Information and Software Technology 51 (2009) 1066-1080

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Contents lists available at ScienceDirect oo
— a0 |

| _SOFTWARE |
|__TECHNOLOGY |

Software product integration: A case study-based synthesis of reference models

Stig Larsson **, Petri Myllyperki6 °, Fredrik Ekdahl ¢, Ivica Crnkovic ¢!

2 ABB Corporate Research, Forskargrind, SE-721 78 Viisterds, Sweden

" ABB Distribution Automation, Muottitie 2, FI-65320 Vaasa, Finland

€ ABB Robotics, Hydrovigen 10, SE-721 68 Visterds, Sweden

d Malardalen University, Department of Computer Science and Electronics, P.O. Box 883, SE-721 23 Viisterds, Sweden

ARTICLE INFO

Article history:

Received 6 July 2007

Received in revised form 11 November 2008
Accepted 5 January 2009

Available online 23 February 2009

Keywords:

Product integration process
Process improvement
Process validation

ABSTRACT

In software intensive systems the integration becomes complex since both software and hardware com-
ponents are integrated and run in the execution environment for the first time. Support for this stage is
thus essential. Practices for Product Integration are described in different reference models. We have
investigated these and compared them with activities performed in seven product development projects.

Our conclusion is that descriptions of best practices in product integration are available in different ref-
erence models, but need to be merged into one set of practices. Through case studies we see that the
described practices are insufficiently used in industry, and that organizations would benefit from adher-
ing to them. Our investigations indicate that a set of practices are necessary to be successful in software
product integration: define and check criteria for integration, review interface descriptions and ensure
coordination of interface changes, and deliver components as agreed. In addition to these, a set of prac-
tices are supporting the integration activities, including the definition of an integration strategy, and the
establishment of a suitable integration environment.

© 20009 Elsevier B.V. All rights reserved.

1. Introduction

Integration of software products, as well as products that in-
clude software, is described in several standards and other collec-
tions of best practices, i.e. reference models. Even if the product
integration process is included in many development process mod-
els and part of the development iterations, the process is in many
cases a distinctly recognizable process. In particular, the develop-
ment of complex systems in a distributed environment where com-
ponents are developed in different locations requires a coherent,
comprehensive and separate description of the integration phase.

The practices in the different reference models are compiled
from experiences from different companies and organizations.
Practices are selected as they are considered to increase the effec-
tiveness and efficiency of the product development as well as con-
tributing to the quality of the product. The source for the described
practices is collective experiences but the resulting documents are
rarely validated through independent research. This article is an at-
tempt to investigate product integration practices, compare the
reference models with experiences from different development
projects, and to aim at a first step of validation.

* Corresponding author. Tel.: +46 21 345135; fax: +46 21 32321.

E-mail addresses: stig.bm.larsson@se.abb.com (S. Larsson), petri.myllyperkio@
fi.abb.com (P. Myllyperkio), fredrik.x.ekdahl@se.abb.com (F. Ekdahl), ivica.crnkovic
@mdbh.se (I. Crnkovic).

1 Tel.: +46 21 103183.

0950-5849/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/].infsof.2009.01.001

In order to define the context and scope for this paper, we use
the definition of integration for product and system development
found in the glossary of EIA 731.1 (interim standard) [11]:

“Integration: The merger or combining two or more elements
(e.g., components, parts, or configuration items) into a function-
ing and higher level element with the functional and physical
interfaces satisfied.”

In spite of the existence of many reference models the prob-
lems in integration persists. Investigations of different organiza-
tions developing products [4,31,34] as well as our own
experience tell us that product integration often is where prob-
lems occur. The difficulties found during integration include mis-
match between the different components, problems with
properties of the system (e.g. performance, response time) that
are observable first after integration, and problems in other parts
of the system than the one that was changed or added. To better
understand this problem we have analyzed the integration pro-
cesses in two companies and a total of seven product develop-
ment projects from different organizations within the
companies. As a starting point for our study we have stated the
following questions:

e How are the practices that are described in reference models
useful for product development units aiming at improvements
in the product integration process?

mailto:stig.bm.larsson@se.abb.com
mailto:petri.myllyperkio@fi.abb.com
mailto:petri.myllyperkio@fi.abb.com
mailto:fredrik.x.ekdahl@se.abb.com
mailto:ivica.crnkovic@mdh.se
mailto:ivica.crnkovic@mdh.se
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

S. Larsson et al./Information and Software Technology 51 (2009) 1066-1080 1067

e What is the core set of practices that can be identified to reduce
problems in product integration?

e Is it appropriate to combine reference models to provide better
support to product development units, and how can this be
done?

Our approach to these different perspectives is to study the per-
formance of the process in the investigated organizations and com-
pare the activities with the ones prescribed in the reference models
regardless of the development model used. We also look at the
problems in the organizations and analyze these with respect to
the practices proposed in the reference models.

We claim that we by investigating a number of projects and the
practices in use have been able to determine to which extent the
practices described in reference models are useful as a support
for development units. We also claim that we through the investi-
gation can identify a need for revisions of the reference models.

Our proposition in this paper is that the problems encountered
in the investigated cases relate to the lack of execution of practices
that are described in the reference models. We also propose that
successful execution of the product integration can be mapped to
specific implementation of practices described in the reference
models.

However, we find that no reference model provides full support
for the product integration. By combining them a significant
improvement can be made. For this reason we propose a more
complete, consistent and integrated combination of the described
practices.

The terms “product integration”, “systems integration” and
“software system integration” are used for several different aspects
in product and system development literature. Djavanshir and
Khorramshahgol [9] have investigated the importance of different
process areas related to system integration and observe that profes-
sionals in the field relate integration to many areas of systems engi-
neering. This indicates that there is no clear definition of integration
when discussing system and software engineering. It is conse-
quently necessary to clearly define the scope of integration, and
to be aware of other interpretations of the term. Sage and Lynch
provides an overview in [36]. The main uses of the terms are:

e Product integration processes
This term describes the process used in product development
projects when parts are combined into more complex parts
and eventually into the product or system to be delivered to
the customer. It includes the activities ensuring that the combi-
nations of components are functioning as intended, and the
management of interfaces between components as well as
between the product and the environment. As earlier described,
this is the focus for this article.

e Architectural, or technical, product or system integration
This concerns the technical solutions used to fulfill requirements
on functionality and quality attributes such as reliability and
performance. Different levels of integration include export and
import facilities, the use of wrappers and adapters, integration
through shared databases, and integration on source code level.
Interface design is one important issue for all levels of architec-
tural integration, and standard interfaces are available for many
applications. Examples of the use of integration in this meaning
is found in [15] where Garlan describes trends in software archi-
tecture research, and in [16] where Gorton describes useful
architectural practices.

o Enterprise Application Integration (EAI)
EAI is a type of architectural integration where organizations
combine and integrate existing and new systems to assist the
organization in achieving business objectives. This type of inte-
gration is performed to ensure data consistency and to make

information accessible to different types of stakeholders, often
based on the use of a common middleware. Examples of descrip-
tions of EAI are [7] by Cummins, [32] by Linthicum, and [35] by
Ruh et al.
e System and product interoperation

Interoperation is a looser type of connection between products
and systems. The integration process for systems that need to
interoperate is similar to the product integration described here,
but has not been further investigated in this study.

The remainder of this paper is outlined as follows: Section 2 re-
fer to related work. Section 3 describes the research method used
in the studies. Section 4 provides an analysis of product integration
included in different reference models. Section 5 describes the case
studies and presents the data from these. Finally, in Section 6 we
discuss the results of the studies, give conclusions, and propose
further research based on the results.

2. Related work

Product integration processes are included in different estab-
lished reference models for product and system development such
as ANSI/EIA -632 [2], EIA-731.1 [11], ISO/IEC 12207 [23], ISO/IEC
15288 [24], and CMMI [39]. They can be used as a source for
assessments and process improvement planning. Reference models
are normally articulated as a set of requirements on the develop-
ment process, and not as a set of activities to be performed, giving
the organization possibility to implement a suitable process. One
concern with reference models is the inadequate validation of
them; it is difficult to find research examining the validity of the
content of these reference models. However, the reference models
are developed based on experience from a large number of organi-
zations, making it likely that important considerations are taken
into account.

A general description of system and product integration has
been made by Sage and Lynch [36]. The paper describes various
views including life cycle, architecture, process, interfaces, and
enterprise integration. The roles of architectures and integration
in different reference models are also described. One conclusion
is that methodologies and tools for system integration and integra-
tion architectures were not well described in literature at that
point in time.

In [6], Chittister and Haimes argue that the system integration
process is additionally complicated when software is included,
and propose that the risk factors along the software development
life cycle must be identified and understood through measure-
ments and ultimately mitigated.

Stavridou has examined product integration from two different
perspectives. In [42], integration standards for critical software
intensive systems are investigated. The examination focuses on
military policies and standards, but includes ISO/IEC 12207 in the
comparison. The conclusion of the analysis is that the majority of
the examined standards address integration testing, but that the
standardization is not appropriate for many integration issues,
and that additional guidance for the project manager is needed.
A more technical approach is selected in [41] where the integration
is proposed to be considered as a design activity.

The activities in the product integration area have also been the
subject of interest from the agile community where frequent
builds is one of the cornerstones. One example is Fowler [14]
who describes the requirements on developers: before committing
back to mainline the developer would need to update his work area
with the latest mainline, i.e. build against the latest changes of
other developers. Only after that, integration into the mainline
would be permitted.

