
A Survey of Software Architecture Evolvability

Hongyu Pei Breivold1, Ivica Crnkovic2
1ABB Corporate Research, Industrial Software Systems, 721 78 Västerås, Sweden

hongyu.pei-breivold@se.abb.com
2Mälardalen University, 721 23 Västerås, Sweden

ivica.crnkovic@mdh.se

Abstract

For long-lived systems, there is a need to address

evolvability (i.e. a system’s ability to easily

accommodate changes) explicitly during the entire

lifecycle. In this report, we undertake a systematic

review to obtain an overview of the existing studies in

promoting software evolvability at architectural level.

The search strategy identified 3036 studies, of which

54 were catalogued as primary studies for this review

after using multi-step selection process. The studies

are classified into five main categories of themes,

including techniques that support quality

considerations during software architecture design,

architectural quality evaluation, economic valuation,

architectural knowledge management and modeling

techniques. Four dimensions of factors are identified

that exert influence on software evolvability. To cope

with these diverse influencing factors, combination of

appropriate techniques becomes necessary.

1. Introduction

For long-lived industrial software, the largest part of

lifecycle costs is concerned with the evolution of

software to meet changing requirements [12]. There is

a need to change software on a constant basis with

major enhancements within a short timescale in order

to keep up with new business opportunities. This puts

critical demands on the software system’s capability of

rapid modification and enhancement to achieve cost-

effective software evolution. In this context, software

evolvability has appeared as an attribute that describes

the software system’s capability to accommodate

changes [27].

The ever-changing world makes evolvability a

strong quality requirement for the majority of software

architectures [16]. We have seen at ABB examples of

different industrial systems that often have a lifetime of

10-30 years. These systems are subject to and may

undergo a substantial amount of evolutionary changes,

e.g. software technology changes, system migration to

product line architecture, ever-changing managerial

issues such as demands for distributed development,

and ever-changing business decisions driven by market

situations. Therefore, for such long-lived systems, there

is a need to address evolvability explicitly during the

entire lifecycle, carry out software evolution efficiently

and reliably, and prolong the productive lifetime of the

software systems. As software architecture holds a key

to the possibility to implement changes in an efficient

manner [6], the answer to smooth software evolution is

related to the structure of the system. Accordingly,

software architecture evolution, architecture

evolvability analysis and improvement become a

critical part of the software lifecycle.

Software evolvability is a fundamental element for

increasing strategic decisions, characteristics, and

economic value of the software [20, 76]. The need for

greater system evolvability has been recognized [62].

We have also observed this need from various cases in

industrial context [19, 22]. Seeing that a system

without an adaptable architecture will degenerate

sooner than a system based on an architecture that takes

changes into account [32], evolvability was identified

in these cases as a very important quality attribute that

must be maintained.

The notion of evolvability is used in many different

ways in the context of software engineering, often with

no precise defintion. In addtion, there are many other

closely-related quality attributes such as flexibility,

maintainability, adaptability and modifiability. For

instance, according to [25], adaptability is ‘the ability

of a software system to accommodate changes in its

environment’. This definition is in line with

adaptability definition in ISO 9126 standard [37], in

which adaptability is categorized as a subcharacteristic

portability and is defined as ‘the capability of the

software product to be adapted for different specified

environments without applying actions or means other

than those provided for this purpose for the software

considered’. The scope of the types of changes in these

two definitions is rather limited.

In [70], change in the runtime environment is made

explicit, and adaptability of a software system or

software architecture is defined as ‘a qualitative

property of its maintainability, and an ability of its

components to adapt their functionality, even at

runtime, to behavioral and structural changes that

occur either internally or externally in their operating

environment and the requirements of stakeholders’

objectives’.

A broader view of adaptability is given in [51], in

which the authors contend that adaptability becomes

meaningful when the changes that the software

architecture needs to adapt to are specified.

Accordingly, software architecture adaptability is

defined as ‘the degree to which software architecture is

adaptable to the change requirement in stakeholders’

objectives measured in terms of impact on software

architecture elements. Adapatability = <Context,

Stakeholder, Change Requirement, Software

Architecture Actions>’. Based on this definition,

adaptability is related to the goals of stakeholders and

software architecture elements (components and

connectors) make reactions to satisfy a certain change

requirement in a specified context.

One indicator of quality software is software

flexibility as it allows a product to be modified rapidly

and cost-effectively for new needs [75]. Flexibility is

‘the ease with which a system or component can be

modified for use in applications or environments other

than those for which it was specifically designed’ [38].

Modifiability is the ability to make changes to a system

quickly and cost-effectively [28]. The potential

modifications are classified into four categories [40]:

(i) extension of capabilities; (ii) deletion of unwanted

capabilities; (iii) adaptation to new operating

environments; and (iv) restructuring. Software

Evolvability is defined in [63] as ‘Software evolvability

is an attribute that bears on the ability of a system to

accommodate changes in its requirements throughout

the system’s lifespan with the least possible cost while

maintaining architectural integrity’.

As we can see, this broad nature makes evolvability

challenging in practice and research. We have therefore

taken into consideration the synonym terms in the

search process of the systematic review.

Although there are many research studies for

analyzing and achieving software evolvability, they

focus on single technique or practice. Besides, no

systematic review of software architecture evolvability

research has been published previously. Our research is

concerned with obtaining a holistic view of analyzing

and achieving software evolvability at architectural

level as a whole. Therefore, the objectives of this

review are to answer the following research questions

through systematic literature surveys in current practice

and scientific literature:

(i) What results have been reported in the scientific

literature regarding the analysis of software

evolvability at the architectural level?

(ii) What results have been reported in the scientific

literature regarding the factors that affect software

evolvability at the architectural level?

This report is organized as follows: Section 2

describes the method used for this review. Section 3

presents the results of the review in five main

categories of themes. Section 4 discusses the findings

of the review. Section 5 concludes the paper.

2. Method

This study is undertaken as a systematic literature

review based on the original guidelines as proposed by

Kitchenham [43]. The study includes several stages,

i.e. the development of a review protocol, the

identification of inclusion and exclusion criteria, the

search process for relevant publications, quality

assessment, data extraction and synthesis.

2.1 Review Protocol

We developed a review protocol based on the

guidelines and procedures as proposed in [43]. This

protocol specifies the background for the survey,

research questions, search strategy, study selection

criteria, data extraction and synthesis of the extracted

data. The protocol was reviewed for comments on the

research questions, data sources and search strategy.

2.2 Inclusion and Exclusion Criteria

We only consider full papers from peer-reviewed

journals, conferences and workshops. The review

includes qualitative and quantitative research studies

that were published until 2008. Only studies written in

English are included. We excluded studies that do not

relate to software engineering/development, software

architecture and software quality analysis. We also

exclude articles in the controversial corner of journals

and editorials, prefaces, position papers, summaries of

tutorials, workshops, panels and poster sessions.

Furthermore, when several duplicated articles of a

study exist in different versions that appear as journal

papers, conferences and workshop papers, we include

only the most complete version of the study and

exclude the others.

