
Evolutionary Architecting of Embedded Automotive Product Lines:

An Industrial Case Study

Jakob Axelsson

School of Innovation, Design & Engineering

Mälardalen University

SE-721 23 Västerås, Sweden

jakob.axelsson@mdh.se

Dept. 94100 HC1S

Volvo Car Corporation

SE-405 31 Göteborg, Sweden

Abstract

In the automotive industry, embedded systems and

software play an increasingly important role in

defining the characteristics of the vehicles. Both the

vehicles and the embedded systems are designed as
product lines, and two distinct architecture processes

can be identified. The revolutionary process develops

the architecture of a new product line, and focuses on

abstract quality attributes and flexibility. The

evolutionary process continuously modifies the
architecture due to changes, such as additions of new

functionality. In this paper, the evolutionary process is

investigated through a case study. The study reviews a

number of changes to an existing architecture,

observing the cause of the change, what quality

attributes were considered, and what technical aspects
were included. It is also analyzed how the interplay

between the two processes can be improved through

systematic feedback about what evolution actually

takes place.

1. Introduction

The automotive industry has in recent years witnessed

a dramatic increase in functionality based on electrical

and electronic (E/E) components. According to some

sources, 80% of the innovation in a car in the premium

segment comes from the electronics [12]. Many of the

advances seen in the automotive industry, for instance

in areas such as safety, emission control, comfort, and

quality, would have been impossible without the use of

advanced computer-based control systems. Also,

electronics can be used to reduce cost, when expensive

mechanical components are replaced by cheaper

electronic controllers. This has led to a situation where

a modern car contains a large number of Electronic

Control Units (ECUs) connected via a number of

communication networks and running complex

distributed software applications.

Although the electronics has a great potential to

improve vehicles, the systems are becoming

increasingly complex and that makes the engineering

more and more difficult. The functions are in many

cases safety critical, requiring special care to handle

any circumstances that may possibly occur during

operation. At the same time, the system has a very long

operational life time where only sporadic maintenance

can be assumed. The products are mass-produced, so

assembly must be very efficient. Many vehicles are

consumer products where the price must be kept low.

Due to varying customer demands, but also due to

different legal requirements in the countries where the

product is being sold, many variants of the product

must be designed and verified. To handle this, and to

be able to have reasonable production volumes of each

system, the Original Equipment Manufacturers

(OEMs) usually employ a product line strategy in

which many components are common across a range of

products. This platform is refined over many years, and

each vehicle has to cope with an extensive amount of

legacy both in components and in the overall structure.

With this multiplicity of products and variants, the

architecture is becoming very important and is a source

of increasing interest from the OEMs. An architecture

can be defined as the fundamental organization of a

system embodied in its components, their relationships

to each other, and to the environment, and the

principles guiding its design and evolution [7].

This paper is based on the observation that the

revolutionary architecting process for the platform is

quite different in its nature from the evolutionary

architecting of the different products based on the

platform. It presents empirical data from a case study

at an automotive OEM on how the evolutionary

architecting is actually carried out, which is a topic

where little evidence has been presented before. It

further discusses the interplay between the two

architecting processes, and how it can be improved.

101978-1-4244-4985-9/09/$25.00 c©2009 IEEE

The paper is structured as follows. In the next

section, the architecture processes are discussed

further, and the theoretical framework is presented

together with the research questions. Then, in Section

3, previous research related to the paper is reviewed. In

Section 4, the case study organization is discussed in

more detail, and in the following section the findings

are presented. In Section 6, the results are discussed

and suggestions for improvement are described, and in

the final section, the conclusions are summarized

together with some ideas for future work.

2. Problem definition

In this section, we will discuss the architecting

processes in more detail, and what research questions

they lead to. But before doing so, some more

information is needed on how the automotive OEMs

work with product lines to understand the challenges

that automotive companies face in architecture

development.

2.1. Context

An automotive OEM usually produces a number of

different car models with distinct names and body

styles. These products are organized into product lines,

where the car models within a car line share a

substantial number of components. Sometimes the

term platform is used to describe this sharing. Within

each car model, many variants are produced to reflect

individual customer choice of features, demands on

different markets, etc.

The product range is however not static. The typical

production life of a car model is somewhere between

6-8 year, after which the production is discontinued.

Often (but not always) a totally new car with the same

name plate replaces the old one. However, not all the

models are updated at the same time. For development

capacity reasons and also to get maximum effects out

of marketing, only a few models are replaced each

year. This means that the process of moving all models

in a car line to a new platform takes several years, and

there is therefore usually a mixture of products based

on old and new platforms in production. To handle the

dynamics of the product range, the development work

is organized into projects for platforms, new cars, and

model year updates of existing cars.

