
An Efficient Algorithm for Parametric WCET
Calculation

Stefan Bygde, Andreas Ermedahl and Björn Lisper
School of Innovation, Design and Technology

Mälardalen University, Sweden
Email: {stefan.bygde,andreas.ermedahl,bjorn.lisper}@mdh.se

Abstract—Static WCET analysis is a process dedicated to
derive a safe upper bound of the worst-case execution time
of a program. In many real-time systems, however, a constant
global WCET estimate is not always so useful since a program
may behave very differently depending on its configuration or
mode. A parametric WCET analysis derives the upper bound
as formula rather than a constant. This paper presents a new
efficient algorithm that can obtain a safe parametric estimate
of the WCET of a program. This algorithm is evaluated on a
large set of benchmarks and compared to a previous approach
to parametric WCET calculation. The evaluation shows that the
new algorithm, to the cost of some imprecision, scales much
better and can handle more realistic programs than the previous
approach.

I. INTRODUCTION

The worst-case execution time of a program is important to
know in many real-time and embedded systems applications.
With static analysis such a bound is found by analysing
the source or object code and a model of the hardware.
Most static WCET analyses derive a constant time estimation
of the WCET of a program. This global WCET estimation
correspond to the worst possible configuration and input to a
program. A global WCET estimation is in many cases not so
useful since timing often depends on modes or configurations
of the analysed software [1], [2].

Parametric WCET analysis derives a WCET estimation as
a formula rather than a constant. Such a formula contains
more information about the WCET as it can be instanti-
ated with known values to obtain concrete WCET bounds.
Parametric WCET analysis is naturally more complex than
classical WCET and is best suited to analyse small programs
or functions which has a timing behaviour which is parametric
in some variables. Interesting applications include real-time
systems with disable interrupt sections, which are sections of
code which are not allowed be interrupted. A case study [3]
showed that these regions are typically small and particularly
interesting to get a WCET estimation of. This study also
points out the problem of having a constant, global WCET
estimation. Component based software development [4], [5]
is another interesting application where re-usable components
designed to interact with each other in different contexts can
be analysed in isolation. Since components are designed to
function in different contexts, a reusable WCET estimation is

This work is supported by the Swedish Foundation for Strategic Research
via the strategic research centre PROGRESS

desired. Component models designed for embedded systems
(such as saveCCM [6] or Rubus [7]) typically uses quite
small components which makes parametric WCET analysis
interesting.

This paper investigates the method proposed in [8] for
obtaining WCET estimations which are parametric in some of
a program’s variables. The method is general and works for
arbitrary program flows, i.e. it is applicable on unstructured
code. The method is based on general program analysis tech-
niques which easily can be adjusted for a precision/complexity
trade-off.

In this paper, we present a new efficient algorithm for
performing parametric calculation, which is an important part
of the method in [8]. This method is much more efficient and
scales better than the previously suggested method and it can
analyse larger and more complex programs, this is to the cost
of some precision loss.

The paper is organised as follows. A brief introduction to
static WCET analysis with terminology is given in Section II.
Section III gives an overview of the method presented in [8].
In Section IV we present the new parametric calculation. Sec-
tion V evaluates the method by comparing it to the previously
suggested one. Section VI presents related work in the field of
parametric WCET analysis. Finally, Section VII concludes the
paper and plans for future work are presented in Section VIII.

II. STATIC WCET ANALYSIS

This section describes common concepts and terms used in
static WCET analysis. An overview of the topic can be found
in [9]. Static WCET analysis derives safe upper bounds of
the worst-case execution time of a program. A safe bound
means that it is guaranteed to be more than or equal to the
real worst case. Typically WCET analysis is divided into three
parts: flow analysis, low-level analysis and calculation. Flow
analysis analyses the source or object code of a program to
find constraints on the program flow. Examples of program
flow constraints are the constraints coming from the structure
of a program. Flow constraints can also be bounds on loop
iterations, or infeasible paths. An infeasible path is a program
path which due to semantic constraints will never be taken in
practise. Low-level analysis uses a mathematical model of the
hardware to estimate the worst-case timing for the basic blocks
(or other atomic unit) of a program. A low-level analysis
should include analysis complex hardware features such as

caches and pipelines (if present on the target platform), in
order to be accurate. Finally, the calculation phase combines
the results from flow and low-level analysis to calculate a
concrete upper bound for the WCET. A common technique for
WCET calculation is the Implicit Path Enumeration Technique
(IPET) [10]. IPET estimates the WCET of a program P by
maximising

WCETP = max
∑

q

cqxq

subject to some linear constraints, where cq is the an upper
bound of the worst case time of the block preceding program
point q. These bounds are usually obtained by a low-level
analysis. The factor xq is the execution count of program
point q, meaning the maximum number of times that it can
be visited. The xq variables are constrained by information
obtained from flow analysis and from the structure of the
program’s Control Flow Graph (CFG). Maximisation is then
obtained by integer linear programming.