1068 S. Larsson et al./Information and Software Technology 51 (2009) 1066-1080

Eppinger describes in [41] a method to reduce the problems in
integration using an architectural and design structure matrix ap-
proach. The method includes three steps: decomposition, identifi-
cation of interactions between the components based on different
types of interaction, and clustering of components based on the
analysis of the structure of interactions. The method is closely re-
lated to the management of interfaces as described in product
integration.

Schulte describes the integration of large systems as a challenge
and proposes a method for handling uncertainties in the resulting
system characteristics when integrating components [37]. Another
example of using models to ensure efficient and effective integra-
tion has been presented by Karsai et al. [25]. The point made is that
modeling should be made the central activity when developing
systems. De Jonge [8] identifies that the integration of components
is more difficult when reusable building blocks are applied and
proposes techniques that promote fine-grained software reuse.

In addition to using reference models to improve product inte-
gration, metrics can be used. Houston has studied the integration
problems occurring in an avionics system [17]. Different types of
integration problems were identified based on the functionality
in which the problem occurred. By classifying the integration prob-
lem reports and estimating the expected handling time through
simulations of the report types several possible improvement
activities were identified. The study complements our research as
one alternative route to find improvement activities. Chiang and
Mookerjee describe a method using metrics to identify when it is
suitable to start the integration activities based on fault detection
in the module development, introducing a threshold concept [5].

Four different aspects of systems integration is described by
Nilsson et al. in [33]. The paper addresses the technical character-
istics of integration including integration technology, integration
architecture, semantic integration, and user integration. The main
message from this standpoint is that systems integration is difficult
and complicated and that there are no obvious shortcuts.

Kuhn concentrates in [26] on effective use of standards for
interfaces when integrating systems, and describes a methodology
to application development that focuses on an architectural
approach.

Component-based software engineering is also considered to
simplify the integration if taken to the extreme. In [10], Dogru de-
scribes a fully component-oriented approach and puts this in con-
trast with modifying object-oriented approaches, stressing that
component-based development leaves out inheritance and capital-
izes on composition. However, the lack of tools and experience cur-
rently prevent full use of the presented ideas.

Incorrect use of reference models and software development
models is described by Fitzgerald [13]. The reason that organiza-
tions are not using the models as intended is claimed to be the per-
ceived lack of contribution to successful product development
from the models. Another reason is the perceived inflexibility in
the models, not allowing for customization to specific organiza-
tional and project needs. This has also been highlighted by Bajec
et al. in [3]. They describe and prescribe a method for adapting
the development model to each specific project. This should of
course also include the product integration part of the process.

The research in this article build on the work published as sep-
arate case studies. Case 1 is described in [29] and as case 1 in [30],
Case 2,3 and 4 are described as case 1, 2 and 3 in [28], and Case 6, 7
and 8 as case 2, 3 and 4 in [30]. An early version of the summary of
the reference models described in Section 3 can be found in [27].
The research in this paper summarizes the data from the case stud-
ies, and a new broader analysis has been made, including more ref-
erence models. One result is a compilation of what practices
related to product integration are included in the different refer-
ence models. The combination of that analysis and the data from

the case studies has enabled us to have stronger indications on
what practices are needed for efficient and effective software prod-
uct integration.

3. Research method

Our study includes experiences from seven product develop-
ment projects run in five organizations in two companies. The
products developed in these organizations include applications
from manufacturing industries, process industries, telecommuni-
cation, power distribution, and power transmission. Both compa-
nies are multinational with development in many countries. The
experiences from the investigated product development organiza-
tions are compared to and classified according to a set of standards
and models, i.e. reference models. This is done through three activ-
ities: investigation of reference models, data collection, and a map-
ping between the reference models and the data.

Two types of reference material, standards and models, have
been considered in this study and are referred to as reference mod-
els. The difference between the types is that standards have been
approved by a standardization body, while a model may be issued
by any company or organization. The included reference models
are typically used by product development organizations to obtain
a common language, to ensure that the development performed
covers necessary activities, to guide improvement activities, and
to show compliance. The selection of reference models is based
on available information from standardization organizations such
as ISO [22], ANSI [1] and IEEE [19] and references from organiza-
tions such as SEI [40] and INCOSE [20]. Based on the focus of our
research, product integration in development of products that in-
clude software, two specific selection criteria have been used in
the choice of reference models:

(i) The reference model should be relevant to development of
products that include software.

(ii) The reference model should include requirements on prod-
uct integration, implicitly or explicitly, as this is our research
area.

The standards provided by the listed organizations have been
evaluated based on both. The reference models that have been se-
lected are:

e ISO/IEC 12207 Information technology - Software life cycle pro-
cesses [23].

EIA-632 Processes for Engineering a System [2].

CMMI Capability Maturity Model Integration [39].

EIA-731.1 Systems Engineering Capability Model [11].

ISO/IEC 15288 Systems Engineering - System life cycle pro-
cesses [24].

Also ISO 9001 [21] and IEEE Std 1220-2005 [18] were consid-
ered, but for both these standards the expectations on the product
integration process are limited, and they have consequently not
been further analyzed. It should also be noted that efforts are made
within the standardization bodies to harmonize several of these
reference models such as IEEE Std 1220-2005 [18], EIA-632 [2],
ISO/IEC 15288 [24] and ISO/IEC 12207 [23].

To accommodate the comparisons between the different refer-
ence models practices related to product integration has been ex-
tracted and listed in Table 2. This is done through a detailed
review of the complete reference models based on the following
definition of product integration found in CMMI [39]:

“The scope of this process area is to achieve complete product
integration through progressive assembly of product components,

S. Larsson et al./Information and Software Technology 51 (2009) 1066-1080 1069

in one stage or in incremental stages, according to a defined inte-
gration sequence and procedures. Throughout the process area,
where we use the terms product and product component, their in-
tended meanings also encompass services and their components.

A critical aspect of product integration is the management of
internal and external interfaces of the products and product com-
ponents to ensure compatibility among the interfaces. Attention
should be paid to interface management throughout the project.”

The definition in CMMI has been selected as it explicitly defines
the scope of product integration. The findings have been docu-
mented as comments in the standards and compiled into Table 2.
In the table, references to the chapters in the reference models
show where to find the original information. Each practice has
been described through a general statement that also is used as a
headline for the description of that practice.

The case studies were designed based on the methodology de-
scribed by Yin in [43]. This includes the preparation and the imple-
mentation of the studies through interviews and document
reviews, and the analysis based on the observations.

For the data collection, four main questions have been formu-
lated. Based on these, the questions for the interviews have been
expressed. The four main questions are

e How is the preparation for product integration performed?

e How are interfaces managed?

e How is the actual integration of the product performed?

e What types of problems have been observed in relation to the
product integration?

The data collection is based on interviews and document re-
views through appraisals of projects and organizations.

The interviews were based on a set of detailed questions de-
rived from one or more of the reference models. The researchers
were guided by a discussion guide for each case. The specific ques-
tions in the discussion guide varied between the studies depending
on the reference model that was used as a basis for each study. The
interviews have been open-ended discussions about the integra-
tion process. The interviews were made either in groups with
interviewees representing a function or individually if a function
was performed by a single person. During the discussions, the
researchers have ensured that all questions in the discussion guide
were covered. Each interview lasted between one and two hours.
Document reviews were performed on the documentation describ-
ing the integration process, the training material for the organiza-
tion as well as files used for and as a result from the product
integration process. Examples of document types that have been
examined are project plans, configuration management plans, inte-
gration plans, quality assurance plans, build reports, integration re-
ports, and test reports. Besides an understanding of how the
process is performed, information about the documented as well
as perceived problems related to the product integration process
was captured through explicit questions about issues in the inte-
gration. The documentation from the data collection consists of
notes taken during the interviews and samples from the written
documentation.

More details on the interview method is described by Ekdahl
and Larsson in [12]. The requirements for different classes of
CMMI-based appraisals are described by SEI in the ARC [38]. The
appraisals were performed as Class C appraisals also when the ba-
sis for the data collection was other reference models than CMMI.
For four of the cases (1, 5, 6, and 7), data from the execution of the
production integration process has also been collected, i.e. in the
form of build data.

Additional information was collected from the product integra-
tion process in case 1, 5, 6, and 7. This information includes prob-
lems and failures in the build, smoke test and regression test

activities, and is further described in [30]. The primary data from
builds and tests has been collected by the practitioners and com-
piled by the researchers. Additional information regarding the
problems has been added by the practitioners, i.e. notations from
the integration teams regarding errors and faults discovered in
the build process have been documented.

The final activity in our research has been to map the findings
from the interviews to different reference models. A first mapping
from the cases to the reference models was made to find out what
practices were performed in each organization. This was done for
each practice through searching the collected material for evidence
that the practice was performed. This way all the practices were
covered and additional information about the organization besides
the practices were captured.

A second mapping was made to understand how the problems
found in each case relate to the practices. This was made for each
problem through searching the collection of practices for a match.
Problems that could not be related to any product integration prac-
tices were noted and discussed, but have not been used further in
this study.

Care has been taken to ensure that all classification is deter-
mined by two different researchers. In cases where the researchers
have drawn different conclusions, a discussion has been held to
clarify the different opinions, and an agreement has been sought.
If an agreement or conclusion has been impossible to reach, this
has been clearly indicated in the presentation of results as being
undetermined.

4. Practices in standards and models

Each of the selected reference models is in this section de-
scribed starting with the purpose and intention of the model and
continued with details on the description regarding product and
software integration processes. The actions and tasks considered
to be related to product integration are summarized. Note that
these summaries are for information purposes only, and that the
original text in the reference models should be used for any
implementation.

