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Abstract

AUTOSAR [17] is a partnership between automotive
manufactures and suppliers. It aims at standardizing the
automotive software architecture and separating software
and hardware. This approach makes software more inde-
pendent, maintainable, reuseable, etc. Still there is much
work to do in order for this standard to be usable. This
paper focus on automotive software integration in AU-
TOSAR, with the use of hierarchical scheduling as an en-
abling technology. At this point, AUTOSAR components
do not have any timing relation with its tasks [19, 20].
This causes an unpredictive runtime behavior which can
only be analyzed and verified after integration phase. We
will discuss how integration can be done in AUTOSAR,
with runtime temporal isolation of components. This will
enable schedulability analysis at the level of components
rather than at the level of tasks.

1 Introduction

Our earlier work includes the development of a syn-
chronization protocol for hierarchically scheduled sub-
systems [10] and techniques to minimize CPU system
load when resources are shared between subsystems [22].
Moreover, we have implemented a hierarchical sched-
uler in the real-time operating system VxWorks [9]. It
is equipped with a fixed priority and preemptive schedul-
ing mechanism (at both global and local level). Also, we
have measured and shown the scheduling overhead of the
implementation. This paper is a continuation of our re-
search in the area of hierarchical scheduling. It gives a
summarized overview of the problem (and possible solu-
tion) of software integration in AUTOSAR, with respect
to temporal behavior. The basic idea of AUTOSAR is
to separate the software and hardware in subsystems (de-
livered by sub-contractors to car manifactures). Further,
its initiative is to modularize the software into indepen-
dent components, with well defined and standardized in-
terfaces. In this way, competition in automotive software
will increase, and software will become more portable and
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hardware-independent. Also, car functions will be com-
posed of software parts (delivered by different vendors) in
a higher degree. This will put more effort on software in-
tegration and make it more difficult. The reason for this
is because functionality, in the form of Electronic Con-
trol Units (ECU) with integrated software (in a final prod-
uct), are not longer delivered. Instead, car manifactures
will most likely buy software components to a higher de-
gree and integrate the components themselves, in order to
get the functionality. The problem is that software inte-
gration will be more complex (in the temporal view) and
AUTOSAR does not tackle this issue. Software compo-
nents may share tasks (with other components), which at
runtime, will create timing dependencies between compo-
nents [19, 20] (Figure 1).
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Figure 1. Hidden timing dependencies

There will be no relation between the high level com-
ponent and its tasks’ timing behavior. This makes compo-
nent integration difficult, since schedulability analysis and
timing verification can only be done once all the compo-
nents have been mapped to tasks and assigned to ECUs.
The idea is to use hierarchical scheduling, allowing for
each component to be partitioned and scheduled individu-
ally. Thus, the Original Equipment Manufacturer (OEM)
can then integrate components from different vendors into
an ECU, without causing interference between compo-
nents in the temporal domain (at runtime). Also, timing
verification can be done at an earlier stage in the develop-
ment process, even before the components are delivered
to the OEM.

AUTOSAR The following briefly introduces the con-
cept of AUTOSAR and the main properties of its infras-
tructure.

The AUTOSAR main structure (Figure 2) consists of
Software Components (SW-C), at the application level,
with standardized and well defined interfaces. They inter-
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Figure 2. AUTOSAR infrastructural overview

act with the Runtime Environment (RTE) in order to com-
municate with other SW-Cs and Basic Software (BSW)
modules [6]. The BSW modules lie beneath the appli-
cation layer and provides basic services. They also have
standardized interfaces which makes the whole architec-
ture modular and hardware-independent. The RTE is a tai-
lored (depending on SW-Cs, BSW modules and all types
of communication) middleware for each ECU. It removes
communication and hardware dependencies from SW-Cs.

