
Mälardalen University Licentiate Thesis
No.107

Exploring Sustainable
Industrial Software System

Development

within the Software Architecture
Environment

Pia Stoll

October 2009

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden

Copyright c© Pia Stoll, 2009
ISSN 1651-9256
ISBN 978-91-86135-36-2
Printed by Mälardalen University, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

This thesis describes how sustainable development definitions can be trans-
posed to the software architecture environment for the industrial software sys-
tem domain. In a case study, sustainable development concerns from three
companies are investigated for their influence on the dimensions of sustainable
development: economical, environmental, and social sustainability. Classify-
ing the case study’s concerns, in the thesis’s Software Engineering taxonomy,
shows that the software development concerns are in majority and the software
architecture concerns surprisingly few. The economical sustainability concerns
dominate followed by social sustainability concerns, including both concerns
successfully met and concerns to be met.

Sustainable industrial software system development is in the thesis defined
as: “Sustainable industrial software system development meets current stake-
holders’ needs without compromising the software development organization’s
ability to meet the needs of future stakeholders”. Understanding current and
future stakeholders concerns is necessary for the formulation of sustainabil-
ity goals and metrics. Clarifying the interrelationships among stakeholders’
concerns’ impact on business goals and software qualities,in the thesis’s In-
fluencing Factors method, proves to help stakeholders understand their future
needs.

Trust is found to be critical for sustainable development. For the estab-
lishing of trust between system and system users, the usability quality is vital.
To implement usability support in the architecture in the early design phase,
reusable architectural responsibilities are created. Thereusable architectural
responsibilities are integrated into an experience factory and used by the prod-
uct line system architects, resulting in a return of investment of 25:2.

i

Swedish Summary - Svensk
Sammanfattning

Avhandlingen beskriver hur definitioner av hållbar utveckling kan översättas
till mjukvaruarkitekturens omgivning för industriella mjukvarusystem. Syste-
mintressen, avseende hållbar utveckling, samlas in i en intervjustudie och re-
lateras till dimensionerna: ekonomisk hållbarhet, socialhållbarhet, och miljö-
mässig hållbarhet. En taxonomi av arkitekturbeskrivningar skapas, som införli-
var både “Enterprise Architecture” och “Software Engineering” beskrivningar.
Klassificerade intressen visar på stort fokus på verksamhetsaspekter och över-
raskande lite fokus på mjukvaruarkitektur. En naturlig följd är att ekonomisk
hållbarhet står i centrum, följd av social hållbarhet.

Hållbar utveckling av industriella mjukvarusystem definieras i avhandling-
en som: “Hållbar utveckling av industriella mjukvarusystem tillgodoser syste-
mets nuvarande intressenters behov utan att äventyra organisationens möjlig-
heter att tillgodose framtida intressenters behov”. Klargörande av inbördes för-
hållanden mellan intressen och deras påverkan på affärsmåloch mjukvaruk-
valitet hjälper organisationen att införliva intressenters behov med strategin för
hållbar utveckling. Den i avhandlingen konstruerade “Influencing Factors” me-
toden tydliggör relationerna mellan systemintressen i en fallstudie, vilket visar
sig hjälpa studiens intressenter förstå sina framtida behov.

Tillit är en viktig del i hållbar utveckling. För att skapa tillit mellan syste-
met och dess omgivning, är användbarheten viktig. Arkitekturella mönster med
användbarhetsstödjande instruktioner tillämpas i avhandlingen. Fyra systemre-
laterade generella funktioner identifieras, med arkitekturella instruktioner för
att garantera funktionernas användbarhet. Kunskapen görstillgänglig för studi-
ens produktlinjearkitekter i en “erfarenhetsfabrik”. Resultatet är en rapporterad
kostnadsbesparing av 25:2.

iii

To Alex, Simon, and Sofie

Preface

The challenges have been many during the writing of this thesis and I’m for-
ever grateful to many of you out there who have served as an inspiration and
guidance.

I would especially like to thank my supervisors, Christer Norström and
Anders Wall, for structuring my contributions and for trying to understand my
reasoning during these years even if the topic have been slightly off the one
of the department’s regular thesis. Someone who has supported many of my
ideas is my present group manager, Magnus Larsson. Another group manager
of mine, Fredrik Ekdahl was also a great support and enabler for my PhD
studies.

The project, where the ideas of the Usability Supporting Architecture Pat-
tern were tested, included two persons at ABB Force Measurement who have
been very supporting throughout the USAP project and therefore contributed
to the USAP project’s success leading to some major contributions to my the-
sis. Thank you Fredrik Norlund and Jan Hasselgren. In the same project, I
would like to direct a thanks to Bonnie E. John, Len Bass, and Elspeth Golden.
We have had a handful of very intense and stimulating discussions and I have
always left them revived and full of new ideas. I also wish to thank the BESS
group at MDH for all of the interesting discussions around business and soft-
ware engineering. For uplifting discussions around everything but software
engineering: thank you Sara, Shiva, Helena, Ambra and Åsa.

My beloved family: my husband Alex and my children Simon and Sofie,
my mother, my brothers Patrik and Niclas with families and myfriend Hanna
Hagmark Cooper; thank you for being there!

Pia Stoll
Västerås, September 15. 2009

vii

List of included Publications

The content of this thesis has been published in the following papers. Refer-
ences to the papers will be made using the alphabetic association of the papers.

A. Guiding Architectural Decisions with the Influencing Factors Method,
Pia Stoll, Anders Wall, Christer Norström, Working IEEE/IFIP Con-
ference on Software Architecture (WICSA), Vancouver, BC, Canada,
February, 2008

B. Achieving Sustainable Business for Industrial Software Systems, Pia
Stoll, Anders Wall, Business Sustainability Conference, Ofir, Portugal,
June, 2008

C. Preparing Usability Supporting Architectural Patterns for Industrial Use,
Pia Stoll, Len Bass, Bonnie E. John, Elspeth Golden, International Work-
shop on the Interplay between Usability Evaluation and Software De-
velopment, I-USED, CEUR Workshop proceedings series, ISSN1613-
0073, Pisa, Italy, September, 2008

D. Supporting Usability in Product Line Architectures, Pia Stoll, Len Bass,
Bonnie E. John, Elspeth Golden, Software Product Lines Conference,
SPLC, San Francisco, USA, August, 2009.

E. Software Engineering featuring the Zachman Framework, Pia Stoll, An-
ders Wall, Christer Norström, Technical Report, ISSN 1404-3041 ISRN
MDH-MRTC-240/2009-1-SE, School of Innovation, Design andEngi-
neering (IDT), Mälardalen University, Sweden, 2009.

F. Applying the Software Engineering Taxonomy, Pia Stoll, Anders Wall,
Christer Norström, Technical Report, ISSN 1404-3041 ISRN MDH-MRTC-
241/2009-1-SE, School of Innovation, Design and Engineering (IDT),
Mälardalen University, Sweden, 2009.

ix

Additional Publications

• A Responsibility-Based Pattern Language for Usability-Supporting Ar-
chitectural Patterns, Bonnie E. John, Len Bass, Elspeth Golden, Pia
Stoll, ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS, Pittsburgh, USA, June, 2009

• Usability Supporting Architecture Pattern for Industry, Pia Stoll, Fredrik
Alfredsson, Sara Lövemark, Industrial Experience Report,Nordic Com-
puter Human Interaction Conference, NordiCHI, Lund, Sweden, 2008

• Reconstructing the Architecture Model for a Sustainable Software Sys-
tem, Pia Stoll, Industrial Experience Report, SEI Architecture Technol-
ogy User Network, SATURN, Pittsburgh, USA, 2008

• Identifying Sustainable Systems Architecture’s Primary Concerns, Roland
Weiss, Pia Stoll, Industrial Experience Report, SEI Architecture Tech-
nology User Network, SATURN, Pittsburgh, USA, 2008

• Integrating Usability Supporting Architectural Patternsin a Product Line
System’s Architecture, Pia Stoll, Len Bass, Bonnie E. John,Elspeth
Golden, Industrial Experience Report, SEI Architecture Technology User
Network, SATURN, Pittsburgh, USA, 2009

xi

Contents

I Thesis 1

1 Introduction 3
1.1 Research Rationale . 6
1.2 Research Questions . 9
1.3 Thesis Outline . 10

2 Related Work 11
2.1 Sustainable Development and Software Engineering 11
2.2 Software Engineering . 17
2.3 Software Architecture . 19
2.4 Software Architecture with an Enterprise Perspective 21
2.5 Software Architecture Environmental Influences 28
2.6 Software Development Measures 32
2.7 Software Architecture Quality Attributes 35
2.8 Software Architecture’s Interplay with Usability 37
2.9 Architecture Patterns . 38

3 Research Design 45
3.1 Case Study Design . 45
3.2 Field Study Design . 48

4 Research Contribution 51
4.1 Influencing Factors Method 51
4.2 Sustainable Industrial Software Systems52
4.3 Usability-Supporting Architecture Patterns 53
4.4 Software Engineering Taxonomy 55
4.5 Applied Software Engineering Taxonomy 57

xiii

xiv Contents

5 Future Work 61
5.1 Sustainable Industrial Software Systems61
5.2 Usability Supporting Architecture Patterns 63

Bibliography 65

II Included Papers 77

A Paper A:
Guiding Architectural Decisions with the Influencing Factors Method 79
A.1 Introduction . 81
A.2 Business goals and software quality attributes 83
A.3 Enterprise, System and Software Architecture 84
A.4 The IF method . 85

A.4.1 Identify influencing factors 86
A.4.2 Prioritize influencing factors 87
A.4.3 Analyze prioritized influencing factors 87

A.5 Case study 1 . 88
A.5.1 Identify influencing factors 88
A.5.2 Prioritize influencing factors 90
A.5.3 Analyze prioritized influencing factors 90
A.5.4 Conclusions: Case Study 1 91

A.6 Case study 2 . 92
A.6.1 Identify influencing factors 92
A.6.2 Prioritize influencing factors 92
A.6.3 Conclusions: Case Study 2 93

A.7 Conclusions . 95
A.8 Future work . 95
Bibliography . 96

B Paper B:
Achieving Sustainable Business for Industrial Software Systems 99
B.1 Introduction . 101
B.2 Related Research . 102
B.3 Issues for Sustainable Business 104

B.3.1 Technology . 104
B.3.2 Organization . 106
B.3.3 Market . 108

Contents xv

B.4 Conclusions . 110
B.5 Future Work . 110
Bibliography . 110

C Paper C:
Preparing Usability Supporting Architectural Patterns fo r Indus-
trial Use 113
C.1 Introduction . 115
C.2 Background . 115
C.3 A Pattern Language for USAPs 116
C.4 Delivering a single USAP to Software Architects119
C.5 Delivering multiple USAPs to software architects 122
C.6 Current status and future work 123
C.7 Acknowledgments . 125
Bibliography . 125

D Paper D:
Supporting Usability in Product Line Architectures 129
D.1 Introduction . 131
D.2 Background . 132
D.3 Prior work . 134
D.4 Stakeholder choice of scenarios 135
D.5 USAP Patterns . 137
D.6 Delivery tool . 138
D.7 Results of using the USAP delivery tool 141
D.8 Conclusions and Future Work 144
D.9 Acknowledgments . 145
Bibliography . 145

E Paper E:
Software Engineering featuring the Zachman Taxonomy 149
E.1 Introduction . 151
E.2 Zachman Framework . 153
E.3 Software Engineering Taxonomy 157

E.3.1 Shared Perspectives 157
E.3.2 Software Engineering Descriptions 159
E.3.3 Apple and Google Process Composite Models 162
E.3.4 Scrum Composite Process Model 163

E.4 Conclusions and Future Work 165

xvi Contents

Bibliography . 166

F Paper F:
Applying the Software Engineering Taxonomy 171
F.1 Introduction . 173
F.2 Software Engineering Taxonomy 173
F.3 Software Engineering Taxonomy and System Sustainability . . 179

F.3.1 Sustainable Industrial Software System Development. 180
F.3.2 Case Study Questions and Propositions 182
F.3.3 Classification of Case Study Data 184
F.3.4 Analysis of Classified Case Study Data 184
F.3.5 Summary . 201

F.4 Software Engineering Taxonomy and the IF method 204
F.4.1 Classification of Influencing Factors 205
F.4.2 Analysis of Classified Influencing Factors 205
F.4.3 Summary . 206

F.5 Software Engineering Taxonomy and the USAP study 208
F.5.1 USAP Artifact Identification 209
F.5.2 Classification of USAP artifacts 216
F.5.3 USAP Information Description-Selection Process . . .217
F.5.4 Summary . 221

F.6 Conclusions and Future Work 222
Bibliography . 225

I

Thesis

1

Chapter 1

Introduction

Industrial software systems are in this thesis the synonym for complex control
and supervision systems used in power and automation utilities and plants of
various art. Not long ago these systems used a rather small amount of software.
But this has changed and today the systems have a relatively high degree of
software and are almost autonomous. The role of the operators has shifted
from having to use their expertise to set the correct controlvalues manually to a
role of supervision and fault finding. One system can nowadays control a plant
without any operator interaction and the system interfaceswith a multitude
of external systems. Software complexity has grown in the same pace as the
system’s amount of software has increased. When the features that once were
performed by hardware now are replaced by software, the software parts can
interact with each other in a way the hardware parts could not. This is used to
create additional value. Industrial software systems are getting more and more
sophisticated. Customers are offered more and more features.

As the offering increases, yesterday’s advanced features are turning into
commodity. To get a return of investment for both customers and development
organization, the system has to be maintained and stay operational for decades,
i.e. the system has to become sustainable.

Pollan has defined an unsustainable system simply as“a practice or pro-
cess that can’t go on indefinitely because it is destroying the very conditions
on which it depends”[1]. Unruh has argued that numerous barriers to sustain-
ability arise because today’s technological systems were designed and built for
permanence and reliability, not change [2].

“A global agenda for change” - was what Gro Harem Brundtland,as the

4 Introduction

chairman of the World Commission on Environment and Development, was
asked to formulate in 1987 [3]. As a result, the Brundtland commission defined
sustainable development as:

Sustainable development is development that meets the needs of
the present without compromising the ability of future generations
to meet their own needs. It contains within it two key concepts:
the concept of “needs”, in particular the essential needs ofthe
world’s poor, to which overriding priority should be given;and
the idea of limitations imposed by the state of technology and so-
cial organization on the environment’s ability to meet present and
future needs.

In [4], Dyllick and Hockerts transpose the definition to the business level:

Corporate sustainability is meeting the needs of a firm’s direct and
indirect stakeholders (such as shareholders, employees, clients,
pressure groups, communities etc), without compromising its abil-
ity to meet the needs of future stakeholders as well.

Following the reasoning of the Brundtland commission [3] and Dyllick and
Hockerts [4], sustainable industrial software development would be defined as:

Sustainable industrial software development meets the needs of
the software development organization’s direct and indirect stake-
holders (such as shareholders, employees, customers, engineers
etc), without compromising the organization’s ability to meet its
future stakeholders’ needs as well.

In this thesis, the term “Corporate Sustainability” is usedwhen the work
referred to uses the term. Otherwise the term “Sustainable development” is
used.

Three dimensions of corporate sustainability are outlinedby Dyllick and
Hockerts: Environmental sustainability, Economic sustainability, and Social
sustainability, the “triple-bottom-line” in Figure 1. Dyllick and Hockerts con-
clude that a single-minded focus on economic sustainability can succeed in the
short-run; however, in the long-run sustainability requires all three dimensions
to be satisfied simultaneously.

Sustainable development of industrial software systems isa true challenge
due to changes in concerns originating from: new technology, new stakeholder

5

Economic
Sustainability

Environmental
Sustainability

Social
Sustainability

Figure 1: Three dimensions of corporate sustainability

needs, new organizations, and new business goals during decades. It’s chal-
lenging since it has not been researched for industrial software systems and
the domain need an understanding of the success-critical concerns related to
the achievement of sustainable development of systems as the complexity of
organizations, processes, and architectures increase.

Organizational complexity involves many success-critical stakeholders, of-
ten located all over the world, who have to reach a consensus around the most
important business goals for the system now and in the next future. Sustainable
systems has built-in legacy heritage to consider as well as present software ar-
chitecture and design when introducing new business goals.If the organization
in the past predicted today’s stakeholders’ needs and adapted the past develop-
ment to today’s predicted needs, the incorporation of today’s concerns in the
system should be fairly straightforward. In the same fashion, today’s organi-
zation needs to predict future stakeholders’ needs and select the most valuable
concerns to address. To do this, the architects need an understanding of how
the stakeholders’ concerns affect business goals and architectural qualities. For
example, industrial software systems are often affected bycompany mergers
and acquisitions, where two or more systems have to be consolidated into one
system or the systems have to share a core part. The effect of such decision
on software quality is hard to overlook. Sustainability is therefore related not
only to software structures and their interactions but alsoto the system’s envi-
ronment in terms of the enterprise aspects as organization,business, tactics and
scope. Enterprise aspects have not been put in relation to software architecture
and implementation for industrial software systems in an explicit way earlier.
As organizational complexity grows, the impact of the enterprise aspects on

6 Introduction

the software system is significant.
Systems not being usable will not be sustainable in the future. Releas-

ing a system with usability problems is decreasing the trustbetween users and
system, thereby decreasing the economical sustainability. Industrial software
systems must find a way of implementing usability support early in the devel-
opment phase since the development phase of an industrial software system
is likely two years or more. Redoing two years of architectural design and
implementation due to usability problems is not an option. But traditional us-
ability engineering suggests usability tests with workingfunctionality when
a prototype is at hand which is late in the design phase. From the usability
tests, list of usability flaws go back to the developers. Problems related to the
user interface’s design can often be fixed but problems requiring architectural
refactoring are too expensive to correct. Correcting the architecture related
problems would also cause an unacceptable delay in the release date. This is
especially critical when developing product line systems.Product line devel-
opment typically develops the core architecture and its implementation first.
Then each product’s specialization is developed and first after that has been
done, the product’s usability can be fully tested.

1.1 Research Rationale

Sustainable development is defined in terms of meeting current stakeholders’
needs without compromising the software development organization’s ability
to meet the needs of future stakeholders. For software development, the def-
inition raises the question: how can stakeholders be encouraged to contribute
with their concerns and how can their concerns’ impact on thesoftware devel-
opment be clarified? If the stakeholders concerns are not understood, they can
hardly be met. But at the same time the system’s environment is getting more
and more complex and the number of stakeholders increases. One system can
hardly meet all concerns. The concerns can not be prioritized for an increase in
sustainability if their impact is not known. Stakeholder participation is a social
sustainability criteria according to Labuschagne et al. [5]. In software engi-
neering, methods like the Quality Attribute Workshop [6] engage stakeholders
to participate and voice current concerns. The Architecture Trade-Off Analysis
method [7][8] is another method that stimulates success-critical stakeholders
to voice concerns regarding the system development. Inviting stakeholders to
workshops as the Quality Attribute Workshop [6] and the Architecture Trade-
Off Analysis Method [7] are two ways, but may need a complement due to the

Research Rationale 7

scalability issue. The number of stakeholders and their number of locations
increase as the distribution of development and managementincreases. The
chance of gathering a large set of distributed stakeholdersfor a one-day QAW
or a five day ATAM workshop on a continuous basis is very small in the do-
main of industrial software systems where no standards or regulations enforce
these kinds of workshops. Stakeholders’ concerns change frequently and the
analysis of the concerns must be updated just as often not to miss an important
concern that need to be met in order to maintain sustainable development. An-
other aspect, highly relevant for sustainable development, is the needs of the
future stakeholders. The QAW and the ATAM gather current stakeholders and
extract their needs by analyzing their voiced concerns. Experiences from three
Quality Attribute Workshops show that stakeholders have a very strong urge to
voice concerns related to their own working environment andhardly ever voice
a concern not related to themselves. To achieve sustainabledevelopment, the
company must predict future stakeholders’ needs by analyzing the future stake-
holders’ concerns. Anon/off-line, light-weight stakeholder concern collection,
prediction and analysis methodis therefore needed that could include concerns
from future stakeholders.

Context will be very important when defining what sustainable develop-
ment means to the stakeholders. Following the conclusions of Reed [9], Salz-
mann et al. [10], and Sing et al. [11], each community or domain should:
interpret corporate sustainability, argue its business case for corporate sustain-
ability, and establish their own corporate sustainabilityassessment. For the
domain of industrial software systems, this translates into a need of acase
study that explores the industrial software system domain’s stakeholders’ sus-
tainable development concernsin order to find the most important sustainable
development goals. Finally, metrics should be establishedto assess the pro-
cesses of achieving the goals. Very little research has explored the industrial
software system domain to find the scope, business case and metrics for sus-
tainable development.

Research in the area of sustainable development for software systems will
be extra challenging since it involves aspects from: enterprise architecture, eco-
nomical theory, organization theory, software engineering and cognitive psy-
chology. There exists no framework where views describing all these aspects
can be investigated for their interrelationships. The aspects are part of different
research disciplines. However, enterprise architecture and software engineer-
ing are closely related. In traditional software architecture, a component may
be a procedure, a process or an object-oriented object [12][13]. The enterprise
software system is a “system of systems” in the sense that thecomponents of

8 Introduction

the enterprise system are normally considered as systems inthe (developer-
oriented) traditional software architecture [14]. Zachman has set up a frame-
work for describing system information of a complex object from different
usage perspectives, and from the journalistic context abstractions: “What”,
“How”, “Where”, “Who”, “When”, and “Why” [15][16][17][18]. Initially, he
described the framework by collecting data from the building engineering do-
main, applied the framework to the data from the aircraft engineering domain
and finally applied the framework to the enterprise systems domain. Software
engineering has also been inspired in much of its research from the building
engineering domain. Especially the software engineering pattern community
[19][20][21][22] has used concepts from the pattern language theory of the
building architecture researcher Alexander [23][24]. There would be a benefit
of classifying software engineering concepts into the Zachman framework to
find out if the framework can accommodate all the concepts, and if so, to find
out how software engineering relates to the enterprise views for the system’s
operational and development environment. The result wouldbea derivative of
the Zachman framework for software engineeringthat could classify sustain-
able software system development concerns related to the system’s environ-
ment in term of scope, business, system, software, and components.

A crucial ingredient in social sustainability is trust. Trust among employ-
ees is the prerequisite for social capital enforcements in networking, knowl-
edge sharing, commitment etc. Trust in the relation betweencustomers and
the software system development company is achieved by the system having
a certain set of qualities. Hoffmann et al. describes a trustmodel that goes
beyond security [25]. The trust model includes: reliability, safety, security,
availability, privacy, user expectations, and usability.Human trust in automa-
tion is translated into trust as the expectation that a service will be provided or
a commitment will be fulfilled.

Trust in the relation between customers, as external stakeholders, and the
system increases economic sustainability. Usability is animportant factor in
the trust between system customers and the system. Butusability support in
a system’s software architecturehas been shown to be very superficially de-
scribed, mostly as a separation of concerns between user interface logic and
the rest of the system’s logic [26][27][28][29][30][31]. Usability problems are
usually discovered after the product’s release when the architecture no longer
can accommodate the problems’ solutions. If usability support in the architec-
ture could be built in early, the economic sustainability would increase also in
terms of potential financial profit, by speculating in an increased sales by of-
fering more usable systems. The reputation of the system would also increase,

Research Questions 9

which increases the economic sustainability. The researchby Folmer [28][29]
deals with evaluation of architecture for usability support. The research by
Juristo et al. [30][31][32] describes usability issues with a possible impact on
software design as usability patterns, but does not suggestany way of designing
the architecture to support the usability issues. The work of Bass et al. [26][27]
does suggest a way of designing architecture to support success-critical usage
scenarios in the form of Usability-Supporting Architecture Patterns.

1.2 Research Questions

Considering the lack of usability tactics to apply in software architecture to
avoid unsolvable usability problems and to reinforce trustbetween system and
system users, the following research question is formulated:

RQ1 “How can support for usability be built into software architecture of in-
dustrial software system in the early design phase?”

To be able to understand the success-critical concerns adding most value to
the goal of sustainable development, the following research question is formu-
lated

RQ2 “What are the concerns affecting the sustainable development of an in-
dustrial software system?”

Sustainable development is depending on the knowledge of current and
future stakeholders’ needs in order to meet those needs. Considering the im-
portance of the explicit knowledge of current stakeholders’ needs and future
stakeholders’ needs and the impact of these needs on business goals and soft-
ware qualities, the following research question is formulated:

RQ3 “How can current and future stakeholder concerns be collected and an-
alyzed for their impact on business goals and quality attributes in the
domain of industrial software systems?”

Sustainable industrial software system development concerns will have as-
pects concerning the economical sustainability, social sustainability, and envi-
ronmental sustainability. The aspects will relate to: enterprise architecture,
economical theory, organization theory, software engineering and cognitive
psychology. To find out how software engineering relates to the enterprise
views for the system’s operational and development environment, the follow-
ing research question is formulated:

10 Introduction

RQ4 “How can industrial software system stakeholders’ concerns be described
by views in an enterprise framework, that incorporates software engi-
neering artifacts descriptions?”

1.3 Thesis Outline

Chapter 2 describes the work relating sustainable industrial software system
development and: software engineering, software architecture, enterprise ar-
chitecture, usability, software development measures, and software quality at-
tributes. In chapter 3, the research design of this thesis isdescribed. The
contributions of this thesis are described in chapter 4. Finally, future work is
presented in chapter 5.

Chapter 2

Related Work

The following sections describe the software architectureenvironment and its
relation to the economical, social, and environmental sustainability dimen-
sions.

2.1 Sustainable Development and Software Engi-
neering

Corporate sustainability implies a much broader interpretation of the concept
of capital than is used normally by either economists or ecologists. Economic,
natural, and social capital each have different propertiesand thus require dif-
ferent approaches.

Economic sustainability requires firms to manage three types of economic
capital:

1. Financial capital, i.e. equity and debt

2. Tangible capital, i.e. machinery, land and stocks

3. Intangible capital, i.e. intellectual property, internal systems, methods,
tools, external customer loyalty and brand

The examples of intangible capital are from Sveiby’s framework for cate-
gorizing and measuring the intangible assets [33].

12 Related Work

The third line of Dyllick’s three corporate sustainabilitydimensions is the
environmental sustainability, Figure 1. Ayres argues thatif the industrial or-
ganism consumes more energy and materials than can be reproduced, or if
it emits more emissions than can be absorbed through naturalsinks, the in-
dustrial system becomes ecologically unsustainable [34].Dyllick’s definition
of environmental sustainable systems says that such systems do not engage
in activity that degrades eco-system services (i.e. climate stabilization, water
purification, soil remediation, reproduction of plants andanimals) [4]. Sys-
tems that enable utility and industry customers to improve their performance
while lowering environmental impact should therefore contribute to natural re-
sources being consumed in a lower pace, even if the systems themselves do
not increase natural resources. If the systems are consuming less natural re-
sources in their development and operation than they help utilities and industry
customers to save, then the systems should be contributing to the environmen-
tal sustainability according to the definitions by Ayres [34] and Dyllick [4].
Environmental sustainability is impacted by the software system’s structures
and inter-operations. Google develops software that consumes huge amounts
of natural energy resources. Every time someone taps a Google search button,
thousands of servers are activated. One of Google’s server plants can be ex-
pected to demand the same amount of energy that could power 82,000 homes
[35]. As a response to this issue, Google invests tens of millions dollar in
research and development in renewable energy.

Corporations are the fundamental cells of modern economic life according
to Dunphy, Griffiths and Benn [36]. They state that “Corporation not sustain-
ing will not be sustainable”. Also software systems consumeenergy and if they
don’t sustain by building or retaining natural capital, they will not be sustain-
able.

Social sustainability is defined in relation to human capital and society cap-
ital. Human capital is represented by e.g. skills, motivation, and loyalty of
employees and business partners. Society capital is e.g. quality of public ser-
vices. Coleman introduced a conceptual tool which he called“social capital”
in 1988 [37]. Social capital, according to Coleman, is increased by social net-
works where trustworthiness is an important factor. Coleman shares the view
on human capital with Dyllick and Hockers [4] and describes human capital
as being created by changes in persons that bring about skills and capabilities
that make them able to act in new ways. Human capital among employees is
strengthened if the managers take an interest in strengthentheir own human
capital in order to support the employees in their education.

Information channels are an important form of social capital according to

Sustainable Development and Software Engineering 13

Dyllick [4]. Technology interested employees who on their own initiative find
out current technology trends and discuss these with managers and coworkers,
save the company the time of paying an employee to do technology scouting.
A different value to the social capital arise when there are key-competences in
an organization to whom others turn for help. The key-competence, helping
a coworker, trusts the coworker to return the favor in the future, which estab-
lishes an obligation on the part of the coworker. Shifting development from
an organization, that relies on key-competences, to a low-cost country in or-
der to save development cost translates into a shift betweensocial capital and
economic capital. The coworkers in the remotely located organization have no
direct access to the social capital of the key-competences.The value of the
social capital of the key-competences decreases since it can not easily be ac-
cessed, but the economic capital is strengthened by the savings in employees’
salaries.

Figure 2 shows the concept of corporate sustainability fromthe perspective
of added stakeholder value. If the company ignores one dimension of the sus-
tainability, e.g. environmental sustainability, in orderto maximize added value
to the current stakeholders, then the added value to the future stakeholders
likely will be reduced. The car industry is one example of this. For long times
the car industry ignored the future stakeholders’ need of a healthy environment
and produced cars consuming too much of the nature’s energy resources. If
the industry would continue to produce cars this way, the carindustry would
not have sustainable development. Current stakeholders demands for less en-
ergy consuming cars has contributed to the car industry’s rethinking making
it increase its environmental sustainability. Current customers get an added
value by taking on the responsibility of preserving added value to the future
customers. Additionally to the customers taking on this responsibility, envi-
ronmental regulations are forced upon the car industry by the political sphere.

O’Connor discusses the interfaces between the three dimensions of cor-
porate sustainability [38]. A new concept of “spheres” is used, replacing the
sustainability dimensions. A forth sphere is added, the political sphere, that
should regulate the economic sphere’s relation to the otherspheres. The forth
sphere takes on the responsibility of ensuring added value to the future stake-
holders.

Motivating sustainable development, i.e. creating a business case for sus-
tainable development, is not obvious considering all dimensions of sustainabil-
ity. Reed examines the business case for corporate sustainability strategies and
does an attempt to quantify it financially [9]. Shareholder value is in focus and
the financial case is made at company level in the context of that company’s

14 Related Work

Future Stakeholder
Value (F.S.V.)

Current Stakeholder
Value (C.S.V.)

Economic
Sustainability

Environmental
Sustainability

Social
Sustainability

Corporate
Sustainability

Economic
Sustainability

F.S.V. C.S.V

Environmental
Sustainability

Social
Sustainability

Non-Corporate
Sustainability

Figure 2: Top figure: The company’s corporate sustainability is balancing
added value to its current stakeholders with added value to its future stakehold-
ers.Bottom figure: The company’s non-corporate sustainability is maximizing
added value to its current stakeholders, by ignoring environmental sustainabil-
ity, thereby reducing the added value to the future stakeholders.

Sustainable Development and Software Engineering 15

strategy within their industry. Sustainable development for the industrial soft-
ware system domain will, following Reed’s reasoning, have another business
case than e.g. the chemical engineering domain. One of Reed’s conclusion is
that:

. . . it is up to those companies that believe they are creatingvalue
through sustainability strategies to clearly articulate that value to
investors and financial analysts.

Salzmann, Ioenescu-Somers and Steger identify insufficient understanding
of managers’ key arguments for corporate sustainability [10]. They attribute
this primarily to lack of descriptive research in the areas of: how business cases
are built; and how effective they are and what barriers they face. Salzmann con-
cludes that research must identify managers’ key economic arguments used to
drive corporate sustainability internally in the company and the success-factors
of these arguments. Most likely the business case is often based on the enforced
regulations by the “forth sphere”, the political sphere, onthe firm. If the firm
does not conform to the regulations it will not be allowed to sell its products or
face legal consequences. However, most companies use the enforced regula-
tions to market themselves as environmentally friendly, thereby increasing the
economical sustainability by increasing the environmental sustainability.

When the dimensions and the motivation of sustainable development and
their applicability to a specific company have been understood, the company’s
interest will be in establishing sustainability criteria.Labuschagne et al. pro-
pose a comprehensive framework of sustainability criteriathat can be used to
assess the sustainability of projects, technologies, as well as the overall com-
pany sustainability [5]. The sustainability criteria framework considers the
dimensions: environmental sustainability, economic sustainability, and social
sustainability. Economic sustainability is, besides common accepted criteria
such as Net Present Value (NPV) and Return Of Investment (ROI), suggested
to be measured by the criteria: potential financial benefits.

In the “Framework for sustainability assessment tools” article [39], Ness et
al. categorizes sustainability assessment tools in three general areas: indices/
indicators; product-related assessment tools; and integrated assessment. Life
cycle management is an assessment tool in the product-related assessment tool
area. Risk analysis and uncertainty analysis are part of theintegrated assess-
ment tool area. Sing et al. have made an comprehensive overview of sustain-
ability assessment methodologies [11]. Their conclusion is that various inter-
national efforts on measuring sustainability exist, but only few of them have
an integral approach taking into account environmental, economic and social

16 Related Work

aspects. As sustainable development is about the inter-linkage of the three as-
pects, trying to use the efforts supplementary will be missing the point of sus-
tainable development. Finally, Sing et al. state that sustainability assessment
techniques should be selected and negotiated by the appropriate communities
in interest.

Following the conclusions of Reed [9], Salzmann et al. [10],and Sing et al.
[11], each community or domain should: interpret sustainable development,
argue its business case for sustainable development, and establish their own
sustainable development assessment.

Possible criteria for the software engineering domain thatfits the descrip-
tions of sustainable development by [4][37][5] are listed in Figure 3. If these
are actually criteria used or criteria that should be used inindustrial software
system development organizations is an open issue that needs further research.
It’s not known how the business processes of the software development orga-
nization relate to the sustainability criteria.

Economic
Sustainability

Environmental
Sustainability

Social
Sustainability

+ Executable software
+ Architecture views
+ Architecture patterns
+ Software development staff
+ Software development tools
+ Software licenses
+ Software storages
+ Financial equity, debt

+ Software system’s contribution
to natural resources savings
+ Software system’s usage of
natural resources in development
and operation

+ Reputation, software quality related
+ Cost/benefit heuristics for using
architecture patterns
+ Risk analysis related to software
architectural issues
+ Software innovations
+ Software development
processes
+ Software development
methods
+ Software design principles

+ Information sharing networks
+ Human capital carried and shared by key
competences
+ Personal human capital
+ Software development staff’s loyalties
+ Software development organization’s partnerships
with external organizations
+ Trust among software development staff
+ Software development staff’s motivation
+ Stakeholders’ participation
+ Software Development Organization Patterns

Corporate
Sustainability

Figure 3: Three dimensions of corporate sustainability with possible criteria
from the software engineering domain and the software architecture’s environ-
ment

Another open issue is how the software quality concerns relate to sustain-

Software Engineering 17

ability criteria. Ozkaya et al. make the case that software architectural patterns
carry economic value in the form of real options, providing designers with the
right, but not the obligation, to take subsequent design actions in the future
in the face of uncertainty [40]. Their method could be one wayof measuring
potential financial benefits for a software development organization as a part
of measuring economic sustainability. The stakeholder value that is connected
to sustainability criteria, i.e. which stakeholder will perceive an added-value
when the criteria is reached, should be explored.

Basili, Cladiera, and Rombach describe the Goal Questions Metric ap-
proach [41]. By understanding specific aspects of a concern,related to the
system development, the goal can be set and metrics to achieve the goal con-
structed. For sustainable development this would translate into collecting stake-
holders’ concerns regarding the system and its developmentand usage. Then
the aspects of those concerns related to sustainable development have to be
understood and goals and metrics defined.

Jain and Boehm describe an initial theory of value-based software engi-
neering [42]. The value-based software engineering (VBSE)theory addresses
the questions of “which values are important?” and “how is success assured?”
for a given software engineering enterprise. Their theory could be used to find
out, what values are important to achieve success in form of sustainable devel-
opment. Assigning a sustainable development value to each one of the current
and future stakeholders’ concerns, can aid in the elicitation of concerns impor-
tant to address for the achievement of sustainable development.

2.2 Software Engineering

The term software engineering first appeared in the 1968 NATOSoftware En-
gineering Conference1 and was meant to provoke thought regarding the current
“software crisis” at the time.

In the article “Will There Ever Be Software Engineering” [43], Jackson
claims that:

. . . there will never be software engineering. As these specializa-
tions flourish (e.g. compiler engineering, operating systems [au-
thor’s remark]) they leave software engineering behind . . .A pro-
fessor of software engineering must, by definition, be a professor
of unsolved problems.

1http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/index.html

18 Related Work

Ziv and Richardson state the uncertainty principle of software engineering
(UPSE) [44] as:

Uncertainty is inherent and inevitable in software development
processes and products.

They describe the software development as a complex human enterprise
carried out in problem domains and under circumstances thatare often uncer-
tain, vague or otherwise incomplete.

Basili and Musa discuss the management perspective of software engineer-
ing [45]. To understand where the time and effort in softwaredevelopment are
going, Basili and Musa suggest that:

. . . we must isolate and categorize the components of the software
engineering discipline, define notations for representingthem and
specify the interrelationships among them as they are manipu-
lated.

They point to a set of areas that they believe will play an important role in
deepening the understanding and attainment of software quality. These areas
are:

• Formal methods

• Design methods, e.g. object oriented design

• Measurement approaches

• Usage and reduced-operation software

• Reuse

• Cognitive psychology, e.g. problem solving research

• Software sociology, e.g. group dynamics, communication networks, and
organizational politics

Where Jackson sees the application domain of software engineering as cru-
cial for the science of software engineering, Basili and Musa see the software
development related activities, applicable to any domain,as the areas important
for the discipline of software engineering.

The topic of the engineering in software engineering is the software ar-
chitecture, the construction of software according to the software architecture

Software Architecture 19

and the life cycle maintenance of the software structures built according to the
architecture. That the engineering depend upon what software is being con-
structed, is similar to the building engineering where the building of office
building and domestic buildings requires different specializations of the engi-
neering skills. But the basic architecture and engineeringtraining is still the
same.

2.3 Software Architecture

The study of software architecture is in large part a study ofsoftware structure
that began in 1968, the same year as the term Software Engineering was in-
troduced when Dijkstra presented the work with the THE-multiprogramming
system [46]. Dijkstra presented a layered software structure that supported the
testability quality of the system, thereby connecting the software development
test process to software architecture structures.

Twenty years later, Shaw described different styles [47]. She writes:

. . . important decisions are concerned with the kinds of modules
and subsystems to use and the way these modules and subsystems
are organized. This level of organization, the software architec-
ture level, requires new kinds of abstractions that captureessential
properties of major subsystems and the ways they interact.

The software architecture styles Shaw describes are commonways of solv-
ing specific problems or the invention to solve one specific problem, e.g. the
“Blackboard” architecture style as the solution to the speech understanding
problem [48].

In the book “Software Architecture: Perspectives on an Emerging Disci-
pline”, published 1996, Shaw and Garlan describe software architecture con-
cepts such as: components, connectors, and styles [12].

One of the frequent used definitions of Software Architecture is the defi-
nition from the book “Software Architecture in Practice” published 2003 (1st
edition published 1997) written by Bass, Clements, and Kazman [13]. They
define software architecture as:

The software architecture of a program or computing system is
the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and
the relationships among them.

20 Related Work

According to Gacek, Abd-Allah, Clark, and Boehm [49], a software system
architecture comprises:

• A collection of software and system components, connections, and con-
straints.

• A collection of system stakeholders’ need statements.

• A rationale which demonstrates that the components, connections, and
constraints define a system that if implemented, would satisfy the col-
lection of system stakeholders’ need statements.

Gacek et al. implicitly connect the definition of sustainable development
to software architecture with the third item in their list. If their system stake-
holders’ need statements would include the needs of future stakeholders and
if the needs would include economical, social and environmental needs then
their definition of software architecture would actually bein line with what is
required by a software architecture for a system with sustainable development.

The standard “IEEE 1471: ANSI/IEEE 1471-2000: RecommendedPrac-
tice for Architecture Description of Software-Intensive Systems” is the first
formal standard in the area of system architecture, and was adopted in 2007
by ISO as ISO/IEC 42010:2007 [50]. In ISO/IEC 42010:2007 every system is
considered in the context of its environment: the total sum of all influences
determining the setting and circumstances of developmental, technological,
business, operational, organizational, political, regulatory, social and any other
influences upon a system. The ISO/IEC 42010:2007 definition of system ar-
chitecture is:

The fundamental organization of a system embodied in its com-
ponents, their relationships to each other, and to the environment,
and the principles guiding its design and evolution.

This is a definition not so much in line with sustainable development as is
the definition of Gacek et al [49]. “Principles” is a very vague term but could
be interpreted to be principles in line with meeting currentstakeholders’ needs
without compromising the organization’s ability to meet future stakeholders’
needs.

Johnson has in his PhD thesis [14], published 2002, investigated the defini-
tions of software architecture to find a general consensus among the definitions
but resorts to conclude that:

Software Architecture with an Enterprise Perspective 21

It is not generally agreed upon what a component or entity is,it
is not generally agreed upon what a structure is, or even if itis to
be called structure, and it is not generally agreed upon whatelse
comprises software architecture.

Considering Johnson’s conclusion, the question is, how thedifferences in
agreement affect a not risk-willing industry’s adaptationof software architec-
ture’s concepts. When each industry or application area hasto define its own
understanding of the meaning of software architecture, it might lead to tradi-
tionally software-intensive domains taking a lead in the adaptation of software
architecture concepts and the not traditionally software-intensive domains hav-
ing a long way to go to reach the same software quality maturity. If software
quality maturity affects the sustainability of the software system, this is a se-
rious issue without an obvious solution. Each software application domain
can hardly define its own software engineering research discipline as Jackson
discusses [43].

Gacek et al. [49] and the ISO 42010 standard [50] have extended the con-
cept of software architecture from components and their interactions to include
the software architecture environment in terms of stakeholders’ needs and in-
fluences like: developmental, technological, business, operational, organiza-
tional, political, regulatory, social and any other influences upon a system.
These influences requires an enterprise perspective to be described and related
to the software components and their interactions.

2.4 Software Architecture with an Enterprise Per-
spective

Enterprise2 architecture, defined by the Federal Architecture Working Group
(FAWG) [51], is: a strategic information asset base and describes the mission
(i.e. the business), the information and the technologies necessary to perform
the mission, and the transitional processes for implementing new technologies
in response to changing mission needs. An enterprise includes interdependent
resources (people, organizations, and technology) who must coordinate their
functions and share information in support of a common mission. Architecture

2Enterprise - an organization supporting a defined business scope and mission

22 Related Work

includes a baseline architecture3, target architecture4, and a sequencing plan5.
According to Martin [52], enterprise architecture deals with “Getting to the

Future” and has drivers and outcomes. The enterprise architecture is according
to Martin a means for transforming enterprise objectives into business plans
and mission needs.

In the mid 1990s the Department of Defense (DOD) determined that a com-
mon approach was needed for describing its architectures, so that DOD systems
could efficiently communicate and inter-operate during joint and multinational
operations, resulting in the DOD Architecture Framework (DODAF) [53]. The
interoperability aspects of the DODAF is reflected in its architectural views
which are focused on describing what’s being communicated and how in the
Operational View (OV) of the DODAF. The Systems View (SV) of DODAF
identifies the systems that support the OVs and the TechnicalView (TV) de-
scribes the criteria for each required system that will satisfy the interoperability
requirements. DODAF is as such not an architecture development method or
a classification framework, it’s an architecture description development frame-
work focused on describing interoperability aspects of systems of systems.

TOGAF6 is developed and maintained by members of The Open Group,
working within the Architecture Forum. The original development of TOGAF
Version 1 in 1995 was based on the Technical Architecture Framework for
Information Management (TAFIM), developed by the US Department of De-
fense (DOD) [54]. The DOD gave The Open Group explicit permission and
encouragement to create TOGAF by building on the TAFIM, which itself was
the result of many years of development effort and many millions of dollars of
US Government investment.

TOGAF is more ambitious in scope than its defense counterpart, DODAF.
TOGAF organizes architectures into four domain levels: Business architecture
- defines business strategy, governance, organization, andkey business pro-
cesses; Application architecture - specifies individual application systems to
be deployed; Data architecture - defines structure of an organization’s logical
and physical data assets and associated data management resources; and Tech-
nology architecture - specifies software infrastructure intended to support the
deployment of core, mission-critical applications.

3Baseline architecture - the architecture as it is today, also called as-is architecture
4Target architecture - the (planned) future architecture, also called to-be architecture or goal

architecture
5Sequencing plan - the strategy for changing the baseline architecture to the target architecture,

also called the transition plan
6http://www.opengroup.org/architecture/togaf9-doc/arch/ [accessed 12. August 2009]

Software Architecture with an Enterprise Perspective 23

Enterprise architecture descriptions have been widely adopted by the DOD
but the discipline of enterprise architecture is commonly considered to have
its birth in an academic article by Zachman published 1987 bythe research
oriented IBM Systems Journal [15]. Zachman saw the growing complexity of
information software system that extended in scope and complexity to cover
an entire enterprise. He stated that decentralization of system resources with-
out structure results in chaos and argued for the need of information system
architecture. Zachman searched for an objective independent base upon which
to build a framework for information system architecture and resolved to be
inspired by classical architecture.

