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Abstract

Dependable real-time systems typically consist of tasks
of multiple criticality levels and scheduling them in a fault-
tolerant manner is a challenging problem. Redundancy in
the physical and temporal domains for achieving fault toler-
ance has been often dealt independently based on the types
of errors one needs to tolerate. To our knowledge, there had
been no work which tries to integrate fault tolerant schedul-
ing and multiple redundancy mechanisms. In this paper we
propose a novel cascading redundancy approach within a
generic fault tolerant scheduling framework. The proposed
approach is capable of tolerating errors with a wider cov-
erage (with respect to error frequency and error types) than
time and space redundancy in isolation, allows tasks with
mixed criticality levels, is independent of the scheduling
technique and, above all, ensures that every critical task
instance can be feasibly replicated in both time and space.

1 Introduction

Redundancy in the physical, temporal, information and
analytical domains is the key for achieving fault tolerance
and due to the wealth of research in this domain, a rich set
of techniques has been successfully used in many critical
applications. Similarly, due to the inherent criticality of
real-time systems, several researchers have been trying to
incorporate fault tolerance into various real-time schedul-
ing paradigms. However, we have not so far come across
any works that integrate these two domains of research. In
this paper we propose a novel approach of cascading redun-
dancy which brings out the synergetic effect of an appropri-
ate combination of time and space redundancy techniques
within a fault-tolerant scheduling framework.

Incorporating fault tolerance into various real-time
scheduling paradigms has been addressed by several re-
searchers. In [12], Han et.al. presented an approach to
schedule primary and alternate versions of tasks to provide
fault tolerance. In [11], the authors presented a method for

guaranteeing that the real-time tasks will meet the dead-
lines under transient faults, by resorting to reserving suf-
ficient slack in queue-based schedules. Pandya and Malek
[19] showed that single faults with a minimum inter-arrival
time of largest period in the task set can be recovered if
the processor utilization is less than or equal to 0.5 under
rate monotonic (RM) scheduling. Burns et. al. [6, 20] pro-
vided exact schedulability tests for fault tolerant task sets
under specified failure hypothesis for fixed priority schedul-
ing, which can guarantee task sets with even higher uti-
lizations. Lima and Burns [16] extended this analysis in
case of multiple faults, as well as for the case of increas-
ing the priority of a critical task’s alternate upon fault oc-
currences. While the above works have advanced the field
of fault tolerant scheduling within specified contexts, each
one has some shortcomings, e.g., restrictive task and fault
models, non-consideration of task criticality, complex on-
line mechanisms, and scheduler modifications which may
be unacceptable from an industrial perspective.

On the other hand, static space redundancy techniques
such as N-modular redundancy (NMR) have been used in
safety and mission critical applications, often in the well-
known form of triple-modular redundancy (TMR)[18]. The
key attractions of the approach are low overhead and fault
masking abilities, without the need for backward recovery
[15]. The disadvantages include redundancy cost (in terms
of hardware resources) and single point failure mode of the
voter. Traditionally, voters are constructed as simple elec-
tronic circuits so that a very high reliability can be achieved.
Distributed voters have also been employed to take care of
the single-point failure mode in highly critical systems [17].

Replicated nodes’ output values can vary slightly, result-
ing in a range (or a set) of values which should be con-
sidered as correct to avoid consistency issues [5], later ad-
dressed by inexact voting strategies [14]. This phenomenon
is also observed in time domain due to, e.g., clock drifts,
node failures, processing and scheduling variations at node
level, and communication delays. Most of the existing vot-
ing strategies, however, focus solely on tolerating variations
in the value domain by assuming tight synchronization [13].
On the other hand, the use of loose synchronization is an



attractive alternative due to low overheads, requiring, how-
ever, specifically designed asynchronous voting algorithms
to compensate for the timing variations.

Real-time adaptations of majority voting techniques
were proposed by Ravindran et. al., [21], and Shin et. al.,
[22], to overcome the problem of waiting for late or omitted
replica outputs, where voting is performed among a quorum
or a majority of outputs received, rather than waiting for all
the outputs. Recently, we have proposed a technique [2] that
additionally tolerates early timing failures of replica nodes.