Based on the acquired knowledge regarding the reference mod-
els, a summary of practices and a comparison between the models
have been made. The purpose has been to see if there is a set of
practices consisting of the union of the used reference models.

The first step was to combine the extracted information from all
investigated reference models into a set of practices. After that, all
reference models were investigated based on the set of practices.
Both explicit and implicit instances of the practices were noted.
This classification is relying on the experience and knowledge of
the researchers. However, through the stepwise approach, the risk
for missing information is reduced as each reference model is
examined twice.

4.1. ISO/IEC 12207, Information technology - software life cycle
process

The purpose of ISO/IEC 12207 is to provide the software indus-
try with a well-defined terminology for software life cycle pro-
cesses [23]. It contains the different processes, activities and
tasks that make up a software life cycle, and applies to the devel-
opment, operation and maintenance of software products as well
as to acquisition and supply of software products, systems and
services.

ISO/IEC 12207 includes two parts related to product integration.
The first is covering the integration of software units or compo-
nents into software items that can be integrated into a system.
The tasks described are: to develop and document an integration

1070 S. Larsson et al./Information and Software Technology 51 (2009) 1066-1080

plan for each software item that has been identified in the system
architectural design, to integrate and test the aggregates as de-
scribed in the plan, to update the user documentation, and to de-
velop and document a set of tests for each requirement of the
software items. The standard also lists a number of criteria that
should be used for evaluation of each work product developed in
the software integration process as well as a requirement to con-
duct joint reviews. Note that the update of user documentation is
omitted in this investigation as it is not considered to be a part
of product integration.

The second part describes the system integration tasks. These
are: to integrate the software into the system, and to test the
requirement of the system. There is also a list of criteria for evalu-
ation of the integrated system.

4.2. EIA-632

The purpose of the EIA-632 standard [2] is to provide develop-
ers with fundamental processes that assist in engineering a system.
In this context, a developer can be an enterprise or an organization.
The use of the standard should help developers to develop require-
ments that enable delivery of system solutions in a cost-effective
way, delivering within cost, schedule and risk constraints and to
provide a system that satisfies the different stakeholders over the
life cycle of the products that make up the system.

The integration of parts into products is included in the require-
ment for implementation. The implementation practices include
expectations that the developers should plan for and execute tasks
such as validating the subsystems received for assembling and
assembling validated subsystem products into the test items or
end products to be verified.

4.3. Capability maturity model integration (CMMI), version 1.1

The Capability Maturity Model Integration (CMMI) from the
Software Engineering Institute describes what is considered as best
practices for product and systems engineering [39]. The model in-
cludes process areas covering the full product life cycle for the
development and maintenance of products and services. The pur-
pose of the model is to provide a basis for process improvement,
and includes guidelines for how to select improvement areas.

For each of the process areas described in CMMI, a purpose is
described. For Product Integration it is “to assemble the product
from the product components, ensure that the product, as inte-
grated, functions properly, and deliver the product”. It is detailed
in three goals which are supported by a total of nine practices that
are specific for product integration. The goals are: Prepare for prod-
uct integration, Ensure interface compatibility and Assemble prod-
uct components and deliver the product.

4.4. EAI-731.1

The purpose of EIA-731.1 (interim standard) is to support the
development and improvement of systems engineering capability
[11]. It is structured to support different activities performed to
improve the performance in a development organization such as
appraisals, process improvement, and process design.

Product integration is described in the section Integrate System
which describes practices connected to product integration strat-
egy, interface coordination, integration preparation and system
element integration.

4.5. ISO/IEC 15288, Systems engineering — system life cycle processes

ISO/IEC 15288:2002 is intended to describe the life cycle of sys-
tems [24]. The standard is to be applied to the full life cycle of sys-

tems from inception, development, production, utilization, and
support to retirement of the system. It is noted in the standard that
the implementation typically involves a selection of a set of pro-
cesses applicable for the project or organization.

Product integration is described in the section Integration Pro-
cess. The purpose with this process is to assemble a system that
is consistent with the architectural design. System elements
should be combined to form partial or complete products. The
activities include definition of a strategy for integration, identifica-
tion of design constraints based on the strategy, preparation of
facilities that enable the integration, reception of validated system
elements in accordance with a schedule, and the actual integration.
In addition, there is a requirement to store information about the
integration into an appropriate database.

ISO/IEC 15288:2002 introduces a requirement that the con-
straints from the integration strategy on design should be identi-
fied. This requirement is not represented in any of the other
standards, and is not investigated in the case studies. However,
we believe this is an important area that needs to be further inves-
tigated as it is closely related to the requirements on how inter-
faces are handled.

4.6. Summary of reference model practices

Table 2 summarizes the product integration process as de-
scribed in different reference models and provides a basis for com-
parison. In this section, we have extracted practices described in
each reference model and combined each of these practices. The
combination of the selected reference models has given us 15 dif-
ferent practices that have been expressed in a general way. These
have been selected as they are directly related to product integra-
tion. Other practices mentioned in the context of product integra-
tion in the different reference models have been excluded.
Examples of this are CMMI, Specific Practice 3.4, “Package the
assembled product or product components and deliver it to the
appropriate customer”, and ISO/IEC 12207, Section 5.3.8.3 “The
developer shall update the user documentation as necessary”.
The excluded practices are important, but have been considered
to be only tangentially related to product integration as defined
for this paper.

The proposed practices for each of the activities are described
below, and further guidance can be found through pointers to
the reference models in Table 2. Note that the practices are not or-
dered in the sequence that they are expected to be performed.
Most of the activities described should be carried out in an iterative
manner. However, our advice is to ensure that Product Integration
(PI) Practice 1 is performed early in any product development pro-
ject to set the expectations on the remaining practices.

4.6.1. PI Practice 1. Define and document an integration strategy

Develop an integration strategy and supporting documentation
that help in identifying a sequence for the product integration sat-
isfying the product requirements while minimizing risks. The doc-
umentation should include different considered strategies, and the
rational for selecting one. The strategy should be based on factors
important for the product development such as the need for partial
systems, verification and validation strategies, organizational
arrangements and selected architectural solutions. As the develop-
ment proceeds, the strategy should be reviewed periodically to en-
sure that the foundation for the decision is still valid.

Examples of strategies are to start with platform functions to
simplify the addition of many applications in parallel, to ensure
customer functionality to be added early enabling demonstrations,
or to have continuous integration of product components as they
become available. Each of these strategies has advantages and
drawbacks that must be understood. The strategy will affect the

S. Larsson et al./Information and Software Technology 51 (2009) 1066-1080 1071

planning for the whole project, and is essential for the understand-
ing, planning and preparation for product integration.

4.6.2. PI Practice 2. Develop a product integration plan based on the
strategy

The product integration plan should define the integration steps
as an assembly sequence, the procedures to be used for integration,
the integration verification to be performed, resources, and respon-
sibilities. Based on the selected strategy, the plan may include
alternate sequences to minimize risks and prepare for different
scenarios. The plan should be reviewed periodically and updated
as needed based on new information and risks.

4.6.3. PI Practice 3. Define and establish an environment for
integration

The product integration plan will together with the product
requirements provide requirements on an integration environ-
ment. The definition and establishment of the environment can
be reused from organizational resources, developed, or acquired.
In either case, the requirements and plans for the environment
need to be considered in parallel with the development and inte-
gration plans.

The integration environment typically consists of simulators,
stubs, test equipment, parts of existing components and products,
software and hardware tools, and measurement equipment.

4.6.4. PI Practice 4. Define criteria for delivery of components

The criteria defined for delivery of components should be se-
lected so that they can indicate the readiness of a component for
integration. The criteria should address what type and level of ver-
ification should be performed on the component and interfaces as
well as thresholds of the verification results for acceptance.

4.6.5. PI Practice 5. Identify constraints from the integration strategy
on design

Several factors can be considered when identifying the con-
straints that a specific integration strategy may impose on the de-
sign. These include rules for what types of interfaces should be
available to enable interconnection between components at differ-
ent stages of the integration. Also the necessity to use simulation,
stubs, and wrappers need to be considered as this may require spe-
cific solutions. The environment used for the integration may re-
quire that the design is constrained.

Typically, the constraints on architecture and design due to a
specific integration strategy require a revision of the architectural
and design documentation.

4.6.6. PI Practice 6. Define interfaces

The efficient and effective execution is depending on interfaces
that are agreed and used for the different components. This in-
cludes physical, functional, and logical interfaces. When interfaces
are determined and defined, an agreed set of criteria should be fol-
lowed. The criteria typically expose attributes important for a spe-
cific application, and may include parameters reflecting the
requirements on dependability, performance, safety, evolvability,
and other quality attributes. Once determined, the interfaces
should be documented and put under configuration management.
This documentation should include the rational for the selected
definition and design. The interfaces are typically characterized
through the source, destination, control and data characteristics
for software, and electrical and mechanical characteristics for
hardware. Also human interfaces and environmental parameters
should be addressed and documented.

Early definition of interfaces reduces the risk for mismatch be-
tween product components that are developed in parallel. The
drawback is that knowledge is acquired as the implementation of

the product components progresses; additional interfaces may be
needed, as well as modifications to existing ones.

4.6.7. PI Practice 7. Review interface descriptions for completeness

When interfaces are defined and revised, appropriate stake-
holders need to perform a review to ensure that each interface
description is complete and fulfill the intentions as described in
the requirements. This is however not sufficient. As the product
components are developed, there is a need to review the interface
descriptions periodically to ensure that they are sufficient and
understood by all stakeholders. These reviews should also provide
input to proposed interface changes.

