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Abstract. This paper proposes a novel approach to case-based decision analysis 
supported by case-based reasoning (CBR). The strength of CBR is utilized for 
building a situation dependent decision model without complete domain 
knowledge. This is achieved by deriving states probabilities and general utility 
estimates from the case library and the subset of cases retrieved in a situation 
described in query. In particular, the derivation of state probabilities is realized 
through an information fusion process which comprises evidence (case) 
combination using the Dempster-Shafer theory and Bayesian probabilistic 
reasoning. Subsequently decision theory is applied to the decision model learnt 
from previous cases to identify the most promising, secured, and rational 
choices. In such a way we take advantage of both the strength of CBR to learn 
without domain knowledge and the ability of decision theory to analyze under 
uncertainty. We have also studied the issue of imprecise representations of 
utility in individual cases and explained how fuzzy decision analysis can be 
conducted when case specific utilities are assigned with fuzzy data.  

Keywords: Case-based decision analysis, case-based reasoning, decision 
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1   Introduction 

Decision making is prevalent in solving many engineering, health care and 
management problems. It has also gained increasing importance for intelligent agent 
systems [1] to interact with the environment autonomously. The main challenges in 
most practical decision problems are how to cope with uncertain characteristics in the 
environment and how to make choices in the presence of these uncertain features. 
Decision theory [2, 3] has offered useful tools in analyzing uncertain situations to 
identify the “best” course of actions from a reasonable perspective. However, 
practical applications of decision theory entail formulating a real world problem into a 
perfect decision model, which may be hard to achieve in many circumstances due to 
complexity, poor domain knowledge, as well as incomplete information. 

A more pragmatic method to make decisions is to visit previous similar situations 
as reference. It was argued in [4] that decision making under uncertainty is at least 
partly case-based. With a case-based method we don’t require fully understood 



 CBR Supports Decision Analysis with Uncertainty 359 

domain knowledge for building a precise decision model. The research into this realm 
is strongly supported by the methodology of case-based reasoning (CBR) [5]. 
Recently CBR has been widely employed as decision support for explanation [6, 7], 
label ranking [8], as well as recommendation and advice giving [9-13] in numerous 
practical applications. 

This paper proposes a novel approach to support decision analysis using CBR 
methods. The power of CBR is utilized for creating a situation dependent decision 
model from past similar experiences. Further, decision theory is applied to the 
decision model learnt from past experiences to find out optimal, rational, and low risk 
solutions. With such integration we create a unified framework in which CBR and 
decision theory can complement each other. CBR helps decision analysis dealing with 
complicated problems with poor domain knowledge and incomplete information, 
while decision theory helps CBR handling uncertain information and features in the 
problem domain. 

The kernel of the proposed work is the case-based learning of a decision model. 
This is a bit different from the common practice in many CBR systems where finding 
solutions to the query case appears the main goal of the CBR task. What we seek here 
is to derive, from previous experiences, a probabilistic characterization of the current 
situation in terms of likelihoods, risks and probable consequences. We hope this 
would offer a useful means to tackle the inherent nature of uncertainty in a CBR 
process, in particular when similar situations don’t have similar solutions.  

The paper is organized as follows. Section 2 outlines the proposed approach for 
case-based decision analysis at a general level. We explain derivation of state 
probabilities for a query situation in section 3, which is followed by estimation of 
general utilities of actions under states in section 4. Then, in section 5, we discuss 
decision analysis based on a decision model learnt from cases. Section 6 presents 
some related work. Finally this paper is concluded in section 7. 

2   Case-Based Decision Analysis: The Proposed Approach 

This section outlines the proposed approach for case-based decision analysis. We start 
with basics about the decision tree as a decision model. We shall then present the 
general idea of creating a decision tree from cases to support decision analysis. 

