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Abstract

This paper presents an efficient best-effort approach

for simulation-based timing analysis of complex real-

time systems. The method can handle in principle any

software design that can be simulated, and is based on

controlling simulation input using a simple yet novel hill-

climbing algorithm. Unlike previous approaches, the new

algorithm directly manipulates simulation parameters such

as execution times, arrival jitter and input. An evaluation

is presented using six different simulation models, and

two other simulation methods as reference: Monte Carlo

simulation and MABERA. The new method proposed in this

paper was 4-11% more accurate while at the same time

42 times faster, on average, than the reference methods.

1. Introduction

Today, most existing embedded real-time systems have

been developed in a traditional code-oriented manner.

Many of them are also maintained over extended periods of

time, sometimes spanning decades, during which they be-

come larger and more complex due to the iterative changes

made as part of the system evolution and maintenance. The

increasing complexity makes these systems increasingly

hard and expensive to maintain and verify.

The ability to perform timing analysis, using response-

time analysis (RTA, [1], [2]) or other means, does not only

improve the quality of the system verification, but can also

reduce development and maintenance costs significantly as

potential timing-related errors can be identified and cor-

rected early. Timing errors can otherwise only be detected

in late verification phases, where detected bugs often cause

major costs and delays. Moreover, timing errors often only

occur under very specific conditions, which are hard to

detect using testing.

Sadly, it is not possible to make practical use of RTA

on a large quantity of existing industrial software systems,

as they violate the assumptions of the method. The dis-

regarded assumptions include task dependencies through

communication, data-dependent execution times and pri-

orities, and implicit deadlines and timeouts. Moreover,

industrial systems often contain code which is difficult and

time consuming to analyze using static analysis, and which

requires significant manual effort. Consider the following

example from a real system, where a task reads all mes-

sages in a message queue and process them accordingly:

do {

msg = receiveMessage(MyMessageQueue);

process_msg(msg);

} while (msg != NO_MESSAGE);

The execution time of this loop naturally depends on

the number of received messages. Apart from the obvious

problem of determining the maximum run-time queue

length, other tasks may also preempt the execution of the

loop and refill the queue. When this happens, the number

of loop iterations (and thus the execution time of the task)

is no longer bounded by the maximum queue size.

One solution to the problem outlined above is to use

a more detailed system model. Ideally, the model should

describe execution control flow on a code level with respect

to resource usage and interaction, e.g., inter-process com-

munication, CPU time and logical resources. Analysing

detailed models using techniques such as model checking

[3] can for complex industrial systems result in a state-

space explosion, which in many cases makes exhaustive

analysis infeasible.

Another approach at timing analysis, which avoids the

problems associated with state-space explosion, is to use

sampling of the state space with simulation-based methods.

Drawbacks include that an upper bound on response time

cannot be guaranteed, and subsequently less confidence

should be put in the results. In this aspect, the approach is

closer to testing than formal analysis. However, simulation

analysis is sufficient in many cases, and can be far more

efficient at finding potential timing problems than system-

level testing, the dominating method in industry today.
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Several frameworks already exist for timing simulation

of real-time system models, e.g., the commercial tool

VirtualTime [4] and the academic tool ARTISST [5]. These

solutions rely on Monte Carlo simulation, which can be

described as keeping the highest result from a set of

randomized simulations.

In this paper, we show that a hill-climbing algorithm

[6] working on a detailed representation of the system-

dependent simulation parameters can yield substantially

better results than both Monte Carlo simulation, which is

the current state-of-practice, and another previously pro-

posed method based on genetic algorithms, MABERA [7].

Surprisingly enough, as far as we know, this simple idea

has not been tried before. The paper contains the following

two main contributions: 1) We present a novel algorithm

for manipulating simulation instances, based on the simple

idea of hill-climbing with random restarts (HCRR), and

2) we give a thorough experimental evaluation of per-

formance, scaling and convergence of the new algorithm,

comparing the results to those obtained from MABERA

and Monte Carlo simulation. In the evaluation, we show

that the new algorithm is significantly better than previous

approaches in identifying extreme response times using a

limited number of simulations. This is important, since the

number of simulations required directly affects evaluation

time and the practical feasibility of the approach.

