
Adaptive Task Automata: A Framework for

Verifying Adaptive Embedded Systems

Leo Hatvani, Paul Pettersson, and Cristina Seceleanu

Mälardalen University, 721 23, Västerås, Sweden
{leo.hatvani,paul.pettersson,cristina.seceleanu}@mdh.se

Abstract. We present a framework for modeling and analysis of adap-
tive embedded systems, based on the model of timed automata with
tasks. The model is extended with primitives allowing modeling of adap-
tivity, by testing the potential schedulability of a given task, in the con-
text of the set of currently enqueued tasks. This makes it possible to
describe adaptive embedded systems, in which decisions to admit fur-
ther tasks or take other measures of adaptivity is based on available
CPU resources, external, or internal events. We show that this model
can be encoded in the framework of timed automata, and hence that
the problem is decidable. We also validate the framework, by using the
Uppaal tool.

1 Introduction

Adaptive embedded systems are embedded systems that must be capable of
dynamic recon�guration, to adapt to e.g., changes in available resources, user-
or application-driven mode changes, or modi�ed quality of service requirements.
The possibility to adapt provides �exibility that extends the area of operation of
embedded systems and potentially reduces resource consumption, but also poses
challenges in many aspects of systems development, including system modeling,
scheduling, and analysis.

In embedded systems, tasks are usually assumed to execute periodically
according to classical real-time scheduling methods, such as rate monotonic
scheduling, other �xed priorities, earliest deadline �rst, or �rst-in �rst-out [5].
For systems with non-periodic tasks or non-deterministic task behaviors fewer
general results exist. Automata models have been proposed to relax some of the
assumptions on the arrival patterns of tasks. In the model of task automata (or
timed automata with tasks) [8,10], the release patterns of tasks are modeled
using timed automata [1], such that a set of tasks with known parameters is
released at the time point an automaton location is reached. It has been shown
that the corresponding schedulability problem for this bigger class of possible
release patterns is decidable, i.e., the problem of checking if, for all possible
traces of a task automata, the tasks released are schedulable (or not), assuming
a given scheduling policy. It has also been shown how to generate code from task
automata, such that a modeled system can be realized on a hardware platform
running e.g., WxWorks [3,4]. The theory is implemented in the Times tool [2].



On the another hand, many results exist for formal veri�cation of adaptive
embedded system models speci�ed in high level languages such as UML State-
charts, as enumerated by Schaefer [13]. Another set of results describes applica-
tion of formal veri�cation of schedulability to: multiprocessor systems [14], satel-
lite systems [11], or providing generalized frameworks for schedulability analysis
[7]. All of these studies have one thing in common: the non-schedulability of
the system can be determined only after a task misses its deadline, and thus
the information is not present soon enough, such that it can be used to avoid
entering such state.

In this work, we propose a framework for modeling and analysis of adaptive
real-time embedded systems, based on the model of task automata, and assuming
a single CPU preemptive environment. We extend the model with primitives
allowing modeling of adaptivity based on the schedulability of the set of currently
released tasks (i.e., the ready queue), if further tasks are released. In particular,
we propose to add a schedulability predicate that can be used as a conjunct
of a timed automaton guard. The predicate evaluates to true at a given time
point, i� the current ready queue, extended with zero or more speci�ed tasks,
is schedulable with a given scheduling policy. This allows for modeling of e.g.,
adaptive embedded systems in which decisions to admit further tasks are based
on available CPU resources, or systems in which tasks with high quality of service
can occasionally be replaced with alternative lower quality tasks, when the CPU
load is too high.

P T D C
t0 3 10 10 5
t1 2 15 6 4
t′1 1 – 6 1
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Fig. 1. A trace of a task set with adaptable task t1.

