Towards Systematic Software Reusein Certifiable
Safety-Critical Systems

Mikael Akerholnt?, Rikard Land?

Malardalen University, School of Innovation, Desimd Engineering, Vasteras, Sweden
’cc Systems, Vasteras, Sweden
rikard.land@mdh.se, mikael.akerholm@-cc-systems.com

Abstract. Safety-critical systems and subsystems are ofeareldped as a new generation of a
previous system, or as a variant of a system ardadeloped and put into operation. However, in
our experience, even in such cases, where larges pérthe systems are actually reused,
organizations implement very much the same heaoggsses as for new development. This is
partly because during a safety assessment theneédeeeded to motivate the desired level of
system safety calls for coherent documentatiorhefdomplete system development project. We
believe the reuse process can be adapted to beeffimient, while still being compatible with
safety standards, by adopting a state-of-the-atictsired component-based reuse approach
incorporating the specific safety activities tHa¢ standards mandate. This position paper outlines
our planned research, which will consist of twotgathe first part is an interview study of
industrial cases, in order to identify good praggito employ and pitfalls to avoid. In the second
part we will implement the most promising practigesuitable industrial projects for evaluation.

1 Introduction

Certifying safety-critical software systems to mempliant with required levels of safety stipulated
by different safety standards, e.g., [2, 4, 5,,68,7, 10], becomes more and more common in the
industry. This is due to increased legislation meguents (e.g., the EU Machinery Directive,
2006/42/EC) and market expectations. The approacithieve safety for software in the standards
is qualitative. Implying that the safety standaads general and cover many practices in the systems
entire life-cycle, e.g., how requirements are haddind traced in the development process, how the
software is designed and programmed, how the pates#fety hazards are analysed and handled,
what compilers and development tools that are used,well the tests covers the code, and how the
system is planned to be maintained. The benefiteiarly that the standards raise consciousness of
different safety related aspects of the software;oan perhaps also expect a minimum level of
safety of a certified software system given thatghfety assessment and certification is fair.

The problem from the viewpoint of the software miacturers is that the standards are extensive
and require much documentation to provide eviddrove the requirements of the standards are met.
At the same time the standards are very restrigtiven it comes to usage of the latest development
of software engineering tools and approaches, thg.most general standard IEC61608 [4], which
many other domain specific standards refer to, dugsallow any object oriented programming
languages yet. Furthermore, reuse is often noiattpltreated and the required processes focus on
development of new software. This seems to resuktxipectations from safety assessors issuing
safety certificates that the documentation shéliécethat all the software have been developenhfro
scratch.

The advisory circular AC20-148 [3] from the aviosidomain is an exception where reuse and
safety is treated together. It provides guideline® to be able to develop software components that
is certifiable according to the avionics safetyng@rd for air-born equipment RTCA DO-178B [10].

However, it also gives good guidance for any dgwelent of reusable components where safety is
important. The advisory circular takes the viewpdimat all assumptions and requirements on the
component’s usage must be fully specified, andsse® that a lot of verification efforts are left fo
the system integrator to prove that the environalemssumptions made by the component
developer are valid in the context where the corepbis used. The inward sense of AC20-148 is
clearly to put so high requirements on re-verifimatactivities for integrators that safety is not
compromised within the new context. However, theisaty circular gives no guidelines on how to
e.g. organize documentation or design the softteaeehieve this as efficiently as possible.

In this position paper we outline the main challemgve intend to address in our future research.
The goal is to define an efficient state-of-thestrtictured component-based reuse approach [11] for
safety-critical systems. Specified pragmaticalhg goal is to specify a high-level process model
and identify more detailed practices that enaklfieient development (bothf reusable components
and with reusable components), while not compromising thietstequirements of the safety
standards and the advisory circular AC20-148.

We intend to perform two main types of studies ur avork, interviews and case studies.
Interviews will mainly be held with practitionersher have been involved in safety-critical projects,
in order to collect good practices and lessonserAs a complement, we intend to also interview
safety assessors about their view about past expes of software reuse. Case studies will consist
of us participating in, or closely studying specifindustrial projects, where some practices
considered having the highest potential in thei@agr project are implemented. We will then
evaluate the effect of these practices.

