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Abstract

A combinatorial optimization problem is an optimization problem where the number of possible
solutions is finite and grows combinatorially with the problem size. Combinatorial problems exist
everywhere in industrial systems. This thesis focuses on solving three such problems which arise
within two different areas where industrial computer systems are often used. Within embedded
systems and real-time systems, we investigate the problems of allocating stack memory for a system
where a shared stack may be used, and of estimating the highest response time of a task in a system of
industrial complexity. We propose a number of different algorithms to compute safe upper bounds on
run-time stack usage whenever the system supports stack sharing. The algorithms have in common
that they can exploit commonly-available information regarding timing behavior of the tasks in the
system. Given upper bounds on the individual stack usage of the tasks, it is possible to estimate the
worst-case stack behavior by analyzing the possible and impossible preemption patterns. Using
relations on offset and precedences, we form a preemption graph, which is further analyzed to find
safe upper-bounds on the maximal preemptions chain in the system. For the special case where all
tasks exist in a single static schedule and share a single stack, we propose a polynomial algorithm to
solve the problem. For generalizations of this problem, we propose an exact branch-and-bound
algorithm for smaller problems and a polynomial heuristic algorithm for cases where the branch-and-
bound algorithm fails to find a solution in reasonable time. All algorithms are evaluated in
comprehensive experimental studies. The polynomial algorithm is implemented and shipped in the
developer tool set for a commercial real-time operating system, Rubus OS. The second problem we
study in the thesis is how to estimate the highest response time of a specified task in a complex
industrial real-time system. The response-time analysis is done using a best-effort approach, where a
detailed model of the system is simulated on input constructed using a local search procedure. In an
evaluation on three different systems we can see that the new algorithm was able to produce higher
response times much faster than what has previously been possible. Since the analysis is based on
simulation and measurement, the results are not safe in the sense that they are always higher or equal
to the true response time of the system. The value of the method lies instead in that it makes it
possible to analyze complex industrial systems which cannot be analyzed accurately using existing
safe approaches. The third problem is in the area of maintenance planning, and focus on how to
dynamically plan maintenance for industrial systems. Within this area we have focused on industrial
gas turbines and rail vehicles. We have developed algorithms and a planning tool which can be used
to plan maintenance for gas turbines and other stationary machinery. In such problems, it is often the
case that performing several maintenance actions at the same time is beneficial, since many of these
jobs can be done in parallel, which reduces the total downtime of the unit. The core of the problem is
therefore how to (or how not to) group maintenance activities so that a composite cost due to spare
parts, labor and loss of production due to downtime is minimized. We allow each machine to have
individual schedules for each component in the system. For rail vehicles, we have evaluated the effect
of re-planning maintenance in the case where the component maintenance deadline is set to reflect a
maximum risk of breakdown in a Gaussian failure distribution. In such a model, we show by
simulation that re-planning of maintenance can reduce the number of maintenance stops when the
variance and expected value of the distribution are increased. For the gas turbine maintenance
planning problem, we have evaluated the planning software on a real-world scenario from the oil and
gas industry and compared it to the solutions obtained from a commercial integer programming
solver. It is estimated that the availability increase from using our planning software is between 0.5 to
1.0 %, which is substantial considering that availability is currently already at 97-98 %.
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Abstract

A combinatorial optimization problem is an optimizatioropfem where the
number of possible solutions is finite and grows combinatiyrivith the prob-
lem size. Combinatorial problems exist everywhere in ingusThis thesis
focuses on solving three such problems which arise withindifferent areas
where industrial computer systems are often used. Withinegltled and real-
time systems, we investigate the problems of allocatingksteemory for a sys-
tem where a shared stack may be used, and of estimating theshigsponse
time of a task in a system of industrial complexity. We prapasnumber of
different algorithms to compute safe upper bounds on nme-tstack usage
whenever the system supports stack sharing. The algoritlawesin common
that they can exploit commonly-available information netijag timing behav-
ior of the tasks in the system. Given upper bounds on the isha stack
usage of the tasks, it is possible to estimate the worststask behavior by
analyzing the possible and impossible preemption pattéfsisig relations on
offset and precedences, we form a preemption graph, whfahtier analyzed
to find safe upper-bounds on the maximal preemptions chathearsystem.
For the special case where all tasks exist in a single sttiecsile and share a
single stack, we propose a polynomial algorithm to solveptioblem. For gen-
eralizations of this problem, we propose an exact branchbaund algorithm
for smaller problems and a polynomial heuristic algoritttndases where the
branch-and-bound algorithm fails to find a solution in rewdie time. All
algorithms are evaluated in comprehensive experimertdiest. The poly-
nomial algorithm is implemented and shipped in the developal set for a
commercial real-time operating system, Rubus OS.

The second problem we study in the thesis is how to estimatithest
response time of a specified task in a complex industriaitiee system. The
response-time analysis is done using a best-effort appregtere a detailed
model of the system is simulated on input constructed usloga search pro-



cedure. In an evaluation on three different models we carttsgethe new
algorithm was able to produce higher response times mutér fdan a previ-
ous approach based on an evolutionary algorithm. Sincertalyss is based
on simulation and measurement, the results are not safe isethise that they
are not always higher or equal to the true response time. &ahg\of the
method lies instead in that it makes it possible to analyzeptex industrial
systems which cannot be analyzed accurately using existifeggapproaches.

The third problem is in the area of maintenance planning,faodses on
how to dynamically plan maintenance for industrial systek&hin this area
we have focused on industrial gas turbines and rail vehidlés have devel-
oped algorithms and a planning tool which can be used to plaintenance
for gas turbines and other stationary machinery. In suchleras, it is often
the case that performing several maintenance actions aathe time is bene-
ficial, since many of these jobs can be done in parallel, whedices the total
downtime of the unit. The core of the problem is therefore baior how not
to) group maintenance activities so that a composite castalapare parts, la-
bor and loss of production due to downtime can be minimized.alidw each
machine to have individual schedules for each componetarsystem. For
rail vehicles, we have evaluated the effect of re-planniragntenance in the
case where the component maintenance deadline is set @t thenaximum
tolerable risk of subsystem usage counter overrun, modedegd) a Gaussian
distribution. In such a model, we show by simulation thapleaning of main-
tenance can reduce the number of maintenance stops whearihace and
expected value of the distribution are increased. For tisetgdine mainte-
nance planning problem, we have evaluated the planninwagdton a real-
world scenario from the oil and gas industry and comparea tihé solutions
obtained from a commercial integer programming solvers kstimated that
the availability increase from using our planning softwardetween 0.5 to
1.0 %, which is substantial considering that availabiliyurrently already at
97-98 %.
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Chapter 1

Introduction

As long as man has existed, he has tried to do his best, givan éhpos-
sesses and the current circumstances affecting him. In tduem day (and
in a more formal setting), this activity is callexgbtimization and is normally
undertaken with the goal of minimizing or maximizing somenficof objective
function Optimization is an activity whose importance cannot bersteged,
and its presence is a reality in many different industridirsgs. In practice
and in its most general form, optimization is a broad areeghaompasses en-
tire fields and many subareas. Today, the term “optimizaseems to be most
commonly used when there exists a more or less clear (butrat glince often
hopelessly complicated) mathematical formulation of thebfem to be opti-
mized. Nonetheless, the term applies just as well to lessaigs optimization
approaches.

A combinatorial optimization problernan be loosely defined as an opti-
mization problem in which the set of feasible solutions scdete [173, 186].
This thesis is concerned with obtaining practical solugiéor three industrial
combinatorial optimization problems in the areas of emleddetal-time sys-
tems and condition-based maintenance.

1.1 Real-world Optimization

When applying optimization methods to real problems, séyzeatical issues
emerge. First and foremost, it is significant that many indhissize optimiza-

tion problems (and indeed two out of three problems in trésit) do not seem
solvable, due to their complexity and size, to the absolpteram — at least
not without a substantial effort to find and “tune” the righttimod. In practice,
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however, other aspects, such as optimization responseriogel correctness
and the possibility to work interactively with the optimiia tool (not to even

mention budget limits imposed on the development projeet),be equally or
more important than finding the absolute optimum.

In addition, there are several other important issues the¢ Imot always
been treated with the same emphasis as more theoreticdepr®land solu-
tions. First of all, uncertainties and a lack of accuraternmfation during the
development phase often lead to a less than perfect probletelmit might
even be that the problem to be solved is not fully understddelated to this
issue is the question of realism of the chosen optimizatiodeh Since the
optimization model is by necessity a simplification of rgalthe engineers
and/or planning personnel using the system frequently kage/ledge of cir-
cumstances that are not even present in the optimizatioreindtiany users
react with disapointment when realizing that the optimaatnodel is a sim-
plification of what is considered the real problem, and tfeeeedoes not pro-
duce the best possible solution. The consequences of thesswes include
inadequate tool support and a less efficient planning psoces

The issues above arise too often in practice to be ignoretthelbest case,
the effects can be that planners compensate by startirayfalh experimental
optimization approach based on trial-and-error until aceptable solution is
found. In the worst case, the optimization approach magy afiich time and
effort has been spend in developing and deploying it, prowesable in prac-
tice. Since all models are in practice simplifications ofitgdt can appear that
there is little that can be done. However, by making surettfethosen opti-
mization model and associated working process capturesahtise relevant
side constraints, the risk of deployment failure can attleasreduced. The
technical or practical solution for ensuring that the masl@lccurate enough is
less important. However, a close and continuous collatworat terms of dis-
cussing proposed models and solution approaches is recodethe In many
cases, conceptually simple solutions such as multi-phpiseniaation, pre- or
post-processing or even manual actions can be preferafiiaraling side con-
straints. Planning software users should also be allowévesak” a resulting
solution using some form of sensitivity analysis, so thatitohal knowledge
of a situation can be taken into account without modifying $bftware. In ad-
dition, the application should ideally be designed so tlditional constraints
and features can be added with as little effort as possible.

Naturally, even if the issues above are not applicable, fanyrreal-world
problems there currently exist no complete solution methgqdaranteeing op-
timality within reasonable time limits. The goal of this #i® has therefore
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been to develop optimization methodseful in practicefor three industrial
combinatorial problems; run-time stack analysis, respdimee analysis and
condition-based maintenance scheduling and planningcdierequirements
for this objective to be met were the following.

Practicality, in that the proposed solutions should be applicable forpes-
lems while including the application-relevant side coaisiis.

Scalability, in that it should be possible to obtain acceptable solutfons
problems of realistic size for the intended application.

Responsivenessin that the optimization or analysis should not take too long
to run, so that users can experiment with the optimizatidiwsoe.
However, requirements on optimization response time atslodiffer
between different application domains and end users. Tlie gaal has
been that the optimization software should be able to predotutions
within at most a few minutes, which we judged to be the uppee fimit
for the studied applications.

Cost effectiveness,n that the optimization methods should be scalable, but
not take too much time and effort to develop.

The ambition of the work presented in this thesis was théatduld have
substantial practical impact. We claim that this ambitias tbeen fulfilled,
considering that it has resulted in two different deploypglizations within
industry. Methods for run-time stack dimensioning presérin Papers A and
B have been implemented and integrated into the commeraial&develop-
ment environment by Arcticus Systems ABee [117]), and a software appli-
cation for maintenance scheduling based on Papers E andiebaslelivered
and is currently in use at Siemens Industrial Turbomackinds. Although
both of these have yet to see wider use, it is, at least to ear that the prac-
tical utility of the methods and resulting tools have beemdestrated. On the
other hand, Papers C and D present methods that have noteretapplied
directly in industry. However, the methods in both paperehaactical value,
and discussions regarding industrial deployment are ewggoFurthermore,
some of the ideas regarding maintenance scheduling fouR@per D were
later developed into what is presented in Papers E and Fhwhativates its
inclusion in the thesis.

1Web page: http://www.arcticus-systems.com



12 Chapter 1. Introduction

1.2 Problem Overview

The thesis is concerned with solving practical problemdiwitndustry and

academia. In particular, the objective of the thesis work weapropose solu-
tions that were useful in practice and could yield a cleall-defined benefit.

In the different projects this thesis springs from, there be@en a clearly iden-
tified problem area and customer. This has placed congrainthe choice of
methodology and chosen techniques. The following three piaiblems are
addressed in the thesis:

1.2.1 Real-time System Stack Analysis

Many embedded computer systems are safety-critical, trethaneous behav-
ior can cause physical damage and possibly loss of life. Atsédime time,
producers strive to increase margins by reducing produdists (and actual
product costs), such as the cost of hardware, as much adblgosshe over-
dimensioning of hardware such as CPU:s and RAM is not onlthcdmit does
not in many cases add any value whatsoever to the interreealiat/or end
users. For example, an embedded real-time control systeippeg with 1M
of memory does not add any value (in terms of functionalitperformance)
over the same system equipped with 16k memory, except foadkdional
cost of the hardware.

However, ensuring that hardware is notder-dimensione@ an issue of
high significance. If the hardware used is under-dimensiptemporal and
functional correctness of the system can be compromiseid. CBim be highly
dangerous in safety-critical areas such as automotive dodia applications.
One example where under-dimensioning can lead to malfumiog) is theex-
ecution stackThe execution stack in a software application is used e dte
cal variables, parameter values and return addressesaargt@v and shrink
depending on application-specific behavior. If the alledagtack is not large
enough, the program will read and write unallocated mempags, which typ-
ically leads to an application crash or unspecified apptioabehavior. This
can have devastating effects in a safety-critical enviremmwhich is why
guarantees regarding stack allocation are important.

In traditional real-time systems, each thread of executesan individual
execution stack. In systems with a large number of threaldsga number of
stacks are consequently required. Hence, the total amé&#AM needed for
the stacks can grow quite large. A common feature of manyti@& operat-
ing systems is that they emplayack sharingin which a global run-time stack
is shared among the tasks in the system, thereby reduciragbant of RAM
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needed. In Papers A and B, we address the problem of how tonaiatie and

tight upper bounds on shared stack space in systems withranere shared
execution stacks. The proposed solutions make it possibieduce costs by
using only the amount of RAM actually needed for correct mapilon behav-

ior. At the same time, our algorithms guarantee that a ctiyrepecified real-

time system will never run out of stack space as long as theiatod memory

that the analysis recommends is made available for the Bzactack.

1.2.2 Best-Effort Response-Time Analysis

Response-time analysis is the process of obtaining anastiofithe time from
an event to when the processing of that event is finished. Tdrstwease re-
sponse time (WCRT) of a task is the highest possible respamsefor any
instance of that task. Using traditional response-timéyaiga(RTA), it is (un-
der certain assumptions) possible to obtain sgfper bounds on the WCRT
of one or several tasks in a system. However, many embeddéehsy break
the assumptions of basic RTA by containing code featurels asainbounded
loops and task interaction affecting response time. Intamgidata-dependent
execution times may lead to pessimistic response-timdtsedtor these sys-
tems, it is difficult or even impossible to obtain a tight aafesupper bound on
task response time using RTA.

As a complement to RTAbest-effort worst-case response-time analysis
can be employed to findlawer bound on the actual worst-case response time.
Best-effort worst-case response-time analysis involveasuring the real or
simulated specific response times of the system given a kEegef sample
inputs, in order to provoke the system to show its worst bieingwith regard
to response time). In most cases, both the best-effort veas response-time
and the upper bound worst-case response time are inexddheitrue worst-
case response time usually lies somewhere in between.

