
Optimizing the Fault Tolerance Capabilities of Distributed Real-Time Systems

Abhilash Thekilakkattil, Radu Dobrin, Sasikumar Punnekkat, and Huseyin Aysan
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

atl09001@student.mdh.se, {radu.dobrin, sasikumar.punnekkat, huseyin.aysan}@mdh.se

Abstract

Industrial real-time systems typically have to satisfy
complex requirements, mapped to the task attributes,
eventually guaranteed by a fixed priority scheduler in a
distributed environment. These systems consist of a mix of
hard and soft tasks with varying criticality, as well as as-
sociated fault tolerance requirements. Time redundancy
techniques are often preferred in industrial applications
and, hence, it is extremely important to devise resource
efficient methodologies for scheduling real-time tasks un-
der failure assumptions.

In this paper, we propose a methodology to provide
a priori guarantees in distributed real-time systems with
redundancy requirements. We do so by identifying tem-
poral feasibility windows for all task executions and re-
executions, as well as allocating them on different pro-
cessing nodes. We then use optimization theory to derive
the optimal feasibility windows that maximize the utiliza-
tion on each node, while avoiding overloads. Finally on
each node, we use Integer Linear Programming (ILP) to
derive fixed priority task attributes that guarantee the task
executions within the derived feasibility windows, while
keeping the associated costs minimized.

1. Introduction

Most industrial real-time applications typically have
to satisfy complex requirements, mapped to task at-
tributes and further used by the underlying scheduler in
the scheduling decision. These systems are often dis-
tributed and characterized by high dependability require-
ments, where fault tolerance techniques play a crucial
role towards achieving them. Traditionally, such sys-
tems found in, e.g., aerospace, avionics or nuclear do-
mains, were built with high replication and redundancy,
with the objective to maintain the properties of correctness
and timeliness even under error occurrences. However, in
majority of modern embedded applications, due to space,
weight and cost considerations, it may not be feasible to
provide high levels of space redundancy. Such systems
often have to exploit time redundancy techniques as well
together with affordable levels of space redundancy.

These systems consist of a mix of hard and soft tasks

with varying criticality where the relative criticality of
tasks could undergo changes during the system evolution.
While the redundancy requirements typically specify the
number of re-executions required per critical task, the dis-
tribution constraints resulting from e.g., zonal analysis,
typically require the re-execution of a number of replicas
on different computing nodes. Hence, the task allocation
and the joint scheduling of critical and non-critical tasks
in such systems is an extremely challenging task.

Fault tolerance is one of the fundamental means to en-
sure dependability [3] of computer systems. The goal
of our research is to ensure better levels of fault toler-
ance to critical tasks in terms of tolerating greater fre-
quency of faults and to provide better schedulability of
non-critical tasks. Fault tolerance by time redundancy of
critical tasks have been addressed previously and schedul-
ing techniques [6, 7] have been developed to tolerate er-
rors of different types. These are however inadequate
when such systems are deployed in more error prone con-
ditions due to their physical environments or operational
constraints. It has been shown that distributed schedul-
ing is effective even for hard real time systems and that
the performance of such systems is a function of the cur-
rent state of the system [12]. In [8] the authors addressed
the issue of space redundancy by using an objective func-
tion based on a utility model which can be incorporated
to the search algorithm and serve as a heuristic for guar-
anteeing fault tolerance requirements. Task allocation to
multiple nodes have been studied by many researchers.
Bannister and Trivedi [4] proposed a simple heuristic al-
gorithm that evenly distributes the computational load of
the tasks over the nodes. Ramamritham [11] presented a
more complex heuristic algorithm to deal with precedence
and fault tolerance constraints. More recently, Islam et.al.
[9] proposed a heuristic approach to perform allocation
by considering dependability and real-time constraints as
well as communication efficiency. Yu and Prasanna [14]
formulated the problem of power-aware task allocation on
heterogeneous multiprocessor systems as an integer lin-
ear programming problem and used linearization heuris-
tics for solving it. AlEnawy and Aydin [1] studied the
power-aware task allocation problem for rate monotonic
scheduling policy and compared the performances of dif-
ferent heuristics for solving this problem. Burns et.al.
[5, 13] applied simulated annealing (SA) technique for

solving allocation problems, which is a global optimiza-
tion technique developed by Kirkpatrick et.al. [10]. Later,
Attiya and Hamam [2] used SA to perform task allocation
while trying to maximize the system reliability.