An atomic component is a single component, whereas a
composition of components is a collection of components
[4] (Figure 3). An atomic component has ports (for com-
munication) and schedulable parts called runnable enti-
ties. These can have timing properties, similar to those in
the periodic task model (e.g., period, priority, etc.). Dur-
ing mapping from components to tasks, the runnable en-
tities are mapped to tasks (many-to-one mapping). It is
important to note that entities from different components
can be mapped to the same task.
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The Operating System (OS) used in AUTOSAR, re-
ferred to as AUTOSAR OS, is OSEK/VDX [1] compliant.
It has extensions like task/interrupt arrival rate enforce-
ment (activations are monitored and restricted to a max-
imum amount per time frame) and schedule tables (task
offset management) [5].

Hierarchical Scheduling Framework The Hierarchi-
cal Scheduling Framework (HSF) has been introduced
to support hierarchical resource sharing among applica-
tions under different scheduling services. The HSF can

generally be represented as a tree of nodes, where each
node represents an application with its own scheduler for
scheduling internal workloads (e.g., tasks). Further, re-
sources are allocated from a parent node to its children
nodes [23]. One of the main advantages of HSF is that it
provides means for decomposing a complex system into
well-defined parts (subsystems). In essence, the HSF pro-
vides a mechanism for time-predictable composition of
coarse-grained subsystems. This means that subsystems
can be independently developed and tested, and later as-
sembled without introducing unwanted temporal behav-
ior. Also, the HSF facilitates reusability of subsystems
in time-critical and resource constrained environments,
since the well defined interfaces characterize their compu-
tational requirements. The system contains a set of sub-
systems and a global scheduler. Each subsystem contains
a set of tasks and a local scheduler (Figure 4).
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Figure 4. HSF

Subsystems are scheduled according to the scheduling
policy of the global scheduler (for example FPS or EDF)
and the parameters in the subsystem time interface.
Subsystems can be represented as virtual tasks, where the
parameters in the time interface corresponds to those in
the periodic task model [16]. At runtime, subsystems are
allocated a defined time (budget) every predefined period
and they are executed based on their priority. This is
similar to a hard task executing preemptably (depending
on its priority) a defined time, Worst Case Execution Time
(WCET), periodically at every period. When a subsystem
is selected by the global scheduler, the subsystem tasks
are executed and scheduled according to the scheduling
strategy of the subsystem local scheduler. The global
scheduler, and all the subsystem local schedulers, may all
have different scheduling strategies (FPS, EDF .etc).

The outline of the paper is as follows: Section 2
presents related work. Section 3 focus on how the HSF
can be integrated in AUTOSAR with respect to modeling,
infrastructure, existing operating system, resource sharing
and legacy applications. Section 4 gives an example
of subsystem integration in AUTOSAR and finally,
Section 5 concludes.

2 Related work

In [13], the authors discuss the issue of system-level
integration of components from different suppliers in the
aspect of timing isolation. The paper advocate for a



more extensive component interface which should include
non-functional properties. In order to solve the integra-
tion problem of fault-isolation and error-containment, in
both the temporal and logic domain, components could be
placed in separate Intellectual Property (IP) cores (isolated
by the help of hardware).

The TIMMO project [18] is focusing on how to val-
idate timing behavior during the development process in
distributed embedded automotive systems. The connec-
tion to AUTOSAR is how to insert useful time interfaces
to the infrastructure, in order to be able to do proper vali-
dation with respect to time.

In [19, 20], the problem of lacking time interfaces are
brought up. When mapping component runnable entities
to tasks (basically component to task mapping), there are
no restrictions when it comes to component boundaries.
The component encapsulation is broken when it comes
to scheduling, i.e., any runnable entity from any compo-
nent can interfere with other components. This is possible
because entities from different components can reside in
the same task and any task can interfere with any other
task. Thus, timing analysis can only be done after map-
ping since the component level does not reveal any timing
behavior.

In [14], the authors show how schedulability analysis at
the application level can be performed with relation to the
AUTOSAR OS. Still, timing verification is done on task
level after component integration but with consideration
of AUTOSAR OS services.

3 HSF integration aspects

The use of hierarchical scheduling in AUTOSAR
brings positive aspects such that it solves a part of the in-
tegration problem (component temporal isolation). The
issue is how to integrate hierarchical scheduling in AU-
TOSAR (with minimum impact). The following sections
discuss key issues when it comes to HSF integration in
AUTOSAR.