2.1   Decision Model for Decision Analysis 

The decision problem for an agent can be abstracted as follows. Given an 
environment with possible states s1, s2, …,sn, the agent has to make a choice from a 
set of alternative actions {a1, a2, …, am}. The outcome or consequence of an action is 
dependent on the real state of the environment. A general utility function has been 
defined for all possible outcomes regarding actions and states. By uij we denote the 
general utility of performing action ai when state sj is true, i.e., )|( jiij saUu = . But 

the agent has no exact knowledge about the state of the environment, only a 
probability distribution of the states is available for decision analysis.  
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This (decision) problem can also be modelled as a decision tree as shown in Fig. 1, 
where pi refers to the probability of state si (i=1…n). The availability of such a model 
is prerequisite to apply well founded decision analysis methods such as Bayesian 
decision theory [2] and the principle of general risk constraints [14] for making 
profitable, secured, and rational choices 

However, constructing a perfect decision tree to abstract an underlying situation is 
not trivial. It requires thorough understanding of the circumstance and detailed 
domain knowledge for elicitation of all relevant information. In many cases it is hard 
to define accurate values for probabilities concerning states of the environment and 
general utilities regarding actions and states in a decision tree. First of all, estimates 
for probabilities of states are very likely to be subjective or imprecise. It was observed 
in [15] that most people usually can not distinguish between probabilities roughly 
ranging from 0.3 to 0.7. Moreover, general utilities regarding actions and states 
correspond to a sort of generalized information which is hard to explicate without 
deep domain knowledge. Instead of giving utility in a general sense, users in real life 
would feel more natural and confident to specify individual utility scores associated 
with specific cases by evaluation of concrete results therein. Later we will show in the 
paper how both the state probabilities and the (general) utilities in the decision tree 
can be estimated from previous cases for a new situation by using a case-based 
approach. 
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Fig. 1. A decision problem modelled as a decision tree 

2.2   Case-Based Learning of Decision Trees 

We consider decision trees as vehicles for carrying knowledge and information about 
candidate actions and their probable consequences. The content of the vehicle is 
situation dependent. In different situations we may have different alternatives, varying 
probabilities and different consequences. Here we propose a case-based approach to 
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creating situation dependent decision trees. The basic idea is to derive the right 
content of the decision model by resorting to previous similar cases with respect to a 
given new situation. This approach is different from conventional ways CBR works to 
recommend final solutions based on a subset of retrieved cases. Contrarily, in this 
paper, we apply CBR in an intermediate stage for creation of a qualified decision 
model, which can then be utilized by various decision analysis methods to find out 
rational, justified choices.  

A procedure for case-based learning of decision trees is shown in Fig. 2. It starts 
with similarity matching between a new situation and previous cases in the case 
library. Every case in the case library receives a similarity score according to a 
predefined similarity metric. We will not detail the issue of similarity measures due to 
the scope of this paper, but interested readers can refer to the references [16-19] for 
recent advancements of similarity modelling in CBR research. After similarity 
matching, a subset of cases that get the highest similarity scores or pass a specified 
similarity threshold are selected and retrieved. In the next step, we perform 
probability and utility derivation based on the subset of retrieved cases and the case 
library. The purpose is to exploit the information residing in the cases to acquire 
probabilities of environment states in the current situation as well as (general) utility 
estimates of alternative actions given different states. Finally, the derived probability 
and utility values are entered into the decision tree for decision analysis.  

Similarity 
matching 

Retrieved
cases 

Probability & 
utility derivation 

Decision 
tree 

Case 
library 

New 
situation 

 

Fig. 2. Case-based learning of decision trees 

As basic notation, we assume that a case Cj in the case library is indexed by a 4-
tuple Cj=(Bj, Ej, Aj, Uj), where 

• Bj is the description of the situation associated with the case. It can, for instance, 
consist of a set of observed or user-acquired attribute values.  
• Ej =(Pj(s1), Pj(s2), …, Pj(sn)) represents the known probability distribution for states 
s1, s2, …, sn in the situation associated with the case. States are usually not observable 
but reflect internal properties of the environment. Sometimes the probability of a state 
in a case is also notated as )|()( jiij CsPsP = . 

• Aj denotes an action that was performed in the situation associated with the case. 
• Uj is an individual utility score evaluating the outcome of performing action Aj in the 
situation associated with the case. Hence it is also notated as U(Aj|Cj) later in the paper. 



