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Abstract

This paper presents a novel statistical-based approach
to Worst-Case Response-Time (WCRT) analysis of complex
system models. These system models have been tailored
to capture intricate execution dependencies between tasks,
inspired by real industrial control systems. The proposed
WCRT estimation algorithm is based on Extreme Value The-
ory (EVT) and produces both WCRT estimates together with
a predictable probability of being exceeded (i.e., 10−9). By
using the tools developed, we validate the proposed method
by evaluating a model taken from the real industrial control
system, and we show the results in comparison with other
four analysis methods.

1 Introduction

To date, most existing embedded real-time software sys-
tems have been developed in a traditional code-oriented
manner, i.e., making extensive use of legacy software.
Many such systems are maintained over extended periods
of time, sometimes spanning decades, during which the sys-
tems become larger and increasingly complex. The result is
that these systems are difficult and expensive to maintain
and verify. There are many embedded systems existing in
industry which consist of millions of lines of C code, cor-
responding to 50, or 100 tasks or more, where many tasks
have real-time constraints. The example of such systems is
the robotic control systems developed by ABB [1]. Looking
closer at these systems, contrary to the assumption in most
real-time theory, tasks exhibit strong temporal dependen-
cies, e.g., asynchronous message-passing, globally shared
state variables and runtime changeability of periods and pri-
orities of tasks, which vary the execution time of the tasks
radically.

One desirable approach to avoid the timing-related er-
rors in such complex systems is to use schedulability anal-

ysis methods, such as Response-Time Analysis (RTA) [2].
Nevertheless, RTA (and other schedulability analysis tech-
niques), although providing the prediction about timing be-
havior of execution in worst-case scenarios, rely on the ex-
istence of a fixed Worst-Case Execution-Time (WCET) of
the tasks. Correspondingly, the quality of the analysis is di-
rectly correlated to the quality of the WCET estimates. Un-
fortunately, in the above described systems, the WCET of
tasks obtained by static WCET analysis techniques may not
easily be bounded. Sometimes a pessimistic WCET bound
can be calculated based on maximum queue lengths. While
in other cases the WCET is completely unbounded until the
behavior of dependent tasks is known. Consider the follow-
ing example in Figure 1, taken from an industrial robotic
control system, where a task reads all messages buffered in
a message queue and processes them accordingly:

1 msg = recvMessage(MyMessageQueue);
2 while (msg != NO_MESSAGE){
3 process_msg(msg);
4 msg = recvMessage(MyMessageQueue);
5 }

Figure 1. Iteration-loop wrt. message passing

By using static WCET analysis, the upper bound of num-
ber of messages actually consumed is equal to the maximum
queue size. Furthermore, other tasks with a higher priority
may preempt the execution of the loop and refill the queue
at runtime. Looking further at the corresponding task peri-
odicity dependencies, the analysis performed at RTA level
also contributes to the pessimism as the number of loop it-
erations is not supposed to be bounded by the maximum
queue size when preemption occurs.

The other approach, which avoids the state-space explo-
sion issue raised by model checkers such as UPPAAL [3]
and TIMES [4], for instance, is to use simulation-based
methods that sample the state space. The first type of sim-
ulation technology to use is Monte Carlo simulation, which
can be described as keeping the highest result from a set of



randomized simulations. Several frameworks already ex-
ist in this realm, such as the commercial tool VirtualTime
[5] and the academic tool ARTISST [6]. However, the main
drawback of using Monte Carlo simulation is the low state-
space test coverage, which subsequently decreases the con-
fidence in the results of finding rare worst-case scenarios.
The other category is to apply an optimization algorithm
(e.g., (meta)heuristic search algorithm), on top of Monte
Carlo simulation, as in [7] and [8], which yield substan-
tially better results, i.e., tighter lower bounds of the WCRT
estimation.

Another approach is to use stochastic analysis of hybrid
task sets in priority-driven soft real-time systems, as in [9].
Nevertheless, this approach does not allow for dependencies
between tasks in the analysis, and the priority of jobs (a task
is comprised by a sequence of jobs) and task periods are
fixed.

In this paper, we present a novel statistical-based ap-
proach to response time analysis of systems with intri-
cate execution dependencies between tasks. The proposed
method uses samples collected by running Monte Carlo
simulation as the input, and produces WCRT estimates
on tasks along with a predictable probability of being ex-
ceeded, i.e., 10−9.