2.3 Search Process

We concentrate on search in peer-reviewed research

databases rather than in specific sub-journals. After an

initial search of databases, we did an additional

reference scanning and analysis in order to find out if

we have missed anything, thus to guarantee a

representative set of studies. The searched electronic

databases include ACM Digital Library, Compendex,

IEEE Xplore, ScienceDirect – Elsevier, SpringerLink

and ISI Web of Science. The searched results were also

mapped towards a core set of studies within software

evolution, software architecture and software quality

analysis in order to achieve confidence in the

completeness of search.

The following search terms are used to find relevant

papers:

S1: software architecture AND evolvability

S2: software architecture AND maintainability

S3: software architecture AND extensibility

S4: software architecture AND adaptability

S5: software architecture AND flexibility

S6: software architecture AND changeability

S7: software architecture AND modifiability

All these search terms were combined by using the

Boolean OR operator. Thus, an article is included as

long as it fulfills one of the search terms. The study

selection process was performed through several steps:

1) Search databases and conference proceedings to

identify relevant studies;

2) Exclude studies based on the formal exclusion

criteria and obvious off-topic contents;

3) Exclude studies based on the titles and abstracts;

4) Obtain primary studies based on full text.

The search strategy identified a total of 3036 articles

that were entered into EndNote, which was also used

for the subsequent steps for reference storage and

sorting. These references were subjected to detailed

exclusion criteria and resulted in 731 remaining

articles, which were further filtered out by reading titles

and abstracts. Studies were excluded if their focus was

not software quality analysis or improvement at

architectural level. 306 articles were left after this step

for full text screening, and detailed quality assessment

as described in the next section. In the end, a final

figure of 54 articles was identified as primary studies.

2.4 Quality Assessment

To guide the interpretation of findings and

determine the strength of inferences, we have identified

the following quality criteria for appraising the

identified studies based on the quality assessment form

in [72]:

1) The study is based on research instead of a

lessons-learned report or expert opinion;

2) The study’s focus is on software architecture and

software development quality attribute;

3) The study has an adequate description of the

context in which the research was carried out;

4) The research design is appropriate to address the

aims of the study;

5) Appropriate data collection methods are used and

described;

6) The data analysis is rigorous;

7) The study is of value for research or practice.

Of these quality criteria, the first two were used as the

basis for including or excluding a study.

2.5 Data Extraction

The data extracted from each study include the

source and full reference, main topic area, objectives

and aims of the study, statement of research hypothesis

if any, type of research (case study, survey,

experiment), research method descriptions, definition

of software evolvability or its synonyms, data

collection, data analysis (e.g. qualitative, quantitative),

findings and conclusions.

3. Results

Many architectural methods and techniques exist to

help analyze and achieve software architecture

evolvability. The identified studies are classified into

five main groups: techniques that support quality

considerations during software architecture design,

architectural quality evaluation, economic valuation,

architectural knowledge management and modeling

techniques.

3.1 Quality Considerations Support during

Software Architecture Design

Adaptability Evaluation Method (AEM) [70] is an

integral part of the Quality-driven Architecture Design

and quality Analysis (QADA) methodology [53]

specializing in the adaptability aspect. It provides

support in requirement engineering, architecture

modeling and adaptability evaluation in the

architectural models to ensure that the adaptability

requirements are met before system implementation.

AEM captures the adaptability requirements of the

software architecture that will be subsequently

considered in the architecture design, provides

guidelines on how to model adaptability in the

architectural models, and analyzing the candidate

architectures to validate whether the adaptability

requirements are met.

Non-Functional Requirement (NFR) framework

[25] considers adaptability as a key non-functional

requirement for evolving systems to ensure adaptability

during the process of software development. The NFR

framework helps to systematically consider the

conflicts and synergies between the NFRs to develop

an adaptable architecture through the following five

iterative steps: (i) develop the NFR goals and their

composition; (ii) develop architectural alternatives; (iii)

develop design tradeoffs and rationale; (iv) develop

goal criticalities; and (v) architecture evaluation and

selection. Another concrete application example of

using NFR framework is presented in [24], which

describes an NFR approach in developing software

system through using design patterns as potential

adaptability enhancers.

A systemized method for software architecture

analysis throughout the processes of software design

and development is described in [21]. Architectural

quality goals are mapped into scenarios that measure

the goals, mechanisms that realize the scenarios, and

analytic models that measure the results. This mapping

ensures that design decisions and their rationale are

documented so that they can be systematically

explored. In addition, as the systems evolve, the

analytic models can be used to assess the impact of

architectural changes and monitor how architectural

evolution over a system’s lifetime affects its capability

to support predicted modifications.

ArchDesigner [69] is a quality-driven design

approach that facilitates the architectural design

process. It attempts to best satisfy conflicting

stakeholders’ quality goals, architectural concerns and

project constraints through using optimization

techniques. This approach regards the software

architecture design problem as a global optimization

problem in the sense that the dependencies among

different design decisions are maintained, and the

selection of any design alternative must not violate

global constraints, e.g. stated project constraints.

Global analysis [36] provides a systematic way to

identify, accommodate, and describe architecturally

significant factors including quality attributes early into

the design phase. The influencing factors are classified

into three categories, i.e. organizational factors that

constrain the design choices, technological and product

factors that influence the architecture. Global analysis

activities help to uncover the most influential factors,

develop strategies for designing the architecture in

order to accommodate these factors and reflect future

concerns. The global analysis activities continue

throughout the architecture design and the results from

the activities are used in the central design tasks of

each architecture view.

Bosch [17] explicitly considers quality attributes

during the design process. The design method he

proposed examines three key phases, i.e. functionality-

based architecture design, architecture assessment and

architecture transformation.

Quality Attribute Workshop (QAW) [5] is a method

that engages system stakeholders early in the life cycle

to discover a software system’s driving quality attribute

requirements. The identified quality attribute

requirements are elicited in the form of scenarios from

the perspectives of diverse groups of stakeholders,

covering stimulus, source of stimulus, artifact,

environment, response and response measure. The

scenarios are classified into use case scenarios, growth

scenarios that represent anticipated future changes and

exploratory scenarios that stress the system and expose

the limits of the current design. The QAW focuses on

the involvement of stakeholders and occurs before the

creation of the software architecture. In this way, the

development team can understand and address the right

problem through basing the scenarios on the business

goals, and use this information to design the

architecture.

Attribute-Driven Design [6] is a recursive method

that helps the architect base the design process on the

desired quality attribute. Required input to ADD

includes known functional requirements, quality

attribute requirements, and constraints.

Active Reviews for Intermediate Designs (ARID)

[28] is a scenario-based assessment method for

evaluating intermediate design or parts of an

architecture. It is used to judge if the design of part of

the architecture is appropriate for its intended purpose

before the development of the complete architecture.