3.1 AUTOSAR model
A subsystem in HSF typically encapsulates a big cohe-

sive system, such as a seat-heater system, which in AU-
TOSAR would be modelled as a composition rather than
an atomic component [4]. A subsystem should therefore
represent a composition component (Figure 5) with the
restriction that such a component is not allowed to map
its tasks together with other components (other than the
components in the same composition). The reason for
this restriction is because it preserves temporal isolation
and it facilitates schedulability analysis. In AUTOSAR
however, components are allowed to share tasks with each
other. This mismatch can be solved by having an optional
type of component which would have a restrictive task
mapping policy.
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3.2 AUTOSAR infrastructure
The implementation of HSF in AUTOSAR is a big

challenge, since it should not impose any kind of re-
striction or dependency on OS nor the rest of the AU-
TOSAR framework. AUTOSAR OS and BSW sched-
uler [3] are the responsible parts of task scheduling in
AUTOSAR. The BSW scheduler is responsible for map-
ping BSW module processing-functions to tasks as well
as defining their triggers (cyclic or event triggered). The
BSW module has an OS-independent configuration for
which the BSW scheduler, together with OS primitives,
use to form the glue-code between BSW modules and the
AUTOSAR OS. Hence, the BSW module is independent
of the OS scheduling mechanism. The RTE forms, in the
same way, the scheduling specific glue-code between SW-
C and AUTOSAR OS. The BSW scheduler does not in-
fluence scheduling during runtime, which means that the
HSF schedulers (global and local) do not need to consider
the function of the BSW scheduler.
The global scheduler (in HSF) can be integrated by putting
it on top of the existing AUTOSAR OS and use the avail-
able operating system interface to accomplish hierarchical
scheduling. This is similar to the technique used in [9],
where our schedulers merely uses VxWorks primitives to
perform scheduling. Our schedulers are loaded into the
VxWorks kernel while the kernel itself is kept unmodi-
fied. In fact, in AUTOSAR it might be possible to define
the global scheduler itself as a BSW module and to use
the BSW scheduler to interface the AUTOSAR OS (Fig-
ure 6). In this way, the global scheduler module would be
completely transparent and independent of the actual OS.
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Figure 6. HSF in AUTOSAR infrastructure

The global scheduler could interface the AUTOSAR
OS either directly or via the BSW scheduler. A connec-
tion between global scheduler module and the RTE could
be useful in order to forward subsystem scheduling infor-



mation (e.g., period, budget, local scheduling algorithm
etc.) from components to the HSF. An alternative solu-
tion is to let the global scheduler have a separate con-
figuration file with subsystem parameters. A specifica-
tion/implementation of a local scheduler could be done as
a SW-C or as a BSW module itself with a standardized in-
terface. This would add up to a more modular implemen-
tation of HSF in AUTOSAR by completely separating the
subsystems from the global scheduler. This is the ultimate
goal because it realizes open real-time systems. The idea
is that subsystems are developed (and validated) in iso-
lation, independently of each other, and later integrated
together in the same environment without any modifica-
tions. At integration phase, schedulability analysis can be
done, based on the subsystem interfaces. The subsystem
local scheduler, with standardized AUTOSAR interface,
could just be plugged into the infrastructure and interface
the global scheduler BSW module which would then do
the rest (scheduling of subsystems and running the sub-
system local scheduler when it is active).

3.3 Compatability with AUTOSAR OS
AUTOSAR OS, as mentioned before, is an extension of

OSEK/VDX. The OSEK/VDX standard defines that there
could reside both preemptive and non-preemptive tasks.
This is also true for task groups [1] which are used for
tasks sharing a resource. A task group has a priority ceil-
ing (same as the highest priority task within the group) and
behaves non-preemptive within the group. The only tasks
allowed to preempt are those that have higher priority than
the group priority ceiling.