In a system with no redundancy, or in a redundant sys-
tem with tight synchronization, the deviation in output de-
livery times of a task is less than or equal to the maximum
permissible deviation (M P D) that is equal to its feasibil-
ity window, i.e., the time interval between its release time
and deadline, minus its best case execution time (BC'ET)
(Figure 1 (a)). However, in loosely synchronized redundant
systems, local clocks on the processing nodes are allowed to
drift by a specified value (4), which can, in certain scenar-
ios, result in delivery of replica outputs that are farther apart
from each other than they are designed for with respect to
time (Figure 1 (b)), hence, causing system failures.
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Figure 1. Replica outputs’ timing issue

In this paper we propose a cascading redundancy frame-
work capable of tolerating errors with a wider coverage
(with respect to error frequency and error types) than time
and space redundancy in isolation, handles tasks with mixed
criticalities, and, above all, ensures that every critical task
instance can be feasibly replicated in both time and space,
independent of the RT scheduling policy. Hence, the re-
search presented in this paper is significantly different from
our previous works [2, 8] due to the following original con-
tributions:

1. the composition of the time and space redundancy
techniques in a mutually aware manner

2. the ability to handle a wider range of task criticalities
3. the applicability to any real-time scheduling paradigm

The rest of the paper is organized as follows: the sys-
tem and error model are presented in Sections 2 and 3. In
Sections 4 and 5 we propose time and space redundancy
techniques for RT systems which we build upon in the cas-
cading redundancy approach proposed in Section 6. The
paper is concluded in Section 7.

2 System model

We assume a distributed real-time architecture consist-
ing of processing nodes, sensors and communication media.
Each node has its own clock allowed to drift from the cor-
rect time (i.e., seen by a perfect observer) by a maximum
permissible deviation ¢. This deviation can be handled by
relatively inexpensive clock synchronization algorithms im-
plemented in software (as opposite to expensive tight clock
synchronization implementations).

On each processing node P, a periodic task set, I';, =
{71, 72, ...}, is allocated where each task represents a real-
time thread of execution with a specified criticality. Each
task 7; has a period T'(7;), a deadline D(7;), a known best
case execution time BCET(7;) and a known worst case
execution time (W C ET) represented by C(7;). We assume
tasks deadlines equal to their periods. Execution of error de-
tection or error handling mechanisms such as sanity checks
and re-execution of failed computations are considered as a
part of the computation stage.

The criticality of a task could be seen as a measure of the
impact of its correct (or incorrect) functioning on the over-
all system behavior, and also indicates the error model the
system is designed to tolerate. Without loss of generality, in
this paper, we assume the following four criticality levels:

1. Non-critical tasks: can be shed if needed without ad-
versely affecting the system performance.

2. Critical tasks: are guaranteed sufficient time to re-
execute (or run an alternate action) upon error occur-
rences.

3. Highly-critical tasks: are replicated over a set of pro-
cessor nodes and their outputs are voted on a stand-
alone voter.

4. Ultra-critical tasks: are both replicated over a set of
processor nodes and guaranteed sufficient time to re-
execute as well.

Each critical and ultra-critical task Tiihas an alternate task
7; with a worst case execution time C(7;) < C(7;) and a
deadline D(r;) = D(7;). This alternate can typically be a



re-execution of the same task, a recovery block, an excep-
tion handler or an alternate with imprecise computations.

Let T'7¢ T'¢ TP¢ and T'“¢ represent the subsets of non-
critical tasks, critical tasks, highly-critical tasks and ultra-
critical tasks out of the original task set on node P; respec-
tively, so that T',, = T7¢ U TS U The UTUe. We use I'¢
and T'“° to represent the subsets of critical and ultra-critical
alternate tasks respectively. We assume that the total uti-
lization of the critical, highly-critical and ultra-critical tasks
together with all the alternates on a processing node can be
as much as 100%:

UG +UTE)+UTu) +UTS) +UTE) <1

We also assume that the delays introduced by error detec-
tion mechanisms, voting mechanisms as well as commu-
nication delays between the processing node and the voter
are included in the task worst case execution requirements.
These assumptions imply that, during error recovery, the ex-
ecution of non-critical tasks cannot be permitted as it may
result in overload conditions. We assume that the scheduler
has adequate support for flagging non-critical tasks as un-
schedulable during such scenarios, along with appropriate
error detection mechanisms for the errors that can be toler-
ated by time redundancy.