Measurements of response time are often performed usingsaniinented
executable for the target system [157]. However, for laggtesns with com-
plex behavior and long response times, running the actsé&symay be time-
consuming. Considering that the number of samples ofterbean the order
of thousands or even millions, the total evaluation time easily become pro-
hibitively long. Therefore, it has previously been promb§gs, 118, 139-141]
instead to analyze simpler but still detailed models of Hrgdt system. Us-
ing simulation, the evaluation time of a single sample carnnfggroved sig-
nificantly, therefore allowing more samples to be examinkdPaper C, we
address the problem of provoking the system to exhibit l@gponse times
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by controlling the system input parameters using a locaicbemethod. The
method is based on hill-climbing with random restarts usingpresentation
suitable for capturing the essential properties of the lerab

1.2.3 Dynamic Maintenance Scheduling

In an industrial setting, breakdowns can have a significaptict on short and
long-term profitability. During a breakdown, fixed costs ofugpment, real
estate, labor, etc. remain constant while production isrégdly zero. Preven-
tive maintenance, which aims at avoiding breakdowns byoplariinspections
and servicing in an effort to capture developing faults yead therefore an
important activity.

However, maintenance is an often underdeveloped areahwhiarn often
implies excessive maintenance costs. For example, Wirga7a) claims that
up to 1/3 of maintenance costs are unnecessary. Estimatesiofenance ex-
penses range from 15—-70 % of the total production cost [33,535. Itis also
common that maintenance schedules are constructed mainilyd warranty
period of the product. Newly developed products almost gbéaexperience
a burn-in period with an increased failure rate. This sufgarconservative
approach when constructing maintenance schedules. Thantiaperiod is
also special in that during this period, the manufacturerlizdilities with re-
gard to product functionality. When the warranty period etlgis maintenance
schedules are often reused without revision. The sub-afitirof this prac-
tice becomes clear when considering that the lifetime ofigtidal machinery
can reach 30 to 40 years. A careful analysis after a run-imgearan there-
fore often reduce maintenance costs significantly with amdyginal effects on
reliability.

In addition, maintenance is rarely scheduled and plannembijunction
with production. Since maintenance usually has a negaffeeteon produc-
tion, it should ideally be coordinated and planned so thateffects on produc-
tion are minimized, while the maintenance costs are kemtbah acceptable
level. Today, maintenance is often scheduled once, andhtire and medium-
term maintenance optimization is left to the person in chasfjshort-term
maintenance planning. Although maintenance planningoped in many
cases perform a remarkable job in making sure that maintenandone ac-
cording to plan while taking care of daily disturbancessitinrealistic to ex-
pect planning personnel to produce optimized plans withnektp a life-cycle
cost perspective. The information load is also expecteddcernse with the
inclusion of condition monitoring and condition-based ntanance. There-
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fore, we are convinced that decision support tools are itapbto control the
maintenance planning process.

In Papers D—F, we study the problem of how to carry out prévemain-
tenance as efficiently as possible, evaluating potentmitgbrm profits in an
overriding life cycle cost perspective. The goal of preivgnimaintenance op-
timization is to minimize total costs while still maintainy assets according to
maintenance requirements. Reliability data regardingpmmrent lifetimes is
in general of limited quality or even non-existent, espcimr new compo-
nents. On top of that, there are many other business faciftuencing mainte-
nance interval length for commercial equipment. Therefaeshave opted for
a deterministic maintenance model where we assume thasthefifailure is
negligible for preventive maintenance done within thervdaé The proposed
solution performs maintenance schedule optimizationgis@uristic methods,
and has been estimated to save substantial costs in practice

1.3 Thesis Outline
The thesis is organized as follows.
Part | contains an introduction to the thesis and background mahter

Chapter 1 gives an informal introduction to the thesis, together vaith
problem description, the goal objectives, and the thegigridmi-
tions.

Chapter 2 contains an introduction to the theoretical topics reldted
this thesis, including graph theory and algorithms, coratuirial
optimization and search, complexity, and mixed-integesdi pro-
gramming.

Chapter 3 introduces real-time systems, scheduling, responsedirak
ysis, handling of shared resources, and related work oR staa-
ysis and best-effort response-time analysis. The chaptees as
an introduction to Papers A, B and C.

Chapter 4 discusses maintenance practices for gas turbines ancrail v
hicles, including maintenance policies, availability aedtability,
condition-based and reliability-centered maintenannd,raainte-
nance optimization. The chapter serves as an introduaiiBapers
D,EandF.

Chapter 5 outlines the academic and industrial contributions of Pape
A-F, and lists the author’s publications included in thiedis, as
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well as publications related to his doctoral studies butimgdtided
in the thesis. The chapter also concludes the thesis by stisau
future work.

Part Il contains the six papers on the topics of run-time stack aiglpest-
effort response-time analysis and condition-based maamiee planning,
which constitute the main academic contribution of thistbe

Paper A presents a new method to compute the amount of stack mem-
ory used in a real-time system. We consider preemptive is\stie
which some of the tasks can share a single run-time stackprand
vide an exact problem formulation, based on run-time priger
which is applicable for any preemptive system model. Thenmai
contribution is that we show how it is possible at compiledito
safely approximate the exact stack usage for a commereiedly-
able system model: A hybrid, statically and dynamicall\hest-
uled system. Comprehensive evaluations show that our itpodan
can significantly reduce the amount of stack memory needed. A
decrease in the order of 70% is typical in the evaluation.

Paper B extends Paper A by considering a more generic task model and
by presenting two new methods to bound the stack memory. The
first method is a branch-and-bound search for possible péem
patterns, and the second approximates the first in polyridimie.

In addition, precedence relations are considered. We ateathe

new methods and previous approaches on random task sets and
compare them with each other. The evaluation shows thabeur e
act method can significantly reduce the amount of stack mgmor
needed in the more generic system model considered.

Paper C presents an efficient best-effort approach for respomse-dnal-
ysis, based on the well-known hill-climbing metaheuristiée tar-
get complex industrial systems where response-time measunts
or simulation is the only option. A simple yet novel hill4zibing
algorithm, where controlled randomization is added in threnf of
full and partial random restarts, is used to generate inpta th a
simulated real-time system, where priorities, preemstiamd task
communication are taken into account. In a thorough evaloat
on three models constructed from existing industrial systethe
new algorithm is compared to the current state-of-pragtibente
Carlo simulation) and a previously proposed method. The pro
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posed method was found to be more accurate and on average 42
times faster than the second-best method.

Paper D propose to use online maintenance planning in order to avoid
the frequent train service interventions which is oftenoaisged
with condition monitoring. A dynamic planning software &pa-
tion is used to quickly find new train circulations adaptedtfee
current maintenance requirements of a fleet of vehicles,taad
number of maintenance stops is minimized using a heuristic f
dynamic packaging of maintenance activities. At the same ti
we actively keep the risk of breakdowns low. An evaluation us
ing real-world timetables and vehicle plans shows that tivalver
of service interventions can be reduced significantly caemgb&o
traditional cyclic maintenance.

Paper E builds on Paper D and describes and evaluates a novel con-
dition-based gas turbine maintenance strategy. The bédieo
strategy is that maintenance should be repeatedly re-zgtiiio
fit into the time intervals where production losses are leastly
and result in the lowest possible impact. A prerequisitéés aic-
curate dynamic lifetime estimates are available. The apras
evaluated on a gas turbine used in a real-world scenariorevhe
input from operation data, maintenance schedules and topeea
quirements are taken into account. In the evaluation, &miost
reductions range from 25 to 65 %, and the calculated avétiabi
increase in practice is estimated to range from 0.5 to 1.0 %.

Paper F builds on Paper E and describes the implementation and de-
ployment of the optimization tool. The optimization prafles
formally defined, and we argue that feasibility in it is NPRyqulete.

We outline a heuristic algorithm that can quickly solve thetylemn
for practical purposes. We also compare the algorithm witted:
integer linear programming, and discuss the deploymentgo
of the application. Compared to a mixed integer programnajng
proach, our algorithm is not optimal, but is much faster.






Chapter 2

Combinatorial Problems

This chapter contains a review of graph theory and combiizdtaptimization

methods and techniques used in this thesis. For much mateqti informa-
tion, the interested reader is referred to books by West][ZZ@umbic [104]

and McKee and McMorris [165] for basic and intermediate bregeory. The
book by Papadimitriou [187] contains an extensive ovenaésomputational
complexity, while Garey and Johnson [95] provide an acbéssiverview
of NP-completeness and related topics. Constraint programisiicgvered
in several books, including [18, 158, 257], while most weibwn Al-based
search methods are described in [214]. For integer andrlipregramming,
the reader is referred to books by Nemhauser and Wolsey Hi®BPapadim-
itriou and Steiglitz [186]. An introduction to mathematigaogramming with
many examples is also given by Winston [277].

2.1 Graph Theory

A graphis a pairG = (V, E) whereV is a set ofverticesandFE is a set okdges
connecting two vertices. Indirectedgraph, the set of edges are directed, i.e.,
on the form(v;, v;), and referred to aarcs In anundirectedgraph, each edge
can be represented by two aies, v;) and(v;, v;). Vertices connected by an
edge are said to badjacentor neighbors A complete(undirected) graph is
fully connected in that all vertices are directly connedtdll other vertices.

A graph H is asubgraphof another grapld- if H'’s vertex set is a subset of
G’s vertex set and ifi’s edge set is a subset 6fs edge set, restricted to the
vertices inH. A subgraphH of GG is inducedif it contains all edges idx con-
necting nodes it/ . A pathis a sequence of distinct verticeg vo, ..., v, € V

19
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such that there exist ar¢s;, v2), (va, v3), ..., (vk—1,vx) € E. A path is acy-
cleif in addition there exists an af@y, v1) € E. A graph isacyclicif it does
not contain any cycle.

A weightedgraph is a graph with an additional weight functiofe) map-
ping edges to weights. Thiistanceof a pathvy, v, ..., v, € V in a weighted
graph ist:_l1 w((v;,vi+1)). A shortest pattbetween two nodes is a path for
which no other paths exist between the two nodes with a lowstamte. For
graphs with non-negative weights, a shortest path can belfLO(D - |E| +
X -|V]) using Dijkstra’s algorithm [57, 76]. Herd) and X represent the time
needed to maintain a queue of vertices sorted accordingttesh distance to
the source nodd) is the time needed to decrease the distance of a vertex, and
X is the time to extract and remove the vertex with lowest distafrom the
queue. If the queue is implemented using an efficient datetstre such as
a Fibonacci heap [89], the amortized time complexity of Blifa’s algorithm

O (e
Il
@@

Figure 2.1: A directed acyclic graph (top) and one of its togizal orderings
(bottom).

In Papers A and B, we are interested in finding khiegestpaths within
certain induced subgraphs of a graph representing thehp@gsieemptions
that can occur within a set of tasks. Since shortest patheasity be found
in graphs with non-negative weights, it may come as a swhat finding
longest paths is much harder. In fact, the longest path enoidNP-complete
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for generic graphs [258]. Fortunately, it turns out that dlirected acyclic
graphs (DAGs), both shortest and longest paths can be foudd|£| + |V|)
time. The method is based on first performingppological sort[127, 247]
and then processing the vertices in topological order (asrideed in [57]). A
topological ordering of a directed acyclic graph is a line@tering of its nodes
in which each node comes before all nodes to which it has onth@dges;
an example is shown in Figure 2.1. Note that every DAG has omaae
topological orderings.

Algorithm 2.1 produces a topological ordering of a DAG basadlepth-
first search (DFS). The algorithm is from the book by Corraeal. [57], but
is originally due to Tarjan [246]. An alternative was debed by Kahn as
early as 1962 [127]. Algorithm 2.1 has its entry point in thadtionDFs and
loops through each node of the graph in an arbitrary ordéiatimg a DFS
that terminates when it hits any node that has already bestedisince the
beginning of the topological ordering. The arraigited is used to keep track
of which vertices has been visited so far, dnd the list of vertices in inverse
order; both are updated during the execution of the alguorithinally, » is the
current vertex and is a vertex adjacent to.

Algorithm 2.1: Topological sort using depth-first search.
VISIT (u, visited, V, E, L)

(1) if visited[u] = false

(2) wisited[u] + true

(3) foreach(u,v) € E

(4) VISIT (v, visited, V, E, L)

(5) L+ Lu{u}

DFS(V, E)

(1) L0

(2) foreachu € V

(3) wisited[u] + false

(4) foreachu € V

(5) wviIsIT(u, visited, V, E, L)
(6) return L

Given a topological ordering, a linear time algorithm fordiimg longest
(and shortest) paths can then be obtained by processirgegirt the topolog-
ical order, updating distance labels of adjacent nodesrditggly. The method
we use in Papers A and B is given in Algorithm 2.2, and takestal/liof
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the vertices in the graph in topological order, the set ofesdgand a weight
functionw, and returns the longest path distarice) from any node to any
nodew, and the predecessor nogg:) in one such path, whereis used to
denote the absence of a predecessor. Note that the linemctmplexity of
the algorithm is important in applications where longeghpanust be found
repeatedly. For example, in Papers A andiB,longest paths must be found in
different induced subgraphs, yielding a total time comipjesf O(|V| - | E|).

Algorithm 2.2: Longest paths algorithm for a topologically sorted DAG.

LONGESTPATHS(L, F, w, [, p)
(1) foreachu € L

(2) lu]«0

) plul ¢

(4) foreachu € L

(5) foreach(u,v) € F

(6) if {u] +w(u,v) > 1v]

@ {[v] « l[u] + wlu,v]
(8) plv] < u
2.1.1 Cliques

In the previous section, we briefly discussed the technimaltisn in our ap-
proach to stack analysis — presented in Papers A and B — wiickists of
repeatedly searching for longest paths within certain éedusubgraphs of a
preemption graph (defined in Paper A, and illustrated in féigb.1 and 5.2).
The induced subgraphs in which we will be searching for Iehgaths later on
are calleccliques They consist of subgraphs where each vertex is connected
to every other vertex. Formally, a clique is then a complatesaph. A clique

is maximalif it cannot be extended with any node. The problem of finding a
maximal clique is in generdllP-complete [272]. However, polynomial-time
algorithms are known for certain types of graphs. In thigieacwe will re-
view two graph families where this property holds, and whbenumber of
maximal cliques are also bounded linearly.

The following assumes that we have an undirected graplehadkd is an
edge between non-consecutive vertices in a cycle. A cyotgther with the
edges in the cycle, which are also an induced subgraph ntiedlesssince
itis an induced subgraph, it only contains the edges in tbkecgnd can there-
fore not contain a chord. Note that all cycles of length 3 &ui@dless. A graph
is chordal if and only if it contains no chordless cycles. A chordal drap
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illustrated in Figure 2.2. Chordal graphs are sometimesymed to asriangu-
lated graphs, and chordless cycles of length 4 or more are simjigddaoles
A perfect elimination order (PEO} an ordering of the verticelg in a graph

Figure 2.2: A cycle (solid) with two chords (dashed). Thegraph shown
is chordal, but removing any of the dashed edges would resaltchordless
cycle of length 4.

such that each vertexforms a clique together with all adjacent vertices occur-
ring later in the ordering. A graph has a PEO if and only if itierdal [90].
Chordal graphs can be recognized in linear time by finding@,R#hich can be
done using lexicographical breadth-first search (BFSPZB8]inO(|V |+|E|).
Given a PEO, the set of maximal cliques can be found by tes@ulp PEO-
induced clique for maximality [165]. In addition, chordabghs can have at
most|V | maximal cliques [272]. Both these properties are usefulnndizain-
ing a safe upper bound on stack usage later in Papers A andaB.itterval
graph the vertices can be represented by inter{@ls] in a single dimension,
and the edges correspond to interval intersection. In otleeds, there is an
edge between two intervals, b] and[c, d] if and only if a < d ande < b.
All interval graphs are chordal; a PEO is given by ordering tBrtices after
their interval “start point” (i.e. according te@ in the intervalla, b]), breaking
ties arbitrarily.