III. OUR APPROACH TO PARAMETRIC WCET ANALYSIS

This section gives a brief overview of the method introduced
in [8], the work flow of the method is depicted in Figure 1.
The method relies on a few well-known program analysis
techniques which produces intermediate results which later
contribute to a parametric WCET bound. We will briefly
describe each box in Figure 1 and its role in the method.

1) Structural Analysis: Structural analysis builds the CFG
and derives corresponding structural flow constraints of the
program. Note that in this paper, the nodes of the CFGs
correspond to statements rather than basic blocks.

2) Low-Level Analysis: As explained in Section II, the low-
level analysis derives timing bounds for all atomic parts of the
program.

3) Parametric Calculation: Parametric calculation is a
parametric version of the calculation phase described in Sec-
tion II. The idea of parametric calculation is to have a symbolic
upper bound on the execution count for each program point.
Parametric calculation then computes a WCET estimation
expressed in terms of these symbolic bounds. The structural
constraints and low-level analysis results are all that is needed
to perform a parametric calculation. However, it is fully
possible to add other constraints, such as loop bounds or
infeasible paths, derived from flow analyses as well. In [8], the
suggested approach to parametric calculation was Parametric
Integer Programming (PIP) introduced by Feautrier in [11].
In this paper we will introduce a more efficient technique to
perform parametric calculation, as described in Section IV.

4) Abstract Interpretation: The aim of the leftmost branch
of Figure 1 is to provide more information about the symbolic
execution bounds. Abstract Interpretation [12] is a common
technique for abstracting program semantics. It can be used
to derive invariants for the states at each program point. An
example of such an invariant would be ”variable x will always
be between 3 and 5 at program point q”. The nature of the
invariants are chosen by a so-called abstract domain. A range
of abstract domains have been suggested [13], [12], [14],

[15], and they offer different trade-offs between precision and
complexity. An interesting class of abstract domains are the
relational domains, which preserve relations between program
states and can express things as ”variable x will always be less
than 2y at program point q”. The suggested abstract domain
to use for parametric interpretation in [8] is the polyhedral
domain [14], although other domains would also work.

5) Symbolic Counting: In a deterministic and terminating
program each semantic state can be reached exactly once;
given a state, the next one is uniquely given by the determin-
ism, and the number of states has to be finite in a terminating
program. By calculating invariants for each program point,
for instance by abstract interpretation, we can often find an
upper bound of the execution count of that program point. As
an example, consider a program with two variables i and n.
Assume that n is constant during the program, and that the
invariant 0 ≤ i ≤ n holds in program point q (this information
can be provided by abstract interpretation with a relational
domain). Since n is constant, and there are no other variables,
the determinism enforces that q can be visited at most n + 1
times if n is non-negative. Thus, the bound on the execution
count of q is parametric in the variable n.

6) Substitution: When we by abstract interpretation and
symbolic counting have derived upper bounds on the program
points expressed in terms of program variables, we can sub-
stitute these bounds for the symbolic ones in the parametric
formula obtained by parametric calculation. This results in a
formula parametric in program variables.

7) Simplification: Finally, after substitution, there might be
a lot of redundant information in the final formula. Removing
redundant information will result in a cleaner and more concise
formula.

A. Example

Figure 2 shows an example program L. We assume, for
simplicity, that each program point has a worst-case timing of
10 clock cycles (in practise, these timing should be provided
by low-level analysis). The objective function for parametric
calculation will therefore be∑

q ∈QL

10xq = 10
∑

q∈QL

xq

subject to the structural constraints and under the assumption
that each execution count xq has a symbolic upper bound
pq. Parametric IPET calculation (using PIP) will yield the
following formula:⎧⎨

⎩
30pk + 40 if pj , p3 ≥ 1 ∧ pk ≤ p2 − 1
30p2 + 10 if pj , p3, p2 ≥ 1 ∧ pk > p2 − 1
0 otherwise

(1)

where pj = min(p0, p1) and pk = min(p4, p5). This corre-
spond to the parametric execution count formula in Figure 1.

Now we perform the abstract interpretation. Using the
polyhedral domain [14], we obtain the following invariants,
when applied on the example program L:

P r o g r a m H a r d w a r e
T i m i n g M o d e l

I n p u t
P a r a m e t e r s

A t o m i c
W C E T b o u n d s

S t ruc tu ra l
C o n s t r a i n t s

P a r a m e t r i c W C E T
f o r m u l a

A b s t r a c t
I n t e r p r e t a t i o n

S t ruc tu ra l
A n a l y s i s

L o w - L e v e l
A n a l y s i s

S y m b o l i c
C o u n t i n g

P a r a m e t r i c
C a l c u l a t i o n

S u b s t i t u t i o n

P a r a m e t r i c B o u n d s o n
P r o g r a m P o i n t s

E x e c u t i o n C o u n t
F o r m u l a

I n v a r i a n t s

S i m p l i f i c a t i o n

Fig. 1. Work flow

S t a r t

E n d

i :=0

i < = ni := i+1

0

1

2

34

5

Fig. 2. Example program L with labelled program points

a0 = � a3 = {i ≥ 0, i ≥ n + 1}
a1 = {i = 0} a4 = {0 ≤ i ≤ n}
a2 = {i ≥ 0} a5 = {1 ≤ i ≤ n + 1}

where � means ”no information”. Next step (symbolic count-
ing) is to compute execution bounds for the individual pro-
gram points using this information. These bounds will be
parametric in some input variables of the program. Suitable
input-parameters are variables which are not changed during
execution of the program and which affects program flow. In
this case the variable n is a suitable choice.