The E/E system follows the structure of the

products, and there is one architecture for each

platform. However, since the E/E system is not so

strongly connected to the car's size or body style, there

is often an ambition to minimize differences between

the E/E platforms. The dynamics of the product

portfolio affects E/E system development greatly. A

common scenario is that a new feature is developed as

part of a new car model project. The question then

immediately arises whether that feature can be carried

over to other models on the same platform, or even

carried back to the other car line or to car models of the

same car line but that are still on an older platform.

For a good introduction to how the automotive

industry works with software and electronics, see [4].

2.2. Theoretical framework

When a new platform is developed, there is an

opportunity to do a major revision of the architecture.

Changes that are typically introduced only at this time

are a new communication concept, a different structure

of the communication networks, or new basic software

in the ECUs of the vehicle. Between these

revolutionary steps, modifications such as the addition

of a new ECU, a reallocation of some application

software between two ECUs, or changing the connec-

tion of a sensor from one ECU to another, often occur.

Some of the differences between the revolutionary

and evolutionary architecting processes (RAP and

EAP) are:

• RAP is done rarely as a defined activity or
project, perhaps once every 5-10 years when a
new platform is introduced and each time with
a duration of a few years. EAP on the other
hand is an ongoing process all the time.

• RAP deals with the architecture as a whole,
considering all the functions and systems
together. EAP usually deals with changes to a
singular, or a few, functions or systems within
an existing framework.

• RAP tries to dimension an architecture that can
support many (yet unknown) changes as
smoothly as possible for a long time, whereas
EAP tries to implement a specific and concrete
change in a specific architecture as efficiently
as possible (while trying to assure that the
resulting architecture still remains as flexible
to future changes as possible, although this
aspect is often less explicit in practice).

• RAP tries to predict future requirements,
which is a speculative activity dealing with
abstract information. One of the most
important parameters is the expected rate of
change which dimensions the flexibility
needed. EAP deals with concrete requirements,
functions and systems. This means that RAP
must deal with uncertainty to a much higher
extend than EAP.

With these differences pointed out, it should also be

said that there are situations where some aspects of

revolutionary nature is also conducted within EAP,

102 2009 IEEE/IFIP WICSA/ECSA

simply because there is a need that was not foreseen at

the time of the previous instantiation of RAP.

The automotive industry is currently heavily

influenced by Japanese practices, many of them

originating from Toyota and in the western world often

presented under the label "Lean." One of the most cited

aspects of Lean is kaizen, which stands for continuous

improvement activities. The automotive industry is

thus very used to the idea of evolutionary development.

However, Lean also contains the idea of kaikaku,

meaning revolutionary change, and this has not been

widely recognized in the western automotive industry,

nor has the interplay between the two been considered.

Within software development, the relation appears

to be the opposite, with much focus on new

development, and less on continuous improvement.

2.3. Research questions

This paper primarily addresses the following research

questions, in the context of companies developing

embedded systems as part of their products:
1. How is the evolutionary system architecture

process carried out in practice?
2. What is the interplay between evolutionary and

revolutionary architecting?
3. What are the potential areas of improvement in

the architecting processes?
We hope to learn more about the first question by

simply studying how it is done at a relevant company,

and see what factors are considered in that process. If

we could in this way improve the understanding of

what factors are involved in the evolutionary process,

this could be compared to how the revolutionary

process is carried out at the same company, to give

ideas about how they interact and can be ameliorated,

and thereby answering the second and third questions.

3. Related Research

In this section, we provide a review of some related

work on the EAP and its relation to the RAP. The

section is divided into three parts, where the first

contains theoretical descriptions of architecting

methods, the second contains empirical evidence of the

industrial application of architecting, and the third

summarizes the contributions of this paper in relation

to the existing publications.

3.1. Theoretical models

One of the most well-known methods for (software)

architecture development is the Architecture Trade-off

and Analysis Method (ATAM) [10]. In this method,

quality attributes are introduced to assess the benefits

of an architecture proposal, and scenarios are used to

clarify architectural requirements. The approach is

most suited for either new development or substantial

revisions of legacy systems, and thus corresponds best

to RAP. However, it gives little insight into how to

perform the step-by-step refinement of EAP.

A better basis for describing EAP is given in [9]

which views architecting as a set of architectural

design decisions. This corresponds well to the

sequence of design decisions made in the continuous

evolution of the architecture. The paper presents a

structure for describing the design decisions, consisting

of a problem (the goal to solve), a motivation for the

problem, a cause for the problem, alternative solutions

to the problem, a decision capturing a number of trade-
offs to select a solution, and an architectural

modification which modifies a context.

In [3], an architecture design method based on

evolution and transformation is presented. However, it

focuses on the evolution that takes place while

developing a new release of an architecture, rather than

the evolution of an architecture over several releases.