As a small example of the proposed model, consider a system with two tasks
t0, t1, and t′1, where t

′
1 is a version of t1 with lower quality of service, which

requires less CPU time. The task parameters are given in Fig. 1: P is priority,
T is period, D is deadline, and C is computation time. Since P0>P1>P

′
1, task

t0 will be executed periodically without being preempted. We assume t1 will
be admitted only if it has a chance to complete before deadline, otherwise t′1
is released. The system is schedulable, and will release t0 every 10 ms, and will
try to release t1 every 15ms. If t1 cannot be released at that time point, due
to interference from t0, task t

′
1 will be released. Modeled in our extended task

automata model, we can check schedulability, verify how many times out of k
task t′1 replaces t1, and interpret a simulated trace as static cyclic scheduler for
the system.

As our main result, we show that the schedulability problem and other reach-
ability properties of the proposed model are decidable for �xed priority schedul-
ing policies. Our encoding of the problem is based on previous results of Fersman



et.al. [8,10], in which it is shown how given task automata can be encoded and
analyzed as a network of timed automata. However, in comparison to the previ-
ous work, our type of adaptive systems cannot rely completely on encoding the
scheduler and explore the state space to check if the system is schedulable or
not. Instead, we need to check in advance if a system is schedulable, or will be
schedulable with the potential release of one or several additional tasks.

The rest of this paper is organized as follows: in the next section, we de-
scribe preliminaries, in Section 3 adaptive scheduling policies encompassed by
the model, and in Section 4 our main result, the encoding. In Section 5, we give
some examples, and conclude the paper in Section 6.

2 Preliminaries: Task Automata

Our model of adaptive task automata is based on the model of task automata (or
timed automata with tasks) [8,10,12], which extends the model of timed automata
with a notion of tasks. A timed automata [1] is simply a �nite state automata
extended with a �nite set of real-valued clocks. The edges of timed automata
are labeled with Boolean combinations of simple clock constraints, events, and a
reset set of clocks, specifying a subset of the clocks to be reset when the edge is
taken. In the model of task automata, the idea is to associate each location of a
timed automaton with a an executable program, called task, which is assumed to
be released when the location is reached. Each task is assumed to be associated
with given parameters such as execution time, hard deadline, priority, etc. It
is possible to interpret a task automaton as an abstract model of a running
system, in which the underlying timed automata describes the time points at
which possible events occur, and the location-associated tasks, triggered by the
occurring event.

Syntax. Let T ranged over by t0, . . . , tn denote a �nite set of task types. Each
task type may have di�erent instances over time, however, we will assume, with-
out lack of generality, that at each time point there is at most one instance of
each task type released. Each task type is associated with a a triple of natural
numbers ti(Ci, Di, Pi), where Ci is the task's computation time, Di its relative
deadline (relative from the release time point), and Pi its priority. Further, let
Act ranged over by a, b etc, denote the set of action labels, and C ranged over
by x0, . . . , xn the �nite set of real-valued clocks. We use B(C) ranged over by g
to denote the set of conjunctive formulas of constraints, called clock constraints,
of the form xi ∼ n and xi − xj ∼ m, where ∼∈ {≤, <,>,≥}, and n and m are
natural numbers.

De�nition 1. [10] A task automaton over Act, C, and T is a tuple 〈L, l0, E, I,M〉,
where L is a set of location ranged over by l0, . . . ln, l0 ∈ L is the initial location,
E ⊆ L × B(C) × Act × 2C × L is the set of edges, I : L 7→ B(C) is a function
assigning each location with a location invariant, and M : L ↪→ T is a partial
function assigning locations with tasks. ut



Semantics. Like in standard timed automata, a task automaton may perform
two types of actions. A delay transition corresponds to progression of time and
execution of the released task with the highest priority, and idling lower priority
tasks waiting to run. An action transitions corresponds to taking an enabled
edge (one whose guard evaluates to true given the current clock values), and
(possibly) releasing a task associated with the location reached.