In [16], Pugh suggests a method for symbolically computing
the number of solutions to a Presburger formula. Convex
polyhedra are a subset of presburger formulae so this method

can be used to compute the number of integer points inside
the polyhedra as well. In [17] a practical implementation of
this adaption was presented. Choosing n as parameter, using
this method will obtain the following execution bounds of the
program points e0, e2, e3 = ∞; e1 = 1 and e4, e5 = (if n ≥
0 then n + 1 else 0). However, observing that the entry edge
x0 and exit edge x3 will always be taken exactly once, we put
the more accurate

e2 =∞
e0, e1, e3 = 1 (2)

e4, e5 =
{

n + 1 if n ≥ 0
0 otherwise.

Substituting the bounds ei∈QL in (2) for the symbolic bounds
pi∈QL in (1) will result in a formula parametric in n. After
manual simplification we get the following parametric WCET
formula:

PWCETL =
{

30n + 70 if n ≥ 0
40 otherwise.

IV. THE MINIMUM PROPAGATION ALGORITHM

This section describes a new parametric calculation algo-
rithm called Minimum Propagation Analysis (MPA). It oper-
ates on the CFG of a program, where each edge q (program
point) has a worst-case timing cq, a maximum execution count
vq , and a symbolic capacity pq such that

vq ≤ pq (3)

is guaranteed to hold. Then, an obvious but possibly not
precise estimation of the WCET of the program is:

∑
q∈Q

cqpq. (4)

Furthermore, an edge can not be visited more times than the
sum of its predecessors or the sum of its successors. This can
be expressed formally as

vq ≤
∑

q′∈pred(q)

vq′ (5)

vq ≤
∑

q′∈succ(q)

vq′ (6)

Now, we have three upper bounds: (3), (5) and (6), for v q .
Obviously the smallest one of these is the tightest and most
desirable one. We call the smallest possible bound tq and
substitute it for pq in (4).

MPA attempts to find the tightest possible bound for a
program point using (3), (5) and (6). As can be seen, the bound
of a program point depends on the bounds of its neighbours.
The tightest bound of a program as a formula is therefore
quite intricate. MPA models the intermediate and final bounds
of program points as a tree which is explained in next section.

A. The Min-Tree

The upper bound for a program point needs to be valid for
all possible combinations of symbolic execution counts p q∈Q.
An upper bound tq will be represented as a tree with three
types of nodes: minimum nodes, plus nodes and leaf nodes.
Minimum nodes (denoted ♦) expresses the minimum of all its
children. Plus nodes (denoted ⊕) expresses the sum of all its
children. Leaf nodes (denoted pq) expresses the value of pq.
Such a tree will be referred to as a Min-Tree. Below is an
example of a Min-Tree.

♦

p0 p1 ⊕ p2

♦ ♦

p3 p4 p5

This Min-Tree represents the expression:

min(p0, p1, p3 + min(p4, p5), p2).

B. The Algorithm

MPA is shown in Algorithm 1. It is a recursive procedure
which takes as argument a program point, a context and a set
of constraints. The algorithm returns a Min-Tree as described
in previous section. The context is simply a set keeping track
of visited program points and is the empty set in the first call.
The set of constraints corresponds to that of (5) and (6) and is
obtained directly from the graph structure. The constraint (3)
is implicit and is not needed in the constraint argument of the
algorithm. MPA searches the given constraints and recursively
builds a Min-Tree by adding visited nodes as children to a
minimum node. It searches all simple paths first, leaving the
branches for later. The branches are then recursively computed
as children for plus nodes.

The root of the Min-Tree will always be a minimum node,
and its children will be all maximum bounds found for the
program point under analysis. MPA maintains a worklist and
a branch set; the worklist keeps track of visited program points
and the branch set keeps track of pending plus nodes. When-
ever a program point has single predecessors and successors,
the neighbouring capacities alone constitutes as upper bounds
for the program point and is therefore put in the worklist
for continued processing. In the case of branching program
points, the program points are put in the pending branch set for
recursive processing as children of a plus node. The reason for
this can be read directly from (5) and (6), where it is obvious
that it is the sum of the upper bounds of the other program
points that needs to be computed.

