mutual exclu-
sion.

3.1 Task model

The task model considered in this paper is the
deadline-constrained sporadic hard real-time task model
τi(Ti, Ci, Di, {ci,j}), whereTi is a minimum separation
time between arrival of successive jobs ofτi, Ci is their
WCET (Worst-Case Execution Time), andDi is an arrival-
relative deadline (0 < Ci ≤ Di ≤ Ti) before which the
execution of a job must be completed. Each task is allowed
to access one or more shared logical resources either seri-
ally or properly nested. Each elementci,j in {ci,j} repre-
sents the WCET of the taskτi inside a critical section of the
shared resourceRj .

3.2 Shared resources and SRP protocol

Tasks are allowed to share logical resources in a mutually
exclusive manner. To access a resourceRj , a task must
first lock the resource, and when the task no longer needs
the resource it is unlocked. The time during which a task
holds a lock is called a critical section. At any time, only a
single task may hold the lock of a logical resource. The SRP
protocol is used to synchronize the tasks’ access to shared
resources. According to SRP, each taskτi has a preemption
level equal toπi = 1/Di, whereDi is the relative deadline
of the task. And each shared resourceRj is associated with
a resource ceilingrcj = max{πi|τi accessesRj}. Finally,
a system ceiling is used which equals to the currently locked
highest resource ceiling in the system. Following the rules
of SRP, a jobJi that is generated by a taskτi can preempt
the currently executing jobJk within a subsystem only if
Ji has a priority higher than that of jobJk and, at the same

time, the preemption level ofτi is greater than the current
subsystem ceiling.

4 MHSP

This section describes our proposed synchronization
protocol MHSP (Multiprocessor Hierarchical Synchroniza-
tion Protocol). Using MHSP, all tasks that are directly and
indirectly dependent through sharing of mutually exclusive
logical resources are grouped into one component1. A com-
ponent contains a set of dependent tasks, and a local sched-
uler. Hence, the system contains both independent tasks and
components. Whenever the system scheduler (global sched-
uler or core scheduler depending on the type of the multi-
processor scheduling algorithm) selects a component to be
executed, its local scheduler will select which of its internal
tasks that will get access to the CPU resource. Inside each
component, the SRP protocol is used to synchronize access
to mutually exclusive logical resources. For each compo-
nent, the timing interface is used to abstract the timing re-
quirements of all internal tasks. The timing interface is cal-
culated using the periodic resource model presented [23],
i.e., each componentCτs is associated with(Ps, Qs), where
Qs is the budget that the component will receive every pe-
riod Ps. For the system scheduler, a component can be con-
sidered as a simple periodic task with execution timeQs

and periodPs.
For multiprocessor partitioned scheduling the compo-

nent timing interface (Ps, Qs) can also be used, in addi-
tion to scheduling, for the task to processor allocation by
allocating independent tasks and components to processors
which simplify the allocation problem since tasks and com-
ponents are independent. For the same reason, any global
scheduler can be used without any modification since most
global scheduling algorithms assume that tasks are indepen-
dent . Figure 1 shows the system framework, i.e., a two level
hierarchical multiprocessor global scheduling framework.

4.1 Component timing interface

In this section, we will explain how to evaluate the com-
ponent timing interface including the component budgetQs

and periodPs. The ratioQs/Ps should be as low as possi-
ble in order to make the MHSP protocol efficient in terms
of requiring less CPU resources and while guaranteing the
schedulability of its internal tasks. As shown in Fig.(1),
the framework is a two level hierarchical framework that
schedules independent components and tasks, and it allows
sharing of mutually exclusive logical resources inside the
components. The algorithm presented in [23] to evaluate
the component timing interface can be used here only if we

1This technique is similar to the technique presented in [19], the main
difference being the way of evaluating the group parameter and in addition
our protocol suitable for both global and partitioned schedulers



Processor �
Processor �
Processor �τ�

R1 R2 Rk

τ�
τ� Local

scheduler

τ�
τ�
τ�
Cτ�
Cτ�
Cτ	 Global 

scheduler

Figure 1. Multiprocessors global scheduling
using the MHSP protocol .

take into account the sharing of logical resources inside the
components, and these resources are called local resources.
Note that the analysis presented in [23] is for single proces-
sor systems only. However, since the tasks in a component
are not allowed to execute in parallel, i.e., only one task is
allowed to execute in one processor at each time, the tasks
inside a component will execute as they are executing in a
single processor which makes the analysis of [23] valid also
here.