362 N. Xiong and P. Funk 

3   Deriving State Probabilities from Previous Cases 

The procedure for deriving probabilities of states based upon available cases is 
depicted in Fig. 3. Given a new target situation Q, we look for its similar cases in the 
case library and a subset of cases is retrieved according to the rule of KNN (k nearest 
neighborhoods) or a specified similarity threshold. The retrieved cases are then 
delivered along with their similarity degrees to the block “information fusion” for 
assessing the probabilities of states in the new situation Q. The information fusion 
block is further divided into two successive steps, as will be described in subsections 
3.1 and 3.2 respectively. The first step concerns evidence combination using the 
Dempster-Shafer theory (simply D-S theory) [20-21] to yield initial beliefs in states. 
The D-S theory enables distinguishing different cases in the information fusion 
process according to their similarity degrees. The second step aims to refine these 
initial beliefs into final probability evaluations via probabilistic reasoning.    

Evidence
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Case Library 

Similarity 
degrees 

Probalistic
reasoning 

Belief 
degrees

New  target 
situation Q State Crisp 

probabilities 

Information Fusion

? 

 

Fig. 3. Derivation of state probabilities based on cases 

3.1   Reasoning Degrees of Belief Using the D-S Theory  

We consider every retrieved case as a source of information. The evidence 
combination rule of the Dempster-Shafer theory is employed to aggregate information 
from relevant cases for assessing the degrees of beliefs in possible states in the query 
situation. 

3.1.1   Evidence Combination Rule of the D-S Theory 
The D-S theory is a powerful tool tackling uncertainty. But we do not intend to have 
an extensive discussion of it in this paper. We shall only introduce some basic 
concepts of this theory that are relevant for our task of belief aggregation from 
multiple cases. 
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In the D-S theory, a sample space of the problem domain is called a “frame of 
discernment”, notated as X. It is assumed that one’s total belief due to a piece of 
evidence can be partitioned into various probability masses, each assigned to a subset 
of X. These probability masses are specified by basic probability assignment (BPA), 
which is a function m performing mapping from the power set of X to the interval [0, 
1] satisfying: 

0)( =∅m  (1)

1)( =∑
⊆ XF

Fm  
(2)

In particular the subsets F of X such that 0)( >Fm are called the focal elements of 

the D-S belief structure.  
Owing to imprecision of information, we can not figure out exact probability 

values for arbitrary subsets of X from a BPA function. The following two measures 
are therefore introduced to impose bounds on the probability of a hypothesis.  

Let hypothesis F be a subset of  X, the belief of F, denoted Bel(F), is defined as                                

∑
⊆

=
FG

GmFBel )()(  
(3)

The plausibility of F, denoted Pl(F), is defined as  

∑
∅≠

=
FG

GmFPl
∩

)()(  
(4)

It was shown in [22] that, for any subset F of X , we have the inequality below 

)()()( FPlFPFBel ≤≤  (5)

This reads that the belief and plausibility measures provide lower and upper bounds 
on the probability of a hypothesis. 

Suppose there are two bodies of evidences over the same frame of discernment, but 
induced from independent information sources. The BPA functions associated with 
the two bodies of evidences are m1 and m2 respectively. The task now is to combine 
the evidence related functions m1 and m2 into an aggregated (basic) probability 
assignment function 2112 mmm ⊕= . According to the evidence combination rule of 

the D-S theory, the basic probability mass for a hypothesis F ( XF ⊆ ), incorporating 
both pieces of evidences, is calculated as follows: 
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The above combination rule reads that m12(F) is calculated from the summation of  
the products m1(F1)m2(F2) where the intersection of F1 and F2 equals F. The quantity 
K plays the role of normalization such that the sum of basic probability numbers for 
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all subsets of X equals one. K is computed on all pairs of F1 and F2 that have no 
intersections with each other. Next we shall use this combination rule to estimate the 
degrees of belief in various states based on the cases retrieved from the case library. 

3.1.2   Combining Retrieved Cases as Evidences 
Suppose Nr cases are retrieved from the case library after similarity matching. 
Without loss of generality, we denote the set of retrieved cases by 

},,,{ 21 NrCCCE "=  (7)

The similarity degrees of these retrieved cases against the query situation are given by 
},,,{ 21 NrSim ααα "=  where αj represents the degree of similarity of case Cj. Our task 

here is to aggregate the information of the cases in E to acquire combined degrees of 
belief in various states in the current situation. 