A state of a task automaton is a triple 〈l, u, q〉, where l is the current con-
trol location, u : C 7→ IR≥0 is a function mapping clocks to non-negative real
values, and q is the current ready queue of tasks. The task queue is formed as:
[ti(ci, di), . . . , tj(cj , dj)], where ti is the task type, ci is the remaining compu-
tation time, and di the relative deadline. A scheduling function, such as �xed
priority or earliest deadline �rst, is a function Sch sorting the task queue w.r.t.
the task parameters. For instance, [t1(1, 2), t2(2.5, 4)] is sorted according to �xed
priority, if P1 > P2. Note that a scheduling policy can be either preemptive or
non-preemptive, depending on whether the �rst queue position can be changed
(preemptive) or not (non-preemptive).

To de�ne the semantics, we also need a function RunSch that takes a task
queue q and a non-negative real-number δ, and returns the result of executing
q for δ time units, with the given scheduling function Sch (e.g., RunFPS([t1(1, 2),
t2(2.5, 4)], 2) = [t2(1.5, 2)], for a �xed priority scheduling fuction RunFPS).

De�nition 2. [10] Given a task automata 〈L, l0, E, I,M〉 with an initial state
〈l0, u0, q0〉, and a scheduling strategy Sch, the semantics is a transition system
de�ned as:

� 〈l, u, q〉 a−→Sch 〈l′, r(u),Sch(M(l′) :: q)〉 if l g,a,r−→ l′ ∈ E and u |= g

� 〈l, u, q〉 δ−→Sch 〈l, u⊕ δ,RunSch(q, δ)〉 if (u⊕ δ) |= I(l)

where r(u) is 0 for all xi ∈ r and u(xi) otherwise, t :: q is the result of merging
t with q, and u⊕ δ is the result of adding δ to all clock values in u. ut

Schedulability. Veri�cation problems of the above model, with non-preemptive
and preemptive tasks, have been already investigated in [10,12]. Here we brie�y
review the notions of reachability and schedulability. A state 〈l, u, q〉 is reachable
with a given scheduling policy Sch, if 〈l0, u0, q0〉 (−→Sch)

∗〈l, u, q〉, where −→Sch

is
a−→Sch or

δ−→Sch. Further, a state 〈l, u, q〉 with q = [t0(c0, d0), . . . , tn(cn, dn)]
is de�ned as deadline-missed, if there is some 0 ≤ i ≤ n such that ci > 0 and
di ≤ 0. A task automaton A is de�ned to be non-schedulable with Sch i� a
deadline-missed state is reachable with Sch. Otherwise, A is considered to be
schedulable with Sch. In general, A is said to be schedulable if it is schedulable
with some scheduling strategy Sch. The problem of checking schedulability of
task automata with preemptive tasks is proven to be decidable in [10].

3 Adaptive Task Automata

In this section, we describe the model of adaptive task automata, which extends
the model of timed automata for adaptivity. Our aim is to enable modeling



of adaptivity based on the schedulability of the set of currently released tasks,
and the e�ect of potentially releasing additional tasks for execution. In terms
of modeling, the extension consists of a set of predicates for schedulability test,
which can be used in conjunction with other guards on edges of task automata.
As a main result of this paper, we will also show how the resulting model can
be encoded as timed automata, and hence, that reachability and schedulability
checking are decidable.

De�nition 3. Given a task automaton state 〈l, u, q〉, with q = [t0(c0, d0), . . . ,
tn(cn, dn)], and two distinct tasks, ti and tj, let P be the set of predicates
{inqueue/1, sched/1, sched/2} satis�ed as follows:
〈l, u, q〉 |= inqueue(ti) if ti ∈ q
〈l, u, q〉 |= sched(ti) if (

∑i
j=0 cj) ≤ di ∧ inqueue(ti) ∨

〈l, u, Sch(ti ::q)〉 |= sched(ti) ∧ ¬inqueue(ti)
〈l, u, q〉 |= sched(ti, tj) if inqueue(ti) ∧ 〈l, u, Sch(tj ::q)〉 |= sched(ti)

ut
We say that ti is active in state 〈l, u, q〉 if 〈l, u, q〉 |= inqueue(ti). In the rest of
the paper, we will omit 〈l, u, q〉 if the context is obvious. Intuitively, sched(ti) is
true in a state, if ti will meet its deadline, given that q is executed according to
Sch. We say that ti is schedulable if sched(ti). Similarly, sched(ti, tj) is true in a
state, if ti is schedulable even if tj is released (added to q).