3.2 Quality Evaluation at the Software

Architecture Level

The foundation for any software system is its

architecture, which allows or precludes nearly all of the

quality attributes of the system [28]. Accordingly,

several architecture evaluation methods have emerged

for various purposes, e.g. to compare and identify the

strengths and weaknesses in different architecture

alternatives, to identify any architectural drift and

erosion. From an evolutionary perspective, architecture

evaluation is a preventive activity to delay the

architectural decay and to limit the effect of software

aging [71]. Several studies address how software

architecture can be evaluated at the software

architecture level with respect to evolvability and its

synonyms. We characterize these studies into three

groups: experience-based, scenario-based and metric-

based evaluation methods.

3.2.1 Experience-Based

Experience-based architecture evaluation means that

the evaluations are based on the previous experiences

and domain knowledge of developers or consultants

[1].

Attribute-Based Architectural Style (ABAS) [44]

builds on architectural styles by explicitly associating

with reasoning frameworks, which are based on

quality-attribute-specific models. ABAS consists of

four parts: (i) problem description explains the problem

being solved by the software structure; (ii) stimuli and

response correspond to the condition affecting the

system and measurement of the activity as a result of

the stimuli; (iii) architectural styles are descriptions of

patterns of component interaction; and (iv) analysis

constitutes a quality-attribute-specific model that

provides a method for reasoning about the behavior of

interacting components in the pattern. Examples of

these quality-attribute-specific models are modifiability

model, reliability model and performance model.

Empirically-Based Architecture Evaluation (EBAE)

[50] defines a process for defining and using a number

of architectural metrics to evaluate and compare

different versions of architectures in terms of

maintainability. The main steps include (i) select a

perspective for the evaluation; (ii) define and select

metrics; (iii) collect metrics; and (iv) evaluate and

compare the architectures.

A subset of ALMA [10] is related to the software

architecture comparison for optimal candidate

architecture. Accordingly, an approach that focuses on

quantitatively measuring the stakeholders’ views of the

benefits and liabilities of software architecture

candidates is described in [65]. The data collection in

this approach is based on the knowledge, experiences

and opinions of the stakeholders. Any disagreements

between the participating stakeholders are pinpointed

for further investigation.

A knowledge-based approach for assessing

evolvability is presented in [30]. The main reasons for

knowledge-based approach are the lack of formal and

complete architecture documentation, wide scope of

assessment, large number of stakholders and distributed

development teams. The outcome of the assessment

includes the current architecture overview, the main

issues found and optionally recommendations for their

resolutions. This approach can be used for evaluating

the evolutionary path of the software architecture

during its lifecycle.

3.2.2 Scenario-Based

Scenario-based architecture evaluation means that

quality attributes are evaluated by creating scenario

profiles that force a concrete description of a quality

requirement [54].

Software Architecture Analysis Method (SAAM)

[41] is originally created for evaluating modifiability of

software architecture although it has been used for

other set of quality attributes as well, such as

portability and extensibility. The main outputs from a

SAAM evaluation include a mapping between the

architecture and the scenarios that represent possible

future changes to the system, providing indications of

potential future complexity parts in the software and

estimated amount of work related to the changes.

Architecture Trade-off Analysis Method (ATAM)

[28] is a method for evaluating software architectures

in terms of quality attribute requirements. It is used to

expose the risks, non-risks, sensitivity points and trade-

off points in the software architecture. It aims at

different quality attributes and supports evaluation of

new types of quality attributes. An extension to ATAM

is Holistic Product Line Architecture Assessment

(HoPLAA) method [57] for the task of assessing

product line architectures. It identifies risks at the core

architecture level and the indivisual product

architecture level. The notion of evolvability points is

used to designate a sensistivity point or a tradeoff point

that contains at least one variation point. The

identification of evolvability point ensures that quality

attributes at individual product architecture level do not

preclude core architecture quality attributes.

Architecture Level Modifiability Analysis (ALMA)

[11] is founded on SAAM [41] and it is a method for

analyzing modifiability based on change scenarios that

are used to capture future events the system needs to

adapt to in its lifecycle. It consists of five steps: (i) set

the analysis goal; (ii) describe the software

architecture; (iii) elicit change scenarios; (iv) evaluate

change scenarios; and (v) interpret the results. The

outputs from an ALMA evaluation include: (i)

maintenance prediction to estimate the required effort

for system modification to accommodate future

changes; (ii) risk assessment to identify the types of

changes that the system shows inability to adapt to; and

(iii) software architecture comparison for optimal

candidate architecture. A subset of ALMA is related to

risk assessment which focuses on exposing the

boundaries of software architecture with respect to

flexibility using complex scenarios [48].

Scenario-Based Architecture Reengineering

(SBAR) [9] considers multiple quality attributes and

classifies them into development-oriented and

operational related. Another scenario-based software

architecture assessment method based on SAAM,

ATAM and SBAR is presented in [29]. It is used for

evaluating evolvability of software product family

architecture towards forthcoming requirements. The

output includes the potential flaws and evolutionary

path of the software.

3.2.3 Metric-Based

A process-oriented metric for software architecture

adaptability is described in [26], which analyzed the

degree of adaptability through intuitive decomposition

of goals and intitive scoring for the goal satifying level

of software architecture. As the method depends much

on the intuition and expert expertise, a quantitative

metric-based aproach that evaluates software

architecture adaptability is proposed in [51]. This

approach supports decision making for choosing

architecture candidates that meet the stakeholders’

adaptability goals. The adaptability goals are expressed

in terms of adaptability scenario profiles. The impact of

each scenario profile is measured through two metrics,

i.e. IOSA (impact on the software architecture) and

ADSA (adaptability degree of software architecture).

A quality model provides a framework for quality

assessment. It aims at describing complex quality

criteria through breaking them down into concrete

subcharacteristics that are measured using metrics. In

quality models, quality attributes are decomposed into

various factors, leading to various quality factor

hierarchies. Some well-known quality models are

McCall’s quality model [55], Dromey’s quality model

[31], Boehm’s quality model [15], ISO 9126 [37] and

FURPS quality model [34].

Several metrics have been proposed for evaluating

evolvability. Ramil and Lehman proposed metrics

based on implementation change logs [60] and

computation of metrics using the number of modules in

a software system [49]. Another set of metrics is based

on software life span and software size [67]. In [56], a

framework of process-oriented metrics for software

evolvability was proposed to intuitively develop

architectural evolvability metrics and to trace the

metrics back to the evolvability requirements based on

the NFR framework [23].

3.3 Economic Valuation in Determining the

Level of Uncertainty

Cost Benefit Analysis Method (CBAM) [39] builds

upon ATAM [42] and is an architecture-centric

economic modeling approach that helps to address the

long-term benefits with regards to a change and its

complete product lifecycle implications. It is an

approach for deciding how to prioritize changes to an

architecture based on perceived difficulty and utility.

This method quantifies design decisions in terms of

cost and benefit analysis to determine the level of

uncertainty. The uncertainties encountered in the

software architecture evolution come from

understanding how architectural decisions map onto

quality attribute responses; how architectural decisions

map onto costs; and how quality attribute responses

map onto benefits. These uncertainties are elicited and

recorded through the six steps of the CBAM: (i)

choosing scenarios and architectural strategies; (ii)

assessing quality attribute benefits; (iii) quantifying the

architectural strategies’ benefits; (iv) quantifying the

architectural strategies’ costs and schedule

implications; (v) calculate desirability; and (vi) make

decisions. A related economics-driven method is

Architecture Improvement Workshop (AIW)1 which

also builds upon ATAM and values architectural

decisions in relation to quality attributes.