Obviously the frame of discernment, X, in our problem domain is the set of states 
in the environment. In order to apply the evidence combination rule stated above, we 
first have to interpret the probability distributions in individual cases into a form 
complying with the D-S belief structure. This can be easily done by restricting the 
focal elements of the belief structure to individual states as singleton subsets of X. 
Hence the probability distribution in a case Cj can be interpreted as a basic probability 
assignment function written as 

( ){ }nisPsCBP ijij "1,)(,)( ==  (8)

where si denotes a state in the environment and Pj(si) is the probability that state si is 
true in the situation described by case Cj. 

Now consider the basic probability assignment function that is induced by the 
evidence of a retrieved case Cj. Let m(i, j) be the basic probability value to which the 
hypothesis that state si is true is supported by case Cj as evidence. This probability 
mass should be reduced from function (8) with similarity degree αj as discounting 
factor. Hence we have 

NrjnisPjim ijj ,,1;,,1)(),( "" ==⋅= α  (9)

As the sum of basic probabilities of states is now smaller than one according to (9), 
we introduce an extra subset S containing all possible states. The subset S receives the 
remaining probability mass unassigned to any individual state. Thus we can write 

NrjsPjimjSm jij

n

i
j

n

i

,,1,1)(1),(1),(
11

"=−=−=−= ∑∑
==

αα  (10)

Having established basic probability assignments induced by retrieved cases, we now 
attempt to aggregate these assignment functions into an overall assessment using the 
evidence combination rule. Denote Et as the set of the first t retrieved cases as follows:  

},,,{ 21 tt CCCE "=  (11)

Let m(i, Et) be the basic probability mass to which the hypothesis that state si is true is 
supported by all evidences (retrieved cases) in Et. By m(S, Et) we denote the 
remaining probability mass unassigned to individual states after all evidences in Et 
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have been combined. The algorithm to fuse case information according to the 
evidence combination rule can be formulated in a recursive form as follows: 

( ))1,(),()1,(),()1,(),(),( 11 +++++= ++ timESmtSmEimtimEimKEim ttttt

ni "1=  

(12a) 
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where Kt+1 is a normalizing factor to make the sum of the basic probability values 
induced  by the evidences in Et+1 equal one. It bears noting that, to start with the 
above recursive form, we have ),(),( 1 1imEim =  and ),(),( 1 1SmESm = . The final 

outcomes of this combination procedure are m(i, ENr) and m(S, ENr), which correspond 
to the basic probability values after incorporating all retrieved cases as evidences.   

In terms of the belief function defined in (3), the probability mass m(i, ENr) also 
represents the degree of belief in state si after considering all retrieved cases. Hence 
the combined degrees of belief are directly given by 

niEim Nri "1),( ==β  (13a)

∑
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i
iNrS ESm

1

1),( ββ  (13b)

where βS refers to the degree of belief unassigned to any individual state after all 
retrieved cases have been incorporated. It indicates a degree of ignorance or 
incompleteness of information in the generated assessment.   

Further, from the plausibility definition in (4), the value of plausibility for the 
hypothesis that state si is true is equal to βi+βS. It is the upper bound of the likelihood 
for the truth of state si. The lower bound for the likelihood of state si is reflected by 
the belief degree βi. In other words, we obtain the interval [βi, βi+βS] as estimate of the 
probability for state si (i=1…n) by using the D-S combination rule. In the next 
subsection we shall discuss how to refine these initial estimates to obtain crisp 
probability values of states by doing probabilistic reasoning.  

3.2   Reaching Final Probabilities via Probabilistic Reasoning 

The probability intervals derived from the D-S rule can be refined via probabilistic 
reasoning. Without any prior knowledge, the initial probability P0(si) for a state is defined 
by equally distributing the unassigned probability βS among all states. Thus we have 

ni
n

sP S
ii "1)(0 =+= ββ  (14)

Then we perform probability updating based on the Bayes theorem. 
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As cases in the case base were collected independently of each other, we utilized 
the similar relation with every retrieved case, sr(Cj), as an independent observation to 
update the prior probabilities according the Bayes theorem. Define Hj as the set of the 
first j observations (similar relations) as follows: 

)}(,),(),({ 21 jj CsrCsrCsrH "=  (15)

The Bayesian reasoning for probabilities of states can be summarized in a recursive 
form by 
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Note that we have )()|( 00 ii sPHsP =  to start with this recursive form. 