3 Error model and error recovery strategy

Our approach builds upon the failure concepts originally
introduced in [1, 4]. For the sake of readability, we denote
the i*" replica of a replicated task r in the system by 7;.
The output delivered by replica r; is specified by two do-
main parameters, viz., value and time, together with their
admissible deviations:

Specified output for r; = < vl ,ti,0,0 >
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where v is the correct value, ¢} is the correct time inter-
val seen by a perfect observer (whose length is equal to
(T(r;) - BCET(r;))), during which the output must be de-
livered, [v} — o, v} + o] is the admissible value range and
[trstart — § ¢rend 4 §] is the admissible time interval for
output delivery as per system specifications. An output de-
livered by r; is denoted as:

Delivered output fromr; = < v;, t; >

where v; is the value and ¢; is the time point at which the
value was delivered. We define the output generated by
replica r; as incorrect in value domain if

v, <V —oorv; >v +o
and incorrect in time domain if

t; < 35197 — § (early timing failure)

or if
t; > 7" 4§ (late timing failure).

Furthermore, since replica outputs are only comparable as
long as they are released and completed within a time inter-
val whose length is equal to the replicas’ period, we define
the output generated by replica r; as early compared to 1
(equivalently, we say that r; is late compared to r;), if

t; < tj — T(?") + BCET(’I”)

Our goal is to develop a cascading fault tolerance mech-
anism to enable both a wide error coverage and efficient
resource usage in dependable real-time systems composed
of tasks with various criticality levels. Hence, the possible
redundancy configurations are:

1. no redundancy

2. time redundancy

3. space redundancy

4. time and space redundancy

We assume that the value errors caused by a large variety
of transient and intermittent hardware faults can effectively
be tolerated by a simple re-execution of the affected task,
whilst the value errors caused by software design faults
could be tolerated by executing an alternate action such
as recovery blocks or exception handlers. Both situations
could be considered as executions of another task (either the
primary itself or an alternate) with a specified computation
time requirement. On the other hand, in addition to all types
of errors that can be tolerated by a time redundancy mecha-
nism, value errors caused by permanent hardware faults and
timing errors can be tolerated by a space redundancy mech-
anism. If ultimate dependability is desired, using both ap-
proaches together will provide recovery from a wide range
of errors, as well as from an increased number of error oc-
currences, with the obvious additional cost. The error type
coverage achieved by each technique is shown in Figure 2.

Our approach relies on the following set of basic as-
sumptions (to a large extent based on [9]):

Al non-faulty task replicas produce values within a spec-
ified admissible value range after each computation
block

A2 non-faulty task replicas produce values within a spec-
ified admissible time interval after each computation
block

A3 incorrect replica outputs do not form (or contribute in
forming) a consensus

A4 the voting mechanism does not fail, as being designed
and implemented as a highly reliable unit
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4 Time redundancy

An approach to maximize the fault tolerance capability
in FPS has been presented in [8]. In this paper we propose
a scheduler independent approach, suitable for, e.g., FPS,
EDF or table driven scheduling (TD), to enable time redun-
dancy for every critical and ultra-critical task instance, exe-
cuted along with highly-critical as well as non-critical tasks.

4.1 Overview

Our goal is to, first, derive feasibility windows for each
task instance 77 € I to reserve the slack necessary to the
re-execution of every critical task instance. Then, we de-
rive scheduler dependent attributes to ensure task execu-
tions within their new feasibility windows. However, our
task model consists of critical, highly-critical, ultra-critical,
as well as non-critical tasks. While executing non-critical
tasks in the background can be a safe and straightforward
solution, in our approach we aim to provide non-critical
tasks a better service than background scheduling. Hence,
depending on the criticality of the original tasks, the new
feasibility windows we are looking for differ as:

1. Fault Tolerant (FT) feasibility windows for critical,
highly-critical and ultra-critical task instances

2. Fault Aware (FA) feasibility windows for non-critical
task instances

While the FT feasibility windows represent time intervals
in which critical, highly-critical and ultra-critical task in-
stances need to execute and complete to ensure the time
redundancy, the derivation of FA feasibility windows has
two purposes: 1) to prevent non-critical task instances from
interfering with critical ones, i.e., to cause any critical task
instance to miss its deadline, while 2) ensure the non-critical
a short response time. Since the size of the FA feasibility
windows depend on the size of the FT feasibility windows,

Original
Task Attributes
Task Criticalities

-V Fault Model

Derivation of fault-tolerant
feasibility windows for critical tasks
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Derivation of fault-aware feasiblity
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[
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Figure 3. Time redundancy - overview

in our approach we first derive FT-feasibility windows and
then FA feasibility windows.