In this paper we extend our previous works [7] to a dis-
tributed environment. We aim to find optimum task allo-
cation and FPS attribute derivation on the minimum num-
ber of nodes, such that the reliability constraints are satis-
fied while the system schedulability is guaranteed. We
use the concept of processor utilization demand during
the task allocation to ensure overload avoidance. While
our target is dependable industrial systems that employ
the fixed priority scheduling paradigm, the results pro-
duced by our methodology are applicable to any major
real-time scheduling policy. The rest of the paper is or-
ganized as follows: in section 2 we present the task and
error model. The problem statement is given in section 3
and the methodology is described in section 4 and illus-
trated by an example in section 5. Section 6 concludes the
paper outlining on-going efforts.

2. Task and error model

We consider a distributed real-time system that con-
sists of processing nodes which communicate over a re-
liable communication media and are synchronized by
relatively loose synchronization algorithms implemented
in the software. We denote the set of tasks by Γi =
{τ1, τ2, .., τn}, where each task represents a real-time
thread of execution. Each task τi has a period T (τi), a
known best case execution time BCET (τi) and a known
worst case execution time WCET (τi). The replication
requirements on Γ are specified by R = {r1, r2, . . . rn},
where ri ∈ [0, b Ti

WCET (τi)
c − 1]. Additionally, M =

{m1,m2, . . .mn} specifies the number of different nodes
that need to be used for the task replications. For instance,
m1=3 indicates that the 3 replicas of task τ1 needs to be
allocated in different processors. Consequently, we de-
note the set of critical tasks, primaries and alternates by
Γc = Γpric ∪ Γaltc , and the set of noncritical tasks by Γnc.
We assume that the utilization of the non critical tasks
does not exceed the utilization requirement of the critical
alternates: Unc ≤ Ualtc .

We assume that the tasks have deadlines equal to their
periods. Tasks have three main operational stages. First
stage is the input stage where the input data is received
from sensors or other tasks. Second stage is the compu-
tation stage and the third stage is the output stage where
the output is delivered to the next task in the task chain or
to the environment as a system output. Execution of er-
ror detection or error handling mechanisms such as sanity
checks and re-execution of failed computations are con-
sidered as a part of the computation stage.

We mainly target the transient faults that can be poten-
tially tolerated by simple re-execution of the task. We also
try to overcome effects of node failures by scheduling the
alternates of certain critical tasks in different processors.

3. Problem statement

We assume a task set Γ consisting of critical and non
critical periodic tasks Γc ∪ Γnc = {τ1, . . . , τn} with
associated replication requirements R = {r1, . . . , rn},
ri ∈ [0, b Ti

WCET (τi)
c−1]. We want to find the scheduling

parameters for the task set Γ such that:

1. the schedulability of the critical tasks and alternates,
Γc = {τi ri 6= 0} is guaranteed

2. the schedulability of non critical tasks, Γnc =
{τi ri = 0}, is maximized

3. the utilization on processing nodes is maximized

4. the number of processing nodes is minimized

4. Methodology

Our goal is to, first, derive feasibility windows for each
task instance τ ji ∈ Γ, and allocate them on nodes, to re-
flect the FT requirements. Then, we assign FPS attributes
that ensure task executions within their new feasibility
windows, thus, fulfilling the FT requirements.

While executing non-critical tasks in the background
can be a safe and straightforward solution, in our approach
we aim to provide non-critical tasks a better service than
background scheduling. Hence, depending on the critical-
ity of the original tasks, the new feasibility windows we
are looking for differ as:

1. Fault Tolerant (FT) feasibility windows for critical
task instances

2. Fault Aware (FA) feasibility windows for non-critical
task instances

While critical task instances need to complete within
their FT feasibility windows to be able to re-execute feasi-
bly upon an error, the derivation of FA feasibility windows
has two purposes: 1) to prevent non-critical task instances
from interfering with critical ones, i.e., to cause a critical
task instance to miss its deadline, while 2) enabling the
non-critical task execution at high priority levels. Since
the size of the FA feasibility windows depend on the size
of the FT feasibility windows, in our approach we first de-
rive FT-feasibility windows and then FA feasibility win-
dows. Then, we assign fixed priorities to ensure the task
executions within their newly derived feasibility windows.

Deriving the minimum number of nodes The neces-
sary condition for scheduling the task set Γ on a mini-
mum number of processing nodes is that the utilization
requirement on each node does not exceed the process-
ing capability of that particular node. Hence, the mini-
mum number of processors required to schedule the crit-
ical tasks (primaries and alternates) is N = dU(Γc)e =

2

d(U(Γpric)+U(Γaltc))e. If we take the replication require-
ments mi into account, the number of nodes required to
achieve our goals is

N = max(dU(Γc)e,max(mi) + 1)

We assume that in each node there exist a table M which
indicates the node where the next replica of the task is
scheduled. The M [i][j]th entry represent the processor in
which the jth replica of the task τi has been scheduled. If
no fault occurs on the jth replica of task τi, a message is
passed to the M [i][j + 1]th node not to execute the next
replica.