To facilitate proper reviews, interfaces categories can be de-
fined. The definition of the categories can be used to decide on
what needs to be documented for each category. Once established,
the categories can be used to organize the interfaces, and made
available to relevant stakeholders.

4.6.8. PI Practice 8. Ensure coordination of interface changes

Interfaces affect different stakeholders, and the changes must
be controlled to reduce misunderstandings as well as late discov-
ery of mismatch. Changes should be controlled for different types
of interfaces, e.g. between product components, to the environ-
ment, to users, and to verification equipment.

Change Control Boards can be set up to control changes to inter-
faces. This is critical for projects that have external suppliers, or de-
pend on other parts of the organization. The responsibility of the
Change Control Boards goes beyond deciding on changes; conse-
quences should be investigated before decisions are made, relevant
stakeholders should be involved, information regarding decision
on changes should be communicated, and the interface documen-
tation updated as appropriate.

4.6.9. PI Practice 9. Review adherence to defined interfaces

As a product component is to be delivered to integration, com-
pliance to the interface documentation should be reviewed and
verified. The criteria used for definition of the interfaces can be
used as support for the review.

A review of interface adherence may be done in a common ses-
sion for product components using a specific interface. This en-
ables the development teams to agree on any mismatch and
decide on changes to one or several of the components, or propose
a change of the interface.

4.6.10. PI Practice 10. Develop and document a set of tests for each
requirement of the assembled components

The requirements considered for the integration tests are the
ones related to interfaces and interaction with other components
and the consistency with the architectural design. It is important
the specified tests are in line with the verification strategy, i.e. fo-
cus on the areas defined for integration testing.

4.6.11. PI Practice 11. Verify completeness of components obtained for
integration through checking criteria for delivery

Each product component to be integrated must be identified as
being the intended one in the right version. The completeness of a
component can only be confirmed through checking defined crite-
ria. If a component does not fulfill the criteria appropriate mea-
sures should be taken; changes may have to be made to the
component, or the deficiency can be accepted temporarily or per-
manently. If accepted permanently, appropriate changes should
be made to requirements and other documentation.

The responsibility to ensure that a product component meets
the defined criteria can be decided in the strategy for product inte-
gration. Typically, the developer or development team is responsi-
ble to develop the product component in accordance with all

1072 S. Larsson et al./Information and Software Technology 51 (2009) 1066-1080

requirements, including the criteria for integration. However, it is
also common that the integration team is responsible to check
are that the criteria are met, and to reject the delivery of compo-
nents not adhering to the requirements. Handshake procedures
are suggested to reduce tension between different teams, ensuring
a common view of the situation.

4.6.12. PI Practice 12. Deliver/obtain components as agreed in the
schedule

As the product components are verified as complete as defined
by the product integration delivery criteria, they can be delivered
for integration. It is of utmost importance that any slippage in
the agreed schedule for the delivery of a component is communi-
cated as soon as it is know, or even as soon as the risk for late deliv-
ery is identified. Any delays may affect the integration sequence,
and the ability to provide different stakeholders with intermediate
integrations, and with the final product. If the delays are know
early, countermeasures can be initiated.

The acknowledgement of reception for integration is important,
and can be made through an informal or formal handshake proce-
dure. An example of this is to use the configuration management
status information to set the product components in different
states. This enables relevant stakeholders to get an understanding
of the status, and bottlenecks can be identified.

4.6.13. PI Practice 13. Integrate/assemble components as planned

The integration and assembly of the components should be per-
formed as described in the product integration plan. The integra-
tion can be made in steps, with aggregates of components being
built consecutively, and it may be necessary to perform evaluation
activities on the intermediated results. The result of the assembly
should be made available to all relevant stakeholders.

4.6.14. PI Practice 14. Evaluate/test the assembled components

The focus when evaluating the assembled components is on
interface verification. The defined and described procedures and
environments are used to ensure that the product components
work as intended when combined. The results from the verification
should be recorded and appropriate action taken to handle any is-
sues that may occur.

4.6.15. PI Practice 15. Record the integration information in an
appropriate repository

When the integration is performed, it is necessary to record
information regarding problems in the product, product compo-
nents, integration environment, and in procedures for integration.
The information can, besides a control of necessary changes to the
product and product components, be used to further improve
strategies, practices, environment, and process improvements for
product development processes that are delivering to the product
integration.

Examples of information that can be collected are problems in
the integration related to different practices, e.g. build statistics
[30].

The list of activities can be used as a guideline for the definition
of a product integration process and process improvement in the
area. Note that if a reference model is implemented, the original
text for that specific reference model should be used.

In the compilation of the practices from different reference
models in Table 2, three different types of indications have been
used. “E” is used if the practice is explicitly described in the refer-
ence model, “I" if it is implicitly described and a “~* if it is not de-
scribed. Implicit descriptions are identified if there is a generic
statement that the type of activity, such as reviews, should be per-
formed. If a practice is covered both explicitly and implicitly, only
the explicit occurrence is mentioned in the table. A pointer to the

Table 1

References for the different reference models.
Reference model Reference

ISO/IEC 12207 Section

EIA-632 Requirement
CMMI Specific Practice in the Product Integration process area
EIA-731.1 Specific Practice

ISO/IEC 15288 Section

reference model is given for each explicit or implicit description
of the practice. The references in the table are numbers of sections,
practices, or requirements as defined in Table 1.

4.7. Similarities and difference between the reference models

A comparison of the standards based on the PI practices show
that there is an on-going development of the area and an increased
agreement over time on what can be considered to be best prac-
tices. The following observations have been made:

e Integration planning is expected in all reference models

e Only ISO/IEC 15288:2002 mention the aspect that the integra-
tion strategy may imply constraints on the system or product
design

o Interface definition is explicitly specified in all reference models
except ISO/IEC 15288:2002, but other aspects of interface man-
agement such as review and control of changes are only speci-
fied in CMMI and EIA 731.1

e The verification of completeness as well as the actual integration
and verification of the assembled components are included in all
reference models.

The comparison between the different reference models indi-
cates that expectations on the preparation for integration and the
handling of interfaces have been made more explicit over time;
additional practices are added and already existing practices are
made more precise for reference models released at later dates.

Older standards are less explicit regarding product integration,
while newer focus on different aspects. As EIA has been used as an
input to the development of CMMI, there is no surprise that they
are handling product integration in a similar way. ISO/IEC 15288
has the best coverage of product integration except for manage-
ment of interfaces.

Our conclusion is that additional investigations and compari-
sons are needed to understand how the area evolves, what factors
are determining what is added to the reference models and if there
are specific considerations that should be made for different types
of products and systems. There is also a need to validate the
changes that are made through case studies in different types of
product development organizations.

5. Case studies

In order to understand if the reference models can help organi-
zations reduce the problems in product integration as executed in
an industrial environment, we have examined seven different pro-
jects. All of the projects were initiated to develop products used in
the manufacturing, process, telecommunication, or power do-
mains. This section describes the projects and products for each
case. One notable characteristic is that the projects in both compa-
nies are to a certain extent independent in their selection of work
processes and supporting tools. This is a strategic decision based
on the diverse needs from different types of development and
products in both the investigated companies.

S. Larsson et al./Information and Software Technology 51 (2009) 1066-1080

Table 2
Product integration process in selected reference models.

1073

Reference models ISO/IEC 12207 EIA-632 CMMI EIA-731.1 ISO/IEC 15288
Publication date Generic activity description Aug 1995 Jan 1999 Mar 2002 Aug 2002 Nov 2002
1. Define and document an integration strategy - IReq32a IPISP 1.1 E SP 1.5-1-1SP 1.5-1-2 E 5.5.6.3a
2. Develop an integration plan based on the strategy E 5.3.65.3.75.3.8 EReq32a EPISP1.1 ESP1.5-1-3a E 5.5.6.3a
3. Define and establish an environment for integration - IReq 32 a EPISP12 - E 5.5.6.3¢
4. Define criteria for delivery of components 153.8 IReq32a EPISP13 11.5-3 15.5.6.3e
5. Identify constraints from the integration strategy on design - - - - E 5.5.6.3b
6. Define interfaces E 5.3.45.3.55.3.6 E Req 16 ETSSP23 ESP1.3-1-1cSP 1.3-1-3aSP 15.5.4.3g
bReq 17 b 1.5-2-3a, 3b, 3¢
7. Review interface descriptions for completeness 1535 IReq12d EPISP21 ESP1.5-2-2a3,2b 15.54.3g
8. Ensure coordination of interface changes - IReq12d EPISP22 ESP1.5-2-1a 15.5.4.31
9. Review adherence to defined interfaces - IReq 12 d EPISP22 ESP1.5-3-1a E 5.5.6.3f
10. Develop and document a set of tests for each requirement E 5.3.65.3.7 EReq32a IPISP 1.3 11.6-2 15.5.7.3e
of the assembled components
11. Verify completeness of components obtained for integration E 5.3.8 EReq3bReq EPISP3.1 E SP 1.5-3-1a E 5.5.6.3e
through checking criteria for delivery 20b
12. Deliver/obtain components as agreed in the schedule E5.3.8 IReq20a I PISP 3.1 E SP 1.5-3-2 E 5.5.6.3d
13. Integrate/assemble components as planned E 5.3.85.23.106.4.2 EReq20c EPISP3.2 ESP1.5-4-1a E 5.5.6.3f
14. Evaluate/test the assembled components E 5.3.96.4.2 EReq20dReq EPISP3.3 ESP1.5-4-1b E 5.5.7.3e
32b
15. Record the integration information in an appropriate repository [5.3.95.3.10 - I PISP 3.3 11.5-4 E 5.5.6.3g

In each of the cases we have captured the problems appearing
in product integration. A problem is a reoccurring reason for failure
in the integration process. This includes problems in the build,
smoke test, and regression testing. For all cases problems have
been captured in the interviews and document reviews. In case 1
and cases 5 through 7, also measurements from the build and inte-
gration test phases have been used as a source for finding problems
and their causes. All problems are summarized in Table 3.