A problem arises if a budget depletes during the execu-
tion of a non-preemptive task, since the task is not allowed
to be preempted. A solution to this problem could be
to model non-preemptive tasks, such that they have a re-
source locked during the whole execution time, and use a
hierarchical synchronization protocol such as SIRAP [10]
or HSRP [12]. SIRAP uses a technique called skipping,
where a task is not allowed to lock a resource if the max-
imum resource locking time (including the critical sec-
tion and possible task preemptions) exceeds the remaining
budget time. HSRP uses another technique called overrun.
This method extends the budget until the task releases the
resource. A hierarchical synchronization protocol can also
be applied to task groups, in the case when the group is
distributed across several subsystems. No problem arises
if the task group resides in one subsystem.

One service that is not included in OSEK/VDX, but ex-
tended in AUTOSAR OS, is the notion of schedule tables
[5]. A schedule table has a duration (period) which is the
time between two consecutive schedule table activations.
Further, a schedule table has expiry points expressed as
offsets, with respect to the table duration, and each expiry
point has a list of events and activations (e.g. activate a
task). All tasks within a schedule table typically has the
same period but individual offsets. Schedule tables can
be single shot or repeated (cyclic) and they can be acti-
vated and deactivated during runtime. If a schedule table

in a non-active subsystem would activate tasks, then they
should not run (according to HSF) although they may be
inserted into the task ready-queue. Setting an event would
also occur. The only restriction is that there would be no
re-scheduling since the active subsystem tasks are only al-
lowed to run. The positive aspect is that there can be a mix
of scheduling schemes (e.g., schedule tables, FPS, EDF
etc.) separated by the subsystems, without them affecting
each other with respect to scheduling.

3.4 Resource sharing
Hierarchical scheduling introduces more complexity

when it comes to resource sharing. If several tasks within
a HSF subsystem would share resources, then traditional
resource sharing protocols can be used such as the Im-
mediate Priority Ceiling Protocol (IPCP) (which is sup-
ported by the OSEK/VDX standard [1]). However, if
tasks belonging to different subsystems would share re-
sources, then resource sharing protocols such as SIRAP
[10] or HSRP [12] should be used (in order to achieve
mutual exclusive access to resources). Implementation
of SIRAP and HSRP requires mutual exclusive access to
kernel data-structures such as the task ready-, subsystem
ready- and resource-queue [8]. So in a sense, the hierar-
chical synchronization protocol itself also need protection
from interrupt routines and schedulers (which may also
use scheduling specific data-structures). AUTOSAR spec-
ifies that the responsibility for this kind of resource shar-
ing should be put on the BSW scheduler [2], even though
IPCP can be used (which is part of OSEK/VDX). The
BSW scheduler is in charge of resources, their users and
the protection of these resources. BSW scheduler extracts
resource/user information from AUTOSAR OS, which in
turn get such information from the component configura-
tion via the RTE. An implementation of a hierarchical syn-
chronization protocol would typically be a user of such a
resource that the BSW scheduler handles. The hierarchi-
cal synchronization protocol could be implemented as a
BSW module, similar to the HSF (Figure 6), and interact
with the BSW scheduler in order to get exclusive access
to scheduling specific data-structures. SIRAP and HSRP
both require SRP, which IPCP resembles, so it could be
used instead. Thus, making hierarchical synchronization
protocols easy to adapt to OSEK/VDX. The main goal is
that the protocol should be a module that can be put on top
of an existing OS, without any modifications.

3.5 Legacy applications
Development of automotive systems usually includes

reusing of legacy code. Hence, when developing with
AUTOSAR mechanism the legacy software should be
mapped to the AUTOSAR standard. However, the exist-
ing legacy code is usually big and complex, so migration
of existing code to AUTOSAR is a big challenge for auto-
motive industry.

When migrating legacy applications, it is important
that functional, as well as non-functional (e.g., tempo-
ral behavior), behavior of the application is not affected



by other applications in the new environment. Hierar-
chical scheduling provides the means for isolating ap-
plications (subsystems), so that they do not affect each
other while scheduled on the processor. In this policy, the
legacy application can be put into a subsystem and exe-
cute along with other applications without being aware of
each other. However, the hierarchical scheduling policy
needs the timing attributes of real-time tasks within the
application. These attributes are used in order to generate
subsystem time interfaces and derive schedulability test of
subsystems. Timing attributes can be derived from static
(source code) and/or dynamic analysis (run-time).