The paper outline is as follows. Section 2 presents

related work and the simulation framework used. Section 3

presents the new approach proposed in this paper, and

Section 4 describes a set of case-study models used to

evaluate the approach. The evaluation is presented in

Section 5, and finally, Section 6 concludes.

2. Best-Effort Response-Time Analysis

Response-time analysis is certainly not something new,

and besides the standard approaches such as RTA [1], [2],

formal analysis tools like UPPAAL [3], [8] can also be

used for exhaustive analysis of software systems, but for

models of industrial systems, the state space can grow too

large for them to be practically useful.

The use of evolutionary algorithms for different types

of test case generation has also been studied for quite some

time. In [9], genetic algorithms were used to generate test

cases for a software relay system used in electrical net-

works. The purpose of the genetic algorithm is to provoke

high response times for the software, which executed in a

simulation environment. Nossal et al [10] describe various

extensions of the traditional genetic algorithm [11] to better

suit the type of problems in the real-time domain. More

recently, Mueller and Wegener [12] gave a comprehensive

comparison of static analysis techniques and evolutionary

algorithms, with regard to schedulability, for several real-

time applications.

In [13], Samii et al aim to find extreme response times

for distributed systems by optimizing a set of simulation

parameters for models containing temporal attributes and

communication. They use a genetic algorithm to explore

combinations of task execution times in order to maximize

end-to-end response time. Flow of control within tasks

is not considered. Their results depend on the method

developed by Racu and Ernst [14] for identifying situations

where decreased execution times can lead to increased

response times. The analysis framework by Kim et al [15]

also has a similar basis of temporal task attributes. In [7],

we presented MABERA, a meta-heuristic approach for

best-effort response-time analysis of models of complex

legacy systems using ideas from genetic algorithms [11].

2.1. Simulation of Complex RealTime Systems

The analysis method presented in this paper is based

on the simulator framework RTSSim [16], which allows

for simulating models describing both the functional and

temporal behaviour of tasks. An RTSSim simulation model

consists of a set of tasks, sharing a single processor. Each

task in RTSSim is a C program, which executes in a

“sandbox” environment with similar services and runtime

mechanisms as a normal real-time operating system, e.g.,

task scheduling, inter-process communication (message

queues) and synchronization (semaphores). The default

scheduling policy of RTSSim is preemptive fixed-priority

scheduling and each task has scheduling attributes such

as priority, periodicity and offset. It is possible to change

these parameters dynamically, in the task model code, to

implement a custom scheduling policy.

In RTSSim, time is represented in a discrete manner

using an integer simulation clock, which is only advanced

explicitly by the tasks in the simulation model, using a

special routine, EXECUTE. Calls to this routine models the

tasks’ consumption of CPU time.

All time-related operations in RTSSim, such as time-

outs and activation of time-triggered tasks, are driven by

the simulation clock, which makes the simulation result

independent of process scheduling and performance of

the simulation computer. Each task-switch and IPC event

during a simulation is recorded by RTSSim and the re-

sulting trace can later be inspected using a graphical tool.

RTSSim also measures response time and execution times

for each finished instance of a specified task, and reports

the maximum values observed during the simulation. This

exact monitoring, together with the explicit simulation

clock, guarantees that the measured response time is exact.

The simulation framework allows for variations in exe-

cution times (for EXECUTE) and task inter-arrival times
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(jitter), which is directly controlled by simulator input

data, from a simulation optimization algorithm (such as

HCRR), or from a random number generator (Monte Carlo

simulation). Thus, a simulation in RTSSim is completely

deterministic given a specific input, in this paper referred

to as a simulation instance.

Problem Definition. We can define the problem of best-

effort response-time analysis with explicit input as follows.