In a joint article, published 1992, Sowa and Zachman explainthat the Zach-
man framework links the concrete things in the world (entities, processes, lo-
cations, people, times and purposes) to the abstract bits inthe computer [18]
. The Zachman framework is not a replacement of programming tools, tech-
niques, or methodologies but instead, it provides a way of viewing the system
from many different perspectives and how they are all related. The framework
logic can be used for describing virtually anything considering its history of
development. The logic was initially perceived by observing the design and
construction of buildings. Later it was validated by observing the engineering
and manufacture of airplanes. Subsequently, it was appliedto enterprises dur-
ing which the initial material on the framework was published [15][16][17].
Sowa and Zachman write:

Most programming tools and techniques focus on one aspect ora
few related aspects of a system. The details of the aspect they se-
lect are shown in utmost clarity, but other details may be obscured
or forgotten. By concentrating on one aspect, each technique loses
sight of the overall information system and how it relates tothe
enterprise and its surrounding environment. The purpose ofthe
Information System Architecture framework is to show how every-
thing fits together. It is a taxonomy with 30 boxes or cells orga-
nized into six columns and five rows. Instead of replacing other
techniques, it shows how they fit in the overall scheme.

According to Zachman, “Architecture” is the set of descriptive represen-
tations relevant for describing a complex object, such thatthe instance of the
object can be created and such that the descriptive representations serve as the
baseline for changing an object instance.

The columns of the framework represent different abstractions from or dif-
ferent ways to describe information of the complex object. The reason for

24 Related Work

Abstraction INVENTORY
SETS

(WHAT)

PROCESS
TRANSFORMATIONS

(HOW)

NETWORK
NODES

(WHERE)

ORGANIZATION
GROUPS
(WHO)

TIMING
PERIODS
(WHEN)

MOTIVATION
REASONS

(WHY)Perspective

SCOPE
CONTEXTS
(Strategists)

e.g. Inventory
Types

e.g. Process Types e.g. Network
Types

e.g. Organization
Types

e.g. Timing
Types

e.g. Motivation
Types

BUSINESS
CONCEPTS
(Executive
Leaders)

e.g. Business
Entities &
Relationships

e.g. Business
Transform & Input

e.g. Business
Locations &
Connections

e.g. Business
Role & Work

e.g. Business
Cycle &
Moment

e.g. Business
End & Means

SYSTEM
LOGIC
(Architects)

e.g. System
Entities &
Relationships

e.g. System
Transform & Input

e.g. System
Locations &
Connections

e.g. System
Role & Work

e.g. System
Cycle &
Moment

e.g. System
End & Means

TECHNOLOGY
PHYSICS
(Engineers)

e.g.
Technology
Entities &
Relationships

e.g. Technology
Transform & Input

e.g.
Technology
Locations &
Connections

e.g. Technology
Role & Work

e.g.
Technology
Cycle &
Moment

e.g. Technology
End & Means

COMPONENT
ASSEMBLIES
(Technicians)

e.g.
Component
Entities &
Relationships

e.g. Component
Transform & Input

e.g.
Component
Locations &
Connections

e.g. Component
Role & Work

e.g.
Component
Cycle &
Moment

e.g. Component
End & Means

Figure 4: The Zachman Framework

isolating one variable (abstraction) while suppressing all others is to contain
the complexity of the design problem. Abstractions classifying the description
focus are:

Inventory Sets - Describes “what” information is used

Process Transformations- Describes “How” the information is used

Network Nodes - Describes “Where” the information is used

Organization Groups - Describes “Who” is using the information

Timing Periods - Describes “When” the information is used

Motivation Reasons - Describes “Why” the information is used

The rows of the framework represent “Perspectives” classifying the de-
scription usage:

Software Architecture with an Enterprise Perspective 25

Scope Contexts- perspective descriptions corresponds to an executive sum-
mary for a planner or investor who wants an estimate of the scope of the
system, what it would cost, and how it would perform.

Business Concepts- perspective is the perspective of the owner, who will
have to live with the constructed object (system) in the daily routines
of business. This perspective descriptions correspond to the enterprise
(business) model, which constitutes the design of the business and shows
the business entities and processes and how they interact.

System Logic - perspective descriptions is the designer’s perspective descrip-
tions. These correspond to the system model designed by a systems an-
alyst who must determine the data elements and functions that represent
business entities and processes.

Technology Physics- perspective descriptions correspond to the technology
model, which must adapt the system model to the details of theprogram-
ming languages, I/O devices, or other technology. This is the perspective
where the four views of the “4+1” model by Kruchten [55] can beused
to describe software architecture.

Component Assemblies- perspective descriptions correspond to the detailed
specifications that are given to programmers who code individual mod-
ules without being concerned with the overall context or structure of the
system.

The relevant descriptive representations would necessarily have to include
all the intersections between the Abstractions and the Perspectives (Figure. 4).
“Architecture” would be the total set of descriptive representations (models)
relevant for describing the complex object and required to serve as a baseline
for changing the complex object once it is described. Zachman’s complex
object is the enterprise, but principally he states that thecomplex object can
be any object.

The Zachman framework is a structure, not a methodology for creating
the implementation of the object. The Zachman Framework does not imply
anything about how architecture is done (top-down, bottom-up, etc). The level
of detail is a function of a cell not a function of a column. Thelevel of detail
needed to describe the Technology Physics perspective may be naturally high
but it does not imply that the level of detail of the Scope Contexts descriptions
should be lower or the opposite.

26 Related Work

The framework is normalized, that is adding another row or column to
the framework would introduce redundancies or discontinuities. Composite
models and process composites are needed for implementation. A composite
model is a model that is comprised of elements from more than one framework
model. For architected implementations, composite modelsmust be created
from primitive models and diagonal composites from horizontally and verti-
cally integrated primitives. The structural reason for excluding diagonal rela-
tionships is that the cellular relationships are transitive. Changing a model may
impact the model above and below in the same column and any model in the
same row.

The rules of the framework are [16]:

Rule 1: Do not add rows or columns to the framework

Rule 2: Each column has a simple generic model

Rule 3: Each cell model specializes its column’s generic model

Rule 3 Corollary: Level of detail is a function of a cell, not acolumn

Rule 4: No meta concept can be classified into more than one cell

Rule 5: Do not create diagonal relationships between cells

Rule 6: Do not change the names of the rows or columns

Rule 7: The logic is generic, recursive

For manufacturing, a process composite would be necessary.The process
composite describes the working process of creating the model descriptions of
the composite model, typically ending with the descriptions of the components
in the Component Assemblies perspective, e.g. a service or framework.

A third dimension of the framework, called science, has beenproposed by
O’Rourke et al. [56]. This extension is known as the Zachman DNA (Depth
iNtegrating Architecture). In addition to the perspectives and aspects the z-axis
is used for classifying the practices and activities used for producing all the cell
representations.

An example of an information system classifying information standards
in the Zachman framework is the Zachman ISA Framework for Healthcare
Informatics Standard [57], see Figure 5.

The model, i.e. the view, in the Zachman framework can be aligned with
the ISO/IEC 42010:2007 viewpoints [50]:

Software Architecture with an Enterprise Perspective 27

An organization desiring to produce an architecture framework for
a particular domain can do so by specifying a set of viewpoints
and making the selection of those viewpoints normative for any
Architectural Description claiming conformance to the domain-
specific architectural framework. It is hoped that existingarchitec-
tural frameworks, such as the ISO Reference Model for Open Dis-
tributed Processing (RM-ODP) [58], the Enterprise Architecture
Framework of Zachman [15], and the approach of Bass, Clements,
and Kazman [13] can be aligned with the standard in this manner.

Zachman’s framework does not describe what language to use for the model
descriptions or how to do the actual modeling for each cell. Therefore each
view of the Zachman’s framework is free to use the viewpoint selected by the
responsible of the description. It should therefore be possible to use the view-
points from the ISO/IEC 42010:2007 to describe a model, i.e.a view, within
the framework.

The Business Concepts perspective of Zachman’s framework is perhaps
the most interesting to investigate for a possible integration with system archi-
tecture descriptions related to sustainable development of industrial software
systems. Morris, Schindehutte, and Allen have researched the business model
concept regarding the definition, nature, structure, and evolution of business
models [59]. According to the authors:

A business model is a concise representation of how an interre-
lated set of decision variables in the areas of venture strategy,
architecture, and economics are addressed to create sustainable
competitive advantage in defined markets.

The physical, tangible and intangible capital ensuring economical sustain-
ability can be described within the Zachman framework. How the enterprise
ensures that it minimizes the natural resource consumptioncan be described
in a life-cycle management process described in the ProcessTransformations
column in the Zachman framework. Subsystems’ interactionscan be described
in the System Logic perspective in the Zachman framework andrelated to the
business processes they support, described in the BusinessConcept perspec-
tive. Measures of each business process’ energy consumption can therefore be
related to the system’s software features supporting the business process. So-
cial capital, as networks of employees communicating with and trusting each
other, may be more difficult to capture. Enterprise vision, mission and princi-
ples stating a risk-willing, open, and communicative culture can be described in

28 Related Work

Abstraction INVENTORY
SETS

(WHAT)

PROCESS
TRANSFORM.

(HOW)

NETWORK
NODES

(WHERE)

ORGANIZATION
GROUPS
(WHO)

TIMING
PERIODS
(WHEN)

MOTIVATION
REASONS

(WHY)Perspective

SCOPE
CONTEXTS

Description of
important health
service and care
delivery
information.

Important
health care and
care delivery
services

Identification
and description
of
organization and
individual
locations

Essential
health service
organizations and
their functions

Identification
of
significant
health
care and care
delivery
events

Personal and
public health
impact, and
care
delivery
business
case

BUSINESS
CONCEPTS

Semantic
description of
health care
processes

Conceptual
activity model
of
health care
delivery

Structure and
interrelationship
of
health care
facilities

Healthcare
information
system workflow

Sequence and
timelines of
health
care services

Personal health
benefit and care
delivery
business
objectives

SYSTEM
LOGIC

Logical data
model for health
care information

Application
architecture
with
function and
user
views

Connectivity
and distributed
system
architecture

Health care
information
system human-
system
interface
architecture

Health care
event phases
and
process
components

System
functional
requirements

TECHNOLOGY
PHYSICS

Physical data
model for health
care information

System
design,
language
specification,
and
structure charts

Health system
information
network detailed
architecture

Health care
information
system human-
system
interface
description

Health care
information
system control
structures

System
operational
requirements

COMPONENT Health care Code Physical data System Health care TechnicalCOMPONENT
ASSEMBLIES

Health care
information
metadata, and
DBMS scripts

Code
statements,
control blocks,
DBMS stored
procedures, etc

Physical data
network
components,
addresses and
communication
protocols

System
security
architecture and
operations

Health care
information
system
component
timing
descriptions

Technical
requirements

Figure 5: The Zachman ISA Framework for Healthcare Informatics Standard

the Scope Context’s Motivation Reason column. But much of the social capital
is social, since it can not be explicitly captured and transfered as economical
capital in a document.

2.5 Software Architecture Environmental Influences

Shaw and Garlan suggest a software design level model consisting of machine,
code, andarchitecture[12]. The machine level represents the binary software
that is part of the operating system and commercial productsthat cannot be
modified by the application developer. The code represents the program that
is the domain of application development, and the third level is the architec-
ture, which provides a model of how the system is partitionedand how the

Software Architecture Environmental Influences 29

connections between the partitions communicate.
According to Malveau and Mowray [60] this software design level model

is insufficient since it does not represent any significant separation of concerns
and important properties such as interoperability betweensystems are not con-
sidered.

Malveau and Mowray suggest a Software Design-Level Model (SDLM):

The Software Design-Level Model (SDLM) builds upon the fractal
model. This model has two major categories of scalesŮ Micro-
Design and Macro-Design. The Micro-Design levels include the
more finely grained design issues from application (subsystem)
level down to the design of objects and classes. The Macro-Design
levels include system-level architecture, enterprise architecture,
and global systems (denoting multiple enterprises and the Inter-
net). The Micro-Design levels are those most familiar to develop-
ers. At Micro-Design levels, the key concerns are the provision of
functionality and the optimization of performance. At the Macro-
Design levels, the chief concerns lean more toward management
of complexity and change. These design forces are present atfiner
grains, but are not nearly of the same importance as they are at
the Macro-Design levels.

Micro-Design level descriptions typically describe software components
and connectors, e.g. the “4+1” view by Kruchten [55] or the four views by
Soni, Nord and Hofmeister [61]. The Macro-Design level includes system-
level architecture, enterprise architecture, and global systems described by e.g.
the DODAF [53], TOGAF [54] or the Zachman Framework [15][16][17].

Sustainable development is about both the Micro-Design level concerns
and the Macro-Design level concerns as management of complexity and change.
For instance, organizational issues as an out-sourcing of development affect
economical capital and social capital of the sustainable development.

The importance of technical, business, and social influences on software
architecture is also discussed by Bass et al. [13]. The relationship among the
technical, business, and social environments that subsequently influence future
architecture is called the architecture business cycle (ABC). The ABC focuses
on the creation of software architecture and the maintenance of the architecture
and conformance of the system to the architecture.

An attempt to address sustainable development concerns canbe found in
the work of Kazman et al. [62] where the integration of established engineer-
ing methods with a development organization’s life cycle isdiscussed. Here

30 Related Work

the Attribute Driven Design (ADD) method by Wojcik et al. [63], and the Cost
Benefit Analyze Method (CBAM)by Kazman and Ozkaya [40][62],are sug-
gested as means for the architect to design and chose appropriate architectural
responses to the new challenges during the software development life cycle.
The methods are preferably used in the development phase andthe Architec-
ture Trade-off Analysis Method (ATAM), described by Clements et al [7], used
after the system is released and the stakeholders want to discover risks and sen-
sitivity points in the architecture related to business goals. The ATAM can be
used to discover risks related to environmental sustainability goals if they can
be expressed as quality attribute concerns, e.g. if the energy consumption of the
software due to a specific architectural design can be formulated as a quality at-
tribute concern. Usually ATAM’s are concerned with economical sustainability
concerns, e.g. how to make the architecture support modifiability, performance
or usability in order to maintain or expand the target marketwith a reasonable
effort [8]. The development organization’s maintainability concern often im-
plies long-term efforts, in order to improve economical sustainability, e.g. the
introduction of reusable components [64] or product line system architectures
[65].

The non-balance of short-term gains and long-term gains when setting busi-
ness goals has been described by Dyllick and Hockerts in their article on Cor-
porate Sustainability [4] as:

In recent years, driven by the stock market, firms have tendedto
overemphasize short-term gains by concentrating more on quar-
terly results than the foundation for long-term success. Such an
obsession with short-term profits is contrary to the spirit of sus-
tainability, which requires a balance between long-term and short-
term needs, so as to ensure the ability of the firm to meet the needs
of its stakeholders in the future as well as today.

For the change requests entering the system after its release, the stakehold-
ers have to take a decision if they are worth implementing or not. Considering
Dyllick and Hockerts view of the importance of a balance between long-term
gains and short-term gains, the change request should coverboth aspects. In
an article from Boehm [66], it is argued that software engineers should look
at proposed changes to software systems as investment possibilities and cal-
culate on the value of investing in those changes with methods similar to the
methods in the investment economics, e.g. option theory. Especially the value
of the success-critical stakeholders concerns should be considered important.
For sustainable development this would mean that the software engineers must

Software Architecture Environmental Influences 31

identify the success-critical stakeholders and calculatethe sustainable develop-
ment related value of addressing their concerns. Ozkaya et al. propose a similar
approach of using option theory when selecting architecture alternatives [40].

The implementation of change requests also have be supported by the de-
velopment process. The process has to support unpredictable change requests
as well as support their fast realization. The Scrum development process has
gained a lot of supporters as it’s a light-weight process with a strong connection
to agile development methods as described by Schwaber [67].Scrum consid-
ers the software development process to be a chaotic empirical process which
requires close watching and control, with frequent intervention. A Scrum soft-
ware project is controlled by establishing, maintaining, and monitoring key
control parameters. The key control parameters are backlog, issues, risk, prob-
lems and changes. Scrum identifies the most important stakeholders and these
success critical stakeholder’s concerns are implemented at first. This is simi-
lar to Ruhe and Saliu [68] who describe the release planning approach based
on the features’ internal dependencies, the resource constraints and the stake-
holders’ importance. Scrum ignores future stakeholders’ need if they are not
expressed by the current stakeholders involved in the Scum process steps. In
order for Scrum to be a good alternative for a company aiming at sustainable
development, there must be a representative for future stakeholders’ needs that
has as much influence-weight as the current stakeholders. This might be dif-
ficult since there is no immediate pay-off for considering the future in terms
of environmental and social capital. An additional difficulty for the Scum pro-
cess to incorporate future stakeholders’ needs is that it would be difficult to
iterate today’s system’s development around changes in future stakeholders’
concerns.

Curtis, Krasner, and Iscoe employed field research methods characteristic
of sociology and anthropology in a field study called “A field study of the soft-
ware design process for large systems” [69][70]. They studied both successful
projects as well as failed projects for businesses such as: computer manufac-
turing, telecommunications, consumer electronics, and aerospace. Exceptional
designers were shown to possess superior application knowledge and commu-
nicated well with both clients and the development team. They could translate
user requirements into technology, identify unstated requirements, and men-
tally simulate software and interactions between parts of asystem. One of the
most significant findings in the study is that:

In particular, they (exceptional designers) envisioned how the de-
sign would generate the system behavior customers expected, even

32 Related Work

under exceptional circumstances. Yet exceptional designers often
admitted that they were not good programmers, indicating they did
not write optimized code, if they wrote code at all.

The finding implies that exceptional software architects should have a solid
understanding of architectural issues and customers’ business processes, the
application domain. The exceptional software architects increase the social
capital of the company in terms of their implicit application domain knowledge.

Curtis et al. write:

For instance, software design is often described as a problem-
solving activity. Nevertheless, few software developmentmodels
include process components identified in empirical research on
design problem-solving. Even worse, software tools and practices
conceived to aid individual activities often do not providebenefits
that scale up on large projects to overcome the impact of teamand
organizational factors that affect the design process.

The findings related to management issues in Curtis’s study showed that
an implicit component of the managers’ job was to close the gap between the
technical challenges of the system and their staff’s capability for solving them.
Problem-solving capacity and knowledge communication is typically a part of
the social sustainability researched in e.g. the educational research domain
[71].

The progress of problem-solving in the software development organization
can only be controlled if its being measured. Adaptations inthe organization
can be made if the desired sustainable development state is known and if the
current state of the processes involved in achieving the goal is known. Con-
sidering the complexity in the software architecture environment, reaching the
goal of sustainable development requires careful elicitation of measures to use
in software development process improvement.

2.6 Software Development Measures

Software development requires a measurement mechanism forfeedback and
evaluation according to Basili et al. [41]. They suggest that metrics and mod-
els in industrial environments to be efficient must be focused on specific goals.
The metrics must be interpreted based on an understanding ofthe organiza-
tional context, environment and on the specified goals. Basically, their ap-
proach is to: find the stakeholder concerns; understand whatvalue it would

Software Development Measures 33

give the organization to solve the concerns; set up goals by analyzing the pur-
pose, issues, viewpoints and objects of the concerns. The viewpoints are the
stakeholders who voiced the concerns. The issue is the problem kernel of the
concern and the object is the process, resource or product towhich the problem
kernel is related. The purpose is what the stakeholder want to do with the issue,
e.g. improve, reduce, strengthen etc. Once the goal is established, questions
related to the object’s properties can be asked in order to find the metrics of the
object.

The Goal-Question-Metric (GQM) approach could be used for sustainable
development concerns voiced by stakeholders in the industrial software sys-
tem’s architecture environment. Goals could be set up to reach improvements
on objects extracted out of the concerns.

Jain and Boehm focus on value-based software engineering (VBSE) [42].
The theory address considerations involved in the: managerial aspects of soft-
ware engineering; personal, cultural, and economic valuesinvolved in develop-
ing and evolving successful software-intensive systems. Value Based Software
Engineering uses success-critical-stakeholder values tosituate and guide tech-
nical and managerial decisions. Similar to the GQM method, the first task is
to find the stakeholders’ concerns. Where Basili et al. suggest a structuring of
the aspects of the concerns in order to establish goals, Jainand Boehm suggest
an understanding of how the stakeholders want to win and if this way to win
makes the other stakeholders to winners or losers. The negotiation between
stakeholders starts with the stakeholders identifying their value propositions.
The VBSE can possibly be used in conjunction with the GQM for identifying
those concerns with the most sustainable development valueto the organiza-
tion.

Key Performance Indicators (KPIs) are quantifiable measurements, agreed
to beforehand, that reflect the critical success factors of an organization. They
will differ depending on the organization. Key PerformanceIndicators for soft-
ware development could be based on the categories of identified information
needs in the development organization suggested by Antolic[72]: Schedule
and Progress; Resources and Cost; Product Size and Stability; Product Qual-
ity; Process Performance; Technology Effectiveness; Customer Satisfaction.
Key Performance Indicators could also be based on the architectural complex-
ity measures discussed by: Boehm et al. [73], Halstead [74] or McCabe [75].

According to Burlton [76], the type of the stakeholder, getting a value out
of the process, should decide what measurement indicator isused. This is
similar to the reasoning of Basili et al. [41]. For example, constructing a
software architecture has a value to the architect role. Architectural complexity

34 Related Work

could then be used as a Key Performance Indicator, to aid the architect in not
constructing architectures too complex for its environment.

The view of the software architecture as a control instance working cor-
rectly only if the organizational parameters are set correctly led Dikel et al.
[77] to reflect on the law developed by Ashby [78], thelaw of requisite variety,
which suggests that a system should be as complex as its environment:

. . . in active regulation only variety can destroy variety. It leads
to the somewhat counterintuitive observation that the regulator
must have a sufficiently large variety of actions in order to ensure
a sufficiently small variety of outcomes in the essential variables
E. This principle has important implications for practicalsitua-
tions: since the variety of perturbations a system can potentially
be confronted with is unlimited, we should always try maximize its
internal variety (or diversity), so as to be optimally prepared for
any foreseeable or unforeseeable contingency.

[79]

If a software architecture becomes more complex than its environment, it
may become too expensive for the organization to support. Ifthe environment
would include the organizational environment as well as thebusiness environ-
ment then a business domain model with a measure of the business domain
complexity would be required in order to understand on what level the soft-
ware architecture complexity should be. The business domain model can be
described by domain analysis according to Coplien [80].

Burlton describes the maturity model of business processesin five levels
[76]. Between level two and level three, architectures and KPIs should be de-
signed. At level four, the performance of the processes are measured with the
designed KPIs. At level five, the processes are continuouslyimproved. Mea-
suring process improvement for an industrial process, as paper production, is
typically done by measuring the increase in production per time unit or in terms
of observable qualities, e.g. percentage of cotton in the paper. Measuring pro-
cess improvement in software development relies on KPIs measuring software
development process production and/or quality being established.

Taylor Fitz-Gibbon and Lyons Morris reason around a theory-based evalu-
ation [71]. According to the reasoning, those variables which explain the most
variance in the outcomes of interest should be chosen. Transposed to software
development, this would indicate that the stakeholders’ concerns with the most
impact on sustainable development improvement should be chosen as the basis

Software Architecture Quality Attributes 35

for establishing metrics. The theory of sustainable development would be used
to indicate crucial variables in the concerns. If for e.g. the software quality
attribute maintainability is a crucial variable for sustainable development of in-
dustrial software systems, then stakeholders’ concerns with a maintainability
object could be the basis for establishing metrics, e.g. using the Goal Question
Metric approach of Basili et. al [41].

2.7 Software Architecture Quality Attributes

In [81], Barbacci et al. discuss software quality attributes. Bass et al. have
introduced software quality scenarios as a way to describe system-environment
interaction scenarios related to a specific quality-attribute [13] .

Maintainability is one software quality attribute important for the econom-
ical sustainability researched by e.g. Rombach [82], Oman and Hagemeister
[83]. Rombach discusses maintainability at the code language level. Oman and
Hagemeister have constructed a maturity attribute tree with the attributes: age,
size, reuse, maintenance intensity etc.

Energy dissipation has joined throughput, area, and accuracy/precision as
an important quality of the system according to Vijaykrishnan et al. [84]. Vi-
jaykrishnan et al. argue that designers must be concerned with both optimizing
and estimating the energy consumption of circuits, architectures, and software.
Environmental sustainability can with this reasoning be reinforced by software
architectures designed for low energy consumption.

Bass [13] points out that the software architecture qualityattributes fall
within two broad dimensions: those discerned by observing the system at run-
time and those not observed by observing the system at runtime [13]. The for-
mer, including attributes as performance and usability, are directly influenced
by the customer’s concerns. The latter, such as developmentmaintainability
concerns and testability, are influenced by the developmentorganization’s con-
cerns.

Often the quality concerns trade-off with each other. The most usable sys-
tem would have no security. Security is about restricting access to system
functionality and usability is about giving easy access to system functionality.
The prioritization of quality concerns is depending on whatbusiness goal they
support. The problem is that it’s not always obvious to the system stakehold-
ers what is the impact of their business goals concerns on thesystem qualities.
An analysis of 24 Architecture-Tradoff-Analysis-Method (ATAM) [7] work-
shops and their participating stakeholders’ quality attribute input is described

36 Related Work

by Ozkaya, Bass, and Nord [8]. The ATAM uses the “Utility Tree” to describe
the stakeholders’ quality attribute concerns in the form ofquality attribute sce-
narios. Ozkaya, Bass, and Nord discovered that many of the stakeholders’ top
20 quality attributes, i.e. concerns, do not appear in the same fashion in com-
mon quality attribute taxonomies, e.g. the ISO 9126 [85]. Software quality
attributes suffer of the same problem as software architecture: there is no com-
mon accepted semantics. This makes it harder for industrialsoftware systems
to adopt to the practice of eliciting and representing quality attribute informa-
tion.

Rozanski and Woods introduce the concept of an “Architectural Perspec-
tive” as a way to modify and enhance existing views to ensure that architecture
exhibits the desired quality properties [86]. Their definition of an architectural
perspective is refined in the book [87]:

An architectural perspective is a collection of activities, tactics,
and guidelines that are used to ensure that a system exhibitsa par-
ticular set of related quality properties that require consideration
across a number of the system’s architectural views.

The security perspective activities are e.g. identify sensitive resources, de-
fine the security policies, identify threats to the system etc. Usability perspec-
tive activities are according to Rozanski and Woods: user interface design, par-
ticipatory design, interface evaluation, and prototyping. To address the usabil-
ity concern, Rozanksi and Woods only suggest separating theimplementation
of the user interface from the functional processing in contrast to the security
perspective for which ten architectural tactics are discussed thoroughly.

Rozanski and Woods share the common way of describing usability for a
software system as something being achieved by isolating the user interface
logic from the rest of the system. Studies of software engineering projects
[88][89] show that a large number of usability related change requests are made
after its deployment. If usability actually requires more architectural support
than user interface separation from the rest of the system logic, then the system
development organization is in for a late and costly architectural redesign when
these change requests hit the system.

Software Architecture’s Interplay with Usability 37

2.8 Software Architecture’s Interplay with Usabil-
ity

Work in usability comes primarily from the field of Human-Computer Inter-
action (HCI). One bridge between the HCI field and software engineering was
proposed by Jacobson, in 1987, in the form of the use case [90]. Use cases
have been widely used as descriptions of how the system’s user roles interact
with the system. Jacobson describes the use case as: “A use case is a special
sequence of transactions, performed by a user and a system ina dialog”.

Constantine and Lockwood [91] write that conventional use cases typically
contain too many built-in assumptions about the form of userinterface that is
yet to be designed. Instead they suggest the usage of a “essential use case”:

An essential use case is a structured narrative, expressed in the
language of the application domain and of users, comprisinga
simplified, generalized, abstract, technology-free and implementation-
independent description of one task or interaction that is meaning-
ful, and well defined from the point of view of users in some role
or roles in relation to a system and that embodies the purposeor
intentions underlying the interaction.

The essential use case uses “user intentions” and “system responsibilities”
instead of “user action model” and “system response model” as described by
Jacobson [90][92] and Wirfs-Brock [93]. By shifting focus from actions and
system responses, the essential use case abstracts the use case one more level
and make it technology independent.

Task analysis and task hierarchies are often used in usability engineering.
Breedvelt-Shoutern et al. have demonstrated that segmentsof task hierarchies
can be reused [94]. Mahemoff and Johnston have investigatedthe topic of
generic tasks [95]. Combining reuse of artifacts related todetailed software
design and task models led them to the extraction of twenty-two generic tasks
from the requirements for fourteen industry-based studentprojects. They fo-
cused on the tasks which emerged after requirements-gathering, rather than the
ways in which the software supported the tasks.

Bass, John and Golden have described how practical experiences from sys-
tems with usability problems have shown that e.g. the “Cancel” function is
highly important for the usability of some systems and highly difficult to im-
plement in a released system [27][26][96]. Their research has led to the de-
velopment of Usability Supporting Architecture Patterns,each addressing a

38 Related Work

usability concern that is not addressed by separating the system’s user inter-
face from the rest of the system’s functionality. In their work, John and Bass
identifies a set of system-environment interaction scenarios with requirement
on usability support in the architecture. The architects can use the USAPs in
the early design phase to guide them in designing usable software systems.

Juristo et al. suggest an approach of using usability patterns which identify
specific mechanisms that might be incorporated into a software architecture to
improve the usability of the final system [31]:

These mechanisms have been called usability patterns and they
address some need specified by a usability property. Note that us-
ability patterns do not provide any specific software solution to be
incorporated into a software architecture, they just suggest some
abstract mechanism that might be used to improve usability (for
example, undos, alerts, command aggregations, wizards, etc.).

Juristo et al. use the term pattern in the sense used in the article by Perzel
and Kane [97]. Perzel and Kane use the same formal description of a pattern
as the software engineering domain including: problem, context, forces, clas-
sification, solution, rationale, resulting context, example, and related patterns
[22]. The difference is that the Perzel’s solution [97] is described as interac-
tions between users and system, not as components and their relationship and
behavior as for patterns in the software engineering domain[22].

Folmer and Bosch present an architecture-level usability assessment tech-
nique [98]. They present a scenario based assessment technique. Folmer’s
usability framework [98] consists of usability patterns inthe sense of [97],
usability properties and usability attributes. Usabilityproperties are e.g. “min-
imize cognitive load” and “guidance”. Usability attributes are e.g. “efficiency”
and “satisfaction”. Software architecture is analyzed forits support of certain
usability patterns. This approach gives no support for architects wanting to
create usability-supporting architectures.

John’s, Bass’, Juristo’s, Perzel’s, and Kane’s formal description of a pattern
is the same formal description as the software engineering domain has adapted.
This way of describing patterns originates in the work of Alexander [24].

2.9 Architecture Patterns

Christopher Alexander is a building architect researcher.Alexander describes
building architecture patterns as sets of forces in the world and the relations

Architecture Patterns 39

among them [99]. In the book “The Timeless Way of Building” [24], pub-
lished 1979, Alexander describes common, sometimes even universal patterns
of space, events, and human existence ranging across all levels of granularity.
The book “A Pattern Language” [23] contains 253 pattern entries. Each entry
might be seen as an in-the-small handbook on a common, concrete architec-
tural domain. Each entry links a set of forces, a configuration or family of
artifacts, and a process for constructing a particular realization.

According to Alexander:

Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the solu-
tion to that problem, in such a way that you can use this solution
a million times over, without ever doing it the same way twice.

Alexander is concerned with the life of the designed product, which is part
of the usage process. The user, or customer, should, according to Alexander,
experience that the thing has a rich and whole life.

The cost of the construction must be in harmony with the perceived benefit
of having “life” and “feeling” and Alexander discusses thisas the compression
of patterns:

Every building, every room, every garden is better, when allthe
patterns which it needs are compressed as far as it is possible
for them to be. The building will be cheaper, and the meanings
in it will be deeper . . . It is essential then, once you have learned
to use the language, that you pay attention to the possibility of
compressing the many patterns which you have put together, in
the smallest possible space.

(xliii-xliv, [23])

Contrasting to a belief in one optimal building process, Alexander advo-
cates that the structure preserving of the whole of the building should dictate
how the building process evolves naturally. The building process is important
to Alexander as he refers to D’Arcy Thompson who insisted on that every form
is basically the end result of a certain growth process [100]. The growth pro-
cess must be a structure preserving transformation according to Alexander and
continues to argue that the centers must be unfolded in a certain sequence: “The
generative sequence is the ordering of an unfolding. It is a series of statements
that describe the thing to be created”. Alexander exemplifies the sequence with
the sequence of the creation of a Japanese teahouse:

40 Related Work

. . . if I try to locate the waiting bench too early, at a moment when
I do not yet have the location of the middle barrier, the context
for placing it does not yet exist. But more important, it is also
not possible, in this case, for me to use the waiting bench and
its location to preserve the structure of the rest. For the waiting
bench to preserve the structure of the garden, I have to put itin at
a time when the garden has developed. I can make the structure-
preserving process work only if things come at the right time, in
the right order.

Alexander’s advocated building process resembles the agile way with fre-
quent iterations and prototyping. Many of the authors behind the “Agile Mani-
festo” [101] have in fact been inspired by Alexander’s work on patterns: Beck
and Cunningham [19]; Sutherland and Schwaber [102]. Coplien describes the
emerging of the Agile discipline [103] and includes Alexander’s ideas as one
of the origins of the Agile discipline.

Beck et al. have described the evolution of software design patterns [104].
They write:

Design patterns had their origin in the late 1980’s when Ward
Cunningham and Kent Beck developed a set of patterns for de-
veloping elegant user interfaces in Smalltalk [19]. At around the
same time, Jim Coplien was developing a catalog of language-
specific C++ patterns called idioms [20]. Meanwhile, Erich Gamma
recognized the value of explicitly recording recurring design struc-
tures while working on his doctoral dissertation on object-oriented
software development [105]. These people and others met and
intensified their discussions on patterns at a series of OOPSLA
workshops starting in 1991 organized by Bruce Anderson [106][107]
and by 1993 the first version of a catalog of patterns was in draft
form (summarized in [108]) which eventually formed the basis for
the first book on design patterns [21]. All of these activities were
influenced by the works of Christopher Alexander.

In [22], Buschman et al. define an architecture pattern as:

An architectural pattern expresses a fundamental structural orga-
nization or schema for software systems. It provides a set ofpre-
defined subsystems[components], specifies their responsibilities,
and includes rules and guidelines for organizing the relationships
between them.

Architecture Patterns 41

Buschman et al. classify architectural patterns in:

1. Distributed Systems, e.g. broker

2. Interactive Systems, e.g. model-view-controller

3. Adaptable Systems, e.g. microkernel or reflective

4. Mud to Structure, e.g. layers, pipe and filter and blackboard

In [12], Shaw and Garlan classified architectural patterns,or styles, in com-
mon architectural styles:

1. Dataflow systems, e.g. batch sequential and pipes and filters

2. Call-and-return systems, e.g. hierarchical layers

3. Independent components, e.g. event systems

4. Virtual machines, e.g. eule-based systems

5. Data-centered systems (repositories), e.g. databases and blackboards

Enterprise application patterns differ from telecommunication application
patterns according to Fowler [109]. Differences are to be found in software-
hardware integration and multi-threading tasks. The complex data is the focus
of an enterprise application. If the business domain of the enterprise applica-
tion gets complicated, then the data gets complicated with avariety of some-
times arbitrary business rules to implement in the enterprise application sys-
tem. But Fowler’s conclusion that the choice of the system’sarchitecture de-
pends on the particular problems of the system is valid also for industrial soft-
ware system. Fowler organizes the patterns into: Domain Logic patterns, Data
source architectural patterns, object-relational behavioral patterns etc. Using
the SDLM of Malvueau [60], the domain logic patterns capturing business
logic would be Macro-Design level patterns while the otherswould be Micro-
Design level patterns.

Fowler [109] starts his description of patterns by referring to the work of
Alexander [23][24] as many have before him. The concept of a general but
at the same time adaptable solution to recurring problems ina certain envi-
ronment seems to speak to the heart of software engineers. The Usability-
Supporting Architecture Pattern by John and Bass [27][26][96] is constructed
in the same spirit, as a general but at the same time adaptablearchitectural
solution to recurring usability problems embedded in a certain usage scenario.

42 Related Work

Actually, the USAP is more in the spirit of Alexander than many other patterns,
since Alexander is concerned with the life of the designed product, which is
highly related to usability. The user, or customer, should,according to Alexan-
der, experience that the thing has a rich and whole life. At the pattern home-
page7 of Alexander et al., the mission is described as:

We seek to help people design things, create things, to make them
useful and beautiful, in whatever we are doing, so that we mayall
take part in the daily work of building a living earth.

Alexander discovered, after some failures of people tryingto apply the set
of pattern (the pattern language), that the“creative power lay in the generative
structure of the language – and that lay in the sequence in which the steps were
to be performed”.

Contributing to the success or failure of a software development organi-
zation are also organization architecture patterns according to Coplien [110].
Coplien states that:

. . . architecture is less an echo of the tools and methods thatcreate
it than of the organization that built it. This parallelism is called
Conway’s law [111].

In the Pasteur research project at Bell Labs [112], Coplien et al. inves-
tigated organizational structures. Coplien’s organizational studies found two
organizational patterns:

• Architecture Follows Organization, a restatement of Conway’s Law [111].

• Organization Follows Location, no matter what the organizational chart
says.

The second statement relates to Bürgi’s research showing that social behav-
ior and hierarchies are different in different locations inthe world [113]. The
organization pattern, describing communication between employees, follows
the local cultural social behavior and hierarchies, no matter what the organiza-
tional chart says.

Coplien concludes [110]:

7http://www.patternlanguage.com/index.htm [Accessed: 10. June 2009]

Architecture Patterns 43

Organizations have architecture. In fact, that’s the important ar-
chitecture of a system. The software architecture is kind ofinci-
dental. Software architecture is a second-order consideration; it’s
the people that are primary. It’s critical that this perspective per-
meate our curricula and management policies more universally.

Dikel et al. developed organizational principles in an effort to predict the
success or failure of software architectures for large telecommunications sys-
tems [77]. In the reported case study [77], they realized that:

. . . technical factors, do not by themselves explain the success of
a product-line architecture and that only in conjunction with ap-
propriate organizational behaviors can software architecture ef-
fectively control project complexity.

In [114], Kane et al. describe 30 organizational patterns and anti-patterns
using the principles; Vision, Rhythm, Anticipation, Partnering and Simplifica-
tion (VRAPS).

Chapter 3

Research Design

As an employee at ABB Corporate Research, I daily take part inprojects with
the purpose to aid the software development at the ABB units.To some ex-
tent, the work as an employee at ABB Corporate Research is thework of a
consultant and to some extent, it is the work of a researcher.This thesis does
not include the projects where I have “only” applied recognized methods to
specific problems even if these projects have contributed tomy understanding
of the field of software engineering applied to industrial software systems. The
case- and field studies that are part of this thesis are the ones contributing to
added knowledge in the research field of software engineering in the domain
of industrial software systems.

3.1 Case Study Design

Yin [115] introduces the case study as“an empirical inquiry that investigates
a contemporary phenomenon within its real-life context, especially when the
boundaries between phenomenon and context are not clearly evident”. Ex-
ploratory case studies are used as initial investigations of some phenomena to
derive new hypotheses and build theories, and confirmatory case studies are
used to test existing theories. A precondition for conducting a case study is a
clear research question concerned with how or why certain phenomena occur.
This is used to derive a study proposition that states precisely what the study
is intended to show, and to guide the selection of cases and the types of data to
collect [116].

46 Research Design

The case study method is visualized in Figure 6.

Problem

Theory

Data Analysis

Theory
Revision

Data Collection

Analysis Framework

Domain Documentation

Related Work

Domain Generic Problem

Domain Case Problem

Built Theory

Research
Questions

Related Work

Domain Feedback

Case Interviews

Case Study
Design

Case Reports

External Validity

Internal Validity

Construct Validity

Figure 6: The research design of the System Sustainability Case Study

Four tests have been commonly used to establish the quality of any empir-
ical social research [115]. The tests are:

Construct Validity:establishing correct operational measures for the concepts
studied. For example, use multiple sources of evidence, establish chain
of evidence, have key informants review draft case study report.

Internal Validity: (for explanatory or causal case studies only) establishinga
causal relationship, whereby certain conditions are shownto lead to other
conditions, as distinguished from spurious relationships. For example,
Use logic models, do pattern matching, do explanation building, address
rival explanations.

External Validity:establishing the domain to which a study’s findings can be
generalized. For example, use theory in single-case studies, use replica-
tion logic in multiple-case studies.

Case Study Design 47

Reliability: demonstrating that the operations of a study - such as the data
collection procedures - can be repeated, with the same results.

In this thesis, the Sustainable Software System study has been constructed
as a case study with a multiple case design. The quality of thecase study as
tested by the fours tests:

Construct Validity:The case study’s units of analysis were companies that:
involved at least 20 developers; had software systems with alife-time
of 10 years or more; and developed industrial automation applications.
From May 2008 through December 2008, three automation system com-
panies with these characteristics were visited. Three roles were inter-
viewed at each company: senior software developer, senior software ar-
chitect, and senior product manager.

Internal Validity: Not applicable since the case study is not a explanatory or
causal case study.

External Validity:The domain, to which the case study findings can be gen-
eralized, is the domain of long-lived industrial software systems. The
case study’s three units of analysis were companies that: involved at
least 20 developers; had software systems with a life-time of 10 years
or more; and developed industrial automation applications. Compari-
son of the findings has been made with the theory proposed by Curtis
et al. [70][69]. Curtis et al. conducted an extensive field study involv-
ing 19 projects in the domain of large complex software systems ranging
from aerospace contractors to computer manufacturers withreal-time,
distributed, or embedded applications. To further strengthen the exter-
nal validity the case study interview should be conducted with e.g. au-
tomotive companies also developing large complex long-lived software
systems.

Reliability: Structured individual interviews were conducted which were ap-
proximately three hours long on site of the participating company. Par-
ticipants were guaranteed anonymity, and the information reported has
been sanitized so that no individual person or company can beidentified.
The same questions based on the theory in PaperB were asked to all
of the nine interviewees. The questions were open-ended andallowed
participants to formulate answers in their own terms. One person had
the lead as questioner in each interview and one person had the respon-
sibility for taking notes. After the interview, the person who had the lead

48 Research Design

responsibility for taking notes wrote the interview protocol and sent it to
the other person for review. Then the lead responsible for taking notes
revised the protocol and as a last validation sent the protocol to the inter-
viewee for review. The preliminary case study findings were presented to
the participating companies and additional companies in anarchitecture
day workshop where software architects and management wereinvited
to discuss the findings.

3.2 Field Study Design

The Influencing Factors field study and the USAP field study were not con-
structed as case studies according to Yin’s described case study design [115].
Instead a common research design for developing software engineering proce-
dures or models was used, illustrated in Figure 7. The Software Engineering
Taxonomy development followed the same research design as the Influencing
Factors field study and the USAP field study, but the test caseswere the field-
and case studies of this thesis.

This thesis’s field study research design is very similar to its case study
research design. The case study collects data and analysis data to revise the
theory, but the theory itself is not a testable method or testable solution as in this
thesis’s field studies. Using the theory refined in the case study, methods and
solutions can be constructed but the focus of the case study is on the refinement
of the theory.

In the field study research design, illustrated in Figure 7, the theory in the
form of a method and an architectural pattern was tested on problem owners.
The test validity was confirmed by using established usability tests and multiple
test cases from the same domain. The Influencing Factors fieldstudy included
two test cases to show the value of the constructed Influencing Factors method,
described in PaperA, when the business goal prioritization or quality attribute
prioritization is unclear. The test case selection included one case with unclear
prioritization of business goals and one test case with unclear prioritization of
software quality attributes. The goal of this field study wasto show that the
method makes both the business goal prioritization and the software quality
attribute prioritization clear and therefore guides the architectural decisions and
strengthens the stakeholders consensus around prioritized concerns. The data
collection in the field study was done in form of interviews, document reading
and observations from participation in project workshops and project meetings.

The USAP field study studying the interplay of usability and software ar-

Field Study Design 49

Problem

Theory
(Pattern/Method)

Data
Analysis

Data
Collection

Theory

Analysis Framework

Test of
Theory

Domain Documentation

Built Knowledge

Domain Generic Problem

Domain Case Problem

Test Tool

Research
Questions

Related Work

Domain User Interviews

Related Work

Test Protocols

Problem owner

Test Validity

Theory
Revision

Test Protocols

Figure 7: The research design of the Influencing Factors- andthe USAP field
study

chitecture [117][118][119][120] included two test cases in a sequence from
different companies, but in the same industrial software system domain. The
results of the first test case led to a revised USAP theory [27]. The revised
USAP theory was incorporated in a USAP test tool, an experience factory.
The experience factory was used in the second test case by twoproduct-line
architects and the test was documented with camera recording, queries and
interviews.

One could argue that field studies, the Influencing Factors field study and
the Usability-Supporting Architecture Pattern field study, fall into the category
of qualitative research called action research. Action research, as described
by Benbasat [121], are studies in which the author, usually aresearcher, is
a participant in the implementation of a system, but simultaneously wants to
evaluate a certain intervention technique. This has not been the case for the

50 Research Design

field studies in this thesis since I was not an active member ofthe development
project teams.

The goal of the companies, participating in the field studies, has been to
apply the results in their projects to get a benefit out of the participation. The
problems were authentic since the problems have been contributed by the com-
pany’s problem owners.

Chapter 4

Research Contribution

4.1 Influencing Factors Method

The Influencing Factors method collects concerns, extractsInfluencing Factors
from the concerns, and analyzes those for their influence on business goals and
software quality attributes. The result is a business goal oriented prioritization
of software quality attributes. The way the Influencing Factor is used in Pa-
per A, the Influencing Factor is a factor that states a motivation for possible
system requirements from the stakeholders’ perspective.

By presenting the collected effect of several concerns, e.g. in the ma-
trix used in PaperA, the Influencing Factors method makes both the business
goal prioritization and the software quality attribute impact clear and therefore
guides the architectural decisions and strengthens the stakeholders consensus
around prioritized concerns. The analyzed concerns could also contribute to
a more complete requirement specification, helping the system developers un-
derstand the origins of the requirements.