The component local schedulability analysis using EDF
and FPS scheduling are shown below;

Let dbfEDF(i, t) denote the demand bound function of a
taskτi under EDF scheduling [5], i.e.,

dbfEDF(i, t) =
⌊ t + Ti − Di

Ti

⌋

· Ci. (1)

The local schedulability condition under EDF scheduling is
then (by combining the results of [6] and [23])

∀t > 0

n
∑

i=1

dbfEDF(i, t) + b(t) ≤ sbf(t), (2)

whereb(t) is the blocking function [6] that represents the
longest blocking time during which a taskτi with Di ≤
t may be blocked by a taskτk with Dk > t. sbfs(t) is
the supply bound function [23] that computes the minimum
possible CPU supply that a component may receive from
the global scheduler for every interval lengtht as follows:

sbfs(t) =

{

t − (k + 1)(P − Q) if t ∈ V (k)

(k − 1)Q otherwise,
(3)

wherek = max
(

⌈(

t−(P−Q)
)

/P
⌉

, 1
)

, andV (k) denotes

an interval[(k + 1)P − 2Q, (k + 1)P − Q].
For FPS [17], letrbfFP(i, t) denote the request bound

function of a taskτi, i.e.,

rbfFP(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉

· Ck, (4)

whereHP(i) is the set of tasks with priorities higher than
that of τi. The local schedulability analysis under FPS is
then (by extending the results of [3, 23]):

∀τi, 0 < ∃t ≤ Di, rbfFP(i, t) + bi ≤ sbf(t), (5)

wherebi is the maximumblocking(i.e., extra CPU demand)
imposed to a taskτi whenτi is blocked by lower priority
tasks that are accessing resources with ceiling greater than
or equal to the priority ofτi. Note thatt can be selected
within a finite set of scheduling points [18].

Given the component period Ps, let
calculateBudget(Cτs, Ps) denote a function that cal-
culates the smallest component budgetQs that satisfies
Eq. (2) for EDF or Eq. (5) for FPS scheduling. Hence,
Qs = calculateBudget(Cτs, Ps). The function is similar
to the one presented in [23]. Note that selecting the value
of Ps is not a trivial; the lower this value is, the lower
the utilization of the component will and at the same time
the context switch overhead will increase (more frequent
context switches). However, in this paper we restrict the
value ofPs to fulfil the inequality2Ps ≤ Tm, whereτm

is the task with the shortest period. This restriction is
motivated by reasons of resource efficiency [24].

4.2 Protocol properties

The MHSP protocol has the following advantages (+)
and disadvantages (-):

+ Generality – the protocol can be used with any type
of global scheduler, including a partitioned scheduler,
without any need for modification in the used schedul-
ing algorithm and corresponding schedulability analy-
sis.

+ Synchronization – shared resources can be nested and
the protocol is deadlock free. This property is inherited
from using the SRP protocol inside the components.

+ Reduced pessimism – the protocol removes the effect
of blocking from tasks that do not share resources.

+ Isolation – tasks executing inside a component do not
follow directly under the global scheduling algorithm,
i.e., tasks are scheduled inside a component using
the component’s local scheduler. Therefore, global
schedulability is not dependent on individual task pa-
rameters and vice versa.

- Utilization – the component utilizationQ/P must be
less than1, otherwise the protocol can not be used.



In addition, evaluating (Ps, Qs) is based on worst-case
CPU resource availability which can be pessimistic
and will add unnecessary utilization to the component
timing interface.

- Tasks resident in the same component can not be exe-
cuted in parallel even if there are idle processors avail-
able.

Note that the the disadvantage showed in the last bul-
let can be handled by modifying both the protocol and the
global scheduling. The modification can be done during
runtime such that if there exists an idle processor then the
global scheduler will allow ready tasks from components
to execute even if their local scheduler did not select them.
The priority of these tasks will be the lowest in a global level
and they will stop to execute in case they want to access a
mutual exclusive shared logical resource. If an independent
task or another component is activated then the execution
of these lowest priority tasks will be preempted. Note that
this modification will improve the average response time for
tasks and it will use the processors more efficiently. How-
ever, it will not improve the worst case when all tasks in a
component want to access a mutual exclusive shared logical
resource at the same time.

4.3 Example

We will explain the MHSP protocol using the following
example. Suppose a system that have 7 tasks as shown in
Table 1.

Task Ti Ci Di Rj Ci,j

τ1 15 6 15 - -
τ2 20 4 20 R1, R2 2, 1
τ3 40 6 40 R1 1
τ4 45 9 45 R3 2
τ5 60 12 60 - -
τ6 60 9 60 R2 2
τ7 90 14 85 R3 3

Table 1. Task parameters of the example.