At this point we need to make sure that the underlying
scheduler will actually schedule the tasks within their de-
rived FT/FA feasibility windows. While the new deadlines
can be used directly under EDF, or an off-line scheduler can
easily allocate the tasks to feasible time slots and store the
information in a scheduling table, in FPS a further priority
assignment is required. Later on, we present a method to
derive FPS attributes that guarantees task execution within
their FT/FA deadlines under FPS.

Obviously, the maximum utilization of the critical,
highly-critical and ultra-critical tasks and alternates can
never exceed 100%. Hence, during error recoveries, the
non-critical task executions cannot be permitted as it may
result in overload conditions. We assume that the sched-
uler has adequate support for flagging non-critical tasks as
unschedulable during such scenarios, in addition to appro-
priate error detection mechanisms in the operating system.
An overwiew of the proposed methodology is presented in
Figure 3.

4.2 Derivation of FT- and FA feasibility
windows

The first part of our approach is the derivation of FT and
FA feasibility windows. Our approach first derives new FT
deadlines for the primary versions of the critical and ultra-
critical task instances, so that in case of a critical task error,
an alternate version of that instance can be executed before
its original deadline. As highly-critical tasks do not have
alternates, their FT deadlines are equal to the original dead-
lines. Then, FA deadlines are derived for the non-critical
task instances, so that the provided fault tolerance for the
critical ones is not jeopardized.



We illustrate the derivation of FT and FA feasibility win-
dows by using a simple example consisting of three tasks
with parameters described in table 1.

[ Task [ T [ WCET | criticality |

A 3 1 non-critical
B 4 1 critical
C 12 3 ultra-critical

Table 1. Example: task set attributes

Derivation of FT deadlines: The aim of this step is to re-
serve sufficient resources for the executions of the critical
and ultra-critical task alternates in the schedule. Our pri-
mary goal is to provide re-execution guarantees for every
critical task instance. Thus, we calculate the latest possi-
ble start of execution for critical and ultra-critical task alter-
nates by using the concept of earliest deadline last (EDL)
scheduling policy [7]. Specifically, we select the set of crit-
ical, highly-critical and ultra-critical tasks I'¢, T7¢ Tu¢ cal-
culate FT-deadlines for each of them when scheduled by
EDL together with their alternates I'¢, "¢ on every node
n. The FT deadlines of a critical or ultra-critical task in-
stances is equal to the latest start time of its alternate, while
the FT deadline of the highly-critical task instances (that
do not have alternates) are equal to their original deadlines.
In this way, we reserve sufficient resources for each critical
and ultra-critical task alternate, assuming that the cumula-
tive processor utilization of the primaries and their alter-
nates does not exceed 100%.

Lemma 4.1. A schedule produced by EDL on a set of pe-
riodic tasks with deadlines equal to their periods and ex-
ecutions equal to their WCET, is identical to the schedule
produced by EDF on the same task set, but in reversed or-
der, i.e.,at any instant t < LCM

fepr(t) = fepL(LCM —t)

Proof. The proof is a straightforward from the results pro-
vided in [7], based on the idle time calculation under EDF
and EDL. O

The FT feasibility windows for B and C are presented in
figure 4(a). The dashed boxes represent the latest possible
execution of the alternates.

Derivation of FA deadlines: We aim to provide FA dead-
lines to non-critical task instances to protect critical, highly
critical and ultra-critical ones from being adversely af-
fected. As a part of recovery action upon errors, the un-
derlying fault tolerant on-line mechanism checks if there is

enough time left for the non-critical task instances to com-
plete before their new deadlines. If not, these instances are
not executed.