We now de�ne the model of adaptive task automata. Let B(P ∪ C) denote
the set of conjunctive formulas of clock constraints in B(C), and predicates in P.

De�nition 4 (Adaptive task automata). An adaptive task automaton over
Act, C, and T is a tuple 〈L, l0, E′, I,M〉, where L, l0, I, M are de�ned as in
task automata in De�nition 1. The set of edges is de�ned as: E′ ⊆ L× B(P ∪
C)×Act× 2C × L. ut

Hence, the set of guards of the edges is extended to conjunctions of clock con-
straints and the predicates of De�nition 3.

Example 1. The adaptive task automaton shown in Fig. 2 describes the release
pattern of the task t1 and corresponding backup task t′1 from Fig. 1. The au-
tomaton consists of a clock x, and three states: Start, Release t1, and Release

t′1. The edge from state Start to the states releasing tasks t1 or t′1 is immedi-
ate, given the invariant x ≤ 0 of state Start. The choice of the next state is
regulated by the evaluation of the respective guards on the edges, sched(t1) or
sched(t′1)∧¬sched(t1), respectively. Once one of the Release {t1, t′1} states is en-
tered, the corresponding task is released, and the automaton spends the rest of
the period in that state, before returning to start and resetting the clock x. Note
that a third edge from Start to an error location, taken in case when none of the
alternatives can be released, has been omitted from the �gure for simplicity.

Derived predicates. The predicates de�ned above can be used to derive several
other useful predicates, including:

� sched_all = (
∧
i inqueue(ti)⇒ sched(ti)),



Start
x ≤ 0

t1

t′1

Release t1
x ≤ 15

Release t′1
x ≤ 15

x ≥ 15
x = 0

sched(t1
)

sched(t′1) ∧ ¬sched(t1)

Fig. 2. Adaptive task automata for the task t1 from the Example 1.

� sched_all(ti) = (
∧
j inqueue(tj)⇒ sched(tj , ti)).

The predicate sched_all evaluates to true, in case all tasks in the queue are
schedulable, assuming scheduling policy Sch. The second predicate holds if all
the tasks in the queue are schedulable, if task ti is released. We will make use of
the above derived predicates in an example presented in Section 5.

4 Encoding of the Adaptive Task Automata

In this section, we present an encoding of the task release automata, the sched-
uler, and the task queue, as timed automata models. The encoding is presented
in terms of the variables that are used to model the execution of tasks. Based
on these variables, the predicate sched() is encoded, and �nally, an encoding of
a �xed priority scheduler is presented.

Modeling a task set execution in timed automata requires tracking of several
values for each executed task instance. To establish if a task has executed in
time, we keep track of the amount of time that the task has been executing,
and the amount of time that has passed since the task has been released. By
using these values, and comparing them to the computation times and relative
deadlines of the tasks, we can establish if a task is able to complete successfully,
or not.

Our encoding is based on, and combines ideas introduced by Fersman et al.
[8,9]. The following variables are used for each task ti:

� ci - a clock that resets every time the predicate (∃tj | inqueue(tj)∧Pj ≥ Pi)
changes value from false to true, where Pi and Pj are priorities of tasks ti
and tj respectively;

� di - a clock reset when the task ti is released;
� ri - an integer variable (of bounded domain) that contains a sum of the
computation times Ci of all tasks of higher or equal priority to task ti,
which have been released since ci has been last reset.

The use of these variables will be exempli�ed on the scenario illustrated in Fig. 3.
Four task instances are released: t1 (at time point 4), t2 (at time point 1), and



0 2 4 6 8 10
0

2

4

0

2

0

t3

t2

t1

ri - response time

ci - computation
time clock value

task release and
completition time

deadline of the task

Task P C D
t1 1 1 3
t2 2 2 5
t3 3 2 5

Fig. 3. Tracking of essential variables for each task.

t3 (at time points 2 and 8). The task parameters and the values of variables ri,
and clocks ci, over time, are also given in the �gure. Clocks di are left out for
clarity, but the point where they would become equal to the corresponding value
Di is marked with thick vertical bars.