It can be seen from Eq. (16) that, to update probabilities of states, we need the 
conditional probability P(sr(Cj)|si) for all the retrieved cases Cj (j=1…Nr). Such 
probability can be regarded as the likelihood of a randomly picked case from the case 
base being similar to Cj provided that the state in this case is known as si. Hence we 
have 
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Further, we apply the Bayes theorem and transform the probability P(C|si) to the 
following form: 
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Since we assume all cases in the case library are equally probable to be selected, Eq. 
(18) is simplified to 
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At this point, it has been obvious that we can calculate the probability P(C|si) by using 
probabilistic information stored in individual cases in the case library, which further 
enables updating state probabilities in terms of Eqs. (16) and (17).  

However, one disadvantage of the above calculation with Bayes theorem is that 
different similarities (thereby importances) of the cases are not taken into account. For 
more accurate results, we are not directly adopting such assessment as final 
probability values. Instead we utilize the probability values yielded from Bayesian 
reasoning as factors to divide the unassigned probability βS across various states. This 
means that every state si receives an additional probability mass from βS in proportion  
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to P(si|HNr). This additional mass is then added to the lower bound of probability, βi, 
to settle the final probability assessment. In other words, after information fusion in 
two steps, the probability for state si is finalized as 

niHsPsP SNriii "1)|()( =⋅+= ββ  (20)

4   Derivation of General Utilities of Actions Given States 

The basic idea is to derive the general utility of performing one action under a given 
state by using information from the case library. However, owing to the fact that no 
exact information is known about states in cases, case specific utilities recorded can 
not provide direct answers to our inquiries. As an alternative, we here attempt to 
estimate this utility with an expected value by considering all those cases in which the 
underlying action was performed. By Sub(a) we denote the subset of cases in the case 
library in which the action a was performed. Then the expected value of the general 
utility of performing action a given state si can be given by: 

)|()|()|(
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ti sCPCaUsaU
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(21)

As U(a|Ct) represents the known utility recorded in case Ct, what remains to resolve is 
the probability Pa(Ct|si). By employing the Bayes theorem, this probability is 
reformulated as 
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Considering that cases in the subset Sub(a) are equally probable to be picked up, Eq. 
(22) is reduced to 

∑
∈

=

)(

)|(

)|(
)|(

aSubC
ki

ti
ita

k

CsP

CsP
sCP  

(23)

Since P(si|Ck) is available as the probability of state si in case Ck, we easily resolve 
Eq. (23), leading to computation of the expected value of the general utility according 
to Eq. (21). This expected value then enters the decision tree as estimation of the 
(general) utility of action a given state si. 

5   Decision Analysis Using Case-Based Decision Model 

Once a decision model is constructed from cases, it can be applied to analyse and 
evaluate alternative actions in the current situation, taking into account both 
likelihoods and probable consequences. We will first introduce a well established 
principle for doing such analysis of decisions, followed by discussions of how this 
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basic principle can be applied in circumstances when utility values specified in 
individual cases are fuzzy or imprecise. 

5.1   Principle of Maximizing Expected Utility 

With complete information in the decision tree derived, we can now compute the 
expected utility of the various alternative actions. The expected utility of action aj is 
defined as 

)|()()|()()|()()( 2211 njnjjj saUsPsaUsPsaUsPaEU ⋅++⋅+⋅= "  (24)

where P(si) and U(aj|si) represent the probability and  (general) utility values derived 
from the retrieved cases and the case library respectively. Then a choice should be 
made among the alternatives according to the principle of maximizing the expected 
utility [2], which is formulated as follows:  

The principle of maximizing expected utility (MEU): In a given decision situation 
the deciding agent should prefer the alternative with maximal expected utility. That 
means that alternative a1 is preferred to a2 if and only if )()( 21 aEUaEU > . 