Tasksτ2, τ3 andτ6 are grouped into a single component
Cτ1 since they are dependent (note thatτ3 andτ6 are not di-
rectly dependent but since both are sharing resources with
τ2 then they are indirectly dependent). Tasksτ4 andτ7 are
grouped into another componentCτ2. We assume that both
Cτ1 andCτ2 are using EDF as a local scheduler. The com-
ponent period ofCτ1 is selectedP1 = 10 then the mini-
mum budget should beQ1 = 5.35 that satisfy Eq. (2) and
for Cτ2 the parameters areP2 = 20 andQ2 = 9. The sum
of utilization of tasksτ4 andτ7 is equal toU = 0.35 while
the utilization of componentCτ2 that include these tasks

is Qs/Ps = 0.45 and the increment in the component uti-
lization comes from both the blocking effect between tasks
and the overhead from abstracting the timing of these tasks.
Figure 2 shows the scheduling of tasks and components in
two processors using global preemptive EDF scheduling. It
is clear that in certain times, one or both processors are idle
and at the same time there are ready tasks in the compo-
nents that can not execute because of their local scheduler
selected other task or the budget of the component has ex-
pired. It would be more efficient to allow the ready task
in the components to execute as described in the previous
section.

5 Brief comparison of the four protocols

In this section we briefly compare six properties of
the four multiprocessor synchronization protocols MPCP,
MSRP, FMLP and MHSP:

1 – Nested resource requests: In MPCP global resource
requests cannot be nested in local requests and vice versa.
MSRP does not support nested global requests. FMLP al-
lows nested requests except nesting global requests within
local requests. Since MHSP uses SRP locally inside com-
ponents, there is no limitation on nested resource requests.

2 – Scheduling protocols: MPCP works only under par-
titioned FPS. MSRP works under partitioned EDF, e.g., P-
EDF. FMLP supports both partitioned and global schedul-
ing protocols, but it does not support FPS. In MHSP any
scheduling protocol (partitioned or global) can be used. In
addition tasks inside a component can be scheduled by any
uniprocessor scheduling protocol.

3 – Preemption: In MPCP there is no need to change
scheduling protocols to support non-preemptive execution
of a task. The same goes for MHSP since it removes de-
pendencies between tasks in the system level.On the other
hand, critical sections accessing global logical resourceun-
der MSRP and short resources under FMLP need to execute
non-preemptively, and this should be taken into account in
the schedulability analysis.

4 – Utilization: A disadvantage of MHSP is that the uti-
lization bound of a component should not exceed 1 while
this does not limit other protocols. In addition, since the
internal tasks in a component are not allowed to execute
in parallel, it will increase the utilization of the component
compared to FLMP that may allow the tasks to execute in
parallel until they will try to access a locked resource.

5 – Blocking: In MHSP tasks that do not share mutually
exclusive logical resources are not blocked because they are




� �� 
� �� �� ��
����� ��� ��

Pro�
Pro�� t

Figure 2. Scheduling tasks and component.

in different components. Each task may be blocked by at
most one task with lower priority within the same compo-
nent. In MPCP global critical sections execute at a priority
higher than the highest priority task in the system, and thus
they may block any task resident in the same processor. In
MSRP and FMLP the effect of non-preemptivity and busy
waiting adds more blocking overheads. In addition a task
can be blocked by the critical sections of all tasks that access
the same resource (i.e., the blocking time is the summation
of all critical sections) under MSRP, FLMP and MPCP.

6 – Legacy systems: Existing legacy real-time systems
usually rely on FPS. MHSP and MPCP are suitable for mi-
gration of those systems to a multi-core architecture, while
MSRP and FMLP may be less suitable for this purpose
since they are based on EDF scheduling.

6 Summary

In this paper we have proposed and presented MHSP;
a synchronization protocol that can be used for multipro-
cessors systems. MHSP uses the principle of hierarchi-
cal scheduling to remove the dependencies between tasks
making it suitable for use together with any multiprocessor
scheduling algorithm. We have discussed the advantages
and disadvantages of the protocol and, in addition, we have
compared the protocol with the other existing protocols.
Whether it is efficient to use MHSP depends on application
characteristics and system requirements and paraments. For
example MHSP has the potential to be used with legacy sys-
tems since these systems often are required to be scheduled
using FPS; a scheduling policy supported by MHSP both at
system level and at component level. The main drawback
with the proposed approach is that it maps all direct and
indirect dependent tasks into one component which may
require higher utilization if the component contains many

tasks. Allowing global resources in MHSP can be one way
to improve it by splitting the high utilization components
into multiple dependent components (general hierarchical
scheduling framework that allows resource sharing inside
the component and between components). Then an opti-
mization algorithm should be developed such that it can find
the best tasks allocation to components in order to minimize
the system utilization. In summary, the proposed approach
can be considered as the first step towards generalizing the
use of hierarchical scheduling frameworks in multiproces-
sors systems.

References

[1] L. Almeida and P. Pedreiras. Scheduling within temporal
partitions: response-time analysis and server design. In4

th

ACM international conference on Embedded software (EM-
SOFT’04), Sep. 2004.

[2] T. Baker. A comparison of global and partitioned EDF
schedulability test for multiprocessors. Technical report,
January 2005.