C. Detailed Explanation of the Algorithm

Row 1 creates the root of the tree which is always a
minimum node, the primitive mkMinNode returns a minimum

Algorithm 1 MPA(vi, context, constraints)
1: node← mkMinNode()
2: worklist← push(NIL, i)
3: branch← ∅

4: while worklist 	= NIL do
5: k ← peek(worklist)
6: worklist← pop(worklist)
7: if k /∈ context then
8: context← context ∪ {k}
9: node← addLeaf(node, pk)

10: for all [vk ≤ vj] ∈ constraints do
11: if j /∈ context then
12: worklist← push(worklist, j)
13: end if
14: end for
15: for all [vk ≤

∑
n∈N vn] ∈ constraints do

16: if N ∩ context = ∅ then
17: branch← branch ∪ {N}
18: end if
19: end for
20: end if
21: end while
22: for all N ∈ branch do
23: plusNode← mkPlusNode()
24: for all n ∈ N do
25: child← MPA(n, context, constraints)
26: plusNode← addChild(plusNode, child)
27: end for
28: node← addChild(node, plusNode)
29: end for
30: return node

node without children. Row 2-3 initialises the worklist and the
branch set. The work list is implemented as a stack and using
the stack primitives push, pop and peek (peek returns the top
element from the stack without removing it) to manipulate it.
The loop in row 4-21 is building the leaves of the minimum
node and puts the pending plus nodes in the branch set. Row
7 ensures that nodes which have already been considered (and
thus don’t contribute to any tighter result) are skipped. Row
9 adds leaves to the minimum node by using the primitive
addLeaf which takes a node and a leaf and returns the node
with the leaf added. Then, on row 10-14, all single entry/exit
constraints are added to the worklist for further processing.
Row 15-19 adds the multiple entry/exit constraints to the
pending branch set.

When no more program points are present in the worklist,
the algorithms enters next step (row 22). By now, node is
a minimum node, possibly with a couple of leaves, that all
constitute maximum bounds on the program point i. In other
words, the constraints from (3) have been added. Left to add is
the plus nodes, which correspond to (5) and (6). This is done
in row 16-23. Each branching constraint will produce a plus
node (row 23), this is done by the primitive mkPlusNode which

simply returns a plus node without children. The children of
the plus node are then recursively computed from each term
in the constraint (row 26), and then added as children to the
plus node via the primitive addChild (row 26). Finally, each
plus node is added as a child of the minimum node (row 28)
and the root node is returned (row 30).

D. Correctness

This section will give an informal argument that MPA is
correct. By correct we mean that edge q is guaranteed to be
visited less than or equal to the expression represented by
the Min-Tree returned by MPA(vq, ∅, constraints). First, we
observe that the leaf node added on row 9 of Algorithm 1
is correct. This leaf expresses that vq ≤ pr where r is any
program point which may be in the worklist. The program
points that may be in the worklist are the neighbours to q
(including q itself) which must be or must have been visited
when q is visited (see row 10). All nodes in this set of program
points must be visited the same number of times, say m. Since
all nodes in this set must be visited every time q is visited, the
least capacity of these nodes constitutes maximum bound on
m. Thus, the algorithm is correct if no branches occurs, if we
by inductive hypothesis assume that MPA is correct we can
also show that the recursive case is also correct. Every set of
program points N in the branch set represent a selection of
edges in the CFG, that is, exactly one of the program points
in N will be taken for every time program point q is visited.
This means that the sum of all upper bounds of the program
points in N is an upper bound also on the number of times q
can be visited. By inductive hypothesis, we can use MPA to
obtain correct bounds for all nodes in N , and by adding the
plus node (on row 26), we will obtain an additional correct
upper bound of program point q.

E. Example

Consider the example program L in Figure 2. Each program
point has parametric capacities p0, ..., p5. We will show how to
compute an upper bound for v0. The set of constraints obtained
from (3),(5) and (6) are the following

∀q ∈ Q(vq ≤ pq)
v0 ≤ v1

v1 ≤ v2, v0

v2 ≤ v1 + v5, v3 + v4

v3 ≤ v2

v4 ≤ v2, v5

v5 ≤ v4, v2.

We start by calling MPA(v0, ∅, constraints). Processing in
row 4-21 will generate the following intermediate results:

analysis(v0, ∅, constraints)
node worklist branch context
min() [0] ∅ ∅

min(p0) [1] ∅ {0}
min(p0,p1) [2] ∅ {0, 1}
min(p0,p1,p2) [] {{3, 4}} {0, 1, 2}

After the worklist has become empty and the main loop has
finished, the algorithm is in row 22 and the plus nodes will
be evaluated. We have that N = {3, 4} and so this leads
to two recursive calls: MPA(v3, {0, 1, 2}, constraints) and
MPA(v3, {0, 1, 2}, constraints). The following tables shows
the intermediate results for these calls.

MPA(v3, {0, 1, 2}, constraints)
node worklist branch context
min() [0] ∅ {0, 1, 2}
min(p3) [] ∅ {0, 1, 2, 3}

MPA(v4, {0, 1, 2}, MPA)
node worklist branch context
min() [4] ∅ {0, 1, 2}
min(p4) [5] ∅ {0, 1, 2, 4}
min(p4,p5) [] ∅ {0, 1, 2, 4, 5}

The result of these two calls will both be children to a plus
node, which in turn will be child to the minimum node that
will be returned from the original call. This plus node is then
added as child to the previous minimum node. The final Min-
Tree for v0 expresses:

min(p0, p1, p2, plus(min(p3), min(p4, p5))) .