To derive the FA deadlines, we repeat the process used
in the derivation of FT deadlines, on the set of non-critical
tasks, I'7¢, but in the remaining slack after the critical
highly-critical and ultra-critical task primaries are sched-
uled to execute as late as possible within their FT feasibility
windows, as derived in the previous step. The main reason
is that interference between primary tasks executions “as
late as possible” and non-critical tasks may result in situa-
tions where primary tasks may miss their deadlines, when
the total task utilization exceeds 100%, i.e., due to the ex-
ecution of critical or ultra-critical task alternates. Hence,
the primaries need to be guaranteed that their latest possi-
ble execution windows are free from interference with non-
critical task. A benefit of this approach is that the non-
critical tasks can be provided a better service than, e.g.,
background scheduling as they are allowed to execute be-
fore the critical ones. Note that we do not need to take into
account the interference between non-critical tasks and crit-
ical or ultra-critical alternates, as the first ones are shed by
the scheduler during the execution of the critical alternates.
The derived FA feasibility window for A is shown in figure
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(b) FA feasibility windows for A

() FT feasibility windows for B, C, and
alternates

Figure 4. FT and FA deadlines derivation

4(b). In some cases, we may fail finding valid FA deadlines
for some non-critical task instances. We say that a FA dead-
line, DA (7]), is not valid if Dpa(7]) —est(r]) < C(7}),
i.e., if the processor utilization demand exceeds the avail-
able resources. This scenario could occur since the task
set consists now of tasks with deadlines less than periods,
i.e., due to the newly derived FT feasibility windows. In
these cases, we keep the original deadline and, in the fol-
lowing subsections, we present scheduler specific solutions
towards handling these non-critical tasks.

4.3 EDF scheduling

EDF can feasibly execute all primaries and alternates up
to 100% utilization if the deadlines are equal to the peri-
ods. However, in our task model, only the alternates and the



highly critical tasks have FT deadlines equal to their peri-
ods, while the FT/FA deadlines of the rest of the tasks are
less than periods.

Theorem 4.2. All critical task primaries and alternates,
) € {T¢ UThe T4 UTE UTYY}, complete before their
FT deadlines, when scheduled by EDF.

Proof. We prove the lemma by contradiction. Let assume
that there exists a time interval in the schedule during which
the cumulative processor demand [3] exceeds the length of
the interval, i.e., 3 L > 0 such that L < Y 7, (| 552 +
1])C; . Here we have two cases:

1. the task set does not contain non-critical tasks. We
have used the EDL to derive the latest finishing time
for primary tasks, which are equal to the latest start
time of the alternates. If L exists under EDF, then
the same interval exists for EDL as well but located
in a symmetric location in the schedule (lemma 4.1).
Hence, a task set with an utilization less than or equal
to 100% would not be schedulable under EDF, which
contradicts the EDF schedulability bound.

2. the task set contains non-critical tasks with valid FA
deadlines as well. In this case, FA deadlines are de-
rived in the slack after scheduling the critical pri-
maries. Hence, critical task primaries are guaranteed
an execution window equal to their WCET. Moreover,
non-critical tasks are shed by the scheduler during the
execution of the critical alternates, hence the alternates
are guaranteed to be scheduled before their deadlines.

O

Theorem 4.3. In error free scenarios, all non-critical tasks
with valid FA deadlines 7} € T7'° complete before their
deadlines, when scheduled by EDF.

Proof. If the algorithm finds any time interval in which the
utilization demand exceeds the length of the interval, the
non-critical tasks are assigned non-valid FA deadlines. If
no such interval is found, the non-critical tasks are assigned
valid FA deadlines. Hence, the non-critical tasks with valid
FA deadlines tasks are schedulable by EDF together with
the critical ones. O

In the case of the non-critical tasks with non-valid FA
deadlines, the safest approach is to not schedule them at all,
as the primary goal is to guarantee the feasible execution of
all critical primaries and alternates. On the other hand, an
on-line server [23] could be used to accommodate the exe-
cution of these tasks in cases the load permits, e.g., during
error free scenarios or/and tasks execute less than WCET.

An example of an EDF schedule is presented in figure 5.
Here, C and the last two instances of B are hit by errors.

Figure 5. EDF Schedule under errors

4.4 Table driven scheduling

An arbitrary off-line scheduler is used to allocate tasks
to slots within their derived FT/FA feasibility windows. As,
according to our assumptions, the total utilization, including
non-critical tasks, will exceed 100%, a feasible off-line al-
location of the non-critical tasks will not be possible. How-
ever, in error free scenarios, the slots allocated to critical
or highly-critical alternates will be unused due to the in-
flexibility of the off-line scheduling paradigm. Thus, the
scheduling table could be derived to provide, e.g., a dual
entry for the slots allocated to the alternates, i.e., in case the
execution of the alternates is not required, non-critical exe-
cution can be scheduled instead. At the same time, existing
approaches to add flexibility to off-line scheduling can be
used as well [10]. The schedulability of the task set in table
driven scheduling is proved by construction.