Software architecture decisions carry economic

value in the form of real options [4, 64]. Options offer

flexibility and consider the architectural evolution over

time [2]. An approach that considers cost, value and

alignment with business goals to support architectural

evolution is described in [58]. The approach guides the

selection of design patterns, the elicitation of

architecturally significant requirements, and the

valuation of an architecture in terms of design

decisions with multiple quality attributes viewpoints.

Another application of real options theory is described

in [3], which provides insights into architectural

flexibility and investment decisions related to the

evolution of software systems. To cope with

uncertainty and mitigate risks in the investment, a set of

probable changes is examined, as well as the added

value of the embedded flexibility in response to these

changes. According to [3], the added value is strategic

in essence. Some examples are (i) accumulated savings

through enduring the change without violating

architectural integrity; (ii) supporting future growth;

(iii) capability of responding to competitive forces and

changing market conditions.

Another way to address economic valuation is

through predicting the required effort for a

maintenance task. A subset of ALMA [11] is related to

maintenance cost prediction, i.e. architecture level

maintenance prediction [8] uses change scenarios that

represent perfective and adaptive maintenance tasks to

concretize the maintainability requirements in the life

cycle of the system, evaluates the architecture using

sceanrio scripting, and calculate the expected effort for

each change scenario based on the analysis of how the

change could be implemented and the amount of

required changed code.

A study in [59] proposes a model-based approach to

strategically determine an appropriate degree of

architectural flexibility through four strategic elements,

i.e. feature prioritization, schedule range estimation,

core capability determination and architecture

flexibility determination given particular schedule

1http://www.sei.cmu.edu/architecture/products_services

/aiw.html

constraints. In this way, the risk of violating schedule,

cost and quality constraints is lowered.

3.4 Architectural Knowledge Management

Architectural knowledge consists of architecture

design, design decisions, assumptions, context, and

other factors that together determine why a particular

solution is the way it is. An explicit representation of

architectural knowledge is helpful for evolving quality

systems and assessing future evolutionary capabilities

of a system [45].

Apart from using change scenarios and change cases

to explicitly model variability and describe the future

evolutionary capabilities as most software architecture

analysis methods do, the authors in [46] believe that it

is also useful to explicitly model invariability, i.e.

things that are assumed will not change. This

information can be used for the explicit modeling of

assumptions and provides additional what-if scenarios

for software architecture assessment, i.e. what if a

certain assumption proves to be invalid. Assumptions

are design decisions and rationale that are made out of

personal experience and background, domain

knowledge, budget constraints, available expertise etc.

The assumptions are classified into technical

assumptions that concern the technical environment a

system is running in, organizational assumptions that

concern the organizational aspects in a company, and

managerial assumptions that reflect the decisions taken

to achieve business objectives. Explicit representation

of these assumptions provides traceability between the

software architecture evolution and the early-made

assumptions, and augments design decisions in the face

of uncertainties when predicting the future user

requirement changes. In order to better assess the

future evolutionary capabilities of a system,

Recovering Architectural Assumptions Method

(RAAM) [61] was developed to make the assumptions

explicit. This method is appropriate when historical

information of software system evolution is available

and when there is access to the development team for

interviews.

Design erosion is inevitable due to the ever-

changing requirements [74]. To assess architectural

erosion and track software evolution, an architecture

assessment model is described in [14], objectively

measuring the extent of deviation in terms of functional

and structural divergence. In addition, the loss of

system functionality and architectural structure as a

software system evolves is represented through

functional and structural erosions as erosion indicators.

As design rationale captures the knowledge and

grounds that shape a software architecture,

documenting design rationale is another approach that

is used to maintain and evolve architectural artifacts

[68] in order to allow unanticipated changes in the

software without compromising software integrity and

to evolve in a controlled way [13].

The study in [33] generalizes architectural styles,

patterns and similar concepts by introducing the

concept of architectural constraints. It is argued that

architectural constraints strongly influence the quality

of architectural design process and the improvement of

software quality.

3.5 Modeling Techniques

One source of requirement changes is related to the

change in business rules. Evolvable software

architecture considers business rule as a key component

due to its high impact on software and business

process. A study in [73] proposes therefore a Business

Rule Model to capture and specify business rules and a

Link Model to relate these business rules to the

metamodel level of software design elements. The

explicit consideration and modeling of business rules

facilitate the improvement of software evolvability.

Another way to achieve or improve evolvability is

through considering the relations between

requirements, architectural elements and

implementation. A model-based approach for modeling

the traceability links is presented in [18], in which the

indicators for problem situation are formally defined as

well as the corrsponding actions for problem

resolution.

A quality-driven software reengineering model [66]

is proposed to address the evolution of system

requirements and software architecture. This approach

adopts NFR Framework [23] and the concept of soft

goals to support the systematic modeling of the design

rationale through a soft-goal interdependency graph.

A framework for modeling various types of relevant

information and a set of architectural views for

reengineering, analyzing, and comparing software

architectures is presented in [52]. This approach builds

upon a scenario-based approach and captures and

assesses software architectures for evolution and reuse.

The types of information for modeling include: (i)

Stakeholder information describes stakeholders’

objectives, which provide boundaries for analysis; (ii)

Architecture information refers to design principles or

architectural objectives; (iii) Quality information refers

to non-functional attributes; (iv) Scenarios describe the

use cases of the system to capture the system’s

functionality. Scenarios that are not directly supported

by the current system can be used to detect possible

flaws or to assess the architecture’s support for

potential enhancements. Scenarios are derived from the

stakeholder and architectural objectives, as well as

desired system quality attributes.

4. Discussions

Based on the review, four dimensions of factors that

exert influence on software architecture evolvability

are identified, i.e. (i) business, (ii) technology, (iii)

development process and (iv) organization. From

business perspective, system requirements evolve

because stakeholders’ needs and expectations change,

the context in which the software operate changes [14],

and business models evolve [73]. From technology

perspective, many unknown, uncontrollable

technological and environmental constraints outweigh

design principles [35]. Assumptions shaping software

architectures [46] consist of technical assumptions that

concern the technical environment a system is running

in, organizational assumptions that concern the

organizational aspects in a company, and managerial

assumptions that reflect the decisions taken to achieve

business objectives.

Patterns of risk themes that influence evolvability

are categorized into architecture, process and

organization [7]. From architecture perspective, the

lack of attention to potential growth paths and unknown

requirements result in the failure to achieve

modifiability goals. From process perspective,

requirement is identified as one risk theme due to its

nature of being uncertain or rapid-changing, e.g. lack

of attention to important concerns of key stakeholders,

lack of consistent marketing input, and disagreement

among stakeholders. From organization perspective,

one risk theme is the unrecognized need, arising from

the failure to consider architecture aspects in the

overall system construction.