The tightest upper bounds for each program point q ∈ Q
that was found can be found by MPA is the corresponding
Min-Tree tq∈Q. We can therefore estimate the WCET of a
program by

WCETP =
∑
q∈Q

cqtq.

The Min-Trees of L represent

t0 = min(p0, p1, p3 + min(p4, p5), p2)
t1 = min(p0, p1, p3 + min(p4, p5), p2)
t2 = min(p2, min(p0, p1) + min(p4, p5), p3 + min(p4, p5))
t3 = min(p2, p3, min(p0, p1) + min(p4, p5))
t4 = min(p2, p4, p5)
t5 = min(p2, p4, p5).

Setting cq∈Q = 10 will result in the following:

WCETL =
10(2 ·min(p0, p1, p3 + min(p4, p5), p2)

+min(p2, min(p0, p1)
+min(p4, p5)), p3 + min(p4, p5) (7)

+min(p2, p3, min(p0, p1)
+min(p4, p5))

+2 ·min(p2, p4, p5)).

Substituting the parametric execution bounds e i∈QL in (2)
of Section III-A for the execution count parameters p i∈QL in

TABLE I
TEST RESULTS

Benchmark Pps PIP Exec. time KB
edn (fir) 11 0.1s 3/1
edn (latsynth) 7 0.1s 1/1
edn (latsynth)x2 12 0.1s 2/1
edn (latsynth)x4 25 0.1s 10/3
cnt (initialize) 12 0.1s 3/1
cnt (initialize)x2 23 0.3s 83/3
cnt (initialize)x3 34 5.6s 1782/6
cnt (sum) 16 0.3s 80/2
cnt (sum)x2 31 - -/5
jcomplex 23 - -/7
matmult (Initialize) 12 0.1s 3/1
matmult (Initialize)x2 23 0.3s 83/3

(7) will after manual simplification yield:

PWCETL =
{

30n + 70 if n ≥ 0
40 otherwise.

Which is the same we obtained from PIP, exemplified in
Section III-A.

V. EVALUATION

In this section we will evaluate MPA in two ways. First, we
will compare the precision, execution time and solution size to
the previously suggested method PIP. This is done by running
the two approaches on a prototype of the method described
in Section III. This prototype was described in [17]. Since
this prototype is somewhat limited in its implementation, the
scalability of MPA is also evaluated by running it in isolation
with full-scale benchmarks.

A. PIP

Parametric Integer (linear) Programming (PIP) was intro-
duced in [11] and can be used as a generalisation of integer
linear programming. PIP allows an integer linear problem to
contain unknown constants, i.e. parameters. The parameters
are present in the solution that PIP gives; the solution is a
nested conditional expression in terms of the parameters. By
instantiating parameters one can obtain a concrete constant
solution. There exists a tool called Pip [18] implementing this
algorithm. This is the tool we have used in our experiments.
A sample of output from PIP is shown in Section III-A.

B. Comparison with PIP

The experiments have been performed using an enhanced
version of the prototype implementation found in [17]. This
prototype implements most of the functionality presented in
[8]. The prototype is developed in C++ and Haskell, imple-
menting the boxes in Figure 1 as modules which commu-
nicates through text files. It performs analysis over a simple
imperative language based on C. Program variables have to be
integers or Booleans. Pointer, array and non-integer variables
may be present in the program, but are considered having
unknown values in the analysis. All function calls are inlined
before analysis so the analysis works as an intra-procedural
analysis on the inlined code. The tool does not have any low-
level analysis, so all program points are assumed to have a

constant WCET estimate of 10 clock cycles. In practise, these
values could be provided from a low-level analysis.

The times given below are the real-times obtained from
the UNIX command time. Both algorithms are implemented
in C++1 and compiled with GCC 3.4.4 under Cygwin. The
program that instantiates formulae is implemented in Haskell
and compiled with the Glasgow Haskell Compiler 6.8.3 under
Cygwin. The experiments are run under Windows XP Profes-
sional SP3 on an Intel core duo 2.4 GHz with 2.39GB RAM
and a 6MB L2-cache.

The experiments have been performed by analysing some
benchmarks using both PIP and MPA. These benchmarks have
been manually translated to the simplified analysed language.
After analysis, some sample points in the parameters have
been chosen and instantiated. In order to only compare the
calculation methods, the instantiation process is made slightly
different than as outlined in Section III; rather than substituting
the parametric execution bounds for the execution count
parameters of the parametric calculation and simplify, the
parametric execution bounds are first calculated and directly
substituted into the solution of the parameteric calculation.
As an example, in (1) of Section III-A, a concrete value for
n is used to instantiate ai∈QL of (2) to concrete values. The
instantiated values of ai∈QL are directly substituted for pi∈QL

in the formulae (1) and (7).
Thus, the time it takes to substitute parametric execution

bounds for execution count parameters and simplify is not
included in the calculations. When using the method in
practise, less time will be consumed for instantiating (due to
simplifications), and more time to perform analysis (due to
simplification time).

We will now explain how the comparison was made. The
columns of Table I is explained from left to right.