The variables and clocks of all tasks are reset at the release of the �rst task t2,
at time point 1. As t2 is released, its computation time (2) is added to all the ri
of tasks with lower or equal priority to t2, i.e., r2 = r2+2 = 2 and r3 = r3+2 = 2.

A task completes its execution when ci = ri. In our case, this happens �rst
at time point 3, when r2 = c2. However, before this, task t3 is released at time
point 2, so r3 is increased by 2, the computation time of task t3. The only clock
reset at this time is d3, to start measuring time until its relative deadline.

At time point 4, task t1 is released, causing the reset of all its variables, and
those of task t2 (according to how ci is updated). Variables r1, r2, and r3 are
increased by 1 (the computation time of task t3), to 1, 1, and 5, respectively.

We now focus on task t3. Observe that the di�erence r3 − c3 for task t3
represents the time left until t3 completes its execution (assuming no higher
priority task is released). The time left to its deadline is given by D3 − d3.
Comparing the two values, we get the amount of time that the task can be
delayed without missing its deadline, and hence, as long as the inequality holds,
the task will meet its deadline. The values are illustrated in Fig. 4. In fact, at
time x, there is enough time to execute a higher priority task for 2 time units,
since r3− c3+2 ≤ D3−d3. When task t1 is later released, we already know that
task t3 can �nish at time 6, i.e., 1 time unit before its deadline.
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Fig. 4. Visual explanation of the schedulability predicate encoding.

4.1 Encoding the predicate sched()

Given the variables introduced above, and given that there is a possible sched-
uler model (introduced in the next section), we encode the predicate sched() as
follows:

sched(ti) =

 ri − ci ≤ Di − di if inqueue(ti)
ri − ci + Ci ≤ Di − di if ¬inqueue(ti) ∧ Prun > Pi
Ci ≤ Di if ¬inqueue(ti) ∧ Prun < Pi

where trun refers to the currently executing task.
The �rst case has been explained in the previous section, note that it covers

all cases where ti = trun, since inqueue(trun) is invariantly true. In case the task
of interest (ti) has not been released yet, its computation time is not included in
the expression ri− ci ≤ Di− di, so this gives rise to the second case. In case the
task is not yet released, and it has higher priority than the currently running
task, it will execute immediately, and its schedulability is then only depending
on computation time being shorter than the deadline, hence the third case. This
case cannot be covered by the second case, since the clocks are considered inactive
at this point, and can only be reset and not read.

The implementation of the scheduler requires a strict ordering between the
tasks. We have introduced that ordering by assuming unique task priorities.
Together with the requirement of single task instance per task, this makes Pi =
Pj lead to an error state, and it is therefore not considered.

The derivation of the schedulability predicate that tests the schedulability of
task ti, based on the release of task tj , can be done from the second case above,
by replacing ci with a new computation time Cj . This provides the following
predicate that tests whether the task ti is schedulable, if task tj is released:

sched(ti, tj) =

 ri − ci + Cj ≤ Di − di if Pi < Pj ∧ inqueue(ti)
ri − ci ≤ Di − di if Pi > Pj ∧ inqueue(ti)
false if ¬inqueue(ti)

The second case of this predicate holds when the task that we want to release
will not in�uence the measured task.



4.2 Encoding the Fixed Priority Scheduler

We have devised a model of a �xed priority scheduler, to support our approach
to the veri�cation of adaptive embedded systems. This encoding enables us to
simulate the passage of time in the model, and simultaneously, keep track of
response times of tasks in the queue. This is required for an on-line analysis of
schedulability. Next, we give the scheduler's encoding high-level description, yet
omitting some details due to lack of space.