We are given a model of a real-time system, which can be

simulated on simulation instances S, consisting of sim-

ulator parameters. Let R(S) denote the highest response

time measured for the task under analysis in the simulation

of instance S. The goal of the problem is then to find a

simulation instance S∗ that maximizes R, subject to the

constraints from the underlying real-time system simulator

on S∗ outlined in Section 2.1.

3. The Optimization Algorithm

In the rest of this paper, we focus on analysing the

response time of a specific given task by varying the sim-

ulation instances used as input for the simulator. Analysis

of an entire system can be done by performing our analysis

several times, once for each task in the system.

We have implemented two different algorithms for com-

parison with our new method. The first one is traditional

Monte Carlo sampling, which is the method most often

used for automatic testing. The idea behind Monte Carlo

sampling is to simulate a process, such as a real-time

system, using a sufficiently large number of random states

for the result to approximate the real distribution of process

results as close as possible. The other method that we

compare our new approach against is MABERA [7].

3.1. Random Restart Hill Climbing

The proposed new optimization algorithm, HCRR, is

based on hill climbing using random-restarts. Hill-climbing

has the advantage of being one of the simplest meta-

heuristics available, and is based on the idea of starting

at a random point, and then repeatedly taking small steps

pointing upwards (in this paper equivalent to the measured

response time) whenever such search directions exist. If no

such step exist, a local maximum have been reached.

Advantages of HCRR come from the combination of a

strictly local improvement part, which quickly converges

to high response times, with diversification mechanisms

(jump-back to equal candidates, and full restarts) that are

important to avoid local maxima. In contrast, MABERA

[7] does not employ such a mechanism, and consequently

can get stuck in local maxima. In addition, the local im-

provement functionality of MABERA is inefficient due to a

representation of simulation instances as random number

sequences. Monte Carlo search, on the other hand, has

no mechanism at all for local improvement, and therefore

exhibits unsatisfactory convergence.

HCRR(nofsims, m, k ,nB ,nR)
curr ← MONTECARLO(m, rnd_inst())
best ← curr ,nofsims ← nofsims −m
E← {curr},nonimp ← 0
while nofsims > 0

if nonimp > nR
curr ← rnd_inst(),E← {curr},nonimp ← 0

else if (nonimp + 1) mod nB = nB
curr ← random element in E

next ← NBH(curr , bk · len(curr)c)
SIMULATE(next), nofsims ← nofsims − 1
if R(next) > R(best) then best ← next
if R(next) > R(curr)

curr ← next ,E← {next},nonimp ← 0
else

nonimp ← nonimp + 1
if R(next) = R(curr) then E← E ∪ {next}

return best

Fig. 1. Hill Climbing with Random Restarts

The implementation of HCRR is given in Fig. 1. The

simulation budget is denoted nofsims , and TR(q) denotes

the end time of the task under analysis in the simulation

instance q when the worst response time occurred. The

consumption time point of a simulation input Xj
i of any

type (jitter, execution time, or environmental input) is

expressed as TMj
i . q [Xj

i ] is the current value of Xj
i in

the simulation instance q . A completely random simulation

instance can be generated using the call rnd_inst().
The HCRR algorithm begins by choosing as starting

point the best simulation instance from m randomly se-

lected candidates using the MONTECARLO method. Then,

in each iteration, k · len(curr) random values of the cur-

rent simulation instance curr (which has len(curr) input

values) used before TR(curr) are selected and modified

using the neighborhood procedure NBH, shown in Fig. 2.

NBH(inst , n)
for k = 1 to n

X
j
i = random element in inst , TMj

i < ET(inst)
V = {lb(Xi) . . . ub(Xi)} \ {inst [Xj

i ]}
inst [Xj

i ]← random value in V

Fig. 2. Neighborhood procedure

The response time for the task under analysis is mea-

sured by running RTSSim using the SIMULATE(next) call

on a neighbor next . Modifications suggested by NBH that

increase response time are accepted, and changes that

decrease response time are rejected. Modifications that
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have equal response time are rejected but saved for future

reference, as described below.

A pure hill-climbing procedure is susceptible to getting

stuck in local maxima, and can therefore exhibit less than

satisfactory performance on many problems. In order to

avoid convergence to locally maximal areas and to improve

the probability of finding a true global maximum, two

different diversification mechanisms were implemented.