[3] T. P. Baker. Stack-based scheduling of realtime processes.
Real-Time Systems, 3(1):67–99, Mar. 1991.

[4] S. Baruah and N. Fisher. The partitioned multiprocessor
scheduling of sporadic task systems. InRTSS ’05: Pro-
ceedings of the 26th IEEE International Real-Time Systems
Symposium, pages 321–329, Washington, DC, USA, 2005.
IEEE Computer Society.

[5] S. Baruah, A. Mok, and L. Rosier. Preemptively schedul-
ing hard-real-time sporadic tasks on one processor. InPro-
ceedings of the11t

h IEEE International Real-Time Systems
Symposium(RTSS’90), pages 182–190, Lake Buena Vista,
Florida, USA, December 1990. IEEE Computer Society.

[6] S. K. Baruah. Resource sharing in EDF-scheduled sys-
tems: A closer look. InProceedings of the27th IEEE In-
ternational Real-Time Systems Symposium (RTSS’06), pages
379–387, Rio de Janeiro, Brazil, December 2006.

[7] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: a
synchronization protocol for hierarchical resource sharing in



real-time open systems. In7th ACM and IEEE Int. Confer-
ence on Embedded Software (EMSOFT’07), Oct. 2007.

[8] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson.
A flexible real-time locking protocol for multiprocessors.In
Embedded and Real-Time Computing Systems and Applica-
tions, 2007. RTCSA 2007. 13th IEEE International Confer-
ence on, pages 47–56, Aug. 2007.

[9] R. I. Davis and A. Burns. Resource sharing in hierarchical
fixed priority pre-emptive systems. In27th IEEE Int. Real-
Time Systems Symposium (RTSS’06), Dec. 2006.

[10] U. Devi, H. Leontyev, and J. Anderson. Efficient synchro-
nization under global edf scheduling on multiprocessors. In
Real-Time Systems, 2006. 18th Euromicro Conference on,
pages 10 pp.–84, 0-0 2006.

[11] U. C. Devi. Soft real-time scheduling on multiproces-
sors. PhD thesis, Chapel Hill, NC, USA, 2006. Adviser-
Anderson,, James H.

[12] N. Fisher, M. Bertogna, and S. Baruah. The design of an
EDF-scheduled resource-sharing open environment. In28

th

IEEE Real-Time Systems Symposium (RTSS’07), Dec. 2007.
[13] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory uti-

lization of real-time task sets in single and multi-processor
systems-on-a-chip. InRTSS ’01: Proceedings of the 22nd
IEEE Real-Time Systems Symposium, page 73, Washington,
DC, USA, 2001. IEEE Computer Society.

[14] P. Gai, M. D. Natale, G. Lipari, A. Ferrari, C. Gabellini, and
P. Marceca. A comparison of mpcp and msrp when shar-
ing resources in the janus multiple-processor on a chip plat-
form. In RTAS ’03: Proceedings of the The 9th IEEE Real-
Time and Embedded Technology and Applications Sympo-
sium, page 189, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[15] P. H. J. A. J. Carpenter, S. Funk and S.Baruah. A categoriza-
tion of real-time multiprocessor scheduling problems and al-
gorithms. InJ. Y. Leung, editor, Handbook on Scheduling
Algorithms, Methods, and Models, pages 30.1–30.19. Chap-
manHall/CRC, Boca Raton, Florida, 2004.

[16] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open en-
vironment for real-time applications. In20th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’99), Dec. 1999.

[17] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and average
case behavior. InProceedings of the20th IEEE Interna-
tional Real-Time Systems Symposium(RTSS’89), pages 166–
171, Santa Monica, CA, USA, December 1989. IEEE Com-
puter Society.

[18] G. Lipari and E. Bini. A methodology for designing hierar-
chical scheduling systems.J. Embedded Comput., 1(2):257–
269, 2005.

[19] J. M. López, J. L. Dı́az, and D. F. Garcı́a. Utilization
bounds for edf scheduling on real-time multiprocessor sys-
tems.Real-Time Syst., 28(1):39–68, 2004.

[20] R. Rajkumar.Synchronization in multiple processor systems.
In Synchronization in Real-Time Systems: A Priority Inheri-
tance Approach. Kluwer Academic Publishers, 1991.

[21] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time syn-
chronization protocols for multiprocessors. In9

th IEEE Int.
Real-Time Systems Symposium (RTSS’88), Dec. 1988.

[22] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling
framework for virtual clustering of multiprocessors. Techni-
cal report, July 2008.

[23] I. Shin and I. Lee. Periodic resource model for compo-
sitional real-time guarantees. In24th IEEE International
Real-Time Systems Symposium (RTSS’03), Dec. 2003.

[24] I. Shin and I. Lee. Compositional real-time scheduling
framework with periodic model.Trans. on Embedded Com-
puting Sys., 7(3):1–39, 2008.