High level description. The model consists of three locations with identi-
�ed, di�erent roles: Idle, Busy and Error, as shown in the overview Fig. 5. The
corresponding locations can also be found in the Fig. 6.

Idle Busy Error
Idle → Busy

Task run done and q = ∅

Busy → Idle
First task release

Busy → Busy
Task run done and q = ∅

Variable bounding
High priority task release
Low priority task release

Busy → Error
Deadline miss
Multiple release

Fig. 5. A high level overview of the scheduler and queue encoding in timed automata.

The scheduler and queue timed automaton model starts in the Idle location.
As soon as some task is released, the location changes to Busy, and if an error
occurs, the model switches to the Error location. Otherwise, the model loops in
the Busy location, for as long as there are tasks in the queue. The addition of
the Error location makes it possible to easily distinguish between an error in the
schedule, and a deadlock in the task release model.

The queue is implemented such that each task ti has attribute inqueuei. This
attribute indicates whether or not the task is present in the ready queue and is
therefore directly tied to the inqueue(ti) predicate.

The initial location of the model is Idle. The model can be in this location
only when there are no tasks in the queue, and no task is being executed. As
soon as one of the tasks is released (added to the queue), the model changes
its location to Busy, via the First task release edge. The consequence of taking
this edge is that all of the clocks and variables are reset, in order to initiate a
new cycle of execution. After that, the variables related to the release of the
�rst task are updated (detailed explanation of variable updates is presented in
section 4.3).

When the automaton is in the Busy location, it means that a task instance
is being executed on the CPU. Since the model does not implement any task
blocking mechanism, the situation when there are tasks in the queue, but none
is executing, cannot occur.

The Busy location wraps in on itself in multiple edges. Many of these edges
are restricted to execute at the same time point. This is enforced by an invariant



Idle
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crun ≤ rrun ∧
∀j∈{0,...,N−1}

Pj ≤ Prun ⇒ cj ≤ Cmax

reset(),
inqueuei := >,
run := i,
updateRs(i)

releasei?

First task release

crun = rrun ∧
drun ≤ Drun ∧
∀j∈{0,...,N−1}
(run = j ∨ ¬inqueuej)
inqueuerun := ⊥

Task run done and q = ∅

Pi > Prun ∧
¬inqueuei
releasei?

inqueuei := >,
resetBetween(i, run),
run := i,
updateRs(i)

High priority task release

Task run done and q 6= ∅
crun = rrun ∧
drun ≤ Drun ∧
i 6= run ∧
inqueuei ∧
∀j∈{0···N−1}
(j = run ∨
inqueuej = ⊥ ∨ Pi ≥ Pj)

inqueuerun := ⊥,
run := i

ci = Cmax ∧
Pi ≤ Prun

ci := 0,
ri := ri − Cmax

Variable bounding

Prun > Pi ∧
¬inqueuei
releasei?

di := 0,
inqueuei := >,
updateRs(i)

Low priority task release

inqueuei ∧
di > Di

inqueuei ∧
(i = run⇒ ci < ri)

releasei?

Deadline miss Multiple release

Fig. 6. The full model of scheduler and queue. The boxes represent transitions de-
scribed by (in order from top to bottom): name, guard predicate, synchronization
expression, and assignment. If one of the values is nil it is not shown.

on the Busy location (shown in dotted box in Fig. 6). The model uses variable
i to represent classes of edges that are instantiated for every task in the task
set. For instance, if there are �ve task types in the task set, there will be �ve
Variable bounding edges, one for each task type. Below, we enumerate the classes
of edges looping in the Busy location:



� Task run done and q 6= ∅ - After the current task has completed its execution,
this current task, denoted by the value of the run variable, is removed from
the queue, and a next task is chosen for execution, out of those currently
in the queue. The choice of the next task is done by selecting the edge
corresponding to a task that has higher priority than all of the other tasks.

� High priority task release - It releases a new task into the queue, which pre-
empts the currently running task. The release changes the status of the
currently executing task, sets a new value of the variable run, and resets the
currently inactive variables that have lower or equal priority than the new
task.