First of all, the algorithm jumps back to a previously

encountered, randomly selected simulation instance with

an equal response time to the current instance after nB

non-improving simulations. This distributes focus over a

number of equal instances, which can help in avoiding

small local maxima. The second mechanism performs

a full restart of HCRR from a random point after nR

non-improving simulations. We call nB the jump-back

threshold and nR the random-restart threshold.

4. Case Studies

This section describes two industrial cases and one val-

idation case in the form of simulation models. The models

have similar architecture and analysis problems as two

industrial real-time applications in use at ABB [17] and

Arcticus Systems [18]. Although the simulation models

contain relatively few tasks, at most 11, their behavioural

complexity is significant due to, e.g., shared variables,

sporadic events and dynamic priority changes.

Model 1 (M1) is representing a control system for

industrial robots developed by ABB Robotics, which is not

possible to analyse using methods such as RTA [19], [2].

This model has previously been used to evaluate MABERA

in [7]. Model 2 (M2) is constructed from a test application

used by Arcticus Systems [18], which develops the Rubus

RTOS used in many vehicular systems. We also use a

simplified version of Model 1 for validation (MV). The

sole purpose of this model is to investigate how close the

response times found by HCRR are to the true worst-case

response times derived by RTA.

The scheduling policy is preemptive priority-based

scheduling for all models. Model 2 and the validation

model both use fixed priorities. Model 1 contains one task

that changes priority dynamically.

4.1. Model 1

This model represents a control system for industrial

robotics, developed by ABB. The ABB system is quite

large, containing around 3 millions lines of code and is

not analysable using traditional analytical methods, such

as RTA. Model 1 is of much smaller scale, but is designed

to include some behavioural mechanisms from the ABB

system which RTA can not take into account:

• tasks with intricate dependencies in temporal be-

haviour due to IPC and shared state variables;

• the use of buffered message queues for IPC, where

triggering messages may be delayed;

• tasks that change scheduling priority or periods dy-

namically, in response to system events.

The modeled system controls a set of electric motors

based on periodic sensor readings and aperiodic events.

The calculations necessary for a real control system are,

however, not included in the model; the model only de-

scribes behaviour with a significant impact on the temporal

behaviour of the system, such as resource usage (e.g., CPU

time), task interactions and important state changes. The

details of the model are described in [16].

4.2. Model 2

This model is based on a test application from Arcticus

systems, developers of the Rubus RTOS [18] which is

used in heavy vehicles. This model uses a pipe-and-filter

architecture, where tasks trigger other tasks through trigger

ports, forming transactions. The model contains 3 periodic

transactions and one interrupt-driven task, in total 11 tasks.

The interrupt has a small jitter, while the other transactions

are strictly periodic.

This model is less complex than Model 1 in the sense

that there exist no shared variables or IPC via message

passing which can impact the tasks’ timing and functional

behaviour. Instead, the tasks have large variations in execu-

tion times, which makes the state space of this model very

large. For this model, the evaluation focuses on the end-

to-end response time of the transaction which contains the

tasks with the lowest priority. More details of the model

can be found in [20].

4.3. Validation

Simulation-based methods for response-time analysis

have in common that the result is not guaranteed to be

a safe upper bound on the response time. We therefore

constructed a validation model, analysable using RTA,

with the purpose to investigate how close the response

times given by HCRR are to the worst-case response times

derived using RTA. Hence, RTA provides an upper bound

on the worst-case response time that the simulation-based

results should approach but not exceed. The validation

model is based on Model 1, but simplified in that 1) shared

state variables have been removed, 2) priority and period

is strictly static, and 3) loop bounds have been added

manually. As a consequence, the validation model has

considerably lower complexity, and exhibits quite different

timing properties when compared to Model 1. For instance,

the worst-case response time of the CTRL task (which as
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in Model 1 is the task under analysis) is only 52 % of the

highest response times found for this task in Model 1.