A simple algorithm (shown in Algorithm 2.3) for finding maxahcliques
in an interval graph is based on processing two qudueand L. consisting
of the intervals sorted by start and end time, respectivEiie algorithm is in
eitherbuild or breakmode, starting in break mode. For each start point, the
corresponding vertex is marked as active, and the mode ie 8atild”. If the



24 Chapter 2. Combinatorial Problems

current mode is “build” when an end point is scanned, theactle vertices
are output as a maximal clique, and the mode is set to “breAkVertex is
always marked as inactive when its end point is scanned.

Algorithm 2.3: Maximal cliques in an interval graph.

MAXCLIQUES(V)

(1) L« V ordered by start time
(2) L.+ V ordered by end time
(8) m <« break,Q + 0,q < 0

(4) whileL; A0V L.#0

(5) (a,b) < FIRST(L;)

(6) (¢,d) + FIRST(L,)

7 if a<d

(8) Ls < Ls\ {(a,0)}

©) g+ qU{(a,b)}

(10) m <+ build

(11) else

(12) Lo+ Lo\ {(c,d)}

(13) if m = buildthen @ «+ Q U {¢}
(14) m < break

(15) g+ q\{(cd)}

(16) return Q

2.2 Satisfiability and Optimization

The classical definition of optimization is the process oflifiy the highest-
or lowest-ranked solution to a problem, as measured by on@ozobjective
functions In multi-objective optimizatiorseveral objective functions exist that
should simultaneously be optimized. In this case, sevéifarent optimality
criteria exist, the most common ones being based on aggrepgctive func-
tions and Pareto optimality [79].

In this thesis, we use the term “optimization” loosely intthe also use it
for approaches where the absolute optimum is not requirkis. thesis is also
only concerned with single-objective optimization; aliigh aggregate objec-
tive functions are used, a natural interpretation of agafieg exists in that the
objective is to minimize cost. Obviously, not all optimiat problems are
of minimization type. However, for maximization problerfhithe function to
maximize is well-defined, then minimizing the negation a$till maximize
the original function.
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The sought-after solution to the problem is specified as afsedriables
that should be assigned values. unconstrainedoptimization, the problem
variables are allowed to take any possible valuecdnstrainedoptimization,
on the other hand, there exist a setohstraintghat restrict the set of feasible
solutions to the problem. For single-objective constrdimgnimization, the
goal is therefore to find a solution that is

1. feasiblei.e., satisfies a set @bnstraints and
2. near-optimalin that it, as far as possible, minimizes the cost function.

Constrained optimization can further be divided into selsubclasses de-
pending on the type of constraints and cost function usedheSaf the most
well-known subclasses are

* linear programming in which the cost function is linear, and all con-
straints are linear inequalities;

» mixed integer programmingn which some of the variables have inte-
grality constraints;

» 0-1 integer optimizatianin which all variables are restricted to values
of either O or 1;

 guadratic programmingin which the cost function is quadratic, and all
constraints are linear inequalities; and

» nonlinear programmingin which the cost function and all constraints
can contain nonlinear parts.

A satisfiabilityproblem is concerned only with finding a feasible solution
for a set of constraints, and can also be seen as an optiatizatbblem with
a constant objective. A&ombinatorial problemis an optimization problem
where the set of feasible solutions is finite [186]. Comimnat problems
are abundant in all areas where discrete resource-caresirproblems either
appear naturally or when a discretization of an otherwisgisoous problem
may be beneficial. Examples of well-known combinatorialbpeas include
the vehicle routing problem [52, 60] (an overview can be fbum [255]),
the traveling salesman problem [17], the knapsack probled2,[160], the
cutting stock problem [65, 101, 190] and the generalizedgassent prob-
lem [47,213,225]. Some well-known combinatorial puzzled games include
Chess [269] and the related eight queens problem [238],I8L[d80,282] and
Go [36,146,211].
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2.2.1 Branch and Bound

When no suitable polynomial-time algorithm exists for a dise satisfaction
or optimization problem, one strategy might be to simplyrsledhe entire set
of feasible solutions (or a subset thereof) for a solutionisTs often referred
to ascombinatorial search Because combinatorial search can in many cases
take exponential time to solve the problem, methods to cwhdmn the size of
the search space have been devised. One of the most commuoacipgs is
thebranch and bound methoah which a tree of partial solutions are explored.
The branch and bound method is used in Paper B for perforrtéicl analysis.
The branch and bound method works as follows. For a mininoizgirob-
lem, alower boundon the objective function is established (preferably irypol
nomial time) for each node in the tree. A lower bound is a fiomcthat is al-
ways less or equal to the optimal objective value. If the loleund is greater
than the objective function of the best found solution (vatiicturn is an upper
bound on the optimal objective value), then the correspandode can be re-
moved from the search, since the node lower bound guarathiaiso search
from that node can ever yield an objective lower than the &iv@und so far.
If the node is not removed, the search continuebdaychingon that node.
Several branching strategies exist depending on the pro§iiicture and
the representation of a solution; common choices includeaito splitting
(in which the domain of a variable is split into two parts) aratiable as-
signment. Note that branch and bound can be implemented dsipth-first
search, breadth-first search or other variants; pseuddood@esimple depth-
first branch and bound algorithm is shown in Algorithm 2.4. eTdriginal
branch and bound method was conceived in 1960 by Land andtDaiglve
generalizations of linear programming to discrete vagapl45].

Algorithm 2.4: Depth-first branch and bound search for non-binary opti-
mization problems with an objective functian

BB(node)
(1) if LEAF(node) then return node
(2) (sgy...,8p—1) ¢ SUCCESSORS$node)

(3) best + NIL

(4) fori=0tob—1

(5) if LOWERBOUND(s;) < z(best)
(6) best < argmin (best, BB(s;))
(7) return best
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2.2.2 Constraints and Propagation
Informally, aconstraint satisfaction problem (CSEan be defined as follows.

Given a set of constraints, is there an assignment to thehlaes
in the constraints such that all constraints are satisfied?

A special case of a CSP is tpeopositional satisfiability problem (SATWhich
can informally be defined as follows:

Given a Boolean formula in conjunctive normal form, is thare
truth assignment to the variables satisfying the formula?

CSP and SAT have been studied in numerous books and artacl@SAT
was the first problem shown to iéP-complete [54]. Both CSP and SAT are
core problems in computing theory and mathematical logiacivVof the effort
spent on constraint satisfaction and satisfiability redeaan be attributed to
the generality of CSP and SAT. In practice, solution methfmdsCSP and
SAT are useful for solving problems in automated reasoring)puter-aided
design, computer-aided manufacturing, machine visiotaldeses, robotics,
integrated circuit design, and computer network design.

Conventional constraint satisfaction methods have beanrsto work well
on a large number of problems from real life, like scheduylplgnning and re-
source allocation problems. Unfortunately, these metlaoesn general time-
and space consuming. Because of this, they are not alwagbkuiFor exam-
ple, adynamicplanning problem is a planning problem where the parameters
change during the execution of the plan. This calls for aqdathat is able to
recover from changes in the plan within reasonable timgdimi

Constraint Propagation

Constraint propagation is a technique for search spacetieduaken from
the area of constraint programming [154]. In its purest focomstraint prop-
agation simply involves removing values from the domain$reé variables
which are inconsistent with the current partial assignnaemnt the constraints
in the problem. Constraint propagation can be describetb@gsgmmed search
where the domains of the problem variables are narrowealtiitety, accord-
ing to the constraints in the problem, as the search proggesthe two most
common propagation approaches doenain propagationwhere the domains
are modeled explicitly as a set of the allowed values, iatetval propaga-
tion [151], where only the interval of the domain is stored. Ingyah domain
propagation prunes the search space more efficient thawahf@opagation.
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However, interval propagation is faster and uses less mespace. Interval
propagation is used in Papers E—F to reduce the search speng chain-
tenance optimization. For more information on constraiaigpamming and
propagation, see the books by Marriott and Stuckey [158n§9257], and
Apt [18]. Except for interval propagation, constraint pragyming is not con-
sidered in this thesis. However, it is worth noting that trettmodology has pre-
viously been used to formulate and solve many practicalddhegy and plan-
ning problems (see, for example, work by Kreugearl.[142,143], Fox [88],
Sadelet al.[216,217], Le Pape [188], Smitt al. [234—236], Davenport and
Tsang [62] and El Sakkout and Wallace [219]). Schedulindplemms are often
formulated using specialized global constraints, as dsstin the articles by
Beldiceanu [30] and Régin [209, 210].

2.2.3 Mixed Integer Programming

A linear programming problem (LP) consists of a vectonatkal-valued de-
cision variables = (1, ...,x,), a linear objective functioa and a set ofn
linear inequalities as shown below in Equation (2.1)

maxz = c1T1 —+ CoZo + e 4+ Cnp
subject to
a11r1 + a2 + - 4+ apT, < b
2121+  axprz + - 4+ ap®, < b
- - 2.1)
Am1T1 + Am2T2 + tee + Amndn S bm
X Z O
xTo Z 0
Tn > 0

A feasible solution to Equation (2.1) is an assignment tfat satisfies all
m inequalities; an optimal solution is a feasible solutioneckhmazimizes:.
In vector notation, a linear programming problem can be @ef[i73] as

max{cz : Ax < b,z € R} (2.2)

wherec is al x n matrix,b = (by,...,b,) a m-dimensional vectorA an
m X n matrix containing rational number&} is the set of nonnegative real
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p-dimensional vectors and = (z1,...,z,) is the variable vector. The lin-
ear programming problem is most commonly solved using tmpleix algo-
rithm [277] created by George Danzig in 1947. Linear prograng is inP;
Khachian [133] derived the first polynomial algorithf((2°)) in 1979. Since
then, more practically useful polynomial algorithms haeet found, starting
with Karmarkar’s algorithm [128].

A mixed integer programming (MIP) problem can be defined as

max{ce +hy : Az + Gy < bz € R} ,yec ZV} (2.3)

where in additionk is a1l x p matrix, G anm X p matrix containing ratio-
nal numbersZ? is the set of nonnegative integerdimensional vectors, and
y = (y1,-..,¥p) is the integer variable vector. The obvious difference be-
tween MIP and LP problems are that in MIP, some of the var@ahte only
allowed to take integer values. Perhaps surprisingly,jthggeneral makes MIP
much harder. Mixed integer programming is in f&ife-complete, even when
restricted to binary (0-1) variables [130]. Even so, MIPimj#ation models
have been remarkably successful in representing manyweadd- problems,
and MIP solvers such as CPLEX from ILOG [121] and Xpress-@ijater from
Dash Optimization [61] are considered by many to be the stahtbol for
solving combinatorial problems. In Papers E and F, we use R d6lver as
comparison against our heuristic approach.

2.2.4 Limited Discrepancy Search

Many industrial problems can be solved using tree searchadst especially

if guiding heuristics are available. For example, best-fiesirch methods such
as A* search [114,175] have been successful on many probldavgever, A*
search relies on the availability of a good admissible tstigriand if no such
heuristic is available, A* search will use too much memorysome problems
to be practically useful. Depth-first search methods avtlidsmemory issues
with breadth-first search and A*. However, it can easily getlsin unproduc-
tive areas of the search tree when the heuristic fails. keidhitiscrepancy search
(LDS, [91,115,129, 138, 266]) addresses this problem. Hséchdea of LDS

is to use depth-first search guided by a heuristic, but allegexified number
of so-calleddiscrepantchoices that disagree with the heuristic. The maxi-
mum number of discrepant choices allowed in each path frahtmleaf is
thediscrepancyparametek. The basic LDS procedure, introduced by Harvey
and Ginsberg in [115] and further improved by Korf in [138]onks primar-

ily on binary search trees, although Harvey and Ginsbergudis extensions
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to non-binary problems. In [266], Walsh improves LDS by fitshsidering
discrepancies that occur at the top of the search tree. $hisrie by intro-
ducing a depth limit that is iteratively increased. In [128BDS is extended
to handle arbitrary CSPs, constraint propagation and ileguof the variable
ordering heuristic. In [91], Furcy and Koenig extend bearrse [215, 283]
with LDS-type backtracking.

Algorithm 2.5, which is used in Papers E—F, shows an extansid.DS
along the lines of the ideas proposed in [129]. The algorihalso modified
to continue searching for a best possible solution as meddyr an objective
function z, which is infinitely-valued for the empty nodeiL. In [115], it
is discussed whether all discrepant choices emanating &@pecific node
should be treated equally, i.e., counted as depleting oit@ldiscrepancy, or
whether each further step away from the heuristic shouldobated as using
up one more discrepant choices [129]. In Algorithm 2.5, ttel view is
taken. Figure 2.3 shows the unique paths explored for easicelof 4 in a
tree with branching factor 3.

Algorithm 2.5: Limited Discrepancy Search for non-binary optimization
problems.

LDS-PrROBE(node, k, d, b)

(1) if LEAF(node) then return node

(2) (sgy...,8p—1) ¢ SUCCESSORS$node)

(3) best + NIL

(4) for i = max(0,k — (b—1)(d — 1)) tomin(b— 1,k)

(5)  best < argmin, (best, LDS-PROBE(s;, k — 1))

(6) return best

LDS(node, maxdepth)

(1) for k < 0 to maximum depth

(2) result + LDS-PROBE(node, k, mazdepth)
(3) if result # NIL then return result

(4) return nil

In [138], Korf improved LDS so that it only generates pathghvexactlyk
discrepancies. This is done by keeping track of the remgidépthd, pruning
branches for whiclkl < k. It is worth pointing out that in modifying LDS to
non-binary trees, a similar improvement can be done if theimam branch-
ing factorb is known. At most discrepant choices can be made in a subtree
of depthd, each choice using up at maést 1 discrepancies. Given that choices
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k=5 = @k=6

Figure 2.3: Unique explored edges for different discregaratues in a tree
with branching factor 3.

are ordered according to falling heuristic value (so thatpgheferred choices
occur early), we can therefore prune tifechoice if (b — 1)(d — 1) + i < k,

or in other words, start with choice numheex(0,x — (b — 1)(d — 1)). The
function call SuccessoR$node) returns a list of feasible successor nodes in
increasing order of heuristic value. The discrepancy patamsk.

2.2.5 Local Search

Local searchor iterative improvemenis an alternative approach to optimiza-
tion using complete methods. Local search methods havedidentage that
as soon as a feasible solution has been found, this solgtiaways available
during the search. This property is commonly knowmagtime behavigrand

is of particular interest when feasible solutions are gdsilind, or when the
iterative improvement can work solely by manipulating fbkessolutions. An-
other advantage of local search methods is that they caa seftain problems
much more efficiently that regular constraint solvers. A #ame time, tech-
nigues based on local search often have quite modest resconsumption.
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In Paper C, we use local search in the form of a hill-climbifgpathm with
random restarts to solve the best-effort response-timiysiagroblem, and in
Paper D, a local search procedure is used to find alternatistes for a train in
need of maintenance.