2 Modeling of Complex Real-Time Systems

The system model used in this work describes the de-
tailed execution dependencies between tasks with respect
to resource usage and interaction, e.g., Inter-Process Com-
munication (IPC), CPU execution time and logical resource
usage. Practically, the model is specified by the modeling
language used in RTSSim [10], which can be considered
as a domain-specific language describing both architecture
and behavior of task-oriented systems developed in C, and
running on a single processor. Its syntax and semantics are
as expressive as the C programming language, and include
the typical RTOS services to the task models, such as task
scheduling (e.g. Fixed-Priority Preemptive Scheduling),
IPC via message passing and synchronization (semaphore).
RTSSim employs a hierarchical model to specify the sys-
tem structure consisting of a number of tasks. Each task is
characterized by a period, a constant offset, a maximum jit-
ter, and a priority. Periods and priorities can be changed at
any time by any task in the application. Finally, each task
is composed of a number of jobs and invoked RTOS ser-
vices. The interested reader can refer to [10] for a thorough
description of RTSSim.

3 Extreme Value Theory

Extreme Value Theory (EVT) [11] is a separate branch
of statistics for dealing with the tail behavior of a distribu-

tion. It is used to model the risk of the extreme, rare events,
without the vast amount of sample data required by a brute-
force approach. The example applications are hydrology,
material sciences, telecommunications etc.

There are three models in EVT, i.e., the Gumbel (type I),
Frechét (type II) and Weibull distributions (type III), which
are intended to model random variables that are the maxi-
mum or minimum of a large number of other random vari-
ables. It is worth noting that the Frechét distribution is
bounded on the lower side (x > 0) and has a heavy up-
per tail, while the Weibull model relates to minima (i.e., the
smallest extreme value). Since the purpose of this work is
to find the higher response time of the tasks in rare worst-
case scenarios, we therefore use the maximum case in the
Gumbel distribution, referred to as the Gumbel Max in the
reminder of the paper.

4 WCRT Estimation Based on EVT

The proposed method, WCRTEVT is shown in Algo-
rithm 1. It is a recursive procedure which takes as argu-
ment m data sets, of which each contains N samples of the
response time of the task under analysis. The algorithm re-
turns the WCRT estimation with a predictable probability of
being exceeded (i.e., 10−9). It consists of the following two
steps: 1) construction of the referenced data sets, 2) WCRT
estimation of the referenced data sets using EVT.

4.1 The Referenced Data Sets

In order to construct the input data sets to the WCRTEVT,
there are m Monte Carlo simulations in RTSSim to run at
first. Then the n best simulations with the highest maximum
value of response times, are selected as the referenced data
sets. For each referenced data set, there are N (i.e., N is
no less than 9 000) samples of the response time taken from
the task under analysis. This sufficiently ensures making a
good estimate. The construction is showed in rows 1-3 in
Algorithm 1, where xi in line 3 is the highest response time
of the task under analysis observed in simulation per each
data set.

4.2 WCRT Estimation of the Referenced Data
Sets

4.2.1 Blocking of N Samples

In order to avoid the risk of mistakenly fitting raw response
time data that may not be from random variables, to the
Gumbel distribution, we use the method of block maxima
[11], as proposed in [12]. This is done by grouping N
response time samples in each referenced data set into
k blocks of size is b, and then choosing the maximum



value from each block to construct a new set of sam-
ple “block maximum” values, i.e., Y ← yi,1, ..., yi,k,
yi,k ← maxima(S) ← N(k−1)×b+1, ..., Nkb as shown
in row 6, 9 and 10 in Algorithm 1. The samples
at the end of the execution sequence in a simula-
tion that do not completely fill a block are discarded.
For instance, if there are 9 samples per data set, i.e.,
{1119, 1767, 2262, 2287, 1792, 2687, 1942, 1842, 1692},
and b (i.e., the size of the blocks) is 2, then the last sample
(i.e., 1692) in the sequence is discarded since it can not be

grouped in the 4 (i.e.,
⌊

9
2

⌋
) blocks. Furthermore, the initial

value of b is 100.

4.2.2 The Best-fit Gumbel Max Parameters Estimation

The estimation of the parameters of the Gumbel Max distri-
bution is the core of WCRTEVT, which is also an iterative
procedure as shown in rows 8-35 in Algorithm 1. The se-
lection of b is a trade-off between the quality of fit to the
Gumbel Max distribution, and the number of blocks (i.e.,
k) in each data set available used in the estimation of the
Gumbel parameters. In this paper, we introduce two proce-
dures using two different search algorithms, i.e., lwbsearch
and upbsearch which could find the proper value of b pro-
ducing the best-fit Gumbel Max parameters estimation. The
algorithm lwbsearch is invoked at first as shown in rows 8-
26 in Algorithm 1, which focuses on searching for the value
of b to be as low as possible. In this way, there are more
blocks, i.e., the bigger value of k, used as samples in the
estimation. However, in some cases, lwbsearch may fail in
finding such value of b in best-fit tests. If this is the case,
then upbsearch will be adopted, which is showed in rows
27-35 in Algorithm 1. Moreover, the best-fit test is in terms
of examining the estimated Gumbel parameters by using a
goodness-of-fit (GOF) test, i.e., Chi-square test. Note that
other more advanced (meta)heuristic search algorithms can
be applied. While the empirical results including the one
presented in Section 5 and the ones have not been included
in this paper due to space limitations, show that the two pro-
posed algorithms work well enough to reach the goal. There
is one more interesting point to highlight, i.e., the generally
accepted value of k is 30 as introduced in [12]. Therefore,
in this work, the size of blocks b should be smaller than⌊