4 Illustrative example

In order to illustrate the benefits and applicability of
hierarchical scheduling in AUTOSAR, we show a subsys-
tem integration example in this chapter. The two subsys-
tems, in this example, consists of an Anti-lock Brake Sys-
tem (ABS) and an Engine Control System (ECS). Both
systems have the characteristics of being safety critical,
i.e., incorrectness in their functionality and temporal be-
havior can be life threatening. It is not uncommon that
these systems are delivered by the subcontractor as a
whole product, including hardware (ECU) and software.
After delivery, the ECUs are directly integrated without
any changes or re-configurations. AUTOSAR however,
tends to work against this by separating parts of the sub-
system products. This, of course, puts more responsibility
on the OEM in terms of subsystem integration. However,
AUTOSAR has not yet defined how software integration
can be done (with respect to temporal behavior) in an effi-
cient manner. This is especially important for safety crit-
ical systems. If AUTOSAR realizes its purpose, then in
near future one might vision software integration in a way
that is not seen today. For example, integration of safety
critical software from different vendors on the same ECU.
This leads us to this example, where we illustrate how
software integration can be done in AUTOSAR (efficient
and safe) by the use of hierarchical scheduling.

4.1 Anti lock brake system
The purpose of ABS is to prevent wheel lock-up dur-

ing braking by monitoring the wheel speed and, at de-
tection of wheel lock-up, release the brake power [11].
At each wheel, there is a wheel speed sensor that reads
the wheel rotation speed, and thus, gives the wheel de-
celeration. An ECU (with control algorithms) compares
all wheels deceleration, in order to detect a wheel lock-
up before it actually occurs. When the control algorithm
detects an upcoming lock-up, the ECU manipulates the
brake system. The manipulation is done by regulating
two solenoid valves, belonging to a hydraulic pressure
modulator (which is integrated in the ABS ECU). The
two kinds of solenoid valves, input-valve and outlet-valve,
are both installed at each of the four wheels. The input-
valve is open when it is in normal braking state, i.e., nor-
mal braking. In this state, brake-fluid can flow between

the master brake-cylinder (connected to the brake-pedal)
and a wheels brake-cylinder. The brake-cylinder is un-
der constant fluid-pressure when the input-valve is closed,
no matter how much the driver pushes the brake pedal.
The outlet-valve remains closed when input-valve is open.
When the input-valve is closed, the outlet-valve can be
opened. This will lead brake-fluid out from the brake-
cylinder, thus releasing the brake-pressure at the affected
wheel. The valve states and temporal properties are shown
in Figure 7. During the build-up phase, the input-valve is
kept open in order for the fluid to pass from master brake-
cylinder to brake-cylinder without any resistance. When
the input-valve is closed (can take up to 30 ms [21]), the
pressure-holding phase begins until either the input- or the
outlet-valve is opened. The next phase shown is the reduc-
tion phase, it can be required to be as short as 20 ms. The
build-up phase however, can take up to 200 ms.
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Based on this limited temporal information, it would
be suitable with at least three tasks (responsible for each
wheel). One task for actuation of the solenoid valves, Ac-
tuator (τ1), one for reading the speed sensor, Sensor (τ2),
and a task responsible for the control calculations, Control
(τ3). The latter task is assumed to include/share sensor
data from the other wheels when calculating the braking
power.
Since the reduction phase is required to be as short as 20
ms, the time between the control cycles should not be
longer than this value. This implies that the tasks Ac-
tuator, Sensor and Control should have at least half of
that value (10 ms), as period. If the reduction should be
too long, then we would loose valuable braking distance.
Sensor should of course always run before Control, in or-
der for it to have access to fresh sensor values. Actuator
should run after Control, so that the calculated data takes
effect. This implies that Sensor has highest priority, fol-
lowed by Control, and Actuator with lowest priority.
There is no information about the frequency of the control
cycles in the specification, therefore, we disregard this as-
pect.
The input-valve may take 30 ms to close properly. We
assume that manipulation of the outlet-valve (opening)
within this time does not take affect.