In iterative improvement, a given candidate solution istiowed in several
repeated steps by changing small parts of the solution. &&ltmg set of
candidate solutions is called the neighborhood. The dlyorthen proceeds
by selecting as the next solution either the first found imj® neighbor or
one of the best neighbors. In the hill-climbing algorithmi42, the search
terminates when a local minimum has been reached. Otheoadgtbuch as
Tabu search [102] or Simulated Annealing [136] have me&masito escape
local minima. The initial starting point of the local seaishusually generated
randomly or using a constructive heuristic.

The neighborhood is one of the parameters that affect tHferpeaince of
local search algorithms the most. The neighborhood shaailchbsen so that
neighbors who are likely to improve the objective are inelddHowever, if the
neighborhood is too large, the local search procedure wilsequently spend
a large amount of time exploring it, especially if the neighthat improves the
objective value the most is wanted. If it is also non-triv@tompute the objec-
tive value of a candidate, the exploration process in itsatftake a significant
amount of time. One example is the combined problem of maamtee routing
and scheduling presented in Paper D, where the cost of adrairation de-
pends on the maintenance schedules of the train units. 8iramaintenance
schedules are also dependent on the circulations, newenaimte schedules
have to be found to evaluate neighbors. A common techniquevialuating
neighbors more efficiently is therefore to compute only th&t dlifference that
the transition yields. This is sometimes called incremlectanputation [10].
In the planning algorithm outlined in Paper D, we update st observing
that only the maintenance schedules of the trains wherediig@lmoring circu-
lation differs needs to be recomputed.

It is generally agreed that randomization may help localcdeprocedures
overcome local minima. Stochastic behavior may be intredun numerous
ways, one of the most basic being to introduaedom restartsn the search
after a fixed number of transitions. Walser [265], Selmanl.ef229], Gent
and Walsh [97, 98] and Gu et al. [107] take this approach, asala Paper
C. Another common randomization strategy is to introdacelom walkin the
search. Random walk is the occasional random transitiomgositions) in the
search space, the probability taking a random transitipedeing on a param-
eter typically supplied by the user of the search algoriténthird possibility
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is to change the neighborhood of an assignment accordingptolzbilistic
distribution. In the well-known WalkSAT algorithm, intraded by Selman et
al. [229], a successor assignment is selected by pickingsatisfied clause at
random, and from this clause selecting promising varialtffeRaper C, we in-
troduce randomness in the neighbor selection by only cerisigla randomly-
chosen subset of the full neighborhood obtained by charmsiggle variable
value.

2.3 Computational Complexity

Computational complexity [187] is an area of computer smeand mathe-
matics concerned with time and space consumption, the ssigespower of
different computational mechanisms and the related coritplelasses. In this
section, we will give a short summary of the theoryN®-completeness. The
interested reader is referred to [95, 187] for more inforamatWe will use the
theory in Paper F when provingP-completeness of the maintenance schedul-
ing problem.

2.3.1 Decision Problems

A decision problenis a problem whose answer is “yes” or “no”. A typical
example is SAT, introduced in Section 2.2. Other examples ar

Knapsack Given a knapsack of unit capacity and a set dems, each item
having a sizei; € (0,1] and avalueb;, is there a subset of items fitting
in the knapsack with a higher value than a given lower thriesh®

Bin-packing Given a set of bins of unit capacity and a set afitems, each
item ¢ having a sizes; € (0, 1], is there a packing (i.e., assignment of
items to bins) of all items using the available bins?

2.3.2 Complexity Classes

It is common to adopt a view in which decision problems larguageqi.e.,
subsets of binary stringg, 1* in which the language consists of all strings
that encode a “yes” problem instance). A langudge P if there exists a
deterministic polynomial time bounded Turing machiethat can decidd.,
i.e., for each string: € {0, 1}*:

* if z € L thenM (x) accepts, and
o if x ¢ LthenM(x) rejects.
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Intuitively, the class corresponds to problems that can always be efficiently
solved. A languagé. € NP if there is a polynomiap and a polynomial time
bounded Turing machin&/ such that for each string € {0, 1}*:

» if x € L then there is a string of polynomially bounded length, i.e.,
ly| < p(|z|), such thatM (z, y) accepts, and

« if x ¢ L then for any string; such thaty| < p(|z|), M (x,y) rejects.

The stringy that helps verifying that: is indeed a “yes” instance is called
asolutionto the problem; thud\P is the class of problems that have short and
quickly verifiable solutions. As an example, given a knagdastance and a
proposed solution in the form of a subset of items, it is eassheck whether
this subset 1) fits inside the container, and 2) has a valleehibank. Clearly,
the knapsack problem is KP.

A languageL belongs to the classo-NPif and only if L € NP; thus,
co-NPis the set of problems that have short, quickly-verifiableuisterexam-
ples”. For instance, the languageof prime numbers allows for counterexam-
ples in the form of factorizations for a numberwhich is proof that ¢ L.

2.3.3 Reductions

Let L; and L, be two languages ilNP. Then, L,; reduces toL, if there is
a polynomial time deterministic Turing machifféthat, given a stringe €
{0,1}*, outputs a string; such thatr € L; if and only if y € L. In other
words, T translates problem instances of typginto instances of typé.. As

a consequence, ff; reduces td., and L, is polynomial time decidable, then
so is L;. This type of reduction is also calledpmlynomial-time many-one
reduction polynomial transformatioror Karp reduction Reductions of this
type are very useful in provingP-completeness.

2.3.4 NP-Completeness

Alanguagel is NP-hardif every languagd.’ € NP reduces td.. A language
is NP-completdéf L € NP and[L is NP-hard. AnNP-complete languagé is
a hardest language MP in that a polynomial time algorithm fak implies that
there exist polynomial time algorithms for every languaghblP (i.e., P=NP).
Once one probleni. has proven to b&P-hard, other problems can be
established ablP-hard by giving polynomial-time reductions fromto these
problems. SAT was shown in [54] to IdP-hard; the proof idea is to show that
for any languagd. in NP, there exists a deterministic polynomial-time Turing
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machine that can translate stringss {0,1}* into SAT formulasf such that
the existence of a truth assignment satisfyfnignplies thatz € L.

2.4 Summary

This chapter reviews some topics in graph theory, combiiztoptimization
and complexity, which are useful for understanding the washemployed in
Papers A-F. In graph theory, algorithms for computing |lehgeaths in di-
rected acyclic graphs and cliques in interval graphs (whiehspecial cases
of chordal graphs) are described as background materi&dpers A and B.
Some different methods for combinatorial problem solvirsgdi throughout
this thesis were outlined, including local search, whichised in Papers C and
D, and Limited Discrepancy Search in particular, used inePaf and F. The
chapter also contains some basic complexity theory, wisiaiséd in proving
NP-completeness of the maintenance scheduling problemrgezsin the last
two papers of the thesis.






Chapter 3

Real-Time Systems

Using computers for process control and physical intesads becoming more
and more common in areas where control has previously beeidpd entirely
by mechanical or electrical means. Ambedded systeimia computer system
that is part of a larger system, performing some of the fanstiof that system
[120]. Their role is often to replace a traditional mechahgaolution, thereby
reducing production costs, increasing efficiency and ecingrfunctionality of
the product.

Embedded systems are almost ubiquitous in nearly all offtstiachnolog-
ically focused industry, including the telecommunicatiaatomation, aircraft,
automotive and railroad industries. According to Hanssbal., the software
account for a major part of the value growth in the automatideistry [113].
A classical example of an embedded system is the computetotimg crit-
ical functionality in a road vehicle, such as lock-free l@sksteering, igni-
tion, airbags and traction control. Embedded systems aoeb&lcoming an in-
creasingly important part of our daily lives. For examplearly all consumer
electronics on the market contain one or more computationiéé, providing
extended functionality, intelligent behavior and oveesdbke of use. One mo-
tivation for using an embedded system is often reductioroefsc Another is
the addition of advanced functionality, which would not hesgible without
computers. In a typical modern automobile, embedded sygsteamage, e.g.,
driving assistance, information, and entertainment fest(223]. This implies
that both safety-critical features and less critical feadineed to be managed in
the same system. Figure 3.1 illustrates the complexityl lefvelectronic sys-
tems that has been reached in a modern automobile. The \adjeswPhaeton

37
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shown in the figure contains 11,136 electrical parts, 61 E@Ewhich 31 can
be externally diagnosed), an optical bus for infotainmeatadsub-networks,
and 3 CAN-buses connecting 35 ECUs. Communication-wisgethre ap-
proximately 2,500 signals in 250 CAN messages [149].

Figure 3.1: The electronic systems (blue) and communigatahannels (or-
ange) in a Volkswagen Phaeton automobile (Image is from][&4@ is cour-
tesy of Volkswagen AG).

A real-time system (RTS) is a system in whitmelinessis equally im-
portant for the system to work properly as thectional correctnessf the
implementation [241]. A common misconception is that an RF'8 system
that responds quickly [240]. Instead, an RTS can be definedsgstem with
a temporallypredictableresponse. As an example, the triggering of an au-
tomobile airbag is an application in which timeliness isatali Obviously,
triggering the airbag too late is disastrous for the passendpwever, trigger-
ing the airbag toearly is equally fatal, since the airbag is only inflated fully
for a very short period of time. Inflating the airbag too easlyl therefore
result in the airbag being partially deflated at the time thieed or passenger
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hits the airbag.

Many real-time and embedded systems are resource-corestriai that the
resources available to perform its intended functionaligy limited. A typical
processor used in an embedded system is much less powenfulhté proces-
sor used in a desktop computer. Also, the amount of memoiiablais often
measured in kilobytes instead of gigabytes. In additiamgesimany embedded
systems are safety critical, we must be sure that the linnésdurces available
are enough for sufficient system safety and correct temgordlfunctional
behavior. One such limited resource is computational aapdtthe applica-
tion requires more computational capacity than what islalvks in the form
of the processor being used, the application will mostjiledhibit a temporal
behavior the system has not been designed for. Going badietprevious
example of an automobile airbag, this could result in theagjrdeploying too
late. Another example of a limited resource is the memorylahie for the
application. If the application requires more memory thamvailable, data
corruption and/or a program crash can result. Both sitnat@an be consid-
ered fatal; a consequence of either can be that the progrgmatdunction
as intended, which is potentially devastating in a safeityeal application.
Therefore, analysis methods are needed to guarantee ttietptde behavior
of the system. To be useful in practice, such methods alse twalve suitable
for industrial use, in that they should be easy to use and hava&cceptable
computational complexity.

3.1 Real-Time Operating Systems

A real-time operating system (RTOS) is an operating systéncwis specif-
ically engineered for real-time applications. In practitds means that the
operating system has functionality for fulfilling appliat timing constraints.
RTOS:s usually provide services such as real-time schagluthutual exclu-
sion and intra-system communication. In general, an RTSistmof a set of
processors running an RTOS and interacting over one oraes@mmunica-
tion networks, such as CAN [64,122,176,179,252], FlexBay ¢r TTP [137].
On each processor, a settafksare executed. The tasks, representing the dif-
ferent computations to be performed by the application,dispatched by a
scheduling algorithm of the underlying RTOS. A specific ication of a task
is called atask instanceor justinstancefor short. Each task has axecution
time, which is in general dependent on the environment it is etkegin. This
includes factors such as processor speed (varying dynliynid¢h voltage in
many newer processors), processor and bus caches, memteogylaommuni-
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cation delays and state and input parameters of the taskf &klese can affect
execution time. The exact execution time for all possibleadions is there-
fore either hard or impossible to obtain. A common approtiomais to use a
worst-case execution time (WCES3timate, assumed to be a safe approxima-
tion of the actual execution time under all circumstances BN@stimates can
be found by measurements and/or simulation (see for exangpleby Edgar
and Burns [78], the commercial todirtualTime[203] andARTISST67]) and
static analysis methods [81-83, 195, 196, 276]. Tools baseabstract inter-
pretation, such as Bound-T [248] and Absint [3], can also sedudor WCET
analysis of software systems.

Timing constraints are abundant in RTS:s. Some of the mostraanly
used timing constraints includelease timeanddeadlineconstraints, specify-
ing the earliest invocation time and the latest finishingetiof a task respec-
tively. Tasks invoked repeatedly with a fixed time intervalg( the wheel
speed of an automobile should be sampled every millisecarelialledpe-
riodic tasks while tasks lacking a predetermined inter-arrival time ealled
aperiodic tasks Finally, tasks that can arrive with minimum inter-arrival
time, but also less frequently, are callsporadic tasks

3.1.1 Scheduling

One of the most important parts of an RTOS is the scheduliggrighm it
uses to dispatch tasks. The scheduling algorithm detesnminehat order ar-
riving tasks should execute by dispatching tasks readyecwion. There
exist a plethora of scheduling algorithms [46, 230], and thesis only gives
a short overview. Scheduling is divided imdéfline andonline schedulingin
the offline scheduling approach (e.g., [80, 201, 280]), dalieg decisions are
made before system deployment, and result in a fixed schedalauntime,
the dispatcher simply schedules tasks according to theefgedined sched-
ule. Although most suitable for periodic execution, offleeheduled systems
have the advantage of full predictability; the schedulelmaengineered to ful-
fill almost any imaginable temporal constraint in advancedeygloyment. For
examples of temporal constraints that can be fulfilled by flime scheduler,
see [80]. Once the schedule has been developed, verifiecsted t the tem-
poral correctness is guaranteed as long as WCET estimatasfareOn the
other hand, offline-scheduled systems can be inflexible retghrd to software
maintenance and continuous development. In essence gaadingle task to
an RTS can result in the full schedule needing to be rebuilt.

In online scheduling (e.g., [152]), tasks are scheduledi@time depend-
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ing on the current state of the system. The schedule is tirerefenerated
continuously during the execution of the RTS. In essencerdine schedul-
ing algorithm dispatches the task that has the higpestity of the tasks
in the ready queue. Therefore, online scheduling algostldiffer mostly
in how tasks are prioritized. Ifixed priority pre-emptive scheduling-PS,
[20, 21, 44, 131, 148, 250, 253]), tasks are assigned a fyriduring design-
time, which is then used during runtime to dispatch tasksadsumptions are
made in FPS regardintgpwtasks are prioritized. Two specific priority assign-
ment policies that can be used for FPS e\t monotoniqRM, [152]) and
deadline monotoni(DM, [22]).

In RM, tasks are assigned a priority accordingrate (or, equivalently,
periods); a high rate (i.e. a short period) is translated &high priority. Liu
and Layland showed in [152] that a setioftasks with unique priorities can
always be scheduled if

~Ci o
;fﬁn(ﬁfl)

whereC; is the execution time and; is the period of task, under the as-
sumptions that tasks do not share resources, deadlineguakte periods, and
context switches are instantaneous. RMp&imalin the sense that if any static
priority scheduling policy can meet all deadlines, then Rivi as well. DM is
similar to RM, but tasks are assigned priorities accordmnddadlines instead
of periods [22]). DM is also optimal in the same sense as RMthistalso
holds when deadlines are less than periods.