To cope with the above diverse influencing factors,

a spectrum of techniques and approaches has been

identified that promote software evolvability from a

specific perspective or architecture-centric activity in

the software lifecycle:

• Most of the techniques that support quality

considerations during software architecture design

help identify key quality attribute requirements

early.

• In the subsequent iteration when the architecture

starts to take form, architectural quality evaluation

methods help elicit and refine additional quality

attribute requirements and scenarios.

• Economic valuation methods provide more details

on architectural decisions’ business consequences

and assist development teams in choosing among

architectural options.

• Architectural knowledge management and

modeling techniques add value by modeling

traceability and visualizing corresponding impact

of the evolution of software architecture artifacts.

Each of the aforementioned approaches has its

strengths and shortcomings, and has its specific context

that it is appropriate for. For instance, most scenario-

based software architecture analysis methods share the

strength of being able to concretize the driving quality

attribute requirements, but they also share the weakness

of being optimistic in change scenario elicitation due to

the unpredictable nature of changes as well as the

stakeholders’ short horizon in foreseeing future

changes [47]. Some architectural knowledge

management approaches can complement scenario-

based methods and address this weakness through

explicit representation of invariabilities to provide

additional what-if scenarios. As evolvability needs to

be addressed and maintained throughout the complete

software lifecycle, combination of appropriate

techniques becomes necessary for software systems to

cope with the diverse types of influencing factors.

5. Conclusions

The systematic review of studies in promoting

software evolvability at architectural level identified

3036 studies, of which 54 were catalogued as primary

studies. The studies are classified into five main

categories of themes, i.e. techniques that support

quality considerations during software architecture

design, architectural quality evaluation, economic

valuation, architectural knowledge management and

modeling techniques. Each of these approaches has its

strengths and shortcomings, and has its specific context

that it is appropriate for. Accordingly, a combination of

appropriate techniques is necessary to cope with the

diverse influencing factors to evolvability exhibited in

four dimensions, i.e. business, technology, organization

and process.

References

[1] Avritzer, A. and Weyuker, E. J., "Metrics to Assess
the Likelihood of Project Success Based on

Architecture Reviews," Empirical Software

Engineering, vol. 4, pp. 199-215, 1999.
[2] Bahsoon, R. and Emmerich, W., "ArchOptions: a

real options-based model for predicting the

stability of software architectures," p. 38.
[3] Bahsoon, R. and Emmerich, W., "Evaluating

architectural stability with real options theory,"

2004, pp. 443-447.
[4] Baldwin, C. Y. and Clark, K. B., Design rules:

Volume 1: The power of modularity: Mit Press

Cambridge, MA, 2000.

[5] Barbacci, M. R., Ellison, R., Lattanze, A. J.,

Stafford, J. A., Weinstock, C. B., and Wood, W.
G., "Quality attribute workshops (qaws),"

CARNEGIE-MELLON UNIV PITTSBURGH PA

SOFTWARE ENGINEERING INST, 2003.
[6] Bass, L., Clements, P., and Kazman, R., Software

Architecture in Practice: Addison-Wesley

Professional, 2003.
[7] Bass, L., Nord, R., Wood, W., Zubrow, D., and

Ozkaya, I., "Analysis of architecture evaluation

data," Journal of Systems and Software, vol. 81,
pp. 1443-1455, 2008.

[8] Bengtsson, P. and Bosch, J., "Architecture level

prediction of software maintenance," 1999, pp.
139-147.

[9] Bengtsson, P. and Bosch, J., "Scenario-based

software architecture reengineering," 1998, pp.
308-317.

[10] Bengtsson, P., Lassing, N., Bosch, J., and van

Vliet, H., "Architecture-level modifiability analysis
(ALMA)," Journal of Systems and Software, vol.

69, pp. 129-147, 2004.

[11] Bengtsson, P., Lassing, N., Bosch, J., and van
Vliet, H., "Architecture-level modifiability analysis

(ALMA)," The Journal of Systems & Software, vol.
69, pp. 129-147, 2004.

[12] Bennett, K., "Software evolution: past, present and

future," Information and Software Technology, vol.
38, pp. 673-680, 1996.

[13] Bennett, K. H. and Rajlich, V. T., "Software

maintenance and evolution: a roadmap," 2000, pp.
73-87.

[14] Bhattacharya, S. and Perry, D. E., "Architecture

assessment model for system evolution," Mumbai,
India, 2007.

[15] Boehm, B. W., Brown, J. R., Kaspar, H., Lipow,

M., MacLeod, G. J., and Merritt, M. J.,
Characteristics of software quality: North-Holland,

1978.

[16] Borne, I., Galal, G. H., Evans, H., and Andrade, L.
F., "Object-oriented architectural evolution," in

14th European Conference on Object Oriented

Programming (ECOOP 2000), Cannes, France,
2000, pp. 138-149.

[17] Bosch, J., Design and Use of Software

Architectures: Adopting and Evolving a Product-

Line Approach: Addison-Wesley, 2000.

[18] Brcina, R. and Riebisch, M., "Architecting for

evolvability by means of traceability and features,"
in Automated Software Engineering - Workshops,

2008. ASE Workshops 2008. 23rd IEEE/ACM

International Conference on, 2008, pp. 72-81.

[19] Breivold, H. P., Crnkovic, I., and Eriksson, P. J.,

"Analyzing Software Evolvability," 2008.
[20] Cai, Y. and Huynh, S., "An evolution model for

software modularity assessment," 2007, pp. 3-3.

[21] Carriere, S. J., Kazman, R., and Woods, S. G.,
"Assessing and maintaining architectural quality,"

Amsterdam, Neth, 1999, pp. 22-30.

[22] Christian, D. R., "Continuous evolution through

software architecture evaluation: a case study," J.

Softw. Maint. Evol.: Res. Pract, vol. 18, pp. 351-

383, 2006.

[23] Chung, L., Non-Functional Requirements in

Software Engineering: Springer, 2000.

[24] Chung, L., Cooper, K., and Yi, A., "Developing

adaptable software architectures using design
patterns: an NFR approach," Computer Standards

& Interfaces, vol. 25, pp. 253-260, 2003.

[25] Chung, L. and Subramanian, N., "Adaptable
architecture generation for embedded systems,"

Journal of Systems and Software, vol. 71, pp. 271-

295, 2004.
[26] Chung, L., Subramanian, N., and Ieee Computer

Society, I. C. S., "Process-oriented metrics for

software architecture adaptability," in 5th IEEE

International Symposium on Requirements

Engineering, Toronto, Canada, 2001, pp. 310-311.

[27] Ciraci, S. and Van Den Broek, P., "Evolvability as
a Quality Attribute of Software Architectures,"

2006, pp. 6-7.

[28] Clements, P., Kazman, R., and Klein, M.,
Evaluating Software Architectures: Methods and

Case Studies: Addison-Wesley, 2002.
[29] Del Rosso, C., "Continuous evolution through

software architecture evaluation: A case study,"

Journal of Software Maintenance and Evolution,

vol. 18, pp. 351-383, 2006.