PaperA describes how the different impacts of the Influencing Factors are
used to prioritize among the Influencing Factors for two authentic cases. The
first case was performed on the upgrade of a large legacy industrial software
system and the second case on the re-factoring of an existingindustrial software
system. The two case study systems had a diverse set of stakeholders, such as
software architect, system architect, developers, testers, product management,
line management, engineers, and users. Both systems suffered from an un-
clear understanding of what concerns were the most important. The resulting
impact analysis helped the stakeholders prioritize among software quality at-

52 Research Contribution

tribute scenarios in the case with the re-factored system. The prioritization in-
cluded usability and led to the Usability-Supporting Architecture Pattern study
described in PaperC and PaperD. The other case, with the legacy system,
resulted in the stakeholders’ understanding of their high focus on short-term
market expansion instead of a balanced focus including long-term quality en-
hancements. Today this company is doing a major investment in enhancing the
maintainability of the system.

The contributions of this thesis, related to research question RQ3 “How
can current and future stakeholder concerns be collected and analyzed for their
impact on business goals and quality attributes in the domain of industrial soft-
ware systems?”, are:

• The Influencing Factors method, which shows stakeholders the impact of
their concerns on the system with the intention to help stakeholders reach
consensus with awareness of the impact of their concerns on business
goals and quality attributes of the system.

– The Influencing Factors method is not a design development method
since it says nothing about how to translate the prioritizedconcerns
into architectural structures.

– The low effort required by the Influencing Factors method. For
the two test cases, the gathering of concerns from stakeholders
took about a person week and the contribution of each stakeholder
was approximately two hours of interviews for those that couldn’t
participate in the one day Quality Attribute Workshop [6]. From
the two case studies it was concluded that for a skilled architect
with business goals understanding and software quality attributes
skills, the Influencing Factors analysis of the concerns should take
no longer than a day or two.

My contribution was the construction of the Influencing Factors method,
the conduction of the field study investigating the Influencing Factors method’s
applicability to two industrial software companies, the data collection, and the
analysis of the field study.

4.2 Sustainable Industrial Software Systems

The sustainable industrial software systems theory presented in PaperB intro-
duces some insights into the importance of time dynamics forthe sustainabil-
ity of industrial software systems. The time dynamics is discussed not only

Usability-Supporting Architecture Patterns 53

for technology factors but also for organizational and business related factors.
Where the Influencing Factors method discussed business goals and their im-
pact on architectural decisions, this paper discusses the change of business
goals and their co-existence with changes in organization and market environ-
ments. This paper therefore contributes to a deeper exploration of a broader
spectrum of the enterprise architecture and its relation tosystem- and software
architecture.

The contributions of this thesis, related to research question RQ2 “What
are the concerns affecting the sustainable development of an industrial software
system?”, are:

• The industrial software system sustainability theory thatstates that:

– The most important factor to recognize for sustainable develop-
ment is the factor of change. Change in organization, technology,
and market over time is something inevitable and must be managed.

– The second most important factor, is the sustainable targetmar-
ket. Customers needing the same basic functionality over decades,
tend to invest in systems that have sustained on the market for long
times. Sustainable systems are rewarded by the sustainablemarket,
thereby increasing their sustainability further.

The industrial software system sustainability theory is a common contribu-
tion by me and Anders Wall.

4.3 Usability-Supporting Architecture Patterns

Usability and its interplay with software architecture wasdiscussed in the In-
fluencing Factors paper, PaperA, as one of five quality attributes. PaperC
reports on and discusses the Usability-Supporting Architecture Pattern study
in the domain of sustainable industrial software systems and contributes with
a description of an enhanced research method and a software tool that visual-
izes the research method’s constructed responsibilities.The tool, visualizing
the responsibilities, acts as an experience factory [122] housing reusable archi-
tectural knowledge for a set of system-environment interaction scenarios. The
architects access the reusable experience in the form of reusable responsibil-
ities with implementation instructions. The architects use the knowledge as
instructions on how to implement usability support in the software architecture
early in the software design phase.

54 Research Contribution

In PaperC, it is reported on the revised USAP method and the construction
of the tool that visualized the method’s results. In PaperD, it is reported on
and discussed the results and validation of the USAP case study. The contri-
bution of this paper is significant since very few studies canreport on software
architects being able to use a tool early in the software design in a way that
helps them implement usability support in the software architecture. The two
architects used the tool for one day and reported on a development cost sav-
ing of more than five weeks for the one-day interaction with the tool, giving a
return-of-investment of 25:2.

The contributions of this thesis, related to research questionRQ1 “How can
support for usability be built into software architecture of industrial software
system in the early design phase?”, are:

• The identification of four foundational patterns describing reusable ac-
tivities and tasks with architectural usability-supporting responsibility
descriptions and responsibility implementation descriptions.

• Three Usability-Supporting Architecture Patterns: “Alarm & Event”,
“User Profile” and “Environment Configuration”.

• The experience factory, in the form of a web-based tool, containing the
reusable architectural knowledge. Architects access the knowledge in or-
der to understand how to implement usability support in the architecture
early in the design phase.

– The experience factory can be used for evaluating an architecture
with respect to its usability support.

– The company, using the experience factory for their product-line-
system’s architecture, reported on a Return-Of-Investment of 25:2
and an improved architecture quality as a result of using theexpe-
rience factory.

• Presenting a sequence of responsibilities, with responsibility implemen-
tation descriptions, to the architects in a step-by-step manner is perceived
as much more relevant and usable than being presented with ansample
solution in the form of a UML pattern.

– The field study experienced success after refactoring the UML pat-
tern embedding the reusable architectural responsibilities into a se-
quence of steps. Each step’s responsibility description instructs the

Software Engineering Taxonomy 55

architect how to architecturally support a part of the common tasks
of the system’s three USAPs.

– The architects felt this way of presenting a pattern helped them
reflect on their own architectural design and take appropriate de-
sign decision in relation to each responsibility in a natural order of
steps. This success is in line with Alexander’s discovery that people
trying to apply the set of pattern (the pattern language), achieved
success first when using a generative structure of the language - the
sequence in which the steps were to be performed.

My contribution was the field study’s project management, the experience
factory’s architectural design and implementation, and the discovery of the
usability supporting architectural responsibilities importance for product line
system’s architecture. My, Lövemark’s and Alfredsson’s common contribu-
tion was: the identification of the common tasks for the “Alarm & Event”
process, the construction of reusable usability supporting architectural respon-
sibilities for the tasks and the conduction of the first test case in the field
study. My, John’s, Bass’s and Golden’s common contributionwas: the sys-
tems’ task analysis of the processes of creating system-environment work prod-
ucts; the discovery of common tasks among the processes of creating four
system-environment work products; and the replacement of aUML sample
solution with a generative sequence of reusable architectural responsibility de-
scriptions with responsibility implementation descriptions.

4.4 Software Engineering Taxonomy

Since sustainable development must address concerns from the Macro-Design
level down to Micro-Design level, a framework that can classify the concerns
would be very useful in order to find interrelationships between the concerns
for the construction of strategies to improve the sustainable development. There-
fore three Enterprise Architecture frameworks were considered. The three
frameworks were: the Zachman framework [15][16][17] , the Department Of
Defense Architecture Framework (DODAF) [53] and The Open Group Archi-
tecture Framework (TOGAF) [54].

As this thesis was searching for an enterprise architectureartifact clas-
sification framework, not an enterprise architecture description development
framework focusing on interoperability aspects or in-house information system
architecture development framework, it resorted to study the Zachman frame-
work in more detail.

56 Research Contribution

PaperE describes the motivation, the assumptions, and the creation of the
Software Engineering Taxonomy. The assumptions made it possible to con-
struct the Software Engineering Taxonomy as a derivative ofthe Zachman
Framework. The paper also classifies all software engineering artifacts from
the IEEE Software Engineering Book Of Knowledge (SWEBOK) published
2004 [123], to test the completeness of the classification capacity of the taxon-
omy.

Apple and Google are test cases showing how shared compositemodels
crossing the site dimension of the Software Engineering Taxonomy might lead
to faster innovation.

The Scrum process artifacts are classified to show which Software Engi-
neering Taxonomy perspective is the focal point of the Scum process. The
result is a large set of Scrum artifacts being classified in the software develop-
ment organization’s Business Concept perspective.

The contributions of this thesis, related to research question RQ4 “How
can industrial software system stakeholders’ concerns be described by views
in an enterprise framework, that incorporates software engineering artifacts
descriptions?”, are:

• The Software Engineering Taxonomy derived out of the Zachman Frame-
work.

– The Software Engineering Taxonomy integrates software engineer-
ing artifacts into the views of the Zachman framework, thereby
building relations between enterprise views and software engineer-
ing views for industrial software systems.

– The Software Engineering Taxonomy adds the site dimension to
the Zachman Framework. The site identifies the environment of the
system descriptions, e.g. the operational environment or the devel-
opment environment. The development environment can be shared
between development organizations resulting in multiple sites shar-
ing view descriptions.

– The classification of the IEEE SWEBOK [123] artifacts uses only
one software development environment perspective, not theopera-
tional environment perspective, resulting in the classification being
two-dimensional.

– The Software Engineering taxonomy can serve as a reasoning frame-
work into which concerns, artifacts and results of softwareengi-
neering theories, processes and case studies are classifiedfor fur-

Applied Software Engineering Taxonomy 57

ther analysis. The consistency rules of the Zachman framework are
valid also for the Software Engineering Taxonomy.

My contribution was the construction of the Software Engineering Taxon-
omy, the classification of the IEEE SWEBOK software engineering artifacts in
the Software Engineering Taxonomy, and the analysis of Apple, Google, and
Scrum cases guided by the classification of their software engineering artifacts
in the Software Engineering taxonomy.

4.5 Applied Software Engineering Taxonomy

PaperF uses the Software Engineering Taxonomy from PaperE as a reasoning
framework to analyze the artifacts from: the Influencing Factors method study,
the Usability-Supporting Architecture Patterns study andthe System Sustain-
ability case study. Case study design, execution and analysis of the System
Sustainability case study is additionally described in PaperF.

The contributions of this thesis, related to research question RQ4 “How
can industrial software system stakeholders’ concerns be described by views
in an enterprise framework, that incorporates software engineering artifacts
descriptions?” are:

• The Software Engineering taxonomy can classify all artifacts from this
thesis’s three studies’ collected data and used theory.

• Not all of the Software Engineering Taxonomy views are necessary to
describe a specific method or theory. What views are used, depends on
the scope of the researched object. In the classification of the USAP
study artifacts, eight views were used in contrast to the Sustainable Sys-
tem study that used nineteen views.

• The Software Engineering Taxonomy made the site distinction between
system-operational environment and system-development environment
very clear for the case/ field study artifacts. The site distinction decides
what roles and work products are related to what system-environment
interface. For example, in the operational environment, the system-
environment interface may be the user interface and the workproduct
an “Alarm & Event Condition”. In the system-development environment
the interface may be the development environment’s interface, e.g. the
implementation’s interface to the system and the work product a code
structure.

58 Research Contribution

The contributions of this thesis, related to the extended analysis of the re-
search presented in PaperC and PaperD, to the research questionRQ1 “How
can support for usability be built into software architecture of industrial soft-
ware system in the early design phase?” are:

• The inclusion of a traditional enterprise perspective, thebusiness con-
cepts perspective, led to discoveries of new interrelationships between
the USAP artifacts: system-environment interaction scenario, system
environment business roles & work products, system-environment ac-
tivities and tasks related to the roles & work products, responsibility de-
scriptions, quality attributes, and responsibility implementation descrip-
tions.

• Classification of the USAP artifacts made use of the businessconcept
perspective for four of the twelve artifacts. The inclusionof a traditional
enterprise perspective, the business concepts perspective, led to new con-
clusions regarding the use of general activities for pattern creation.

• System environment business roles and work products are a key artifact
in linking the USAP scenario [26] to common activities and tasks sup-
porting more than one role or more than one work product.

• System environment may be operational or development environment.
The environment decides what system-environment interface, business
roles and work products should be used in the USAP information de-
scription/ selection process. The environment dimension,the site di-
mension in PaperE, of the Software Engineering Taxonomy is therefore
important.

• The placeholder of the common activity is furnished by the work product
or the role for the three USAP scenarios in the field study.

• The responsibility is related to the quality chosen to be supported for
the scenario. For USAP, the usability quality is supported by the USAP
responsibility.

The contributions of this thesis, related to the extended analysis of the Sus-
tainable Industrial Software Systems from PaperB, to the research question
RQ2 “What are the concerns affecting the sustainable development of an in-
dustrial software system? development organization” are:

Applied Software Engineering Taxonomy 59

• The sustainable key-competences in the industrial software system de-
velopment organization carry the application domain knowledge and the
system knowledge, thereby increasing the social sustainability of the
company. The sustainable key-competence pass the knowledge on to
the system developers during informal design discussions.

• The development organizations sustain economical capitalby planning
for changes when the changes are technology changes. When the changes
are organizational, e.g. distributed development, the management have
lost social capital by failing to plan for how the development organiza-
tion has to adapt to the new work-form. It has been too little known in the
companies, what requirements a distributed development environment
has on the development organization’s structures and communication.

• The incorporation of a remotely located development team inthe devel-
opment organization will be especially difficult in a culture that has so-
cial capital invested in sustainable key-competences and their informal
spreading of knowledge. If the organization has ignored investigating
in explicit software documentation, increasing the tangible economical
capital, the new remotely located team can make use of neither the social
capital nor the economical capital related to system know-how.

• The sustainable target market increases the intangible economical capi-
tal.

• Intangible economical capital in the form of goodwill and reputation is
increased by delivering reliable systems for a long-time tothe target mar-
kets.

• The business case arguing added value of software engineering for sus-
tainable development is not good enough for the three investigated cases
making the use of software engineering methods and artifacts sparse.

• Curtis’s study [70][69], the Dikel study [77] and the Sustainable Indus-
trial Software Systems case study point toward a conclusionthat sus-
tainable development concerns related to the software development or-
ganization, must be addressed first before software engineering tools and
methods can have a significant impact on sustainable development.

The contributions of this thesis, related to the extended analysis of the In-
fluencing Factors from PaperA, to the research questionRQ3 “How can cur-
rent and future stakeholder concerns be collected and analyzed for their impact

60 Research Contribution

on business goals and quality attributes in the domain of industrial software
systems?” are:

• The perspective of the influencing factor is connected to thequality con-
cern’s ownership of the influencing factor. If the customersown the
quality concern, i.e. has voiced the quality concern, corresponding in-
fluencing factor can be found in all the Software EngineeringTaxon-
omy perspectives. The development organization’s maintainability con-
cern’s corresponding influencing factors are only found in the Business
Concepts and Scope Contexts perspective, not in the System Logic per-
spective. Discussions regarding architectural solutionsto maintainabil-
ity issues, seem to be reserved for the architects and developers outside
success-critical stakeholders’ discussion forums.

My contribution to PaperF was the analysis of: the Influencing Factors
method field study, The USAP field study, and the Sustainable Industrial Soft-
ware Systems case study. Our common contribution was the design and data
collection of the Sustainable Industrial Software Systemscase study.

Chapter 5

Future Work

The most substantial future work is related to the system sustainability theory
and the USAP’s integration of additional quality attributes.

5.1 Sustainable Industrial Software Systems

It remains to expand the external validity of the Sustainable Industrial Soft-
ware Systems case study, i.e. find more related work and to include a domain-
external case with a long-lived complex software system, e.g from the auto-
motive domain. The automotive domain would be especially interesting due to
its high requirements on environmental sustainability. The theory in PaperB
was the base for the propositions. Since the propositions were not all verified,
the theory should be modified according to the findings from the case study
and validated. The analyzed findings should also be further discussed with the
involved case companies.

When applying the concept of sustainable development to theclassified
concerns from the interviews, which were ranked as being of high importance,
there was an unbalance between the economical sustainability, environmental
sustainability, and the social sustainability. Most of theconcerns addressed
economical capital or ways of increasing economical capital. Some concerns
addressed social capital but no concern addressed environmental capital. In the
analysis, one environmental capital concern is added basedon knowledge of
the systems, collected through documentation and experience. When the value
of addressing the individual sustainable development concern is not known,

62 Future Work

it’s very difficult to say, if the system development is sustainable or not. The
concerns with the highest impact on sustainable development must be found,
based on the added value of addressing the concerns. Metricsfor the objective
of the concerns’ issues can be established, possibly using the Goal Question
Metric approach suggested by Basili et al. [41].

Another open issue is the value of software engineering concepts to the do-
main of industrial software systems. The lack of organization prerequisites for
using software engineering concepts led to software architecture related issues
being underrepresented in the Sustainable System case study interviews. But
that does not mean that software engineering concepts do nothave any impact
on sustainable development of industrial software systems. The sequence of
introducing them must simply start with raising software engineering aware-
ness among the executive leaders, who in their turn could raise the software
engineering knowledge among the staff. By doing so, the social capital of the
organization would be increased as well as its social sustainability. But the
current state leaves the sustainability case study with open questions around
the importance of software architecture concepts for sustainable development.
A case study can simply not answer these questions, since thedomain must
mature and use software architecture concepts on a daily basis for some time,
before their importance for sustainable development can beevaluated.

Will the future stakeholders have their needs met without the systems in-
corporating software engineering concepts as: explicit software development
process, formal software evaluation process, domain analysis, software doc-
umentation, pattern languages, model driven architectureetc? If not, future
work must formulate a sustainability business case that includes the value of
software engineering. To do so, a gap analysis between the current state today
and the desired state must be done and measures constructed for the progress
of the movement to the desired state. Software engineering would be the tool
that enforces the movement to the desired state. Enterprisearchitecture and
usability are concepts, important for sustainable development, that need to be
incorporated with software engineering.

It remains to use the Software Engineering Taxonomy classification of sus-
tainable development concerns for the set-up of goals and metrics in order to
address some of the sustainable development concerns the companies felt they
could meet in a better way. The interrelationships between the classified con-
cerns could then be used to create an sustainable development improvement
process, in the same manner as the USAP information description/ selection
process was created in PaperF.

Usability Supporting Architecture Patterns 63

5.2 Usability Supporting Architecture Patterns

The Usability-Supporting Architecture Patterns study is currently being ex-
tended in order to apply the enhanced concepts. The new field study will use
security and safety as research base. If multiple quality attribute supporting re-
sponsibilities could be created then the issue of quality attribute trade-offs will
surface. Further, the question of how to identify and present conflicting quality
concerns to the architects will have to be answered. The following reasoning
is part of an ongoing case study were no results are yet published.

In the activity taxonomy, the quality aspect is to be found onthe respon-
sibility level as shown in Figure 7. For example, the “Alarm &Event” tasks
have usability requirements as well as security- and safetyrequirements. Not
all operators or system engineers are allowed to author an “Alarm & Event”
condition since it will have implications on the safety and security of the envi-
ronment of the “Alarm & Event” system. A falsely authored “Alarm & Event”
condition might lead to the “Alarm & Event” system not warning the operator
when the devices are not working properly, possibly causingdamages in the
environment. Additionally the “Alarm & Event” might not warn the operator
about an intrusion attempt to the system. The responsibilities handling security
and safety for the activity task “Create a specification” must be considered as
well as the usability responsibilities for the same activity task.

The architects may assign the responsibility to a portion ofthe system, e.g.
a component which they put an identifier on, e.g. a name or number. If the
architects have assigned e.g. both a security and a usability responsibility to
the same component(s), then the trade-off between the responsibilities can be
made visible on component level.

Figure 8 shows how the activity task “Modify a specification”has two qual-
ity concerns: security and usability. The system’s specifications are only al-
lowed to be modified by authorized users due to security issues and possibly
also safety issues. To address the security concern of the activity task, one
security responsibility states “The system must permit or prohibit specific au-
thoring of a specification”. At the same time one usability responsibility states
“The system must provide a way to access the specification”. These two re-
sponsibilities have different implementation descriptions. The security respon-
sibility’s implementation description says that there should be portions of the
systems that permit or prohibit access depending on who asksfor permission
to modify the specification. The usability responsibility’s implementation de-
scription says that there must be portions of the system thatprovide access to
the specification.

64 Future Work

Specification

Portion(s) of the system that
permit(s) or prohibit(s)

authoring of the specification

Security Responsibility:
The system must permit or
prohibit specific authoring

of a specification

Usability Responsibility:
The system must provide

a way to access the
specification

Portion(s) of the system that
provide(s) access to the

specification

Activity Task:
“Modify a

specification” Quality Concern:
Usability

Quality Concern:
Security

Figure 8: Example of activity task’s multiple quality concerns’ trade-off

In a ongoing case study, the described trade-off concept will be imple-
mented in an extended version of the experience factory, theUSAP web test
tool, described in PaperC and PaperD.

Bibliography

[1] P. Pollan. Our decrepit food factories.New York Times, 2007.

[2] G.C Unruh. Escaping carbon lock-in.Energy Policy, vol. 30(no.4):pp.
317–325, 2002.

[3] G.H. Brundtland. Our common future. Report of the World Commis-
sion on Environment and Development. Published as Annex to General
Assembly document A/42/427, 1987.

[4] T. Dyllick and K. Hockerts. Beyond the business case for corporate sus-
tainabilityt. Business Strategy and the Environment, 11:130–141, 2002.

[5] C. Labuschagne, A.C. Brent, and R.P.G. Erck. Assessing the sustainabil-
ity performances of industries.Journal of Cleaner Production, Volume
13, Issue 4, March 2005, Pages 373-385, 13(4):373–385, 2005.

[6] M. Barbacci, R. Ellison, A. Lattance, J. Stafford, C. WeinStock, and
W. Wood. Quality attribute workshops, 3rd edition. Technical report,
Software Engineering Institute, Pittsburgh, PA, USA, 2003.

[7] P. Clements, R. Kazman, and M. Klein.Evaluating Software Architec-
tures, Methods and Case Studies. Addison-Wesley, Boston, 2002.

[8] I. Ozkaya, L. Bass, R.L. Nord, and R.S. Sangwan. Making practical use
of quality attribute information.Software, IEEE, 25(2):25–33, March-
April 2008.

[9] D.J. Reed. Stalking the elusive business case for corporate sustainability.
World Resources Institute, Washington, 2001.

65

66 Bibliography

[10] O. Salzmann, A. Ionescu-Somers, and U. Steger. The business case for
corporate sustainability:: Literature review and research options.Euro-
pean Management Journal, 23(1):27 – 36, 2005.

[11] R K. Singh, H.R. Murty, S.K. Gupta, and A.K. Dikshit. An overview
of sustainability assessment methodologies.Ecological Indicators,
9(2):189 – 212, 2009.

[12] M. Shaw and D. Garlan.Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[13] L. Bass, P. Clements, and R. Kazman.Software Architecture in Practice.
Addison-Wesley, Boston, second edition, 2003.

[14] P. Johnsson.Enterprise Software System Integration: An Architectural
Perspective. PhD thesis, Industrial Information and Control Systems,
Royal Institute of Technology (KTH), Stockholm, Sweden, 2002.

[15] J. A. Zachman. A Framework for Information Systems Architecture.
IBM Systems Journal, 26(3):276–292, 1987.

[16] J. A. Zachman.The Zachman Framework for Enterprise Architecture;
A Primer for Enterprise Engineering and Manufacturing. Zachman In-
ternational, 2003.

[17] J. A. Zachman. The Zachman Framework and Observations on Method-
ologies.Business Rules Journal, 5(11), 2004.

[18] J. F. Sowa and J. A. Zachman. Extending and formalizing the framework
for information systems architecture.IBM System Journal, 31:590–616,
1992.

[19] K. Beck and W. Cunningham. Using pattern languages for object-
oriented programs. Technical Report Technical Report No. CR-87-
43, Apple Computer, Inc. and Tektronix, Inc., 1987. Submitted to
the OOPSLA-87 workshop on the Specification and Design for Object-
Oriented Programming.

[20] J. O. Coplien. Advanced C++: Programmmg Styles and Idioms.
Addison-Wesley, 1992.

[21] E. Gamma, R Helm, R. Johnson, and J. Wissides.Design Patterns - El-
ements of Reusable Object-Oriented Sojlware. Addison-Wesley, 1995.

Bibliography 67

[22] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, andM. Stal.
Pattern-oriented Software Architecture A System of Patterns, volume 1.
Wiley, first edition, 1996.

[23] C. Alexander. A Pattern Language: Towns, Buildings, Construction.
Oxford University Press, USA, 1977.

[24] C. Alexander.The Timeless Way of Building. Oxford University Press,
1979.

[25] L.J. Hoffman, K. Lawson-Jenkins, and J. Blum. Trust beyond Security:
An expanded Trust Model.Commun. ACM, 49(7):95–101, 2006.

[26] L. Bass, B. E. John, and J. Kates. Achieving usability through software
architecture. Technical Report No. SEI-TR-2001-005, Carnegie Mellon
University/Software Engineering Institute, Pittsburgh,PA, 2001.

[27] L. Bass and B. E. John. Linking usability to software architecture pat-
terns through general scenarios.The Journal of Systems and Software,
66:187–197, 2003.

[28] E. Folmer and J. Bosch. Architecting for usability: a survey. Journal of
Systems and Software, 70(1-2):61–78, 2004.

[29] E. Folmer, J. van Gurp, and J. Bosch. A Framework for capturing the
Relationship between Usability and Software Architecture. Software
Process: Improvement and Practice, Volume 8, Issue 2. Pages67-87.,
2003.

[30] N. Juristo, H. Windl, and L. Constantine. Introducing usability. Soft-
ware, IEEE, 18(1):20–21, Jan/Feb 2001.

[31] N. Juristo, M. Lopez, A. Moreno, and M.-I. Sanchez-Segura. Improv-
ing software usability through architectural patterns. Paper presented at
the ICSE 2003 Workshop on Bridging the Gaps Between SoftwareEn-
gineering and Human-Computer Interaction, Portland, Oregon, USA.,
2003.

[32] N. Juristo, A.M. Moreno, and M.-I. Sanchez-Segura. Guidelines for
eliciting usability functionalities.Software Engineering, IEEE Transac-
tions on, 33(11):744–758, Nov. 2007.

68 Bibliography

[33] K.E. Sveiby. The New Organizational Wealth: Managing and Mea-
suring Knowledge Based Assets. Berrett Koehler, San Francisco, CA.,
1997.

[34] R. Ayres. Industrial Metabolism: Restructuring for Sustainable Devel-
opment, chapter Industrial Metabolism: Theory & Policy, pages 3–20.
United Nations University Press, 1994.

[35] G. Strand. Keyword evil: Google’s addiction to cheap electricity.
Harper’s Magazine, March 2008.

[36] D. Dunphy, A. Griffiths, and S. Benn.Organizational Change for Cor-
porate Sustainability: Understanding Organizational Change. Rout-
ledge, 2003.

[37] J.S. Coleman. Supplement: Organizations and institutions: Sociolog-
ical and economic approaches to the analysis of social structure. The
American Journal of Sociology, 94:S95–S120, 1988.

[38] Martin O’Connor. The “four spheres” framework for sustainability.Eco-
logical Complexity, 3(4):285 – 292, 2006. Complexity and Ecological
Economics.

[39] B. Ness, E. Urbel-Piirsalu, S. Anderberg, and L. Olsson. Categorising
tools for sustainability assessment.Ecological Economics, 60(3):498 –
508, 2007.

[40] I. Ozkaya, R. Kazman, and M. Klein. Quality-attribute based economic
valuation of architectural patterns. InEconomics of Software and Com-
putation, 2007. ESC ’07. First International Workshop on the, pages
5–5, May 2007.

[41] V. R. Basili, G. Caldiera, and D. H. Rombach.Encyclopedia of Software
Engineering, chapter The goal question metric approach. Wiley, 1994.

[42] A. Jain and B. Boehm. Developing a theory of value-basedsoftware
engineering. InEDSER ’05: Proceedings of the seventh international
workshop on Economics-driven software engineering research, pages
1–5, New York, NY, USA, 2005. ACM.

[43] M. Jackson. Will there ever be software engineering?IEEE Software,
pages 36–39, 1998.

Bibliography 69

[44] H. Ziv and D.J Richardson. The Uncertainty Principle inSoftware En-
gineering. In19th International Conference on Software Engineering
(ICSE’97), 1997.

[45] V. R. Basili and J. D. Musa. The future engineering of software: A
management perspective.Computer, 24(9):90–96, 1991.

[46] E. Dijkstra. The structure of the “THE”-multiprogramming system.
Commun. ACM 11, 5:341–346, 1968.

[47] M. Shaw. Larger scale systems require higher-level abstractions. Pro-
ceedings of the Fifth International Workshop on Software Specification
and Design, 1989.

[48] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and R. D. Raj. The Hearsay-II
Speech-Understanding System: Integrating Knowledge to Resolve Un-
certainty.ACM Comput. Surv., 12(2):213–253, 1980. 356816.

[49] C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm. On the definition of
software system architecture. InICSE 17 Software Architecture Work-
shop, 1995.

[50] R. Hilliard. Systems and software engineering - Recommended prac-
tice for architectural description of software-intensivesystems.ISO/IEC
42010 IEEE Std 1471-2000 First edition 2007-07-15, pages c1–24, 15
2007.

[51] R. C. Thomas. A Practical Guide to Federal Enterprise Architecture,.
www.gao.gov/bestpractices/bpeaguide.pdf, 2001. retrieved July 11th
2009.

[52] J. N. Martin. An introduction to the Architectural Frameworks
DODAF/MODAF/NAF. Course given at the Royal Institute of Tech-
nology, Stockholm, Sweden, 2006.

[53] DoD. Department of Defence Architecture Framework Working Group,
DoD Architecture Framework, DoDAF, version 1.0. Department of De-
fence, 2003.

[54] TOG. The Open Group Architecture Framework, version 8/9, 2002/6.
The Open Group,.

70 Bibliography

[55] P. B. Kruchten. The “4+1” View Model of architecture.Software, IEEE,
12(6):42–50, Nov 1995.

[56] C. O’Rourke, N. Fishman, and W. Selkow. Enterprise Architecture, Us-
ing the Zachman Framework.Thomson Course Technology, 2003.

[57] M. Diehl. Zachamn ISA Framework for Healthcare Informatics Stan-
dard. Available: http://apps.adcom.uci.edu/EnterpriseArch/
Zachman/Resources/ ExampleHealthCareZachman.pdf [Accessed 25.
September 2009], 1997.

[58] ISO/IEC 10746 - 3: 1996, Information technology - Open distributed
processing - Reference model: Architecture, 1996.

[59] M. Morris, M. Schindehutte, and J. Allen. The entrepreneur’s business
model: toward a unified perspective.Journal of Business Research,
58(6):726 – 735, 2005. Special Section: The Nonprofit Marketing Land-
scape.

[60] R. Malveau and T. J. Mowbray.Software Architect Bootcamp. Prentice
Hall Professional Technical Reference, 2003.

[61] D. Soni, R. L. Nord, and C. Hofmeister. Software architecture in indus-
trial applications. InICSE ’95: Proceedings of the 17th international
conference on Software engineering, pages 196–207, New York, NY,
USA, 1995. ACM.

[62] R. Kazman, J. Asundi, and M. Klein. Making architecturedesign deci-
sions: An economic approach. Technical report, Software Engineering
Institute, Carnegie Mellon University, 2002.

[63] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson,R. Nord, and
B. Wood. Attribute-driven design (add), version 2.0. Technical Report
CMU/SEI-2006-TR-023 ESC-TR-2006-023, Software Engineering In-
stitute, Pittsburgh, USA, 2006.

[64] I. Jacobson, M. Griss, and P. Jonsson. Making the reuse business work.
Computer, 30(10):36–42, Oct 1997.

[65] P. Clements and L. Northrop.Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[66] B.W. Boehm and K.J. Sullivan. Software economics: a roadmap, 2000.

Bibliography 71

[67] K. Schwaber. Scrum development process. Workshop Report: Busi-
ness Object Design and Implementation. 10th Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications.
Addendum to the Proceedings. ACM/SIGPLAN OOPS Messenger 6(4),
October 1995.

[68] G. Ruhe and M.O. Saliu. The art and science of software release plan-
ning. IEEE Software, 22:47–53, 2005.

[69] B. Curtis, H. Krasner, and N. Iscoe. A field study of the software design
process for large systems. Communications of the ACM, Vol. 31 No.
11, pp. 1268-87., 1988.

[70] W. Curtis, H. Krasner, V. Shen, and N. Iscoe. On buildingsoftware
process models under the lamppost. InICSE ’87: Proceedings of the
9th international conference on Software Engineering, pages 96–103,
Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[71] C. Taylor Fitz-Gibbon and L. Lyons Morris. Theory-based evaluation.
Evaluation Practice, 17(2):177 – 184, 1996.

[72] Z. Antolic. An Example of Using Key Performance Indicators for Soft-
ware Development Process Efficiency Evaluation. TechnicalReport,
R&D Center, Ericsson Nikola Tesla d.d., 2008.

[73] B. Boehm, Abts C., A. Winsor Brown, S. Chulani, B. K. Clark,
E. Horowitz, R. Madachy, D. J. Reifer, and B. Steece.Cost Estimation
with COCOMO II. Prentice Hall, 2000.

[74] M. Halstead.Elements of Software Science. Elsevier, 1977.

[75] McCabe. A complexity measure.IEEE Transactions on Software Engi-
neering, 2:308–320, 1976.

[76] R. Burlton. Business process management: profiting from process.
Sams, Indianapolis, IN, USA, 2001.

[77] D. Dikel, D. Kane, S. Ornburn, W. Loftus, and J. Wilson. Applying
software product-line architecture.Computer, 30(8):49–55, Aug 1997.

[78] W. R. Ashby. An Introduction to Cybernetics. First Edition, Chapman
and Hall: London, UK, 1956.

72 Bibliography

[79] W.R. Ashby. The Law of requisite Variety. Avalable:
http://pespmc1.vub.ac.be/REQVAR.html [accessed 20. August 2009].

[80] J. O. Coplien.Multi-Paradigm Dedign for C++. Addison-Wesley, Read-
ing, MA, 1998.

[81] M. Barbacci, M. Klein, T. Longstaff, and C. Weinstock. Quality At-
tributes. Technical Report CMU/SEI-95-TR-021, CMU/SEI, 1995.

[82] H.D. Rombach. A controlled expeniment on the impact of software
structure on maintainability.Software Engineering, IEEE Transactions
on, SE-13(3):344–354, March 1987.

[83] P. Oman and J. Hagemeister. Metrics for assessing a software system’s
maintainability. InSoftware Maintenance, 1992. Proceerdings., Confer-
ence on, pages 337–344, Nov 1992.

[84] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye.
Energy-driven integrated hardware-software optimizations using sim-
plepower. InISCA ’00: Proceedings of the 27th annual international
symposium on Computer architecture, pages 95–106, New York, NY,
USA, 2000. ACM.

[85] IS0 9126-1:2001InformationTechnology - Software engineering - Prod-
uct quality - Part 1: Quality model, International Organization for Stan-
dardization, 2001.

[86] E. Woods and N. Rozanski. Using architectural perspectives. InFifth
Working IEEE / IFIP Conference on Software Architecture (WICSA
2005), pages 25–35, Pittsburgh, Pennsylvania, USA, November 2005.
IEEE Computer Society.

[87] N. Rozanski and E. Woods.Software Systems Architecture: Working
with Stakeholders using Viewpoints and Perspectives. Addison-Wesley,
2005.

[88] R. S. Pressman.Software Engineering: A Practitioner’s Approach.
McGraw-Hill, NY„ 1992.

[89] T. K. Landauer.The Trouble with Computers: Usefulness, Usability and
Productivity. MIT Press., Cambridge, 1995.

Bibliography 73

[90] I. Jacobson. Object oriented development in an industrial environment.
In OOPSLA ’87: Object-Oriented Programming Systems, Languages
and Applications, volume 22(12), pages 183–191. SIGPLAN Notices,
1987.

[91] L L. Constantine and L. A D. Lockwood.Software for User: A Practical
Guide to the Models and Methods of Usage-Centered Design. Addison-
Wesley, 1999.

[92] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-
Oriented Software Engineering - A Use Case Driven Approach.
Addison-Wesley, 1992.

[93] R. Wirfs-Brock and A. McKean.Object Design: Roles, Responsibilities,
and Collaborations. Addison-Wesley, 2003.

[94] I. M. Breedvelt-Schouten, Paternò. F., and C. Severijns. Reusable struc-
tures in task models. InDSV-IS, pages 225–239, 1997.

[95] M. J. Mahemoff and L. J. Johnston. Brainstorming with generic tasks:
An empirical investigation. InInterfacing Reality in the New Millen-
nium: OZCHI 2000, pages 224–231, Sydney, December 2000. ACM.

[96] E. Golden, B. E. John, and L. Bass. The value of a usability-supporting
architectural pattern in software architecture design: A controlled exper-
iment. InProceedings of the 27th International Conference on Software
Engineering, ICSE, St. Louis, Missouri, May 2005.

[97] K. Perzel and D. Kane. Usability patterns for applications on the world
wide web. InPloP ’99 Conference., 1999.

[98] E. Folmer, J. Van Gurp, and J. Bosch. Software architecture analysis
of usability. In IFIP Working Conference on Enginering for Human-
Computer Interaction, 2004.

[99] R. P. Gabriel.Patterns of Software: Tales from the Software Community.
Oxford University Press, New York Oxford, 1998.

[100] D.A.W. Thompson. On Growth and Form. Cambridge Univ. Press,
Cambridge, 1917.

[101] K. Beck, K. Schwaber, W. Cunningham, M. Fowler, and J. et al Suther-
land. The Agile Manifesto. Available: http://agilemanifesto.org/ [ac-
cessed 10. February 2009].

74 Bibliography

[102] J. Sutherland and K. Schwaber. The Scrum Papers:
Nuts, Bolts, and Origins of an Agile Process. Available:
www.jeffsutherland.com/scrum/ScrumPapers.pdf [Accessed 25.
June 2009], October 2007.

[103] J. O. Coplien.For those that were Agile before Agile was cool. Keynote
speech at OO Days at Tampere University of Technology, November
2008.

[104] K. Beck, R. Crocker, G. Meszaros, J. Vlissides, J. O. Coplien, L. Do-
minick, and F. Paulisch. Industrial experience with designpatterns. In
ICSE ’96: Proceedings of the 18th international conferenceon Software
engineering, pages 103–114, Washington, DC, USA, 1996. IEEE Com-
puter Society.

[105] E. Gamma. Object-Oriented Software Development based on ET++.
PhD thesis, University of Zurich, Institut fur Informatik,1991.

[106] B. Anderson and P. Coad. Patterns workshop. InIn 00PSLA ’93 Adden-
dum to the Proceedings. ACM Press., January 1994.

[107] B. Anderson. Towards an architecture handbook. InOOPSLA ’92: Ad-
dendum to the proceedings on Object-oriented programming systems,
languages, and applications (Addendum), pages 167–168, New York,
NY, USA, 1992. ACM.

[108] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. Design pat-
terns: Abstraction and reuse of object-oriented design. InECOOP ’93:
Proceedings of the 7th European Conference on Object-Oriented Pro-
gramming, pages 406–431, London, UK, 1993. Springer-Verlag.

[109] M. Fowler. Pattern Of Enterprise Application Architecture. Addison-
Wesley, 2003.

[110] J. O. Coplien. Organization and architecture. 1999 CHOOSE Forum on
Object-oriented Software Architecture, 1999.

[111] M. E. Conway. How do committees invent?Datamation magazine,
1968.

[112] J. O. Coplien. Borland software craftsmanship: A new look at process,
quality and productivity. In5 th Annual Borland International Confer-
ence, 1994.

[113] P. Bürgi. Seeing Work Practices Through a Cultural Lens.Next Practice,
3(1), 2004.

[114] D. Kane, D. Dikel, and J. Wilson.Software Architecture: Organiza-
tional Principles and Patterns. Prentice Hall, 2001.

[115] R. K. Yin. Case study research: Design and Methods, volume 5 ofAp-
plied Social Research Methods Series. SAGE Publications, third edition,
2003.

[116] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting em-
pirical methods for software engineering research. In F. Shull, J. Singer,
and D. I. K. Sjöberg, editors,Guide to Advanced Empirical Software
Engineering, pages 258–311. Springer London, 2008.

[117] P. Stoll, L. Bass, B. E. John, and E. Golden. Preparing Usability Sup-
porting Architectural Patterns for Industrial Use. Proceedings of Inter-
national Workshop on the Interplay between Usability Evaluation and
Software Development (I-ISED), Pisa, Italy, 2008.

[118] P. Stoll, F. Alfredsson, and S. Lövemark. Usability Supporting Archi-
tecture Pattern for Industry. Proceedings of the NordiCHI 2008, Lund,
Sweden, 2008.

[119] P. Stoll, L. Bass, B.E. John, and E. Golden. SupportingUsability in
Product Line Architectures. Proceedings of the 13th International Soft-
ware Product Line Conference (SPLC), San Francisco, USA, August
2009.

[120] B. E. John, L. Bass, E. Golden, and P. Stoll. A responsibility-based
pattern language for usability-supporting architecturalpatterns. Pro-
ceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS), Pittsburgh, PA, US, 2009.

[121] I. Benbasat, D. K. Goldstein, and M. Mead. The case research strategy
in studies of information systems.MIS Q., 11(3):369–386, 1987.

[122] V.R. Basili, G. Caldeira, and H.D. Rombach.Encyclopedia of Software
Engineering, chapter The Experience Factory. Wiley, 1994.

[123] P. Bourque and R. Dupuis, editors.Guide to the Software Engineering
Body of Knowledge. IEEE Computer Society, 2004.

II

Included Papers

77

Appendix A

Paper A:
Guiding Architectural
Decisions with the
Influencing Factors Method

Pia Stoll, Anders Wall Christer Norström
Industrial Software Systems Computer Science and Electronics

ABB Corporate research Mälardalen University
pia.stoll@se.abb.com, christer.norstrom@mdh.se

anders.wall@se.abb.com

In Working IEEE/IFIP Conference on Software Architecture (WICSA) 2008,
Vancouver, BC, Canada, February, 2008

79

Abstract

The Influencing Factors (IF) method guides the architect through stake-
holders’ concerns to architectural decisions in line with current business goals.
The result is a set of requirements on software quality attributes and business
goals and highlighted trade-offs among software quality attributes and among
business goals. The IF method is suitable for sustainable software systems
since it allows new concerns, resulting from changes in business goals, stake-
holder concerns, technical environment and organization,to be added to exist-
ing concerns.

Introduction 81

A.1 Introduction

For the architect it can be difficult or even impossible to satisfy all concerns
from stakeholders in one architecture. Concerns are those interests which per-
tain to the system’s development, its operation or any otheraspects that are
critical or otherwise important to one or more stakeholders. Concerns include
system considerations such as performance, reliability, security and distribu-
tion [1]. Concerns are not always in line with stated business goals and do
not always have positive impact on the product’s market differentiator(s). For
example the upper management wants to use standard hardwareand software
but this could have a negative impact on a product with high reliability as its
market differentiator.

The sustainable software systems area is concerned with thearchitecture
and designing of systems that are maintainable, supportable and modifiable
during long life-times in the face of changing customer requirements and chang-
ing environments (hardware, commercial-of-the-shelf products, security threats,
operating systems, communication standards). A sustainable system could
have been developed according to plan, but still would not beable to cope suc-
cessfully with change since the requirements for sustainable software systems
will change over time. Sooner or later the systems architecthas to take archi-
tectural decisions in order to satisfy changes in both business goals and changes
in functional and nonfunctional requirements. In order to be pro-active the ar-
chitect should continuously analyze the changing concernsand not only wait
for the concerns to be transformed into functional and non-functional require-
ments.

Requirements usually lack any trace of what concerns they originated from
and therefore it is not clear what effect they have on business goals and quality
attributes. This may lead to confusion among the developersimplementing re-
quirements they do not really understand the origin of. The analyzed concerns
could contribute to a more complete requirement specification than the require-
ment list. In [2] Nancy G. Leveson proposes an approach to provide specifi-
cations that support human problem solving and where the outcome from the
concern analysis could serve as input.

It would make the architects life easier and enable better communication
among diverse stakeholders if there was a time-saving method for the analyzing
of concerns and their influence on the architecture. The architect could then
put forward the implications of each concern and their internal relations and
help the stakeholders to make rational decisions on what concerns should be
prioritized. Concerns may be very stakeholder-related andit can be beneficiary

82 Paper A

to filter the concerns so that only the facts of the concerns enter the analysis and
not the relation to the stakeholders. This paper presents the Influencing Factors,
IF, method which targets this challenge. The method collects concerns, extracts
influencing factors from the concerns and analyzes those fortheir influence on
business goals and software quality attributes. The resultis a business goal
oriented prioritization of software quality attributes.

The influencing factor is a factor that affects architecturedesign [3]. The
influencing factors are extracted from the stakeholders’ concerns in the IF
method. The global analysis described in [3] analyzes each influencing fac-
tor’s detailed impact on the design, the schedule and the components and not
on specific business goals or software quality attributes. From a line managers
concern; “We want to implement the system in Java since our developers are
skilled in and enjoy working with Java” the influencing factor “Implement the
system in Java” is extracted. The same influencing factor caninfluence differ-
ent business goals and software quality attributes. The same influencing factor
as above; “Implement the system in Java” can also be extracted from an upper
management concern; “We want to use Java since it is too costly to re-design
the system in C#”. In this concern the business goal is to reduce total cost of
ownership and in the first concern the business goal is to maintain jobs of the
workforce on the legacy system. The method is illustrated with two industrial
case studies. The first case study was performed on the upgrade of a large
legacy system and the second case study on the re-factoring of an existing sys-
tem. The two case study systems had a diverse set of stakeholders, such as soft-
ware architect, system architect, developers, testers, product management, line
management, engineers, users, and many more. Both systems suffered from an
unclear understanding of what concerns were the most important. Should the
architects propose architectures that try to solve all concerns, which in practice
would be impossible, or should they focus on some of them?