Derivation and allocation of Fault Tolerant feasibility
windows The constraints for the derivation and alloca-
tion of the FT feasibility windows are:

∀τi ∈ Γc, ∀j ∈ [0, LCMTi
]

C1: end(FT FW (τ ji))− start(FT FW (τ ji)) ≥ Ci

C2: end(FT FW (τ ji)) ≤ start(FT FW (τ j+1
i)

C3: the processor utilization demand during any inter-
val [tn, tn+1) where n = {0, 1, . . .}, is not greater
tn+1 − tn

where LCM represent the least common multiple of task
periods. Also in C3, tn and tn+1 are defined by either a
start or an end of a FT feasibility window.

Derivation and allocation of Fault Aware feasibility
windows We aim to identify FA feasibility windows for
non-critical task instances to protect critical ones from be-
ing adversely affected. According to our assumptions, the
total utilization of critical tasks and alternates, together
with non-critical tasks, exceeds the available resources.
Hence, as a part of recovery action upon errors, the under-
lying fault tolerant on-line mechanism checks if there is
enough time left for the non-critical task instances to com-
plete before their new deadlines. If not, these instances are
not executed.

To derive and allocate the FA feasibility windows, we
use the same approach as for the FT FW derivation and
allocation, on the set of non-critical tasks, Γnc, but in the
remaining slack after the critical task primaries are sched-
uled to execute as late as possible. We do so due to two
reasons: we want to prevent non-critical tasks from de-
laying the execution of critical primaries beyond their FT
deadlines, and to allow non-critical tasks to be executed at
high priority levels.

In some cases, we may fail finding valid FA FW for
some non-critical task instances. This scenario could oc-
cur if the optimization solver fails due to violations of C3,
i.e., it can not find an interval in which the utilization de-
mand is less than the length of the interval. In these cases,
we keep the original feasibility windows, e.g.,periods, and
we make sure that the priority assignment mechanism will

assign these non-critical tasks a background priority, i.e.,
lower than any other critical task, and any other non-
critical task with a valid FA FW.

Derivation of FPS attributes At this point, we can use
the method earlier developed in [7] to derive feasible FPS
attributes to the tasks. The basic idea is to analyze the
overlapping between feasibility windows on each node,
and to use ILP to derive priorities that ensure the task
executions within the derived FT/FA feasibility windows.
Please note, however, that EDF can be used as well, as the
derivation of deadlines has been performed by using the
processor utilization demand function.

5. Example

We illustrate the proposed methodology by a simple
example. Consider a task set Γ={A,B,C,D,E} with pa-
rameters specified in Table 1. Hence, the minimum num-

Table 1. Task Set- example

τi Ti Ci Ri Mi Ui(pri+ alt) Criticality
A 10 2 1 1 0.4 C
B 5 1 2 0 0.6 C
C 4 1 3 2 1 C
D 10 3 0 0 0.3 NC
E 10 4 0 0 0.4 NC

ber of nodes required to feasibly schedule the task set and
to fulfill the reliability constraints is:

N = max(dU(Γc)e,max(mi) + 1) = max(2, 3) = 3

We denote the kth alternate of the task A, B, and C byAk,
Bk ,Ck. In our example, task A has Ti=10, Ci=2, Ri=1,
Mi=1, which means that at least one of A’s alternate needs
to be executed in a different node than its primary. The
allocation of the FT/FA feasibility windows and the task
executions in the worst case error occurrence scenario, is
presented in figure 1. In this scenario, A, B, B1, C, C1

and C2 are hit by errors. Hence, the non-critical task E
is shed due to the temporary overload, while D can still
feasibly execute. At runtime, however, it is unlikely that
the worst case scenario will occur. Consider that only A,
B, B1 and C are hit by errors. In this case, B2 and C1

successfully execute as a result of which the execution of
C2 is no longer required. This creates the sufficient slack
for the execution of task E, as illustrated in figure 2.

In any case, the execution of the critical primaries and
alternates are guaranteed feasible execution on the mini-
mum number of nodes.