Direct application of RTA yielded a worst-case response

time of 5 982. However, after reviewing the results of

running HCRR on the model, we realized that a refinement

taking into account a rare sporadic event was possible. In

this refined model, one of the tasks was split into two

separate tasks with different WCET and period time. This

refinement of the model had a major impact with respect to

RTA, yielding a worst-case response time of 4 432, which

is equal to the result found by HCRR. Note that such

model refinements are difficult to apply in practice for real

industrial systems, as their temporal behaviour are rarely

documented in sufficient detail.

5. Experimental Evaluation

This section presents an evaluation of accuracy, conver-

gence and scaling properties of HCRR, using in total six

different versions of the models described in Section 4.

The experiments were done by running HCRR, a reimple-

mentation of MABERA (MAB) and Monte Carlo (MC)

simulation, on the three models previously described.

The goal of the analysis is to find extreme response

times for a specific task in the model. The results are,

with the exception of Fig. 3, obtained from running 100

samples of each algorithm and test case, each sample

being allowed to run 10 000 simulations, in order to get a

good comparison for a fixed time length. The simulation

budget was considered reasonable due to the convergence

of HCRR on our most realistic model (Model 1). The

experiments were performed on an Intel Core 2 Duo, 2.33

GHz with 2 GB of RAM.

For MABERA, the population was obtained by scaling

the population size of 10 000 used in [7] to reflect the

change in number of simulations per sample. The ratio

is 81 400 in [7] to 10 000 in this paper. As a result,

we use a population size of 1 250, which is 1/8 of the

original population size. The same fraction of parents as

for the original method is used, which translates to a

selection of 12 parents in each generation. For each of

these, 104 mutations are generated. In order to ensure that

MABERA used exactly 10 000 simulations in total, the

original termination threshold was disabled.

For the parameters in HCRR, the jump-back threshold

(nB ) should be relatively small to spread the search over

the set of equal candidate solutions found so far. However,

the random restart threshold (nR) should be larger in order

not to erase any progress made so far, but small enough to

force restart from a local maximum as soon as possible.

The fraction k of input values changed in each iteration

should provide a good balance between power (larger

fractions) and low dimensionality (smaller fractions).

To select the parameters for HCRR, we performed

a small number of sequential experiments on Model 1,

varying one parameter at a time. For each parameter set,

we measured the convergence C as the average best result

in any iteration (i.e., simulation) for 20 sample runs, or

more formally: C =
∑20

i=1

∑S

j=1 Rj
i /(20 · S) where S

is the number of simulations and Rj
i denotes the response

time found after j simulations in sample run i. The number

of simulations was 500 for nB and k and 3 000 for nR.

The parameters giving quickest convergence (nB = 2,

nR = 300, and k = 0.02) were then used for all

experiments. The results of the experiments are shown in

Table 1.

TABLE 1. Parameter selection.
nB = nR =∞ k = 0.02,nR =∞ k = 0.02,nB = 2
k C nB C nR C

0.01 7796.76 100 7931.37 1000 8308.11
0.02 8010.90 50 7902.86 300 8312.05
0.03 7988.83 20 7939.70 100 8304.17
0.04 7976.14 10 7972.72 50 8254.26
0.05 7961.80 7 7992.25
0.07 7944.69 5 7944.27
0.10 7761.59 4 8001.89
0.15 7645.62 3 7919.24
0.20 7604.48 2 8024.98
0.30 7483.33 1 7944.27

To show the effects of scaling on the three algorithms,

Model 1 is used to create larger systems by instantiating

several independent instances of it, thereby creating inde-

pendent “subsystems” where each subsystem is a complete

model as described in Section 4, including tasks, input

events, state variables and message queues. The subsys-

tems are completely independent, except that they share

the same CPU. Subsystems are time-separated by relative

offsets (20 000 time units) and have reassigned priorities

to avoid clashes, and the execution time of the tasks

were scaled to avoid overload. Scaling factors used were

1.0, 1/1.5, 1/1.8 and 1/2.2 for 1, 2, 3 and 4 subsystems.