A third priority assignment algorithm isarliest deadline firsEDF, [109,
152,242]). Here, task instances are assigned a priorityrdirg to their dead-
line. EDF is optimal in the sense that if tasks characterizgdrrival time,
execution time and deadline can be scheduled by any alggritten EDF can
also schedule the tasks. When deadlines equal periods, EBdhéslulable

when
n O,L
1=1 Tz S '
Recent results in real-time scheduling theory also makessible to com-
bine several execution models in one system while still gui@eing a pre-
dictable timing behavior (see, for example, [1,2,38,10Bpgardless of which
scheduling algorithm is used in an RTS, the timeliness ofilstem must be
guaranteed off-line (i.e., before deployment) ussohedulability analysislf
the system is deemathschedulabléi.e., some temporal requirements cannot

be guaranteed), then changes in the architecture and/mnde&® necessary
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to guarantee proper timeliness. For offline scheduling, phdcess is straight-
forward, since a generated schedule can simply be testethdonecessary
temporal requirements. However, the major hurdle in offénokeduling is to

generate a feasible schedule in the first place. For appesgohgenerate of-
fline schedules, see [80,222,280]. The schedulabilityyaisabf online sched-
uled systems simply means testing whether the associdtedability test is

fulfilled.

3.2 Shared Resources and Stack Sharing

A shared resourcés a resource that cannot safely be accessed by more than
one task at the same time. Typical shared resources incledsony-mapped
external devices and operating system firmware or softwemgces. Access
to shared resources is usually protected usEmmaphoresamutexesor similar
mechanisms. Mutexes can be locked and unlocked; a taskriésitd lock
an already locked mutex islockeduntil the mutex is unlocked by the task
that locked it in the first place. A consequence of this is khglh-priority tasks
may be blocked for extended time periods by low-prioritktas phenomenon
calledpriority inversion There exist several protocols to avoid priority inver-
sion, the most common ones beipgority inheritance priority ceiling and
immediate inheritanceSemaphores are similar to mutexes, but can also allow
several tasks to access the same resource at once.

In the priority inheritance protocol (PIP, see [231, 23#}E priority of a
task holding a shared resource is raised to the same levéligsex-prioritized
task trying to access the same resource. In addition, thectesn that a task
may only lock a resource for a single execution is imposeds $hlves the
problem of priority inversion, but may introduce deadlackdthough dead-
locks can be prevented by, e.g., imposing a total orderinthefesource ac-
cesses, blocking chains can still occum i the number of lower priority tasks
andm the number of distinct resources, a blocking for the duratibat most
min(n, m) critical sections is possible [105], which is consideregbiattical
in many real-time applications.

In the priority ceiling protocol (PCP, [105, 231, 232])pdority ceiling is
defined for each shared resource as the maximum priority yotask which
may lock the resource. In PCP, the priority of a task holdingsource is
raised to the priority ceiling whenever a task is blockedmresource. The
consequence of this is that a task can be blocked at most oneadh resource.
In addition, deadlocks are also prevented. The immedideritance protocol
(lIP, [45)), is a simplification of PCP. In it, the priority of task locking a
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resource is immediately raised to the priority ceiling. sTprotocol can be
implemented with relative ease, and has the advantagesviofghthe same
worst-case behavior as PCP.

3.2.1 Stack Sharing

Yet another type of resource available to embedded systenasidom access
memory (RAM), which is used to store temporary data duriregekecution

of a program. There are two main types of methods for allngathemory:
staticanddynamicmemory allocation. Static memory is allocated once, at the
start of the task, and the allocated memory is freed whenatleterminates.
Dynamic (orheap) memory, on the other hand, is allocated upon request from
the application, and must normally be freed explicitly bg gpplication when
the memory is not needed anymore. Failure to do so resultsiemory leak,
one reason why many embedded applications are restrictealyaise static
memory allocation.

One important part of the statically allocated memory isshecution stagk
used to store local variables, function-call parametedsraturn addresses. A
typical execution stack organization and some exampleetotre illustrated
in Figure 3.2. The allocation of stack space is critical iatth not enough
stack space is available, a stack overflow exception wilaligibe raised or
other data will be overwritten. Both situations may lead fr@gram crash or
that the application does not perform as intended.

In conventional multitasking systems, each thread of eti@etijtask) has
its own allocated execution stack. In systems with a largaber of tasks, a
large number of stacks are therefore required. Conseguéml total amount
of RAM needed for the stacks can grow exceedingly large. ¢freoto limit
the amount of RAM set aside for stack-memory in embeddedsystmany
RTOS:s provide means to execute multiple tasks on a singledlstack (e.g.
Rubus [19], Fusion [259], Erika [85], SMX [167]). The two fdifent task
structures are shown in Figure 3.3.

Allowing tasks to share a single stack means that we mustdime:svay of
guaranteeing staakonsistencyi.e., that the different stack areas of the tasks
do not grow into each other). If we assume that a task staig tise stack
as soon as it starts executing, and returns all stack spaceropletion, we
can preserve stack consistency by ensuring that whenessk éstpreempted,
it does not resume execution until all tasks occupying stgce above it
have completed. This is ensured in practice by not allowasfg to suspend
themselves voluntarily or to be suspended by blocking oheg have started
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Figure 3.2: Execution stack organization and typical cotste
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Figure 3.3: Task structure with separate stacks for eagh(left) and a glob-
ally shared stack (right).

their execution. The stack resource policy (SRP), intredua [24] by Baker
(further developed in [25]) uses this principle to permécst sharing among
processes in static and in some dynamic priority preempgiigéems.

In shared stack systems, one stack-frame is added to thersgsttack for
each level of preemption, as shown in Figure 3.4. Thus, thdrman stack
usage occurs during a worst-case preemption pattern. Iplesitask mod-
els (commonly used in real-time scheduling theory), whas&g are assumed
to be independent, any preemption pattern is possible. efdrer, we have
to (pessimistically) assume that all tasks may be activepgadmpted at the
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Figure 3.4: Example of execution and shared stack traces.

point where they use the most stack. The system’s maximurk-sisage thus
becomesy_ S; (where S; denotes the maximum stack-usage of tgskThe
consequence is that in these models the benefits of usingradsbtack are
limited.

However, in many systems, we have information that lets asicke that
some preemption patterns are impossible. For example, ystera where
multiple tasks share the same priority, no preemptions gntibese tasks are
possible (assuming first in, first out (FIFO) scheduling with priority level
and an early-blocking resource allocation protocol suchRs In this case,
the system’s maximum stack-usage becomes

E max(.5;),
P
P

wherep denotes a priority level andhax, maximizes over the tasks within
that priority level. If the number of priority levels is lowneugh, this type of
analysis can provide a much lower bound on stack usage. Baalsdescribe
this type of stack analysis and generalize it to allow nogepiption groups
to be defined [63]. In Papers A and B, we develop the ideas @k staaring
further in the case where information regarding timingtieles between tasks
is available.
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3.3 Response-Time Analysis

The response time of a task instance is the time between toedtion of
the instance and the time point at which the instance finiflsesxecution.
Response-time analysis (RTA, [20, 230]) is a family of teghes that can be
used to compute the response time (RT) of the tasks in a systdar different
scheduling policies. The worst-case response time (WCR®)tatk is then
the highest possible response time for any instance of dsét tThe goal of
RTA is to obtain safe upper bounds on the response times oboseveral
tasks in a system, ideally obtaining tight WCRT estimates.

In the rest of this section, it is assumed that for all tasksdiines are less
than or equal to the period times. The basic response-tiralysis without
blocking, introduced by Liu and Layland [152], defines thastaase response
time R; of a task: as the solution to the following equation:

Ri=Ci+ Y ﬁw C; (3.1)
vjehp(i) ' 7

where(; is the WCET andl; is the period of task andhp(i) denotes the
set of tasks with higher or equal priority than Under the assumptions that
the system does not suffer from jitter and no task is blocked, (ho shared
resources exist), RTA will yield upper-bounds on the finighiime of all tasks.

3.3.1 Extensions

In PCP or IIP, a task can be blocked for at most one critical region by a task
with lower priority. The classical RTA can be extended foe ttase where
deadlines can be larger than the period [233], and to takekislg time, jitter
and preemption delays into account [20].

In a transactional task model, tasks are divided traasaction All tasks
in a single transaction share one common activation evaedtfasks within a
single transaction may have dependencies in their rel@ass {so-callecbff-
setd. In classical RTA without offsets, the critical instant f@ task (i.e., the
situation leading to the highest possible response timejiracwhen it is re-
leased at the same time as all higher priority tasks [59]. Wadhing offsets,
this assumption is overly pessimistic since some tasks esearrbe released
at the same time. To tighten the analysis, Tindell [249]xeththe notion of
critical instant to mean a time point when at least one task igher or equal
priority in every transaction is released at the same timeordler to find the
critical instant that maximizes the response time of th& taxder analysis,
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an exact response-time analysis with offsets must try guesgible combina-
tion of candidates among all transactions in the system¢hwls intractable
for larger task sets. Tindell therefore provided (also ihJp an approximate
RTA with a lower time complexity. Palencia Gutiérrez and @alez Harbour
formalized and generalized Tindell’s work in [108], and ibf], Maki-Turja
and Nolin tightened the analysis and improved its run timer tsks with
offsets and jitter, Redell also presented a variant of tlaeeworst-case RTA
in [206]. In systems where jitter is important, such as whempguting end-
to-end response times [108, 251] or when low jitter values recessary to
improve control performance [28hest-caseesponse time analysis also be-
comes important to minimize jitter estimation. This is ddesed in work by
Palencia Gutiérreet al.[110] and Redell and Sanfridsson [205]. In systems
where precedence information (task execution order) iladta, such as in
distributed systems, RTA can be pessimistic due to the &itfddy of some
critical instance situations. Palencia and Harbour takeguiences where each
task can have at most one successor into account in [184Readdll extends
this approach to allow a task to have several successorf4i.[2

3.3.2 Best-Effort Response-Time Analysis

As a complement to RTAbest-effort worst-case response-time analygsis
be employed to find an (ideally tighpwer WCRT bound for a task. If the
best-effort worst-case response-time equals the wossttegsponse time upper
bound, as obtained by RTA, then both the upper and the lowerdmarexact
However, in most cases, both the best-effort worst-cagmrss-time estimate
and the worst-case response time upper bound are inexddhetrue worst-
case response time usually lies somewhere in between.

Two situations are common when trying to apply RTA to realuistdial
systems. First and foremost, it may be difficult to performARiUe to, e.g.,
inter-task communication, which has to be taken into actotihis often re-
quires manual work and a deep understanding of how the systeks. Sec-
ond, RTA may return extremely pessimistic WCRT estimatesdpessimism
from the WCET estimates used for task execution time, and altiget chain
effects this has on the WCRT calculations.

Unfortunately, systems that exhibit behavior like this abandant. An
example of an industrial real-time system where RTA is ngligpble is the
control system for industrial robots, developed by ABB.ST$)ystem has a very
complex temporal behavior. Some tasks have execution trargsg radically
due to input-dependent IPC and globally shared state \asaénd some tasks
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may even change scheduling priority. The analytical methade of a task-
level WCET attribute will in such cases be very pessimisticsithe tasks are
not independent; there are often dependencies that resmltiiual exclusion
between different tasks’ WCET scenario.

As a result, a more detailed system model is necessary fdintimey ana-
lyzis of such systems. Ideally, the model should describel#tailed execution
control flow on a code level with respect to resource usagéraechction, e.g.,
inter-process communication, CPU time and logical resssirdethods based
on measurements or simulations, have previously been stowrork well
in analyzing such large and detailed models, since they sauyple the sys-
tem state space rather than attempting to search it exbalystivegener and
Grochtmann claim ([270], page 277) that

In practice, dynamic testing is the most important anasitic
method for assuring the quality of real-time systems.

According to the same source, testing activities typicatigsume 50 % of the
overall development effort and budget for real-time system

Simulation-based analysis can also be far more efficiemdirfg potential
timing problems than system-level testing, the dominatheghod in industry
today. Clever response time sampling can also be supenianttom sampling
and yield results that, together with statistical configeestimates, can be
used when few other alternatives exist. Several framewalready exist for
the timing simulation of real-time system models, e.g., tbemmercial tool
VirtualTime [203] and the academic todIRTISST[67]. These solutions rely
on Monte Carlo simulation, which can be described as keettiachighest
result from a set of randomized simulations.

An alternative method is to use metaheuristics, such asigeoary algo-
rithms or local search. Evolutionary algorithms have prasly been tried with
success in the related area of test-case generation; avrefimetaheuristic
search techniques for non-functional system propertingg# given by Afzal
et al.[4]. Research on test-case generation for timing analyss focuses on
measurements of execution time or analyzing systems fadsdhbility. For
an example of the former, Wegener and Grochtmann [270] 26ACET and
best-case execution time (BCET) by measuring the exectitiom of a pro-
gram, with input generated using an evolutionary algoritiine method was
evaluated on a number of real-time programs, and comparbtbtte Carlo
(random) sampling. Tasks, preemptions and communicatiemat consid-
ered. The results show that the evolutionary approach fousre extreme ex-
ecution times in all cases tried. More recently, Mueller ®etyener [271] pro-
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vided a comparison of static analysis techniques and a@gakuty algorithms,
with regard to WCET and BCET analysis, for several real-timppligations.

The authors conclude that static analysis and evolutiotesting are comple-
mentary methods. Khan and Bate [134] also analyze WCET byrgtng test

data using a genetic algorithm. The paper investigatesfthetigeness of sin-
gle and multi-criteria optimization for complex processasing criteria such
as the number of cache and branch prediction misses and thieenwf loop

iterations.

In the line of work which is most closely related to Paper Qyletion-
ary algorithms are used for verifying timing constraintaineal-time system.
Here, it is common that response time is considered direRyated work in
this area is described and compared to Paper C in Secti¢h 5.1.

3.4 Summary

In this chapter, we provided an overview of embedded rea¢-8ystems and ar-
gued why predictability and timing requirements are esakintsafety-critical
applications. We also gave random-access memory (in pkatjcstack mem-
ory) as an example of an important resource in embeddedinealsystems.
We described real-time operating systems and common amadity found in
an RTOS, including the scheduling of tasks, the access oédnasources and,
in particular, stack sharing, in which several tasks cameshaingle run-time
stack. We also gave a brief overview of shared stack analygesthen con-
tinued with an overview of timing predictability in the forof response-time
analysis, in which safe upper bounds on the latest finishing of a task can
be established. Finally, the chapter ended with a sectiath@ishortcomings
of RTA and alternatives in the form of response-time analysised on mea-
surements or simulation.






Chapter 4

Maintenance Planning

This chapter provides a review of maintenance practicegdsrturbines and
rail vehicles. The chapter is organized as follows. Finstiraroduction to the
state of practice in maintenance is given. Some common Brante policies
are presented, definitions of metrics such as availability ®eliability, and
the practices of condition-based maintenance (CBM) arénedt Reliability-
centered maintenance is discussed next, followed by nrainte practices for
gas turbines and trains are discussed. The area of maiggpatimization is
then described. The chapter ends with a summary.

4.1 Introduction

In an industrial setting, breakdowns can have a significapgict on sustain-
ability and short and long-term profitability. During a bkeawn, fixed costs
of equipment, real estate and labor remain constant whildymtion is essen-
tially zero. Therefore, rapid repair is critical to busiaesiccess. Maintenance
strategies define why, when and in what way maintenance fisrpeed. There
exist several types of maintenance strategies, and inipeaet mix of differ-
ent strategies are almost always used. Repairing equipafienta breakdown
is known ascorrective maintenance (CMand is the most basic maintenance
strategy; as such, it exists in some form in all manufacgiorganizations.
However, in many situations, the direct and indirect co$is loreakdown can
be unacceptably large. This can be due to a loss of revenusitoiation where
breakdown can have catastrophic consequences, such asgbimjsiry and a
substantial risk for loss of life. One example of the first isqess industry
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maintenance, where significant run-time is required atetigp to begin pro-

ducing output of sufficient quality. The goods in processattime of break-

down, as well as the goods manufactured for a period aftebtéakdown,

may therefore be either unusable or of less value. Breakslthat can lead to
physical injury and loss of life exist in for example autoiwet aerospace and
railway applications, nuclear power generation and thenita industry.