The remainder of this paper is organized as follows; SectionA.2 describes
current research and the definition of business goals and software quality at-
tributes used in the method, Section A.3 presents the relationships of enter-
prise, system and software architecture, Section A.4 presents the three steps of
the method, Section A.5 and A.6 present two case studies where the method
was applied. Section A.7 presents the conclusions of the work with the IF
method and finally, future work is presented in Section A.8.

Business goals and software quality attributes 83

A.2 Business goals and software quality attributes

A software product interfaces with people who have an interest or share in the
product’s business or enterprise. These people are the stakeholders of the sys-
tem. The stakeholders are users, developers, management, sales & marketing
people, support engineers etc. The stakeholders experience advantages as well
as disadvantages with the product depending on the concernsthey find that the
product should satisfy. Concerns can influence both business goals as well as
system quality attributes. For example: In order to produceflexible, adaptable
applications, the reflection architectural pattern, whichprovides a mechanism
for changing structure and behavior of software systems dynamically [4], can
be used. This pattern increases the modifiability of the system. But software
reflection techniques may put high requirements on softwaredevelopers since
this way of coding is more complex than normal static programming. The com-
plexity can lead to longer development time and therefore affect the business
goal “Reduce cost of development” or “Time to Market” in a negative way.
Analyzing concerns for their influence on business goals andsoftware quality
attributes is therefore necessary in order to find a suitablearchitectural solution.
To be able to analyze the concerns influence on the business goals the business
goals can be categorized. Len Bass and Rick Kazmann have categorized busi-
ness goals from a number of ATAM evaluations [5]. Bass’ and Kazmann’s five
categories are: (1) “Reduce total cost of ownership”, (2) “Improve capabil-
ity/quality of system”, (3) “Improve market position”, (4)“Support improved
business processes”, and (5) ”Improve confidence in and perception of the sys-
tem”. The category “Reduce total cost of ownership” includes the subcategory
“Reduce cost of development” and in the category “Improve capability/quality
of system” the subcategories “Performance” and “Ease of use” are found. The
categories facilitate the analysis of business goal changes with time in the IF
method.

As well as having its own set of business goals a company or domain usu-
ally have its own sets of system quality attributes. In the case studies where we
have applied the IF method we have used the six system qualityattributes dis-
cussed in [6]; (1) Modifiability, (2) Security, (3) Usability, (4) Performance, (5)
Availability and (6) Testability. In [6] it is argued that reliability is a part of the
availability quality and reliability tactics are a sub set of the availability tactics.
In the two case studies where the IF method was applied availability has been
used to cover both availability and reliability related aspects. However, some
voices have argued that reliability would have been better than availability. The
architecture team or architect applying the IF method should therefore clarify

84 Paper A

with the architecture’s stakeholders what quality attributes are to be used in the
beginning of the analysis.

To be able to analyze the concerns for a software product the concerns first
must be extracted from the stakeholders. Interviews, document reading and
personal experiences are some ways of extracting concerns.The Quality At-
tribute Workshop, QAW [7], is an established method to extract concerns in the
form of scenarios from stakeholders in order to find prioritized business goals
and software quality attributes. The QAW method can be used in conjunction
with the Attribute Driven Design method, ADD [6], to achievean architecture
where all important quality attributes are considered. TheQAW lets stakehold-
ers put forward their concerns in the form of scenarios in a round-robin fashion
in a one day’s workshop. In order to prioritize the scenariosthe stakeholders
vote. This method gathers a large variety of stakeholders and let them meet and
hear each others concerns. In our second case study the QAW result is incor-
porated with the IF method to get a complete picture of the prioritized business
goals and software quality attributes.

A.3 Enterprise, System and Software Architecture

The influencing factors are part of the stakeholder concernsand include trends,
technical environment, previous experiences and market demands etc, Figure
1. The stakeholder concerns can have many influencing factors.

The stakeholder concerns change over time as the influencingfactors change
over time. New trends, experiences and technical environments influence busi-
ness goals and system quality attributes. For every change in concerns the
software architect faces new business goals to satisfy, andnew software qual-
ity attributes to achieve in the system respective the software architecture.

Business goals are manifested by the enterprise architecture which includes
business processes and business structures, e.g. a companywhich sells a prod-
uct needs a sales division and probably a marketing division. The enterprise
architecture provides a basis for the system architecture,e.g. a company de-
veloping a safety critical software product needs a team of safety experts and
processes for testing and verifying the safety properties of the product. The
business goal categories presented in Section 2 are strongly related to the en-
terprise architecture’s business processes and business structures shown in Fig-
ure 1. The first category of “Reduce total cost of ownership” means reducing
cost for the entire enterprise architecture. The second, third and fifth categories;
“Improve capability/quality of System”, “Improve market share” and “Improve

The IF method 85

Figure 1: Relationships of enterprise, system and softwarearchitecture

confidence in and perception of system” aim at increasing therevenue for the
sales and marketing part of the business structure in the enterprise architecture.
“Support improved business processes” enables the software development in
the business structures to run smoother.

The system architecture provides a context for the softwarearchitecture
and includes beside software architecture also hardware and people.

A.4 The IF method

The Influencing Factors method consists of three steps:

• Identify influencing factors,

• Prioritize influencing factors and

• Analyze prioritized influencing factors.

Each step will be described in detail in this section. The steps are best done by
the system’s software architect and/or software engineer.

86 Paper A

A.4.1 Identify influencing factors

The first step in the IF method collects concerns from different sources like:
stakeholder interviews, quality attribute workshop (QAW), discussions with
colleagues, search of the business related documents, and personal experiences.
From the concerns influencing factors are identified. The influencing factor is
a factor that affects the architecture design [3].

For identification of an influencing factor the business goalmotivations
and/or the system quality attribute motivation is noted (ifit is stated in the
concern). Not all relationships between influencing factors and system quality
attributes are possible to extract from its corresponding concern. The software
quality attribute influence may be more difficult to trace back to the corre-
sponding concern than the business goal influence. A bottom-up process called
affinity diagrams [8] can be used by the project team when classifying the in-
fluencing factors’ effect on business goals and software attribute qualities. The
team members group the influencing factors together by theirsoftware qual-
ity attribute influence in an affinity sorting process. For each software quality
attribute and business goal the influence is divided into:

• Positive impact

• Negative impact

• Requires

A positive impact means an influencing factor which contributes to the
achievement of the goal or the implementation of a software quality attribute.
An influencing factor having a negative impact means that theinfluencing fac-
tor inhibits the business goal accomplishment or the software quality attribute
implementation.

The influencing factor which requires a business goal or software quality
attribute requires that specific tactics are used to achievea certain quality or
accomplishment of a business goal. There is a difference between having a
positive impact on a system quality attribute and on having arequirement on it.
For example “Support distributed development” requires high degree of “Mod-
ifiability” but has no positive impact on the quality. The influencing factor “Im-
plement POSIX compliant software” has a positive impact on modifiability but
does not require modifiability, since it is a modifiability tactic itself. The in-
fluencing factors are categorized according to their influence on business goals
and software quality attributes and can then be entered intothe IF matrix as
shown in Figure 2. The matrix gives a good overview of the influencing factors

The IF method 87

and especially the trade-offs between them. The influencingfactor is entered
into the cell which corresponds to its influence on business goals and software
quality attribute. In the IF matrix for the two case studies the classified busi-
ness goals as discussed in [5] and the six quality attributesfrom [6] are used.
But it’s possible to use a different set of business goals andsoftware quality
attributes that better suits the system being analyzed.

The IF matrix is one way of viewing business goal impact and software
quality attribute impact of the influencing factors. If the data was put into a
relational database, the user can chose different views of the data than the IF
matrix in order to get the best understanding of the impact ofand the internal
relations between the influencing factors.

A.4.2 Prioritize influencing factors

In the first step of the IF method the influencing factors were identified and their
influences on business goals and software quality attributes were documented
in the IF matrix. The second step of the IF method is to identify the prioritized
business goals of the system and to extract those influencingfactors having
a positive impact on the prioritized business goal. It can beeasy to identify
prioritized business goals, e.g. from interviews with upper management or
from the business presentation in a Quality Attribute Workshop. However,
sometimes it is more difficult to collect this information, e.g. in a distributed
management organization where the system architect has little contact with
the business goal responsible management. For this distributed management
situation, as is shown in the first case study, it can be that the influencing factors
cluster around a positive impact on a specific business goal.The architect can
in this case try to verify with the management that this specific business goal is
the one prioritized in the organization.

After extracting those influencing factors having a positive impact on the
prioritized business goal, step three in the IF method can follow. The results
should be verified with the stakeholders so that the stakeholders having con-
cerns that are not prioritized can get an understanding of the influence of their
concerns and why they are not prioritized.

A.4.3 Analyze prioritized influencing factors

After the influencing factors which have a positive impact onthe prioritized
business goal(s) are extracted their influence on software quality attributes can
be analyzed. The factors are analyzed for their impact on thesoftware quality

88 Paper A

attributes. For instance, if five influencing factors have a positive impact on the
prioritized business goal “Improve market share” those fivefactors influence
on the software quality attributes are analyzed. If all of the five influencing
factors require modifiability the architect knows that he/she should implement
modifiability tactics and/or patterns in the architecture.This means that the
architecture should try to satisfy the concerns related to the influencing fac-
tors having a positive impact on the prioritized business goal “Improve market
share” and therefore apply modifiability tactics [6] and/oran architectural style
[9] and/or pattern [4] with a positive impact on modifiability. If several quali-
ties are required, techniques like the “Cost Benefit Analysis Method” [10] can
be used to make cost-oriented decisions on what architectural strategy to apply.
It is also important to analyze the negative impact of the prioritized factors. If
the same factors requiring modifiability have a negative impact on performance
the architect must take preventive measures not to get a performance drop. The
IF matrix shows the internal trade-offs between business goals and internal
tradeoffs between software quality attributes. It may be that influencing fac-
tors having a positive impact on the prioritized business goal “Improve market
position” also have a negative impact on the business goal “Reduce total cost
of ownership”. In this case the architect can discuss this with the management
responsible for the business goal prioritization.

A.5 Case study 1

The first system on which the architecture team of the software system ap-
plied the IF method was a legacy system. The system suffered from an unclear
understanding of what business goals the many stakeholders’ concerns were
targeting and what software qualities were to be prioritized in the current devel-
opment of the legacy system. For company confidentiality reasons we cannot
publish all descriptions of the influencing factors. But some of the influencing
factors are used as examples for clarifying purposes.

A.5.1 Identify influencing factors

The concerns from stakeholders were collected trough interviews, document
reading, personal experiences and team discussions. Influencing factors were
identified from the concerns and organized according to their influence on busi-
ness goals and system quality attributes. For some of the factors the influence
was not obvious, e.g. there was a factor having both positiveand negative

Case study 1 89

Business Goals Quality Attributes
Modifiability Performance Security Availability Testability Usability

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Reduce
Total
Cost of
Owner-
ship

Pos.
Impact

IF1.2,
IF3.2

IF1.1 IF1.2,
IF3.2

IF3.1,
IF3.2

Neg.
impact

IF1.3,
IF1.4,
IF2.1,
IF2.3,
IF3.3,
IF5.1

IF3.4,
IF4.1,
IF4.2

IF3.5 IF2.3,
IF3.5

IF1.3,
IF1.4,
IF2.2,
IF3.4,
IF3.6,
IF3.7,
IF4.1,
IF4.2

IF2.2,
IF3.6

IF2.2,
IF3.7

IF2.2,
IF3.7

IF1.4 IF1.3,
IF2.3,
IF3.5,
IF3.7

Improve
Capab.
Quality

of
System

Pos.
impact

IF3.5 IF3.5 IF3.6,
IF3.7

IF3.6 IF3.7 IF3.7 IF3.5,
IF3.7

Neg.
impact
Req. IF3.2 IF2.2 IF2.2 IF2.2,

IF3.2
IF3.1,
IF3.2

Improve
Market
Position

Pos.
Impact

IF1.3,
IF1.4,
IF2.1,
IF2.3,
IF3.2,
IF3.3,
IF5.1

IF3.4 IF3.5 IF2.3,
IF3.5

IF1.3,
IF1.4,
IF2.2,
IF3.3,
IF3.4

IF2.2 IF2.2,
IF3.3

IF2.2,
IF3.2,
IF5.1

IF1.4,
IF2.4,
IF3.1,
IF3.2

IF1.3,
IF2.3
IF3.3,
IF3.5,
IF5.1

Neg.
Impact

Support
Improved
Business
Processes

Pos.
Impact
Neg.
impact

IF with positive and negative impact
on same business goal.

Business Goal
Trade-Off

Prioritized
Business Goals

Prioritized influencing
factors with positive impact
on both prioritized business
goals and negative impact on
performance.

Prioritized influencing
factors having a negative
impact on "Reduce Total
Cost of Ownership"

Prioritized IFs requiring
availability/usability/testability
tactics and/or patterns.

Prioritized IFs requiring
modifiability tactics and/or
patterns

Processesimpact
Req. IF1.2,

IF2.1
IF2.2 IF2.2 IF2.2 IF2.2 IF2.4 IF3.1

Improve
Conf. in

and
Percept.
of the

System

Pos.
impact

IF1.3,
IF1.4,
IF3.2,
IF3.3,
IF5.1

IF3.4 IF3.5 IF3.5 IF1.3,
IF1.4,
IF3.3,
IF3.4,
IF3.6,
IF3.7

IF3.6 IF3.3,
IF3.7

IF3.2,
IF3.7,
IF5.1

IF2.4,
IF3.1,
IF3.2

IF1.3,
IF1.4,
IF3.3,
IF3.5,
IF3.7,
IF5.1

Neg.
impact

Figure 2: IF Matrix - Case Study 1

impact on the same business goal, the factor IF1.1: Microsoft Functionality
Dependencies. Using ready produced functionality would make the job easier
for the developers, but at the same time introduce costs in terms of licenses
and dependencies on Microsoft functionality upgrades. Forthis factor we have
both a positive and a negative impact on the same business goal “Reduce total
cost of ownership”. In this particular case we argued that the license cost would
be lower than the savings we would get in development cost by using the func-
tionality. Therefore the total impact is a positive impact on the business goal
and a negative impact on security due to the introduced external dependency
on security patches.

We had several influencing factors having a positive impact on one business

90 Paper A

goal and a negative impact on another business goal. Especially influencing
factors having a positive impact on the business goal “Improve Market Posi-
tion” tend to have a negative impact on “Reduce Total Cost of Ownership, e.g.
IF2.1 “Expand geographical market to China and India”. IF2.1 may involve
support for new native languages which results in additional development cost.
Figure 2 shows the IF matrix for the first case study.

A.5.2 Prioritize influencing factors

Since the business goal prioritization was unclear to the project team the busi-
ness goal focus was clarified by analyzing the influencing factors impact on
business goals. The conclusion was that a large majority of the influencing
factors was focused on improving market position and confidence in, and per-
ception of the system. We would have expected more focus on “Reduce Total
Cost of Development” and “Improve Capability/Quality of System” since the
legacy system was ten years old. The focus on “Improving Market Position”
and “Improving Confidence in and Perception of the System” was therefore
confirmed with the stakeholders. The result was that the following factors were
prioritized: IF1.3, IF1.4, IF2.4, IF3.1, IF3.2, IF3.3, IF3.4 and IF5.1. They have
a positive impact on both of the prioritized business goals.These factors will
be analyzed in step three of the IF method.

A.5.3 Analyze prioritized influencing factors

From the matrix in Figure 2 we extracted the prioritized influencing factors and
made a list of their impact on software quality attributes, Figure 3. The factors:
IF1.3, IF1.4, IF3.2, IF3.3 and IF5.1 required modifiabilitytactics and/or pat-
terns. The prioritized factors IF2.4, IF3.1 and IF3.3 required usability tactics
and/or patterns. The factors: IF3.2 and IF5.1 required testability tactics and/or
patterns and the prioritized factor IF3.3 required availability tactics and/or pat-
terns to be implemented in the architecture. Modifiability and usability seemed
therefore to be the most important software quality attributes.

Figure 3 also shows that the performance quality was negatively impacted
by four of the prioritized influencing factors: IF1.3, IF1.4, IF3.3 and IF3.4.
This means we had a trade-off between performance, modifiability, usability
and testability.

Figure 4 shows that the business goal “Reduce total cost of development”
was negatively impacted by the prioritized factors: IF1.3,IF1.4, IF3.3, IF3.4
and IF5.1. We therefore had a business goal trade-off between “Reduce Total

Case study 1 91

Impact on
Software
Quality

Attributes

Modifiability Performance Security Availability Testability Usability

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Prior.
Infl.
Factors

IF1.3 x x x
IF1.4 x x x x
IF2.4 x
IF3.1 x
IF3.2 x x x
IF3.3 x x x x
IF3.4 x x
IF3.5 x x x
IF5.1 x x x

Figure 3: Quality Attribute Analysis̋U Case Study 1

Impact on Business
Goals

Reduce Total Cost of
Ownership

Improve Capability/
Quality of System

Improve Market
Position

Support Improved
Business Processes

Improve Confidence
in and Perception of

the System

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Prioritized
Influenc.
Factors

IF1.3 x x x
IF1.4 x x x
IF2.4 x x x
IF3.1 x x
IF3.2 x x x
IF3.3 x x x
IF3.4 x x x
IF3.5 x x x x
IF5.1 x x x

Figure 4: Business Goal Analysis̋U Case Study 1

Cost of Ownership” and “Improving Market Position”/“Improving Confidence
in and Perception of the System”.

A.5.4 Conclusions: Case Study 1

The business goal focus was made visible by the IF matrix. A large majority
of the influencing factors had a positive impact on “Improve market position”
and “Improve confidence in and perception of the system”. Thestakeholders
confirmed this business goal focus and we could show that thisfocus has a
strong trade-off with the business goal “Reduce total cost of ownership”.

The IF matrix made internal trade-offs between business goals visible as
well as internal trade-offs between software quality attributes. A side-effect
of the analysis was the discovery that concerns related to the business goal
category “Improve confidence in and perception of the system” was strongly
correlated to the business goal category “Improve market position”.

92 Paper A

A.6 Case study 2

The system in this case study was a total reconstruction of anold system ar-
chitecture that was to deliver the same features as the old system, but with
additional new functions and qualities. The business goal in this case study
was explicitly stated as “Increase sales to year 2009” in contrast to the first
case study where the business goal was unclear. For the second case study the
IF method was used to prioritize among the multitude of stakeholder concerns
and legacy concerns inherited from the old system.

A.6.1 Identify influencing factors

In order to find the most important stakeholder concerns and their correspond-
ing quality attributes a Quality Attribute Workshop [3], was held. A couple of
weeks before the QAW took place we collected requirements inform of use-
cases for the new system and legacy requirements from the oldsystem. The
business goal requirements were extracted from the business case presentation
at the start of the QAW. The voting result was a surprise to theQAW mod-
erators since the top-five scenarios did not include the mostimportant legacy
quality attribute requirements: performance and availability. The discussion of
the result with the participating stakeholders showed thatthey had voted on the
scenarios dealing with new features of the system and ignored the mandatory
legacy features. However, by using the IF method we could extract the influ-
encing factors from the concerns related to the legacy requirements as well.

A.6.2 Prioritize influencing factors

In this case study the prioritization of influencing factorswas intensively dis-
cussed. Should we only take the ones from the Quality Attribute Workshop
prioritization? By following the business goal prioritization from step two in
the IF method we included both legacy requirement related influencing fac-
tors and top-five QAW scenario related influencing factors. Figure 5 show the
overlap of the influencing factors in a Venn diagram. Moreover, Figure 5 also
shows that important influencing factors would have been left out if only the
influencing factors related to the QAW top-five scenarios would have been an-
alyzed.

The business goal prioritization of influencing factors resulted in the prior-
itized influencing factors; IF1.2, IF1.2, IF1.3, IF2.1, IF2.2, IF2.3, IF2.4, IF2.5,
IF2.6, IF2.7, IF3.1, IF3.2, IF3.3, IF4.1, IF4.7, IF5.1, IF5.2 and IF5.4.

Case study 2 93

IF1.1
IF1.2
IF1.3

IF2.1
IF2.2

IF2.3
IF2.4
IF2.5
IF2.6
IF2.7

Prioritized Business Goal (s)
related

QAW top-five
related

Mandatory legacy
related

IF3.1
IF3.2
IF3.3

IF4.1
IF4.7

IF5.1
IF5.2
IF5.4

Figure 5: Overlap of influencing factors

Analyze prioritized influencing factors In step two we prioritized the influ-
encing factors extracted from concerns related to the prioritized business goal
“Improve market position”.

The prioritized influencing factors have requirements on all qualities but the
majority of the influencing factors require modifiability and usability, Figure 6.
Most of them have a trade-off with the performance quality. The architecture
can not be constructed only to satisfy the requirements on modifiability and
usability without regarding the performance requirement of the IF1.2 “Imple-
ment same performance as today”. The IF 1.2 has a strong legacy requirement
on performance and actually drives the architecture. Figure 7 shows that nine
of the eighteen prioritized influencing factors have a negative impact on the
business goal “Reduce total cost of ownership”. That is, thebusiness goal “Im-
prove Market Position” has a trade-off with the business goal “Reduce total
cost of ownership”.

A.6.3 Conclusions: Case Study 2

In this second case study the IF method was a necessary complement to the
QAW. The stakeholders who participated in the QAW put their votes on sce-
narios describing new product functionality and new product qualities. There-
fore all legacy requirements and prioritized business goals didn’t get into the
top-five scenario ranking.

One question we had regarding step two in the IF method was if it was

94 Paper A

Impact on Software Quality
Attributes

Modifiability Performance Security Availability Testability Usability

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req.Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Prior.
Infl.
Factors

Mandatory
legacy req.
related

IF1.1 x
IF1.2 x x

IF1.3 x x

IF3.1 x x x

IF3.2 x x

IF3.3 x

QAW top-
five scenarios
related

IF2.1 x
IF2.2 x

x
IF4.1

IF4.7 x x x

Positive
impact on
prioritized
business
goals

IF2.3 x x
IF2.4 x x x
IF2.5 x
IF2.6 x x
IF2.7 x x
IF5.1 x
IF5.2 x

IF5.4 x

Figure 6: Software Quality Attribute Analysis̋U Case Study 2

Impact on Business Goals Reduce Total Cost
of Ownership

Improve Capability/
Quality of System

Improve Market
Position

Support Improved
Business Processes

Improve Confidence
in and Perception of

the System
Req. Pos.

Imp.
Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Req. Pos.
Imp.

Neg.
Imp.

Prior.
Infl.
Factors

Mandatory
legacy req.
related

IF1.1 x x x
IF1.2 x x x
IF1.3 x x
IF3.1 x x x x
IF3.2 x x x x
IF3.3 x x x

QAW top-
five
scenarios
related

IF2.1 x x x
IF2.2 x x x x
IF4.1 x x x
IF4.7 x x x

Positive
impact on
prioritized
business
goals

IF2.3 x x
IF2.4 x x x
IF2.5 x x x x
IF2.6 x x x x
IF2.7 x x x
IF5.1 x x
IF5.2 x x
IF5.4 x x

Figure 7: Business Goal Analysis̋U Case Study 2

Conclusions 95

sufficient to use prioritized business goal(s) as selectioncriteria for the prioriti-
zation of IFs. Case study two showed us that by using the prioritized business
goal(s) as criteria we covered IFs extracted from mandatorylegacy require-
ments concerns and from the QAW top-five scenario concerns. This could have
been the case since mandatory legacy requirements are a partof the business
goal “Improve market position” which has the subcategory “Expand or Retain
market share”. The subcategory implies that the functionality and qualities of
the system must be retained or improved.

The result from the QAW was used as input to the IF method and the output
from the IF method as input to the ADD method [11] and the USAP method
[12].

A.7 Conclusions

The IF method extracts influencing factors from stakeholders’ concerns. The
influencing factor is a factor that affects the architecturedesign. The influ-
encing factors’ impacts on software quality attributes andbusiness goals are
analyzed. In the two case studies the gathering of concerns from stakeholders
took about a person week and the contribution of each stakeholder was approx-
imately two hours of interviews for those that couldn’t participate in the one
day quality attribute workshop. From the two case studies weconcluded that
for a skilled architect with business goals understanding and software quality
attributes skills, the IF analysis of the concerns should take no longer than a
day or two. Changes in business goal focus during the life-time of the software
system means that new influencing factors are added. The added influencing
factors and their impacts may be added to the existing ones ina relational
database and the view of the impact can be presented in many ways, e.g. in the
IF matrix format. In the IF method the business goal prioritization is central. It
is the prioritized business goals that controls what concerns will be prioritized.

One difficulty in the IF method is the categorizing of impact on business
goals and software quality attributes in step two. This is one difficulty the IF
method shares with methods described in [7], [13] and [11].

A.8 Future work

We will investigate the possibility to apply the IF method before a QAW and
use the result to understand the effect of the stakeholders’concerns and present

96 Paper A

this to the stakeholders before starting the QAW. This mighthelp the stakehold-
ers to make more focused voting decisions.

Moreover, it would be interesting to look deeper into the correlation be-
tween business goals and software quality attributes. In our two case studies
we have seen a high correlation between “Usability” and “Improve Confidence
in and Perception of the System” and between “Usability” and“Improve Mar-
ket Position”.

Finally more research in the field of influence of concerns on business goals
and software quality attributes will make step two in the IF method more pre-
cise.

Bibliography

[1] P. Bourque and R. Dupuis, editors.Guide to the Software Engineering
Body of Knowledge. IEEE Computer Society, 2004.

[2] N. G. Leveson. Intent specifications: An approach to building human-
centered specifications.IEEE Transactions on Software Engineering,
26(No. 1), 2000.

[3] C. Hofmeister, R. Nord, and D. Soni.Applied Software Architecture.
Addison-Wesley, Boston, 2000.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-oriented Software Architecture A System of Patterns, volume 1.
Wiley, first edition, 1996.

[5] L. Bass and R. Kazman. Categorizing business goals for software archi-
tectures. Technical Report CMU/SEI-2005-TR-021 ESC-TR-2005-021,
Software Engineering Institute, 2005.

[6] L. Bass, P. Clements, and R. Kazman.Software Architecture in Practice.
Addison-Wesley, Boston, second edition, 2003.

[7] M. Barbacci, R. Ellison, A. Lattance, J. Stafford, C. WeinStock, and
W. Wood. Quality attribute workshops, 3rd edition. Technical report,
Software Engineering Institute, Pittsburgh, PA, USA, 2003.

[8] H. Beyer and K. Holtzblatt.Contextual Design. Morgan Kaufmann Pub-
lishers, Inc., San Francisco, CA, 1998.

[9] D. Garlan and M. Shaw. Software Architecture: Perspectives on an
emerging discipline. Prentice-Hall Inc., 1996.

97

[10] R. Kazman, J. Asundi, and M. Klein. Making architecturedesign deci-
sions: An economic approach. Technical report, Software Engineering
Institute, Carnegie Mellon University, 2002.

[11] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson,R. Nord, and
B. Wood. Attribute-driven design (add), version 2.0. Technical Report
CMU/SEI-2006-TR-023 ESC-TR-2006-023, Software Engineering Insti-
tute, Pittsburgh, USA, 2006.

[12] L. Bass and B. E. John. Linking usability to software architecture patterns
through general scenarios.The Journal of Systems and Software, 66:187–
197, 2003.

[13] P. Clements, R. Kazman, and M. Klein.Evaluating Software Architec-
tures, Methods and Case Studies. Addison-Wesley, Boston, 2002.

Appendix B

Paper B:
Achieving Sustainable
Business for Industrial
Software Systems

Pia Stoll Anders Wall
Industrial Software Systems Industrial Software Systems

ABB Corporate research ABB Corporate research
pia.stoll@se.abb.com anders.wall@se.abb.com

In Conference on Business Sustainability, Ofir, Portugal, 2008

99

Introduction 101

B.1 Introduction

Sustainable development of industrial software systems with controllable out-
come in terms of cost, schedule and quality despite changes originating from
new technology, stakeholders’ concerns, organization, and business goals dur-
ing long life-times is a challenge. Unruh [1] has argued thatnumerous barriers
to sustainability arise because today’s technological systems were designed and
built for permanence and reliability, not change. Sustainability is a character-
istic of a process or state that can be maintained at a certainlevel indefinitely.
The implied preference would be for systems to be productiveindefinitely, to
be “sustainable”. For instance, “sustainable development” would be develop-
ment of software systems that last indefinitely. Author Michael Pollan [2] has
defined an unsustainable system simply as “a practice or process that can’t
go on indefinitely because it is destroying the very conditions on which it de-
pends”.

There are several factors obstructing the sustainability of the software de-
velopment process:

• Competing concerns from various stakeholders affect the system and the
winner among the concerns is not always the most logical. Fora ma-
ture software system most probably political concerns willcompete with
functional concerns and affect the system.

• The system’s software qualities are exposed to change, e.g.the intro-
duction of faster multi-core processors might solve performance issues
outside the scope of the architecture and therefore the focus and mission
of the architecture shifts to other issues.

• The business goals of the system are exposed to change. This happens
when the management shifts the focus from increase of quality to cost
cut and thereby changes one important business goal for the system.

• The technical environment and organization structure change. A new
platform or distributed development might be unavoidable and therefore
puts requirement on change for the system.

If these factor where possible to control and a stable balance of cost, sched-
ule, and quality outcome of the software system was achieved, the system
would be a sustainable software system. The development of the software
system would deliver required quality to the customers’ satisfaction at the de-
sired scheduled and cost indefinitely. However unrealisticthis might seem it is

102 Paper B

truly the goal of sustainable software development. The cost is a very impor-
tant measure since a long-lived system can be achieved at a high cost but this
would lead to an unsustainable development process which would eventually
collapse.

Since software development is considered an art involving people and peo-
ple communicating a sustainable system model must include influences from
people, architecture, hardware, software, communicationand unpredictable
changes in form of; stakeholders’ concerns’ changes, technology changes,
business goal changes, and organizational changes. With all influences in-
cluded in one model it would be desirable to be able to predictor at least
reason about the outcome of the system; cost, schedule and quality. The re-
maining of this paper is organized with a short overview of related work in the
section “Related Research” and the issues important for sustainable industrial
software systems is given in section “Issues for Sustainable Business”. The pa-
per is concluded in the section “Conclusions” followed by a short description
of further work in section “Future Work”.

B.2 Related Research

The importance of technical, business, and social influences on software ar-
chitecture is discussed in [3] and the relationship among the technical, busi-
ness, and social environments that subsequently influence future architecture
is called the architecture business cycle (ABC). The ABC focuses on the cre-
ation of software architecture and the maintenance of the architecture and con-
formance of the system to the architecture. The ABC does not handle sus-
tainable system issues where it’s possible that the architecture has to change
during the system’s lifetime. An attempt to address sustainable systems can be
found in [4] where the integration of established engineering methods with a
development organization’s life cycle is discussed. Here the Attribute Driven
Design (ADD) method, [5], and the Cost Benefit Analyze Method(CBAM)
[4], are suggested as means for the architect to design and chose appropriate
architectural responses to the new challenges during the software development
life cycle. The methods are preferably used in the development phase and the
Architecture Trade-off Analysis Method (ATAM) used after the system is re-
leased and the stakeholders want to discover risks and sensitivity point in the
architecture related to business goals.

For the change requests entering the system after its release the stakehold-
ers have to take a decision if they are worth implementing or not. In an article

Related Research 103

from Boehm [6] it is argued that software engineers should look at proposed
changes to software systems as investment possibilities and calculate on the
value of investing in those changes with methods similar to the methods in the
investment economics, e.g. option theory. Especially the value of the success-
critical stakeholders concerns should be considered important. For the sus-
tainable software system this would mean that the software engineers have to
be updated on who is a success-critical stakeholder and how to calculate the
value of his/hers concern’s implementation. The calculation could also serve
as guidance to what concerns should be allowed to enter the system as change
requests.

However calculating a correct development effort for a proposed changer
request is very difficult. Joergensen [7] has showed that software project cost
estimation uncertainty assessments are frequently based on expert judgment,
i.e., unaided, intuition-based processes and not on formalmodels. His guide-
lines suggest, among other things, that the most promising strategies are not
based on formal models, but on supporting the expert processes.

The implementation of change requests also have to have support in the de-
velopment process. The process has to support unpredictable change requests
as well as support their fast realization. The Scrum [8] development process
has gained a lot of supporters as it’s a light-weight processwith a strong con-
nection to agile development methods. Scrum considers the software develop-
ment process to be a chaotic empirical process which requires close watching
and control, with frequent intervention. A scrum software project is controlled
by establishing, maintaining, and monitoring key control parameters. The key
control parameters are backlog, issues, risk, problems andchanges - task level
management is not used. However in [9] Boehm argues that agile development
methods are not well suited to large development organizations such as those
evolving sustainable software systems. Scrum identifies the most important
stakeholders and these success critical stakeholder’s concerns are implemented
at first. This is similar to Ruhe and Saliu [10] who describe the release planning
approach based on the features’ internal dependencies, theresource constraints
and the stakeholders’ importance.

In [11], Ziv and Richardson state the uncertainty principleof software en-
gineering (UPSE) as “Uncertainty is inherent and inevitable in software devel-
opment processes and products”. The software development is described as a
complex human enterprise carried out in problem domains andunder circum-
stance that are often uncertain, vague or otherwise incomplete. The principle of
uncertainty is also valid for those changes entering the development organiza-
tion which are considered unpredictable in time and consequence. The control

104 Paper B

of the sustainable software development despite the UPSE iswhat makes the
sustainable software development challenging.

B.3 Issues for Sustainable Business

The system architecture provides a context for the softwarearchitecture and in-
cludes, beside software architecture, also hardware and people. System quality
attributes and business goals influence the system architecture. The influenc-
ing factors which are factors affecting the architecture part of the stakeholder
concerns [12] and include trends, technical environment, previous experiences,
market demands etc.

The influencing factors change over time and hence the stakeholders’ con-
cerns change over time. The influencing factors impact and/or put require-
ments on system quality attributes and business goals. Thisleads to that the
system quality attributes change as result as well as the business goals. Chang-
ing business goals can lead to changing enterprise architecture and changing
development organization as business structures and business processes.

Since all these changes come from outside the software system they are
uncontrollable and unforeseeable. When building softwarearchitecture from
start it may be possible to build in support for foreseeable changes but not for
an unforeseen change, e.g. a sudden organizational change.

B.3.1 Technology

What makes software especially difficult to develop for sustainable system is
that software and hardware themselves are not sustainable.Software technolo-
gies, tools, architectures like the World Wide Web, languages like C and C#
change the software engineering culture in which system builders operate and
learn. In many cases the demand from the customers on smooth updates prefer-
ably in a running plant regardless of what changes occur overtime translates
into a requirement on backward compatibility. Backward compatibility also
concerns hardware, where the customer might run the system on hardware no
more available on the market.

For long-lived systems typically the components from whichthe system is
built, have shorter life-cycles than the complete systems.Many components in
a large and complex software system are acquired from third-party developers.
Consequently, a system provider has no or limited control over the complete
system (e.g. no access to source-code). Hence, it is very important to contin-

Issues for Sustainable Business 105

I IIIII

effort

fu
n

ct
io

n
al

ity

Figure 1: Product life-cycle phases

uously monitoring the sub-suppliers road-maps and to have atight and sound
relation with them. By doing so, a company have the possibility to react well in
time before a particular component or technology for which the development
organization has no control over gets obsolete. The fact that software technolo-
gies and commercially available software components have shorter life-cycles
than what is required for the system is something that needs to be considered
when designing the architecture.

Typically the life-cycle of a software product can be divided into three
phases: initial design (I), evolution (II), and end-of-life (III) (see Figure 1).
During the initial design phase the requirements are usually well-known and
the development of new functionality requires relatively little effort. In the evo-
lutionary phase the requirements that were not known in (I) are introduced and
the effort for developing and implementing these requirements require higher
effort, since consideration must be taken to what already exists in the system.
The architecture developed during initial design does to a large extent define
what is possible in later phases from an economical point of view.

It is important to find a balance between upfront investmentsin, e.g. soft-
ware architectural design, and time-to-market for software development in sus-
tainable complex industrial systems in the perspective of aproduct’s life-cycle.
By diagnosing a system’s life-cycle phase in terms of trendsin crucial orga-
nizational measurements we believe that it is possible to quantitatively moti-
vate efforts in improving fundamental software qualities in order to prolong a

106 Paper B

system’s productive life-time. A typical trend in an organizational measure-
ment could be the increasing number of person-hours invested related to the
decreasing number of function points delivered. This couldbe an indication of
a system being in the end-of-life phase (III).

Even though technology evolves in a high pace, business specific logic does
not. Operating systems and hardware changes all the time butthe basic princi-
ples for, e.g. control the motion of a robot, evolves slower.Another example
is the paper production. The chemical process behind paper production will
not change as it’s defined by physical parameters and reactions. The control
algorithms, which are part of the business logic, involved in controlling the
pressure, strain and so on will continuously be refined but not experience ma-
jor change. Usually there are great investments in the business logic and the
investments are secured by intellectual property claims, so it is important to
make as much as possible out of these investments. This is where we have the
core competence, and the core business. Returning to the core business has
proven to be successful for many companies where ABB is one ofthem. ABB
returned its focus to automation and power distribution after some years with
a broader scope. Isolating the business logic in a way that enables the technol-
ogy around it to evolve with the least possible cost is crucial. The statement
may seem easy enough but for researchers who have been using FORTRAN
for their algorithms because its ability to process a huge amount of control
parameters fast and that now have the possibility of using Matlab algorithms
translated into C# just as efficiently it’s not that easy. Should they now remodel
the process in Matlab because in the long run C# offers more advantages than
FORTRAN? What’s the return of investment, the ROI, value of the change?

B.3.2 Organization

According to [3] there are three classes of organizational influences on software
architecture;

• Immediate business: An organization may have an investmentin certain
assets, such as existing architectures and the products based on them.

• Long-term business: The architecture can form the core of the long-term
infrastructure investment to meet the organization’s strategic goals.

• Organizational structure: The organizational structure can shape the ar-
chitecture such that the division of functionality aligns with existing
units of expertise.

Issues for Sustainable Business 107

For sustainable systems there is a challenge in creating a sustainable ar-
chitecture possible to implement under these three different organizational in-
fluences. There will be shifts in organization influence inside a development
organization, e.g. if distributed development is introduced. In this case the dis-
tributed development could for instance put requirement onthe architecture to
support isolated module development. Another example is ifthe architecture
suddenly has to support the migration of several products into one, as may be
the case when a company acquires another company. For this case the shift
in organizational structure goes from immediate business to longterm busi-
ness. Development organizations often have to deal with drastic shifts like this
without the customer noticing any major differences in actual system software
quality.

Recognizing that change requests are something normal and that deviations
from predictions will occur for a sustainable software system, the question is
how to act upon them. Should a change in stakeholders’ concerns toward more
secure system always respond in that the system is optimizedfor security? Or
will this be in conflict with business goals as e.g. making thesystem available
over Internet? In traditional control theory [13], optimization theories have
been developed to optimize the system parameters for stability. Something
similar is needed for sustainable software systems in orderto make the right
system decisions in terms of economics, architecture, technology and people.
There are many states that can be controlled and/or observedfor a sustainable
software system model:

• Software architecture- The design and the infrastructure of the system

• Software technology- The various technologies used as a technical base,
such as programming environment, operating system and middle ware.

• Software components- The various proprietary and commercial compo-
nents used to realize the system, examples of components areuser inter-
face, user management and transaction managers.

• Hardware- The core of the system where the software is running

• Software communication- everything regarding communication includ-
ing compatibility with other vendor products, communication hardware,
communication stacks and redundancy concepts.

• People interaction- Most industrial systems have people that interact
with them and how this is performed is one key to the operationof the
whole system.

108 Paper B

• Development processes- Processes influence the organization and the ar-
chitecture and the opposite.

The two last states, people interaction and the developmentprocesses, might
be the hardest to control since they include human psychology. In [14] Berry
examines programming accidents, i.e., models, methods, artifacts, and tools,
to determine that each has a step that programmers find very painful and con-
sequently avoid or postpone. The avoidance or postponementdisturbs the pro-
cesses in a not controllable way and leads at the worst to uncontrollable cost,
schedule, and quality outcome.

But before the change request reaches the development stageit has to be
approved and there is various way of handling change requirements. In [15],
Erdogmus suggests a decision support theory in form of real options theory for
guiding investment decisions regarding a change in the software. Typically the
option theory calculations could serve as input to a change request board.

During the lifetime of a long-lived system there will be a turn-over of engi-
neers. The engineers possess competence and know-how concerning the sys-
tem. Typical examples of crucial know-how is the intention and rational behind
certain architectural decisions. As engineers come and go through the organi-
zation there is a great risk that this knowledge is lost. As a consequence, poor
design decision may be taken during a system’s evolution which contributes to
shorten the productive phase of the sustainable systems. A proper architectural
documentation is one way to minimize the risk of competence drain due to
turn-over of engineers. Yet again the human psychology aspect enters the field
since software developers often find documentation a very painful step and
avoid this as far as possible. When documenting software thepeople doing the
documentation has to find it meaningful and ultimately, suchdocumentation
has to have some notion of intention, i.e. rationales for architectural decisions
as describe by Leveson in [16].

B.3.3 Market

It’s not only customers’ expectations that change over time. Also a company’s
business goals change, e.g. penetration of new markets. Every company has
its own set of business goals and to achieve a common perception of the goals,
it would be beneficiary to generalize them. One approach is presented by Bass
and Kazman where they have categorized the business goals from a number
of ATAM evaluations [17]. Their five categories are; 1) “Reduce total cost of
ownership”, (2) “Improve capability/quality of system”, (3) “Improve market

Issues for Sustainable Business 109

position”, (4) “Support improved business processes”, and(5) ”Improve confi-
dence in and perception of the system”.

Typically there will be a movement between quality focused business goals
as (1), (2), and (3) and functionality focused business goals as (3) and (5). A
“fresh” software system is typically more focused on “Improve market posi-
tion” and “Improve confidence in and perception of the system”. New func-
tionality is then released to customers and feedback from the release in form of
change requirements and trackers leads to yet more new functionality. When
the software system has grown to a certain extent the focus might shift to qual-
ity focused goals as “Reduce total cost of ownership”, and “Improve capabil-
ity/quality of system”.

The challenge lays in balancing the shift in business goals with their inter-
pretation to software quality goals and functionality requirements. For example
“Reduce total cost of ownership” can mean outsourcing partsof the develop-
ment and this puts high requirements on the modifiability andtestability quality
and also on software development processes different to in-house development
described by Larsson et al. in [18].

Another example is the conflict of the shift towards “Reduce total cost of
ownership” including the tactics to use standard hardware.If the market dif-
ferentiators for the product are high robustness and backward compatibility, it
means the robustness issue has to be solved with standard hardware and the
backward compatibility issue with non complex architecture in order not to
implement expensive development. This is truly a challenge. The customer’s
perception of the system should be the same, only with updated software and
hardware. Industrial systems have customers running legacy hardware which
have no intention or motivation to shift hardware to the latest technology. For
system developers the customer’s hardware puts requirement on the software
to be backward compatible with the legacy hardware as well asbackward com-
patible with legacy software.

It is not uncommon for industrial software system to have a few dominat-
ing customers who demand certain system qualities. In this case the challenge
lies in to what extent the system producer can tailor the system to please one
dominant customer before the other customers object to not getting their re-
quirements met or having to pay for qualities they don’t require. We have
seen examples where a few dominant customers have driven a system to be too
costly compared to competitors offers. The reason is that the system provides a
lot of functionality which are not specifically requested bythe majority of cus-
tomer categories, but requires more expensive hardware infrastructure which
contributes to the cost. However there is also an advantage with a large dom-

110 Paper B

inant customer. They provide the means for the rework of one system to an
extent not possible otherwise, which in the CelsiusTech case proved very suc-
cessful. In the case of CelsiusTech [19], the unpredictablechange in the form
of the simultaneous awarding of two massive contracts (eachof which was for
a system beyond anything the company had ever attempted) ledto a complete
redesign of the system architecture based on the core assets. The new product-
line architecture was the entry to new business areas not previously accessible.

B.4 Conclusions

This paper has described the challenges for the developmentof sustainable in-
dustrial software systems. The most important factor to recognize is the factor
of time and its effect on system development since industrial software systems
often have long lifetimes. The second factor to recognize isthat change in
organization, technology, and market over time is something inevitable and
that the development has to calculate for this. The third factor to recognize is
that changes are not always predictable or foreseeable and that a static system
could have difficulties to host unpredictable and unforeseeable changes. The
forth factor to recognize for industrial systems is that their customers most of-
ten don’t want to experience any change since a change requiring knowledge
update or process interruptions is costly. The last factor to recognize is that the
producer can achieve the desired quality and cost despite unpredictable changes
at an unreasonable cost, but this would lead to an unsustainable development
process which would eventually collapse. This leads us to the conclusion that
the sustainable industrial software system has to control the cost, quality, and
schedule outcome of the system despite unpredictable and predictable changes
in organization, market, and technology affecting the system over time.

B.5 Future Work

Future work will include an attempt to establish a sustainable software system
model, including measures for the key states important for the control of the
outcome of a sustainable industrial software system. In this work software
economics will be a key essence influencing the software engineering theory
for the model.

Bibliography

[1] G.C Unruh. Escaping carbon lock-in.Energy Policy, vol. 30(no.4):pp.
317–325, 2002.

[2] P. Pollan. Our decrepit food factories.New York Times, 2007.

[3] L. Bass, P. Clements, and R. Kazman.Software Architecture in Practice.
Addison-Wesley, Boston, second edition, 2003.