4.5 FPS

Here, our goal is to provide tasks with FPS attributes that
guarantee the task executions within their derived FI/FA
feasibility windows. As, in the general case, FPS has a
lower schedulability bound than EDF, in our approach, we
assign FPS task attributes to match the EDF priority order-
ing, thus, guaranteeing the feasible re-execution of every
critical, highly critical and ultra-critical tasks, together with
alternates, under the specified assumptions. We do so by
analyzing the task set with new deadlines and derive pri-
ority relations for each point in time at which at least one
task instance is released, based on their earliest deadlines.
In the case of the non-critical tasks with non-valid FA dead-
lines, we make sure that the priority assignment mechanism
will assign the non-critical tasks a background priority, i.e.,
lower than any other critical task, and any other non-critical
task with a valid FA deadline.

As the priority assignment reconstructs the EDF sched-
ule, when solving the derived priority inequalities it may
happen that different instances of the same task need to
be assigned different priorities. These cases cannot be ex-
pressed directly with fixed priorities and are the sources for
priority assignment conflicts. The algorithm detects such
situations, and circumvents the problem by splitting a task



into its instances. Then, the algorithm assigns different pri-
orities to the newly generated “artifact” tasks, the former in-
stances. Key issues in resolving the priority conflicts are the
number of artifact tasks created, and the number of priority
levels. Depending on how the priority conflict is resolved,
the number of resulting tasks may vary, i.e., based on the
size of the periods of the split tasks. Our algorithm mini-
mizes the number of artifact tasks by using ILP for solving
the inequalities to find the priorities and the splits that yield
the smallest number of FT FPS tasks. The new task’s in-
stances comprise all instances of the original tasks. A com-
plete description of the method together with an example
of the ILP problem formulation, as well as an evaluation of
the approach in comparison with the fault tolerant version
of rate monotonic algorithm, can be found in [8].

Theorem 4.4.

e All critical task primaries and alternates, Tij e {Ireuy
TheyTueuTe UTEeY}, complete before their FT dead-
lines, when scheduled by FPS.

e Inerror free scenarios, all non-critical tasks with valid
FA deadlines 7} € T7'¢ complete before their dead-

3

lines, when scheduled by FPS.

Proof. As the priority relations reflect the EDF scheduling
policy, based on which the ILP solver provides absolute
priority values, the theorems 4.2 and 4.3 are valid here as
well. O

The task set scheduled according to FPS under the worst
case error occurrence scenario is presented in figure 6. The
artifact tasks, e.g., B1, B2, etc, were created from the orig-
inal task instances to resolve the priority assignment con-
flicts. For example, B1 was created from the first instance
of B and so forth. Note that the large number of splits result-
ing in 9 tasks is due to the high fault tolerance requirements,
i.e., one re-execution per task instance, as well as the high
processor utilization of the original task set.

S Space redundancy in real-time systems

In this section we propose a voting strategy that explic-
itly considers failures in both value and time domain. The
correctness of our method relies on a number of conditions
regarding the permissible number of replica failures:

C1 The number of timely replica outputs should be greater
than or equal to the minimum number of replica out-
puts required for consensus in time domain (M;):

N —F, > M,

where N is the total number of replica tasks, F} is
the number of replica outputs with incorrect timing,

Figure 6. FPS schedule under errors

and M, is either majority (M, > [%527) or plurality
(M; < N/2) in time domain.

C2 In order to achieve a consensus in value domain, the
number of replica outputs with correct values should
be greater than or equal to the number of minimum
number of replicas required to achieve consensus in
value domain (M, ). However, since in the general
case timeliness is a precondition for value correctness,
i.e., since we want to compare only relatively timely
replica outputs and we cannot wait for late outputs, the
replica outputs forming the consensus in value domain
needs to be free from any type of errors:

N—-F>M,

where F' is the number of replica outputs with incorrect
timing and/or value, and M, is either majority (M, >
[2EL1) or plurality (M, < N/2) in value domain.

Our goal is twofold:

1. always deliver the correct value within the correct time
interval, if the conditions C1 and C2 hold

2. signal the disagreement, otherwise.
5.1 Method

In order to reach an agreement on the correct replica out-
put, the voter needs to receive a number of matching values



which are also delivered not far apart from each other with
respect to time, i.e., replica outputs need to form a consen-
sus in both time and value domains. The first step is to
ensure that the voter detects and delivers the agreed value
(if obtained) within [t*s*¢"* — § 4+ BCET(r),t**" 4 §].
To do so, M, out of N replica outputs need to be deliv-
ered within the absolute time interval of [t*sta"t — § +
BCET(r), t**"4+5]. Furthermore, those outputs must also
be received within a relative time interval, equal to M PD
(referred to as feasible voting window henceforth).