The expected utility of an action approximates the mean utility score that will be 
obtained if an agent or decision maker meets the situation many times and chooses 
and conducts the same action constantly. In view of this, the significance of the MEU 
principle is to optimize the long term performance of decision making under 
uncertainty.   

The merit of doing decision analysis after CBR can be illustrated with the 
following example. Assume that, given a target situation, two cases C1 and C2 are 
retrieved from the case base and they have actions a1 and a2 respectively. Both cases 
are assigned with good utility values as evaluations of their outcomes, but case C1 is 
more similar to the target situation. Then, according to CBR alone, action a1 
associated with case C1 will be judged more suitable as solution to the new situation. 
Nevertheless, if we further consider more information in the decision tree, we might 
change our preference after decision analysis.  

For instance, suppose that the state probabilities and utilities of actions under 
possible states (s1 and s2) are derived from previous cases as follows: 

6.0))(),(|( 211 =CsrCsrsP                    70)|( 11 =saU              40)|( 12 =saU  

4.0))(),(|( 212 =CsrCsrsP                 90)|( 21 −=saU           60)|( 22 =saU  

The expected utilities of a1 and a2 are calculated as EU(a1)=6 and EU(a2)=48 
respectively in the current situation. Hence we will prefer action a2 according to the 
MEU principle. We believe that a2 is a more rational choice considering the high risk of 
action a1 under state s2. This rational choice is achieved by taking advantage of the case-
based decision tree which accommodates more information than case similarity alone. 

5.2   When Utility Values from Cases Are Fuzzy 

Until now we have assumed that a crisp utility value is assigned in every case in the 
case library. However, in numerous practical applications, it is frequently difficult for 
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human users and even domain experts to assign an exact utility as their evaluation of 
the consequences. They would be more likely to say that the outcome in a case should 
receive a utility score of, say, around 60. Here “around 60” is an imprecise value and, 
in terms of fuzzy set theory [23], it is considered as a fuzzy number. Our intention is 
to extend the representation to allow for users to specify vague, fuzzy data as 
evaluations of utility in specific cases. But, by doing this, we will not exclude the 
possibility that users assign crisp utility values if they prefer. Considering that crisp 
numbers are special singleton fuzzy numbers, this extension would bring a useful 
generalization of the theory and methods making our framework applicable to more 
general types of data and information.  

In fuzzy set theory, a fuzzy number is a fuzzy subset of R that is convex and 
normal. So, in principle, users can define any convex and normal fuzzy subset of R as 
fuzzy utility in a specific case. But, for reducing computational complexity, we would 
prefer to recommend triangular fuzzy numbers which are intuitive, simple, and easy 
to manipulate. A triangular fuzzy number F can be depicted by a 3-tuple: F = (f1, f2, 
f3), with its membership function being illustrated in Fig. 4. 

x

µF(x) 

f1 f2 f3

1.0 

0 

 

Fig. 4. A triangular fuzzy number 

Two nice properties of triangular fuzzy numbers are that the addition of two 
triangular fuzzy numbers is still a triangular fuzzy number and that the multiplication 
of a constant with a triangular fuzzy number is still a triangular fuzzy number [24]. 
That is to say that, given two triangular fuzzy numbers F = (f1, f2, f3), and G = (g1, g2, 
g3), and a constant γ, we have 

),,( 332211 gfgfgfGF +++=+  (25)

),,( 321 fffF ⋅⋅⋅=⋅ γγγγ  (26)

Owing to the properties depicted in Eqs. (25) and (26), we clearly see that the general 
utility estimation in (21) and the expected utility of actions in (24) are also triangular 
fuzzy numbers as long as utilities in individual cases are specified as triangular fuzzy 
numbers. Consequently, evaluating alternatives according to the EMU principle turns 
to studying the fuzzy dominance relations between the fuzzy expected utilities 
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represented as fuzzy numbers. This task is not trivial in the sense that a natural order 
does not exist with the quantities as fuzzy numbers. 