2 Process M odd

Fundamental to all safety standards is that safespftware systems has to be addressed during
all life-cycle phases, from early analysis, throogh design, implementation, production,
maintenance and decommissioning, also taking icto@nt people aspects such as training of
developers as well as of users. All safety starsitirdrefore specify a reference process which must
be followed, where certain tasks are performedreefthers in an integrated project. For example,
hazards have to be identified early, and the deb@mto be designed to tolerate those hazards;
safety cannot be assessed on basis of only theedsti artefact. The standards do discuss the usage
of components treated as “proven-in-use”; howetlee, standards are not very clear about the
absolute requirements. Proven-in-use tends to bemmmly understood as something that is
applicable to standard C libraries shipped wittitted compilers rather than software developed by
companies certifying vehicles and machines. In $tdal practice, subcontractors therefore have to
work closely together with system integrators. Eyfea subcontractor, or an internal department,
intends to reuse some software component, it hdsetoe-fit by, e.g., making all assumptions
explicit, reconstruct the trace from requirementsvd to design, implementation, and tests of the
component, in order to fulfil the standard. Thesmguence is that if a safety standard is followed i
the most straight-forward way, it requires a lotrefvork which (we believe) should be possible to
reduce by applying a state-of-the-art componenédaevelopment process.

Clearly, this call for a process model which has tbllowing two properties: 1) It provides a
clear interface between system development and coem development. “Interface” should here
be interpreted in the broadest possible senseydimg, e.g., how documents are organized and
divided between system development and componemiafament to accommodate different parts
of the safety analysis and final motivations theg $afety goals are met. 2) It is compatible wliih t
process model of safety standards, which simplifiad be described on a high level as a V-model

with many detailed verification requirements. Witompatibility” we intend nothing less than
acceptance by safety assessors in real indusasalsc We are aware that the details differ depgndin
on which standard is being addressed, and thetreSolur work might need to be adjusted to be
applicable in a certain domain.

Fig. 1 outlines such an initial process modellllisirates the essentials of the process models of
important safety standards [2, 4, 5, 6, 7, 8, 9, Wbile also incorporating the characteristics of
component-based development process [1]. Althotigh described at a very high level and only
reflects the very initial phase of our researche Timain feature we want to point out is that some
activities and artifacts are specified twice, amg of the important challenges is to specify which
sections should be specified as part of the sysewelopment or component development,
respectively. For example, how extensive could @immlild a hazard analysis be performed at system
level, in order to interface well with the hazardabysis performed as part of the component
development?

System & Project Definition Phase Safety Asessment Assessment Phase
Vision, Safety Plan Plan Safety Asessment

/

Requirements Test System Validation Phase
System Development Phase | Specification Acceptance testing
System Requirements, Validation
Preliminary hazard analysis

N /

N r
E System Development Phase | Integration Test System Integration Phase \J

System Architecture e Integration testin
Detailed Hazard analysis L Specification 9 9

\7 i
- Component & Project Definition Phase Component Assessment Phase
Vision, Safety Plan Safety Asessment Comp t Safety A "
! Plan ponent Safety Assessment
Component \/enflcatlon Phase
Component Development Phase | Requirements Test Pc e
Component Requirements, s omponent Testing
pecification V. Id ti
Prellmlnary hazard analysis alidation

—
-

Component Development Phase Il Module Verlficatign Phase
Detailed Design Module testing
Detailed Hazard analysis
Component Development Coding Phase
Implementation

Figure 1. A component oriented process derived from the \da®imposed by safety standard

3 Specific Challenges

The following paragraphs present some specificlehgés we find particularly challenging or
having a great potential for improvement by considgcarefully. The list is by no means intended
to be exhaustive, but is a selection of issuesudsad in safety standards [2, 4, 5, 6, 7, 8, 9ahd]
in particular the advisory circular AC20-148 [3].

Component interface - Component developers need to specify the compenenierface, and
the system integrator needs to ensure that the @oemp and the rest of the system interact
correctly. “Interface” should be interpreted in adev sense; the advisory circular AC20-148
specifies e.g. configuration parameters, restmction tools, memory and timing requirements,
external resources required by the component, comuation mechanisms to software and
hardware, input and output variables, and accesshamésms. In addition to this, component
developers also need to specify all assumptionsaraing how integrators will use the components,
and system integrators have to validate that allagsumptions the component developer made are
met.

Component abstraction — Defining components so that they can be sucdgssiused with
high benefits in many applications is non-trivial big software component would imply a higher
benefit associated with reuse, however, a big soiveomponent is also typically very information
rich which makes it hard to reuse in different ess. For safety-critical systems, functions not
used in an application are typically not allowed®part of the application, thus, some mechanism
for deactivating code would be required. This mustconsidered during the development of the
component. Moreover, the deactivation mechanismlfitsiust be target for certification. The
developer and users must clearly identify any imf@tion about deactivated code and the usage of
associated deactivation mechanisms.