1) Benchmark: The benchmarks are taken from the
Mälardalen benchmarks [19]. These benchmarks are common
to use when evaluating WCET methods. We have chosen
benchmarks that conform to the limitation of the analysis tool
and which have a timing behaviour which is parametric in
some variables or constant macros. The particular function
which has been analysed is the name within parentheses. When
a benchmark is marked with x2,x3 etc, it means that the
particular function has been called repeatedly and thus inlined
multiple times. This is just to see how the analysis scales in
increased number of program points.

2) Program points: Labelled as Pps in the table. This is
the number of edges in the control flow graph.

3) Execution time: The execution time given is for Pip,
since MPA solves all these benchmarks in less than 0.2
seconds. The cases where the time is not given means that
Pip couldn’t solve the problem due to a too high complexity
of the solution.

4) Solution size: The solution sizes are given in KB, first
is Pip, second is MPA. The measurements comes from the file
sizes of the solutions textual representations.

1Pip is open source

TABLE II
PRECISION COMPARISON

Benchmark Parameters Pip result MPA result Diff Percent
edn (fir) N = 100, ORDER = 25 60790 60810 20 0.03%

N = 100, ORDER = 50 78040 78060 20 0.03%
N = 100, ORDER = 75 57790 57810 20 0.03%
N = 200, ORDER = 25 141790 141810 20 0.01%
N = 200, ORDER = 50 234040 234060 20 <0.01%
N = 200, ORDER = 75 288790 288810 20 <0.01%
N = 300, ORDER = 25 222790 222810 20 <0.01%
N = 300, ORDER = 50 390040 390060 20 <0.01%
N = 300, ORDER = 75 519790 519810 20 <0.01%

edn (latsynth) n = 50 1520 1520 0 0%
n =100 3020 3020 0 0%
n =200 6020 6020 0 0%

edn(latsynth)x2 n = 50 3030 3060 30 0.99%
n = 100 6030 6060 30 0.5%
n = 200 12030 12060 30 0.25%

edn(latsynth)x4 n = 50 6050 6160 110 1.82%
n =100 12050 12160 110 0.91%
n =200 24050 24160 110 0.46%

cnt (initialize) MAXSIZE=10 4640 4660 20 0.4%
MAXSIZE=20 17240 17260 20 0.1%
MAXSIZE=30 37840 37860 20 0.05%

cnt (initialize)x2 MAXSIZE=10 9270 9810 540 5.83%
MAXSIZE=20 34470 35510 1040 3.02%
MAXSIZE=30 75670 77210 1540 2.04%

cnt (initialize)x3 MAXSIZE=10 13900 15460 1560 11.22%
MAXSIZE=20 51700 54760 3060 5.92 %
MAXSIZE=30 113500 118060 4560 4.018%

cnt (sum) MAXSIZE=10 6640 8660 2020 30.4%
MAXSIZE=20 25240 33260 8020 31.8%
MAXSIZE=30 55840 73860 18020 32.3%

cnt(sum)x2 MAXSIZE=10 - 17810 - -
MAXSIZE=20 - 67510 - -
MAXSIZE=30 - 149210 - -

jcomplex a = 1, b = 1 - 80 - -
a = 1, b = 15 - 120 - -
a = 1, b = 30 - 110 - -
a = 15, b = 1 - 80 - -
a = 15, b = 15 - 80 - -
a = 15, b = 30 - 30 - -
a = 30, b = 1 - 80 - -
a = 30, b = 15 - 80 - -
a = 30, b = 30 - 30 - -

matmult (Initialize) UPPERLIMIT = 100 406040 406060 20 <0.01%
UPPERLIMIT = 150 909040 909060 20 <0.01%
UPPERLIMIT = 200 1612040 1612060 20 <0.01%

matmult (Initialize)x2 UPPERLIMIT = 100 812070 817110 5040 0.62%
UPPERLIMIT = 150 1818070 1825610 7540 0.41%
UPPERLIMIT = 200 3224070 3234110 10040 0.31%

Note that PIP does not scale well, especially not in solution
sizes. PIP sometimes fails to produce a solution, even for quite
small programs.

Table II shows the estimated WCETs when the chosen
parameters have been instantiated in the parametric formulae
from the two parametric calculation methods. The parameters
have been chosen so they have a parametric behaviour and are
instantiated with values somewhat close to their original values
in the benchmark programs. The last two columns shows how
much the MPA solution differs from the PIP solution in that
particular instantiation. As can be seen, MPA gives slightly
less precise result compared to PIP. As high imprecision 32.3%
has been observed, but in most cases it is less than one percent.

C. Scaling Properties

Since the translated benchmarks used in previous section
are small, they don’t show the scaling properties of MPA
properly. In order to investigate how MPA scales in more
realistic cases, we have run the algorithm alone (independent
of the rest of the prototype) on the full benchmark suite
of [19]. MPA takes only a CFG as argument, and returns
a result parametric in the capacities of the graph. We have
used the WCET analysis research prototype SWEET [20] to
obtain CFGs for the benchmarks. Since we do not run the
whole method described in Section III, we cannot examine
the precision of MPA in this test, just how efficient it is.