Evolution of software product lines is also the topic

of [16], which points out that much of the research on

product lines concerns the RAP rather than EAP. It

also observes that it is difficult in practice to predict

what future evolution will occur. The paper discusses

techniques for improving variability, but these are

software focused and less relevant for automotive

systems engineering.

One of the few research contributions that deal with

the architecture of embedded systems (with examples

from the automotive domain) rather than just software

is [6]. It introduces a hierarchy of decision levels,

where top-level decisions would correspond to those

made in RAP and low-level decisions to those of EAP.

An elaborate analysis procedure for architecture

alternatives is also described, but again it is focused on

the initial development of an architecture rather than

the evolution.

The relation between RAP and EAP is discussed

theoretically in [1], which identifies the need for both

processes and that an exploration of the evolution

history is important to understand when revolution is

needed.

The application of kaizen to software product lines

is discussed in [8], which provides many interesting

ideas how to systematically improve both the product

line and the work standard. However, the focus is more

on maintaining the software core assets of the product

line than on developing the architecture, which makes

the concrete results less applicable for our purposes.

2009 IEEE/IFIP WICSA/ECSA 103

3.2. Empirical investigations

A number of case studies on software evolution have

been presented. In [2], a case study based primarily on

interviews at two companies using software product

lines is reported. Although the focus is on the evolution

of the software assets rather than the products, the

authors note that this evolution actually often takes

place within product projects rather than as dedicated

activities. Another issue was the difficulty to decide

when to split off a product from the product line, i.e.

when to perform a revolutionary step.

One of the two companies in that study reappears

together with a third company in [15]. Again the focus

is on evolution of the software assets and not the

products. A difference is that they have actually

studied the evolution of the software over several

releases. One observation is that at some point in time,

revolutionary revisions are made in an otherwise

evolutionary process, but the authors find it hard to

pinpoint the cause for this. The paper also describes a

set of useful categories for describing evolution.

Two industrial case studies on teams assessing

software architecture for evolution are presented in

[13]. However, what actual evolution takes place in

these systems is not described.

Yet another case study is presented in [5], which

describes continuously evolving software and the issue

of detecting when there is a need for re-architecting

activities. The focus of the case study is however on a

comparison of three approaches for assessing the

evolvability of the software architecture, rather than a

study of the actual evolution process as is.

3.3. Contribution

Much of the literature thus mainly describes the RAP,

where a new system is designed. There is also a focus

on software architecture, which is less relevant for

automotive OEMs who focus on system architecture

and leaving much of the software details to suppliers.

The contribution of this paper is three-fold. Firstly,

it contains an empirical study of the interplay between

RAP and EAP. Secondly, it is not restricted to

software, but studies embedded systems considering

both hardware and software aspects and the relation to

the overall product. Thirdly, it is an empirical study of

actual architecting for automotive E/E systems. None

of these have to our knowledge been reported before.

4. Case study description

Since this research enters a new area, we did not have

enough a priori information to form any clear

hypotheses or theories around the research questions.

Instead, we choose to conduct an exploratory single-

case study [18] at an automotive OEM to gather more

information. The methodology used is both

quantitative based on a classification of events, to get

an idea of their magnitude and frequency, and

qualitative to be able to study underlying causes.

4.1. The company

The case study was carried out at Volvo Car

Corporation (VCC). The company has its headquarters,

including product development and many other

functions, in Gothenburg, Sweden. The company is a

producer of premium cars, with special focus on safety,

environment, and quality. At the time period focused in

the study, it had approximately 25,000 employees and

manufactured and sold close to 500,000 vehicles each

year worldwide. It is a subsidiary of the Ford Motor

Company (FMC) since 1999, and had at the time close

co-operation within FMC primarily with Ford of

Europe in Germany and Jaguar-Land Rover in the UK.

For these brands, VCC had a leading responsibility for

the E/E architecture.

As described in Section 2, the automotive industry

works with car models, platforms, model years, and

variants. In the case of VCC, there are approximately

10 different car models (i.e. cars with different name

plates, such as Volvo S80 or Volvo XC90). These

products are organized into two car lines for small and

large cars. Within FMC there is also a cross-brand

sharing of platforms, so that a Ford car and a Volvo car

can share some components or technologies.

Usually at VCC, there is one project for each new

car. In addition, there is one specific project when a

new platform is developed, and this project usually

runs in parallel with the project for the first car to use

that platform. The model year changes also run as

projects but usually there is only one model year

project per platform that takes care of all the name

plates on that platform.

At VCC, it is typical that revolutionary changes to

the E/E architecture occur when a new platform is

developed. Most often, it is the large car platform that

carries the largest changes, since these cars are usually

richer in features. The small car platform development

is usually a revolutionary step compared to the

previous small platform, but at the same time often

includes architectural solutions from the current large

platform. The new car model projects can sometimes

carry revolutionary changes to a limited segment of the

system but evolutionary changes or pure carry-over to

other parts. In the model year projects, the changes are

almost entirely evolutionary.