The estimated WCET for Control is 0.5 ms and 0.1 ms
for Sensor and Actuator. Table 1 concludes task parame-
ters, where T represents task τ :s period and D the relative
deadline. In this integration example we only include 3



tasks (one wheel) from the ABS subsystem.

Name T WCET D Priority
Sensor (τ1) 10 0.1 10 0
Control (τ2) 10 0.5 10 1
Actuator (τ3) 10 0.1 10 2

Table 1. ABS task parameters

4.2 Engine control system
The next example is a one cylinder, four-stroke, ECS.

It is comprised of 6 tasks, distributed on 3 processors
[15]. The system is scheduled by the Local NonPreemp-
tive Time-Triggered scheduler (LNPTT). The scheduler
releases a new period for the tasks when the engine pis-
ton reaches its top, every second time (period of 720◦).
This is illustrated in Figure 8. The tasks, Engine (τ4)
and Throttle (τ5), do engine speed and throttle opening
acquisition respectively. This is needed by both the task
Ignition (τ7), as well as task Injection (τ6), in order for
them to calculate ignition angle and precise injection time.
Task Ignition needs to finish before Compression phase.
This is, in worst case, after 5 ms when engine speed is at
its maximum, i.e., 6000 Revolutions Per Minute (RPM).
Task IG-Actuator (τ9) will actuate the ignition based on
data from Ignition, preferably 1,5 ms before Combus-
tion phase (there is a time delay when actual ignition oc-
curs). Task IN-Actuator (τ8) needs to inject gas before the
next Intake phase. Task Injection needs to run before IN-
Actuator, in order to calculate the gas injection time. In a
worst case scenario, when engine is running at its maxi-
mum speed, all tasks will not meet their deadlines if they
were to be executed on the same processor. The actuat-
ing tasks are extremely time sensitive, so they will run on
their own processor. IG-Actuator cannot be released be-
fore Ignition has finished, the same goes for IN-Actuator
with respect to Injection.

ECS tasks, within the same processor are released
based on their WCET. The order is τ4, τ5, τ7 and τ6,
corresponding to the release times: 0, 0.6, 1 and 3.5.
Tasks scheduled by LNPTT on the same processor are
non-preemptive mutually, but preemptive globally. In this
integration example, we only include the tasks from the
Controller ECU (Figure 8), within the ECS.

The tasks temporal properties are listed in Table 2.
Note that the worst case period is 20 and the deadline is
relative to this period.

Name T WCET D Priority
Engine (τ4) 20 0.6 2.1 -
Throttle (τ5) 20 0.4 2.5 -
Injection (τ6) 20 2.5 8 -
Ignition (τ7) 20 2.5 5 -

IN-Actuator (τ8) 20 12 20 -
IG-Actuator (τ9) 20 3.5 8.5 -

Table 2. ECS task parameters

  

Controller
ECU

Fuel
Injection
ECU

Ignition
Spark
ECU

Time

Crank
angle

0 5 10 15 20 (ms)

0o 180o 360o 540o 720o

Intake Compression Combustion Exhaust

Intake
Valve

Exhaust
Valve

Fuel & air Exhaust gas

Ignition

E
n

g
in

e
T
h
ro

tt
le

Ignition Injection

IG-Actuator

IN-Actuator

0,6 1 3,5 6 8 8,5

Figure 8. Four stroke engine cycle

4.3 Subsystem integration
There are (at least) three major concerns when it comes

to subsystem integration and task mapping in the AU-
TOSAR scenario. 1) Schedulability analysis, entities are
mapped to tasks and schedulability analysis is done on
task level. Analysis can be difficult since there may be
many tasks and they may also be configured with differ-
ent scheduling algorithms. 2) IP protection, the inside of
the component is exposed (because of task level schedula-
bility analysis) which is bad if you want to hide the inter-
nal configuration. 3) Effective temporal isolation, tasks
can disturb each other if their execution time exceeds their
WCET. The solution of having task deadline checking, as
part of AUTOSAR OS, is expensive (frequent overhead).
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Figure 9 and Figure 10 show how these two subsystems
can be modeled according to AUTOSAR and how timing
properties (time interface) can be expressed at component
level instead of entity level.
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ABS time interface For efficiency, the ABS subsystem
period is set to half of the lowest task period [24]. The



budget is set, so that it satisfies Eq. (1) [23]. A subsystem
task-set is defined as {τ1...τn} and a task, τi, has the pa-
rameters Ti, Di and Ci (corresponds to WCET). In order
for the subsystem to be schedulable, the following must
hold:

∀τi ∃t : 0 < t ≤ Di, rbfFP(i, t) ≤ sbfΓ(t), (1)

where rbfFP(i, t) denotes the request bound function of a
task which is the sum of task τi:s WCET and the inter-
ference from higher priority tasks within the time period
t. sbfΓ(t) denotes the supply bound function for CPU re-
source, which is the minimum amount of supplied budget
within the time interval t. Γ represents the CPU resource
(according to the periodic resource model) with period Π
and budget Θ. Eq. (2) and Eq. (3) show how to calculate
the request and supply bound functions, respectively:

rbfFP(i, t) = Ci +
∑

τk∈hp(i)

⌈ t
Tk

⌉
· Ck, (2)

sbfΓ(t) =
⌊
t− (Π−Θ)

Π

⌋
·Θ + εs (3)

where εs is defined as

εs = max

(
t− 2(Π−Θ)−Π

⌊
t− (Π−Θ)

Π

⌋
, 0
)

(4)
As an example, lets look at the analysis for task Actu-

ator. This task is guaranteed to meet its deadline if the
worst case holds. This will happen when all higher pri-
ority tasks are released at the same time as Actuator, and
the budget is distributed so that the task requests budget
precisely at the time when it depletes and the last required
budget is supplied as late as possible (Figure 11). Calcu-
lating the (minimum) subsystem budget requires an itera-
tion (while increasing Θ) of Eq. (1), until it satisfies the
equation. Figure 11 intuitively shows that task Actuator
will meet its deadline if Θ is at least 0.7, this also holds
for task Sensor and Control.
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Deadline for 
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Figure 11. Task Actuator response time

ECS time interface As illustrated in Figure 12, if the
ECS subsystem budget run as late as possible (according
to its deadline), then all tasks meet their deadline (Eq. 5).
Because the tasks and their subsystem are assumed to
be released simultaneously (due to that the subsystem is
event driven), the budget supply cannot be distributed in
any possible worse case, with respect to its tasks arrival
(as shown in Figure 12). Compared to Eq. 3, which ac-
counts for that the tasks miss an entire budget and that the

last one arrives as late as possible. In the ECS subsystem,
only the latter can occur, according to our assumptions.

∀τi, prtΓ(Ri) ≤ Di, (5)

where prtΓ(Ri) denotes the prolonged response time of
task τi due to the periodic resource Γ and Ri represents
the response time of task τi according to the Response
Time Analysis (RTA) [7]. Eq. 6 show how to calculate the
prolonged response time.

prtΓ(Ri) = Ri + (4−Θ) (6)

where 4 denotes the deadline of the periodic resource Γ,
or the period, in case of4 = Π.
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Figure 12. Deadline and budget for ECS
subsystem

Conclusion It is the subcontractors responsibility that
the local scheduling, within a subsystem, is sufficient
with respect to the subsystem interface (illustrated in Fig-
ure 11). The OEMs responsibility is to map subsystem en-
tities to tasks (and no sharing tasks between subsystems)
and perform schedulability analysis at subsystem level. In
this example, it is a matter of performing a simple RTA
(assuming FPS as the global scheduling strategy) with the
subsystem parameters (Figure 9 and Figure 10). Still there
is one issue, how and who will define the subsystem pa-
rameters and how to ’contract’ these parameters between
OEM and the subcontractors.

Temporal isolation is kept due to the budgets, with min-
imal overhead. Concerning tasks that execute more than
their WCET and the protection of this, it could be more
efficient (and less overhead) to put such protection at sub-
system level (by having budgets) rather than at task level.
A missbehaving task inside a subsystem might not need a
preventive action, because it is a critical task. It is better to
let the subsystem handle this. For example, by decreasing
non-critical tasks (within the same subsystem) execution
time. In this way, the subsystem budget will remain the
same and tasks outside of the subsystem will not get af-
fected. Also, the subsystem critical tasks will still meet
their deadlines.