5.1. Results

The obtained lower bounds on worst-case response time

are illustrated by the following labels:

MC: The traditional Monte Carlo approach to generate

simulation instances using random input data.

MAB: The MABERA approach, using a population size

of 1 250 of which 12 parents are selected for

reproduction, unless stated otherwise. The algo-

rithm is modified to run for a limited number of

simulations.

HCRR: The new algorithm based on random restart hill

climbing. The algorithm is given in Fig. 1.
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Fig. 3. Final RT distributions and convergence

(mean RT and 95% confidence intervals) for
model 1.

Fig. 3 shows the results obtained for Model 1 from Sec-

tion 4.1. The top of the figure contains the response time

distributions of the three algorithms, where the MABERA

results are taken from [7]. Results were obtained using 200

sample runs for MABERA, 200 runs for MC, and 100 runs

for HCRR. For MABERA and MC, each sample required

on average 81 400 simulations. Each HCRR sample was

allowed 10 000 simulations. The bottom of Fig. 3 shows

convergence (mean RT and 95 % confidence intervals),

using the standard parameters of 10 000 simulations, for

the three algorithms with 100 samples for each algorithm.

The upper part of Fig. 3 shows that HCRR managed

to find the highest known response time, 8 474, in all

100 sample runs. The highest response time found by

MABERA was 8 349, and this value was only found one

single time. The MC approach managed to find a maximum

response time of 8 390, which is also found once. Note

that HCRR was only allowed approximately 12 % of

the number of simulations used by MC and MABERA.

If we compare the number of simulations done when

the highest known response time was found, HCRR was

approximately 1 628 times faster than MABERA and MC.

The runtimes for one sample of all algorithms were less

than 3 minutes.

Fig. 4 shows the obtained results for Model 2 (Sec-

tion 4.2) using the standard parameters. In this model, the

tasks have large variations in execution times, which makes

the state space very large. We can see that HCRR yields a

result approximately 5 % higher than what is obtained from

the two other methods. Interestingly, it looks like HCRR

was still slowly progressing towards higher response times

at 10 000 simulations, while both MABERA and MC
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Fig. 4. Final RT distributions and convergence

(mean RT and 95% confidence intervals) for
model 2.

seems to have converged quite early to a much lower result.

For Model 2, all algorithms finished in less than one minute

per sample.
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Fig. 5. Final RT distributions and convergence
(mean RT and 95% confidence intervals) for

the validation model.

In Fig. 5, we can see the results for the validation

model described in Section 4.3, again using the standard

parameters. In addition, we show the RTA results. Here,

HCRR could find a response time of 4 432 in every sample

run, which was also confirmed by RTA to be the worst-

case response time. As before, the difference between

MABERA and MC appears to be quite small. MABERA
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found the worst case in a few samples, while MC did

not, but it is questionable if the difference is statistically

significant. For the validation model, MC took less than

50 seconds, MABERA less than 130 seconds, and HCRR

less than 90 seconds for one sample run.
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Fig. 6. Convergence (mean RT and 95% con
fidence intervals) for model 1 using 24 sub
systems.

Fig. 6 shows how the different methods scale to larger

systems, by illustrating the convergence for Model 1 when

increasing the model size to 2, 3 and 4 subsystems (model

instances). As expected, since the state space increases

with number of subsystems, all three algorithms converge

slower when system size is increased. For two subsystems,

HCRR is consistently better than both MC and MABERA,

with all results reported being higher than the maximum

result found for both MC and MABERA. The results for

3 and 4 subsystems indicate that the difference between

the methods decrease as system size is increased, although

HCRR produced on average 4.7 to 11 % higher results

than both MC and MABERA. For 4 subsystems, none of

the methods appear to have converged. However, during

the 10 000 simulations, HCRR progressed more quickly

to higher response times than both MC and MABERA.

Runtimes for a single sample when having 2 subsystems

were below 4, 7 and 5 minutes for MC, MABERA and

HCRR, respectively. Sample runtimes were below 5, 10

and 6 minutes for 3 subsystems and below 8, 16 and 10

minutes for 4 subsystems.