104 2009 IEEE/IFIP WICSA/ECSA

4.2. Unit of analysis

The unit of analysis was the E/E systems engineering

department at VCC. At the department, a weekly semi-

formal meeting plays the role of an Architecture

Change Control Board (ACCB). At the meeting, issues

are discussed that affect the E/E architecture of one or

several cars, and the architects can get advice on what

solution to choose. The architects working on different

projects can also co-ordinate their actions to avoid that

the architectures of different cars or platforms drift

apart unnecessarily, and avoid conflicts over resources

in the architecture that are needed by changes

processed in parallel.

A fundamental role of the ACCB is to ensure that

the best trade-offs are made in the evolution of the

architecture. Therefore, not all architectural design

decisions are brought to the attention of the meeting. If

the changes appear uncontroversial, meaning that no

trade-offs are needed, the individual architects can

make the decision.

4.3. Data collection

The case study was carried out by reviewing archival

records from the ACCB meetings. The records include

meeting minutes, but also investigation reports and

presentation material that were associated with the

item, and complemented with discussions with people

involved and personal experiences of the author.

We choose to study all the meeting items treated at

the ACCB during the calendar year 2006. During this

year, VCC launched a new large car platform, and the

architecture work for that product line was already

completed. Therefore, the ACCB was expected to be

focusing on evolutionary changes to the existing

platforms during this time period. At the same time,

investigations were already starting, in the form of an

advanced engineering project, on what the next

revolutionary step would be. Although that work was

in an early phase, it could be possible to get some ideas

about the interactions between the two processes.

Often, a certain issue was not resolved directly at an

ACCB meeting, but an investigation was started, and

reported back at a later time. Sometimes, several

iterations at the meeting were needed. We therefore

followed all the items until they were concluded, even

if this in some cases was after the end of 2006.

After an initial screening and removal of some

irrelevant items, the total material included 31 items.

Since most of the items were discussed on an average

4.1 times at the meeting, there were a total of 128

meeting minutes to analyze, together with

supplementary material. Disregarding vacation brakes

and a few extreme items, the average duration of an

item was 11 week. Thus an item was typically brought

back for review or status report every 2-3 weeks.

4.4. Case study protocol

The raw data was in a free, unstructured form and

therefore a way of structuring the data as part of the

analysis was necessary. This was captured in a case

study protocol. Based on the research questions, we

decided to focus on four areas:
1. Problem. What was the reason for bringing up

the item? This relates to the process inputs in
that it captures what triggered the change.

2. Trade-off. What quality attributes of the
architecture were evaluated to conclude how to
handle the item? This relates to what trade-
offs were made within the process.

3. Solutions. What technical areas of the
architecture were affected by the item? This
relates to the process outputs, which are
decisions for change of the current
architecture.

4. Decision. What was the actual decision made?
Was the change proposal approved or not?

These areas correspond to a subset of the information

used to describe architectural decisions in [9].

The data was first recorded as free text, where only

the information necessary for the study was included.

The information in the text was further analyzed to find

common traits between different items and finding

ways to structure the material further. Based on this

structuring, a tabular summary was constructed that

could be used to calculate some statistics. These

statistics were used as a way of discovering patterns,

and should not be seen as research results themselves.

5. Findings

In this section, the findings of the case study are

classified. First, the reasons for change are discussed,

followed by the affected attributes, the technical

aspects involved, and what decision was made.

5.1. Reasons for change

The first question we asked was why the change was

initiated. After studying the data, five main categories

emerged (similar to those used in [15]):
1. Integrate new electrical function or system. In

this case, a totally new feature was being
developed, that did not exist in any Volvo cars
before. The items concerned how to integrate
this feature into the existing or planned

2009 IEEE/IFIP WICSA/ECSA 105

architecture in the best way. 12 items (39%)
fitted best into this category.

2. Integrate modified electrical function or
system. In this case, a similar feature already
existed in some Volvo cars, but either the
functionality was changed or the system
solution was modified. An example would be
that a part of the functionality was suggested to
be re-allocated from one ECU to another. 7
items (23%) fitted best into this category.

3. Integrate carry-over system. Here, an existing
system from another car model was to be
integrated. Typically, it would be a system
from an external supplier, that should be
modified as little as possible. 3 items (10%)
fitted best into this category.

4. Reduce cost. Product cost is very important to
high volume automotive companies, due to its
large influence on profit. Therefore,
automotive companies continuously strive to
improve their products by finding cheaper
ways of implementing functionality. Still, only
one item (3%) fitted best into this category.