[30] Del Rosso, C. and Maccari, A., "Assessing the

architectonics of large, software-intensive systems
using a knowledge-based approach," Mumbai,

India, 2007.

[31] Dromey, R. G., "Cornering the Chimera," IEEE

Software, vol. 13, pp. 33-43, 1996.

[32] Gamma, E., Helm, R., Johnson, R., and Vlissides,

J., Design patterns: elements of reusable object-

oriented software, 1995.

[33] Giesecke, S., Hasselbring, W., and Riebisch, M.,

"Classifying architectural constraints as a basis for
software quality assessment," Advanced

Engineering Informatics, vol. 21, pp. 169-179,

2007.
[34] Grady, R. B. and Caswell, D. L., Software metrics:

establishing a company-wide program: Prentice-

Hall, Inc. Upper Saddle River, NJ, USA, 1987.
[35] Graham, T. C. N., Rick, K., and Chris, W., "Agility

and Experimentation: Practical Techniques for

Resolving Architectural Tradeoffs," in Proceedings

of the 29th international conference on Software

Engineering: IEEE Computer Society, 2007.
[36] Hofmeister, C., Nord, R., and Soni, D., Applied

software architecture: Addison-Wesley

Professional, 2000.
[37] ISO9126, "ISO/IEC 9126-1, International

Standard, Software Engineering. Product Quality –

Part 1: Quality Model."
[38] Jay, F. and Mayer, R., "IEEE standard glossary of

software engineering terminology," IEEE Std, pp.

610.12-1990, 1990.

[39] Kazman, R., Asundi, J., and Klein, M.,

"Quantifying the costs and benefits of architectural
decisions," 2001, pp. 297-306.

[40] Kazman, R., Bass, L., Abowd, G., and Webb, M.,

"SAAM: a method for analyzing the properties of
software architectures," in Software Engineering,

1994. Proceedings. ICSE-16., 16th International

Conference on, 1994, pp. 81-90.
[41] Kazman, R., Bass, L., Abowd, G., and Webb, M.,

"SAAM: A Method for Analyzing the Properties of

Software Architectures," INTERNATIONAL

CONFERENCE ON SOFTWARE ENGINEERING,

vol. 16, pp. 81-81, 1994.

[42] Kazman, R., Klein, M., Barbacci, M., Longstaff,
T., Lipson, H., Carriere, J., and Ieee, I., "The

architecture tradeoff analysis method," in 4th IEEE

International Conference on Engineering of

Complex Computer Systems (ICECCS 98),

Monterey, Ca, 1998, pp. 68-78.

[43] Kitchenham, B., "Procedures for performing
systematic reviews," Keele University TR/SE-

0401/NICTA Technical Report 0400011T, vol. 1,

2004.
[44] Klein, M., Kazman, R., Bass, L., Carriere, J.,

Barbacci, M., and Lipson, H., Attribute-Based

Architecture Styles: Kluwer, BV Deventer, The

Netherlands, The Netherlands, 1999.

[45] Kruchten, P., Lago, P., and van Vliet, H.,
"Building up and reasoning about architectural

knowledge," LECTURE NOTES IN COMPUTER

SCIENCE, vol. 4214, p. 43, 2006.
[46] Lago, P. and van Vliet, H., "Explicit assumptions

enrich architectural models," 2005, p. 206.

[47] Lassing, N., Rijsenbrij, D., and van Vliet, H.,
"How well can we predict changes at architecture

design time?," Journal of Systems and Software,

vol. 65, pp. 141-153, 2003.
[48] Lassing, N., Rijsenbrij, D., and van Vliet, H., "On

software architecture analysis of flexibility,

Complexity of changes: Size isn't everything,"
1999, pp. 1103-1581.

[49] Lehman, M. M., Ramil, J. F., Wernick, P. D.,

Perry, D. E., and Turski, W. M., "Metrics and laws
of software evolution - the nineties view,"

Albuquerque, NM, USA, 1997, pp. 20-32.

[50] Lindvall, M., Tvedt, R. T., and Costa, P., "An
Empirically-Based Process for Software

Architecture Evaluation," Empirical Software

Engineering, vol. 8, pp. 83-108, 2003.
[51] Liu, X. and Wang, Q., "Study on application of a

quantitative evaluation approach for software
architecture adaptability," in 5th International

Conference on Quality Software (QSIC 2005),

Melbourne, AUSTRALIA, 2005, pp. 265-272.
[52] Lung, C. H., Bot, S., Kalaichelvan, K., and

Kazman, R., "An approach to software architecture

analysis for evolution and reusability," 1997.
[53] Matinlassi, M., "Quality-driven software

architecture model transformation," 2005.

[54] Mattsson, M., Grahn, H., and Mårtensson, F.,

"Software Architecture Evaluation Methods for
Performance, Maintainability, Testability, and

Portability," 2006.

[55] McCall, J. A., Richards, P. K., Walters, G. F.,
United, S., Electronic Systems, D., Force, A.,

Rome Air Development, C., and Systems, C.,

Factors in Software Quality: NTIS, 1977.
[56] Nary, S. and Chung, L., "Process-oriented metrics

for software architecture evolvability," Helsinki,

Finland, 2003, pp. 65-70.
[57] Olumofin, F. G. and Mišic, V. B., "A holistic

architecture assessment method for software

product lines," Information and Software

Technology, vol. 49, pp. 309-323, 2007.

[58] Ozkaya, I., Kazman, R., and Klein, M., "Quality-

Attribute Based Economic Valuation of
Architectural Patterns," 2007, pp. 5-5.

[59] Port, D. and LiGuo, H., "Strategic architectural

flexibility," in Software Maintenance, 2003. ICSM

2003. Proceedings. International Conference on,

2003, pp. 389-396.

[60] Ramil, J. F. and Lehman, M. M., "Metrics of
software evolution as effort predictors - a case

study," San Jose, CA, USA, 2000, pp. 163-172.
[61] Roeller, R., Lago, P., and van Vliet, H.,

"Recovering architectural assumptions," The

Journal of Systems & Software, vol. 79, pp. 552-
573, 2006.

[62] Rowe, D. and Leaney, J., "Evaluating evolvability

of computer based systems architectures-an
ontological approach," 1997, pp. 24-28.

[63] Rowe, D., Leaney, J., and Lowe, D., "Defining

systems evolvability-a taxonomy of change,"
Change, vol. 94, pp. 541-545, 1994.

[64] Sullivan, K. J., Chalasani, P., Jha, S., and Sazawal,

V., "Software design as an investment activity: a
real options perspective," Real Options and

Business Strategy: Applications to Decision

Making, pp. 215–262, 1999.
[65] Svahnberg, M., "An industrial study on building

consensus around software architectures and

quality attributes," Information and Software

Technology, vol. 46, pp. 805-818, 2004.

[66] Tahvildari, L., Kontogiannis, K., and Mylopoulos,

J., "Quality-driven software re-engineering,"
Journal of Systems and Software, vol. 66, pp. 225-

239, 2003.