Activities left for the integrator - Component developers need to specify activitiesarneimg
for the integrator to perform when using the congrdnn a specific system context. In particular
this involves (re-)verification of the componentkdime it is reused in a new systdaxamples of
verification activities left for the integrator amding to AC20-178 are data coupling analysis,
control coupling analysis, timing analysis, memanyalysis, stack analysis, software integration
testing, requirements-based test coverage, harebudivware integration testing, robustness testing
of component functions, including safety and priitec features, and partitioning and other
protection mechanisms for integrity validation. Agathe challenge is to make it easy to redo all
this verification, and will likely require solutienincluding both documentation and verification
environments.

System level traceability - The integrator must address and maintain tradgabiétween the
component, the system software, and the systém development of a component does not follow
from the top-down system development process, sa#sign decisions and assumptions made for
the component have to be revisited each time liteing reused in a new system context. To be
efficient, all these decisions and assumptions hegiackaged so that it is easy for the integtator
establish a link/connection/motivation that theteys requirements are actually met satisfactory by
using the component.

Certified or certifiable - There is a difference if the goal is a componeatified (for reuse
without modification) or a component developed ¢odasily certifiable with little effort. In the it
case, the component has to be general enough (whitdelf to some extent involves the challenge
of component abstraction). If aiming for easy migdifion for integration in a new, certifiable
system, the focus is more on making it extensilieluding organizing all safety-related
documentation, traceability, etc. for easy adoptod integration into a new system context. This
choice influences how the component developmeatganized the first time. Due to the nature of
safety and safety assessment, to be successtidvalopment activities and artifacts will have & b
considered in an overall reuse approach: requiressnemalyses, documentation, design models,
verification, safety case, etc. We believe thenedasilver bullet (universal, single solution) it
many small steps/practices are needed in ordexcmnaplish efficient reuse.

4 Conclusions

We have presented the main challenges we plandeessl in our planned research project. In
summary we seek an efficient state-of-the-art siined component-based reuse approach suitable
for certifiable safety-critical systems. Importasta high-level process model compatible with the
process models mandated by safety standards, aiugrtfy more detailed practices that enable
efficient development botlf reusable components amdth reusable components. Relating and
motivating processes and practices with respechdn safety standards will be a crucial part in
order to get impact in industry, and enable opputies to validate the work in practice and get
acceptance of, e.g., safety assessors in realcggoj€hus, we hope to propose efficient ways to
address at least some of the issues discusseis jpaition paper, and validate these scientificall

We also hope that we can contribute to an increaseareness and interest in the research
community of these practical aspects of safetyifaztion.

Acknowledgements

This work is supported by the Knowledge FoundatfgiKS), and the Swedish Foundation for
Strategic Research (SSF) via the strategic reseamine PROGRESS.

References

[1] Crnkovic, I., Chaudron, M., Larsson, S.: Comporeased Development Process and Component
Lifecycle. In : International Conference on Softwaregineering Advances (ICSEA'06), 2006

[2] European Committee for Electrotechnical Standattbn (CENELEC), standard EN50128, Railway
applications. Communications, signaling and prdogssystems. Software for railway control and
protection systems, 2001

[3] Federal Aviation Administration (FAA), advisorycircular AC20-148, Reusable Software
Components, 2004

[4] International Electrotechnical Commission (IEGytandard IEC 61508, Functional safety of
electrical/electronic/programmable electronic safetated systems, 2005

[5] International Electrotechnical Commission (IEGtandard IEC 62061, Safety of machinery -
Functional safety of safety-related electricalcttenic and programmable electronic control systems
2005

[6] International Electrotechnical Commission (IEGjandard IEC 61511, Functional safety - Safety
instrumented systems for the process industry se2d04

[7] International Organization for Standardizatii®O), standard 1S013849, Safety of machinery --
Safety-related parts of control systems, 2006

[8] International Organization for Standardizati®®80), standard 1ISO15998, Earth-moving machinery --
Machine-control systems (MCS) using electronic congods -- Performance criteria and tests for
functional safety, 2008

[9] International Organization for standardizat{®80), standard 1SO26262, Road vehicles -- Funation
safety, under development

[10] Radio Technical Commission for Aeronautics (RTCAfandard RTCA DO-178B, Software
Considerations in Airborne Systems and Equipmentfi@atton, 1992

[11] Szyperski, C.: Component Software 2nd edn. AattHd/esley, 2002