5. Provide strategy or future protection. Whereas
the first three categories were usually
expressed in terms of visible customer
functions, the last category was described in
terms of internal concepts in the architecture,
such as networks, electrical load management,
or configuration data parameters. These are
often cross-cutting concerns that affect many
customer functions, and the items were
brought up because responsible persons were
starting to see bottle-necks in the
implementation. 8 items (26%) fitted best into
this category.

The data did not reveal any significant differences in

how many weeks were needed for the meeting to

conclude an item depending on the initial cause.

5.2. Quality attribute impact

Once an item has been brought up, it is interesting to

study how it was evaluated. In architecture methods, it

is often advocated to use quality attributes to guide

development [10]. This approach has to some extent

been adopted by VCC when it comes to the

revolutionary architecture development, and a structure

of important quality attributes has been defined. We

therefore decided to use this structure to investigate

which quality attributes were considered in the

different items in the study as an indication of what

trade-offs were made. (It should be mentioned that the

attribute structure is evolving, and exists in several

versions within the company, but the one we refer to

here was the most recent at the time of the study.)

The attributes are divided into three main

categories:
1. Cost attributes. This is focused due to its

importance to the business. The cost category
includes: (a) product cost; (b) development
cost; (c) production cost; (d) investment costs;
(e) operating costs; and (f) maintenance cost.
(The latter two refer to the operation and
maintenance of the individual products by the
customer, and not the maintenance of the
engineering artifacts within the company.)

2. Product attributes. This category consists of
attributes of the product as shipped to the
customer. It contains four subcategories:
i. Energy usage. This category includes: (a)

energy efficiency; (b) power consumption
during normal operation; (c) operational
time during parking (which essentially
relates to battery capacity); and (d)
physical weight of the system, since that
has an effect on the overall energy usage
of the vehicle.

ii. Communication performance. Includes (a)
throughput and (b) responsiveness of the
communication networks, but also (c)
interoperability, i.e. being able to
exchange data with outside entities such as
factory or service equipment.

iii. Dependability, which is decomposed into:
(a) availability; (b) integrity; (c) reliability;
(d) safety; and (e) robustness.

iv. Integrability. This has to do with how well
the embedded system is integrated into its
environment. It contains: (a) physical
fitness (which relates to packaging the
components into the available space); (b)
styling compatibility (for parts visible to
the customer); and (c) EMC.

3. Delivery process attributes. The last category
includes attributes that are important to the
company when it comes to efficiently
developing and refining the products. It has
two subcategories:
i. Development feasibility. These are the

attributes that capture how well the
architecture can evolve efficiently, and
includes: (a) configurability; (b)
scalability; (c) flexibility; (d) complexity;
(e) extendability; (f) time to market; (g)
commercial efficiency (i.e., how well the
solution matches what suppliers can offer);
and (h) testability.

ii. Manufacturing and service feasibility.
This consists of the two attributes (a)
produceability and (b) serviceability.

In total, the quality attribute structure thus contained 31

attributes at the lowest level.

106 2009 IEEE/IFIP WICSA/ECSA

Although this structure (and variants of it) is and

has been in use at VCC, it was not always evident how

to map the items discussed at the ACCB to it, and

sometimes interpretations had to be made. In most

cases each item is related to several of the attributes,

and in the 31 items included in the study, the number

of attributes considered varied between 0 and 12 (out

of the total 31 attributes), with an average of 5.6 and a

standard deviation of 3.2. The most frequently

considered attributes were:

• Product cost (18 issues, or 58%).

• Responsiveness (12 issues, 39%).

• Configurability (12 issues, 39%).

• Flexibility (11 issues, 34%).

• Power consumption (10 issues, 32%).
Testability was never considered. Operating cost,

service cost, energy efficiency, weight,

interoperability, and styling compatibility were each

considered once only.

There were no significant differences in the number

of attributes considered depending on the initial cause

for the issue.

5.3. Technical area affected

The last area investigated was what parts of the

architecture were affected by the change. Again, an

existing structure of categories at VCC was used to

classify the different items:
1. System structure. This includes: (a) what ECUs

the system consists of; (b) what connections
exist; (c) the logical dependencies of the
customer functionality; (d) how functions are
allocated to ECUs; and (e) the mechanical
structure of the system (including packaging).

2. ECU platform. The basic technologies that are
similar in all ECUs regardless of their
functionality, including: (a) communication
protocols; (b) operating system; (c) diagnostic
software; (d) software download support; (e)
network management; (f) vehicle mode
management; and (g) hardware components.

3. Energy handling, including: (a) energy storage;
(b) energy generation; and (c) energy
management.

4. Electrical distribution, consisting of: (a)
overcurrent protection; (b) junction boxes; (c)
wiring; and (d) ground distribution.

5. External interfaces for: (a) communication and
(b) electrical power.

6. Vehicle information management including: (a)
vehicle identification number; (b) vehicle
configuration; and (c) tampering notification.