The two companies are multinational, with development orga-
nizations distributed globally and with most of the product devel-
opment performed in Europe. Company A has more than 100,000
employees while company B has more than 60,000. Case 1, 4, 5,
6, and 7 are from company A while case 2 and 3 are from company
B.

5.1. Case 1
This study was performed at a unit developing industrial con-

trol systems belonging to company A. The system has evolved
through several generations, and a new generation of the system

Table 3
Problems captured in the case investigations.

is currently being developed. Compared to the first generation,
where the effort was three man months, the effort for software
development in the current development is estimated to about
100 man years.

The implementation consists of approximately 2500 KLOC of C
language source code divided in 400-500 components, organized
in 8 technical domains. The development organization for this
product is around 100 persons. The system has a layered architec-
ture and component-based design within the layers. The software
platform defines an infrastructure that provides basic services like
a broker for message-based inter-task communication, configura-
tion support, persistent storage handling, system startup, and
shutdown.

The development is performed in subprojects with responsibil-
ities for the different technical domains based on common require-
ments. This results in a need for coordination of the
implementation of functions needing solutions in more than one
technical domain. Also project coordination is crucial to ensure
that the right functions are planned and implemented for each
integration point.

Case and Problem description

problem

1A Functions are not always delivered in time for integration or may be incompletely delivered. In addition to this, delivery is complicated through two
different ways to deliver code. This leads to problems in the build process or in integration and system tests

1B Functions are not tested as required by the developers. This leads to problems in the builds and in initial integration testing

1C Changes in common resources (e.g. common include files) are not controlled. This results in errors appearing in other components which have not been
changed

2A Functions are not always fully tested when delivered for integration. This leads to problems in the build process or in integration and system tests

2B Errors are corrected that should not be. This results in new errors with higher influence on functionality and performance

2C Errors appear in other components which have not been changed

3A Problems appear as a consequence that tests for the components are not run in the same environment as the test system. Different versions of hardware
and test platform are used

4 A Scattered architecture on the server side as a result of the decision to handle communication in each component

5A Inconsistent code is delivered, and files are not included in the build as planned. The result is failed builds

5B The build environment sometimes contain traces of earlier builds or fail due to unstable applications used, resulting in failing builds

6A Changes are sometimes untested before integration, resulting in errors in initial integration testing

6B Files are not delivered to integration as planned and required, resulting in errors in the build process

6C The build environment contains sometimes traces of earlier builds, resulting in failing builds

6D Changes are made to interfaces without proper control. This leads to errors in the builds or initial integration testing

7A Functions are not always fully tested when delivered for integration. This leads to problems in the build process or in integration and system tests

7B Untested changes to build scripts are introduced

7C Errors appear in other components which have not been changed

1074 S. Larsson et al./Information and Software Technology 51 (2009) 1066-1080

The integration is made throughout the project at integration
points, with a development iteration performed for each integration
point. The time between two integration points is between 10 and
12 weeks. Functionality to be included in integration is defined at
the start of the iterations. Revisions of content may occur based
on the progress of the project. The procedure for integration starts
with the increased control of what is allowed to be included in
the daily builds. When the integration point is reached, a frozen ver-
sion of the system is made available for verification and validation
in different parts of the organization. All errors found are considered
for correction which is then included in the next integration.

The product integration process was investigated through a
CMMI Class C appraisal and through investigation of build results.
Two of the problems described for this case, 1A and 1B, are re-
ported by the build and integration team and are found at build
time or when performing the smoke tests. Problem 1C is reported
by the verification team and the developers working with further
development based on a frozen version. All problems found in case
1 are related to the coordination: functions not being delivered as
promised, functions not being tested before delivery, and that
changes of common resources are not controlled. This organization
is now putting more effort in place into ensuring that functions are
tested before delivery and to control interface changes.

5.2. Case 2

The organization in case 2 is part of company B. The product is a
stand-alone product that is connected to a real-time data collection
system. The development is done in one group with less than 20
developers and follows a defined and documented process.

The product development of a specific release is based on a def-
inition of the product that contains what should be included in
each release. The first step in the development is the implementa-
tion of requirements on the functions for the release. Based on this,
the unit and system verifications to be performed are defined.
Development of the functions is done in units called components.
The Rational Unified Process is used, and a document list defines
the development process. The planning is made to allow incremen-
tal development. The unit verification is performed by software
developers. The strategy is that tests should not be done by the
developer producing the software. The unit tests are often done
through automatic testing. Specifications and protocols from the
tests are reviewed by peers and system integrators. The tests are
performed in the developer’s environment and consist of basic
tests. Functional tests are performed before the system tests.

The product integration is not defined as a separate process, but
the product is integrated by the developers before the system ver-
ification. Before a component is checked in, it should be included in
a system build to ensure proper quality. Delivery to the system test
is done of the whole system. The test protocols and error reports
from the unit verifications are reviewed with the system integrator
before the system test. The system tests are performed by a core of
system testers and temporary additional personnel. This strategy
builds on well-defined and detailed tests. The tests are focusing
on functions and performance and are performed on different
hardware combinations. This includes different variants of the
product and different versions of the operating system. The test
period takes approximately 12 weeks, with new versions of the
assembled components received to system test every week.
Although the development builds on increments, no integration
plan is used for the product. The integration plan used is one for
the whole system where this product is included. Typical time
for the development of a release is less than one year.

The data for case 2 were captured through a Class C appraisal,
and was based on a discussion guide developed to be neutral in
relation to the reference models. Three problems have been

captured for case 2 and have been reported both by the verification
team and the developers. The routines are mainly followed, but
due to tight deadlines, shortcuts may be taken. Sometimes uncon-
trolled changes are introduced in the software. This is typically
done when a part of the system is changed due to an existing error
that is uncritical and not planned to be corrected. Due to the
dependencies in the system, new errors may appear in parts that
have not been changed. Also other connections between compo-
nents that are not explicitly described and documented generate
this problem.

5.3. Case 3

The organization in case 3 belongs to company B. The group
develops a product that includes software close to the hardware.
The target system includes a complex hardware solution with
the application divided on two target systems.

The development group is around 10 persons and follows a doc-
umented development process. The requirement specification is
analyzed by the architect. The architect decides on the implemen-
tation solution, which is handed over to the developers. The devel-
opers deliver to integration at the end of the implementation
phase. The process includes rules for what should be checked
and tested before a component is integrated. The tests include run-
ning the application in simulators and target systems before the
integration. A specification for what should be ready before start
of functional and system tests are available. The architect is
responsible for implementation decisions. Typical time for the
development of a release is 1.5 years. This includes the full devel-
opment cycle from defining the requirements to system testing.
The integration is for this system a one-time effort for each release.
The rules for the integration defines what should be ready before
the functional tests, not what needs to be ready before check-in.

Data was collected through a Class C appraisal based on a mod-
el-independent discussion guide. The problems reported for this
case appear because of the incapability and version mismatch of
the test system, the final product and the test and final hardware
platform. All problems are described both by the architect and
the verification responsible. Efforts are now made to go towards
incremental development, and to increase the formalism in the
testing. The tests will be made in three stages with basic tests per-
formed by the designer, functional tests performed by a specific
functional tester and system tests with delivery protocol.

5.4. Case 4

The development organization in case 4 belongs to company A,
and is responsible for the design of a user interface that acts as a
client to a database server. The organization is small, around 15
developers, and most developers participated in the investigated
project.

In recent years the current architecture has been improved. The
old version of the system suffered from problems with many com-
mon include files. Through global variables and similar solutions
permitted by the selected technology, unintended side-effects
made debugging and error correction tedious. Different attempts
to reduce the problems within the available technology lead to
the insight that a design that was built on isolation of interfaces
should be beneficial. The solution was to start building a new sys-
tem. Included in this decision was a strategy to design interfaces
carefully and to use technologies that permitted isolated compo-
nents to be used.

The system is built up of components that primarily implement
different parts of the user interface. Each component handles the
communication with the server. This design was used to allow
development of services that are independent and dedicated for

S. Larsson et al./Information and Software Technology 51 (2009) 1066-1080 1075

each component. The component framework defines the required
interface for each component and provides a number of services,
such as capturing of key strokes. The technology that is used per-
mits the developers to easily isolate problems and to minimize
the uncontrolled interference and dependencies between the
components.

The development is done based on frequent builds and contin-
uous integration of new functions. The integration is handled by
the integration responsible. However, the checks before the inclu-
sion of new functions are done by the developers. The continuous
integration includes build and testing. The testing is partially auto-
mated. Releases are made monthly, and are verified by a separate
team. There are no specific routines in place for handling the inter-
faces. Changes are in practice always checked by the system
architect.

The Class C appraisal performed in this case was based on the
same discussion guide as used for cases 2 and 3.

The new system design has reduced the implementation time
for a function by two thirds. The turn-around time for a system
release has been reduced from six months to between one and
three months. At the same time, a need for maintaining the base
platform has emerged. Also, some of the technical solutions have
been questioned and may increase the need for maintenance. The
problem reported for this case is related to the technical solution;
the server side implementation is scattered which has lead to
inability to check the interfaces for completeness. This problem
was reported by both the architect and the responsible line
manager.