The maximum number of sets, consisting of M; con-
secutive replica outputs each (out of the N replicas), is
N — M; + 1. Since the consensus in time domain can
be reached in any of these sets, a separate feasible vot-
ing window needs to be initiated upon receiving each of
the first N — M, + 1 replica outputs. We keep track of
the feasible voting windows by using simple countdown
timers. Once an agreement in time domain is obtained,
then the values are voted. If an agreement in value domain
is not obtained within a particular feasible voting window,
the process continues with subsequent feasible voting win-
dows, until agreement in both time and value domains can
be achieved, or violations of C1 or C2 are detected.

Depending on the real-time application characteristics, a
value produced by a replica may be considered valid or in-
valid for the purpose of voting, in case it is produced early,
i.e., all received values vs. all timely received values are
voted in value domain. We illustrate this voting dilemma by
using the scenario illustrated in Figure 7. Let us assume an
airbag control system, where a collision sensor is replicated
in five different nodes that produce one out of two values
periodically, e.g., value a in case of a collision detection, or
value b otherwise. If a collision is detected at a time t < ¢y
let us assume that the consensus has to be formed before tg
in order to inflate the airbag within a correct time interval.
In our example, the first two values are detected as relatively
early compared to the last three, and the last three are iden-
tified as timely among themselves. However, in this case,
even an early value has to be taken into consideration in the
voting since an early collision detection is still a valid out-
put with respect to the value domain. Thus, the output has
to be voted upon receiving the last value at time ¢5, among
all values, i.e., a, a, a, b, and b, resulting in an output a at
time (¢5). In this case, the condition C2 becomes:

C2 The number of failure-free replica outputs, excepting
the ones with early timing errors must be greater than
or equal to the minimum number of replica outputs re-
quired to achieve consensus in value domain (M,):

N — (F — Ff) > M,

where F' is the number of replica outputs with incorrect
timing and/or value and F is the number of replica
outputs with early timing failure.

The benefit of this observation is that the number of replicas
required to mask a given number of failures (in time and
value domain) can be significantly reduced, compared to
traditional NMR approaches, as replica outputs failed in one
domain may still be used to reach consensus in the other.
On the other hand, let us assume that the same Figure
7 illustrates an altitude sensor in an airplane, replicated by
five nodes to read and output the altitude periodically to the
voter, where data freshness may be a more desirable aspect.
As the correct window of time for the output is the same as
described in the previous example, the only relevant values
to be taken into consideration by the voter are a, b, and b
corresponding to the time points t3, t4, and ¢5 respectively.
Hence, the output produced in this scenario at time t5 is b.

timeliness interval

. i a | >—.a!b?

NS bt b 1o time

difference in output
delivery times > MPD

Figure 7. Voting dilemma

Upon finding a feasible voting window, the decision on
whether the early generated replica outputs are used in value
voting or not, results in two cases:

Case 1 Early and timely outputs are considered valid. If a
consensus among all received values exists, it is deliv-
ered as the correct output.

Case 2 Only timely outputs are considered valid. If a con-
sensus among the timely received values exists, it is
delivered as the correct output.

If no agreement in value domain is reached within a fea-
sible voting window, the process continues with the subse-
quent window. If the end of last feasible voting window
is reached, or all replica outputs are received without reach-
ing an agreement on the values, disagreement is signalled to
the nodes indicating a violation of C1 or C2. The complete
description of the methodology, as well as an algorithm en-
abling voting in time and value is presented in [2].