N

30

⌋
. For the sake of space, we can not give the detailed

explanation about each search algorithm, as well as their
implementation.

4.2.3 The WCRT Estimations Formula

The two parameters of the Gumbel Max distribution: a lo-
cation parameter µ and a scale parameter β, are used in the
Gumbel percent-point function, which returns the WCRT

estimation that the block maximum Y cannot exceed with a
certain probability q, as shown in Equation 1.

est = µ− β × log(−log((1− Pe)b)) (1)

Algorithm 1 WCRTEV T (m)
1: RT ← rt1, ..., rtm ← MonteCarlo(m, rnd inst())

2: n ← m

100
3: X ← x1, ..., xi, ..., xn ← selectHRT (n, RT )
4: for all xi such that 1 ≤ i ≤ n do
5: b ← 100

6: k ←
⌊

N

b

⌋

7: success ← false
8: while k ≥ 30 and success = false do
9: S ← si,1, ..., si,k ← segment(N, b)

10: Y ← yi,1, ..., yi,k ← maxima(S)
11: if passChiSquareTest(Y ) > 0 then

12: lwb ← b

2
13: upb ← b

14: b ←
⌊

lwb + upb

2

⌋

15: while success = false do
16: success ← lwbsearch(b, Y )
17: if success = true then
18: l, s ← ChiSquareTest(Y )
19: esti ← wcrtevt(b, l, s)
20: end if
21: end while
22: else
23: b ← 2× b

24: k ←
⌊

N

b

⌋

25: end if
26: end while
27: upb ← b

28: b ← b+ b
2

2

29: while success = false do
30: success ← upbsearch(b, Y )
31: if success = true then
32: l, s ← ChiSquareTest(Y )
33: esti ← wcrtevt(b, l, s)
34: end if
35: end while
36: end for
37: EST ← esti, ..., estn

38: rtest ← min(EST )
39: return rtest

4.2.4 Selecting the Lowest WCRT Estimation

As the last step in WCRTEVT, the lowest WCRT estimate
is selected as the WCRT estimate on all m data sets. This
is also confirmed by the empirical results presented in Sec-
tion 5.



5 Empirical Results

A validation model inspired by a real industrial control
system is constructed with the purpose to investigate how
close the response time given by WCRTEVT is to the ex-
act WCRT achieved by the simulation optimization-based
method, i.e., HCRR in [8]. Moreover, in order to make
the model analyzable by using basic RTA, the adhering task
execution dependencies are simplified in that the execution
time of the tasks is only varied by asynchronous message-
passing with the loop bounds manually added to the simula-
tion model. The results of five different methods are showed
in Table 1.

Table 1. The results comparison for the MV.

MC MABERA HCRR Basic RTA WCRTEVT
MV 4332 4332 4332 5982 4574.556

Clearly, the WCRT estimation achieved by WCRTEVT
is 5.6% (i.e., (4 574.556 − 4 332)/4 332 × 100%) more
pessimistic than the exact value derived by HCRR and
MC (Monte Carlo simulation), but 23.5% (i.e., (5 982 −
4 574.556)/5 982×100%) less pessimistic when compared
to the value obtained by basic RTA. Hence, we believe that
WCRTEVT has the potential to provide meaningful results,
i.e., tighter upper bounds of the WCRT estimation in the
analysis of the real-time systems with more complex execu-
tion dependencies between tasks.

6 Conclusions and Future Work

This paper has presented ongoing work towards perform-
ing response time analysis for system models with intricate
execution dependencies between tasks, by using the pro-
posed statistical-based method based on extreme value the-
ory. Specially, we have presented and validated the method
by using a model inspired by real industrial control systems,
which shows the benefit over basic RTA, in terms of reduced
pessimism. Contrary to existing stochastic real-time analy-
sis, the proposed method is not restricted by the assumption
that tasks are independent, that the job-level priority is fixed
and that the worst-case scenario only happens in the case of
the critical instance. As part of future work, the evaluation
on models with more complex execution dependencies be-
tween tasks will be conducted.
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