[4] R. Kazman, J. Asundi, and M. Klein. Making architecture design deci-
sions: An economic approach. Technical report, Software Engineering
Institute, Carnegie Mellon University, 2002.

[5] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and
B. Wood. Attribute-driven design (add), version 2.0. Technical Report
CMU/SEI-2006-TR-023 ESC-TR-2006-023, Software Engineering Insti-
tute, Pittsburgh, USA, 2006.

[6] B.W. Boehm and K.J. Sullivan. Software economics: a roadmap, 2000.

[7] M. Joergensen. Evidence-bases guidelines for assessment of software de-
velopment cost uncertainty.IEEE transactions on software engineering,
31, 2005.

[8] K. Schwaber. Scrum development process. Workshop Report: Business
Object Design and Implementation. 10th Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications. Adden-
dum to the Proceedings. ACM/SIGPLAN OOPS Messenger 6(4), Octo-
ber 1995.

[9] B. W. Boehm. A view of 20th and 21st century software engineering.,
2006.

111

[10] G. Ruhe and M.O. Saliu. The art and science of software release planning.
IEEE Software, 22:47–53, 2005.

[11] H. Ziv and D.J Richardson. The Uncertainty Principle inSoftware En-
gineering. In19th International Conference on Software Engineering
(ICSE’97), 1997.

[12] P. Stoll, A. Wall, and C. Norström. Guiding Architectural Decisions with
the Influencing Factors Method. Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA) 2008, 2008.

[13] L. Ljung. System Identification - Theory For the User. Prentice Hall,
Upper Saddle River, N.Y, 1999.

[14] D.M Berry. The inevitable pain of software development: Why there is
no silver bullet. InLNCS 2941. Springer Verlag, 2004.

[15] H. Erdogmus. Valuation of complex options in software development,
1999.

[16] N. G. Leveson. Intent specifications: An approach to building human-
centered specifications.IEEE Transactions on Software Engineering,
26(No. 1), 2000.

[17] L. Bass and R. Kazman. Categorizing business goals for software archi-
tectures. Technical Report CMU/SEI-2005-TR-021 ESC-TR-2005-021,
Software Engineering Institute, 2005.

[18] S. Larsson, A. Wall, and P. Wallin. Assessing the influence on processes
when evolving the software architecture, 2007.

[19] P. Clements and L. Northrop.Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

Appendix C

Paper C:
Preparing Usability
Supporting Architectural
Patterns for Industrial Use

Pia Stoll Len Bass, Bonnie E. John, Elspeth Golden
ABB Corporate Research Carnegie Mellon University

Forskargr änd 6 5000 Forbes Ave.
SE 72178 Västerås, Sweden Pittsburgh, PA, USA 15213

Tel: +46 21 32 30 00 Tel: 1+412 268 2000
pia.stoll@se.abb.com bej@cs.cmu.edu, ljb@sei.cmu.edu,

egolden@cmu.edu

In International Workshop on the Interplay between Usability Evaluation and
Software Development, I-USED 2008, CEUR Workshop proceedings series,
ISSN 1613-0073, Pisa, Italy, September 24th, 2008

113

Abstract

Usability supporting architectural patterns (USAPs) havebeen shown to pro-
vide developers with useful guidance for producing a software architecture de-
sign that supports usability in a laboratory setting [1]. Inclose collaboration
between researchers and software developers in the real world, the concepts
were proven useful [2]. However, this process does not scaleto industrial de-
velopment efforts. In particular, development teams need to be able to use
USAPs while being distributed world-wide. USAPs also must support legacy
or already partially-designed architectures, and when using multiple USAPs
there could be a potentially overwhelming amount of information given to the
software architects. In this paper, we describe the restructuring of USAPs using
a pattern language to simplify the development and use of multiple USAPs. We
also describe a delivery mechanism that is suitable for industrial-scale adoption
of USAPs. The delivery mechanism involves organizing responsibilities into a
hierarchy, utilizing a checklist to ensure responsibilities have been considered,
and grouping responsibilities in a fashion that both supports use of multiple
USAPs simultaneously and also points out reuse possibilities to the architect.

Categories and Subject Descriptors
D.2.2 { Design Tools and Techniques} User interfaces; D.2.11
{ Software Architectures} : Patterns; H.5.2 {User Interfaces}
Theory and Methods

General Terms
Design, Human Factors.

Keywords
Software Architecture, Usability, Human-Computer Interaction, HCI

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copiesare not made or dis-
tributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.

Introduction 115

C.1 Introduction

The Software Engineering community has recognized that usability affects not
only the design of user interfaces but software system development as a whole.
In particular, efforts are focused on explaining the implications of usability on
software architecture design ([3], [4], [5], [6], [7]). Oneeffort in this area is to
produce artifacts that communicate usability requirements in a form that can
be effectively used for software architecture evaluation and design. These us-
ability supporting architectural patterns (USAPS) have been shown to improve
the ability of software architects to design higher qualityarchitectures to sup-
port usability features such as the ability to cancel a long-running command
([1], [8]). Other uses of USAPs in industrial settings have been productive [2]
but have revealed some problems that prevent scaling USAPs to widespread
industrial use. These problems include:

1. Prior efforts have involved personal contact with USAP researchers, ei-
ther face to face or in telephone conversations. This process does not
scale to widespread industrial use.

2. The original USAPs included UML diagrams modifying the MVC ar-
chitectural pattern to better support the usability concern. Although in-
tended to be illustrative, not prescriptive, software architects using other
overarching patterns (e.g., legacy systems, SOA) viewed these UML di-
agrams as either unrelated to their work or as an unwanted recommen-
dation to totally redesign their architecture.

3. The original use of USAPs was as a collection of individualpatterns.
Even using one pattern involved processing a large amount ofdetailed
information. Applying multiple USAPs simultaneously is likely to over-
whelm software architects with information.

In this paper, we introduce a pattern language [9] for USAPs that reduces the
information that architects must absorb and produces information at a level that
applies to all architectures. We also discuss the design of adelivery mechanism
suitable for industrial scale adoption of USAPs.

C.2 Background

A USAP has six types of information. We illustrate the types with information
from the cancellation USAP [10]:

116 Paper C

1. A brief scenario that describes the situation that the USAP is intended
to solve. For example, “The user issues a command then changes his
or her mind, wanting to stop the operation and return the software to its
pre-operation state.”

2. A description of the conditions under which the USAP is relevant. For
example, “A user is working in a system where the software haslong-
running commands, i.e., more than one second.”

3. A characterization of the user benefits from implementingthe USAP. For
example, “Cancel reduces the impact of routine user errors (slips) by
allowing users to revoke accidental commands and return to their task
faster than waiting for the erroneous command to complete.”

4. A description of the forces that impact the solution. For example, “No
one can predict when the users will want to cancel commands”

5. An implementation-independent description of the solution, i.e., respon-
sibilities of the software. For example, one implication ofthe force given
above is the responsibility that “The software must always listen for the
cancel command.”

6. A sample solution using UML diagrams. These diagrams wereintended
to be illustrative, not prescriptive, and are, by necessity, in terms of an
overarching architectural pattern (e.g., MVC).

It is useful to distinguish USAPs from other patterns for software design
and implementation. USAPs are not user interface patterns,that is, they do not
represent an organization or look-and-feel of a user interface e.g., [11]; they
are software architecture patterns that support UI concerns. Nor are USAPs
structural software architecture patterns like MVC; they are patterns of soft-
ware responsibilities that can be applied to any structure.As such, they can be
applied to any legacy architecture and can support the functionality called for
in UI patterns.

C.3 A Pattern Language for USAPs

Through collaboration among academic and industrial researchers and usabil-
ity engineers, we are constructing three USAPs for process control and robotics
applications. The first author and her colleagues in the industry research team

A Pattern Language for USAPs 117

Figure 1: USAP Pattern Language for “User Profile”, “Alarms,Events and
Alerts”, and “Environment Configuration”

drafted an “Alarms, Events and Alerts” USAP while, independently, the last
three authors drafted a “User Profile” USAP and an “Environment Configura-
tion” USAP. When these three USAPs were considered together, it was clear
that there was an enormous amount of redundancy in the responsibilities nec-
essary for a good solution. In addition, in preliminary discussions, industry
software architects reacted negatively to the large amountof information re-
quired to implement any one of the USAPs.

Our early work [4] recognized the possibility of reusing such software tac-
tics as separating authoring from execution and recording (logging), but our
subsequent work had not incorporated that notion, treatingeach USAP as a
separate pattern. A consequence of focusing on industrial use is that reuse in
constructing and using USAPs was no longer an academic thought experiment,
but a necessity if industrial users are to construct and use USAPs themselves.

We observed that both the industry research team and the academic re-
search team independently grouped their responsibilitiesinto very similar cat-
egories. This led us to construct a pattern language [2] thatdefines relationships
between USAPs with potentially reusable sets of responsibilities that can lead
to potentially reusable code. Our pattern language relating “Alarms, Events and
Alerts”, “User Profile” and “Environment Configuration” is shown in Figure 1.

The pattern language has two types of USAPs. “End-User USAPs” follow
the structure given in Section C.4. Their purpose from a user’s point of view
can be expressed in a small scenario, they have conditions under which they are
relevant, benefits for the user can be expressed and they require the fulfillment

118 Paper C

of software responsibilities in the architecture design. End-User USAPs are
used by the requirements team to determine which are applicable to the system
being developed. In this example, they are “User Profile”, “Alarms, Events and
Alerts”, and “Environment Configuration”.

The pattern language also contains what we are calling “Foundational US-
APs”. These do not have the same six portions as the End-User USAPS. For
example, there is no scenario, no description of conditions, and no benefits to
the user for the Foundational USAPs. Rather, they act as a framework to sup-
port the construction of the End-User USAPs that make directcontact to user
scenarios and usability benefits. For example, all of the End-User USAPs that
we present have an authoring portion and an execution portion, that is, they are
specializations of the Authoring Foundational USAP and theExecution with
Authored Parameters Foundational USAP. These foundational USAPs make
use of other foundational USAPs, Authorization and Logging. We abstracted
the commonalities of the End-User USAPs to derive the responsibilities of the
Foundational USAPs. The responsibilities in the Foundational USAPs are pa-
rameterized, where the parameters reflect those aspects of the End-User USAPs
that differ.

An example of the parameterization is that the Authoring Foundational
USAP and the Execution with Authored Parameters Foundational USAP each
have a parameter called SPECIFICATION. The value of SPECIFICATION is
“Conditions for Alarm, Event and Alerts”, “User profile”, and “Configuration
description” for the three End-User USAPs, respectively. In addition to param-
eterization, End-User USAPs explicitly list assumptions about decisions the
development team must make prior to implementing the responsibilities. For
example, in the “Alarms, Events and Alerts” End-User USAP, the development
team must define the syntax and semantics for the conditions that will trigger
alarms, events or alerts. End-User USAPs may also have additional responsi-
bilities beyond those of the Foundational USAPs they use. For example, the
“Alarms, Events and Alerts” End-User USAP has an additionalresponsibility
that the system must have the ability to translate the names/ids of externally
generated signals (e.g., from a sensor) into the defined concepts. Both the as-
sumptions and additional responsibilities will differ forthe different End-User
USAPs.

There are three types of relationships among the Foundational USAPs and
these are shown in Figure 1 as different color arrows. The Generalization rela-
tionship (turquoise) says that the Foundational USAP is a generalization of part
of the End-User USAP. The End-User USAP passes parameters tothat Foun-
dational USAP and, if there are any conditionals in the responsibilities of the

Delivering a single USAP to Software Architects 119

Foundational USAP, the End-User USAP may define the values ofthose con-
ditionals. The Uses relationship (black) also passes parameters, but the USAPs
are at the same level of abstraction (the foundational level). The Depends-On
relationship (red) implies a temporal relationship. For example, the system
cannot execute with authored parameters unless those parameters have first
been authored. The double headed arrow between authoring and logging re-
flects the possibility that the items being logged may be authored and the pos-
sibility that the identity of the author of some items may be logged.

Foundational USAPs each have a manageable set of responsibilities (Au-
thorization has 11; Authoring, 12; Execution with authoredparameters, 9; and
Logging 5), as opposed to the 21 responsibilities of the Cancel USAP that
seemed to be too much for our experiment participants to absorb in one sitting
[1]. These responsibilities are further divided into groups for ease of under-
standing, e.g., Authoring is separated into Create, Save, Modify, Delete and
Exit the authoring system. This division into manageable Foundational US-
APs simplifies the creation of future USAPs that use them. Forexample, the
User Profile End-User USAP requires only the definition of parameters and
the values for one conditional, and pointers to the Authoring and Execution
Foundational USAPs.

C.4 Delivering a single USAP to Software Archi-
tects

The roadblocks to widespread use of USAPs in industry identified in the in-
troduction were (1) the need for contact with USAP researchers in the de-
velopment process, (2) reactions to examples using a particular overarching
architectural pattern (MVC) and (3) an overwhelming amountof information
delivered to the software architect. Data from our laboratory study and the pat-
tern language outlined above put us in a position to solve these problems. Our
laboratory study [1] showed that a paper-based USAP could beused by soft-
ware engineers1 without researcher intervention, to significantly improvetheir
design of an architecture to support the users’ need to cancel long-running
commands. Although significantly better than without a USAP, these soft-
ware engineers seemed to disregard many of the responsibilities listed in the
USAP in their designs. To enhance attention to all responsibilities, we have

1The participants in our lab study had a Masters in SE or IT, were trained in software architec-
ture design, and had an average of over 21 months in industry.

120 Paper C

chosen to design a web-based system that presents responsibilities in an in-
teractive checklist (Figure 2). The design includes a set ofradio buttons for
each responsibility that are initially set to “Not yet considered.” The archi-
tect reads each responsibility and determines whether it isnot applicable to the
system being designed, already accounted for in the architecture, or that the
architecture must be modified to fulfill the responsibility.If “Not applicable”,
“Must modify architecture to address this” or “Architecture addresses this” is
selected, then the responsibility’s check-box is automatically checked. If “Not
considered”, “Must modify architecture or “Discuss statusof responsibility”,
is selected, the responsibility will be recorded in To-Do list generated from the
website (Figure 3). We expect this lightweight reminder to consider each and
every responsibility will not be too much of a burden for the architect, but will
increase the coverage of responsibilities, which is correlated with the quality
of the architecture solution [8].

As Figure 2 show, the responsibilities are arranged in a hierarchy, which
reflects both the relationship of End-User and FoundationalUSAPs and the
internal structure within a Foundational USAP. This hierarchy divides the re-
sponsibilities into manageable subparts. The check-boxesenforce this struc-
ture by automatically checking off a higher-level box when all its children have
been checked off, and conversely, not allowing a higher-level box to be checked
when one or more of its children are not. Thus, this mechanismsimultaneously
addresses the problems of providing guidance without intervention by USAP
researchers and simplifying the information provided to the software architect.
Another mechanism for simplifying the information delivered to an architect
is that each responsibility has additional details available only by request of
the architect. These details include more explanation, rationale about the need
for the responsibility and the forces that generated it, andsome implementa-
tion details. This information is easily available, but not“in the face” of the
software architect. As well as simplifying the presentation, this mechanism de-
emphasizes the role of illustrative examples situated in reference architecture
like MVC. We expect that this presentation decision will reduce the negative
reactions to generic example UML diagrams. When using the tool in-house in
industry, the reference architecture used in example solutions could be changed
to an architecture used by that industry. This would both accelerate understand-
ing of the examples and increase the possibility of re-usingthe sample solution.
This presumes that the tool is constantly managed and updated by in-house us-
ability experts and software architects, a presumption facilitated by delivering
the examples in separate web pages.

Although the hierarchy of responsibilities reflects the relationship of the

Delivering a single USAP to Software Architects 121

Figure 2: Prototype of a web-based interface for deliveringUSAP responsibil-
ities to industry software architects

End-User USAPs and the Foundational USAPs, the difference between the
types of USAPs is not evident in the presentation of responsibilities. It was
a deliberate design choice to express each responsibility in terms of the End-
User USAP’s vocabulary. Thus, the responsibilities in Figure 2 are couched in
terms of “User Profile”, “Configuration Description”, “Conditions for Alarms,
Events, and Alerts” and this string replaces the parameter SPECIFICATION in
the Foundational Authoring USAP.

In the next section, we discuss how we anticipate managing the situation
when the architect chooses multiple USAPs as being relevantto the system
under construction. This will allow distribute architecture teams both to record
rationale for their choice and to discuss potential solutions. Attaching design
rationale and discussion is optional so our delivery tool will support discussion,
but not require it, keeping the tool lightweight.

At any point in the process of considering the different responsibilities, the
architect can generate a “to do” list. This is a list of all of the responsibilities
that have been checked as “Not yet considered” or “Must modify architecture”.
See Figure 3 for an example. The list can then be entered into the architect’s
normal task list and will be considered as other tasks are considered.

Supporting world wide distribution of the architecture team in the use of
USAPs has two facets.

122 Paper C

Figure 3: Prototype “to do” list produced from those responsibilities that are
marked as requiring architectural modification

• Enable world wide access

• Reduce the problems associated with simultaneous updates by different
members of the team.

The use of the World Wide Web for delivery allows world wide access with
appropriate access control. Standard browsers support theconcept of check
lists and producing the “to do” lists.

Allowing simultaneous updates is not supported by standardbrowsers. Some
Wikis do support simultaneous updates, e.g. MediaWiki2, but we do not yet
know whether these wikis directly support checklists and the generation of “to
do” lists. We are currently investigating which tool or combination of tools
will be adequate for our needs and what modifications might have to be made
to those tools.

C.5 Delivering multiple USAPs to software archi-
tects

Our motivation for developing the USAP Pattern Language waspartially to
simplify the delivery of USAPs when multiple USAPs are relevant to a partic-
ular system. We also want to indicate to the architect the possibilities for reuse.
In this section, we describe how we anticipate accomplishing these two goals.

2www.mediawiki.org

Current status and future work 123

Recall that the Foundational USAPs are parameterized and each End User
USAP provides a string that is used to replace the parameter.For instance,
consider a responsibility from the Authoring FoundationalUSAP “The sys-
tem must provide a way for an authorized user to create a SPECIFICATION”.
When three End User USAPs are relevant to the system under design, such as
“User Profile”, “Environment Configuration”, and “Alarms, Events and Alerts”,
the three responsibilities are displayed to the architect as “The system must
provide a way for an authorized user to create a [User Profile,Configuration
description, Conditions for Alarm, Event and Alerts]”. This presentation satis-
fies two goals and introduces one problem. Presenting three responsibilities as
one reduces the amount of information displayed to the architect since every
Foundational USAP responsibility is displayed only once, albeit with multi-
ple pieces of information. This presentation also indicates to the architect the
similarity of these three responsibilities and hence the reuse possibilities of
fulfilling them through a single piece of parameterized code.

The problem introduced by this form of the presentation is that now the ra-
dio buttons becomes ambiguous. Does the entry “Architecture addresses this”
mean that all of the three responsibilities have been addressed or only some of
them? We resolve this ambiguity by repeating the radio buttons three times,
once for each occurrence of the responsibility. Thus, the three responsibilities
will be combined into one textual description of the responsibility but three
occurrences of the radio buttons.

C.6 Current status and future work

At this writing, we have developed the pattern language for three End User
USAPs and four Foundational USAPs (Figure 1) and have fleshedout all the
responsibilities for these seven USAPs. We have constructed a prototype de-
livery tools for a browser based checklist and “to do” list generator. We plan to
test the delivery mechanism in an ongoing industrial development effort. This
will demonstrate strengths and weaknesses of our approach and we will iter-
ate to resolve any problems or capitalize on any opportunities. One suggestion
put forth in early industry feedback is to enhance the to-do list by assigning
expected effort to each responsibility. One requirements engineer at ABB said
that her perception of the effort needed to implement a scenario had been thor-
oughly revised just be looking at the to-do list. By adding estimated hours to
the responsibilities, industry would get a better estimateof the usability im-
provements’ translation into software implementation cost. These estimates

124 Paper C

Figure 4: Tool to support the requirements elicitation process

would vary depending on many factors such as underlying architectural style,
implementation language, skill of programmers, etc. but a large organization
may have enough data from previous projects to make such estimates for their
organization. In addition, such a feature could emphasize the savings realized
by reuse; responsibility-implementations that serve multiple End-User USAPs
would show up as requiring very little effort after the first implementation.

The delivery platform that we have described here, to be usedby software
architects, is envisioned to be the final portion of a tool chain. There are two
additional roles involved in the development and use of USAPs. First, USAP
developers will have to create USAPs within the stylized context of the USAP
Pattern Language. Tool support for USAP developers will greatly simplify the
creation of USAPs.

The second role is the requirements definers; often a team comprised of
technologists and human factors engineers, usability engineers, designers, or
other users or user advocates. Figure 4 shows how we envisiona tool support-
ing this role.

The requirements team has available to them a repository of USAPs. They
select the ones that are appropriate for the system being constructed. In our
experience, the USAP end-user scenarios are very general and can be used to
invoke ideas about how they apply to the system at hand. However, industrial
teams would like to tailor these scenarios to match their everyday usability
issues. Thus, the tool supporting requirements definers will allow them to re-
write the general scenarios to suit their specific application.

The tool then creates input for the delivery tool while simultaneously com-
bining redundant responsibilities. The output of the requirements definition
process will then be presented to software architects, as described in this pa-

Acknowledgments 125

per, to aid in their architecture design process.
In summary, USAPs have been proven to be useful to software architects

but have also demonstrated some problems that hinder industrial use. Defini-
tion of a USAP Pattern Language and an appropriate selectionof tools sup-
porting the roles involved in the creation and use of USAPs should simplify
industrial use. We are currently constructing versions of these tools and testing
the extent to which they do, in fact, enable the industrial use of USAPs.

C.7 Acknowledgments

We would like to thank Fredrik Alfredsson and Sara Lövemark for their con-
tributions to the “Alarms, Events and Alerts” USAP. This work was supported
in part by funds from ABB Inc. The views and conclusions in this paper are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of ABB.

Bibliography

Bibliography

[1] E. Golden, B. E. John, and L. Bass. The value of a usability-supporting
architectural pattern in software architecture design: A controlled exper-
iment. InProceedings of the 27th International Conference on Software
Engineering, ICSE, St. Louis, Missouri, May 2005.

[2] R. J. Adams, L. Bass, and B. E. John.Applying general usability
scenarios to the design of the software architecture of a collaborative
workspace.In A. Seffah, J. Gulliksen and M. Desmarais (Eds.) Human-
Centered Software Engineering: Frameworks for HCI/HCD andSoftware
Engineering Integration. Kluwer Academic Publishers, 2005.

[3] L. Bass, B. E. John, and J. Kates. Achieving usability through software
architecture. Technical Report No. SEI-TR-2001-005, Carnegie Mellon
University/Software Engineering Institute, Pittsburgh,PA, 2001.

[4] L. Bass and B. E. John. Linking usability to software architecture patterns
through general scenarios.The Journal of Systems and Software, 66:187–
197, 2003.

[5] E. Folmer. Software Architecture Analysis of Usability. PhD thesis,
Department of Computer Science, University of Groningen, Groningen.,
2005.

[6] E. Folmer, J. van Gurp, and J. Bosch. A Framework for capturing the Re-
lationship between Usability and Software Architecture. Software Pro-
cess: Improvement and Practice, Volume 8, Issue 2. Pages 67-87., 2003.

[7] N. Juristo, A.M. Moreno, and M.-I. Sanchez-Segura. Guidelines for elic-
iting usability functionalities.Software Engineering, IEEE Transactions
on, 33(11):744–758, Nov. 2007.

126

[8] E. Golden, B. E. John, and L. Bass. Quality vs. quantity: Comparing eval-
uation methods in a usability-focused software architecture modification
task. InProceedings of the 4th International Symposium on Empirical
Software Engineering, Noosa Heads, Australia, November 17-18 2005.

[9] C. Alexander.A Pattern Language: Towns, Buildings, Construction. Ox-
ford University Press, USA, 1977.

[10] B. E. John, L. Bass, M.-I. Sanchez-Segura, and R.J. Adams. Bringing us-
ability concerns to the design of software architecture. InProceedings of
The 9th IFIP Working Conference on Engineering for Human-Computer
Interaction and the 11th International Workshop on Design,Specification
and Verification of Interactive Systems, Hamburg, Germany, 2004.

[11] J. Tidwell. Designing Interfaces: Patterns for Effective InteractionDe-
sign. O’Reilly Media: Sebastopol, CA, 2006.

Appendix D

Paper D:
Supporting Usability in
Product Line Architectures

Pia Stoll Len Bass, Bonnie E. John, Elspeth Golden
ABB Corporate Research Carnegie Mellon University

Forskargr änd 6 5000 Forbes Ave.
SE 72178 Västerås, Sweden Pittsburgh, PA, USA 15213

Tel: +46 21 32 30 00 Tel: 1+412 268 2000
pia.stoll@se.abb.com bej@cs.cmu.edu, ljb@sei.cmu.edu,

egolden@cmu.edu

In Software Product Lines Conference, SPLC 2009, San Francisco, USA, Au-
gust, 2009

129

Abstract

This paper addresses the problem of supporting usability inthe early stages of
a product line architecture design. The product line used asan example is in-
tended to support a variety of different products each with aradically different
user interface. The development cycles for new products varies between three
years and five years and usability is valued as an important quality attribute
for each product in the line.

Traditionally, usability is achieved in a product by designing according to
specific usability guidelines, and then performing user tests. User interface de-
sign can be performed separately from software architecture design and pro-
totyping, but user tests cannot be performed before detailed UI design and
prototyping. If the user tests discover usability problemsleading to required
architectural changes, the company would not know about this until two years
after the architecture design was complete. This problem was addressed by
identifying a collection of 19 well known usability scenarios that require ar-
chitectural support. In our example, the stakeholders for the product line pri-
oritized three of these scenarios as key product-line scenarios for improving
usability. For each of these three chosen product-line scenarios we developed
an architectural responsibility pattern that provided support for the scenario.
The responsibilities are expressed in terms of architectural requirements with
implementation details and rationales. The responsibilities were embodied in
a web based tool for the architects.

The two architects for the product line developed a preliminary design and
then reviewed their design against the responsibilities supporting the scenar-
ios. The process of review took a day and the architects conservatively esti-
mated that it saved them five weeks of effort later in the project.

Introduction 131

D.1 Introduction

ABB, a global leader in power and automation technologies, provides systems
that enable utility and industry customers to improve theirperformance while
lowering environmental impact. To that end, ABB must designand imple-
ment extensive long-lived software systems. This paper presents the results of
a collaboration between ABB Corporate Research, ABB core business units,
and Carnegie Mellon’s Software Engineering Institute and Human-Computer
Interaction Institute to support usability within the context of a product line
architecture being newly developed.

The best method to support usability concerns through software architec-
ture has been the subject of some investigation over the pastyears. In addition
to the authors’ work ([1] , [2], [3]), Folmer and his colleagues ([4], [5]) and Ju-
risto and her colleagues [6] have investigated the relationship between software
architecture and usability. None of this work has gained widespread industrial
acceptance primarily because all of the results reported require the hands-on
involvement of the researchers. Our goal in the project reported on here was to
deliver appropriate knowledge concerning usability and software architecture
to ABB’s software architects in a format and at a time that would benefit their
design, in a way that could scale to worldwide development efforts.

This paper reports the results of a new approach to providingusability
knowledge to software architects early in the design process and without the
active participation of the researchers. The activities reported on include

• Stakeholders selecting several usability scenarios important to the project
under design

• The research team defining architectural patterns to satisfy the scenarios
chosen

• The research team embedding those patterns into a tool

• The architects using the tool for one day to review an early version of
their design. They did this without previous exposure to thepatterns and
without any participation by the research team.

• The architects reflecting on the impact of their use of the tool. They
estimated that it saved them five weeks of work.

It was the next to last bullet̋U the architects using the knowledge embedded
in the toolŰ that can be scaled. Since the tool is web based, architects in any

132 Paper D

project for which the usability scenarios embedded in the tool are relevant can
use the tool and the knowledge embedded in it without any involvement of the
researchers involved.

D.2 Background

Prior to the collaboration reported in this paper, the project team in an ABB
business unit developing a new product line of systems, together with an ABB
research team, had done a use case analysis, performed a Quality Attribute
Workshop to collect non-functional requirements from prioritized scenarios
[7], used the Influencing Factors method [8] and conducted the first step of the
Product Line Architecture development approach [9] with the identification of
commonalities and variation points. Thus, from the requirements collection
and analysis perspective, the project team was well prepared when they began
to outline the architecture. The software architects had just starting sketching
the architecture and had not yet written any code. Their implementation plan
started with the backbone of the product line system, the core functionality,
which would support all the variation points for the products. Usability had
been prioritized as one of three most important software qualities for the new
architecture during the Quality Attribute Workshop. One ofthe challenges
for this project therefore was how to incorporate usabilityrequirements into
the core architecture early without having either a designed user interface or
a finished prototype for user tests. The user interfaces are to be developed in-
dividually for each product and each product will use commoncore parts of
the system. The product development cycles will vary between three and five
years. Thus, the question was: How can we best support usability early when
the product prototypes cannot be user tested until years after the architecture
design is to be completed? Most of standard usability evaluation techniques
Ű questionnaires, heuristic evaluation, think-aloud usability studiesŰ depend
on having at least a paper prototype if not a running system. These types of
tests may find modifications whose satisfaction requires changing the archi-
tecture. The effort of re-working the product-line architecture and the design
for a line of products two years or even four years after the architecture has
been established would be tremendous. The risk of finding severe usability
problems requiring architectural work late in this development cycle was not
acceptable and ABB decided to use usability supporting architectural patterns
(USAPs) in a collaboration with CMU. The decision was based on the fact that
USAPs use generic usability scenarios common in complex systems and from

Background 133

these construct generic software architecture responsibilities. By working this
way ABB expected to support some of the major usability issues early in the
software design phase without having an actual user interface design in place.

A USAP is, as the name suggests, a software architectural pattern that pro-
vides instructions as to how to achieve specific usability scenarios. These pat-
terns are at the level of software architecture responsibilities. Examples of such
patterns are canceling a long-running command, aggregating data, or support-
ing personalization of the user interface. Note that these are software architec-
ture patterns in the flavor of [10] not usability patterns such as in [11]. Usabil-
ity patterns describe user interface patterns such as an organization’s look and
feel whereas software architecture patterns suggest software design solutions
to specific problems.

As originally conceived, a USAP included six types of information. We
illustrate the types with information from the cancellation USAP [3].

1. A brief scenario that describes the situation that the USAP is intended
to solve. For example, “The user issues a command then changes his
or her mind, wanting to stop the operation and return the software to its
pre-operation state.”

2. A description of the conditions under which the USAP is relevant. For
example, “A user is working in a system where the software haslong-
running commands, i.e., more than one second.”

3. A characterization of benefits to the user from implementing the USAP.
For example, “Cancel reduces the impact of routine user errors (slips) by
allowing users to revoke accidental commands and return to their task
faster than waiting for the erroneous command to complete.”

4. A description of the forces that impact the solution. For example, “No
one can predict when the users will want to cancel commands”

5. An implementation-independent description of the solution, i.e., respon-
sibilities of the software. For example, one implication ofthe force given
above is the responsibility that “The software must always listen for the
cancel command.”

6. A sample solution using UML-style diagrams. These diagrams were
intended to be illustrative, not prescriptive, and were, bynecessity, in
terms of an overarching architectural pattern (e.g., MVC).

134 Paper D

USAPs have been shown to significantly improve a software architecture
design in laboratory experiments [2]. They have also been used in real devel-
opment settings, with heavy involvement from the developers of the USAP [1].
However, these prior uses of USAPs suffer from two defects. First, the indus-
trial usages have all involved the developers of USAPs. Thisclearly does not
scale up. Secondly, the laboratory experiments were paper-based and the par-
ticipants omitted important responsibilities of the USAPs, leaving additional
room for quality improvement. Our initial goals when we considered applying
USAPs to the ABB project were to solve the two major problems that we have
discussed.

1. The designers should be able to utilize the USAPs without immediate
researcher involvement.

2. The designers should be encouraged to consider all of the responsibili-
ties.

D.3 Prior work

Prior to working with ABB, the last three authors performed alaboratory ex-
periment to test the utility of the various types of information in a USAP. The
results also suggested directions for a delivery tool for USAPs, so summariz-
ing the experiment and results here sets a context for the experience reported
in this paper.

There were three different conditions in the experiment. Participants in the
first condition were given only the scenario that describes the situation that
the USAP is intended to solve. This mimics a common relationship between
usability engineers and software designers in that the usability engineers pro-
vide general requirements (e.g., the system must be able to cancel long-running
commands) but the creation of a design solution to fulfill those requirements is
up to the software engineers.

Participants in the second condition were provided with thescenario plus
a list of responsibilities that may have to be fulfilled to satisfy the scenario,
depending on the particular system to which the scenario is being applied. Par-
ticipants in the third condition were provided with the scenario, the list of re-
sponsibilities, and a sample solution using the MVC overarching architecture
pattern, expressed in UML-style diagrams.

The results of the experiment were that providing the participants with in-
formation about responsibilities and a sample solution resulted in significantly

Stakeholder choice of scenarios 135

Figure 1: Results of laboratory experiment

better architecture design than those created by participants provided with just
the scenario (p less than 0.05), but that the UML diagrams didnot significantly
improve the architecture design over the responsibilitiesalone. These results
were reported in more detail in [2]. Figure 1 shows the results of the laboratory
experiment.

Note, however, that there were 19 responsibilities in the
problem given to the participants in the laboratory study. Figure 1 shows

that the group with the best performance achieved an averageof only 9.5 re-
sponsibilities considered. That is, the participants’ solutions, on average, only
addressed half of the responsibilities that might have beenconsidered.

D.4 Stakeholder choice of scenarios

The initial interactions between the ABB project team and the CMU research
team consisted of information exchange about the project being developed and
about the USAP approach. The researchers then presented 19 usability scenar-
ios possibly relevant to this domain.

• Progress feedback

136 Paper D

• Warning/status/alert feedback

• Undo

• Canceling commands

• User profile

• Help

• Command aggregation

• Action for multiple objects

• Workflow model

• Different views of data

• Keyboard shortcuts

• Reuse of information

• Maintaining compatibility with other systems

• Navigating within a single view

• Recovering from failure

• Identity management

• Comprehensive search

• Supporting internationalization

• Working at the user’s pace

The ABB project team was asked to prioritize the general usability sce-
narios and they decided to focus on two and add an additional one. The cho-
sen scenarios were User Profile and Alarms and Events (renamed from Warn-
ing/status/alert feedback). The additional scenario was Environment Configu-
ration.

USAP Patterns 137

D.5 USAP Patterns

In the process of developing the three USAPs that were testedby the architects,
we developed a Pattern Language [12], consisting of foundational USAPs and
end-user USAPs, to exploit the commonalities among the USAPs. The pattern
language was not visible to the architect and we will not describe it in this
paper. The interested reader is referred to [13] for a description of the pattern
language.

There are two aspects of the patterns on which we will focus. First there
is an enumeration of textual responsibilities. These responsibilities are imple-
mentation independent. Collectively they cover the responsibilities necessary
for implementing the three USAPs. There were 31 responsibilities for the ar-
chitect to examine; 26 are shared by all three USAPs and 5 are specific to
Alarms and Events. Each of the shared responsibility could pertain to each
USAP and so the architect must consider 83 distinct situations.

An example of a responsibility is “The system must provide a means for
an authorized author to save and/or export the [User Profile,Configuration de-
scription, Conditions for Alarms, Events and Alerts] (e.g., by auto-save or by
author request). If other systems are going to use the [User Profile, Configura-
tion description, Conditions for Alarms, Events and Alerts], then use a format
that can be used by the other systems.”

The portion of the responsibility that shows the three USAPsunder con-
sideration “[User Profile, Configuration description, Conditions for Alarms,
Events and Alerts]” is an artifact that results from the Pattern Language. For
each responsibility, we also provided implementation details. In the original
formulation of USAPs, we provided UML patterns. This provision of UML
followed the standard pattern writing advice of being very specific with re-
spect to the patterns described. Three things made us replace the diagrams
with “implementation details”

1. The results of the controlled experiment did not show a significant im-
provement in the participants that had access to diagrams over the par-
ticipants that did not have access to diagrams.

2. Several ABB architects (not those involved in the productline develop-
ment described here) felt that the diagrams were too judgmental. Since
the diagrams in the solution were different than the diagrams of their
architecture, they felt that they were being told they had designed their
architecture incorrectly.

138 Paper D

3. These architects also questioned whether it would be possible to inte-
grate three (or more) different USAPs within the existing architecture.
They had three different UML sample solutions and could not readily
figure out how they should be integrated in practice.

The implementation detail provided for the responsibilityquoted above is:

If the initiation of the save was automatic:
That portion of the system that manages the authoring process performs the
initiation.
That portion of the system that manages the authoring process stores and/or
exports the specification.

If the initiation of the save was at the author’s request:
The portion of the system that renders output must render a UIthat allows
the parameters needed by the system (e.g., format, location) to be input and
display them. The portion of the system that accepts input from the user must
accept the parameters. That portion of the system that manages the authoring
process stores and/or exports the specification.

Note that this is basically a textual description of what would be repre-
sented in a diagram. The structural elements of the implementation details are
represented as “portions of the system” and the behavioral elements as activi-
ties performed by those portions of the system. By using the word “portion of
the system” instead of a visual description in the form of a UML pattern, the
designer can project the words onto her/his design and verify that the portion
exists or, if not, design a new part in the solution corresponding to the “por-
tion of the system” and its described activities. We will discuss the designers’
reaction to the implementation guidance in the section on reactions.

D.6 Delivery tool

The challenge of encouraging the designers to consider all responsibilities was
met by transferring the USAPs into a web-based tool [14]. Thegoals of the
tool were ease-of-use, ease-of-understanding, helping the designers to actively
consider all responsibilities, and the most important goal: bridging the gap be-
tween usability requirements from a set of general usability scenarios to soft-
ware architecture requirements in the form of responsibilities.

Delivery tool 139

The ease-of-use and ease-of-understanding goals are reflected in the tool by
hiding the pattern language concepts of foundational USAPsand end-user US-
APs from the user. The USAPs concept is instead visualized asa presentation
of the foundational responsibilities hierarchy in the navigational menu with-
out using the words “Foundational” or “End-User” (see Figure 2). In the main
window each foundational USAP’s responsibilities are displayed with a pat-
tern language parameter furnished by the prioritized end-user USAPs: Alarm
& Events, User Profile, and Environment Configuration. Each responsibility
has a check-box that is not checked by the architect, but by aninternal state
that is only is set to “check” when the designer has changed the state of the
radio-button associated with each end-user USAP related tothe responsibil-
ity. The radio-buttons states are set by the designer and reflects hers/his ar-
chitecture’s state in relation to the responsibility and these are: “Architecture
addresses this”, “Must modify architecture” and “Not applicable”. The state
“Not yet considered” is the default state set when the designer has not yet made
an active choice. The user can only make an adequate choice after reading the
responsibility text thoroughly. Otherwise it would be difficult for the user to
know her/his design’s state in relation to the responsibility. The entire layout
of the USAP delivery tool was consciously made simple and direct. Additional
informational text was hidden and displayed only when the user choose to dis-
play it by clicking a link, e.g. “Show rationale” for a responsibility. The help
text could be hidden again by clicking a link, e.g. “Hide rationale.” We felt that
the information content otherwise would be overwhelming for the users. The
main page contained instructions on what a USAP is and how to use the USAP
delivery tool. The states of the radio-buttons and check-boxes are persistent as
long as the web-tool is open, enabling the user to go back and forth in the tool
without losing data. Since the delivery tool was a prototypewe did not take it
to the level of a full-fledged content management tool with a database as the
backbone. We wanted user feedback from the tests to inform the design before
investing in this more expensive development step.

Figure 2 shows a screen shot of some of the responsibilities.If the designer
wishes to discuss the responsibility with the remainder of the design team or
other stakeholders, a check-box “Discuss this” can be checked by the designer.
A future extension would be to add the possibility of including a comment for
each responsibility. The interface of the tool encourages the designer to set
the state of hers/his architecture in relation to each responsibility. The check-
boxes next to each responsibility indicates to the designerwhether the respon-
sibility is fully considered for each USAP or not. These features are intended
to address the problem that appeared in the laboratory studies of subjects not

140 Paper D

Figure 2: Prototype of a web-based interface for deliveringUSAP responsibil-
ities to industry software architects

responding to half of the responsibilities.
It is also worth noting that the name of each of the three USAPschosen

for delivery is enumerated under the responsibility, and that the designer must
respond to each responsibility in the context of each USAP. It is possible that
state of the architecture will vary among the USAPs. Making the state of the
architecture explicit with respect to each of the differentUSAPs will encour-
age the designer to consider each responsibility’s applicability for each USAP.
Presenting the three instances of each responsibility together, instead of or-
ganizing them by their USAP, encourages the architect to consider common
design solutions.

Finally, observe that under each responsibility is a link that when clicked
displays the implementation details as discussed above. When we discuss the
results of using this tool, we will discuss how the designersmade use of this
feature.

Once the designers have considered and responded to all of the responsi-
bilities, they can generate a “to do” list. This is a list of the responsibilities
that either have not yet been considered or that require a modification of the
architecture. Figure 3 shows a screen shot of the “to do” listgenerated by the
screen shot in Figure 2. The “to do” list can then be incorporated into whatever
project management scheme the designers use.

Results of using the USAP delivery tool 141

Figure 3: Prototype “to do” list produced from those responsibilities that are
marked as requiring architectural modification

D.7 Results of using the USAP delivery tool

The two software architects from the product line system project used the
USAP delivery tool at a time when they had completed a preliminary architec-
ture design. One architect was senior and had created most ofthe preliminary
design. The second architect had recently joined the project but had a solid
background as software architect at an automobile company.

The Authorization foundational USAP was omitted from the test we per-
formed in order to make the number of responsibilities tractable for a single
day of testing. Since for the product line under development, authorization
would not be needed, this did not impact the utility of the test from the point of
view of evaluating the current design for support of the three chosen usability
scenarios.

The two architects from the product line system project usedthe USAP de-
livery tool in one session lasting six hours interrupted by aone hour break for
lunch and two 15-minute breaks for coffee. They examined anddiscussed each
responsibility in turn, made notes as appropriate, and decided what response to
make to that responsibility. In the six hours of work they completed consider-
ation of all of the responsibilities for each of the USAPs. They averaged about
12 minutes per responsibility.

Overall the designers felt that the USAP delivery tool was quite helpful.
Some of the quotes regarding the helpfulness of the tool:

142 Paper D

Designer 1: Yeah, I, I think it’s, it’s a very easy way to get
some kind of review of your work. You will not
get the complete picture of all your work, but
it will be a very good check, or at least an
indication of the completeness of your system.

The main goal for ABB when applying the USAP technique was to in-
corporate usability support early in the design process in order to build in the
support in the core architecture. By building in usability support early in the
architecture, ABB expects to avoid late and costly redesignafter the users have
tested an actual version of the product line systems products. Some of the
quotes that related to the goal of early architectural usability support were:

Designer 1: We have discussed lots of internal stuff in the
system but this gave us some picture of what
the user is going to see.

Designer2: And that is things that we were not going to get
that input, until very late in the design process,
if we hadn’t used this tool now. So it was good
to have these points of view come in this early.
I think we have identified at least a couple of
new subsystems.

Designer1: Yes. And some shortcomings of the previous
design.

Designer2: Yeah.

The designers also responded well about the level of abstraction of the
responsibilities:

Designer2: The tool raises very abstract discussions and
thoughts. It is much work to go through these
responsibilities.

Designer 2: The most useful thing with this tool is that it
guides your thoughts, and it helps you to think
about the architecture that you have from
different perspectives.

From preliminary reactions at another ABB business where weshowed the
USAPs before removing the UML example and developing the pattern lan-
guage, we were concerned that the designers would feel “supervised” or that
they would feel that they had received unwanted and/or unhelpful recommen-
dations. Instead, the reactions were very positive:

Results of using the USAP delivery tool 143

Designer 1: It was like having a partner to discuss with.
Designer 2: The issues that you list in your tool, when you

are sitting several people talking together
about them, then you have to discuss how we
handle these issues in our system, in our
architecture. And that, that provides an
understanding for the peoples who are
important in the discussion, of how the
architecture works.

In contrast to the earlier negative reactions to UML diagrams of a sample
solution, we found that as the designers examined the lists of responsibilities,
they nearly always examined and discussed the implementation suggestions.
One of their suggestions for improvement of the tool was thatthe implementa-
tion suggestions could be automatically included in the to-do list so that they
would be available for future use, indicating that they saw these suggestions as
useful instead of intrusive.

In summary, the reactions of the software architects to the tool were very
positive. The designers had viewed all implementation details in a top-down
fashion indicating that for every responsibility they feltit helpful to view the
implementation guidelines. They also asked for a copy of thetool so that they
could have it available as they worked through their to-do list.

During their use of the tool, the architects identified 14 issues that needed
further consideration. Over the next several weeks, the architects considered
these fourteen issues and their actual impact. The architects’ judgment as to
the resolution of each of the issues is detailed below.

144 Paper D

Issue 1. Cost Saving: - would have been done any way
Issue 2. Cost Saving: - 1weeks
Issue 3. Cost Saving: - weeks
Issue 4. Cost Saving: - would have been done any way
Issue 5. Cost Saving: - very uncertain of value
Issue 6. Cost Saving: - very uncertain of value
Issue 7. Cost Saving: - very uncertain of value
Issue 8. Cost Saving: - 1 weeks
Issue 9. Cost Saving: - very uncertain of value
Issue 10. Cost Saving: - would have been done any way.
Issue 11. Cost Saving: - very uncertain of value
Issue 12. Cost Saving: - 2 weeks, could be more if this

idea is fully exploited
Issue 13. Cost Saving: - very uncertain of value
Issue 14. Cost Saving: - very uncertain of value

For the issues where the architect felt secure in providing avalue, 5 weeks
were saved. Note the uncertainty of the architect with respect to many of the
other issues. In the worst case, this uncertainty translates to no additional sav-
ings but, likely, there were additional savings beyond thatestimated initially.
In any case, saving 25 days (5 weeks) for less than one day of investment by
two people is still an amazing result.