Because of this, corrective maintenance strategies aedlyisomplemen-
ted by breakdown avoidance strategies in a process cpitagentive main-
tenance (PM)In this strategy, equipment is routinely inspected andised
in an effort to capture developing faults early, hopefulducing the num-
ber of breakdowns to an acceptable level. Preventive itigmecalso include
advanced techniques for detecting invisible faults and¢ieerding of deteri-
oration data. The resulting time series of deterioratioia dan then be com-
pared and analyzed to determine if a component has beercstdjsusually
heavy wear or if sudden negative trends become present. \Batkd indi-
cate an imminent equipment problem. Preventive maintenanitaditionally
done according to a plan specified in maintenance inter¥asoitable length
and unit. For example, gas turbine maintenance is doneénvials of equiva-
lent operational hours (EOH), equivalent number of cyclemng start to stop,
EOC), and calendar time. Road and rail vehicle maintenarieevals are usu-
ally specified in either travelled distance or calendar timeboth. For gas
turbines, typical interval lengths (in calendar time) rarigpm one year and
up; trains are serviced as often as once per week.

Corrective and preventive maintenance policies can bededas the “tra-
ditional” maintenance practices, and have been in use foadis. Unfortu-
nately, both corrective and preventive maintenance haawluhcks. For cor-
rective maintenance, this includes downtime in productiod high mainte-
nance costs due to secondary effects from equipment breakd®f great
importance are also the safety and environmental issuesahae associated
with malfunctioning equipment and breakdowns. Howevegyentive main-
tenance has other drawbacks, including high maintenansts clue to pes-
simistic maintenance intervals. Furthermore, preventiagntenance is (un-
fortunately) in itself a source of breakdowns due to thegased risk of human
error from performing the maintenance tasks. In the endstitagegy still does
not guarantee that the maintained equipment will not siifeakdowns.

Maintenance is in general also costly, and much of it is uessary and
avoidable. According to Wireman [278], as much as 1/3 of nesmiance costs
are due to bad planning, overtime costs, and limited or reigdigreventive
maintenance, and are therefore unnecessary. Companisp&athas much as
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its net income on maintenance [166]. Further, in [155] ittated that main-
tenance expenses are usually in the range of 15-40 % of thleptoduction
cost on a yearly basis; Coetzee [53] and Bevilancqua andiBi{&88] estimate
these expenses to 15-50 % and 15—-70 % respectively. In [1}pif states
that

The lack or ineffectiveness of planning and scheduling @an s
nificantly restrict the maintenance department in achigvta ob-
jectives and can thus prevent the company from maximisiag bu
ness profits and offering competitive advantages.

It is reasonable to define “good” maintenance as when careestainte-
nance is kept low, and as few preventive maintenance actisqmssible are
done [55]. Bengtsson [31] points out that fulfilling this §aiemands great
skill in planning proper preventive maintenance intenaisl tasks. The ef-
fect on production of preventive and corrective maintesaactivities is also
important [43, 73]. For example, it might be beneficial tofpen some main-
tenance activities in advance in exchange for overall highkailability, or less
impact on production.

4.1.1 Maintenance Policies

A maintenance policis a set of rules for how maintenance of a system should
be carried out. In this section, we describe some commonterance policies
for preventive maintenance. The maintenance policiesepted below are
based on mathematical models using results from religitig¢ory and renewal
theory. For a theoretical background, see books by Gertsfg} (on which
this section is based), Barlow and Proschan [27] and HgytamtiRausand
[119].

The most common preventive maintenance policies arelihek group
and age replacement policies. In the block replacement policydalalled
periodic replacement the unit is, for a period tim&’, preventively replaced
at time instantsl’, 27,37, .... In addition to the PM replacements, CM is
also present in that the unit is replaced at each failure lwappears between
preventive replacements. A variant where only operatitina is considered
and the goal is to maximize stationary availability is déssd in [99]. In a
periodic group repaimpolicy, a set of, units are serviced with a period 6t At
service, all machines are renewed completely. No reparasradertaken within
operational periods. In aagereplacement policy, a unit is replaced on failure
or when its age reachés, whichever occurs first. This differs from block
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replacement in that age is measured relative to the prevémiacement of the
component. Extensions of the age replacement policy, wigth@f maximizing
availability where repair time is non-negligible, also stx{see, for example,

[99]).
4.1.2 Availability and Reliability

Theavailability of a unit (or system) is the percentage of time the unit islavai
able for production. Similar but slightly different is therccept ofreliability,
where downtime due to preventive maintenance is not takenaiccount. In
power production and the oil and gas industry, availabditgl reliability have
a great impact on plant economy. Peak periods of productenvaen most
of the income is generated, which is why planned outagesduedsiled for
nonpeak periods [37] and power purchase contracts frelyuete clauses on
capacity payments. According to the same source, a 1 % fieduct plant
availability could cost as much as $500,000 per year in lbsscome on a 100
MW plant. Today, availability for small to medium size unjizelow 100 MW)
is already between 94-97 %. For trains, availability is & werportant param-
eter in deciding how many trains are needed for running ttemded traffic. If
train units have high availability, this may mean that fetvains are needed to
give an adequate service level. In [37], availability isnhally defined as

PM + CM + EO
T

where PM is the amount of time spent on preventive maintenantd, is the
amount of corrective maintenancg,is the time period and’O is the equiv-
alent outage hours due to reduced capacity. For a systenmagegepower,
EO can be defined a80 = Tr(1 — La/Lp) whereTy, is the time period
of reduced load[ 4 is the actual load and ;, is the desired load. Similar
definitions can be constructed for vehicle maintenancethaumost common
usage is to sekO = 0. Since availability is often a parameter in maintenance
contracts, it is not common that other definitions are usete €&ample is to
define availability asA = 1 — Mp/T whereMp is time intended for produc-
tion which is instead spent on maintenance. Such definitoasuitable for
evaluating maintenance performance.

Since CM and EO depend on actual conditions at runtime, an optimistic
assumption of no load reduction and no corrective maintemgrelds the fol-
lowing theoretical availability which is used later in Papers E and F:

A=1-

Ar=1-—==
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If the expected amount of corrective maintenance is avaifalp a maintenance
schedule, then this could easily be included in the calimratfor availability

when performing or after optimization. Since more maintexgais actually

done when maintenance activities are grouped togethermrtir@int of cor-

rective maintenance would almost certainly be lower, whigdans a higher
availability than expected.

4.1.3 Condition-Based Maintenance

Condition-based maintenance was introduced to try to abaigbitfalls of tra-
ditional maintenance policies by maintaining the corregtipment at the right
time. CBM is based on using real-time data to prioritize aptinoize main-
tenance resources using a process of state observatied cafidition mon-
itoring. A CBM system will ideally monitor the system continuousdyting
with a preventive maintenance activity when maintenaneetisally necessary.
Predictive maintenance (PdMakes this one step further by adding dynamic
lifetime estimates and deterioration models to predictftiere wear of com-
ponents, allowing for production and maintenance planiingdvance. In
recent years, instrumentation and better tools for camtlidiata analysis have
indeed made it possible to accurately predict both the éudieterioration and
existing imminent failures of many components subject tgsptal wear. Ide-
ally, CBM in this form will allow maintenance personnel to doly the right
things, minimizing spare parts cost, system downtime and 8pent on main-
tenance.

Although CBM in theory allows maintenance to be performest pefore
a potential failure becomes critical, in practice, maiatgee still needs to be
scheduled and planned in advance. As a direct consequetite mire exact
knowledge of the maintenance need of the product, CBM maémtee “inter-
vals” no longer remain fixed in time and easily predicted.tdad, they vary
depending on the condition of several components and atyariether fac-
tors. In [200], it is stated that in order to maximize the faadrom CBM for
the enterprise, it is as important to focus on the afterntamigeply chain —i.e.
the back-end of the process, including maintenance — agatdevelop bet-
ter data gathering, diagnostic and prognostic technigBasther, it is shown
that optimizing the value chain results in lower costs arghér availability.
Failure to plan properly for CBM, as with normal preventivedacorrective
maintenance, will result in availability loss due to pooogping of mainte-
nance, suboptimal usage of labor, and other cost ineffi@enc
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4.2 Reliability-Centered Maintenance

In this section, we outline maintenance practices baseti®reliability-cent-
ered maintenance (RCM) methodology [92,169,171,1812833, RCMis an
approach aimed at improving and optimizing maintenancetjpes by focus-
ing on identifying and implementing the maintenance peBdhat can most
efficiently manage the risk of equipment failure. In thistget we mainly
use the terminology from the NAVAIR 00-25-403 managemenhua[171],
which is consistent with the original RCM report by Nowlardadeap [181]
and compliant with the SAE JA1011 standard [218]. Accordioghe last
source, RCM addresses at least the following seven qusstion

1. What s the item supposed to do, and what are its perfornsandards?
2. In what ways can the item fail to provide the required fiorality?
3. What events cause each of these failures?

4. What are the immediate consequences to the unit when eadie fac-
curs?

5. In what way does each failure matter?

6. Is there an activity that can be systematically perfortoedroactively
prevent (or at least diminish to a satisfactory degree) tmsequences
of the failure?

7. If a suitable preventive maintenance activity cannotdumél, then what
should be done instead?

The initial part of the RCM process, corresponding to qoestil-5, is to
identify the operating context and identify failure modis,possible causes
and effects. This is often done by performing a failure madffects and criti-
cality analysis (FMECA). In answering questions 2 and 3fdlilare character-
istics of a physical system are defined in termpatientialandfunctionalfail-
ures. A potential failure is “a definable and detectable g@wrdthat indicates
that a functional failure will occur,” while a functionalifare is “the inability
of an item to perform a specific function within specified lisfii( [171], page
1-3). In addition, @idden functional failuras defined as a functional failure
undetected during normal operation.

Question 6 (“What systematic task can be performed prodgto@revent,
or to diminish to a satisfactory degree, the consequencésediilure?”) is
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answered by setting up a set of maintenance tasks, dividedha following
categories:

Servicing tasks include replenishment or replacement of consumables such
as fuel, oil, filters, and anti-freezing agents, which arpleed during
normal operations.

Lubrication tasks consists of the application of lubricants to specified com-
ponents.

On condition tasks are periodic or continuous inspections designed to detect
potential failures and therefore allow repair prior to adtional failure.

Failure finding tasks are preventive maintenance tasks performed at specified
intervals to determine whether hidden failures have oeclrr

Hard time tasks are the scheduled removal of an item or a restorative action
at some specified maximum age.

For on condition tasks, the estimated time from a potentia functional
failure (the PF interval) is used to determine inspectidarivals. Methods for
estimating the PF interval include lab testing, analytivathods, in-service
data evaluation and engineering judgment, which can bel@seperator and
maintainer input, component design knowledge and expegifnom different
applications with similar components [171]. In realityetirue time from a
potential to a functional failure is stochastic and will yatepending on the
environment and operational conditions. For failure mdtascan have safety
or environmental effects, it is therefore important to seke PF interval that
captures the situations that are possible. Note that CBMbeaseen as on
condition tasks with a very short inspection interval, esgonding roughly to
the effective sample frequency of the condition monitogagipment.

From a long-term scheduling perspective, there is littfiedince between
the categories, since we, on a high-level, do not need tomgissh between
what work is contained in the maintenance activity. In othierds, in this the-
sis, a replacement (hard time task above) of a componenhssdered repair to
a as-good-as-new state for the component, while inspec(aervicing, lubri-
cation, on-condition and failure-finding tasks) are coasid “as-good-as-old”
maintenance, in that we assume that such activities do fettafomponent
lifetime. However, one significant difference between aepments and in-
spections is that these tasks affect each other quite suiadlig since replace-
ments restore component lifetime fully, it would servdditbr no purpose to
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Figure 4.1: Unrelated replacements/overhauls and ingpsobf a single com-
ponent (top), and the same situation with synchronizedeictipns, resulting
in the elimination of unnecessary inspections (bottom).

schedule inspections independently of the performed cepiants, as shown
in the top of Figure 4.1. Therefore, we consider inspectiming component
as dependent on the component replacements that occug dypraration, as
shown in the bottom part of Figure 4.1.

Once the requirements for each maintenance activity ar@leted, the re-
sulting maintenance specificationgackagednto work packages. As pointed
out in [171], properly packaged preventive maintenancedsengost effective
than unpackaged.. Maintenance packing is done by grouptigtizs that are
“natural” in that they have common intervals, access theessmbsystems of
the unit, and/or require the same type of skills. Next, theilfiéty of activ-
ity intervals needs to be determined. Safety-critical airammentally-related
activities often dictate where the groups can be perfornaddle economic
or operational tasks can often be moved more freely. To re@ tracking
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Activities
Time units  Not phased Phased
100 1,2,3 1,2,3,5,6
200 1,2,3,4,5 1,2,3,4,7
300 12,3 1,2,3,5,8
400 1,2,3,45,6,7,89 1,2,3,4,9
500 Repeat with 100 unit package

Table 4.1: Phasing of maintenance activities

problems, maintenance packages are also often creategl msittiples of a
base interval.

After the initial grouping of tasks based on frequency andicmn factors,
it may be beneficial to additionallphasemaintenance activities in order to
level the resource requirements. The following examplenffd71] illustrates
this idea. Suppose that maintenance activities 1,2 and Baankaged at 100
time units, activities 4 and 5 at 200 units, and activitie3 & 400 units. Phas-
ing activities essentially means spreading their occaeaver the packages
to level the maintenance effort. One possible phasing afities is shown in
Table 4.1; note that under the “Phased” column, activiti<s & e still repeated
at 400 hour intervals, although in different packages fromdcenario where
phasing have not been performed.

The concept of “flexible packaging,” where activities arel@ged dynam-
ically based on the accumulated usage or wear of the indiVichmponents,
is also mentioned in [171]. According to the same source,

This concept allows maintenance to be performed uniquely
for each end item, and therefore requires significant marreeye
oversight or facilitization using automated rulesets amaking to
ensure all maintenance is performed across the populataiarb
the RCM-derived tasks intervals. While significant opeizai
and economic advantages are possible, the oversight redjuao
ensure safety is not compromised should be carefully ceresid
before adopting this approach. Development of reliable PHM
systems will make this kind of approach more easily accamgd.
An additional consideration is the need to reliably prediatiget,
material, and resource requirements when the maintenaack-p
ages and intervals are not fixed.

1Prognostics and Health Management
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Figure 4.2: Schematics of a gas turbine. Image by Jeff Diabh$ed under the
Creative Commons License: http://creativecommonsioggises/by-sa/3.0/.

Papers D—F in this thesis are concerned with dynamicaliymghg the pack-
aging of maintenance. Finally, to adjust to experienceseghuring opera-
tion, RCM advocates constant review and the adjustment oftereance prac-
tices for the lifetime of the machinery.

4.3 Specific Maintenance Practices

Maintenance practices differ much between applicatioasrsince industrial

areas may have substantially different operational chariatics and demands.
In this section, we will outline maintenance practices fas gurbines and train
units.