6 Conclusions and ongoing work

In this paper we have presented preliminary results to-
wards providing a priori guarantees in distributed real-

3

A

8 18100

A1

20

FT_FW(A) FT_FW(A1)

C C1 C C1 C C1 C C1 C C1

FT_FW(C) FT_FW(C1)

8 185 20

B B2 B1 B2 B B1 B B1

FT_FW(B2) FT_FW(C3)

B1 C3 B C3 C3 B2 C3 C
3

B2

10 15

FT_FW(B)

8 100 20

FT_FW(A)FT_FW(A1)

C
2

D C2 A1 C2 C2D

FT_FW(C2)

FA_FW(D, E)

A

FA_FW(D,E)

FT_FW(C2 T_FW(2)) FT_FW(C2) F C

N2

N1

N3

C2

FT_FW(B1)

D D

Figure 1. Allocation and execution under
worst case error scenario

time systems with redundancy requirements, while max-
imizing the resources utilization. We built on our pre-
vious works while extending it to a distributed environ-
ment with stringent reliability constraints. We derive fault
tolerant feasibility windows and allocate them on nodes
while using the concept of processor utilization demand
to avoid overloads. We proposed the use of optimization
techniques to find the optimum window sizes and alloca-
tions that fully utilizes the minimum number of proces-
sors. Future works will focus on the formalization and
evaluation of the proposed approach, as well as extensions
to incorporate energy aware mechanisms.

References

[1] T. AlEnawy and H. Aydin. Energy-aware task allocation
for rate monotonic scheduling. Real Time and Embed-
ded Technology and Applications Symposium, 2005. RTAS
2005. 11th IEEE, pages 213–223, 2005.

[2] G. Attiya and Y. Hamam. Task allocation for maximizing
reliability of distributed systems: A simulated annealing
approach. Journal of Parallel and Distributed Computing,
66(10):1259–1266, 2006.

[3] A. Avizienis, J. Laprie, and B. Randell. Fundamental con-
cepts of dependability. Research Report N01145, LAAS-
CNRS, April 2001.

[4] J. A. Bannister and K. S. Trivedi. Task Allocation in Fault-
Tolerant Distributed Systems. Acta Informatica, 20:261–
281, 1983.

[5] A. Burns, M. Nicholson, K. Tindell, and N. Zhang. Al-
locating and scheduling hard real-time tasks on a parallel
processing platform. 1994.

A

8 18100

A1

20

FT_FW(A) FT_FW(A1)

C C1 C C1 C C1 C C1 C C1

FT_FW(C) FT_FW(C1)

8 100 20

FT_FW(A)FT_FW(A1)

D A1

FT_FW(C2)

FA_FW(D, E)

A

FA_FW(D,E)

FT_FW(C2 T_FW(2)) FT_FW(C2) F C

N2

N1

D DE E

8 185 20

B B2 B1 B2 B B1 B B1

FT_FW(B2) FT_FW(C3)

B1 B B2 B2

10 15

N3

FT_FW(B1)

Figure 2. Allocation and execution under av-
erage case error scenario

[6] A. Burns, S. Punnekkat, and R. Davis. Analysis of
checkpointing for real-time systems. Real-Time Systems,
20(1):83–102, 2001.

[7] R. Dobrin, H. Aysan, and S. Punnekkat. Maximizing the
fault tolerance capability of fixed priority schedules. In
The Fourteenth IEEE Internationl Conference on Embed-
ded and Real-Time Computing Systems and Applications,
RTCSA 2008, Kaohisung, Taiwan, 25-27 August 2008,
Proceedings, pages 337–346, 2008.

[8] P. Emberson and I. Bate. Extending a task allocation al-
gorithm for graceful degradation of real-time distributed
embedded systems. In RTSS ’08: Proceedings of the 2008
Real-Time Systems Symposium, pages 270–279, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[9] S. Islam, R. Lindstrom, and N. Suri. Dependability driven
integration of mixed criticality sw components. Object
and Component-Oriented Real-Time Distributed Comput-
ing, 2006. ISORC 2006. Ninth IEEE International Sympo-
sium on, pages 485–495, 2006.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimiza-
tion by simulated annealing. 2002.

[11] K. Ramamritham. Allocation and scheduling of complex
periodic tasks. Distributed Computing Systems, 1990. Pro-
ceedings., 10th International Conference on, pages 108–
115, 1990.

[12] K. Ramamritham, J. Stankovic, and W. Zhao. Distributed
scheduling of tasks with deadlines and resource require-
ments. Computers, IEEE Transactions on, 38(8):1110–
1123, 1989.

[13] K. Tindell, A. Burns, and A. Wellings. Allocating hard
real time tasks + (an np-hard problem made easy). 1993.

[14] Y. Yu and V.K.Prasanna. Power-aware resource alloca-
tion for independent tasks in heterogeneous real-time sys-
tems. Parallel and Distributed Systems, 2002. Proceed-
ings. Ninth International Conference on, pages 341–348,
2002.

4