The savings does not include the time the researchers have invested in pro-
ducing the USAPs but Alarms and Events and user profiles are common us-
ability scenarios. These USAPs are reusable across many projects and thus the
investment to produce them will get amortized across multiple projects.

D.8 Conclusions and Future Work

On the one hand, providing professionals with a check list ofactivities they
should perform is a very old concept. Computerizing the checklist is not a
major step. The resulting tool is extremely simple. On the other hand, getting
a 25-to-2 return on investment (ROI) for the architects - oneday’s work by two
people saved five weeks - is an amazing result. One study with one estimate
is not scientific evidence but this study is one of the few reports of ROI with
respect to the use of any architectural technique. Architectural knowledge can
be encoded into very simple tools and still be effective. Architectural tool
builders might consider simple methods to encode their knowledge rather than

Acknowledgments 145

attempting very sophisticated tools. Furthermore, three aspects of this work
are significant.

1. The patterns are primarily described at the level of responsibilities. These
are independent of implementation, and lead the architectsto think about
how a particular responsibility relates to their current system design
rather than forcing them to attempt to compose structural instructions
with their current design.

2. Using textual descriptions for implementation instructions rather than di-
agrams was well received by the architects at ABB. The push back from
architects with respect to diagrammatic instructions has not previously
been reported.

3. Encouraging the architects through a tool to examine all of the items in
the checklist removes the problems with paper delivery of the checklist.

In addition, there is nothing in the USAP delivery tool that is specific to
usability patterns. Any quality attribute where the requirements can be ex-
pressed as a set of responsibilities, e.g. security, could likely be included in the
tool. The same portions of a system could then be representedin both a se-
curity responsibilities implementation details and in a usability responsibilities
implementation details.

D.9 Acknowledgments

The Software Engineering Institute is a Federally Funded Research and De-
velopment Center created by the US Department of Defense. A portion of
the third author’s time on this research was funded by the Institute of Educa-
tion Sciences, US Department of Education, through Grant R305B040063 to
Carnegie Mellon University, and by ABB. The views and conclusions herein
are those of the authors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of IES, SEI, theU.S. Government, or
ABB.

Bibliography

Bibliography

[1] R. J. Adams, L. Bass, and B. E. John.Applying general usability
scenarios to the design of the software architecture of a collaborative
workspace.In A. Seffah, J. Gulliksen and M. Desmarais (Eds.) Human-
Centered Software Engineering: Frameworks for HCI/HCD andSoftware
Engineering Integration. Kluwer Academic Publishers, 2005.

[2] E. Golden, B. E. John, and L. Bass. The value of a usability-supporting
architectural pattern in software architecture design: A controlled exper-
iment. InProceedings of the 27th International Conference on Software
Engineering, ICSE, St. Louis, Missouri, May 2005.

[3] B. E. John, L. Bass, M.-I. Sanchez-Segura, and R.J. Adams. Bringing us-
ability concerns to the design of software architecture. InProceedings of
The 9th IFIP Working Conference on Engineering for Human-Computer
Interaction and the 11th International Workshop on Design,Specification
and Verification of Interactive Systems, Hamburg, Germany, 2004.

[4] E. Folmer. Software Architecture Analysis of Usability. PhD thesis,
Department of Computer Science, University of Groningen, Groningen.,
2005.

[5] E. Folmer, J. van Gurp, and J. Bosch. A Framework for capturing the Re-
lationship between Usability and Software Architecture. Software Pro-
cess: Improvement and Practice, Volume 8, Issue 2. Pages 67-87., 2003.

[6] N. Juristo, A.M. Moreno, and M.-I. Sanchez-Segura. Guidelines for elic-
iting usability functionalities.Software Engineering, IEEE Transactions
on, 33(11):744–758, Nov. 2007.

146

[7] M. Barbacci, R. Ellison, A. Lattance, J. Stafford, C. WeinStock, and
W. Wood. Quality attribute workshops, 3rd edition. Technical report,
Software Engineering Institute, Pittsburgh, PA, USA, 2003.

[8] P. Stoll, A. Wall, and C. Norström. Guiding Architectural Decisions with
the Influencing Factors Method. Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA) 2008, 2008.

[9] P. Clements and L. Northrop.Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, andM. Stal.
Pattern-oriented Software Architecture A System of Patterns, volume 1.
Wiley, first edition, 1996.

[11] J. Tidwell. Designing Interfaces: Patterns for Effective InteractionDe-
sign. O’Reilly Media: Sebastopol, CA, 2006.

[12] C. Alexander.A Pattern Language: Towns, Buildings, Construction. Ox-
ford University Press, USA, 1977.

[13] B. E. John, L. Bass, E. Golden, and P. Stoll. A responsibility-based pat-
tern language for usability-supporting architectural patterns. Proceedings
of the ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS), Pittsburgh, PA, US, 2009.

[14] P. Stoll, L. Bass, B. E. John, and E. Golden. Preparing Usability Support-
ing Architectural Patterns for Industrial Use. Proceedings of International
Workshop on the Interplay between Usability Evaluation andSoftware
Development (I-ISED), Pisa, Italy, 2008.

Appendix E

Paper E:
Software Engineering
featuring the Zachman
Taxonomy

Pia Stoll, Anders Wall Christer Norström
Industrial Software Systems Computer Science and Electronics

ABB Corporate research Mälardalen University
pia.stoll@se.abb.com, christer.norstrom@mdh.se

anders.wall@se.abb.com

Technical Report, School of Innovation, Design and Engineering (IDT), Mälardalen
University, Sweden, 2009.

149

Abstract

Sustainable development of industrial software system companies is related
to aspects of the architecture’s environment with influences from organization,
business and architecture. The definition of sustainable development states that
a development organization must meet the needs of the organization’s stake-
holders, without compromising its ability to meet the needsof future stake-
holders as well. Classifying the software development artifacts in a framework
of views, from the macro-design level down to the micro-design level, would
give a deeper understanding of the forces that act between the sustainable soft-
ware development artifacts.

In this report, the Software Engineering Taxonomy is presented which is
derived from the Zachman Enterprise Architecture Framework. Based on two
assumptions, the Software Engineering Taxonomy proved to be able to classify
all software engineering artifacts from the IEEE Software Engineering Book
Of Knowledge (SWEBOK) published 2004.

The Software Engineering Taxonomy also proved to give useful insights
into how customer sites and development sites may interact for fast innovation
exemplified with the companies Apple (AppStore) and Google.The taxonomy
also proved to be useful for process analysis which is shown for the Scrum
process.

Introduction 151

E.1 Introduction

This report investigates the possibility of classifying software engineering arti-
facts for industrial software systems. The classification should include artifacts
related to business and organization and therefore three Enterprise Architecture
frameworks were considered. The three frameworks were: theZachman frame-
work, the Department Of Defense Architecture Framework (DODAF) [1] and
The Open Group Architecture Framework (TOGAF) [2].

The discipline of enterprise architecture is commonly considered to have
its birth in an academic article by Zachman, published 1987 by the research
oriented IBM Systems Journal [3]. Zachman saw the growing complexity of
information software system that extended in scope and complexity to cover an
entire enterprise. He stated that decentralization of system resources without
structure results in chaos and argued for the need of information system archi-
tecture. Zachman searched for an objective independent basis upon which to
build a framework for information system architecture and resolved to be in-
spired by classic architecture. After some enhancements [4], the result was a
classification framework, a taxonomy, of 30 cells representing the intersections
of usage perspectives and content abstractions of architectural information.

Enterprise1 architecture as defined by the Federal Architecture Working
Group (FAWG) [5] is: a strategic information asset base and describes the
mission (i.e. the business), the information and the technologies necessary
to perform the mission, and the transitional processes for implementing new
technologies in response to changing mission needs. An enterprise architecture
includes a baseline architecture2, target architecture3, and a sequencing plan4.

According to James N. Martin [6] enterprise architecture deals with “Get-
ting to the Future” and has drivers and outcomes. The enterprise architecture is
according to Martin a means for transforming enterprise objectives into busi-
ness plans and mission needs.

In the mid 1990s the DOD determined that a common approach wasneeded
for describing its architectures, so that DOD systems couldefficiently commu-
nicate and inter-operate during joint and multinational operations. The interop-

1Enterprise - an organization supporting a defined business scope and mission. An enterprise
includes interdependent resources (people, organizations, and technology) who must coordinate
their functions and share information in support of a commonmission.

2Baseline architecture - the architecture as it is today, also called as-is architecture
3Target architecture - the (planned) future architecture, also called to-be architecture or goal

architecture
4Sequencing plan - the strategy for changing the baseline architecture to the target architecture,

also called the transition plan

152 Paper E

erability aspects of the DODAF is reflected in its architectural views which are
focused on describing what’s being communicated and how in the Operational
View (OV) of the DODAF. The Systems View (SV) of DODAF identifies the
systems that support the OVs and the Technical View (TV) describes the crite-
ria for each required system that will satisfy the interoperability requirements.
DODAF is as such not an architecture development method or a classification
framework, it’s an architecture description development framework focused on
describing interoperability aspects of systems of systems.

TOGAF5 is developed and maintained by members of The Open Group,
working within the Architecture Forum. The original development of TOGAF
Version 1, in 1995, was based on the Technical Architecture Framework for In-
formation Management (TAFIM), developed by the US Department of Defense
(DOD). The DOD gave The Open Group explicit permission and encourage-
ment to create TOGAF by building on the TAFIM, which itself was the result
of many years of development effort and many millions of dollars of US Gov-
ernment investment.

TOGAF is more ambitious in scope than its defense counterpart, DODAF.
TOGAF organizes architectures into four domain levels:

Business architecture- defines business strategy, governance, organization,
and key business processes

Application architecture - specifies individual application systems to be de-
ployed

Data architecture - defines structure of an organization’s logical and physical
data assets and associated data management resources

Technology architecture - specifies software infrastructure intended to sup-
port the deployment of core, mission-critical applications

As this report was searching for a enterprise architecture artifact classifica-
tion framework, not an enterprise architecture description development frame-
work or in-house information system architecture development framework, it
resorted to study the Zachman framework in more detail.

The remainder of this report is organized as follows; Section E.2 describes
the Zachman Framework, Section E.3.1 describes the Software Engineering
Taxonomy and the classification of the SWEBOK software engineering arti-
facts, Section E.3.3 and Section E.3.4 uses the Software Engineering Taxon-
omy from Section E.3.1 to analyze the cases: AppStore, Google and Scrum,

5http://www.opengroup.org/architecture/togaf9-doc/arch/ [Accessed: 4. February 2009]

Zachman Framework 153

and Section E.4 presents the conclusions of the work with theSoftware Engi-
neering Taxonomy and its usefulness for the software engineering discipline
and future work.

E.2 Zachman Framework

In a joint article [4], published 1992, Sowa and Zachman explain that the Zach-
man framework links the concrete things in the world (entities, processes, lo-
cations, people, times and purposes) to the abstract bits inthe computer. The
Zachman framework is not a replacement of programming tools, techniques, or
methodologies but instead, it provides a way of viewing the system from many
different perspectives and how they are all related. The framework logic can be
used for describing virtually anything considering its history of development.
The logic was initially perceived by observing the design and construction of
buildings. Later it was validated by observing the engineering and manufac-
ture of airplanes. Subsequently, it was applied to enterprises during which the
initial material on the framework was published [3][7][8].Sowa and Zachman
write:

Most programming tools and techniques focus on one aspect ora
few related aspects of a system. The details of the aspect they se-
lect are shown in utmost clarity, but other details may be obscured
or forgotten. By concentrating on one aspect, each technique loses
sight of the overall information system and how it relates tothe en-
terprise and its surrounding environment. The purpose of the ISA
framework [Today, the Zachman framework A.R.]is to show how
everything fits together. It is a taxonomy with 30 boxes or cells or-
ganized into six columns and five rows. Instead of replacing other
techniques, it shows how they fit in the overall scheme.

According to Zachman, “Architecture” is the set of descriptive representa-
tions relevant for describing a complex object (actually, any object) such that
the instance of the object can be created and such that the descriptive represen-
tations serve as the baseline for changing an object instance.

The columns of the framework represent different abstractions from or dif-
ferent ways to describe information of the complex object. The reason for
isolating one variable (abstraction) while suppressing all others is to contain
the complexity of the design problem. Abstractions classifying the description
focus are:

154 Paper E

Abstraction INVENTORY
SETS

(WHAT)

PROCESS
TRANSFORMATIONS

(HOW)

NETWORK
NODES

(WHERE)

ORGANIZATION
GROUPS
(WHO)

TIMING
PERIODS
(WHEN)

MOTIVATION
REASONS

(WHY)Perspective

SCOPE
CONTEXTS
(Strategists)

e.g. Inventory
Types

e.g. Process Types e.g. Network
Types

e.g. Organization
Types

e.g. Timing
Types

e.g. Motivation
Types

BUSINESS
CONCEPTS
(Executive
Leaders)

e.g. Business
Entities &
Relationships

e.g. Business
Transform & Input

e.g. Business
Locations &
Connections

e.g. Business
Role & Work

e.g. Business
Cycle &
Moment

e.g. Business
End & Means

SYSTEM
LOGIC
(Architects)

e.g. System
Entities &
Relationships

e.g. System
Transform & Input

e.g. System
Locations &
Connections

e.g. System
Role & Work

e.g. System
Cycle &
Moment

e.g. System
End & Means

TECHNOLOGY
PHYSICS
(Engineers)

e.g.
Technology
Entities &
Relationships

e.g. Technology
Transform & Input

e.g.
Technology
Locations &
Connections

e.g. Technology
Role & Work

e.g.
Technology
Cycle &
Moment

e.g. Technology
End & Means

COMPONENT
ASSEMBLIES
(Technicians)

e.g.
Component
Entities &
Relationships

e.g. Component
Transform & Input

e.g.
Component
Locations &
Connections

e.g. Component
Role & Work

e.g.
Component
Cycle &
Moment

e.g. Component
End & Means

Figure 1: The Zachman Framework

Inventory Sets - Describes ‘what” information is used

Process Transformations- Describes “How” the information is used

Network Nodes - Describes “Where” the information is used

Organization Groups - Describes “Who” is using the information

Timing Periods - Describes “When” the information is used

Motivation Reasons - Describes “Why” the information is used

The rows of the framework represent “Perspectives” classifying the de-
scription usage. The perspectives are:

Scope Contexts- perspective descriptions corresponds to an executive sum-
mary for a planner or investor who wants an estimate of the scope of the
system, what it would cost, and how it would perform.

Zachman Framework 155

Business Concepts- perspective is the perspective of the owner, who will
have to live with the constructed object (system) in the daily routines
of business. This perspective descriptions correspond to the enterprise
(business) model, which constitutes the design of the business and shows
the business entities and processes and how they interact.

System Logic - perspective is the designer’s perspective. The System Logic
perspective descriptions correspond to the system model designed by a
systems analyst who must determine the data elements and functions that
represent business entities and processes.

Technology Physics- perspective descriptions correspond to the technology
model, which must adapt the system model to the details of theprogram-
ming languages, I/O devices, or other technology. This is the perspective
where the four views of the “4+1” model by Kruchten [9] can be used to
describe software architecture.

Component Assemblies- perspective descriptions correspond to the detailed
specifications that are given to programmers who code individual mod-
ules without being concerned with the overall context or structure of the
system.

The relevant descriptive representations would necessarily have to include
all the intersections between the Abstractions and the Perspectives (Figure. 1).
“Architecture” would be the total set of descriptive representations (models)
relevant for describing the complex object and required to serve as a baseline
for changing the complex object once it is described. Zachman’s complex
object is the enterprise, but principally he states that thecomplex object can
be any object.

The Zachman framework is a structure, not a methodology for creating
the implementation of the object. The Zachman Framework does not imply
anything about how architecture is done (top-down, bottom-up, etc). The level
of detail is a function of a cell not a function of a column. Thelevel of detail
needed to describe the Technology Physics perspective may be naturally high
but it does not imply that the level of detail of the Scope Contexts descriptions
should be lower or the opposite.

The framework is normalized, that is adding another row or column to
the framework would introduce redundancies or discontinuities. Composite
models and process composites are needed for implementation. A composite
model is a model that is comprised of elements from more than one framework

156 Paper E

model. For architected implementations, composite modelsmust be created
from primitive models and diagonal composites from horizontally and verti-
cally integrated primitives. The structural reason for excluding diagonal rela-
tionships is that the cellular relationships are transitive. Changing a model may
impact the model above and below in the same column and any model in the
same row.

The rules of the framework are [7]:

Rule 1: Do not add rows or columns to the framework

Rule 2: Each column has a simple generic model

Rule 3: Each cell model specializes its column’s generic model

Rule 3 Corollary: Level of detail is a function of a cell, not acolumn

Rule 4: No meta concept can be classified into more than one cell

Rule 5: Do not create diagonal relationships between cells

Rule 6: Do not change the names of the rows or columns

Rule 7: The logic is generic, recursive

The model, i.e. the view, in the Zachman framework can be aligned with
the ISO/IEC 42010:2007 viewpoints [10]:

An organization desiring to produce an architecture framework for
a particular domain can do so by specifying a set of viewpoints
and making the selection of those viewpoints normative for any
Architectural Description claiming conformance to the domain-
specific architectural framework. It is hoped that existingarchitec-
tural frameworks, such as the ISO Reference Model for Open Dis-
tributed Processing (RM-ODP) [11], the Enterprise Architecture
Framework of Zachman [3], and the approach of Bass, Clements,
and Kazman [12] can be aligned with the standard in this manner.

Zachman’s framework does not describe what language to use for the model
descriptions or how to do the actual modeling for each cell. Therefore each
view of the Zachman’s framework is free to use the viewpoint selected by the
responsible of the description. It should therefore be possible to use the view-
points from the ISO/IEC 42010:2007 to describe a model, i.e.a view, within
the framework.

Software Engineering Taxonomy 157

For manufacturing a process composite would be necessary. The process
composite describes the working process of creating the model descriptions of
the composite model, typically ending with the descriptions of the components
in the Component Assemblies perspective, e.g. a service or framework. A third
dimension of the framework, called science, has been proposed by O’Rourke
et al. [13]. This extension is known as the Zachman DNA (DepthiNtegrating
Architecture). In addition to the perspectives and aspectsthe z-axis is used for
classifying the practices and activities used for producing all the cell represen-
tations.

E.3 Software Engineering Taxonomy

In order to be able to use the Zachman framework for software engineering
artifacts, two basic assumptions were done:

1. The software engineering classification framework, derived from the Zach-
man framework, describes the software system’s development organiza-
tion and the customer’s scope and business related to the need of system
support.

2. The software engineering classification framework, derived from the Zach-
man framework, is three-dimensional where site is the thirddimension.
The site might be the software development organization, external de-
velopment organization or the customer’s enterprise as long as the site
has a part in the system usage or system development.

The assumptions are illustrated in Figure 2. With these assumptions, the
system development’s Business Concepts perspective will describe the soft-
ware development artifacts, e.g. software development activities, software de-
velopment team locations and connections, software development roles and
work products, software development schedules, and software development
strategies. The models in the customer’s Business Conceptsperspective will
describe the customer’s production related to the need of system support. The
resulting software engineering classification framework is called the Software
Engineering Taxonomy.

E.3.1 Shared Perspectives

The models in the Software Engineering Taxonomy might be shared across de-
velopment and customer sites but it is the software development organization

158 Paper E

System Customer(s)’s
Business Concepts

[Customer(s)’s: system related
production activities, system related

production team locations and
connections, system related production

roles and work products, system
related production schedules, system

related production strategy …]

Software Development
Organization(s)’s
Business Concepts

[Software Development
Organization(s)’s: software

development activities,
software development team locations

and connections, software
development roles and work products,

software development schedules,
software development strategy …]

System Logic
[e.g. Requirements, System activity diagram, System domain

model, System State chart…]

Technology Physics
[e.g. Class entities, Timing entities, Design rules]

Component Assemblies
[e.g. Code, Frameworks, Languages, Detailed rules]

Customer(s)’s
perspectives

Software Development Organization(s)’s
perspectives

Figure 2: The Customer’s and the Software Development Organization’s per-
spectives

that controls the degree of openness. For example if the customer is an active
member in the requirements handling team at the software development orga-
nization, then the requirements handling activity is shared across sites. This
would mean that the model with the Business Concepts perspective and Pro-
cess Transformations abstraction is partly shared since this model contains the
requirements handling activity. Another example of sharedmodels across sites
is the open source development. In open source development,several software
development sites share software development model descriptions across sites.
Not only the development activities can be shared across sites, but also the test-
ing activities. Google lets their customers test the Googlesoftware applications
before the final release, which makes the customers part of the test team.

Software Engineering Taxonomy 159

E.3.2 Software Engineering Descriptions

The IEEE Software Engineering Body Of Knowledge, SWEBOK, has the ob-
jective to promote a consistent view of software engineering worldwide and
was published 2004 [14]. SWEBOK has references to a very large number of
software engineering theories. The SWEBOK has divided the software engi-
neering domain into a set of knowledge areas; software requirements, software
design, software construction, software testing, software maintenance, soft-
ware configuration management, software engineering management, software
engineering process, software engineering tools and methods, and software
quality. The knowledge areas act as knowledge for the persons working in that
specific area. In contrast to the work described in [15][16] the classification
of the SWEBOK software engineering artifacts in this reportdoes not try to
reflect the software engineering professions but instead seek a classification
approach similar to the building engineering [17] .

The process used to classify the descriptions from the SWEBOK was:

1. Anything resembling an artifact was extracted from the SWEBOK.

2. The artifact duplicates were removed when all of the artifacts were ex-
tracted.

3. The non-duplicate artifacts were analyzed and grouped according to their
descriptions. For example, the “Release Schedule” artifact was grouped
together with “Construction Schedule”, “Project Scheduleand milestones”,
and “Test Schedule”.

4. The grouped artifacts were translated into general modeldescriptions.
For example, the group of schedules in the previous step was gener-
alized into the model description “Schedules for projects,releases and
processes”.

5. The general model descriptions were classified accordingto the perspec-
tives and abstractions from the Software Engineering Taxonomy.

160 Paper E

Abstraction INVENTORY
SETS

(WHAT)

PROCESS
TRANSFORMATIONS

(HOW)

NETWORK
NODES

(WHERE)Software
Development
Organization
Perspective

SCOPE
CONTEXTS

[Reports, Standards,
Stakeholders, Tools,
Products, Programming
Languages, Developer
Competencies]

[Requirement Handling/ Design/
Construction/ Testing/
Maintenance/
Configuration Management/
Engineering Management]

[Internal & External
Development Team
Networks, Supplier
Networks]

BUSINESS
CONCEPTS

[Estimations, Prototypes,
Analysis, …, Decisions and
their Relations]

[Activities for: Requirement
Handling/ Design/ Construction/
Testing/
Maintenance/
Configuration Management/
Engineering Management]

[Internal & External
Development Team
Locations &
Connections]

SYSTEM
LOGIC

[System Domain Model] [System Activity Diagram] [System Deployment
Diagram]

TECHNOLOGY
PHYSICS

[Development View, Class
Diagram]

[Logical View, Interface
Specification]

[Physical View,
Deployment Diagram]

COMPONENT
ASSEMBLIES

[Database Configuration,
Build Configuration]

[Algorithms,
Code Modules,
Frameworks]

[Communication
Protocols, Port
Configurations]

Figure 3: The SWEBOK software engineering artifacts classified in the Soft-
ware Engineering Taxonomy. The figure shows the three first columns.

The software engineering artifacts are not physical like inthe building en-
gineering but differ in their descriptions, not in their physical dimensions. A
software engineering description can be very complex, e.g.a domain model in-
cluding a large set of entities and their relations, and it can be less complex, e.g.
the listing of reports. Some of the software engineering artifacts from SWE-
BOK could be descriptions of their own. For example, the artifact “System
Class diagram” could be a complete description of the model with the Inventory
Sets abstraction and the Technology Physics perspective. When performing the
classification it was important to distinguish between the customer’s perspec-

Software Engineering Taxonomy 161

ORGANIZATION
GROUPS
(WHO)

TIMING
PERIODS
(WHEN)

MOTIVATION
REASONS

(WHY)

Abstraction

Software
Development
Organization

Perspective

[External Regulatory
Bodies,
Internal & External
Development Teams]

[Internal & External
Development Releases,
Global Economy Events, …]

[Business Goals, Process
Scopes, Policies,
Culture, Principles,
Missions]

SCOPE
CONTEXTS

[Internal & External
Development Team Roles
& their Work Products]

[Schedules for Projects/ Releases/
Processes]

[Strategies for:
Processes’/ Projects’/
Staffing/ System and
Projects’ Objectives]

BUSINESS
CONCEPTS

[System Use Cases] [State Charts] [Requirements,
Constraints, Qualities]

SYSTEM
LOGIC

[User Interfaces] [Sequence Diagrams] [Design Rules,
Design Principles]

TECHNOLOGY
PHYSICSDesign Principles]

[Security Control, Safety
Control]

[Concurrency Model] [Explicit Design Rules/
Design Principles
Configuration]

COMPONENT
ASSEMBLIES

Figure 4: The SWEBOK software engineering artifacts classified in the Soft-
ware Engineering Taxonomy. The figure shows the three last columns.

tives and the development organization’s perspectives. For example, the model
description “Schedules for projects, releases and processes” was classified with
a Timing Periods abstraction and Software Development Organization’s Busi-
ness Concepts perspective. The software engineering artifacts which describe
the development of a software system and the system itself were expected to be
straight-forward to classify in Zachman’s System Logic perspective since this
perspective contains model descriptions of software system architecture, e.g.
use cases, activity diagrams, requirements.

It was also expected that Zachman’s Business Concepts perspective would

162 Paper E

be difficult to use for Software Engineering artifacts sincethis perspective is
typically used to model the customer’s business processes in need of system
support, e.g. production processes. The classification showed that the develop-
ment organization’s Business concepts as e.g. software testing, development
schedules, prototype analysis etc could easily be classified in the Software En-
gineering Taxonomy when the taxonomy perspectives were thesoftware devel-
opment organization perspectives.

Non of the SWEBOK software engineering artifacts describedthe cus-
tomer’s Scope Contexts or customer’s Business Concepts perspective and hence
the classification of the SWEBOK artifacts is done using onlythe software
development organization’s perspectives. The resulting classification of the
SWEBOK artifacts is two-dimensional and shown in Figure 3 and in Figure 4.

The generalized model descriptions are enclosed by brackets in each cell
of the Software Engineering Taxonomy in Figure 3 and Figure 4. For example,
the cell with the Inventory Sets abstraction and Scope Contexts perspective
contains descriptions of reports, stakeholders, standards, tools and products
used by the software development organization. The cell with the Process
Transformations abstraction and Scope Contexts perspective contains model
descriptions of processes for requirement handling, design, construction, test-
ing, maintenance, configuration management, and engineering management.
In the Software Engineering Taxonomy, the processes do not dictate the clas-
sification; they are a part of the classification scheme. The Scope Contexts-
and Business Concepts perspectives with the Process Transformations abstrac-
tion got a large number of artifacts classified since SWEBOK contains a large
amount of process descriptions and activity definitions forthe processes. The
models description would be instantiated for each softwaredevelopment orga-
nization. For example, an organization doing Scrum [18] processes would in-
stantiate the model with the Business Concepts perspectiveand Process Trans-
formations abstraction with descriptions of typical Scrumactivities: “Sprint
Review”, “Planning”, etc.

E.3.3 Apple and Google Process Composite Models

The interactions between development sites and customer/utilization sites are
re-engineered into the Software Engineering Taxonomy for two companies’
applications: Apple’s AppStore [[19], [20], [21]] and Google’s services [22].
The companies are world-leading [23] in establishing new ways of interact-
ing with their customers during software development and therefore highly
interesting for creating composite models which bridge thegap between cus-

Software Engineering Taxonomy 163

tomer/utilization site(s) and development organization site(s) in the Software
Engineering Taxonomy.

Apple has created a way to easily install applications in run-time by struc-
turing application code into bundles [21]. The bundle structure is part of the
Apple framework. Apple shares the framework but in contrastto the open
source community gives external developers no access to theApple core busi-
ness logic components.

The shared composite model pattern for bridging the utilization- and devel-
opment sites gap for Apple and Google is visualized in, Figure 5. The innova-
tive integration takes place in the Network Nodes abstraction in the Software
Engineering Taxonomy for both AppStore and Google services.

The AppStore describes the connections of internal- and external develop-
ers, customers, and the Apple organization through the Internet and through
the mobile phone network.

The customers get a test/product strategy role when they indirectly drive
both the internal and external development by downloading the internally and
externally developed applications. The top-ten download list is visible for cus-
tomers as well as developers on the AppStore web page.

Google’s Ecosystem [22] describes the global locations andconnections of
Google’s systems, services, advertisers, and customers over locations barriers
world-wide. Google makes services available for external sites to use in their
applications via standard protocols. Customers get a test/product strategy role
when they test beta-versions of Google’s products voluntarily.

The system design and deployment are crucial but not shared since they
are descriptions of the core business logic. By consideringwhat models in the
Software Engineering Taxonomy are possible to share with external sites, new
ways of bridging the gap between utilization and development can be found,
which could create faster innovation of new or enhanced products.

E.3.4 Scrum Composite Process Model

When reverse-engineering the Scrum process, as described by Schwaber in
[18], into our Software Engineering Taxonomy it becomes clear that the Scrum
approach is rather extensive in the scope- and business perspective (Figure 6).
To bridge the gap between customer/utilization site and developer site, the
Scrum process includes the customer and the sales organization as members of
the development team. By integrating customer, management, release manage-
ment, and development in a set of teams, all the teams’ concerns are integrated
in a dynamic team work product called “product backlog”. Twoimportant

164 Paper E

System Customer(s)’s
Business Concepts

[Network Nodes: Application commercial distribution through mobile
phones and the Internet]

[Organization Groups: Test Team,
Development Team]

System Logic
[Network Nodes: Application interactions through mobile phones and

Internet]
[Motivation Abstraction: Requirements, Constraints, Design rules]

Technology Physics
[Not shared]

Component Assemblies
[Process Transformations: Services, Frameworks]

[Network Nodes: Communication protocols]

Customer(s)’s
site

Software Development
Organization(s)’s site

Figure 5: Bridges between Customer Site(s) and DevelopmentSite(s) for Ap-
ple and Google.

activities in the Scrum development process is the cost estimations and risk
estimations.

The requirements and qualities are described in the Software Engineering
Taxonomy cell with the Motivation Reasons abstraction and System Logic per-
spective. The code or program is described in the cell with the Process Trans-
formations abstraction and Component Assemblies perspective. The compos-
ite process model, the Scrum development process as described in [18], takes
a step from requirements to architectural design and domainmodeling in the
pregame phase. If the Scrum composite process model would have taken a di-
rect step from requirements to code, then Zachman’s rule no:5 stipulating “Do
not create diagonal relationships between cells” would have been violated.

An interesting approach would be to integrate explicitly formulated design
rules [24], described in the taxonomy cell with the Motivation Reasons abstrac-
tion and the Technology Physics perspective. This would be an alternative way

Conclusions and Future Work 165

Abstraction INVENTORY
SETS

(WHAT)

PROCESS
TRANSF.
(HOW)

NETWORK
NODES

(WHERE)

ORGANIZATION
GROUPS
(WHO)

TIMING
PERIODS
(WHEN)

MOTIVATION
REASONS

(WHY)Software
Development
Organization’s
Perspective

SCOPE
CONTEXTS

[Standards,
Expertise]

[Planning/
Closure
Process]

[List of Scrum
Team
Networks]

[Customer/
Development/
Management
Teams]

[Competitors
Releases]

[System Vision]

BUSINESS
CONCEPTS

[Estimations,
Prototypes,
Analysis, …,
Decisions and
their
Relations]

[Daily Scrum,
Sprint,
Review,
Analyze,
Design,
Develop,…]

[Scrum Team
Locations &
Connections]

[Scrum Teams/
Work ; “Sprint
Backlog” ,
“Product
Backlog”]

[Sprint dates,
Release Date]

[Release Plan]

SYSTEM
LOGIC

[System
Domain
Model]

[High level
application
model]

[Requirements]

TECHNOLOGY
PHYSICS

[System
Design]

COMPONENT
ASSEMBLIES

[Code modules,
Frameworks
…]

[Explicit Design
Rules/
Configuration]

OK

OK

Figure 6: Scrum reverse engineered into the Software Engineering Taxonomy

or additional step to take from requirements to code.

E.4 Conclusions and Future Work

The Software Engineering Taxonomy derived out of the Zachman Framework
relies on two assumptions:

1. The software engineering classification framework, derived from the Zach-
man framework, describes the software system’s development organiza-
tion and the customer’s scope and business related to the need of system
support.

2. The software engineering classification framework, derived from the Zach-
man framework, is three-dimensional where site is the thirddimension.
The site might be the software development organization, external de-
velopment organization or the customer’s enterprise as long as the site
has a part in the system usage or system development.

166 Paper E

The classification of the IEEE SWEBOK artifacts uses only thesoftware
development organization’s perspectives, not the customer perspective, result-
ing in the classification being two-dimensional. However, the three dimen-
sions of the Software Engineering Taxonomy can be used to describe a soft-
ware development organization that shares models with external software de-
velopment sites or customer sites, e.g. Google, Apple’s AppStore and Open
Source development as described in this report. The analysis of AppStore and
Google showed that the taxonomy’s Network Nodes abstraction and Organiza-
tion Groups abstraction columns are important for sharing models with external
development- and utilization sites for faster innovation of new products.

The reverse engineering of the Scrum process into our Software Engineer-
ing Taxonomy showed that all of the Scrum artifacts can be classified and that
the focal point of the Scrum is on the Scope Contexts perspective and the Busi-
ness Concepts perspective of the development organization. The descriptions
of the System Logic perspective and the Technology Physics perspective are
thin in the Scrum process.

The Software Engineering taxonomy can serve as a reasoning framework
into which artifacts and results of software engineering theories, processes and
case studies might be mapped for further analysis. The rulesof the Zachman
framework are valid for the Software Engineering Taxonomy.

It remains to do a formal validation of the Software Engineering Taxonomy.
The formal validation could be in the form of a more thorough collection of
software engineering artifact and their classification. Further, an expert panel
could judge the classification’s correctness.

Bibliography

[1] DoD. Department of Defence Architecture Framework Working Group,
DoD Architecture Framework, DoDAF, version 1.0. Department of De-
fence, 2003.

[2] TOG. The Open Group Architecture Framework, version 8/9, 2002/6.
The Open Group,.

[3] J. A. Zachman. A Framework for Information Systems Architecture.IBM
Systems Journal, 26(3):276–292, 1987.

[4] J. F. Sowa and J. A. Zachman. Extending and formalizing the framework
for information systems architecture.IBM System Journal, 31:590–616,
1992.

[5] R. C. Thomas. A Practical Guide to Federal Enterprise Architecture,.
www.gao.gov/bestpractices/bpeaguide.pdf, 2001. retrieved July 11th
2009.

[6] J. N. Martin. An introduction to the Architectural Frameworks
DODAF/MODAF/NAF. Course given at the Royal Institute of Technol-
ogy, Stockholm, Sweden, 2006.

[7] J. A. Zachman.The Zachman Framework for Enterprise Architecture; A
Primer for Enterprise Engineering and Manufacturing. Zachman Inter-
national, 2003.

[8] J. A. Zachman. The Zachman Framework and Observations onMethod-
ologies.Business Rules Journal, 5(11), 2004.

[9] P. B. Kruchten. The “4+1” View Model of architecture.Software, IEEE,
12(6):42–50, Nov 1995.

167

168 Bibliography

[10] R. Hilliard. Systems and software engineering - Recommended prac-
tice for architectural description of software-intensivesystems.ISO/IEC
42010 IEEE Std 1471-2000 First edition 2007-07-15, pages c1–24, 15
2007.

[11] ISO/IEC 10746 - 3: 1996, Information technology - Open distributed
processing - Reference model: Architecture, 1996.

[12] L. Bass, P. Clements, and R. Kazman.Software Architecture in Practice.
Addison-Wesley, Boston, second edition, 2003.

[13] C. O’Rourke, N. Fishman, and W. Selkow. Enterprise Architecture, Using
the Zachman Framework.Thomson Course Technology, 2003.

[14] P. Bourque and R. Dupuis, editors.Guide to the Software Engineering
Body of Knowledge. IEEE Computer Society, 2004.

[15] O. Mendes and A. Abran. Software Engineering Ontology:A Develop-
ment Methodology. Technical report, University from Quebec in Mon-
treal, 2004.

[16] P. Wongthongtham, E. Chang, and I. Sommerville. Software
Engineering Ontology for Software Engineering Knowledge
Management in Multi-site Software Development Environment.
http://smi.stanford.edu/projects/protege/conference/2007/presentations,
2007.

[17] ASTM. ASTM Standard C33, “Specification for Concrete Aggregates”,
2003.

[18] K. Schwaber. Scrum development process. Workshop Report: Business
Object Design and Implementation. 10th Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications. Adden-
dum to the Proceedings. ACM/SIGPLAN OOPS Messenger 6(4), Octo-
ber 1995.

[19] D. B. Yoffie and M. Slind. Apple computer, 2006, 2007.

[20] P. Tsarchopoulos. Innovation lessons from apple.The Economist, 2007.

[21] Apple. About bundles, 2005.

[22] B. Iyer and T. H. Davenport. Reverse engineering google’s innovation
machine.Harvard Business Review, 2008.

[23] J. McGregor. The world’s 50 most innovative companies.Business Week,
2008.

[24] M. J. LaMantia, Y. Cai, A. D. MacCormack, and J. Rusnak. Evolution
analysis of large-scale software systems using design structure matrices
and design rule theory.Harvard Business School Working Knowledge,
2007.

Appendix F

Paper F:
Applying the Software
Engineering Taxonomy

Pia Stoll, Anders Wall Christer Norström
Industrial Software Systems Computer Science and Electronics

ABB Corporate research Mälardalen University
pia.stoll@se.abb.com, christer.norstrom@mdh.se

anders.wall@se.abb.com

Technical Report, School of Innovation, Design and Engineering (IDT), Mälardalen
University, Sweden, 2009.

171

Abstract

The Software Engineering Taxonomy is a derivative of the Zachman frame-
work. Being a derivative of the Zachman framework, the Software Engineer-
ing Taxonomy follows the Zachman consistency rules and incorporates tradi-
tional enterprise architecture views together with software engineering views.
In this report, the Software Engineering Taxonomy is applied as a reasoning
framework in three studies: the Influencing Factors method field study, the
Usability-Supporting Architecture Patterns field study, and the Sustainable In-
dustrial Software Systems case study.

Software engineering artifacts from the three studies are extracted and clas-
sified in the Software Engineering Taxonomy. From the classification of data
from the studies, it’s shown that each one of the studies usesa subset of
the thirty views in the Software Engineering Taxonomy to describe a specific
method or theory. What views are used, depends on the scope ofthe researched
object. In the classification of the USAP study artifacts, eight views were used
in contrast to the Sustainable System study, that used nineteen views. This
shows that the scope and interrelation complexity of sustainable development
is much higher than the scope and interrelation complexity of the usability-
supporting architecture pattern. It also shows that the software engineering
discipline needs enterprise perspectives to be able to include all aspects of sus-
tainable industrial software system development.

Classification of the USAP artifacts made use of the businessconcept per-
spective for four of the twelve artifacts. The inclusion of atraditional enterprise
perspective led to new conclusions regarding the use of general activities for
pattern creation. General domain application activities and their tasks make
use of the domain’s role and work product as placeholder. Thegeneral ac-
tivities and tasks then become domain application specific.The reusable task
has reusable responsibilities and by specifying what quality attribute the task
support, the responsibilities can be constructed to support that specific qual-
ity of the task. This has been shown for usability in the USAP study. The
USAP information description-selection process could be described by follow-
ing Zachman’s consistency rules in the Software Engineering Taxonomy.

Introduction 173

F.1 Introduction

For a software engineering researcher it can be useful to answer journalistic
questions regarding the information collected in field studies and case studies.
Journalistic abstractions are typically: “What does the information describe?”;
“How is the information used?”; “Where is the information used?”; “Who is
using the information?”; “Why is the information used?”. Depending on the
usage perspective of the information, the answers will differ. If the informa-
tion is related to the perspective of the system’s development organization, the
answers will be different than if the information is relatedto the perspective of
the system’s architecture.

How information from the development organization’s perspective and from
the system’s architecture perspective relate to each othercould also be helpful
to describe. For example, sustainable development of an industrial software
system organization is impacted by organizational patterns, architecture pat-
terns and the knowledge transfer in the organization. Conducting a case study
exploring sustainable development in the domain of industrial software sys-
tems, will collect information from many perspectives. It would then be helpful
for software engineering researchers to use a enterprise architecture taxonomy
where the journalistic abstractions and the usage perspectives act as classifier
of the information.

In previous work we presented a derivative of the Zachman framework
called the Software Engineering Taxonomy which is suggested for the clas-
sification of software engineering information [1]. The following sections de-
scribe how the Software Engineering Taxonomy is applied to three studies: the
Usability Supporting Architecture Patterns study [2][3],the Influencing Fac-
tors method study [4], and the Sustainable Industrial Software Systems study
[5].

F.2 Software Engineering Taxonomy

In a joint article [6], published 1992, Sowa and Zachman explain that the Zach-
man framework links the concrete things in the world (entities, processes, lo-
cations, people, times and purposes) to the abstract bits inthe computer. The
Zachman framework is not a replacement of programming tools, techniques, or
methodologies but instead, it provides a way of viewing the system from many
different perspectives and how they are all related. The framework logic can be
used for describing virtually anything considering its history of development.

174 Paper F

The logic was initially perceived by observing the design and construction of
buildings. Later it was validated by observing the engineering and manufac-
ture of airplanes. Subsequently, it was applied to enterprises during which the
initial material on the framework was published [7][8][9].Sowa and Zachman
write:

Most programming tools and techniques focus on one aspect ora
few related aspects of a system. The details of the aspect they se-
lect are shown in utmost clarity, but other details may be obscured
or forgotten. By concentrating on one aspect, each technique loses
sight of the overall information system and how it relates tothe
enterprise and its surrounding environment. The purpose ofthe
Information System Architecture framework is to show how every-
thing fits together. It is a taxonomy with 30 boxes or cells orga-
nized into six columns and five rows. Instead of replacing other
techniques, it shows how they fit in the overall scheme.

According to Zachman, “Architecture” is the set of descriptive representa-
tions relevant for describing a complex object (actually, any object) such that
the instance of the object can be created and such that the descriptive represen-
tations serve as the baseline for changing an object instance.

The columns of the framework represent different abstractions from, or
different ways to describe, information of the complex object. The reason for
isolating one variable (abstraction) while suppressing all others is to contain
the complexity of the design problem. Abstractions classifying the description
focus are:

Inventory Sets - Describes “What” information is used

Process Transformations- Describes “How” the information is used

Network Nodes - Describes “Where” the information is used

Organization Groups - Describes “Who” is using the information

Timing Periods - Describes “When” the information is used

Motivation Reasons - Describes “Why” the information is used

The rows of the framework represent “Perspectives” classifying the de-
scription usage. The perspectives are:

Software Engineering Taxonomy 175

Abstraction INVENTORY
SETS

(WHAT)

PROCESS
TRANSFORMATIONS

(HOW)

NETWORK
NODES

(WHERE)

ORGANIZATION
GROUPS
(WHO)

TIMING
PERIODS
(WHEN)

MOTIVATION
REASONS

(WHY)Perspective

SCOPE
CONTEXTS
(Strategists)

e.g. Inventory
Types

e.g. Process Types e.g. Network
Types

e.g. Organization
Types

e.g. Timing
Types

e.g. Motivation
Types

BUSINESS
CONCEPTS
(Executive
Leaders)

e.g. Business
Entities &
Relationships

e.g. Business
Transform & Input

e.g. Business
Locations &
Connections

e.g. Business
Role & Work

e.g. Business
Cycle &
Moment

e.g. Business
End & Means

SYSTEM
LOGIC
(Architects)

e.g. System
Entities &
Relationships

e.g. System
Transform & Input

e.g. System
Locations &
Connections

e.g. System
Role & Work

e.g. System
Cycle &
Moment

e.g. System
End & Means

TECHNOLOGY
PHYSICS
(Engineers)

e.g.
Technology
Entities &
Relationships

e.g. Technology
Transform & Input

e.g.
Technology
Locations &
Connections

e.g. Technology
Role & Work

e.g.
Technology
Cycle &
Moment

e.g. Technology
End & Means

COMPONENT
ASSEMBLIES
(Technicians)

e.g.
Component
Entities &
Relationships

e.g. Component
Transform & Input

e.g.
Component
Locations &
Connections

e.g. Component
Role & Work

e.g.
Component
Cycle &
Moment

e.g. Component
End & Means

Figure 1: The Zachman Framework

Scope Contexts- perspective descriptions corresponds to an executive sum-
mary for a planner or investor who wants an estimate of the scope of the
system, what it would cost, and how it would perform.

Business Concepts- perspective is the perspective of the owner, who will
have to live with the constructed object (system) in the daily routines
of business. This perspective descriptions correspond to the enterprise
(business) model, which constitutes the design of the business and shows
the business entities and processes and how they interact.

System Logic - perspective is the designer’s perspective. The System Logic
perspective descriptions correspond to the system model designed by a
systems analyst who must determine the data elements and functions that
represent business entities and processes.