4.3.1 Gas Turbines

A gas turbineis a rotary engine that uses the Brayton cycle to extractggner
from a flow of combustion gas [37]. The archetypical example gas turbine

is the jet engine [163], depicted in Figure 4.2. Axial flow gabines are typi-
cally constructed using @ompressofupstream), producing compressed air to
acombustion chambewhere fuel (diesel oil, natural gas, etc.) is injected. The
resulting fuel-air mixture is ignited, thereby increasthg volume and veloc-
ity (and temperature) of the gas flow, which drives thgbine (downstream).
The turbine is coupled to the compressor, which sustainsdirdustion cycle.
Gas turbines are found in jet aircraft, naval vessels, lates, battle tanks,
generators and oil and gas applications. The main advaofagses turbines is

a better power-to-weight and power-to-size ratio than fstom engines.
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Theoretically, a higher combustion temperature meangearedficiency,
but the materials (steel alloys, nickel, ceramic, etc.)duseconstruct the en-
gine parts limit the temperature at which the cycle can dperihe wear of
components such as turbine blades, guide vanes, burnertheicombustion
chamber itself is increased significantly with higher terapgare, and consid-
erable engineering effort is therefore spent into coolimdpine parts. One
example is that the blades, guide vanes and combustion @raardtypically
constructed to allow a cooling air flow to pass through the ponent. Al-
though this can reduce the air flow by as much as 25 % in a mo@srtugoine,
cooling of this type is necessary to reduce maintenance &xegptable level.

Turbine Maintenance

Due to its simpler construction with fewer moving parts, & garbine is in
theory more reliable and easier to maintain than a pistoinendn practice,
however, turbine components are worn heavily due to a higlogking speed
and temperature. In Figure 4.3, the contribution to gasrterdown time due
to some major components, according to [37], is shown. Aliogrto the
figure, the components in the hot parts of the gas turbindu@intg the first
stage of the turbine) contribute 65 % of the down time of adgtpgas turbine.
The focus of our case study on gas turbine maintenance —rgessén Pa-
pers E and F — is therefore on the hot parts, which includesdngbustion
chamber and blades and guide vanes in the compressor tufiirene blades
and guide vanes are also highly sensitive to dust, fine samtbdsats in naval
environments, which works as abrasives. Therefore, adrdilare fitted in en-
vironments such as deserts and on oil platforms. In somécagiphs, filters
have to be fitted and changed several times daily.

Today, the condition of the gas turbine is mainly estimatednispection
at previously planned stops. Since the gas turbine usuglily more or less
constant use in between maintenance stops, the turbinetchannspected
and/or repaired for relatively long periods of time. Theref methods have
been developed that can not only estimate and monitor thditgmmand wear
of the turbine during operation, but also hgledict the future maintenance
need of turbine components. The future condition of a gdsrnardepends on
parameters such as actual work load profile, quality of fhemmidity, parti-
cle levels, etc. Of course, these factors have always afiette condition of
the turbine, but it is not until recently that it has been jjusso estimate and
measure these correctly for individual components duripgration. In the
past, it has therefore been necessary to construct mairtenatervals from
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Figure 4.3: Percentage of gas turbine component contoibisitio down time,
from [37].

the critical component (or components) that require théésgy maintenance
frequency. In addition, an additional worst-case scermaaagyin has been nec-
essary, taking into accounts factors such as possible aations, difference

in environment, and other sources of uncertainty. Thesecesof pessimism
present in today’s maintenance intervals are natural datel for improve-

ment using CBM.

4.3.2 Train Maintenance

Vehicle maintenance differs in several ways from the maiatee of stationary
equipment. The largest difference is that vehicles are magathieir current and
future location being dependent on the previous and futiarengd jobs for the
vehicle. For rail vehicles, the planned jobs are usuallg@néin the form of
a timetable. Instead of having mobile repair crews visitimg site for mainte-
nance work, the train regularly visits one or several maiatee workshops as
a part of the normal duty of the train. Another differencehiattthe train dis-
patching central must make sure that the train is indeedteght workshop
when needed. Given a timetable, the problem of allocatiaiggrin the form
of locomotives, carriages and/or multiple units to the taed transports is
called therolling stock rostering probleror therolling stock circulation prob-
lem[6,12,86,191,227], and NP-hard when constraints on maintenance are
present [84]. We look closer on an operational version afplanning problem
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when maintenance constraints are added in Paper D.

Since the freedom to plan maintenance is limited by the t@stering, the
execution of maintenance actions is also limited to the fimervals when the
train is actually in a workshop. These intervals may be diff¢ from the pre-
dicted time intervals since trains are dispatched accgrttirthe global train
supply and the demand in the network for an operator. In aditime-
consuming setup activities are present in the shunting émewts on a rail
yard) of trains to and from the workshop, and parts of the teagnce equip-
ment might be located at other, specialized workshops irvitiaity of the
main maintenance workshop. On top of this, it is frequeritfy¢ase that there
are several maintenance workshops located in differeategfic areas of the
network, often having different track layout and resouregtnictions. Of im-
portance is also the layout of the workshops, which haverakkesource limi-
tations. First and foremost, a workshop contains a numhteacks for vehicles
under maintenance. It is also common that tracks have diffegetups in the
form of stationary equipment, such as lifts, graves and pdwes. The cur-
rent state of practice in short-term maintenance planrgniniour experience,
manual planning with the aid of computerized maintenanceagement sys-
tems, spreadsheets and possibly project planning tooRaper D, we assume
that the timetabled visits to the maintenance shop are pthimsuch a way
that no workshop resource restrictions (except limitecation) apply.

4.4 Maintenance Optimization

In this section, we will give an overview of the previous wankmaintenance
optimization. The area of optimal maintenance and maimeaalanning and
scheduling has been active since the 60s, starting withehmenal work by
Barlow and Hunter [26]. The book by Barlow and Proschan [2V§ga good
theoretical background on reliability theory. GertsbaRB][also provides a
good foundation of the area together with some applications

Plenty of survey papers of the area also exist. An excellahskghtly
dated overview of the many maintenance planning and scimedapplications
considered is given by Dekker [69]. More up-to-date reviewesgiven by Bu-
dai et al.[43], focusing on planning models for maintenance and pctdn,
and Nicolai and Dekker [174], studying previous work in apdl maintenance
of multi-component systems. Furthermore, the state oftttia applications of
maintenance optimization models is discussed by DekkeBSaad [71]. More
generic mathemathical maintenance models are also redibwScarf [226].
Other surveys of the area can be found in, e.g., [50, 73, 831,262, 267].
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Also worth mentioning is the review of gas turbine life maeagent by Vit-
tal et al. [264], the book by Cheret al. [49] on machine scheduling, and
the significant amount of work on maintenance managemeat {ee exam-
ple, [34,92,126,170, 183,194, 256] and the literatureengwdf the same area
by Garg and Deshmukh [96]).

Multi-unit Maintenance

In multi-unit maintenances, the system under consideratmsists of multiple
units, which have identical or individual characteristiegarding failure, costs,
setup activities, etc. An overview of multi-unit maintecas is given by Cho
and Parlar [50]. The research papers [7, 32, 42, 66, 1241989198, 285]
all consider multi-unit systems. In addition, the effecttbe system if one
unit is down is sometimes considered. Isexies systepthe system is down
whenever one of the units is down; this is the model that wast suitable for
the systems considered in this thesis. pagallel systemthe system is down
if all units are down. A system can also be a hybrid between serigsaaallel.
A special case hybrid is thle-out-of< system model, where the system is up
as long as at leagtunits are working.

An example of multi-unit maintenance research is given iis Bral. [41,
42], who apply a genetic algorithm to the problem of minim@perfect pre-
ventive maintenance (returning the maintained comporeat dtate as good
as new), in simulated series-parallel systems with a firdtézbn. Availability
requirements are considered with regard to corrective tea@mce activities;
preventive maintenance is assumed to be instantaneousal&bet al. [237]
use genetic algorithms to optimize both preventive maemer and production
scheduling, which is a deterministic single-machine salied problem [23]
with the goal of minimizing the total weighted completiom&. Preventive
maintenance restores the machine to a “good as new” congdéitd minimal
repair is assumed for corrective maintenance. Pagt#l[189] consider life
cycle costs when planning maintenance consisting of ptexeand correc-
tive maintenance. Other approaches, for example those byatkeyabalan and
Chaudhuri [123] and Ushet al.[261], also consider systems under deteriora-
tion, but are not directly related to the work presented is tiesis.

Opportunistic Maintenance

The work discussed so far has in common that maintenanastiestifor dif-
ferent units have been considered more or less independéregard to costs
and duration. Of great economic importance in multi-ungteyns is that the
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corrective or preventive maintenance of one unit is ofter  system stand-
still or shared costs, aopportunityto perform maintenance of other units at
the same time. Opportunistic maintenance (OM) is maintemavhere such
opportunities for more efficient maintenance exist. Oppattes can either
be fixed in time and occur at specific dates, or occur due to rineeptive or
corrective repair of other units. However, the most commsea of the term
“opportunistic maintenance” is to denote models where failitre and repair
offers an opportunity for preventive maintenance of othetsu

In [72], Dekker and Smeitink consider the allocation of fetive main-
tenance with unit duration to randomly occurring oppottiesiwith a random
duration. The authors discuss the prioritization of maiatee activities based
on the component-specific cost of deviating from the optipwht of pre-
ventive maintenance. Extensions to the case when mainterduration is
non-uniform are also considered, and the authors note éhaaich opportu-
nity, the optimal packing of maintenance can be decided byrapa knapsack
problem [132, 160]. Galante and Passannanti [94] study tbblgm of de-
ciding which components to maintain in order to guaranteecmired level
of reliability up to the next planned stop. The authors psgpan exact cost-
minimizing algorithm for this problem, and apply it to a rease regarding
ship maintenance.

Maintenance with Economic Dependencies

In addition to opportunistic maintenance, there are otbasons why the joint
execution of maintenance activities may be beneficial. kample, two ac-
tivities may share a setup activity such as dismantling, ay tve executed in
parallel. Maintenance research where this is consideredrizetimes called
maintenance witleconomic dependenciesAn overview of the area can be
found in the review paper by Dekket al.[73].

Several articles on maintenance models with economic digreies have
also been published. In these articles, economic depeiedesre usually mod-
eled as sharesetup costsThe most common case is when setup costs are mod-
eled as a constant which is independent on the clusteradtigsti This is the
approach taken in [68, 70, 74, 273-275]. van Dijkhuizen aamtiarten [263]
consider a more generic dependency tree, where the learrespond to “ba-
sic” activities and the non-leaves (minus the root) areseittivities. Pre-
decessor setups to an activity can therefore be shared thigh activities in
different branches emanating from the setups. Alm@tead. [9] study oppor-
tunistic replacement schedules where opportunities assilple maintenance
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occasions. The duration of activities is not directly cdesed in the model,
but shared setup costs, in the same form as in [275] and inr®&pend F, are
taken into account. Setup costs may also be dependent orlvedar time
of the opportunity. The problem is formulated as a MIP modalextension
of the model proposed by Dickmaat al. [75] in that stronger constraints are
used. The model is also a generalization of what was propiosAddréas-
son [15, 16] by allowing time dependency. The authors shdwast for each
set of fixed maintenance opportunities (where setup costtharefore in ef-
fect), the remaining problem decomposes into a linear progring problem.
Therefore, binary integer variables are only needed foioffrtunities. As
another extension from Dickmaat al. [75], it is shown that, for costs which
are non-increasing with time, replacements will only ocaupositive integer
multiples of individual component deadlines.

In [245], Tan and Kramer consider opportunistic mainteeandhe chem-
ical processing industry. Monte Carlo simulation is usecstimate costs,
which allows a very generic cost structure at the expensetefohinism. A ge-
netic algorithm is proposed to solve the optimization peofl The cost of pro-
duction loss is considered uniform for the planning horizzmd opportunistic
costs are estimated once for each component only. More exndgipenden-
cies between maintenance activities are therefore notdenesl. Marseguerra
et al. [159] also apply Monte Carlo simulation and use genetic riigms. In
addition, they consider other properties such as the numbegraintenance
technicians available. In [288], Zhat al. propose a scheduling algorithm
for preventive imperfect maintenance of a multi-unit sgsteased on dynamic
programming, extending the work in [287]. Opportunities assumed to exist
whenever a component reaches its reliability threshold pmaventive mainte-
nance is grouped using opportunistic cost savings due tatiim& and main-
tenance costs. The downtime cost model for an activity ggdupgether with
one at its threshold is to subtract the first cost from thd tmist.

Goyal and Kusy [106] determine maintenance frequenciea fmt of ma-
chines, where setup costs are constant and maintenanceas®gcheduled
periodically. Operating costs are assumed to increaseopiopately to the
length of maintenance intervals. Yamayedeal. [281] use dynamic program-
ming to optimize maintenance schedules with respect topeugt reliability,
demand of generating units and maintenance cost. The nihémedice be-
tween the work by Yamayeet al. and our work is that in the former, main-
tenance is scheduled for power-generating units on a high. lén our work,
maintenance is scheduled for a single unit with the aim ohioiotg mainte-
nance packages for individual components. Since we areéatan the main-
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tenance of a single unit, we also use a more detailed downtiodel where
small-scale effects such as resting periods are taken gttouat. In [275],
Wildemanet al. discuss maintenance scheduling for a multi-component sys-
tem with constant co-allocation cost savings, and whererieation of com-
ponents is also taken into account. In addition, a polynbsailution approach

is presented. The polynomial solution is optimal if grougscnsecutivg.e.,

the groups are in the same order as the preferred time potheddctivities.

In a model with a more complex setup structure, it may be agtim group
activities non-consecutively if the earnings from doingsibweigh the costs.

Rail Vehicle Maintenance

From a system perspective, maintenance of vehicles is narglex than
maintenance of stationary equipment. This is because thielge have to
be routed to a workshop before maintenance can be perforiinedefore, re-
search in rail vehicle maintenance often includes the @ssutrouting prob-
lems. An exception is present in work by Hagtial. [111, 112] who focus
on the detailed planning of work performed in the train maiaince facilities
only. Cordeatet al. [56] give a survey of models for optimization of train
routing and scheduling.

In Paper D, we approach the problem of routing vehicles tonthekshop
so that maintenance costs are minimized. We also considesui-problem
of grouping maintenance activities such that the number ahtanance oc-
casions is minimized. The problem of determining optimdiieke routes is
NP-hard in general [84], which is why we chose a heuristichoétto find
suitable routes.

Train maintenance routing has been considered before,saofiein seen
as part of the related problem of assigning trains to tinetaips. A closely
related problem to the one we have considered has also hegirdsby An-
deregget al. [12], who propose a heuristic routing approach usable img-lo
term perspective. Packaging of maintenance is not corsideMaréti and
Kroon [161, 162] also consider the operational maintenanaéng problem
without considering maintenance packaging. In [161], aino@mmodity flow
model is proposed to solve the problem. In [162], an integegramming for-
mulation is presented, and a shortest path heuristic isogegpto solve the
problem for a planning horizon of 1-3 days. Evaluations oeaistically-
sized example show that the heuristic performs well in jicact

Sriskandarajahbt al.[239] consider an overhaul scheduling problem for the
Hong Kong Mass Transit Railway Corporation (MTRC). The nogtof trains
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is not considered, but workshop capacity and work force irements are
present in the model. &ickaet al. [197] formalize a train maintenance rout-
ing problem and propose generation of possible changeg toafiic schedule
to fulfill the model. The model is conceptually similar to tteuting problem
in Paper D without the sub-problem of maintenance packadimfortunately,
the approach is not evaluated on simulated or real data,taschbt stated
whether the approach has been implemented.