Even though these subsystems are safety critical and
are comprised of several tasks with different scheduling
strategies (LNPTT and FPS), it is still safe (temporal) and
easy (schedulability analysis) to integrate them, as shown
in this example. Another positive aspect is that temporal
information, needed for integration, can be placed as part
of the component interface. This will make timing behav-
ior, at runtime level, as encapsulated and predictable as
on design level. These properties coincides well with the
AUTOSAR paradigm.



5 Summary

We have shown how application integration, in AU-
TOSAR, can be achieved with the use of Hierarchical
Scheduling Framework (HSF). The challenge addressed
in the paper is component isolation at runtime [19, 20].
The components isolate functionality and communication
nicely at design phase. However, when it comes down to
task-mapping and running the tasks, then timing behavior
crosses the component boundaries. Conclusively, there is
a problem at both design/modeling, as well as in the run-
time infrastructure. HSF solves the runtime issue. What is
left is to incorporate the notion of subsystems/partitioning
in the component model. This can be done with some re-
strictions on task-mapping. Another issue is how to inte-
grate the HSF in the AUTOSAR infrastructure, with min-
imum impact. We have suggested a modular solution by
integrating the the global scheduler, in HSF, as a BSW
module. The global scheduler will interface either, the
AUTOSAR OS itself, or the BSW scheduler, which will
give it access to scheduling functions in a standardized
way. Other related issues discussed are HSF compatabil-
ity with AUTOSAR OS, how to solve additional synchro-
nization issues (which HSF brings), legacy application in-
tegration and how to contract the subsystem parameters
between OEM and the subcontractors. This last issue re-
mains open. Hopefully, as our work progresses, we will
focus more towards the practical side of HSF. Specula-
tively, AUTOSAR will open up the automotive software
market and introduce more competition. This might lead
to that OEMs can chose the best fitted software (ABS,
seat-heating .etc) from a wide variety of software compo-
nents (e.g. libraries), labeled with simple subsystem inter-
faces. In this view, it is up to the subcontractor to specify
the subsystem parameters. The resource model introduced
in [23] require only 2 subsystem parameters (period and
budget). This is good because it decouples the OEM and
the subcontractor in a higher degree.

Future work includes implementation of HSF and
synchronization protocols (SIRAP and HSRP) in a
OSEK/VDX compliant OS. A continuation of this could
be an implementation in an AUTOSAR OS. Additional
future work can hopefully lead to a cooperation with an
AUTOSAR premium member, such as Volvo. This has
the potential to open up the possibility of integrating HSF
fully into the AUTOSAR infrastructure, and also to con-
duct real simulations and tests.

References

[1] OSEK VDX Portal. OSEK/VDX Operating System,
February 2005.
http://portal.osek-vdx.org/files/pdf/
specs/os223.pdf.

[2] AUTOSAR GbR. Explanation of Interrupt Handling in
AUTOSAR, August 2008.
http://www.autosar.org/download/specs
aktuell/AUTOSAR InterruptHandling
Explanation.pdf.

[3] AUTOSAR GbR. Specification of BSW Scheduler,
August 2008.
http://www.autosar.org/download/specs
aktuell/AUTOSAR SWS BSW Scheduler.pdf.

[4] AUTOSAR GbR. Specification of the Virtual
Functional Bus, August 2008.
http://www.autosar.org/download/
specs aktuell/AUTOSAR SWS VFB.pdf.

[5] AUTOSAR GbR. Specification of Operating System,
February 2009.
http://www.autosar.org/download/
specs aktuell/AUTOSAR SWS OS.pdf.

[6] AUTOSAR GbR. Specification of RTE, February 2009.
http://www.autosar.org/download/
specs aktuell/AUTOSAR SWS RTE.pdf.

[7] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings. Applying new scheduling theory to static prior-
ity pre-emptive scheduling. Software Engineering Jour-
nal, 8:284–292, 1993.

[8] M. Behnam, T. Nolte, M. Åsberg, and I. Shin. Syn-
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