In total, there were thus 24 technical aspects included

in the analysis. The number of aspects included for

each item varied between 1 and 10, with an average of

3.5 (standard deviation 2.5). The most frequently

considered aspects were:

• Which connections there should be between
ECUs (18 issues, or 58%).

• Which communication protocols should be
used on specific links (13 issues, 42%).

• Which ECUs should be in the system (11
items, 35%).

• How the wiring was affected (9 items, 29%).

• How the mechanical structure was affected (7
items, 23%).

Energy storage, external power interface, and vehicle

identification number management were not

considered in any item. The logical structure, hardware

platform, over-current protection, junction boxes,

ground distribution, and tampering notification were

only discussed in one item each.

The data did not show any significant difference on

the number of aspects considered depending on what

the initial cause was for the item to be brought up.

There was however a weak positive correlation

between the number of quality attributes considered

and the number of technical areas affected (Pearson

correlation coefficient r = 0.50, with p < 0.005). A

possible interpretation is that the more areas that are

involved in the solution, the more quality attributes

need to be considered in the trade-offs.

5.4. Decision

Since the ACCB functions as a change control board,

the fundamental decisions were expected to be either

approval or rejection of the change request. However,

for rejections some variants exist, and in some cases

the decision was not clear. We ended up with the

following categories:
1. Approval. In 16 cases (52%) some kind of

change was decided. Many items contained
several alternatives, and it was not always the
initially favored alternative that was selected,
but at least some change was approved.

2. Rejection. In 7 cases (23%) no change was
approved.

3. Request withdrawal. In one case (3%) the
change request was withdrawn before the
ACCB had concluded its processing, due to
factors outside the E/E system.

4. Unclear decision. In 3 cases (10%) the archival
records were incomplete and it was not clearly
stated what the outcome was.

5. Transfer of item. In 4 cases (13%) the issue
was handed over to another team, since other
aspects than the E/E architecture needed to be
resolved first.

Interestingly, none of the items where the initial cause

was to integrate a new electrical function or system

2009 IEEE/IFIP WICSA/ECSA 107

was rejected (although in a few cases, the decision was

unclear or the item was transferred). This could be an

indication that the organization assigns a high value to

functional growth, and the architects strive to

implement all the new functions requested.

6. Discussion

Based on the findings presented in the previous

section, we will now discuss what conclusions can be

drawn from these, and what other observations of more

qualitative nature were made during the case study.

The section contains one part related to each of the

three research questions described in Section 2.3.

6.1. Evolutionary architecting in practice

The items that are brought up at the ACCB depend

very much on the current state of the architecture, and

what bottlenecks exist. If, for instance, communication

capacity is a bottleneck, this will appear often in the

trade-offs and be a major issue. If that bottleneck is

resolved, e.g. in the next revolutionary step by adding a

faster communication bus, there will be an

overcapacity. Then, the architects do not need to bring

communication issues to the ACCB for trade-offs, and

hence other issues will dominate the meeting agenda.

Therefore, it can be expected that a repetition of this

study at VCC at another time would yield a different

result regarding the frequency of quality attributes and

technical solutions that are discussed.

When looking into the items in more detail, it is

striking that much of the discussion relates to technical

details at a much lower level than what one normally

expects when dealing with (revolutionary) architecture.

In a way, it is natural because the work in the EAP is

based on an already completed architecture where all

the details are available. But it probably also reflects

the way that the OEMs interact with their suppliers. It

is sometimes the case that a request for new

functionality is accompanied with an existing solution

from a supplier which has developed a similar system

for another OEM, and for that solution many details

are also available. The architecting in that situation

amounts to finding the best way of integrating an

existing solution into an existing architecture, while

doing as few changes as possible to either one.

For some technical areas, it is evident from the

meeting records that the company has clear routines for

what aspects should be analyzed. Network

communication is one such topic, where VCC has for a

long time had an internal competence and fairly well-

defined processes. In other areas, it is less evident how

to analyze the situation, and the meeting minutes

reflect a process which is trying to define itself. The

ACCB did not work with pre-defined checklists for

what aspects should be considered, so there is a risk

that some aspects were missed in certain items due to

ignorance or neglect.

An interesting observation was that there were so

few changes driven by product cost optimization. If

one should speculate, this might be because the

engineers refrain from cost cutting actions that have a

large effect on the architecture. If there is an effect on

the architecture, it is likely that the change will cause

further alterations in other functions or components

due to interface modifications, and this will lead to

more verification efforts being needed. The risk of

doing such changes in terms of potential quality

problems might simply be too high to justify the cost

saving. On the other hand, when it comes to the trade-

offs, the product cost is clearly present in the analysis,

but there is not a systematic process or well-defined

model to weigh cost against different benefits, such as

maintaining flexibility for future evolution. (This

supports the observation in [17] that there is a lack of

model to evaluate business value when choosing the

architecture.)