5.5. Case 5

The organization in case 5 belongs to company A. It develops a
complex real-time control product including event, trend and error
handling, data collection, communication, and operator interface.
The product is part of a suite of about 30 products, forming a sys-
tem that is used in process industries. The development is tightly
coordinated with the development of these other products. The
organization is the largest in the investigation and the number of
developers involved is close to 80. The development process varies
between different groups in the organization, but all parts are
delivered to the build and integration process.

The product consists of more than 3000 KLOC and consists of
applications on a workstation. The architecture is distributed and
care has been taken to define different layers to achieve separa-
tion-of-concerns.

The project that has been investigated is the integration project
for a major release program. The integration project consists of a
build team and a team responsible for the automated regression
tests. These two teams have possibilities to capture integration
problems and to analyze background problems. The builds are per-
formed as daily builds, weekly builds and baseline builds. The daily
builds are performed to ensure the stability of the code base, and
have the build environment adapted to additions in functionality.
Weekly and baseline builds are made available to other parts of
the organization for verification purposes. Development cycles
are between 12 and 18 months.

The organization appraisal was done as a CMMI Class C
appraisal. In addition to this, the build statistics were analyzed.
The problems have been captured and reported by the build
team.

Due to the size of the system, the build and integration environ-
ment is fairly complex. As a result, the major problems in the inte-
gration project are failures due to the environment. However, also
the delivery of inconsistent code causes problems. The major rea-
son for this is the lack of control of what is delivered for
integration.

5.6. Case 6

The project in case 6 develops embedded software for the new
generation of protection relays for electrical networks and belongs
to company A. The development organization is small with around
15 developers. The main development team is located in one site,
but a few persons from other sites have participated in the
development.

At the time of the study the size of the software was around 500
KLOC. However, the final products built on the technology will be
larger than that.

The product architecture consists of subsystems that are base
software, application components and higher level services, such
as communication services. The base software is a platform that
provides the running environment for the application components
and services, and separates them from the hardware. Application
components are modules that each implements certain protection
functionality in the final product. The functionality of the product
can thus be defined by selecting appropriate application compo-
nents that together with the selected communication protocols
and other services fulfill the functionality required by the cus-
tomer. Application components and services are having interfaces
to the base software, but not to each other. While these subsystems
can be considered being loosely coupled and having a high cohe-
sion, each of them has an internal architecture, that at some level
may become more highly coupled. For example the modules of the
base software may use common global data. Typically these kinds
of issues are resulting from the needs for performance optimiza-
tion. In addition it is not common to have object-oriented design
in this kind of embedded software, which in turn may result to a
higher degree of coupling in the code.

The software is built of the source code level components by
compiling and linking them to a single executable binary. Most
of the components are developed by the organization but also
some 3rd party components are used. The project is responsible
of developing the base software and integrating it with the service
and application components, which are partly developed in sepa-
rate projects. The outcome of the project is a reference configura-
tion which will be the baseline for the actual productization
projects, including base software, service components and reduced
subset of application components. Thus, the studied integrations
include all types of the components used in the product.

The integration problems faced in case 6 were reported by the
developers and captured in a class C CMMI appraisal for PI process
area. The integration problems were also identified by analyzing
the statistics from the build and linking phase. This was possible
as the integration activities in the project were mainly related to
the software construction phase, as described in [22].

A major problem for this organization is that changes to the
source code are introduced without proper testing. Also late deliv-
eries of functions are a problem as the functions often consists of
sub-functions that are combined in the integration.

5.7. Case 7

The project in case 7 develops embedded software for a new
generation of protection relays for electrical network. The develop-
ment organization is small with around 15 developers. The main
development team is located in two sites in two different time
zones.

The product architecture resembles that of case 6, i.e. it consists
of base software, application components and higher level services.
The product has some common components with case 6, but it is
based on other hardware. In addition some components, for exam-
ple the base software, have a longer history, being released in the
existing products. It was also well recognized by the development

1076 S. Larsson et al./Information and Software Technology 51 (2009) 1066-1080

team that partly due to its longer history, the base software had
some highly coupled modules. Also, as in case 6, the performance
optimization sometimes lead to the need for developing highly
coupled modules inside the base software. The software is built
of source code level components, either developed by the organiza-
tion or 3rd party, compiled and linked to single executable binary.
The project is responsible of further development of the base soft-
ware and integrating it with the service and application compo-
nents, which are partly developed in separate projects. The
outcome of the project is a new product.

At the time of the study, the integrations were performed only
with the components of base software and service components,
while the application components were not yet included in the
integration. The project size was over 500 KLOC, but when inte-
grated with the application components, is expected to be >1000
KLOC.

The methodology used for finding and analyzing the reasons for
the integration problems was same as for case 6, i.e. it was based
on the class C CMMI appraisal and data collected during the build
phase of the product’s software.

For this case, three problems were reported by the integration
and verification responsible persons. These are problems in the
build environment, problems appearing in parts of the system that
has not been changed, and that functions sometimes are untested
when delivered for integration.

5.8. Conclusion of the case studies

From our case studies we conclude that the available knowl-
edge regarding the product integration process is inconsistently
used by different product development organizations.

The problems found in the product integration can be catego-
rized into four different classes:

e Problems related to inadequate selection and implementation of
strategy.

If the wrong or no strategy is selected for the product integration

process, the results will be that unnecessary work is done.

Examples include:

- Implicit strategy for the product integration results in unco-
ordinated deliveries from different subsystems making it dif-
ficult to perform meaningful integration tests

- Missing strategy for error correction may result in changes
that increase the risk for problems in product integration

e Problems related to inadequate management of architecture and
design.

This class concerns primarily the design and management of
interfaces between different parts of the product or system, but
also non-functional attributes of the product. Examples of prob-
lems are:

- Architectural decisions are done without considering the full
system, leading to discovery of problems related to non-func-
tional attributes at integration time

- Changes are made to interfaces without proper control. This
leads to errors in the builds or initial integration testing

- Changes in common resources (e.g. common include files)
are not controlled. This results in errors appearing in other
components which have not been changed

- New functions are added and errors are corrected without
proper investigation of consequences. The result may be
new errors that influence the functionality and performance
of the system more than the original problem

- Errors appear in components which have not been changed
due to changes in interfaces, i.e. changes are made in how
two components interact, while also other components are
using this interface

e Problems related to the inadequate establishment or use of the
integration environment.

The environment includes hardware, software, and test equip-
ment needed for the integration. The following are examples
from our case studies:

- Problems appear as tests for the components are not run in
the same type of environment as the integration test system.
Different versions of hardware and test platform are used

- The build environment is not prepared for new builds, e.g.
results from earlier builds are not removed before a new gen-
eration of the system is started

- Untested changes are introduced in the integration environ-
ment e.g. build scripts are changed without proper
verification

e Problems related to inadequate delivery of functions.

As the delivery for integration is based on a common under-
standing of priorities and needs from other parts of the system,
problems in this class can cause considerable delays. Examples
of problems:

- Inconsistent code, i.e. functions that have only been partly
implemented, is delivered for integration

- Functions are not always delivered in time for integration or
may be incompletely delivered. This leads to problems in the
build process or in integration and system tests

- Functions are not always fully tested when delivered for inte-
gration. This leads to problems in the build process or in inte-
gration and system tests

The proposed classification matches the different practices pro-
posed for product integration and should be further refined as we
learn more about the problems found in product integration.

One additional factor that may influence the results of our study
is the company culture of the investigated companies. However,
when comparing the performed practices and the problems
found in the different cases, there is more resemblance between
case 1 and 2 that are from different companies than between
case 2 and 3 that both are from company B. In addition, except
for case 6 and 7, the development organizations in company A
are from different divisions, with different product development
processes.

5.9. Problems in relation to reference models

The problems found in the cases are in this section related to
the reference models. This gives an indication on how the refer-
ence models can help in avoiding the types of problems found.
If a problem can be related to a practice that is not performed,
but is described in the reference model, there is a possibility that
the practice could help if implemented. However, if there are
problems that we can relate to product integration, but cannot
be related to the practices for a specific reference model, follow-
ing that specific reference model does not support the organiza-
tion in preventing that type of problem. The purpose of this
analysis is thus to understand if there are problems in product
integration that are possible to avoid if each of the reference mod-
els are expanded with the practices that are not explicitly de-
scribed today.

For each reference model, a table summarizes the described
product integration practices and the adherence to the tasks as ob-
served in the cases. The seven columns describing the results from
the case studies include: an indication for each case if the practice
has been observed as performed (+), observed as not performed
(-), not investigated or not possible to determine (?), and if there
are indications of problems connected to the practice (indicated
with the problem label). Only the explicitly described practices

S. Larsson et al./Information and Software Technology 51 (2009) 1066-1080 1077

have been included in the tables as this leaves less interpretation
to the user of the reference model, and give more help.

Two issues limit the value of this analysis. The first is that
explicit coverage of all the practices described in all reference
models was not made in the data collection for all cases. This
means that practices may be performed even if no evidence can
be found in the material from the interviews and document
reviews. This has been indicated with a questions mark (?) in
the tables. The second issue is that problems may exist in the
organization without indications in the table, based on the fact
that not all practices were explicitly covered in the data collection
for all case studies. However, all problems that have been cap-
tured have been possible to relate to practices that have been
investigated.