TABLE 2. Average end result and point when
HCRR passes the second best end result.

MC MABERA HCRR Passes 2
nd best

M1-1 7682 8065 8474 224
M1-2 9693 9750 10844 238
M1-3 13555 13789 14672 521
M1-4 15235 15298 16013 764
M2 6031 6002 6299 634
MV 4286 4288 4432 89

The average end results are summarized in Table 2. The

last column also shows the average number of simulations

needed for HCRR to obtain the end result of the second

best method (using 10 000 simulations). Overall, HCRR

reached the second-best result 13 to 112 times faster than

the second-best method did. For all models, it took HCRR

less than 800 simulations to reach the results of the other

methods, which corresponds to less than 1.5 minutes of

computation time on the PC used for experiments.

5.2. Average Convergence

To measure average convergence more exactly, we use

the relative difference in average response-time results

over a time span of d simulations. We say that a method

has for practical purposes converged (on average) when

1−R
(k−d)

/R
(k)

≤ ε, where R
(k)

is the average response-

time result at simulation k for a set of samples. Using

this definition, convergence will never be detected before

at least d simulations has been performed. In order to

measure convergence for the evaluation presented in this

paper, d obviously needs to be less than the number

of simulations (10 000) performed in each sample. We

therefore use d = 1000 for the convergence compari-

son. For the tolerance parameter, we chose a value of

ε = 0.001. In other words, if the average progress in 1 000

simulations is lower than 0.1%, we declare that the method

has converged on average. It should be pointed out that

different parameters will give radically different results on

convergence, and true convergence is reached and detected

only when ε = 0 and d is sufficiently large.

Table 3 summarizes the convergence results obtained

with the parameters above, for Model 1 with 1-4 subsys-

tems (M1-1 to M1-4), Model 2 (M2), and the validation

model (MV). In general, we can see that HCRR converged

to significantly higher response times than MABERA and

MC. For the validation model, the only method to converge

within 10 000 simulations was HCRR. Overall, the results

are mostly consistent with what can be seen in Fig. 3, 4 and

5, but also classified the slow progress for HCRR on M2 in
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TABLE 3. Convergence on iteration k to re

sponse time R
(k)

for the different methods.
MC MABERA HCRR

k R
(k)

k R
(k)

k R
(k)

M1-1 7632 7670 7356 8062 4090 8466
M1-2 4806 9660 6518 9728 7093 10830
M1-3 3527 13502 7801 13773 5568 14578
M1-4 3410 15175 5104 15271 6948 15881
M2 3656 5997 3552 5991 9556 6295
MV – – – – 1661 4432

Fig. 4 as convergence. Running the algorithm longer would

either yield slightly higher results or confirm convergence.

For M1-4, convergence of HCRR is also detected in

iteration 6 948 after a slow progress between simulation

6 000 and 8 000, but as we can see in Fig. 6, more average

progress is made after simulation 8 000. Sampling more

than 100 runs for M1-4 would most likely even out the

slope after simulation 6 000. In any case, HCRR has clearly

not converged after 10 000 simulations, and running the

algorithm longer would likely yield even higher results.

6. Conclusions

Simulation-based analysis of complex real-time systems

has the potential to provide engineers with timing prop-

erties of real-time systems not conforming to classical

real-time analysis models such as response-time analy-

sis (RTA). In this paper, a new best-effort approach for

simulation-based timing analysis has been presented.

In evaluating HCRR, six models of industrial real-time

systems were simulated. The results show that HCRR was

4-11% more accurate than the second-best method, and

between 13 to 112 times quicker in reaching the end

result of the second-best method, on average 42 times. An

analysis of convergence indicates that for two cases out

of six, even higher response times could be achieved by

letting HCRR run longer.

Industrial deployment of HCRR requires a method for

extracting simulation models from software systems. A

tool for that purpose, MXTC, is currently in development.

The execution-time measurements requires context-switch

recording with accurate timestamps. This is possible in

most real-time operating systems.
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