Technology Physics- perspective descriptions correspond to the technology
model, which must adapt the system model to the details of theprogram-
ming languages, I/O devices, or other technology. This is the perspective

176 Paper F

where the four views of the “4+1” model by Kruchten [10] can beused
to describe software architecture.

Component Assemblies- perspective descriptions correspond to the detailed
specifications that are given to programmers who code individual mod-
ules without being concerned with the overall context or structure of the
system.

The relevant descriptive representations would necessarily have to include
all the intersections between the Abstractions and the Perspectives (Figure 1).
“Architecture” would be the total set of descriptive representations (models)
relevant for describing the complex object and required to serve as a baseline
for changing the complex object once it is described. Zachman’s complex
object is the enterprise, but principally he states that thecomplex object can
be any object.

The Zachman framework is a structure, not a methodology for creating
the implementation of the object. The Zachman Framework does not imply
anything about how architecture is done (top-down, bottom-up, etc). The level
of detail is a function of a cell not a function of a column. Thelevel of detail
needed to describe the Technology Physics perspective may be naturally high
but it does not imply that the level of detail of the Scope Contexts descriptions
should be lower or the opposite.

The framework is normalized, that is adding another row or column to the
framework would introduce redundancies or discontinuities. Composite mod-
els and process composites are needed for implementation. Acomposite model
is one model that is comprised of elements from more than one framework
model. For architected implementations, composite modelsmust be created
from primitive models and diagonal composites from horizontally and verti-
cally integrated primitives. The structural reason for excluding diagonal rela-
tionships is that the cellular relationships are transitive. Changing a model may
impact the model above and below in the same column and any model in the
same row.

The rules of the framework are [8]:

Rule 1: Do not add rows or columns to the framework

Rule 2: Each column has a simple generic model

Rule 3: Each cell model specializes its column’s generic model

Rule 3 Corollary: Level of detail is a function of a cell, not acolumn

Software Engineering Taxonomy 177

Rule 4: No meta concept can be classified into more than one cell

Rule 5: Do not create diagonal relationships between cells

Rule 6: Do not change the names of the rows or columns

Rule 7: The logic is generic, recursive

The model, i.e. the view, in the Zachman framework can be aligned with
the ISO/IEC 42010:2007 viewpoints [11]:

An organization desiring to produce an architecture framework for
a particular domain can do so by specifying a set of viewpoints
and making the selection of those viewpoints normative for any
Architectural Description claiming conformance to the domain-
specific architectural framework. It is hoped that existingarchitec-
tural frameworks, such as the ISO Reference Model for Open Dis-
tributed Processing (RM-ODP) [12], the Enterprise Architecture
Framework of Zachman [7], and the approach of Bass, Clements,
and Kazman [13] can be aligned with the standard in this manner.

Zachman’s framework does not describe what language to use for the model
descriptions or how to do the actual modeling for each cell. Therefore each
view of the Zachman’s framework is free to use the viewpoint selected by the
responsible of the description. It should therefore be possible to use the view-
points from the ISO/IEC 42010:2007 to describe a model, i.e.a view, within
the framework.

For manufacturing a process composite would be necessary. The process
composite describes the working process of creating the model descriptions of
the composite model, typically ending with the descriptions of the components
in the Component Assemblies perspective, e.g. a service or framework. A third
dimension of the framework, called science, has been proposed by O’Rourke
et al. [14]. This extension is known as the Zachman DNA (DepthiNtegrating
Architecture). In addition to the perspectives and aspectsthe z-axis is used for
classifying the practices and activities used for producing all the cell represen-
tations.

In order to be able to use the Zachman framework for software engineering
artifacts, two basic assumptions were done:

1. The software engineering classification framework, derived from the Zach-
man framework, describes the software system’s development organiza-
tion and the customer’s scope and business related to the need of system
support.

178 Paper F

System Customer(s)’s
Business Concepts

[Customer(s)’s: system related
production activities, system related

production team locations and
connections, system related production

roles and work products, system
related production schedules, system

related production strategy …]

Software Development
Organization(s)’s
Business Concepts

[Software Development
Organization(s)’s: software

development activities,
software development team locations

and connections, software
development roles and work products,

software development schedules,
software development strategy …]

System Logic
[e.g. Requirements, System activity diagram, System domain

model, System State chart…]

Technology Physics
[e.g. Class entities, Timing entities, Design rules]

Component Assemblies
[e.g. Code, Frameworks, Languages, Detailed rules]

Customer(s)’s
perspectives

Software Development Organization(s)’s
perspectives

Figure 2: The Customer’s and the Software Development Organization’s per-
spectives

2. The software engineering classification framework, derived from the Zach-
man framework, is three-dimensional where site is the thirddimension.
The site might be the software development organization, external de-
velopment organization or the customer’s enterprise as long as the site
has a part in the system usage or system development.

The assumptions are illustrated in Figure 2. With these assumptions, the
system development’s Business Concepts perspective will describe the soft-
ware development artifacts, e.g. software development activities, software de-
velopment team locations and connections, software development roles and
work products, software development schedules, and software development
strategies. The models in the customer’s Business Conceptsperspective will
describe the customer’s production related to the need of system support. The

Software Engineering Taxonomy and System Sustainability 179

resulting software engineering classification framework is called the Software
Engineering Taxonomy.

F.3 Software Engineering Taxonomy and System
Sustainability

In previous work [5], the presented sustainable industrialsoftware systems the-
ory introduces some insights into the importance of time dynamics for the sus-
tainability of industrial software systems. The time dynamics is discussed not
only for technology factors but also for organizational andbusiness related fac-
tors, which are enterprise architecture factors. Change ofbusiness goals and
their co-existence with changes in organization and marketenvironments are
also discussed leading to a deeper exploration of a broader spectrum of the
enterprise architecture and its relation to system- and software architecture.
The case study’s units of analysis were companies with the following software
development characteristics:

• The company’s software development involved at least 20 developers

• The company had software systems with a life-time of 10 yearsor more

• The company developed industrial automation applications.

From May 2008 through December 2008, three automation system com-
panies with these characteristics were visited. Three roles were interviewed
at each company: senior software developer, senior software architect, and se-
nior product manager. The same questions, based on the sustainable industrial
software systems theory, were asked to all of the nine interviewees. Struc-
tured individual interviews were conducted, which were approximately three
hours long, on site. Participants were guaranteed anonymity, and the infor-
mation reported was sanitized so that no individual person or company could
be identified. The questions were open-ended and allowed participants to for-
mulate answers in their own terms. The preliminary case study findings were
presented to the participating companies and additional companies in an archi-
tecture day workshop where software architects and management were invited
to discuss the findings.

180 Paper F

F.3.1 Sustainable Industrial Software System Development

Pollan has defined an unsustainable system simply as “a practice or process that
can’t go on indefinitely because it is destroying the very conditions on which it
depends”[15]. Unruh has argued that numerous barriers to sustainability arise
because today’s technological systems were designed and built for permanence
and reliability, not change [16].

“A global agenda for change” - was what Gro Harem Brundtland,as the
chairman of the World Commission on Environment and Development, was
asked to formulate in 1987 [17]. As a result, the Brundtland commission de-
fined sustainable development as:

Sustainable development is development that meets the needs of
the present without compromising the ability of future generations
to meet their own needs. It contains within it two key concepts:
the concept of “needs”, in particular the essential needs ofthe
world’s poor, to which overriding priority should be given;and
the idea of limitations imposed by the state of technology and so-
cial organization on the environment’s ability to meet present and
future needs.

In [18], Dyllick and Hockerts transpose the definition to thebusiness level:

Corporate sustainability is meeting the needs of a firm’s direct and
indirect stakeholders (such as shareholders, employees, clients,
pressure groups, communities etc), without compromising its abil-
ity to meet the needs of future stakeholders as well.

Following the reasoning of the Brundtland commission [17] and Dyllick
and Hockerts [18], sustainable industrial software development would be de-
fined as:

Sustainable industrial software development meets the needs of
the software development organization’s direct and indirect stake-
holders (such as shareholders, employees, customers, engineers
etc), without compromising the organization’s ability to meet its
future stakeholders’ needs as well.

In this report, the term “corporate sustainability” is usedwhen the work
referred to uses the term. Otherwise the term “sustainable development” is
used.

Software Engineering Taxonomy and System Sustainability 181

Economic
Sustainability

Environmental
Sustainability

Social
Sustainability

Figure 3: Three dimensions of corporate sustainability

Three dimensions of corporate sustainability is outlined by Dyllick and
Hockerts: environmental sustainability, economic sustainability, and social
sustainability, the “triple-bottom-line” in Figure 3. Dyllick and Hockerts con-
clude that a single-minded focus on economic sustainability can succeed in the
short-run; however, in the long-run sustainability requires all three dimensions
to be satisfied simultaneously.

Sustainable development of industrial software systems isa true challenge
due to changes in concerns originating from: new technology, new stakeholder
needs, new organizations, and new business goals during decades. It’s chal-
lenging since it has not been researched for industrial software systems and
the domain need an understanding of the success-critical concerns related to
the achievement of sustainable development of systems as the complexity of
organizations, processes, and architectures increase.

Organizational complexity involves many success-critical stakeholders, of-
ten located all over the world, who have to reach a consensus around the most
important business goals for the system now and in the next future. Sustain-
able systems have the built-in legacy heritage and have to consider the present
software architecture and design when introducing new business goals. Stake-
holders, including the architects, need an understanding of how the organiza-
tion’s business goals affect architectural qualities and vice versa. For example,
industrial software systems are often affected by company mergers and acqui-
sitions, where two or more systems have to be consolidated into one system
or the systems have to share a core part. The effect of such decision on soft-
ware quality is hard to overlook. Sustainability is therefore related not only to
software structures and their interactions but also to the system’s environment

182 Paper F

in terms of the enterprise aspects as organization, business, tactics and scope.
Enterprise aspects have not been put in relation to softwarearchitecture and
implementation for industrial software systems in an explicit way earlier. As
organizational complexity grows when the systems are distributed developed,
the impact of the enterprise aspects on the software system is significant.

F.3.2 Case Study Questions and Propositions

The theory presented in paper [5] was the base for the the planning of a case
study intended to investigate the definition of a sustainable industrial software
system and the sustainability success-factors of three companies developing
sustainable industrial software systems. The case study design followed the
proposed design by Yin [19]. The quality of the case study wastested by the
four tests suggested by Yin:

Construct Validity:The case study’s units of analysis were companies that:
involved at least 20 developers; had software systems with alife-time
of 10 years or more; and developed industrial automation applications.
From May 2008 through December 2008, three automation system com-
panies with these characteristics were visited. Three roles were inter-
viewed at each company: senior software developer, senior software ar-
chitect, and senior product manager. The same questions based on the
theory in PaperB were asked to all of the nine interviewees.

Internal Validity: Not applicable since the case study is not a explanatory or
causal case study.

External Validity: The domain to which the case study findings can be gen-
eralized is the domain of long-lived industrial software systems. The
case study’s three units of analysis were companies that: involved at
least 20 developers; had software systems with a life-time of 10 years
or more; and developed industrial automation applications. Compari-
son of the findings has been made with the theory proposed by Curtis
et al. [20][21]. Curtis et al. conducted an extensive field study involv-
ing 19 projects in the domain of large complex software systems ranging
from aerospace contractors to computer manufacturers withreal-time,
distributed, or embedded applications. To further strengthen the exter-
nal validity the case study interview should be conducted with e.g. au-
tomotive companies also developing large complex long-lived software
systems.

Software Engineering Taxonomy and System Sustainability 183

Reliability: Structured individual interviews were conducted which were ap-
proximately three hours long on the interviewee’s site. Participants were
guaranteed anonymity and the information reported has beensanitized
so that no individual person or company can be identified. Thequestions
were open-ended and allowed participants to formulate answers in their
own terms. One person had the lead as questioner in each interview and
one person had the responsibility for taking notes. After the interview
the person who had the lead responsibility for taking notes wrote the
interview protocol and sent it to the other person for review. Then the
lead responsible for taking notes revised the protocol and as a last vali-
dation sent the protocol to the interviewee for review. The preliminary
case study findings were presented to the participating companies and
additional companies in an architecture day workshop wheresoftware
architects and management were invited to discuss the findings.

The case study propositions were:

1. We believe sustainable systems can control the development cost

2. We believe the customers expect the system to be long-lived

3. We believe that offering a sustainable system is a market advantage

4. We believe that sustainable systems must cope with changein organi-
zations, technology, business goals, and stakeholders’ concerns, without
losing control over its cost, quality and schedule output

5. We believe sustainable systems will have an organizationwith a high
communication interaction

6. We believe that organizations that manage sustainable systems will have
an organization with clearly defined roles and clear hand-over of infor-
mation

7. We believe that organizations that manage sustainable systems will plan
for changes by forward feeding them upon detection into the planning of
next major steps of the system

8. We believe that organization that manage sustainable systems will have
stated long-term business goals communicated to the entireorganization.

9. We believe that major organizational changes are the mostdifficult changes
for a sustainable system

184 Paper F

10. We believe sustainable systems can do major architectural changes with-
out the customers noticing any major changes to the product.For in-
stance, migrating to a product-line architecture without changing the
essences of the product

11. We believe sustainable systems have high-frequent control over devel-
opment progress in between release dates

The case study questions were formulated in a way that the answers could
provide data to verify or reject the propositions. The case study’s question
“What is system sustainability to you?” was asked to all of the interviewees
to let them define the concept of a sustainable industrial software system. By
doing so, the interviewees could relate to their own definition when answering
the rest of the questions regarding system sustainability.

F.3.3 Classification of Case Study Data

Concerns related to sustainability were extracted from theanswers. When do-
ing so, sustainability concerns were extracted which the interviewees thought
they had met in a good way. Additionally sustainability concerns were ex-
tracted which the interviewees wanted to meet in a better waybecause they be-
lieved meeting these concerns would improve the sustainability of the system.
The resulting concerns were mapped in the Software Engineering Taxonomy
with the Scope and Business perspectives being the perspectives of the system
development organization. The result of the mapping of the collected data in
the Software Engineering taxonomy is shown in Figure 4.

F.3.4 Analysis of Classified Case Study Data

The product managers had exhaustive answers around concerns with Scope
Contexts- and Business Concepts perspectives. Surprisingly, the senior de-
velopers and the architects did not have the corresponding exhaustive answers
around concerns with System Logic- and Technology Physics perspective. This
could very well relate to the reported unclear developer role- and architect role
descriptions. Further the answers described how the developers and architects
did not have documented software architecture, defined software architecture
or an architecture design process. The developers and architects, according to
the interview answers, simply lack many of the model descriptions from the
System Logic perspective and the Technology Physics perspective.

Software Engineering Taxonomy and System Sustainability 185

Abstraction Inventory
Sets

(WHAT)

Process
Transformations

(HOW)

Network
Nodes

(WHERE)

Organization
Groups
(WHO)

Timing
Periods

(WHEN)

Motivation
Reasons
(WHY)Development

Perspective

Scope
Contexts

Well-known
sustainable key
competences

Well-known key
stakeholders; Well
documented system
knowledge;
Sustainable HMI
technology;
Documented role
descriptions

Flexible Project
Management
Process;
Flexible in-house
software
development
process;
Formal technology
evaluation process;
Formal
architecture
evaluation process

Comply with
standardization
organizations
and federal
agencies

Minimal target
market
competition;

Sustainable 3d-
party software;
Sustainable HMI
technology vendors;
Sustainable
development
organization groups

Keep track of
competitors’
releases

Sustainable
revenue
strategy;
Sustainable
target markets;

Open and
communicative
organization
culture

Business
Concepts

Short-term based
decisions balanced
with long-term
considerations;
Feature-driven and
quality-driven ROI;
Maintenance cost
separated from
development cost;
Globally applicable
development KPIs;
Objective time-
prediction algorithm
for development
projects

Excellent
technology
scouting;
Few customer-
tailored projects;
Quality
improvement
projects balanced
with development
projects;
Keep close contact
with target market
customers;
Analyze target
market needs for
new technology

High-frequent
communication
between 3d
party product
supplier and
development
organization

High-frequent
communication
between Product
Management
and architects;
High-frequent
communication
between

Long system
life cycle

Release cycle,
in balance with
customer-
desired system
update-rate;
High-frequent
project follow-
up cycles

Strategy for
keeping
sustainable key-
competences;

Cultural
boundaries
communication
strategy;
Well-
communicated
system-related
customer goals
and development
goals

new technology between
distributed
development
teams;

System
Logic

Don’t mimic
organizational
groups’ interfaces
when designing
system
components’
interfaces;
Minimum of
complexity in
architecture

Reliability;

Usability;

Maintainability;
Portability;
Modifiability;
Scalability,
Understandable
requirements

Technology
Physics

Isolated Business Logic

Sustainable HMI
technology
components

Sustainable
Business Logic
supporting
sustainable
customer business
processes

Stable system
interoperation
interfaces,

Low-frequent
changing HMI

Component
Assemblies

Re-usable components Standardized
communication
protocols

Figure 4: The Enterprise-wide concerns related to corporate sustainability: The
check signs indicate that the concerns are met by the companies; The warning
signs indicate that the companies want to meet the concerns in a better way

186 Paper F

Even if the term software engineering was coined as early as in the 1968
NATO Software Engineering Conference [22] and Dijkstra described software
structures the same year [23], the usage of software engineering and software
architecture concepts and tools in the domain of industrialsoftware systems is
low.

Basili and Musa write that“. . . we must isolate and categorize the compo-
nents of the software engineering discipline, define notations for representing
them and specify the interrelationships among them as they are manipulated”
[24]. Jackson claims that:“. . . there will never be software engineering. As
these specializations flourish (e.g. compiler engineering, operating systems
[author’s remark]) they leave software engineering behind. . . A professor of
software engineering must, by definition, be a professor of unsolved problems”
[25]. There is an unclear definition of what software engineering is and what
the important components of the software engineering discipline are. Industrial
software system organizations lack clear guidance on what kind of descriptions
would give the best return of investment in their domain. Onequestions asked
in the case study was “What is a major architectural change?”to let the in-
terviewees describe their perception of architecture and changes to it. The
answers varied from the question being an philosophical question to an archi-
tectural rule change. But no two persons’ answers were the same.

According to Garlan and Shaw [26], the definition of softwarearchitecture
is:

software architecture involves the description of elements from
which systems are built, interactions among those elements, pat-
terns that guide their composition, and constraints on these pat-
terns

In [13], Bass et al. define software architecture as:

The software architecture of a program or computing system is
the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and
the relationships among them.

According to Gacek et al. [27], a software system architecture comprises:

• A collection of software and system components, connections, and con-
straints.

• A collection of system stakeholders’ need statements.

Software Engineering Taxonomy and System Sustainability 187

• A rationale which demonstrates that the components, connections, and
constraints define a system that, if implemented, would satisfy the col-
lection of system stakeholders’ need statements.

Johnson has investigated the definitions of software architecture to find a
general consensus among the definitions [28]. But Johnson resorts to conclude
that “It is not generally agreed upon what a component or entity is, it is not
generally agreed upon what a structure is, or even if it is to be called structure,
and it is not generally agreed upon what else comprises software architecture”.

Considering Johnson’s conclusion, the question is how the differences in
agreement upon what comprises software architecture affect a not risk-willing
industry’s adaptation of software architecture’s concepts. When each indus-
try or application area has to define its own understanding ofthe meaning of
software architecture, it might lead to that traditional software-intensive do-
mains take a lead in the adaptation of software architectureconcepts and the
non-traditional software-intensive domains have a long way to go to reach the
same software quality maturity. If software quality maturity affects the sus-
tainability of the software system, this is a serious issue without an obvious
solution. Each software application domain can hardly define its own software
engineering research discipline as Jackson discusses [25].

The case study questions were analyzed to find out if something had been
missed that would have scattered some light on the absent software architecture
concerns. However, the interview contained several questions related to the re-
lation between architecture and technology for system sustainability. It seems
like the case study’s findings confirm Curtis’s reasoning. Curtis writes that the
software production efficiency is not a function of only software engineering
methods and quality thinking but to a larger extent a function of organizational
issues such as behavior and communication [21].

Additionally one could speculate in if the lack of model descriptions from
these perspectives in itself is a sustainability concern. According to the inter-
view answers this is the case. The lack of system documentation is mentioned
by all roles at all companies as a hinder for corporate sustainability. One con-
clusion could be that in order to get the software engineering process artifacts,
e.g. architecture descriptions, in place the companies must get the organiza-
tional artifacts, e.g. role descriptions and communication, in place first. Cur-
tis’s study and the System Sustainability case study point toward a possible
conclusion that a working software development organization, with model de-
scriptions from the Business Concepts perspective in place, is a prerequisite
for software engineering tools and methods to have a significant impact on

188 Paper F

productivity and sustainability.
In [29], Malveau and Mowray suggest a Software Design-LevelModel

(SDLM):

The Software Design-Level Model (SDLM) builds upon the fractal
model. This model has two major categories of scales: Micro-
Design and Macro-Design. The Micro-Design levels include the
more finely grained design issues from application (subsystem)
level down to the design of objects and classes. The Macro-Design
levels include system-level architecture, enterprise architecture,
and global systems (denoting multiple enterprises and the Inter-
net). The Micro-Design levels are those most familiar to develop-
ers. At Micro-Design levels, the key concerns are the provision of
functionality and the optimization of performance. At the Macro-
Design levels, the chief concerns lean more toward management
of complexity and change. These design forces are present atfiner
grains, but are not nearly of the same importance as they are at
the Macro-Design levels.

Using the concepts of the Software Design-Level Model, the collected in-
terview data suggest that the interviewees have a vast majority of sustainabil-
ity concerns at the Macro-Design level, described in the Software Engineering
Taxonomy’s Scope Contexts perspective and in the Business Concepts perspec-
tive. Management of complexity and change are tightly coupled to sustainabil-
ity concerns [5].

In the Pasteur research project at Bell Labs [30], Coplien etal. investigated
organizational structures. Coplien’s organizational studies found two organi-
zational patterns:

• Architecture Follows Organization, a restatement of Conway’s Law [31].

• Organization Follows Location, no matter what the organizational chart
says.

A discussion related to Coplien’s first organizational pattern with one archi-
tect in the Sustainable Industrial Software System case study was about what
was the best alternative; to let the organization decide thearchitecture or to let
the architecture decide the organization.

Cain et al. have described additional organization patterns [32]. Their con-
clusion is that: “If there is one consistent measure of successful organization,
it is how well its members maintain relationships through communication”.

Software Engineering Taxonomy and System Sustainability 189

Dikel et al. developed organizational principles in an effort to predict the
success or failure of software architectures for large telecommunications sys-
tems [33]. In the reported case study [33], they realized that technical factors,
do not by themselves explain the success of a product-line architecture and that
only in conjunction with appropriate organizational behaviors can software ar-
chitecture effectively control project complexity. The view of the software
architecture as a control instance working correctly only if the organizational
parameters are set correctly led Dikel et al. to reflect on thelaw developed by
Ashby [34], thelaw of requisite variety, which suggests that a system should
be as complex as its environment:

. . . in active regulation only variety can destroy variety. It leads
to the somewhat counterintuitive observation that the regulator
must have a sufficiently large variety of actions in order to ensure
a sufficiently small variety of outcomes in the essential variables
E. This principle has important implications for practicalsitua-
tions: since the variety of perturbations a system can potentially
be confronted with is unlimited, we should always try maximize its
internal variety (or diversity), so as to be optimally prepared for
any foreseeable or unforeseeable contingency.

Dikel et al. reason around that if a software architecture becomes more
complex than its environment, it may become too expensive for the organi-
zation to support. In the book [35], Kane et al. describe 30 organizational
patterns and anti-patterns using the principles; Vision, Rhythm, Anticipation,
Partnering and Simplification (VRAPS).

If the environment would include the organizational environment as well
as the business environment then both the Micro-Design level [29] patterns
(discussed by Beck [36], Buschman [37] , Shaw [26], Gamma [38] and Fowler
[39]) as well as the Macro-Design level [29] patterns (discussed by Fowler
[39], Coplien [40] and Kane [35]) must harmonize in their complexity with the
complexity of the software architecture for a sustainable software system. For
industrial software systems, a domain model of the businessdomain along with
a measure of its complexity would be required in order to understand on what
level the software architecture complexity should be.

Many attempts of measuring software architecture complexity have been
made: Boehm et al. describe MBASE that considers architectural complexity
[41]; Halstead [42] proposes measures to predict understanding effort based
on grammatical complexity of code modules; McCabe [43] proposes a graph-
theoretic cyclomatic complexity measure etc. The questionis if, and in that

190 Paper F

case, what kind of organizational and architectural complexity measure should
be used in the law of requisite variety if it were to be appliedto software engi-
neering for the sustainability of industrial software systems.

In the following lists of the sustainability concerns, the concerns’ impor-
tance for sustainability is ranked. The ranking is done according to how many
of the interviewees mentioned the concern as important for sustainability or de-
sirable for sustainability. If four or more interviewees mentioned the concern,
then it got ranked as ***; if two or three interviewees mentioned the concern,
then it got ranked as **; and if only one interviewee mentioned the concern,
then it got ranked as *.

Concerns with Scope Contexts perspective:

1. Inventory Sets Abstraction

(a) Well-known sustainable key competences***

(b) Well-known key stakeholders*

(c) Well documented system knowledge***

(d) Sustainable Human Machine Interface (HMI) technology*

(e) Documented role descriptions***

2. Process Transformations abstraction

(a) Formal in-house software development process*

(b) Formal technology evaluation process***

(c) Formal architecture evaluation Process***

3. Network Nodes Abstraction

(a) Comply with standardization organizations and federalagencies***

4. Organization Groups abstraction

(a) Sustainable standards***

(b) Sustainable 3d party software***

(c) Sustainable HMI technology vendors*

(d) Sustainable development organization groups***

5. Motivation Reasons abstraction

Software Engineering Taxonomy and System Sustainability 191

(a) Sustainable revenue strategy*

(b) Sustainable target markets in need of sustainable systems***

(c) Open and communicative organization culture***

It’s striking that so many concerns with a Scope Contexts perspective are
seen as having high importance for corporate sustainability. Not all of these
concerns are targets for traditional software engineeringbut many of them ac-
tually are, such as: stakeholders, documented system knowledge, software de-
velopment process, and architecture evaluation process. Other concerns are
dealt with within the field of organizational theory: key competences, role de-
scriptions, project management process, development organization groups, and
organization culture. Some are related to the field of economics: revenue strat-
egy, target markets. Some concerns are related to technology: HMI technology,
technology evaluation process, 3d party software, HMI technology vendors and
standardization organizations. Compliance with federal agencies’ regulations
processes may be a cross-cutting concern.

Concerns with Business Concepts perspective:

1. Inventory Sets abstraction

(a) Short-term and long-term gain in balance in cost-benefitanaly-
sis***

(b) Feature-driven and quality-driven Return Of Investment calcula-
tion***

(c) Maintenance-phase cost separated from design-phase cost**

(d) Globally applicable development Key Performance Indicators (KPIs)**

(e) Objective time-prediction of software development tasks***

2. Process Transformations abstraction

(a) Excellent technology scouting***

(b) Few customer-tailored architectural changes***

(c) Quality improvement projects balanced with feature development
projects***

(d) High-frequent communication between target market customers and
product managers***

(e) Analysis of target market need of new technology***

192 Paper F

3. Network Nodes abstraction

(a) High-frequent communication between 3d party product supplier
and development organization***

(b) High-frequent communication between product management and
architects***

(c) High-frequent communication between distributed development teams***

4. Organization Groups abstraction

5. Timing Periods

(a) Long system life cycle***

(b) Release cycle in balance with customer-desired system update-rate***

(c) High-frequent project follow-up cycles*

6. Motivation Reasons abstraction

(a) Strategy for keeping sustainable key-competences***

(b) Cultural boundaries communication strategy***

(c) Well-communicated system-related customer goals and develop-
ment goals*

Sustainability concerns with a Business Concepts perspective are seen as
having high importance by all roles. The Business Concepts perspective in the
Software Engineering Taxonomy, mapping the case study data, is the business
perspective of the development organization and deals witheveryday work is-
sues for all people working in the development organization. The interviewees,
with the exception of one architect, had all worked for 10 years or more within
their current organization and in this time they had collected Business Con-
cepts concerns they see as highly important for the sustainability of the system
they develop.

The Inventory Set perspective’s mapped concerns have influences from
software engineering-, economics-, and management theory. The interviewed
product managers asked for better ways of calculating the Return Of Invest-
ment for quality-focused projects and for long-term projects. The current cal-
culations benefit feature-driven projects as well as short-term projects resulting
in developers hiding quality-improvement they see as necessary in the feature-
driven projects. This could be one reason for over-optimistic time-prediction
calculations done by the developers, since they only get approval for feature

Software Engineering Taxonomy and System Sustainability 193

implementations. However, calculating a correct development effort for a pro-
posed change request is difficult.

Curtis describe the time required for learning application-specific informa-
tion as being buried under the traditional life cycle phase structure of most
projects and unaccounted for [20]. Thus, Curtis continues,the time required to
create a design is often seriously underestimated. By including the educational
aspect into the development effort estimations, the estimation might be more
correct than today. Some of the interviewees reported on expert developers
making better estimations than non-expert developers. Theexpert developer
had long-time experience of the system and probably of the application do-
main of the customers as well. These expert developers hencewould need less
education effort than the others, contributing to making their time-estimates
more correct.

None of the interviewees had a clear picture of how they measured schedule
alignment and development efficiency. The Key Performance Indicators (KPIs)
mentioned was the number of System Problem Reports related to quality-in-
use. The SPRs are reported by customers and testers. The product managers
said they would like to see a globally applicable KPIs that measures develop-
ment performance in distributed development teams. Separating maintenance
cost from design cost would be a prerequisite for the use of a globally appli-
cable KPI since maintenance and design have different characteristics. Ac-
cording to the IEEE 610.12-90 definition [44], adopted by theIEEE Software
Engineering Book Of Knowledge (SWEBOK) [45], design is both“the process
of defining the architecture, components, interfaces, and other characteristics
of a system or component” and “the result of [that] process”.SWEBOK de-
scribes software maintenance as “Once in operation, anomalies are uncovered,
operating environments change, and new user requirements surface. The main-
tenance phase of the life cycle commences upon delivery”.

Globally applicable KPI could be based on the categories of identified in-
formation needs in the development organization suggestedby Antolic [46]:
Schedule and Progress; Resources and Cost; Product Size andStability; Prod-
uct Quality; Process Performance; Technology Effectiveness; Customer Satis-
faction. The KPIs could also be based on the complexity measures discussed
in: Boehm et al. [41], Halstead [42] or McCabe [43].

The customer-specific architectural change projects were asustainability
concern voiced by all developers and architects. This confirms the top-two
finding, in Curtis’s study, related to fluctuating requirements as a hinder for
software development productivity [21]. One architect in the Curtis’s study
said:

194 Paper F

Software architect: The whole software architecture, to begin with,
was designed around one customer that was going to buy a couple
of thousand of these. And it was not really designed around the . . . ,
marketplace at all . . . Another . . . , customer had another need, so
we’re, trying to rearrange the software to take care of thesetwo
customers. And when the third one comes along, we do the same
thing. And when the fourth one comes along, we do the same thing.

A similar statement was voiced by some of the interviewed developers and
architects. This does not necessarily have to be a bad thing if the software
system is designed to have configuration possibilities for tailoring the system
for a specific customer. But for the system to be designed thisway, the target
marketplace most important business processes have to be known and the sys-
tem designed around these. Coplien has suggested the domainanalysis as one
way of finding commonalities for a system’s target market [47]. This relates
to the sustainability concern findings: “Keep close contactwith target market
customers” and “Analyze target market needs for new technology”.

Concerns with System Logic perspective:

1. Process Transformations abstraction

(a) Don’t mimic organizational groups’ interfaces when designing sys-
tem components’ interfaces*

(b) Minimum of complexity in architecture**

2. Motivation Reasons abstraction

(a) Reliability***

(b) Usability***

(c) Maintainability***

(d) Portability**

(e) Modifiability**

(f) Scalability**

(g) Understandable requirements**

Maintainability of the system is crucial for customers and developers. Since
the system is an expensive long-term investment for both developer and cus-
tomer, the maintenance phase is very long ranging from ten tothirty years.

Software Engineering Taxonomy and System Sustainability 195

Portability, modifiability, scalability and maintainability are seen as impor-
tant qualities to achieve. At the same time these qualities are concerns that the
companies in the study have difficulties to implement in their systems. Porta-
bility, modifiability, scalability and development maintainability are not ob-
servable in runtime and are quality concerns that the development organization
have. The customers’ concerns are related to run-time observable qualities as
reliability, usability and maintainability in form of e.g.on-the-fly upgrades
and easy integration of inter operating systems. The reliability quality is seen
as achieved by the case study’s participating companies’ interviewees. The de-
velopment organization’s quality concerns not observablein runtime are seen
as not fully achieved.

Concerns with Technology Physics perspective:

1. Inventory Sets abstraction

(a) Isolated Business Logic***

(b) Sustainable Human Machine Interface (HMI) technology compo-
nents*

2. Process Transformations abstraction

(a) Sustainable Business Logic supporting sustainable customer busi-
ness processes***

3. Network Nodes abstraction

(a) Stable system inter-operation interfaces***

4. Organization Groups

(a) Low-frequent changing HMI*

In the interviews, the importance of isolating the core business logic from
frequent change impact was mentioned several times. The core business logic
is a market differentiator and sustainable since it supports the customer process
needs that are sustainable. Since these sustainable needs of the customers do
not change over decades, the business logic handling these needs is especially
important to identify, master and isolate.

The “Stable system inter-operation interfaces” concern was identified as
growing in importance due to the growing requirement on interoperability in-
ternally at the customer location through intranets and theInternet.

196 Paper F

All of the interviews testified that the Human Machine Interface was the
part of the system with the most frequent changes. Only one interviewee ex-
pressed a desire for sustainable HMI components which couldsupport easy
updates to the HMI. This was a bit surprising. If the HMI is thesubsystem
with the most frequent changes then the concern would logically be to find
HMI technology that is sustainable in order for the frequentchanges to be
less challenging. Relating to the Usability-Supporting Architecture Patterns
study of the interplay between usability and software architecture, isolating the
user interface logic is not enough to achieve a usable system[2][3]. Architec-
tural changes are necessary in order to support aspects of usability. Frequent
changes to the user interface would hence correlate to some changes in the ar-
chitecture in order to get the desired behavior of the user’sinteraction with the
system. Architectural changes are expensive since an architectural change in a
complex legacy system has a series of consequences for the system. The aware-
ness of the interplay between usability and software architecture is however
low in the software engineering community. In the IEEE Software Engineer-
ing Body Of Knowledge (SWEBOK) published 2004 [45], the wordusability
is mentioned six times but SWEBOK refers to the software ergonomics disci-
pline for how to work with usability. Rozanski and Woods suggest the isolation
of user interface logic as the only usability tactic, in contrast to their thorough
descriptions of ten security tactics [48].

Concerns with Components Assemblies perspective:

1. Inventory Sets abstraction

(a) Re-usable components*

2. Network Nodes abstraction

(a) Standardized communication protocols***

The issue with re-usable components was a concern for only one of the
interviewees. In [49], Jacobson et al. discuss the reuse of components and
say that reuse is hard because the following factors have to be interwoven and
mastered:

• Vision

• Architecture

• Organization and the management of it

Software Engineering Taxonomy and System Sustainability 197

• Financing

• Software engineering process

According to the analysis of data in this case study, there seems to be a
lack of long-term quality investments possibly due to the KPI numbers and
NPV calculations favoring short-term investments. Only one interviewee saw
re-usable components as important for sustainability and this could be due to
the difficulty of integrating the re-usability factors, listed by Jacobson, in the
software development organization. Another reason might be the lack of soft-
ware engineering insights among the system’s management asdiscussed in
Section F.4. If the management do not involve themselves into the software
architecture tactics for how to address maintainability and modifiability con-
cerns, which typically result in long-term investments, the projects with this
type of agenda suggested by architects and developers have less chance of be-
ing approved and prioritized.

In [18], Dyllick and Hockerts describe the non-balance of short-term needs
and long-term needs when setting business goals as:

In recent years, driven by the stock market, firms have tendedto
overemphasize short-term gains by concentrating more on quar-
terly results than the foundation for long-term success. Such an
obsession with short-term profits is contrary to the spirit of sus-
tainability, which requires a balance between long-term and short-
term needs, so as to ensure the ability of the firm to meet the needs
of its stakeholders in the future as well as today.

Case Study Propositions versus analyzed Data

The status of the propositions in relation to the analyzed collected data is:

1. We believe sustainable systems can control the development cost

(a) This proposition was not verified nor rejected. The interviewed per-
sons were not the ones who controlled the development cost. The
case study should have included line managers and project leaders
to test this proposition.

2. We believe the customers expect the system to be long-lived

198 Paper F

(a) This proposition is verified. Sustainable system customers do not
want unnecessary updates to the system for long time periods, typ-
ically 2-3 years. A replacement of the system is accepted with a
time-period of typically 10-30 years.

3. We believe offering a sustainable system is a market advantage

(a) This proposition is verified. Developing a sustainable industrial
software system is extremely expensive. Due to the cost, it’s very
difficult to get a fast Return-Of-Investment when introducing a new
system. Not many competitors are willing to take the risk. Addi-
tionally the established sustainable system has a market differen-
tiator of being reliable for long times. By being reliable for long
times, the system appeals to potential customers not willing to take
the risk of investing in a relatively new system on the market.

4. We believe sustainable systems must cope with change in organizations,
technology, business goals, and stakeholders’ concerns, without losing
control over its cost, quality and schedule output

(a) This proposition is not verified nor rejected. The interviewed per-
sons were not the ones who controlled the development cost, qual-
ity and schedule. The case study should have included line man-
agers and project leaders to test this proposition.

5. We believe sustainable systems will have an organizationwith a high
communication interaction

(a) This proposition is verified. The implicit knowledge of the well-
known sustainable key-competences is communicated frequently
through informal information channels, e.g. ad-hoc face toface
discussions.

6. We believe organizations managing sustainable systems will have an or-
ganization with clear defined roles and clear hand-over of information

(a) This proposition is rejected. The roles of the interviewed persons
were not clearly defined and no clear hand-over of information
took place. The reason why the development still worked was to
find in the implicit knowledge owned by a set of sustainable key-
competences in each company. The long work experience gave
them an implicit role as a source of information to whom others
turned for help when needed.

Software Engineering Taxonomy and System Sustainability 199

7. We believe organizations managing sustainable systems will plan for
changes by forward feeding them upon detection into the planning of
next major steps of the system

(a) This proposition is verified. When detecting major technology
changes, e.g. Visual Basic support with-drawn from Microsoft,
the organizations plan for the exchange. The planned steps were
pre-studies, architectural planning and release planning. However,
when out-sourcing development work to low-cost countries,the or-
ganization did not do any pre-studies, or set up any remote confer-
encing facilities, or gave any courses in distributed work manage-
ment. The non existent planning of the new distributed work orga-
nization was reported as the most major threat to the sustainability
of the system by all three companies in the case study.

8. We believe organizations managing sustainable systems will have stated
long-term business goals communicated to the entire organization.

(a) This proposition is rejected. No one of the intervieweescould list
the most important long-term business goals. They also did not feel
that this was a hinder for the system’s sustainability.

9. We believe major organizational changes are the most difficult changes
for a sustainable system

(a) This proposition is verified. All interviewees reportedon the dis-
tributed development organization as the largest threat tosystem
sustainability. Additionally, it was reported on the unclear de-
cision authority the development organization experienced when
controlled by more than two organizations located in different parts
of the world. The unclear decision authority often led to some kind
of consensus decision not optimizing the system but taken tobe
politically correct.

10. We believe sustainable systems can do major architectural changes with-
out the customers noticing any major changes to the product.For in-
stance, migrating to a product-line architecture without changing the
essences of the product

(a) This proposition is verified. All of the interviewees reported on the
importance of backward compatibility and the customers wanting

200 Paper F

no unnecessary production stops due to system maintenance.The
development organizations planned for architectural changes with
the requirement on backward compatibility in focus. At the same
time this requirement was perceived as one of the most difficult
to achieve causing high development costs. But all interviewees
reported that the backward compatibility was a key-market differ-
entiator and as such very important.

11. We believe sustainable systems have high-frequent control over devel-
opment progress in between release dates

(a) This proposition was neither verified nor rejected. The interviewed
persons were not the ones who controlled the development progress.
The case study should have included line managers and project
leaders to test this proposition.

Sustainable Development Dimensions

The list of success-critical concerns from the interviews are translated into sus-
tainability capital according to the three dimensions; Economical, Environ-
mental, and Social. Two of the systems support customers’ business processes’
efforts to reduce energy consumption. Considering the environmental sustain-
ability, the systems therefore help the customer to reduce the consumption of
natural energy resources. This support is listed as environmental capital. Addi-
tionally, all three companies have good reputation among customers for having
a reliable, high-quality product. The reputation is therefore added as an in-
tangible economical capital. Long market presence is one key aspect to the
sustainability of the industrial software systems. By having long market pres-
ence and a reliable system, the customers trust the system and therefore feel
that they take a smaller risk by investing in the system. The target market
of the industrial software system is sustainable itself, which make the target
market customers willing to invest in a comparably expensive system. These
customers feel that they will achieve a return-of-investment in a relative short
time compared to the lifetime of their business processes. The sustainable tar-
get market is added as tangible economical capital. Due to the high initial
development cost of the industrial software system, few competitors are en-
tering the target market since the systems are sold mainly due to long market
presence and good reputation. Newcomers have no long targetmarket presence
and have not yet built up the good reputation of being reliable for decades. The
few competitors on the target markets is also added as economical capital.

Software Engineering Taxonomy and System Sustainability 201

Figure 5 shows the distribution of sustainable developmentcapital for the
three industrial software system development organizations in the case study.
Even if many capital units are classified as economical capital and only one
unit as environmental capital, the number of capital units does not say any-
thing about their relative value to the stakeholders. It might be that the single
environmental capital unit is more worth to the system’s stakeholders than ten
of the economical capital units.

There is no balance in the dimensions, the tangible economical sustainabil-
ity is over-represented. It shows that, for individuals, working in the industrial
software system domain, it will take substantial time before the concept of
sustainable development will be natural in all of its dimensions. Creating eco-
nomical value is important for industrial systems, but the sales for two of the
systems would not be as high if the systems did not contributeto a reduction
of the natural resource consumption. The environmental sustainability is in-
teracting with the economical sustainability. The social sustainability capital
was decreased when distributed development was introducedin the companies.
Distributed development is seen as the most major threat to the sustainable de-
velopment. There are ways to make distributed development work and many
of them represent an increase in social capital by socialization. Oshri et al.
argue that, in order to achieve successful collaboration, firms should consider
investing in the development of socialization despite the constraints imposed
by global distribution [50]. The socialization efforts could be e.g. increased
communication through virtual Face to Face (F2F) meetings,kick-of meeting,
progress meetings etc.

F.3.5 Summary

Using the Software Engineering Taxonomy to classify the concerns collected
from the interviews, clarified the enterprise architectureperspectives of the
concerns, i.e. if the concern was a system architecture concern or an business
concepts concern. Most of the concerns were classified in theperspectives
where executive leaders and strategist are responsible forthe model descrip-
tions. Management of business processes, strategies, riskanalysis, external
partnerships, communication, staff, target markets etc isseen as the key to
achieve sustainable development.

The results of the sustainable industrial software systemscase study are:
a set of success-critical concerns for sustainability; 5 verified propositions, 2
rejected, and 4 still to be verified or rejected. The list of success-critical con-
cerns does not include as many architectural success-factors as expected. In

202 Paper F

Economic
Sustainability

+ Isolated business logic in system
+ Sustainable business logic that supports
sustainable customer business processes
+ Stable system inter-operation interfaces
+ Standardized communication protocols
+ Compliance with standardization
organizations and federal agencies
+ Long System life cycle
+ Release cycle in balance with customer-
desired update-rate
+ Reputation
+ Sustainable target market
+ Highly reliable system
+ Strategy for keeping sustainable key-
competences
+ Long target market presence
+ Few competitors on the target markets

- Documented role descriptions
- Sustainable 3d party software
- Sustainable standards
- Highly usable system
- Highly maintainable system
- Short-term and long-term aspects in
balance in cost-benefit analysis
- Feature and quality driven Return Of
Investment calculation
- Objective time-prediction of software
development tasks
- Excellent technology scouting
- Few customer-tailored architectural
changes
- Quality improvement projects balanced with
feature development projects
- Well documented system knowledge
- Formal technology evaluation process
- Formal architectural evaluation process
- Analysis of target market needs of new
technology

Environmental
Sustainability

Social
Sustainability

+ System contributes to reduced
consumption of natural energy
resources

+ Well-known sustainable key-competences
+ Well-known success-critical stakeholders
+ Open and communicative organization culture
+ High-frequent communication between 3d party
products' suppliers and development organization
+ High-frequent communication between target market
customers and product management
-High-frequent communication between distributed
development teams
- High-frequent communication between product
management and architects
- Sustainable development organization groups
- Cultural boundaries communication strategy

Figure 5: Three dimensions of important sustainable development capital in
the domain of Industrial Software System according to the findings. The “plus”
sign indicates that the companies felt they had the capital.The “minus” sign
indicates they felt they needed an improvement.

Software Engineering Taxonomy and System Sustainability 203

the report, it’s speculated if this is related to the lack of consensus around the
concept of software architecture. The lack of a clear software architecture def-
inition and the lack of tools and methods based on such definition might make
the industry reluctant to embrace the concept of software architecture. As long
as the software architecture concepts are not explicitly defined, employing soft-
ware architecture concepts might constitute a risk to the industrial software sys-
tem development organization. Curtis’s study [20][21], Kane’s study [35], and
the System Sustainability case study point toward a possible conclusion that
a working software development organization, with model descriptions from
the Business Concepts perspective in place, is a prerequisite for software en-
gineering tools and methods to have a significant impact on productivity and
sustainable development.