5.10. ISO/IEC 12207:1995 compared to cases (Table 4)

The practices in ISO/IEC 12207:1995 cover 7 of the 17 unique
problems found in the case studies. These are related to the prac-
tices used to ensure that the integrated software is ready for veri-
fication. This standard has no requirements on the handling of
interfaces besides the definition of them, which represents the
cause of many of the problems found in the case studies.

5.11. EIA-632 (Table 5)

The requirements in EIA-632 are concrete, but do not include
requirements in all the areas where we have found problems in

the case studies. 4 of the 17 unique problems have been related
to practices described.

5.12. Capability maturity model integration (CMMI), version 1.1 (Table
6)

13 of the 17 problems encountered in the case studies regarding
product integration can be related to practices that are described in
the CMMIL. Of the four that are not covered, three are related to late
delivery of components to integration, and one is related to the
strategy regarding error correction.

5.13. EAI-731.1 (Table 7)

As with CMMI, many problems found in the case studies can be
related to practices in EIA-731.1. Of the 17 unique errors found in
the cases, 13 are covered by the practices. The remaining four er-
rors are related to the build environment and the criteria for
integration.

5.14. ISO/IEC 15288, Systems engineering — system life cycle processes
(Table 8)

The standard covers 11 of the 17 problems found in the case
studies, and most of the other errors are related to the interface
handling which is not explicitly covered.

Table 9 summarizes the use of practices derived from the refer-
ence models, and the problems identified in the case studies.

Table 4

ISO/IEC 12207:1995 compared to cases.

Generic activity description Case1 Case2 Case3 Case4 Case5 Case6 Case?
2. Develop an integration plan based on the strategy + — + — — — _

6. Define interfaces — — - + _ _
10. Develop and document a set of tests for each requirement of the assembled components W - + - + = =
11. Verify completeness of components obtained for integration through checking criteria for delivery —1B — —-3A + — —6A -7A
12. Deliver/obtain components as agreed in the schedule —1A - + — —5A —6B —
13. Integrate/assemble components as planned + + + + + — _
14. Evaluate/test the assembled components + + + + + - —
Table 5

EIA-632 compared to cases.

Generic activity description Case1 Case2 Case3 Case4 Case5 Case6 Case7
2. Develop an integration plan based on the strategy + — + — — _ _

6. Define interfaces = = = + — — _
10. Develop and document a set of tests for each requirement of the assembled components W - + - + = =
11. Verify completeness of components obtained for integration through checking criteria for delivery —1B - —-3A + - —6A -7A
13. Integrate/assemble components as planned + + + + + _ _
14. Evaluate/test the assembled components + + + + + - _
Table 6

CMMI compared to cases.

Generic activity description Case1 Case2 Case3 Case4 Case5 Case6 Case7
2. Develop an integration plan based on the strategy + — + — — — —

3. Define and establish an environment for integration + + + + _5B +6C +7B
4. Define criteria for delivery of components —1B —2A + - + - —

6. Define interfaces = = = + — — _

7. Review interface descriptions for completeness —1C —2C - —4A - + +

8. Ensure coordination of interface changes -1C -2C - — — —6D -7C
9. Review adherence to defined interfaces = = + + — _ _
11. Verify completeness of components obtained for integration through checking criteria for delivery —1B - —3A + - —6A -7A
13. Integrate/assemble components as planned + + + + + — _
14. Evaluate/test the assembled components + + + + + - —

1078 S. Larsson et al./Information and Software Technology 51 (2009) 1066-1080

Through our case studies and the investigation of different refer- Table 10
ence models, we have found the following: Number of errors for each case related to practices in the reference models.
e Five of the practices (PI Practice 4, 7, 8, 11, and 12) indicate ISO/IEC 12207 EIA-632 CMMI EIA-731.1 ISO/IEC
that problems may appear when the practice is not followed. 15288
e In three instances, identified problem areas can be related to Case 13 problems 2 1 2 3 2
practices that are performed in the organizations. Two of Case 23 problems 0 0 2 2 1
these are related to the strategy definition (PI Practice 1), gase ‘3& progiem (1) (1) } } (1)
and are in fact referring to the lack of rules for corrections of sEeal Beblan
. N 3 A A Case 52 problems 1 0 1 1 2
errors. Hence, it may be that the integration strategy is avail- Case 64 problems 2 1 3 3 3
able, but does not cover the rules for error corrections. The Case 73 problems 1 1 3 2 2
final problem is related to the build environment definition Total17 problems 7 4 13 13 1

(PI practice 3) and is also an indication that the descriptions
of practices do not cover the quality of the implementation.
e Table 10 illustrates also that none of the models include all
necessary practices to avoid the problems found in the cases,
e.g. for ISO/IEC 15288 we could associate 11 of the 17 prob-

Our finding is that there is a small set of practices that need to

lems found in the case studies to the product integration be implemented to have working product integration. However,
practices in that standard. The results confirm the need of a they are not sufficient, which is indicated by the larger set of prac-
broader approach than is available in any of the examined tices described in different reference models. Further analysis

reference models

Table 7
EIA-731.1 compared to cases.

shows that a combination of CMMI

with either

ISO/IEC

Generic activity description

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

1. Define and document an integration strategy

2. Develop an integration plan based on the strategy

6. Define interfaces

7. Review interface descriptions for completeness

8. Ensure coordination of interface changes

9. Review adherence to defined interfaces

11. Verify completeness of components obtained for integration through checking criteria for delivery
12. Deliver/obtain components as agreed in the schedule

13. Integrate/assemble components as planned

14. Evaluate/test the assembled components

—1C
—1C

—1B
-1A

+2B

-2C
-2C

+
+

4t

+
—4A

+ +

+ 1

?
o

—6D
—6A
—6B

?
+
-7C
—7A

Table 8
ISO/IEC 15288:2002 compared to cases

Generic activity description

Case 1

Case 3

Case 4

Case 5

Case 6

Case 7

1. Define and document an integration strategy

2. Develop an integration plan based on the strategy

3. Define and establish an environment for integration

5. Identify constraints from the integration strategy on design

9. Review adherence to defined interfaces

11. Verify completeness of components obtained for integration through checking criteria for delivery
12. Deliver/obtain components as agreed in the schedule

13. Integrate/assemble components as planned

14. Evaluate/test the assembled components

15. Record the integration information in an appropriate repository

+ N+ + o+

-3A

+ o+ o+

+ o+ N+ |+

+ +

o
—5B
?
—5A
"
2

Table 9
Performed activities and problems identified in the case studies.

Generic activity description

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

1. Define and document an integration strategy

2. Develop an integration plan based on the strategy

3. Define and establish an environment for integration

4. Define criteria for delivery of components

5. Identify constraints from the integration strategy on design

6. Define interfaces

7. Review interface descriptions for completeness

8. Ensure coordination of interface changes

9. Review adherence to defined interfaces

10. Develop and document a set of tests for each requirement of the assembled components
11. Verify completeness of components obtained for integration through checking criteria for delivery
12. Deliver/obtain components as agreed in the schedule

13. Integrate/assemble components as planned

14. Evaluate/test the assembled components

15. Record the integration information in an appropriate repository

+2B
a
—2A
?
-2cC
—2cC

~ o+ o+ o+

+ o+ o+

+ |+

~

—4A

+ |+

+ o+

ar

?

+7B

S. Larsson et al. /Information and Software Technology 51 (2009) 1066-1080 1079

15288:200 or EIA-733.1 would be sufficient to include all neces-
sary practices to avoid the types of problems encountered in our
case studies.

When investigating the product integration area, we have seen
that organizations are aware of practices that are described in ref-
erence models. However, as the information in the models is too
limited, the usefulness is also limited and additional information
such as examples and hands-on methods are needed. Conse-
quently, the models should primarily be used as guidelines for
what to improve, and information about how the practices should
be implemented need to be found elsewhere.

6. Discussion

The difficulties for product development organization found
during integration are disrupting the progress of development pro-
jects and increase time-to-market. Problems origin for example in
the lack of integration planning, insufficient management of inter-
faces, and inadequate preparation of components delivered for
integration.

Our intent with this research has been to examine to which ex-
tent the practices described in reference models are useful as a
support for development units. Five reference models have been
analyzed. Practices as well as problems from seven development
projects have been captured. We have based the investigation on
the following questions and summarize here the results:

e How are the practices that are described in reference models
useful for product development units aiming at improve-
ments in the product integration process? The reference
models can be used as tools for identifying weak areas in
the product integration processes. Care must however be
taken when selecting the reference model so that sufficient
coverage is obtained.

e What is the core set of practices that can be identified to
reduce problems in product integration? Through the case
studies, five Product Integration practices have been identi-
fied to be necessary to perform to have successful product
integration. These are PI 4 Define criteria for delivery of compo-
nents, P1 7 Review interface descriptions for completeness, P1 8
Ensure coordination of interfaces changes, PI 11 Verify com-
pleteness pf components obtained for integration through check-
ing criteria for delivery, and PI 12 Deliver/obtain components as
agreed in the schedule. For the interface handling, also PI 6
Define interfaces is important as PI 7 relies on that practice.
The same reasoning can be applied on PI 2 Develop an integra-
tion plan based on the strategy which is a prerequisite for PI
12.

e Is it appropriate to combine reference models to provide bet-
ter support to product development units, and how can this be
done? The analysis of existing reference models shows that
none of the investigated models cover the problem situations
for the investigated product development organizations
regarding product integration. This leads to our conclusion
that a combination of the content in the reference models
can be helpful for development organizations when designing
and improving the product integration process.