� Low priority task release - If the new task is not of higher priority then the
currently running task, it is then just placed in the queue. Its variables are
already active, so only the deadline clock di is reset.

� Variable bounding - Due to the nature of timed automata, it is required that
the variables in the model have upper and lower bounds. This process is
explained in detail in section 4.3.

Last but not least, we need to consider the possibilities for the model to
switch to the Error location. In such a case, there are two classes of edges and,
once again, they are iterated over all tasks:

� Deadline miss edge is taken when a task misses its deadline, that is, the
deadline clock becomes greater then the value of the relative deadline.

� Multiple release edge is taken when a task is released, but it is already in the
queue.

Finally, the edge "Task run done and q = ∅" is taken when the last task in the
queue is completed, and there are no more tasks left. We remove the currently
running task from the queue and return to the Idle location.

4.3 Variable Bounding

To be able to verify timed automata models, all of the variables, including clocks,
have to be bound. To bound variables in this model, we have introduced a loop
on the Busy location, named Variable bounding. This loop is executed for each
individual task ti, whenever its total computation time reaches a certain value
Cmax. It reduces the total computation time ci to zero, and subtracts Cmax

from the corresponding response time variable ri, thus not in�uencing the delta
ri − ci. By doing this, we ensure that the total computation time is always
lower or equal to Cmax, and that the response time variable is kept bound to
Cmax+Dmax, within a working system. Cmax can be any value greater or equal
to the maximum of computation times in the current task set, and Dmax is the
maximum of deadlines in the task set. If the response time becomes greater than
Cmax +Dmax, we can guarantee that the task will breach its deadline, and the
model becomes unschedulable.

Theorem 1 The problem of checking the schedulability of the system, modeled
using adaptive task automata, is decidable.



Proof Sketch. Due to space limitation, we give only a proof sketch here. In this
section, we have presented a way of encoding adaptive task automata using
timed automata, featuring a �xed priority scheduler. Since all of the variables
in the model are bounded, and the problem of decidability of bounded timed
automata with subtraction has been already proved decidable [10], the problem
of decidability of checking schedulability in this particular case follows straight-
forwardly. ut

5 Examples

To further illustrate the bene�ts that the system designers could get from using
our model, we have analyzed two example systems, one synthetic, and one based
on real world ideas.

5.1 Admission Control - a synthetic example

This example demonstrates the usage of the sched_all(ti) predicate, for a given
task ti. We assume a system with two tasks, t1 and t2, where each has an
alternative version of itself, t′1 and t′2, respectively. The task parameters are
shown in Fig. 7; parameter J represents the task's jitter value. For instance, the
task t1 will be released every 10 time units, but can be up to 2 time units late.

U

x ≤ J1
x ≥ 0

sched all(t1)

sched all(t′1)

Start
Branch

t1

t′1

Release t1

Release t′1

x ≤ T1

x ≥ T1

x = 0

x ≤ T1

Task P CD T J
t1 4 5 5 10 2
t′1 3 3 5 – 2
t2 2 3 7 10 5
t′2 1 2 7 – 5

Fig. 7. Task set and adaptive task automata model for the synthetic example.

Fig. 7 shows the task automaton corresponding to t1; the one of t2 is similar,
hence we omit it. For the task t1, the task automaton checks whether all of the
other tasks in the system are schedulable if the task t1 is released. If the tasks
are not schedulable, it tries to release the alternative variant of the task: t′1. The
two task automata instances are modeled as timed automata, and communicate
with the scheduler via channels. The order between the preferred and alternative
variant of the tasks, respectively, is ensured by using channel priorities [6]. For
these models, we have proven that the system would never run into the Error
state of the scheduler, and that (all of) the variants of the tasks will be eventually
released. Proving that the system will never get into the Error state is the most
demanding on the Uppaal prover, and it required about 0.08 seconds CPU time,
and 42MB memory on a dual-core 3.0GHz CPU, equipped with 4GB of RAM.