It is also striking that organizational issues often are

brought up as part of the technical discussions. When a

new solution is introduced, it is not clear who in the

organization should take responsibility for that, and

release all the appropriate specifications. This is a

consequence of the fact that the organization of

product development at VCC (and many other OEMs)

reflects the current design of the vehicle, but

architectural issues are often cross-cutting, and hence

affect many parts of the organization. Our investigation

thus reaffirms the observation in [11] that architecture,

processes, and organization are strongly interrelated.

6.2. Evolution versus revolution

As mentioned in Section 4.2, an advanced engineering

activity was starting up at VCC at the time of this

study, to look at the next generation E/E architecture

and thus reflecting the RAP. It is therefore interesting

to discuss similarities and differences between the

issues considered in that project versus those treated at

the ACCB as part of the EAP.

The next generation architecture (NGA) project did

an exercise to try to prioritize among the quality

attributes presented above, to see what attributes would

drive changes in the architecture. After lengthy

discussions, five attributes were prioritized, among

them product cost and flexibility which were also

among the top 5 at ACCB. The other three attributes

were related to energy usage, communication

performance, and dependability, which are areas that

108 2009 IEEE/IFIP WICSA/ECSA

also rank high at ACCB. Apparently, there is thus not a

clear distinction between the two processes regarding

what quality attributes they consider. On the other

hand, many of the persons involved in NGA also

participate at ACCB, so this could be an indication that

the feedback between the two processes actually

works, but in an informal way.

As described above, the EAP has access to all the

technical details of the architecture, and the discussion

tends to be on the corresponding level. In the RAP, the

discussion starts at a much higher level, and a lot is

unknown or undecided. When looking at the two

processes side-by-side in real life, it becomes evident

that very different models are needed to describe and

analyze the architecture in these two situations.

A curious discovery was that the logical

(functional) description of the system plays very

different roles in the two processes. In EAP, it is

almost not discussed at all (only one item at the ACCB

deals with this), whereas the logical view of the

architecture has been one of the hottest topics in the

NGA project as a means for mastering complexity. We

do not have a definite explanation for this. One

possibility is that the logical view is not needed when

all the details of the solution are available, but plays an

important role in the steps towards defining the

architecture. Other possible reasons for the differences

are that the importance of the logical architecture is

exaggerated in the NGA project, or not treated enough

at the ACCB. (For a further discussion on how logical

architecture is used at VCC, see [14].)

 The fact that one fourth of the items at ACCB

actually concerned strategic issues reflects the

interrelation between the two processes. These items

were dealt with in similar ways as would have been

done in the RAP, and in two cases the items were

actually deferred to the NGA project. However, the

conclusion is that the two processes, although distinct

in nature, do not represent the only two possibilities,

but rather the end points of a continuum. Some issues

that are revolutionary in nature still need to be handled

within the EAP, simply because they cannot wait for

the next revolution to happen. Urgent bottlenecks need

to be removed to allow continuous functional growth.

6.3. Process improvement opportunities

As described in the previous section, there is reason to

believe that the RAP selected quality attributes to

prioritize based on the current trade-offs done within

the EAP. This is in a sense a good thing, because

current bottlenecks need to be removed in the next

platform. However, by looking at the instantaneous

situation, there is a risk that important trends are

missed. In particular, it would be beneficial to monitor

the development of important attributes over time, to

be able to extrapolate the rate of change and thereby

identify future bottlenecks. This is not done

systematically today. In fact, the RAP analyzes the

capacity needs based on ideas of future functionality

created by the product planning department. These

needs are not always correlated with what the company

actually can afford to develop, and hence tend to be

exaggerated. The true rate of change is a trade-off

between the functionality needs and the capacity of the

development organization, and both must be

considered when dimensioning the architecture for

future change. Since a platform's prime objective is to

support the evolution over its lifetime, understanding

what kind of evolution actually occurs is essential and

this can be done by systematically monitoring the

EAP. If a scenario-based approach such as ATAM [10]

is used in the RAP, data on the actual evolution can be

an excellent source during scenario elicitation.

It can be suspected that the EAP is heavily affected

by random factors caused by the individuals involved,

regarding how issues are analyzed and what issues end

up at the ACCB at all. A more systematic approach,

with clear rules for what should be brought to ACCB

and checklists for how the issues are analyzed would

give a basis for a more efficient process and allow a

kaizen approach to be applied to improving the EAP

itself. It would also provide a basis for a systematic

collection of data needed by the RAP, which could

itself give the organization earlier warnings when

bottlenecks start to arise.