When applying the concept of sustainable development to theclassified
concerns from the interviews, which were ranked as being of high importance
to the interviewees, there was an unbalance between the economical sustain-
ability, environmental sustainability, and the social sustainability. Most of the
concerns addressed economical sustainability or ways of increasing economi-
cal sustainability. Some addressed social sustainabilitybut non addressed envi-
ronmental sustainability. In the analysis, one environmental sustainability issue
is added based on knowledge of the systems collected throughdocumentation
and experience. When the value of addressing the individualsustainability
concern is not known, it’s difficult to verify, based on the interrelationships
between sustainability dimensions, if the system development is sustainable or
not.

204 Paper F

F.4 Software Engineering Taxonomy and the IF
method

The Influencing Factors (IF) method collects concerns, extracts Influencing
Factors from the concerns, and analyzes those for their influence on business
goals and software quality attributes. The result is a business goal oriented
prioritization of software quality attributes. In [4], theInfluencing Factor is a
factor that states a motivation for possible system requirements from the stake-
holders’ perspective.

By presenting the collected effect of several concerns, e.g. in a matrix
format [4], the Influencing Factors method makes both the business goal pri-
oritization and the software quality attribute prioritization clear and therefore
guides the architectural decisions and strengthens the stakeholders consensus
around prioritized concerns. The analyzed concerns could also contribute to
a more complete requirement specification, helping the system developers un-
derstand the origins of the requirements.

Different impacts of the Influencing Factors are used to prioritize among
the Influencing Factors for two authentic cases [4]. The firstcase was per-
formed on the upgrade of a large legacy industrial software system and the sec-
ond case on the re-factoring of an existing industrial software system. The two
field study systems had a diverse set of stakeholders, such assoftware architect,
system architect, developers, testers, product management, line management,
engineers, and users. Both systems suffered from an unclearunderstanding of
what concerns were the most important. The resulting impactanalysis helped
the stakeholders prioritize among software quality attribute scenarios in the
case with the re-factored system. The prioritization included usability and led
to the Usability-Supporting Architecture Pattern study [2][3]. The other case,
with the legacy system, resulted in the stakeholders’ understanding of their
perhaps too high focus on short-term market expansion instead of a balanced
focus including long-term quality enhancements. Today this company is doing
a major investment in enhancing the maintainability of the system.

Influencing Factors from the Influencing Factors case study are here used
for additional investigation using the Software Engineering Taxonomy as a rea-
soning framework. The Influencing Factors are classified in the Software Engi-
neering Taxonomy to explore the possibility of a relation between the classified
Influencing Factors and their perspective and abstraction in the taxonomy.

Software Engineering Taxonomy and the IF method 205

F.4.1 Classification of Influencing Factors

The Influencing Factors are all classified as having the Motivation Reasons
abstraction since they describe stakeholder motivations for the usage perspec-
tives: Scope Contexts, Business Concepts and System Logic.Figure 6 shows
the classified influencing factors with business goals ownerships and quality
attribute impact. The business goal ownership states if it’s the customer or
development organization that owns the business goal, i.e.has a benefit of
achieving the goal. Indirect, the development organization has a benefit of ful-
filling the customer’s business goals. But the customer business goal would not
be addressed by the development organization if the customer had not voiced
the goal or concern related to the goal.

F.4.2 Analysis of Classified Influencing Factors

Influencing factors with a System Logic perspective do not have development
organization’s quality concerns, e.g. testability and maintainability. These
concerns never surfaced as part of the success-critical stakeholders’ concerns.
Testability and maintainability are non-runtime observable qualities [13]. If
successfully implemented, the qualities could contributeto long-term cost-
reductions for the development organization. However, these two qualities are
left to the architect to deal with and take informal decisions on in the investi-
gated cases.

The understanding and interest to deal with software tactics to implement
non-runtime observable qualities as testability and maintainability seem to be
non-present among the success-critical stakeholders. This was verified for the
second case in the case study. Runtime observable qualitiesaffecting the cus-
tomers’ perception of the system engage the success-critical stakeholders more.

Non-runtime observable qualities as testability and development maintain-
ability will likely never be voiced by customers and customer responsible per-
sons. It should be noted that the system’s operation environment’s maintain-
ability concerns, e.g. installation and on-the-fly upgrades, differ from the de-
velopment environment maintainability concerns.

In the “System Sustainability” study described in Section F.3 the archi-
tects and senior developers testified to how difficult it was to build the busi-
ness case motivating development-environment maintainability improvements
projects with a short-term cost-increase and long-term cost savings. One of the
findings was that all the companies in the study wanted a cost-benefit calcula-
tion method that balanced short-term gains and long-term gains as they felt the

206 Paper F

Abstraction MOTIVATION REASONS
(WHY)

Software
Development
Organization
Perspective

SCOPE
CONTEXTS

IF3.1: Maintain backward compatibility
IF4.1: Replace in house developed electronics and/or
software with standard HW/SW without affecting
availability
IF4.7: Decrease development time by introducing the
product line system

BUSINESS
CONCEPTS

IF1.2: Implement same performance as today
IF2.1: Make commissioning easier
IF2.2: Implement remote access
IF2.3: Make it possible to upgrade parts of or whole system
easy and fast.
. . .
IF3.2: Implement same robustness/availability as today
IF3.3: Implement same accuracy as today

SYSTEM
LOGIC

IF1.3: Implement fast extensive communication
infrastructure.
IF5.2: Handle analogue signals from external system

Business Goal
Ownership
Customers
Developments

Developments

Quality
Concern
Modularity
Availability

Maintainability

Customers
Customers
Customers
Customers

. . .
Customers
Customers

Performance
Maintainability
Security
Maintainability

. . .
Availability
Performance

Customers

Customers

Performance

InteroperabilityIF5.2: Handle analogue signals from external system
. . .

Customers
. . .

Interoperability
. . .

Figure 6: Influencing Factors classified in the Software Engineering taxon-
omy. The Influencing Factors related Business Goal ownership and Quality
Attribute impact are shown next to the classification in order not to clatter the
figure. Quality attribute concerns are classified in the System Logic/Motivation
Reasons cell.

current calculations much favored the short-term gains.

F.4.3 Summary

The classification of the Influencing Factors into the Software Engineering Tax-
onomy contributed to some additional observations regarding stakeholder role
and stakeholder perspective. For the stakeholders with theBusiness Concepts
perspective, maintainability and testability are handledwith software develop-
ment improvement strategies, e.g. introduction of productlines. The architec-

Software Engineering Taxonomy and the IF method 207

tural structures for realizing these strategies are seldomdiscussed among the
success-critical stakeholders. Decisions regarding architectural structures are
taken informally by the architects. According to the report’s case study analy-
sis of sustainable software development, the architects find it hard to build the
business case motivating development-environment maintainability improve-
ments projects with a short-term cost-increase and long-term cost savings. The
classification of Influencing Factors in the software engineering taxonomy con-
firmed that this is a problem that has to be addressed e.g. in term of an improved
short-term versus long-term gain return of investment calculation.

208 Paper F

F.5 Software Engineering Taxonomy and the USAP
study

Usability and its interplay with software architecture wasdiscussed in the In-
fluencing Factors paper [4], as one of five quality attributes. In [2][3], the
Usability-Supporting Architecture Pattern field study is described and discussed.
The field study was done in the domain of industrial software systems.

The field study contributes with a description of an enhancedUSAP, three
described USAPs according to the enhancements, and a USAP software tool
that visualizes the USAP information.

Visualizing the responsibilities in a tool helps the software architects (on
a detailed design level) to implement usability support in the software archi-
tecture for specific usability scenarios early in the software design phase. The
usability design is part of the enterprise architecture, system architecture, and
software architecture but has not been put in relation to these in an explicit
fashion before. This field study’s research has therefore contributed to fill a
gap not covered by existing literature in a sufficient way.

The contribution is significant since very few studies can report on soft-
ware architects being able to use a tool early in the softwaredesign in a way
that helps them implement usability support in the softwarearchitecture. The
two architects in the field study used the tool for six hours and reported on a
development cost saving of more than five weeks gained by their interaction
with the tool.

In this section Software Engineering Taxonomy (SET) will beused in order
to create two process composites (methods). The work flow of creating these
process composites guided by the SET will be:

1. Identify artifacts of the Usability Supporting Architecture Pattern con-
cept

2. Classify artifacts in the Software Engineering Taxonomy

3. Create a process composite in the Software Engineering taxonomy, by
relating the classified artifacts in a sequence adhering to the Zachman
laws

The first process composite will describe a sequence for viewing USAP
artifacts in order to evaluate a software architecture against the USAPs. The
second process composite will describe a sequence of creating USAP artifacts.

Software Engineering Taxonomy and the USAP study 209

F.5.1 USAP Artifact Identification

USAP Responsibility

The word “responsibility” has been used in the publicationsof USAP [2][3]
but not formally defined in the context of the USAP. The responsibility is orig-
inally a section of a Class Responsibility Collaborator (CRC) card. CRC cards
are used as a brainstorming tool in the design of object-oriented software. The
CRC cards were proposed by Cunningham and Beck [51]. They describe re-
sponsibilities as:

Responsibilities identify problems to be solved. The solutions will
exist in many versions and refinements. A responsibility serves as
a handle for discussing potential solutions. The responsibilities of
an object are expressed by a handful of short verb phrases, each
containing an active verb. The more that can be expressed by
these phrases, the more powerful and concise the design. Again,
searching for just the right words is a valuable use of time while
designing.

(p. 2 [51])

The responsibility as described by Beck and Cunningham was later used
by Buschmann et al. to describe the responsibilities of classes in architectural
patterns [37]. They describe the responsibility as:

Responsibility: The functionality of an object or a component in a
specific context. A responsibility is typically specified bya set of
operations.

(p. 438 [37])

Wirfs-Brock uses responsibilities in the same sense as Beckand Cunning-
ham [52]. She defines the responsibility as:

A responsibility = an obligation to perform a task or know infor-
mation

(p. 3 [52])

Often there is confusion about the difference between requirements and re-
sponsibilities. Since both are elements of the system in theproblem space, they

210 Paper F

might appear to describe the same system motivation. In the IEEE Software
Engineering Book Of Knowledge (SWEBOK) [45], the requirement is defined
as:

A software requirement is a property which must be exhibitedby
software developed or adapted to solve a particular problem. The
problem may be to automate part of a task of someone who will use
the software, to support the business processes of the organization
that has commissioned the software, to correct shortcomings of
existing software, to control a device, and many more. The func-
tioning of users, business processes, and devices is typically com-
plex. By extension, therefore, the requirements on particular soft-
ware are typically a complex combination of requirements from
different people at different levels of an organization andfrom the
environment in which the software will operate.

The requirements are therefore a result of conflicting concerns from the
software system’s stakeholders and the software system’s environment. The
requirement is defined as a property. The USAP responsibility on the oppo-
site is not the result of conflicting concerns. The USAP responsibility is con-
structed solely to fulfill the usability quality concern fora specific task and it
has distinctive characteristics that differs it from a requirement. In short, these
are:

• Context - The USAP responsibility is always defined for a specific task
for the fulfillment of the usability quality of that task.

• Localization - The USAP responsibility is always localizedto a particu-
lar portion(s) of the system.

• Functionality - The USAP responsibility always describes aparticular
behavior of the particular portion(s) of the system to whichit is localized.

Additionally, the processes in which the artifacts are integrated differ. The
requirement artifact is integrated in the process of collecting stakeholders’ con-
cerns and eliciting these. The USAP responsibility is part of an architectural
design process coupled to the processing of a general Usability Supporting
Architecture Pattern. The USAP responsibility is therefore not specific for a
commissioned system and its characteristics are expressedin a general fashion
to be adapted by any system.

Software Engineering Taxonomy and the USAP study 211

USAP Activity and Task

During the work of identifying “Alarm & Event” USAP forces, atask analy-
sis was done to identify the tasks of the “Alarm & Event” sub-system’s users.
From the task analysis the forces should be identified leading to the construc-
tion of usability supporting responsibilities.

In the article “Task Knowledge Structures: Psychological basis and inte-
gration into system design.” [53], Johnson and Johnson describes the impor-
tance of task analysis to assist software designers to construct computer sys-
tems which people find useful and usable:

One way to approach this goal is to assume that knowing some-
thing about how users approach and carry out tasks will aid soft-
ware designers when making design decisions which will ultimately
affect computer system usefulness and usability. As a result task
analysis has emerged as an important aid to early design in HCI.

Task analysis according to Johnson and Johnson is an empirical method
which can produce a complete and explicit model of tasks in the domain, and
of how people carry out those tasks. Even if the USAP study didnot do a
complete task analysis according to how task analysis is described [53], it used
a number of the proposed data collection techniques for taskanalysis. The
techniques used to identify the tasks for the “Alarm & Event”scenario were:

• Direct observations of commissioners demonstrating the “Alarm & Event”
parts of the systems.

• Interviews with: commissioners of the systems, “Alarm & Event” system
architects, support responsible for the systems.

• Studies of: documents describing the usage of the “Alarm & Event” sys-
tems, “Alarm & Event” guidelines e.g. the “Engineering Equipment &
Materials Users’ Association” (EEMUA) publication no. 191: “Alarm
Systems - A Guide to Design, Management and Procurement” [54].

The analysis of the collected data was done as:

1. Identify the roles and created work products (goals) of the “Alarm &
Event” parts of the current systems (which would be consolidated into a
product line system).

212 Paper F

2. Perform a task analysis of the activities involved in creating the work
products of “Alarm & Event”.

3. Identify the objects used in performing the actions, e.g.“Raised Alarm”
and “Alarm & Event condition”.

4. Reason around which ones of the tasks require architectural support, e.g.
“Author an Alarm & Event condition”, “Handle a raised Alarm”.

The result is a hierarchy of activities with sub-activitiescalled tasks. The
activity is the highest level in the hierarchy and the task isthe second highest
level.

The most important aspects of the tasks with requirement on architectural
support are formulated as responsibilities. In [55], the “cancellation” USAP is
presented as a modified version of the Model-View-Controller (MVC) pattern
first defined by Beck et al. [36]. The MVC pattern was extended with new
components, connectors and responsibilities to accommodate the “Cancel” re-
quirements on usability support.

Using the experience from the MVC pattern for “Cancel”, the MVC-pattern
was used to test if it also could be modified to host the responsibilities for tasks
involving the work products: “Alarm & Event Condition”, “User Profile”, and
“Environment Configuration”. The MVC-pattern did not decide the responsi-
bilities. The task analysis was the base for constructing usability-supporting
architecture responsibilities. If the constructed responsibilities would not have
been possible to assign to a modified MVC-pattern, either another pattern-
solution would have been chosen as a base or a new architectural sample solu-
tion constructed from scratch.

The responsibilities are formulated as ways in which the system architec-
ture must support the usability quality of the task in order to make the task
useful and easy to perform. At the time, this resulted in 79 responsibilities. To
structure the responsibilities, they were classified according to the common ac-
tivities they support. This resulted in a hierarchy of activities and tasks, and the
tasks’s responsibilities. After a review of the CMU/SEI team and an “Alarm
& Event” expert at ABB, some of the responsibilities could beconsolidated or
removed which resulted in a list of 43 “Alarm & Event” responsibilities.

Further analysis discovered that the responsibilities from the processing
of the three work products had been categorized in a very similar fashion ac-
cording to the activities they participated in. The activities were versions of:
authoring, execution, logging, and authorization. Placeholders for the activities

Software Engineering Taxonomy and the USAP study 213

were identified that were furnished with the work product or role. The discov-
ery was a break-through since the activities are general andapplicable to the
processing of more work products by furnishing the placeholder with the work
product or role. Each activity had a set of tasks attached to it. “Authoring” had
e.g. the tasks “Create an [Alarm & Event Condition]” and “Modify an [Alarm
& Event Condition]”. The tasks also made use of the placeholder and furnished
it e.g. with the work product [Alarm & Event Condition].

During the continued analysis, it was discovered that the responsibilities
were nearly identical for each activity task no matter if theresponsibilities had
been created for the “Alarm & Event” scenario, the “Environment Configura-
tion” scenario or the “User profile” scenario. The difference could be described
by using the activity place holder and furnishing it with thework product or
role.

The discovery reduced the total number of responsibilitiesfor the scenar-
ios from over hundred to 31, since the scenarios could share common activi-
ties, each consisting of tasks and the tasks’ usability-supporting architectural
responsibilities. The common activities, tasks and responsibilities each had
a placeholder furnished by the scenario’s work product or the scenario’s role
making the activity, task, and responsibility scenario-specific.

If the processing of the work products is supported by commonresponsi-
bilities, then the solution space also can be common. The architectural solution
supporting the “Authoring” activity can be shared by the processing of all three
work products. The shared solution just has to make room for different inter-
pretations of the general activities’ placeholder. That is, the common solution
has to be able to offer the user a way of e.g. authoring both a “Alarm & Event
Condition” as well as an “Environment Configuration”, but the mechanisms
behind how authoring is supported by components and their behavior could be
the same.

What was discovered was a way of offering the architects re-usable so-
lutions, supporting common activities for the processing of more than one
system-environment work product for more than one role. Responsibilities are
usually presented as parameters tagged to components in an UML-diagram.
In [3], the reason why UML sample solutions did not work for the industrial
software system domain is explored. The idea surfaced of adding a responsi-
bility implementation description to each responsibilitydescription. For each
responsibility, the portions of the system and their behavior, implementing the
responsibility, are described.

The architects are offered one responsibility at a time together with a tex-
tual description of how this responsibility can be implemented by portions of

214 Paper F

the system and the portions’ behavior. It is not stated what the portions should
or could be or what pattern the solution should be based on. Inthis way the
architects can read the responsibility implementation description and visualize
how the wording “portions of the system” might be translatedinto their own
architectural design. If the architects feel that parts of the architectural design
are in place to support the responsibility in the way the responsibility imple-
mentation describe, then they do not have to change the architecture in order
to implement that specific responsibility.

R1 R2
R3

�

R7
��

R11

�

R15
R16

R3

R7R11

R15

Solution Space
#1

Solution Space
#2

Figure 7: Examples of solution spaces spanned by two different sets of chosen
points

This way of presenting responsibilities is like putting a magnifying glass
over a very small part of a sample solution which lets the architects translate
what they see from this very small part into their own design.Depending on
what responsibilities the architects choose, the solutionspace will be differ-
ent. This is illustrated with a set of points in a two-dimensional space, see
Figure 7. Depending on what points are chosen the resulting space spanned by
the points will take on different shapes. For a software architecture, it’s not the
shape that will look different but the set of components and their interactions
implementing the chosen responsibilities.

In the “System-Environment Interaction Hierarchy” in Figure 8, the USAP
work product processing considered in the USAP field study are “system-
operational environment interaction” work products. As previously discussed
in the Section F.3, software quality concerns not observable in runtime as e.g.
maintainability would be concerns of processing of “system-development en-
vironment interaction” work products. The “System-Environment Interaction

Software Engineering Taxonomy and the USAP study 215

Level 1:
Business
Concepts

System – Operational
Environment (S-OE) Work Products

Alarm and Event Condition
S-OE Work Product

User Profile
S-OE Work

Product

Environment Configuration
S-OE Work Product

Create a(n) [S-OE Work Product]
Task

Authoring
Activity

Execution
Activity

Logging
Activity

Authorization
Activity

The system must provide a way for an
authorized author to create a [User Profile,

Level 2:
System
Logic

System – Environment Role & Work Products

System – Development
Environment (S-DE) Work Products

Usability Quality

Access a(n) [S-OE Work Product]
Task

authorized author to create a [User Profile,
Configuration description, Conditions for

Alarms, Events and Alerts] : Responsibility

There must be a portion of the system with a mechanism to create new [User
Profile, Configuration description, Conditions for Alarms, Events and Alerts] :

Implementation Details

Usability Quality
Concern

Level 3:
Technology
Physics

Figure 8: System-Environment Interaction Hierarchy with three levels

Hierarchy” has three levels: Business Concepts perspective; System Logic per-
spective, and Technology Physics perspective. The task analysis done in the
USAP field study studied the interactions between the systemand its oper-
ational environment. For the interactions between the system and its devel-
opment environment, the task analysis has to study how architects, develop-
ers, project managers etc work with the development of the system. A task
analysis of the development environment would result in theprocessing of
“system-development environment interaction” related work products with us-

216 Paper F

ability concerns from the development environment. The system-environment
interface, in that case, would be the test/build/implementsystem-development
environment interfaces.

At the time of the execution of the field study, the family of activities,
tasks, responsibility descriptions and responsibility implementation descrip-
tions were called a “Foundational Pattern” to align the USAPwith the spirit
and work of Alexander [56][57]. The idea of a “Foundational Pattern” is de-
scribed in more detail by John et al. [58].

F.5.2 Classification of USAP artifacts

The extracted artifacts from the USAP concept are:

System Environment Business Roles and Work Products- describes the sys-
tem environment’s roles and work products.

System Environment Interface - describes system’s environment interface,
e.g. customer UI or development environment (build/test/implement)
UI.

Quality attribute - describes a feature or characteristic that affects an item’s
quality according to IEEE 610 [44].

System-Environment Interaction Scenario - describes an interaction between
the system and its roles, e.g. a use case or a quality attribute scenario.

Activity - describes an activity involved in the System Environment Business
Roles’ creation of Work Products.

Placeholder - describes the role or work product. Is used by the activity,the
activity’s tasks and their responsibilities, in order to make them specific
to the work product or the role.

Task - describes a task of the activity.

Responsibility Description - describes how the system must interact with its
environment to ensure that a specific quality attribute concern of the task
is met.

Responsibility Implementation - describes the implementation of the respon-
sibility as particular portion or portions of the system andtheir behavior.

Software Engineering Taxonomy and the USAP study 217

Pattern Responsibility Description - describes a responsibility of an estab-
lished pattern from e.g. [59][37].

Pattern Responsibility Implementation - describes the implementation of the
responsibility as components and connectors [59][37].

Rules & Guidelines - describes existing quality-specific, domain specific, rules
& guidelines for how the system should interact with its environment in
order to have a certain quality.

Note that if the system environment interface is a build, test, or imple-
mentation interface between the system and its developers than the roles and
work products are the development’s roles and work products. The system-
role interaction scenario will then describe how the testeror builder interact
with the system. In this case the site-dimension of the Software Engineering
Taxonomy is the software development organization’s site.If the system envi-
ronment interface is the interface between the system and its customers/users,
then the roles and work products are the customer’s roles andwork products.
For the last case, the site dimension of the Software Engineering Taxonomy is
the customer’s. Figure 9 shows the classification of the USAPartifacts into the
Software Engineering Taxonomy.

F.5.3 USAP Information Description-Selection Process

This section describes the flow of describing or selecting the USAP informa-
tion. The flow uses the classified artifacts in the Software Engineering Tax-
onomy, Figure 9, and describes a sequence that follows Zachman’s consis-
tency rules and uses the experience from how the “Alarm & Event” USAP was
created. The result is the USAP Information Selection/ Description Process,
which is visualized in Figure 10.

Notice that no step changes both the usage perspective and the information
abstraction to align with Zachman’s fifth rule of excluding diagonal steps in
the framework when constructing process composites. Thereare two start al-
ternatives: Existing system-environment interface, or the system-environment
domain’s Business Roles & Work products. The first option presumes that
a system environment interface is at hand, e.g sketch or legacy UI. For the
product line system in the field study, the start was the legacy user inter-
faces of the systems to be part of the product line. The legacyuser interfaces
are then described/ selected. Then follows a description/selection of reusable

218 Paper F

Abstraction Process
Transformations

(HOW)

Organization
Groups
(WHO)

Motivation
Reasons
(WHY)System

Environment
Perspective

Business
Concepts

• Activity
• Task
• Placeholder

• Business Roles
& Work
Products

System
Logic

• Responsibility
Description

• Pattern
Responsibility
Description

• System-
Environment
Interaction
Scenario

• Quality
Attribute

• Rules &
Guidelines

Technology
Physics

• Responsibility
Implementation
Description

• Pattern
Responsibility
Implementation
Description

• System-
Environment
Interface

Figure 9: USAP artifacts classified in the Software Engineering Taxonomy.
The environment can either be the system’s operational environment or the
system’s development environment

system-environment interaction scenarios, with requirements on usability sup-
port in the architecture not solved by separating the system-environment inter-
face logic from the rest of the system’s logic. Reusable system-environment
interaction scenarios can be chosen from the scenario listing of Bass and John
[60] or the Usability Patterns from Juristo et al. [61][62][63]. The USAP
field study used the USAP scenarios: “System Feedback” and “User Profile”
[60][64]. The latter was divided into “User Profile” and “Environment Config-
uration”.

If the start would have been the system-environment domain’s Business
Roles & Work products, then the reusable system-environment interaction sce-
narios are described/ selected in parallel with the description/ selection of system-
environment domain’s Business Roles & Work products. For example, a large
set of roles and work products are at hand. By using the reusable system-
environment interaction scenarios, the roles and work products related to the
scenario can be identified. These roles and work products need usability sup-
port in the architecture for the system’s implementation oftheir activities and

Software Engineering Taxonomy and the USAP study 219

tasks. The description of the system-environment domain’sBusiness Roles &
Work products must be the step before describing/ selectingreusable activities
and tasks. Otherwise the furnishing parameter of the activity placeholder can
not be identified.

The roles and work products are described/selected in the next step. In the
USAP study the roles were: system commissioner and system operator. The
work products were: “Alarm & Event Condition”, “User Profile” and “Envi-
ronment Configuration”. By describing/selecting multiplework products, the
general activities involved in the processing of the role’swork product can be
identified.

When the tasks are described/ selected, the task’s placeholder is furnished
by the description/ selection of role or work product. In theUSAP field study
the place holder was furnished with the “Alarm & Event condition”, “Environ-
ment Configuration”, and “User Profile” for the majority of the tasks. For the
authorization tasks, the placeholder was furnished with the role, “Author” and
“User”. The role or work product, furnishing the placeholder is used by the
activity, responsibility description, and the responsibility implementation.

Responsibilities are described/ selected, using: qualityattribute informa-
tion, rules & guidelines information, pattern responsibilities, scenario informa-
tion and task information. The USAP responsibility used theusability quality
attribute and hence supports usability in the architecture.

The final step, the description/selection of the responsibility implemen-
tation, is the view with the Technology Physics perspectiveand the Process
Transformation abstraction, since in this view architectsdescribe components
and connectors. By examining the responsibilities’ implementation from this
view, the architects can compare the responsibility implementation description
with their design, without changing their mind-set to another information ab-
straction and usage perspective. The description/selection of the responsibility
implementation uses information from: the responsibilitydescription and pos-
sibly, existing pattern responsibility implementation descriptions.

If architects immediately would view architecture patterns, which have the
Technology Physics perspective and the Process Transformation abstraction,
after considering requirements or user’s roles and work products, the diagonal
step in the Software Engineering Taxonomy would introduce inconsistencies in
the descriptions and a difficult shift in mind-set between both information ab-
stractions and usage perspectives. Using the Software Engineering Taxonomy
for classifying elements of the USAP and for incorporating the elements in the
USAP information description/selection process, contributes to a harmonized
sequence of process steps with a end-product that matches the expectations of

220 Paper F

Quality Attributes

Optional: Rules
and Guidelines

Start2:
System-Environment

Business Roles &
Work Products

Reusable general
System-Environment
Interaction Scenario

Start1:
System-Environment
Interface(s) (sketch or

legacy)

Reusable Activities

Reusable Tasks

Reusable
Responsibility
Descriptions

Reusable
Responsibility

Implementation
Descriptions

Optional: Pattern
Responsibility
Descriptions

Placeholder

Business Concepts

System Logic

Process Transformations
(How)

Organization Groups
(Who)

Motivation Reasons
(Why)

Optional: Pattern
Responsibility

Implementation
Descriptions

B is described/selected after A.
B’s description depends on the
description of A

A B

Legend:

Technology Physics

Figure 10: USAP information description/selection process, using the classi-
fied artifacts from the Software Engineering Taxonomy. The figure describes
in what order the USAP artifacts should be described or selected, guided by
the USAP artifacts’ classification view’s location in the taxonomy.

Software Engineering Taxonomy and the USAP study 221

the USAP information user.
The USAP field study included the design and implementation of the USAP

information selection tool, presented in PaperD. The tool guided the architects
through the USAP information description/selection process but offered only
selection features.

F.5.4 Summary

The USAP artifacts were identified and classified in the Software Engineer-
ing taxonomy. The classification of the USAP artifacts showed how the arti-
facts can be arranged in a process composite to describe the USAP information
description/ selection process. Some new discoveries weremade during the
analysis of the classified artifacts:

• The inclusion of a traditional enterprise perspective, thebusiness con-
cepts perspective, led to discoveries of new interrelationships between
the USAP artifacts: system-environment interaction scenario, system
environment business roles & work products, system-environment ac-
tivities and tasks related to the roles & work products, responsibility de-
scriptions, quality attributes, and responsibility implementation descrip-
tions.

• System environment business roles and work products are a key artifact
in linking the USAP scenario to common activities and tasks supporting
more than one role or more than one work product.

• System environment may be operational or development environment.
The environment decides what system-environment interface, business
roles and work products should be used in the USAP information de-
scription/ selection process.

• The placeholder of the common activity is furnished by the work product
or the role.

• The responsibility is related to the quality chosen to be supported for
the scenario. For USAP, the usability quality is supported by the USAP
scenarios. Possibly, the USAP information description/ selection process
can be used for other quality scenarios, if their tasks’ quality concern can
be expressed as responsibilities.

222 Paper F

F.6 Conclusions and Future Work

The Software Engineering taxonomy can serve as a reasoning framework into
which artifacts of software engineering case and field studies can be classified
for the creation of process composites or for further analysis. For the Influ-
encing Factors method and the Sustainable Systems Case study, the data was
classified and analyzed. For the USAP field study, the data wasclassified and
used for process composite creation. Applying the SoftwareEngineering Tax-
onomy led to the additional contributions:

• Sustainable systems case study

– The sustainable key-competences in the industrial software system
development organization carry the application domain knowledge
and the system knowledge, thereby increasing the social sustain-
ability of the company. The sustainable key-competences pass the
knowledge on to the system developers during informal design dis-
cussions.

– The development organizations sustain economical capitalby plan-
ning for changes when the changes are technology changes. When
the changes are organizational, e.g. distributed development, the
management have lost social capital by failing to plan for how the
development organization has to adapt to the new work-form.It
has been too little known in the companies, what requirements a
distributed development environment has on the development or-
ganization’s structures and communication.

– The incorporation of a remotely located development team inthe
development organization will be especially difficult in a culture
that has social capital invested in sustainable key-competences and
their informal spreading of knowledge. If the organizationhas ig-
nored investigating in explicit software documentation, increasing
the tangible economical capital, the new remotely located team can
make use of neither the social capital nor the economical capital
related to system know-how.

– The sustainable target market increases the intangible economical
capital.

– Intangible economical capital in the form of goodwill and reputa-
tion is increased by delivering reliable systems for a long-time to
the target markets.

Conclusions and Future Work 223

– The propositions regarding the importance of intangible econom-
ical capital of explicit defined roles and hand-over of information
along with explicit business goals communicated to the entire or-
ganization were rejected in the case study.

– The social capital in the form of implicit roles, well-knownto the
developers, is replacing the economic capital in the form offormal
descriptions of roles and formal communication.

– The case study’s propositions regarding the importance of control
of the the cost, quality, and schedule for sustainable development
remain to investigate. The investigation has to include interviews
with project leaders and line management. The case study assumed
that the product managers, software architects, and seniordevel-
opers would contribute to the control of cost, quality and sched-
ule. This turned out to be a false assumption. The product man-
agers, software architects, and senior developers had little or no
insights into how Key Performance Indicators were measuredor
how schedule control was exercised.

– The list of success-critical concerns for sustainable development
does not include as many architectural success-critical concerns as
expected. This could be related to the lack of consensus around the
concept of software architecture. The lack of a consistent software
architecture definition and tools and methods based on such defi-
nition might make the industry reluctant to embrace the concept of
software architecture. Risks are not welcome in industrialsoftware
systems that have to live for decades. The business case arguing
added value of software architecture for sustainable development
is simply not good enough for the three investigated cases inthe
domain of industrial software systems.

– In order to increase tangible economical capital in the formof soft-
ware engineering process artifacts, e.g. architecture descriptions,
the companies must first increase the tangible economical capital
in form of organizational artifacts, e.g. role descriptions and social
capital in form of information communication channels. Curtis’s
study [20][21], the Dikel study [33] and the Sustainable Industrial
Software Systems case study point toward a conclusion that sus-
tainable development concerns related to the software development
organization, must be addressed first before software engineering
tools and methods could have a significant impact on sustainable

224 Paper F

development.

• Influencing Factors field study

– Additional observations regarding stakeholder role and stakeholder
perspective. For the stakeholders with the Business Concepts per-
spective, maintainability and testability are discussed among stake-
holders as software development improvement strategies, e.g. dis-
tributed development or introduction of product lines. Thearchi-
tectural structures for realizing these strategies are seldom discussed
among the success-critical stakeholders. Decisions regarding ar-
chitectural structures are taken informally by the architects. This is
a noticeable difference between the software engineering discipline
and the building engineering discipline, where building structures
are discussed by architects, customers, and contractors.

• USAP field study

– The inclusion of a traditional enterprise perspective, thebusiness
concepts perspective, led to discoveries of new interrelationships
between the USAP artifacts: system-environment interaction sce-
nario, system environment business roles & work products, system-
environment activities and tasks related to the roles & workprod-
ucts, responsibility descriptions, quality attributes, and responsibil-
ity implementation descriptions.

– System environment business roles and work products are a key
artifact in linking the USAP scenario [64] to common activities
and tasks supporting more than one role or more than one work
product.

– System environment may be operational or development environ-
ment. The environment decides what system-environment inter-
face and business roles and work products should be used in the
USAP information description/ selection process .

– The placeholder of the common activity is furnished by the work
product or the role.

– The responsibility is related to the quality chosen to be supported
for the scenario. For USAP, the usability quality is supported by the
USAP responsibility. Possibly, the USAP information description/
selection process can be used for other quality scenarios, if their
tasks’ quality concern can be expressed as responsibilities.

Conclusions and Future Work 225

When classifying artifacts, not all of the 30 cell descriptions in the tax-
onomy need to be used. The Influencing Factors analysis used three cells, the
USAP analysis used six cells. The Sustainable Industrial Software System case
study used 19 cells showing that sustainability is a conceptwith a large set of
descriptions and interactions between the descriptions.

It remains to implement the description features in the USAPinformation
description/selection tool. This is done in an ongoing research project. If it is
the case that the placeholder always can be furnished with either role or work
product or not remains to validate by describing additionalUSAPs. Possi-
bly, the USAP information description/ selection process can be used for other
quality scenarios, if their tasks’ quality concern can be expressed as responsi-
bilities.

For the Sustainable System study, it remains to use the classification of
sustainable development concerns for set-up of goals and metrics in order to
address some of the concerns the companies felt they could meet in a better
way. The interrelationships between the classified concerns could then be used
to create a process, in the same manner as the USAP information description/
selection process was created.

Bibliography

Bibliography

[1] P. Stoll, A. Wall, and C. Norström. Software Engineeringfeaturing the
Zachman Taxonomy. Technical Report ISSN 1404-3041 ISRN MDH-
MRTC-240/2009-1-SE, Mälardalen University, School of Innovation,
Design and Engineering, 2009.

[2] P. Stoll, L. Bass, B. E. John, and E. Golden. Preparing Usability Support-
ing Architectural Patterns for Industrial Use. Proceedings of International
Workshop on the Interplay between Usability Evaluation andSoftware
Development (I-ISED), Pisa, Italy, 2008.

[3] P. Stoll, L. Bass, B.E. John, and E. Golden. Supporting Usability in Prod-
uct Line Architectures. Proceedings of the 13th International Software
Product Line Conference (SPLC), San Francisco, USA, August2009.

[4] P. Stoll, A. Wall, and C. Norström. Guiding Architectural Decisions with
the Influencing Factors Method. Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA) 2008, 2008.

[5] P. Stoll and A. Wall. Business Sustainability for Software Systems. Pro-
ceedings of Business Sustainability, Ofir, Portugal, 2008.

[6] J. F. Sowa and J. A. Zachman. Extending and formalizing the framework
for information systems architecture.IBM System Journal, 31:590–616,
1992.

[7] J. A. Zachman. A Framework for Information Systems Architecture.IBM
Systems Journal, 26(3):276–292, 1987.

[8] J. A. Zachman.The Zachman Framework for Enterprise Architecture; A
Primer for Enterprise Engineering and Manufacturing. Zachman Inter-
national, 2003.

226

Bibliography 227

[9] J. A. Zachman. The Zachman Framework and Observations onMethod-
ologies.Business Rules Journal, 5(11), 2004.

[10] P. B. Kruchten. The “4+1” View Model of architecture.Software, IEEE,
12(6):42–50, Nov 1995.

[11] R. Hilliard. Systems and software engineering - Recommended prac-
tice for architectural description of software-intensivesystems.ISO/IEC
42010 IEEE Std 1471-2000 First edition 2007-07-15, pages c1–24, 15
2007.

[12] ISO/IEC 10746 - 3: 1996, Information technology - Open distributed
processing - Reference model: Architecture, 1996.

[13] L. Bass, P. Clements, and R. Kazman.Software Architecture in Practice.
Addison-Wesley, Boston, second edition, 2003.

[14] C. O’Rourke, N. Fishman, and W. Selkow. Enterprise Architecture, Using
the Zachman Framework.Thomson Course Technology, 2003.

[15] P. Pollan. Our decrepit food factories.New York Times, 2007.

[16] G.C Unruh. Escaping carbon lock-in.Energy Policy, vol. 30(no.4):pp.
317–325, 2002.

[17] G.H. Brundtland. Our common future. Report of the WorldCommis-
sion on Environment and Development. Published as Annex to General
Assembly document A/42/427, 1987.

[18] T. Dyllick and K. Hockerts. Beyond the business case forcorporate sus-
tainabilityt. Business Strategy and the Environment, 11:130–141, 2002.

[19] R. K. Yin. Case study research: Design and Methods, volume 5 ofAp-
plied Social Research Methods Series. SAGE Publications, third edition,
2003.

[20] W. Curtis, H. Krasner, V. Shen, and N. Iscoe. On buildingsoftware pro-
cess models under the lamppost. InICSE ’87: Proceedings of the 9th
international conference on Software Engineering, pages 96–103, Los
Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[21] B. Curtis, H. Krasner, and N. Iscoe. A field study of the software design
process for large systems. Communications of the ACM, Vol. 31 No. 11,
pp. 1268-87., 1988.

228 Bibliography

[22] B. Randell. The 1968/69 NATO Software Engineering Reports. Available
at: http://homepages.cs.ncl.ac.uk/brian.randell/
NATO/NATOReports/index.html [Accessed 20. June 2009], 1996.

[23] E. Dijkstra. The structure of the “THE”-multiprogrammingsystem.Com-
mun. ACM 11, 5:341–346, 1968.

[24] V. R. Basili and J. D. Musa. The future engineering of software: A man-
agement perspective.Computer, 24(9):90–96, 1991.

[25] M. Jackson. Will there ever be software engineering?IEEE Software,
pages 36–39, 1998.

[26] M. Shaw and D. Garlan.Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[27] C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm. On the definition of
software system architecture. InICSE 17 Software Architecture Work-
shop, 1995.

[28] P. Johnsson.Enterprise Software System Integration: An Architectural
Perspective. PhD thesis, Industrial Information and Control Systems,
Royal Institute of Technology (KTH), Stockholm, Sweden, 2002.

[29] R. Malveau and T. J. Mowbray.Software Architect Bootcamp. Prentice
Hall Professional Technical Reference, 2003.

[30] J. O. Coplien. Borland software craftsmanship: A new look at process,
quality and productivity. In5 th Annual Borland International Confer-
ence, 1994.

[31] M. E. Conway. How do committees invent?Datamation magazine, 1968.

[32] B. G. Cain, J. O. Coplien, and N. B. Harrison. Social patterns in produc-
tive software development organizations.Annals of Software Engineer-
ing, 1996.

[33] D. Dikel, D. Kane, S. Ornburn, W. Loftus, and J. Wilson. Applying soft-
ware product-line architecture.Computer, 30(8):49–55, Aug 1997.

[34] W. R. Ashby. An Introduction to Cybernetics. First Edition, Chapman
and Hall: London, UK, 1956.

Bibliography 229

[35] D. Kane, D. Dikel, and J. Wilson.Software Architecture: Organizational
Principles and Patterns. Prentice Hall, 2001.

[36] K. Beck and W. Cunningham. Using pattern languages for object-oriented
programs. Technical Report Technical Report No. CR-87-43,Apple
Computer, Inc. and Tektronix, Inc., 1987. Submitted to the OOPSLA-87
workshop on the Specification and Design for Object-Oriented Program-
ming.

[37] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, andM. Stal.
Pattern-oriented Software Architecture A System of Patterns, volume 1.
Wiley, first edition, 1996.

[38] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. Design pat-
terns: Abstraction and reuse of object-oriented design. InECOOP ’93:
Proceedings of the 7th European Conference on Object-Oriented Pro-
gramming, pages 406–431, London, UK, 1993. Springer-Verlag.

[39] M. Fowler. Pattern Of Enterprise Application Architecture. Addison-
Wesley, 2003.

[40] J. O. Coplien. Organization and architecture. 1999 CHOOSE Forum on
Object-oriented Software Architecture, 1999.

[41] B. Boehm, Abts C., A. Winsor Brown, S. Chulani, B. K. Clark,
E. Horowitz, R. Madachy, D. J. Reifer, and B. Steece.Cost Estimation
with COCOMO II. Prentice Hall, 2000.

[42] M. Halstead.Elements of Software Science. Elsevier, 1977.

[43] McCabe. A complexity measure.IEEE Transactions on Software Engi-
neering, 2:308–320, 1976.

[44] IEEE. Ieee standard glossary of software engineering terminology.IEEE
Std 610.12-1990, pages –, Dec 1990.

[45] P. Bourque and R. Dupuis, editors.Guide to the Software Engineering
Body of Knowledge. IEEE Computer Society, 2004.

[46] Z. Antolic. An Example of Using Key Performance Indicators for Soft-
ware Development Process Efficiency Evaluation. TechnicalReport,
R&D Center, Ericsson Nikola Tesla d.d., 2008.

230 Bibliography

[47] J. O. Coplien.Multi-Paradigm Dedign for C++. Addison-Wesley, Read-
ing, MA, 1998.

[48] N. Rozanski and E. Woods.Software Systems Architecture: Working with
Stakeholders using Viewpoints and Perspectives. Addison-Wesley, 2005.

[49] I. Jacobson, M. Griss, and P. Jonsson. Making the reuse business work.
Computer, 30(10):36–42, Oct 1997.

[50] Ilan Oshri, Julia Kotlarsky, and Leslie P. Willcocks. Global software
development: Exploring socialization and face-to-face meetings in dis-
tributed strategic projects.The Journal of Strategic Information Systems,
16(1):25 – 49, 2007.

[51] K. Beck and W. Cunningham. A laboratory for teaching object oriented
thinking. ACM SIGPLAN Notices, 24(10):1–6, 1989.

[52] R. Wirfs-Brock and A. McKean.Object Design: Roles, Responsibilities,
and Collaborations. Addison-Wesley, 2003.

[53] H. Johnson and P. Johnson. Task Knowledge Structures: Psychological
basis and integration into system design.Acta Psychologica, 78:3–26,
1991.

[54] EEMUA. 191 Alarm Systems - A Guide to Design, Managementand
Procurement . Available: http://www.eemua.co.uk, 2007, 2nd edition,
ISBN 0 85931 155 4.

[55] E. Golden, B. E. John, and L. Bass. The value of a usability-supporting
architectural pattern in software architecture design: A controlled exper-
iment. InProceedings of the 27th International Conference on Software
Engineering, ICSE, St. Louis, Missouri, May 2005.

[56] C. Alexander.The Timeless Way of Building. Oxford University Press,
1979.

[57] C. Alexander.A Pattern Language: Towns, Buildings, Construction. Ox-
ford University Press, USA, 1977.

[58] B. E. John, L. Bass, E. Golden, and P. Stoll. A responsibility-based pat-
tern language for usability-supporting architectural patterns. Proceedings
of the ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS), Pittsburgh, PA, US, 2009.

[59] E. Gamma, R Helm, R. Johnson, and J. Wissides.Design Patterns -
Elements of Reusable Object-Oriented Sojlware. Addison-Wesley, 1995.

[60] L. Bass and B. E. John. Linking usability to software architecture patterns
through general scenarios.The Journal of Systems and Software, 66:187–
197, 2003.

[61] N. Juristo, H. Windl, and L. Constantine. Introducing usability. Software,
IEEE, 18(1):20–21, Jan/Feb 2001.

[62] N. Juristo, M. Lopez, A. Moreno, and M.-I. Sanchez-Segura. Improving
software usability through architectural patterns. Paperpresented at the
ICSE 2003 Workshop on Bridging the Gaps Between Software Engineer-
ing and Human-Computer Interaction, Portland, Oregon, USA., 2003.

[63] N. Juristo, A.M. Moreno, and M.-I. Sanchez-Segura. Guidelines for elic-
iting usability functionalities.Software Engineering, IEEE Transactions
on, 33(11):744–758, Nov. 2007.

[64] L. Bass, B. E. John, and J. Kates. Achieving usability through software
architecture. Technical Report No. SEI-TR-2001-005, Carnegie Mellon
University/Software Engineering Institute, Pittsburgh,PA, 2001.