[67] Tamai, T. and Torimitsu, Y., "Software lifetime
and its evolution process over generations,"

Orlando, FL, USA, 1992, pp. 63-9.
[68] Tang, A., Babar, M. A., Gorton, I., and Han, J., "A

survey of architecture design rationale," Journal of

Systems and Software, vol. 79, pp. 1792-1804,
2006.

[69] Tariq, A.-N., Ian, G., Muhammed Ali, B., Fethi, R.,

and Boualem, B., "A quality-driven systematic
approach for architecting distributed software

applications," in Proceedings of the 27th

international conference on Software engineering

St. Louis, MO, USA: ACM, 2005.
[70] Tarvainen, P., "Adaptability evaluation of software

architectures; A case study," in 31st Annual

International Computer Software and Applications

Conference, Beijing, PEOPLES R CHINA, 2007,

pp. 579-584.

[71] Tonu, S. A., Ashkan, A., and Tahvildari, L.,
"Evaluating architectural stability using a metric-

based approach," 2006.

[72] Tore, D., Torgeir, D., and yr, "Empirical studies of
agile software development: A systematic review,"

Inf. Softw. Technol., vol. 50, pp. 833-859, 2008.

[73] Wan-Kadir, W. M. N. and Loucopoulos, P.,
"Relating evolving business rules to software

design," Journal of Systems Architecture, vol. 50,

pp. 367-382, 2004.
[74] van Gurp, J. and Bosch, J., "Design erosion:

problems and causes," Journal of Systems and

Software, vol. 61, pp. 105-119, 2002.
[75] Wang, E. T. G., Ju, P. H., Jiang, J. J., and Klein,

G., "The effects of change control and management

review on software flexibility and project
performance," Information & Management, vol.

45, pp. 438-443, 2008.
[76] Weiderman, N. H., Bergey, J. K., Smith, D. B., and

Tilley, S. R., "Approaches to Legacy System

Evolution," 1997.

Appendix: Studies Included in the Review
2

[S1] Aoyama, M., "Continuous and discontinuous
software evolution: aspects of software evolution

across multiple product lines," 4th international

workshop on Principles of software evolution,
2001, pp. 87-90.

[S2] Babar, M. A. and Gorton, I., "A tool for managing

software architecture knowledge," ICSE Workshop
Sharing and Reusing Architectural Knowledge-

Architecture, Rationale, and Design Intent 2007.

[S3] Babar, M. A., Gorton, I., and Jeffery, R.,
"Capturing and using software architecture

knowledge for architecture-based software
development," QSIC 2005, pp. 169-176.

[S4] Bahsoon, R. and Emmerich, W., "ArchOptions: a

real options-based model for predicting the
stability of software architectures," 5 th

International Workshop on Economic-Driven

Software Engineering Research.

2 The appendix includes the 54 papers that were

identified from the search process (conducted in April,

2009) as described in the report. An additional 4 papers

were added when we performed a complementary

search in the end of August, 2009 in order to cover the

publications within the period of 2008 and the first

quarter of 2009. But some studies in the second quarter

might not have been indexed in the databases.

[S5] Bahsoon, R. and Emmerich, W., "Evaluating

architectural stability with real options theory,"
Chicago, IL, United states, ICSM 2004, pp. 443-

447.

[S6] Bass, L., Clements, P., and Kazman, R., Software
architecture in practice: Addison-Wesley

Professional, 2003.

[S7] Bengtsson, P. and Bosch, J., "Architecture level
prediction of software maintenance," in 3rd

European Conference on Software Maintenance

and Reengineering (CSMR 99), Amsterdam,
Netherlands, 1999, pp. 139-147.

[S8] Bengtsson, P. and Bosch, J., "Scenario-based

software architecture reengineering," Internation
Conference on Software Reuse 1998, pp. 308-317.

[S9] Bengtsson, P., Lassing, N., Bosch, J., and van

Vliet, H., "Architecture-level modifiability analysis
(ALMA)," Journal of Systems and Software, vol.

69, pp. 129-147, 2004.

[S10] Bhattacharya, S. and Perry, D. E., "Architecture
assessment model for system evolution," WICSA,

Mumbai, India, 2007.

[S11] Bosch, J., Design and use of software architectures:
adopting and evolving a product-line approach:

Addison-Wesley Professional, 2000.
[S12] Breivold, H.P., I. Crnkovic, and P.J. Eriksson,

Analyzing Software Evolvability. COMPSAC'08.

32nd Annual IEEE International Computer
Software and Applications, 2008.

[S13] Brcina, R. and Riebisch, M., "Architecting for

evolvability by means of traceability and features,"
in Automated Software Engineering - Workshops,

2008. ASE Workshops 2008. 23rd IEEE/ACM

International Conference on, 2008, pp. 72-81.
[S14] Browning, T. R. and Honour, E. C., "Measuring

the life-cycle value of enduring systems," Systems

Engineering, vol. 11, 2008.
[S15] Burge, J. E. and Brown, D. C., "Software

Engineering Using RATionale," The Journal of

Systems & Software, vol. 81, pp. 395-413, 2008.
[S16] Capilla, R., Nava, F., and Dueas, J. C., "Modeling

and documenting the evolution of architectural

design decisions," ICSE Workshop Sharing and
Reusing Architectural Knowledge-Architecture,

Rationale, and Design Intent 2007, pp. 9-9.

[S17] Capilla, R., Nava, F., Pérez, S., and Dueñas, J. C.,
"A web-based tool for managing architectural

design decisions," ACM SIGSOFT software

engineering notes, vol. 31, 2006.
[S18] Carriere, S. J., Kazman, R., and Woods, S. G.,

"Assessing and maintaining architectural quality,"
Amsterdam, Neth, CSMR 1999, pp. 22-30.

[S19] Chung, L., Cooper, K., and Yi, A., "Developing

adaptable software architectures using design
patterns: an NFR approach," Computer Standards

& Interfaces, vol. 25, pp. 253-260, 2003.

[S20] Chung, L., Nixon, B. A., Yu, E., and Mylopoulos,
J., Non-functional requirements in software

engineering: Springer, 1999.

[S21] Chung, L., Subramanian, N., and Ieee Computer

Society, I. C. S., "Process-oriented metrics for
software architecture adaptability," in 5th IEEE

International Symposium on Requirements

Engineering, Toronto, Canada, 2001, pp. 310-311.
[S22] Clements, P., Kazman, R., and Klein, M.,

Evaluating software architectures: methods and

case studies: Addison-Wesley, 2006.
[S23] Del Rosso, C., "Continuous evolution through

software architecture evaluation: A case study,"

Journal of Software Maintenance and Evolution,
vol. 18, pp. 351-383, 2006.

[S24] Del Rosso, C. and Maccari, A., "Assessing the

architectonics of large, software-intensive systems
using a knowledge-based approach," WICSA

Mumbai, India, 2007.

[S25] Engel, A. and Browning, T. R., "Designing systems
for adaptability by means of architecture options,"

Systems Engineering, vol. 11, 2008.