6 Cascading redundancy

The cascading redundancy approach addresses the dif-
ferent error and cost models of tasks with various criticality
by allowing the following configuration levels for each pre-
determined criticality:

1. no redundancy for non-critical tasks
2. only time redundancy for critical tasks
3. only space redundancy for highly-critical tasks

4. both time and space redundancy for ultra-critical tasks

In this section, we present an algorithm (Algorithm 1)
which enables the use of cascading redundancy in real-time
systems. The algorithm is executed upon every task in-
stance release, regardless of their criticality. Highly-critical

Algorithm 1: Cascading redundancy

input : output value of Ty, type of 74
output: consensus value for 7; or
indication of error (trigger for time redundancy) or
indication of disagreement (trigger for emergency)
while output value of 7y is not received do wait;

1

2 type —typeof 7y

3 value — value of 7

4 switch type do

5 case critical

6 if DetectEmor( value) then

7 | signal error detected,

8 else

9 | output value:
10 end

11 break;

12 case highly-critical

13 SendToVoter(value);

14 while vorer-ourput is not received do wait;
15 if voter-ouiput is disagreement then
16 | signal disagreement;

17 else

18 | oulput consensits;

19 end
20 break;
21 case ultra-critical
22 if DetectError(value) then
23 signal error detected,
24 while output value of 7; is not received do wait;
25 end
26 SendToVoter(value);
27 while vorer-eutput is not received do wait;
28 if voter-ouiput is disagreement then
29 | signal disagreement;

30 else

31 | oulput consensits;

32 end

33 break;

34 otherwise

// (non-critical)

35 break;

36 end

37 end

and ultra-critical tasks are replicated, and the replica out-
puts are voted by the voting mechanism implemented on a
a stand-alone node, to ensure correctness in both value and
time. For the sake of readability, in our description each
highly-critical and ultra-critical task is assumed to have a
dedicated stand-alone voter. In a practical implementation,
however, the voter tasks can execute on a single dedicated
voting node. In this case, the worst case response times of
the voter tasks need to be accounted for in the primary task
worst case execution times, in the off-line time redundancy
approach.

Upon receiving identical requests or inputs, replicas start
their executions on separate processors whose clocks are al-
lowed to drift from each other by a maximum deviation.
When the highly-critical task replicas complete their execu-
tions, the outputs are sent to the stand-alone voter. For ultra-
critical tasks, before sending the outputs to the voter, error
detection for transient coarse value errors and re-executions
of primaries or executions of alternates are performed upon
error occurrences. We assume that the deviation in mes-
sage transfer times from the replicas to the voter is assumed
to be bounded by using reliable communication techniques.
Furthermore the delays introduced by error detection mech-
anisms, voting mechanisms, as well as communication de-
lays between the processing node and the voter are included
in task executions for the purpose of schedulability anal-
ysis. Upon receiving the the required replica values, the
voter starts executing the voting algorithm and sends the
agreed value back to the processing nodes, or signals the
non-existence of a correct output before the latest deadline
among the tasks whose outputs are subject to voting. In
some cases, however, the voter output may be delivered af-
ter one, or several task deadlines. This scenario can occur
in cases when the last required replica output is provided
close to its deadline, while the first replicas are executing
on nodes drifting ahead of the clock, thus, with deadlines
before the latest admissible voter output. In these cases
the schedules on nodes which are drifting ahead of time
are rolled back to the end of the replica task period, with
adequate checkpointing mechanisms. This action will en-
sure that the subsequent tasks will process the consensus
value delivered by the voter and, in the worst case, force
the nodes executing such tasks to drift from the correct time
by maximum ¢, which is still admissible with respect to the
real-time specifications.

As the replicas of a task need to agree on an output
value, the only feasible order for performing cascading re-
dundancy is first time redundancy followed by space redun-
dancy. Whenever a consensus is achieved for a replicated
critical task, any uncompleted replica instances, or their al-
ternate actions becomes obsolete for the purpose of voting
and, thus, can be shed. This can allow for, e.g., improv-
ing the service to non-critical tasks. In Figure 8, neither the



ultra-critical task B on Node 3 nor its alternate is executed
since the voter reports that majority has been formed before
B starts executing on that node.
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Figure 8. Cascading redundancy - example

7 Conclusions

In this paper we have presented a fault tolerant schedul-
ing framework that enables the use of both time and space
redundancy in dependable real-time systems. We have pro-
posed a cascading redundancy approach that is capable of
tolerating errors with a wider coverage (with respect to error
frequency and error types) than either time or space redun-
dancy alone, is independent from the underlying scheduler,
can cope with tasks of mixed criticality levels, and guaran-
tees the feasible time and space replication of every critical
task instance while fully utilizing the resources.

Future work will include task migration aspects together
with on-line adaptations, in order to optimize the schedula-
bility of the lower critical tasks, e.g., non critical, in error
free scenarios.
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