The CFGs obtained from SWEET are on the full programs,

TABLE III
SCALABILITY PROPERTIES OF MPA

Benchmark pp mvd Iterations calls time filesize
adpcm 884 4 - - - -
bs 39 2 249 1538 0.04s 6633
bsort 66 2 1750 9610 0.14s 44152
cnt 93 2 1537 11547 0.16s 48022
cover 1593 121 - - - -
compress 380 5 - - - -
crc 127 2 10543 69017 0.85s 316212
duff 390 9 5937 121369 1.22s 475556
edn 342 2 7202 95585 1.04s 421438
expint 88 2 1028 7983 0.11s 32407
fac 36 2 260 1298 0.08s 5959
fdct 147 2 973 21565 0.22s 79457
fft1 266 4 72572 482486 6.18s 2390541
fibcall 29 2 75 702 0.03s 2567
fir 77 2 779 6828 0.10s 27315
insertsort 39 2 175 1313 0.03s 5310
jcomplex 48 2 792 3289 0.06s 16763
jfdctint 122 2 1038 14726 0.16s 55563
lcdnum 158 17 4042 40164 0.46s 168927
lms 262 4 90864 586176 7.44s 2959463
ludcmp 181 3 5583 35101 0.47s 169103
matmult 97 2 1351 9441 0.13s 40263
minmax 109 3 1926 18881 0.23s 74619
ndes 445 9 1235359 11593218 2m19s 54938649
ns 46 2 562 2838 0.06s 13245
nsichneu 3313 5 - - - -
prime 114 3 11425 79060 0.95s 356992
qsort-exam 153 2 15861 104870 1.30s 501762
qurt 135 4 27658 178578 2.17s 821808
select 136 2 32418 165320 2.25s 842275
sqrt 49 3 896 4717 0.08s 21758
statemate 1287 47 - - - -
ud 150 2 2770 15938 0.23s 78277

that is, it includes all functions and all function calls. In
contrast to the evaluation in Section V, the CFGs obtained
from SWEET are not inlined; each function call is an edge
from the caller to the callee, and each return is an edge from
the exit of a function, back to the caller.

Table III shows the result of the tests. The first column is the
benchmark name, second column is the number of program
points. The third column is the maximum degree of a node, i.e.
the maximum number of emerging or incoming edges from a
node. The fourth columnn is the global number of iterations of
MPAs main loop (row 4-21 in Algorithm 1). The fifth column
is the global number of calls (including recursive calls) to
Algorithm 1. The sixth column is the real time of the algorithm
running, obtained by the UNIX command time. Finally, the
seventh column is the size of the solution file in bytes.

Five of the programs fails to be analysed, due to memory
failure. The reason seems to be the combination of many pro-
gram points and a high vertex degree on the nodes, resulting
in a high number of recursive branches. However, most of the
programs can be analysed, and with a good efficiency.

VI. RELATED WORK

This section presents related work in the field of parametric
WCET. In [21], a WCET analysis which computes a formula
given in some chosen set of function parameters, is presented.
Flow constraints has to be manually provided. Two methods of

parametric WCET analyses are presented in [22] and Coffman
[23]. They are both parameterised in loop bounds only, they
do not take global constraints into consideration. A method
similar to Lisper’s were presented in [24], but it is using loop
and path analyses instead of abstract interpretation. It requires
special treatment of loops and is not as accurate as polyhedral
abstract interpretation. A method which computes complexity
of a program is presented in [25]. This method derives sym-
bolic bounds of the complexity of the code only and does not
take hardware into consideration, and cannot be used to obtain
WCET estimations. A prototype implementation of Lisper’s
method was presented in [17] which is the implementation on
which we have done our experiments.

VII. SUMMARY AND CONCLUSION

We have presented a new algorithm called Minimum Propa-
gation Analysis (MPA) which performs parametric calculation
on programs. The algorithm is significantly more efficient both
in speed and memory compared to the previously suggested
method PIP, to the cost of some imprecision.

With this efficient algorithm we have shown that a paramet-
ric WCET analysis can be performed on somewhat realistic
program examples without too much problems. We have also
shown that a previously suggested method (PIP), scales badly
on larger programs and therefore needs to be replaced by a
better algorithm.

The algorithm is designed to be used for the method outlined
in [8], but can be useful even in other applications. The method
computes a WCET formula in terms of symbolic upper bounds
on program points; the concrete values on these bounds could
be instantiated in any (safe) way, and is not restricted to be
used only in the method outlined in [8]. In general, MPA could
potentially be useful in other applications than WCET analysis
since it operates on general graphs with parametric capacities.

VIII. FUTURE WORK

Future plans are to improve MPA to be able handle the
cases where it currently fails. Ideas include implementing more
efficient data types for representing the analysis values, saving
intermediate results to disk or eliminating the recursion. Other
plans are to find exact complexity bounds of MPA as well as
investigating the source of over-approximation.