7. Conclusions

After having studied how the EAP is carried out in

practice at an automotive OEM, and how it relates to

the RAP, our initial assumption that these two

processes are in fact quite different has been

confirmed. In a previous case study at the same

company [17], an issue that came up was the lack of a

defined architecting process. With the results of this

study, the immediate follow up question is: Which

process? The EAP and RAP are so different in nature

that it is unlikely to find one process description that

would fit them both. If we could improve our

understanding of both these processes, the interplay

between them could also be ameliorated. It would be a

basis for defining what tools, models, and analyses are

needed in each of them, and how they can support each

other with information.

2009 IEEE/IFIP WICSA/ECSA 109

7.1. Future work

Since this case study was conducted at a single

company, it would be interesting to replicate it to other

automotive OEMs and to companies in other business

sectors, to see what similarities and differences exist

and generalize the conclusions. It would also be

worthwhile to investigate some of the discoveries of

this study in more depth, for instance:

• What kind of feedback would be most useful
from the EAP to the RAP, and what metrics
can be used to capture that information?

• What are the primary causes for moving from
EAP to RAP? What is it that implies the need
for revolution?

• Is it possible to discover earlier when the
architecture is evolving into a bottleneck
situation, in order to remove that in a more
limited action than a revolutionary change? Or
taking the same question to the extreme: can
we remove the RAP and handle all changes
within EAP?

• How can we improve the analysis methods
used in the EAP to give a higher value to
flexibility, and in that way better account for
the remaining evolvability potential in the
architecture after the change?

References

[1] M. Aoyama. Metrics and analysis of software

architecture evolution with discontinuity. In Proc. of the

International Workshop on Principles of Software

Evolution, pp. 103-107, Orlando, Florida, 2002.

[2] J. Bosch. Product-line architectures in industry: a case

study. In Proc. 21st Intl. Conf. on Software Eng., pp.

544-554, Los Angeles, 1999.

[3] J. Bosch and P. Molin. Software architecture design:

evaluation and transformation. In Proc. IEEE Conf. on

Eng. of Computer-Based Systems, pp. 4-10, March

1999.

[4] M. Broy, I. Krüger, A. Pretschner, and C. Salzmann.

Engineering automotive software. In Proc. IEEE, vol.

95, no. 2, pp. 356-373, Feb. 2007.

[5] C. Del Rosso. Continuous evolution through software

architecture evaluation: a case study. J. of Software

Maintenance: Research and Practice, vol. 18, pp. 351-

383, 2006.

[6] B. Florentz and M. Huhn. Architecture potential

analysis: a closer look inside architecture evaluation. J.

of Software, vol. 2, no. 4, pp. 43-56, Oct.. 2007.

[7] IEEE 1471-2000, Recommended Practice for

Architectural Description of Software-Intensive

Systems. 2000.

[8] M. Inoki and Y. Fukazawa. Software product line

evolution method based on kaizen approach. In Proc. of

the ACM symposium on Applied computing, pp. 1207-

1214, Seoul, Korea, 2007.

[9] A. Jansen and J. Bosch. Software architecture as a set of

architectural design decisions. In Proc. 5th IEEE/IFIP

Working Conference on Software Architecture, pp. 109-

119, 2005.

[10] R. Kazman, M. Klein, and P. Clements. ATAM: Method

for architecture evaluation. Technical Report

CMU/SEI-2000-TR-004, Software Engineering

Institute, 2000.

[11] S. Larsson, A. Wall, and P. Wallin. Assessing the

influence on processes when evolving the software

architecture. In Proc. 9th Intl. Workshop on Software

Evolution, pp. 59-66, Dubrovnik, Croatia, 2007.

[12] G. Leen and D. Heffernan. Expanding automotive

electronic system. IEEE Computer, vol. 35, pp. 88–93,

2002.

[13] A. Maccari. Experiences in assessing product family

software architecture for evolution. In Proc. 24th

International Conference on Software Engineering, pp.

585-592, Orlando, Florida, May 2002.

[14] D. Selin, H. Svensson, P. Sundsten, A. Wikström, and

U. Eklund. A reference architecture for infotainment

systems. SAE Paper No. 2006-21-0013, 2006.

[15] M. Svahnberg and J. Bosch. Evolution in software

product lines: two cases. J. of Software Maintenance:

Research and Practice, vol. 11, pp. 391–422, 1999.

[16] M. Svahnberg and J. Bosch. Issues concerning

variability in software product lines. In Lecture Notes in

Computer Science, vol. 1951, pp. 146-157, Springer

Verlag 2000.

[17] P. Wallin and J. Axelsson. A case study of issues related

to automotive E/E system architecture development. In

Proc. 15th IEEE Intl. Conf. on Eng. of Computer Based

Systems, pp. 87-95, Belfast, 2008.

[18] R. K. Yin. Case Study Research, 3rd ed. Sage

Publications, Thousand Oaks, 2003.

110 2009 IEEE/IFIP WICSA/ECSA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