Our suggestion to companies that would like to improve the
product integration processes is to use the set of 15 practices de-
scribed in Section 4.6 and perform an assessment on the current
practices. In addition to this, the problem areas found should to-
gether with the assessment results be the basis for any improve-
ment effort.

One additional conclusion is that a continued development to-
wards an agreed body-of-knowledge for the product integration
area is needed. This can be achieved through consolidation and fur-

ther validation of existing reference models. Finally, as a result of
our studies, we see the need to perform additional investigations
to understand the reasons for the lack of use of proven good prac-
tices, and to understand why the implementation of product inte-
gration practices sometimes fails.

Several different additional directions for future research have
been identified. Additional organizations using different technolo-
gies should be investigated and compared to clarify if there are
dependencies between the type of application and the needed
practices. A related direction is to look at the influence architec-
tural decisions have on product integration. Also, methods for
how to determine the best improvement proposals for product
integration for different types of organizations should be investi-
gated, enhanced, and possibly developed. This probably requires
an agreed body-of-knowledge for product integration that sup-
ports different types of organizations, and the use of different
development models. The reference models investigated in this
article do not prescribe specific development models, but the
selection is likely to influence the ability to follow the practices
and to be successful in the product integration.

Acknowledgements

We would like to thank all participants in the case studies for
their time and patience. This work has been partially supported
by the KK-foundation (KKS) in Sweden through the SAVE-IT
project.

References

[1] ANSI, American National Standards Institute, <http://www.ansi.org/>, 2007.

[2] ANSI/EIA-632-1999, Processes for engineering a system, Electronic Industries
Alliance, Government Electronic and Information Technology Association,
1999.

[3] M. Bajec, D. Vavpoti, M. Krisper, Practice-driven approach for creating project-
specific software development methods, Information and Software Technology
49 (2007) 345.

[4]]J. Campanella, Principles of Quality Costs: Principles Implementation and Use,
ASQ Press, Milwaukee, WN, USA, 1999.

[5] RI. Chiang, V.S. Mookerjee, A fault threshold policy to manage software
development projects, Information System Research 15 (2004) 3-21.

[6] C.G. Chittister, Y.Y. Haimes, Systems integration via software risk management
systems, man and cybernetics, part A, IEEE Transactions on 26 (1996) 521-532.

[7] FA. Cummins, Enterprise Integration: An Architecture for Enterprise
Application and Systems Integration, John Wiley & Sons, 2002.

[8] M. de Jonge, Package-based software development, in: Euromicro Conference,
2003, Proceedings 29th, 2003, pp. 76-85.

[9] G.R. Djavanshir, R. Khorramshahgol, Key Process Areas in Systems Integration,
in: IT Professional, vol. 9, 2007, pp. 24-27.

[10] A.-H. Dogru, M.M. Tanik, A process model for component-oriented software
engineering, IEEE Software 20 (2003) 34-41.

[11] EIA-731.1, Systems engineering capability model, Electronic Industries
Alliance, 2002.

[12] F. Ekdahl, S. Larsson, Experience report: using Internal CMMI appraisals to
institutionalize software development performance improvement, in: 32nd
EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO 06), 2006, pp. 216-223.

[13] B. Fitzgerald, An empirical investigation into the adoption of systems
development methodologies, Information and Management 34 (1998) 317-
328.

[14] M. Fowler, Continuous Integration, <http://www.martinfowler.com/articles/
continuousIntegration.html>, (2006).

[15] D. Garlan, Software architecture: a roadmap, in: Proceedings of the Conference
on the Future of Software Engineering, ACM Press, Limerick, Ireland, 2000, pp.
91-101.

[16] 1. Gorton, Essential Software Architecture, Springer, 2006.

[17] D. Houston, An experience in facilitating process improvement with an
integration problem reporting process simulation, Software Process:
Improvement and Practice 11 (2006) 361-371.

[18] IEEE1220-2005, IEEE standard for application and management of the systems
engineering process, Institute of Electrical and Electronics Engineers, 2005.

[19] IEEE, The Institute of Electrical and Electronics Engineers, <http://
www.ieee.org/>, 2007.

[20] INCOSE, International Counsil on Systems Engineering, <http://www.incose.
org/>, 2007.

[21] 1S09001:2000, Quality management systems — Requirements, ISO, 2000.

http://www.ansi.org/
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.ieee.org/
http://www.ieee.org/
http://www.incose.org/
http://www.incose.org/

1080 S. Larsson et al. /Information and Software Technology 51 (2009) 1066-1080

[22] ISO, International Standardization Organization, <http://www.iso.org>, 2007.

[23] ISO/IEC12207:1995, Information technology - Software life cycle processes,
ISO/IEC, 1995.

[24] ISO/IEC15288:2002, Systems engineering — Systems life cycle processes, ISO/
IEC, 2002.

[25] G.Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty, Model-integrated development of
embedded software, Proceedings of the IEEE 91 (2003) 145-164.

[26] D.R. Kuhn, On the effective use of software standards in systems integration,
in: Systems Integration ‘90, Proceedings of the First International Conference
on (1990) pp. 455-461.

[27] S. Larsson, Improving software product integration, Dept. of Computer Science
and Electronics Mdlardalen University, 2005.

[28] S. Larsson, I. Crnkovic, Case Study: Software Product Integration Practices, in:
6th international conference Profes, June, 2005, Oulu Finland, 2005, pp. 272-
285.

[29] S. Larsson, L. Crnkovic, F. Ekdahl, On the expected synergies between
component-based software engineering and best practices in product
integration, in: Proceedings - 30th EUROMICRO Conference, Aug 31-Sep 3
2004, vol. 30 (IEEE Computer Society, Los Alamitos; Massey University,
Palmerston, CA 90720-1314, United States;New Zealand, Rennes, France,
2004) pp. 430-436.

[30] S. Larsson, P. Myllyperki6, F. Ekdahl, Product Integration Improvement Based
on Analysis of Build Statistics, in: ESEC/FSE, Dubrovnik, Croatia, 2007.

[31] M. Leszak, D.E. Perry, D. Stoll, Classification and evaluation of defects in a
project retrospective, Journal of Systems and Software 61 (2002) 173-187.

[32] D.S. Linthicum, Enterprise Application Integration, Addison-Wesley, 1999.

[33] E.G. Nilsson, E.K. Nordhagen, G. Oftedal, Aspects of systems integration, in:
Systems Integration ‘90, Proceedings of the First International Conference on
(1990) pp. 434-443.

[34] RTI, The economic impacts of inadequate infrastructure for software testing,
in: National Institute of Standards and Technology, Gaithersburg, MD, USA,
2002.

[35] W.A. Ruh, F.X. Maginnis, WJ. Brown, Enterprise Application Integration,
Addison-Wesley, 2000.

[36] A.P. Sage, L. Charles, Lynch, Systems integration and architecting: an overview
of principles, practices, and perspectives, Systems Engineering 1 (1998) 176-
227.

[37] M. Schulte, Model-based integration of reusable component-based avionics
systems - a case study, 2005, pp. 62-71.

[38] SEI, Appraisal Requirements for CMMI, Version 1.1 (ARC, V1.1), Carnegie
Mellon University, Software Engineering Institute, 2001.

[39] SEI, CMMI® for Development, Version 1.2., Pittsburgh, PA, USA, 2006.

[40] SEI, Software Engineering Institute, <http://www.sei.cmu.edu/>, 2007.

[41] V. Stavridou, Integration in software intensive systems, Journal of Systems and
Software 48 (1999) 91-104.

[42] V. Stavridou, Integration standards for critical software intensive systems, in:
Software Engineering Standards Symposium and Forum, 1997. ‘Emerging
International Standards’. ISESS 97, Third IEEE International (1997) pp.
99-1009.

[43] RXK. Yin, Case Study Research: Design and Methods, Sage Publications, 2003.

http://www.iso.org
http://www.sei.cmu.edu/

	Software product integration: A case study-based synthesis of reference models
	Introduction
	Related work
	Research method
	Practices in standards and models
	ISO/IEC 12207, Information technology – software life cycle process
	EIA-632
	Capability maturity model integration (CMMI), version 1.1
	EAI-731.1
	ISO/IEC 15288, Systems engineering – system life cycle processes
	Summary of reference model practices
	PI Practice 1. Define and document an integration strategy
	PI Practice 2. Develop a product integration plan based on the strategy
	PI Practice 3. Define and establish an environment for integration
	PI Practice 4. Define criteria for delivery of components
	PI Practice 5. Identify constraints from the integration strategy on design
	PI Practice 6. Define interfaces
	PI Practice 7. Review interface descriptions for completeness
	PI Practice 8. Ensure coordination of interface changes
	PI Practice 9. Review adherence to defined interfaces
	PI Practice 10. Develop and document a set of tests for each requirement of the assembled components
	PI Practice 11. Verify completeness of components obtained for integration through checking criteria for delivery
	PI Practice 12. Deliver/obtain components as agreed in the schedule
	PI Practice 13. Integrate/assemble components as planned
	PI Practice 14. Evaluate/test the assembled components
	PI Practice 15. Record the integration information in an appropriate repository

	Similarities and difference between the reference models

	Case studies
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6
	Case 7
	Conclusion of the case studies
	Problems in relation to reference models
	ISO/IEC 12207:1995 compared to cases (Table 4)
	EIA-632 (Table 5)
	Capability maturity model integration (CMMI), version 1.1 (Table 6)
	EAI-731.1 (Table 7)
	ISO/IEC 15288, Systems engineering – system life cycle processes (Table 8)

	Discussion
	Acknowledgements
	References