A full implementation of the method in [8] in the static
WCET analysis tool SWEET [20] is planned for further
investigation and a full evaluation of the method.

REFERENCES

[1] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper, “Applying static
WCET analysis to automotive communication software,” in Proc. 17th

Euromicro Conference of Real-Time Systems, (ECRTS’05), Jul. 2005.
[2] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper, “Static timing

analysis of real-time operating system code,” in Proc. 1st International
Symposium on Leveraging Applications of Formal Methods (ISOLA’04),
Oct. 2004.

[3] M. Carlsson, J. Engblom, A. Ermedahl, J. Lindblad, and B. Lisper,
“Worst-case execution time analysis of disable interrupt regions in a
commercial real-time operating system,” in Proc. 2nd International
Workshop on Real-Time Tools, 2002.

[4] I. Crnkovic, “Component-based software engineering for embedded sys-
tems,” in International Conference on Software engineering, ICSE’05.
ACM, 5 2005.

[5] G. T. Heineman and W. T. Councill, Component-Based Software Engi-
neering: Putting the Pieces Together. Addison-Wesley Professional,
June 2001.

[6] H. Hansson, M. Akerholm, I. Crnkovic, and M. Torngren, “Saveccm - a
component model for safety-critical real-time systems,” in EUROMICRO
’04: Proceedings of the 30th EUROMICRO Conference. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 627–635.

[7] “Arcticus Systems homepage,” 2009,
www.arcticus-systems.com.

[8] B. Lisper, “Fully automatic, parametric worst-case execution time anal-
ysis,” in Proc. 3rd International Workshop on Worst-Case Execution
Time Analysis (WCET’2003), J. Gustafsson, Ed., Porto, Jul. 2003, pp.
77–80.

[9] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution time problem — overview of methods and survey of tools,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 7,
no. 3, pp. 1–53, 2008.

[10] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” in Proc. ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Real-Time Systems (LCT-RTS’95),
La Jolla, CA, Jun. 1995.

[11] P. Feautrier, “Parametric integer programming,” Opera-
tionnelle/Operations Research, vol. 22, no. 3, pp. 243–268, 1988.
[Online]. Available: citeseer.ist.psu.edu/feautrier88parametric.html

[12] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proc. 4th ACM Symposium on Principles of Programming
Languages, Los Angeles, Jan. 1977, pp. 238–252.

[13] A. Miné, “The octagon abstract domain,” Higher Order Symbol. Com-
put., vol. 19, no. 1, pp. 31–100, 2006.

[14] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program,” in Proc. 5th ACM Symposium on
Principles of Programming Languages, 1978, pp. 84–97.

[15] P. Granger, “Static Analysis of Arithmetical Congruences,” International
Journal of Computer Mathematics, pp. 165–199, 1989.

[16] W. Pugh, “Counting solutions to Presburger formulas: How
and why,” in SIGPLAN Conference on Programming Language
Design and Implementation, 1994, pp. 121–134. [Online]. Available:
citeseer.ist.psu.edu/pugh94counting.html

[17] S. Bygde and B. Lisper, “Towards an automatic parametric WCET
analysis,” in Proc. 8th International Workshop on Worst-Case Execution
Time Analysis (WCET’2008), R. Kirner, Ed., Prague, Czech Republic,
Jul. 2008, pp. 9–17.

[18] “Piplib website,” 2009, http://www.piplib.org/.
[19] “Mälardalen WCET benchmarks homepage,” 2009,

http://www.mrtc.mdh.se/projects/wcet/
benchmarks.html.

[20] A. Ermedahl and J. Gustafsson, “Deriving Annotations for Tight Cal-
culation of Execution Time,” in Proc. Euro-Par’97 Parallel Processing,
LNCS 1300. Springer Verlag, Aug 1997, pp. 1298–1307.

[21] A. Colin and G. Bernat, “Scope-tree: a program representation for
symbolic worst-case execution time analysis,” in Proc. 14th Euromicro
Conference of Real-Time Systems, (ECRTS’02), Vienna, Jun. 2002, pp.
50–59.

[22] E. Vivancos, C. Healy, F. Mueller, and D. Whalley, “Parametric timing
analysis,” in Proc. ACM SIGPLAN Workshop on Languages, Compilers
and Tools for Embedded Systems (LCTES’01), J. Fenwick and C. Norris,
Eds., Snowbird, Utah, Jun. 2001, pp. 88–93.

[23] J. Coffman, C. Healy, F. Mueller, and D. Whalley, “Generalizing
parametric timing analysis,” in LCTES ’07: Proceedings of the 2007
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools. New York, NY, USA: ACM, 2007, pp. 152–154.

[24] S. Altmeyer, C. Hümbert, B. Lisper, and R. Wilhelm, “Parametric timing
analysis for complex architectures,” in Proc. 14th IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA 08), Kaohsiung, Taiwan, Aug. 2008.

[25] S. Gulwani, K. K. Mehra, and T. Chilimbi, “Speed: precise and efficient
static estimation of program computational complexity,” in POPL ’09:
Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. New York, NY, USA: ACM,
2009, pp. 127–139.