[S26] Farenhorst, R., Izaks, R., Lago, P., and van Vliet,
H., "A Just-In-Time Architectural Knowledge

Sharing Portal," WICSA 2008, pp. 125-134.

[S27] Fricke, E., Gebhard, B., Negele, H., and Igenbergs,
E., "Coping with changes: Causes, findings, and

strategies," Systems Engineering, vol. 3, pp. 169-
179, 2000.

[S28] Fricke, E. and Schulz, A. P., "Design for

changeability (DfC): Principles to enable changes
in systems throughout their entire lifecycle,"

Systems Engineering, vol. 8, 2005.

[S29] Giesecke, S., Hasselbring, W., and Riebisch, M.,
"Classifying architectural constraints as a basis for

software quality assessment," Advanced

Engineering Informatics, vol. 21, pp. 169-179,
2007.

[S30] Hofmeister, C., Nord, R., and Soni, D., Applied

Software Architecture: A Practical Guide for
Software Designers: Addison-Wesley Professional,

2000.

[S31] Ipek, O., Rick, K., and Mark, K., "Quality-
Attribute Based Economic Valuation of

Architectural Patterns," in Proceedings of the First

International Workshop on The Economics of
Software and Computation: IEEE Computer

Society, 2007.

[S32] Jansen, A., Bosch, J., and Avgeriou, P.,
"Documenting after the fact: Recovering

architectural design decisions," The Journal of

Systems & Software, vol. 81, pp. 536-557, 2008.
[S33] Jansen, A., Van der Ven, J., Avgeriou, P., and

Hammer, D. K., "Tool support for architectural
decisions," WICSA 2007, pp. 4-4.

[S34] Kazman, R., Bass, L., Abowd, G., and Webb, M.,

"SAAM: a method for analyzing the properties of
software architectures," in Software Engineering,

1994. Proceedings. ICSE-16., 16th International

Conference on, 1994, pp. 81-90.
[S35] Kazman, R. and Klein, M., "Designing and

analyzing software architectures using ABASs,"

ICSE 2000.

[S36] Kazman, R., Klein, M., Barbacci, M., Longstaff,

T., Lipson, H., Carriere, J., and Ieee, I., "The
architecture tradeoff analysis method," in 4th IEEE

International Conference on Engineering of

Complex Computer Systems (ICECCS 98),
Monterey, Ca, 1998, pp. 68-78.

[S37] Lago, P., van Vliet, H., and acm, "Explicit

assumptions enrich architectural models," in 27th
International Conference on Software Engineering

(ICSE 2005), St Louis, MO, 2005, pp. 206-214.

[S38] Lassing, N., Bengtsson, P., van Vliet, H., and
Bosch, J., "Experiences with ALMA: Architecture-

Level Modifiability Analysis," Journal of Systems

and Software, vol. 61, pp. 47-57, 2002.
[S39] Lassing, N., Rijsenbrij, D., and van Vliet, H.,

"How well can we predict changes at architecture

design time?," Journal of Systems and Software,
vol. 65, pp. 141-153, 2003.

[S40] Lehman, M. M., Ramil, J. F., Wernick, P. D.,

Perry, D. E., and Turski, W. M., "Metrics and laws
of software evolution-the nineties view," 4th

International Software Metrics Symposium 1997.

[S41] Liu, X. and Wang, Q., "Study on application of a
quantitative evaluation approach for software

architecture adaptability," in 5th International
Conference on Quality Software (QSIC 2005),

Melbourne, AUSTRALIA, 2005, pp. 265-272.

[S42] Lung, C. H., Bot, S., Kalaichelvan, K., and
Kazman, R., "An approach to software architecture

analysis for evolution and reusability," conference

of the Centre for Advanced Studies on
Collaborative research 1997.

[S43] Olumofin, F. G. and Misic, V. B., "A holistic

architecture assessment method for software
product lines," Information and Software

Technology, vol. 49, pp. 309-323, 2007.

[S44] Port, D. and LiGuo, H., "Strategic architectural
flexibility," in Software Maintenance, 2003. ICSM

2003. Proceedings. International Conference on,

2003, pp. 389-396.
[S45] Ramil, J. F. and Lehman, M. M., "Metrics of

software evolution as effort predictors-a case

study," ICSM 2000, pp. 163-172.
[S46] Rick, K., Jai, A., and Mark, K., "Quantifying the

costs and benefits of architectural decisions," in

Proceedings of the 23rd International Conference
on Software Engineering Toronto, Ontario,

Canada: IEEE Computer Society, 2001.

[S47] Roeller, R., Lago, P., and van Vliet, H.,
"Recovering architectural assumptions," Journal of

Systems and Software, vol. 79, pp. 552-573, 2006.
[S48] Subramanian, N. and Chung, L., "Process-oriented

metrics for software architecture evolvability," in

6th International Workshop on Principles of
Software Evolution, Helsinki, Finland, 2003, pp.

65-70.

[S49] Sullivan, K. J., Griswold, W. G., Cai, Y., and
Hallen, B., "The structure and value of modularity

in software design," 8th European software

engineering conference held jointly with 9th ACM

SIGSOFT international symposium on Foundations

of software engineering 2001, pp. 99-108.
[S50] Svahnberg, M., "An industrial study on building

consensus around software architectures and

quality attributes," Information and Software
Technology, vol. 46, pp. 805-818, 2004.

[S51] Tahvildari, L., Kontogiannis, K., and Mylopoulos,

J., "Quality-driven software re-engineering,"
Journal of Systems and Software, vol. 66, pp. 225-

239, 2003.

[S52] Tamai, T. and Torimitsu, Y., "Software lifetime
and its evolution process over generations," ICSM

1992, pp. 63-69.

[S53] Tang, A., Avgeriou, P., Jansen, A., Capilla, R., and
Ali-Babar, M., "A Comparative Study of

Architecture Knowledge Management Tools,"

Journal of Systems and Software, 2009.
[S54] Tang, A., Babar, M. A., Gorton, I., and Han, J., "A

survey of architecture design rationale," Journal of

Systems and Software, vol. 79, pp. 1792-1804,
2006.

[S55] Tariq, A.-N., Ian, G., Muhammed Ali, B., Fethi, R.,

and Boualem, B., "A quality-driven systematic
approach for architecting distributed software

applications," in Proceedings of the 27th
international conference on Software engineering

St. Louis, MO, USA: ACM, 2005.

[S56] Tarvainen, P., "Adaptability evaluation of software
architectures; A case study," in 31st Annual

International Computer Software and Applications

Conference, Beijing, PEOPLES R CHINA, 2007,
pp. 579-584.

[S57] Wan-Kadir, W. M. N. and Loucopoulos, P.,

"Relating evolving business rules to software
design," Journal of Systems Architecture, vol. 50,

pp. 367-382, 2004.

[S58] Zhu, L., Babar, M. A., and Jeffery, R., "Mining
patterns to support software architecture

evaluation," WICSA 2004, pp. 25-34.