Let Fi and Fj be two fuzzy numbers corresponding to the fuzzy expected utilities 
for alternative actions ai and aj respectively. The fuzzy relation that ai is dominated by 
aj (or Fi is dominated by Fj) is defined by the degree of possibility and the degree of 
necessity of the event 

ji FF < , which are given by 

( ))(),(minsup)( yxFF
ji FF

yx
ji μμ

<
=<Π  

(27) 

( ))(),(minsup1)( yxFFN
ji FF

yx
ji μμ

≥
−=<  (28) 

Further, we investigate to what extent an action is a dominated one. Since the 
statement that ai is dominated becomes true if ai is dominated by at least one of the 
other alternatives, we apply an s-norm as logical disjunction to connect the dominance 
relations between ai and the others. If the maximum operator is adopted as the means 
for s-norm, the degrees of possibility and necessity of alternative ai being dominated 
are respectively defined as 

( ))(max)( ji
ji

i FFaPoss <Π=
≠

 (29)

( ))(max)( ji
ji

i FFNaNec <=
≠

 (30)

By means of the possibility and necessity values given in (29) and (30), we 
actually have defined a fuzzy subset of dominated alternative actions. Finally, we 
define an α-β-cut of this fuzzy subset to reach a crisp subset DOM. The membership 
function of the crisp subset DOM is given by 

⎩
⎨
⎧ ≥≥

=
otherwise

aNecandaPoss
a ii

iDOM 0

)()(1
)(

βα
μ  (31)

where α, β (0< β< α<1) are parameters controlling the number of dominated actions. 
The remaining alternatives are subsequently recommended to the decision maker as 
non-dominated solutions.  

6   Related Work 

A probabilistic model for CBR was first proposed in [25]. The basic idea presented 
there is to consider the CBR principle that similar problems have similar solutions as 
a “rule of thumb” rather than a universally valid rule. According to this probabilistic 
model, the conventional CBR principle can be reformulated into a heuristic rule 
stating that similar problems are at most likely to have similar solutions. The merit of 
this formulation is that it allows for exceptions to the CBR rule.  

Later, a similarity-based inference scheme [26] was developed from the CBR 
probabilistic model [25] by the same author. The method is to represent information 
from relevant cases into belief functions for characterizing confidence of alternative 
solutions for a new problem at hand. Then the belief functions from individual cases 
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are combined in the framework of information fusion. This method can be useful in 
the overall problem solving process by measuring different confidence levels of 
different candidate solutions. 

We proposed a framework for case-based decision analysis in [27], in which the 
probabilistic information from individual cases was integrated solely with the Bayes 
theorem. The weakness is that it can not take into account the different degrees of 
similarity of retrieved cases in probabilistic calculation. This problem is overcome 
with the work presented here by using the D-S theory for evidential combination with 
respect to cases. Our work differs from [25] and [26] in that it does not directly 
evaluate solutions and their confidences. Instead it aims to produce an intermediate 
decision model by fusing information from cases to highlight all possibilities and 
consequences. Decision analysis can then be conducted on the derived decision model 
to identify the most promising solution in view of expected outcomes.  

7   Conclusion 

This paper presents a new framework for case-based decision analysis supported by 
CBR. We claim that CBR and decision theory can complement each other in a 
coherent, hybrid system. CBR has the strength of creating a situation dependent 
decision model without domain knowledge. This is achieved by deriving states 
probabilities and general utility estimates from previous cases through an information 
fusion process comprising evidence combination and probabilistic reasoning. It 
follows that more accurate and objective data will be available in the decision model, 
promoting more reliable results of decision analysis. On the other hand, decision 
theory helps CBR better tackling the uncertainty issue by considering all probable 
consequences, risks, and likelihoods rather than similarity of cases alone. This would 
endow the agent or decision maker with more complete awareness of the situation and 
environment for making predictive, secured and rational choices. Besides, we have 
shown that fuzzy numbers can be used to represent case specific utility values for 
decision analysis and that fuzzy and probabilistic information are well utilized 
together in our case-based framework.  

In future we will apply our approach to support decision making in strategic 
maintenance scenarios in industry. Therein a machine or production line under 
investigation can be considered as the environment, and evaluation grades or faults of 
the machine refer to the internal states of the environment. We plan to not only assess 
probable grades for machines but also carry out decision analysis based on previous 
cases to find out effective, rational, low risk counter-measures (maintenance plans, 
repair alternatives, etc.) as decision support.  
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