5.2 Smartphone task management example

The second example has been adapted from an idealized smartphone operating
system. Modern smartphone devices support multitasking, yet have quite limited
resources available for realizing their functionality. We propose a scheduler-level
solution that enables a phone to adapt to the current situation �uently, by
dynamically restricting the quality of service provided to the user.

The basic assumption is that the software in the smart phone is being ex-
ecuted in cycles. A series of short tasks that handle di�erent applications are
being executed each cycle. The applications that we have chosen for this exam-
ple are: phone call, video call, and multimedia. The user can turn any of these
applications on, or o�, at arbitrary moments. The switch status of the applica-
tion will not be immediately re�ected in the active task set, but the task set will
change during the next cycle, instead.

P T D C Description
tcl 5 10 10 4 Call
tvc 4 10 10 3 Video Chat
tmm 3 10 10 7 Multimedia: max quality
t′mm 2 � 10 4 Multimedia: medium quality
t′′mm 1 � 10 3 Multimedia: low quality

Table 1. Set of tasks for the smartphone example.
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t′mm

t′′mm

Start
x <= 0

Release tmm

Release t′mm

Release t′′mm

x ≥ T
x = 0

sch
ed(

tmm
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)

sched(t′mm, t′mm)

sched(t ′′
mm , t ′′

mm )

x <= T

x <= T

x <= T

Fig. 8. Adaptive task automaton model for the smartphone example.

We have modeled the smartphone as an adaptive task automaton, and then
implemented it as timed automata. The system model relies on a �xed priority
scheduler. Tasks tcl (phone call), and tvc (video call), are described by "periodic
release" automata, whereas task tmm (multimedia) is modeled using the adaptive



task release automaton presented in Fig. 8. The automaton has been modeled
using priorities [6], to remove nondeterminism from the execution.

Once the system has been modeled, a full veri�cation of schedulability be-
comes possible. As previously, veri�cation of not reaching the Error state has been
the most demanding and, required about 0.03s and 34MB of RAM memory.

6 Conclusion

In this paper, we have proposed a framework for formal modeling and scheduling
of adaptive embedded systems, which relies on a task automata description of
the system (tasks and scheduler). In order to check at each task's release time
point whether the system is schedulable, or will be with the potential release of
other additional tasks, we have introduced a set of schedulability predicates to
be used in the guards of the task automata model.

The encodings and on-line schedulability tests that we have devised can be
seen as model-level means of predicting, at release time-moments, the timeliness
behavior of real-time tasks with very general release patterns, which are stored
in the ready queue. Our liberal adaptive task automata model, enhanced with
predicates for schedulability test, lets one perform on-line adaptations that de-
cide to admit or not certain tasks, depending on their respective adherence to
the desired real-time requirements, that is, meeting their deadlines. The salient
result of our work is the decidability of reachability and schedulability of adap-
tive task automata, by showing that the resulting model can be encoded in the
timed automata framework.

The power of our approach resides exactly in the fact that the task selection
strategy is speci�ed as a predicate on clocks and integers. As it stands now, that
is, assuming �xed priority schedulers, the model is compatible with any scheduler
that has �xed ordering between the tasks, once the tasks are released. As with
every formalized approach, there are some potentially useful-to-solve unexplored
issues, which need further attention. For instance, it would be interesting to
check on the consequences of allowing a task set to run, even if, based on our
schedulability tests, we decide that it misses its deadline at the current time
point. Another problem that deserves investigation is the possibility of releasing
more than one task at a time, and verify the resulting model.

We also consider to extend the method to cater also for other schedulers than
�xed-priority, for instance, Earliest-Deadline-First (EDF) schedulers. Neverthe-
less, although, as for now, our technique is restricted to �xed-priority schedulers,
it can already decide on task executions at run-time, but has also the potential of
manipulating the queue of released tasks, in the sense of switching ready tasks'
priorities, if the case, removing certain tasks from the queue, etc., all based on
possible further additions to the schedulability predicates.

The �nal avenue to explore would be along investigating the e�ciency of our
approach, when handling real-world industrial case study.
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