4.5 Summary

This chapter contained an overview of maintenance practicth a focus on
maintenance planning for rail vehicles and gas turbines.dégeribed some
common maintenance practices today, including the bloaymand age re-
placement policies. We discussed some different defirstafravailability and
reliability, and gave a brief overview of condition-basedgredictive main-
tenance. An overview of the RCM approach was also given, hed some
specific issues with regard to maintenance of gas turbing¢raims were de-
scribed. The section ended with an overview of related wonkaintenance
optimization, with a focus on maintenance where there @dshomic advan-
tages in grouping maintenance. We also discussed the spe@filems that
arise in train maintenance.



Chapter 5

Related Work and Thesis
Contributions

This chapter gives an overview of the academic and induiswigributions of
the thesis, and relate our work to previous approaches t& staalysis, best-
effort worst-case response-time analysis and maintenapiteization. The
chapter is organized as follows. In the first section, a summigthe academic
contributions is given, followed by a more detailed degdaripof the contribu-
tions within each of the three areas. For each area, a cosopauniith related
work and a summary of the academic contributions of the spoeding in-
cluded papers are given. The industrial impact of the thisglsen described,
followed by a list of the included publications togetherwé description of
the author’s role. Also included is a list of other publicais by the author.
The chapter ends with a discussion on future work.

5.1 Academic Contributions

The academic contributions of this thesis can be summas&gddllows:

* In the area of stack analysis, we give several new efficigatrithms for
analysis of shared-stack usage, and compare the algorithprsvious
approaches.

* In the area of best-effort response-time analysis, we giew efficient
hill-climbing algorithm with random restarts for the prebi of estimat-
ing the highest response-time in a complex system, and aeahnd

69
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compare the algorithm with a previous evolutionary aldwnit

« In the area of maintenance planning, we give several neviaadstfor
dynamic planning of train and gas turbine maintenance, amdpeare
the results to the state-of-practice.

In the rest of this section, we briefly describe the diffemnbetween Pa-
pers A-F and related work in the three areas of shared steadsis) best-
effort response-time analysis and dynamic maintenanaenjplg. For each
area we also outline the academic contributions of the dedupapers.

5.1.1 Shared Stack Analysis

The term stack sharing is commonly used to describe thetyahiliutilize ei-
ther a common run-time stack or a pool of run-time stacksckSsaaring in
the SMX RTOS [167] is an example of the latter, where reledaskis fetch
a stack from the pool of available stack areas, returning iteomination. A
different approach is proposed by Middbeaal. [168], where the stack of a
task is allowed to grow into the stack area of another taskvever, the most
common type of stack sharing seems to have evolved from B2ke25],
where the proposestack resource policy (SRR)lows tasks to share a single
run-time stack. Stack consistency is achieved by not atigwireempted tasks
to resume until all tasks occupying stack space above it finighed. SRP
permits stack sharing among processes in static and in spnaaric priority
preemptive systems. This type of stack sharing can be effigisnplemented
in systems where tasks have run-to-completion semantitslamot suspend
themselves, and is supported by several commercial meal-diperating sys-
tems, e.g. RTA-OS [153], Rubus OS [19] and Fusion RTOS [259Papers
A and B, we use this notion of stack sharing, and assume thetad¢asks use
one common, statically allocated, run-time stack.

Since in SRP, a preempted task is not allowed to resume hatibsks oc-
cupying the stack space above it have terminated, the pesstemptions be-
tween tasks become crucial in determining the maximum plesstack mem-
ory usage. The basic method to determine this in SRP andasipulicies is
to identify the maximum stack usage for the tasks on a singpeity level (or
preemption level). Since tasks on the same priority levehoapreempt each
other, the sum of these maximums for all priority levels thenstitutes a safe
upper bound on the total stack usage.

Several authors have also addressed the minimizationa¥f speace alloca-
tion. A common way of reducing the number of possible preé@mnpt(thereby
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also reducing stack requirements), is to allow tasks tdothigareemptions from
tasks up to a specified priority, the so-calf@éemption thresholdTasks with
a higher priority than the threshold are still allowed togmpt. Wang and
Saksena [268] address the problem of determining an opfinaity and pre-
emption threshold for a given task set. However, due to anpially large
search space, the branch and bound algorithm presentetl venycefficient.
In [220] Saksena and Wang revisit the efficiency problem ef atgorithm
in [268] and present three algorithms with different conapioinal complexity.
Gai et al. [93] introduce SRP with preemption thresholds (SRPT) and gi
procedure that can minimize shared-stack usage withopajelzing schedu-
lability. The procedure achieves this by using non-preénroups for tasks
using SRPT, and extends [220] by taking the stack usageldf tato account.
Ghattas and Dean [100] also investigate stack space reagrits under pre-
emption threshold scheduling. Daws al. [63] also address stack memory
requirements by using non-preemption groups to reducerttoaiat of mem-
ory needed for a shared stack. It is shown that the numbeeehgption levels
required for typical systems can be relatively small, wisi#i maintaining
schedulability.

Although non-preemption groups and preemption thresteadseduce the
amount of RAM needed for a shared stack, the use of thesdsaffaystem by
restricting the occurrences of preemptions, which can havegative effect on
schedulability. Furthermore, the method we present ingher can be applied
after preemption groups have been assigned, thereby repling system stack
further.

To obtain an upper bound on stack memory usage for a given tiask
possible control-flow paths of the task within an applicatimust be ana-
lyzed [116]. Bounds on maximum stack usage of a given taskheafound
by abstract interpretation of an application with toolstsas Absint [3] and
Bound-T [248]. Chatterjeet al. [48] study stack boundedness for interrupt-
driven programs. The programs are modeled using the iptecalculus of
Palsberg and Ma [185]. In [208] Regediral. present a method to guarantee
stack safety of interrupt-driven software. The method wdrk computing the
worst-case memory requirements of individual interruptdiers, and by then
performing preemption analysis between handlers.

A large number of publications also address preemptioryaislsee, e.g.
[13,51,77,147,202,207,243]. For example, in [147] ktal. present a tech-
nigue to bound cache-related preemption delays in fixeakipripreemptive
systems. Our work relates to theirs in that we also invegtigasted preemp-
tion patterns. However, our objectives differ in that legeal. focus on timing
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Figure 5.1: Offset relations (left) and the resulting preéon graph (right) for
a set of tasks with priority 1-4.

delays caused by cache reloading and preemption patteleseas we address
shared memory requirements.

Contributions

In the previous section, we saw that the most common anabsimique for
stack sharing is to use the sum of the stack usage for eachmptiea level.
However, in some cases, more information that can be usetbfoputing a
safe stack upper bound exists. One source of availableniaimon is the tim-
ing relations between tasks. For example, data regardangdfliest possible
activation time point, a so-calledffset can together with response time data
aid in deciding which preemption patterns are possible. Situation is illus-
trated in Figure 5.1, showing five tasks of different priprithe tasks are also
affected by a short high-priority service interrupt whishtaken into account
in the response times of the tasks. Tasks are named P1-B4 high number
indicating a high priority; note that P2a and P2b share theesariority. The
release time points and latest finishing time points of tis& &et, assumed to
be schedulable, are shown. We assume a maximum stack ushdercfach
task. The relations (due to offsets and response times)eleettasks make it
possible to deduce that none of the tasks P1, P2a and P2b pasdmepted by
any of tasks P3 and P4, since they will never execute simettasly. Further-
more, tasks P2a and P2b share the same priority and theneégraot preempt
each other.

The information on possible and impossible preemptionsbeaoollected
in the form of apreemption graphshown in the rightmost part of Figure 5.1. In
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Figure 5.2: Example of a maximum stack utilization preemptthain in a
system with three transactions and 15 tasks in total. Thisiadicate possible
intra-transaction preemptions between tasks due to isicrg@riority and off-
set relations The thick arcs indicate the longest path inrtagimum possible
preemption chain. Note that of the possible inter-transagireemptions, only
the ones in the longest path are shown.

this figure, an arc between two tasks indicates that the raskse preempted
in the order of the arc. From this graph, we can deduce that ileneed
at most 2 units of stack space, a significant reduction froenetftimate of 4
obtained from using the sum of the maximum stack usage onleaeh

Paper A develops this idea further for systems where tasksstiare the
same stack have an offset relation. However, in some systgmsos of tasks
(calledtransaction$ share a single activation event. The different activation
events in those systems are independent. Therefore, ptieesthat are im-
possible due to offsets and response times can only be &elyuraken into
account within transactions. In Paper B, the ideas from Pae extended
to handle this more generic system model, and to furthetdigthe analysis us-
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ing non-preemption relations from other sources, for exXarsipared resources
or precedence relations. A small example of a maximum sttlikation pre-
emption pattern is shown in Figure 5.2.

In more detalil, the contributions are the following:

» A general and exact formulation of the maximum stack usagblem,
which is applicable for any preemptive system model basedljoamic
(run-time) properties.

» Several novel methods to determine the maximum stack meossd
in preemptive, shared stack, real-time systems. By apprating the
run-time properties, together with information about thelerlying run-
time system, these methods can safely approximate the maxisys-
tem stack usage at compile time. The thesis also contairdspod cor-
rectness of the given algorithms.

« Two comprehensive simulation studies where we have eteduaur
techniques and compared them to the traditional methodstimate
stack usage. We found that our methods significantly redts=amount
of stack memory needed.

5.1.2 Best-effort Response-time Analysis

Recall that the response time of a task is the time taken femk invocation
to termination. Although analysis of response-time witham@ to other as-
pects than the worst-case response-time, for example geseegponse-time
can also be interesting, we will focus on worst-case resptinge. Worst-case
response-time analysis includes standard approachesasuRriA [125, 152]
and formal analysis tools like UPPAAL [29, 260], which casabe used for
this purpose. However, the state space for industriadsizedels can grow too
large for formal analysis tools to be practically useful.

An alternative method is to use metaheuristics such as igejoetevolu-
tionary) algorithms [103]. In Section 3.3.2, we described relatedwwith re-
gard to metaheuristics for execution-time analysis. Haxgethe line of work
most closely related to Paper C is the use of evolutionargridhgns for ver-
ifying timing constraints in a real-time system. In thisdinf work, response
time is often considered directly, since it is more apprajgrin a system-wide
analysis than execution time is. As an example, Alardex. [5] use genetic
algorithms to generate test cases for a software relayrayssed in electrical
networks. The purpose of the genetic algorithm is to provukg response
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times for the software, which executes as a single task imalation environ-
ment. Preemptions and communication between tasks arfdhemot con-
sidered. Another approach is given by Briagtdal. [39, 40], who investigate
using genetic algorithms for stress-testing real-timeesys in the sense that
test cases that maximize the chances of deadline missesrastucted. The
genetic algorithm operates on a sequence of release timagédoiodic tasks.
Input data is not considered, since this is considered astitrfor in the tasks’
WCET.

A problem with evolutionary algorithms is that they are nartgularly
suitable to guaranteeing a high testing coverage. @il. [254] extend the
basic evolutionary testing approach by seeding the algarivith test data to
achieve a higher structural coverage. Experiments shoncaedsed reliability
in the results and an increased efficiency in terms of geioasaheeded.

In a distributed system, response time can involve comnatioit over sev-
eral distributed nodes, and timing analysis is thereforeencomplex than for
single nodes. Samét al. [221] aim to find extreme response times for dis-
tributed systems by optimizing a set of simulation paransefi models con-
taining temporal attributes and communication. A gendgorithm is used to
explore combinations of task execution times in order toimae end-to-end
response time. The flow of control within tasks is not congide Their results
depend on the method developed by Racu and Ernst [199] fotifidag sit-
uations where decreased execution times can lead to iecreasponse times.
Also worth mentioning is the analysis framework by Kehal. [135], which
has a similar basis in the use of temporal task attributes.

Kraft et al.[141] present a meta-heuristic approach for best-effspgoase-
time analysis of models of complex legacy systems usingsidiesn genetic
algorithms. The approach is based on a simulator using adstthef ran-
dom number generator seeds, in turn used to generate randguobens for the
parameters of the adhering system model. The seed of themandmber
generator can be changed at arbitrary time points, and tlov&es a form of
control mechanism.

The work presented in Paper C is an extension of [141], inicod) an
explicit representation of input data that is more suitdbtethe analysis un-
dertaken. Contrary to previous approaches, we use thekwelin, but in this
area rarely used, hill-climbing algorithm for responsadianalysis, and we
take into account system-level properties such as preengptind task com-
munication. To the best of our knowledge, this approachsgtaese-time anal-
ysis has not been tried before. Results are promising incibratergence for
small systems is very quick, and the less complex algoritenfopmed, in all
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cases tried, better than the genetic algorithm we used fopaason..

Wegener and Grochtmann [270] use evolutionary algorithondifiding
extreme WCET and BCET estimates. They report that local beatch as
hill climbing and simulated annealing, had little effeciimproving the results
of the evolutionary algorithm, and suggest that this eféeches from already
having reached a fitness plateau or local minima by using Yoigonary
algorithm. The authors then state:

The optimal solution sought represents an isolated andlIsmal
subdomain and is best found by sampling the input domainyide

We believe that this conclusion is also valid for estimatiagponse time. It
is likely that the results obtained in Paper C can partialyabcounted to the
randomization and iterative restart of the hill-climbirlgaithm, which helps
in exploring plateaus and escape local minima.

Contributions

Paper C proposes an complementary approach to traditidgliR contrast
can be applied to a wide range of complex industrial systdmsgdoes not
guarantee that the produced estimates are upper bound® GNGIRT. The
approach is based on simulation optimization, which is bgaf reproducing
the application behavior that causes a specific responge fitme main merit
of the proposed approach is that it can be used for testingoges: showing
that the response time of a taskceedgshe task deadline is enough to deem
the system unschedulable, and therefore unsafe. Morefispdlgji Paper C
contains the following contributions:

» An explicit representation of simulation instances in thien of inputs
such as execution time, arrival jitter and external inpuslus has been
defined.

A novel algorithm for manipulating simulation parametédrased on the
well-known idea of hill-climbing with random restarts.

» Athorough experimental evaluation of performance, sggdind conver-
gence of the new algorithm, comparing the results to thotsardd from
using a genetic algorithm and Monte Carlo simulation. Ingteuation,
we show that the new algorithm is significantly better thagwvfmus ap-
proaches in identifying extreme response times using dadomumber
of simulations.
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5.1.3 Maintenance Planning and Scheduling

In this section, we compare the work in Papers D—F with whatgraviously
been done in the area of maintenance planning. The body efmels aimed
at the railway sector is significantly smaller than for therengeneric problem
of maintenance planning with economic dependencies. The differences
between Paper D and the previous work in the railway domathasin the
former, we study stochastic maintenance predictions irfidima of a Gaussian
distribution, where the risk level of overrunning a subsystounter is the ba-
sis for setting a maintenance deadline in a global unit, fangple distance.
We also include the risk levels and the change in safe lilegstimates occur-
ring during condition monitoring as the input to the plarproblem. This
problem in turn is composed of two subproblems; first, findindable circu-
lation plans so that the maintenance cost is minimized, acdrl, the packing
of maintenance on a component level as a subproblem to centipeitglobal
maintenance cost. As far as we know, this approach has nottibied before
in the railway domain. However, it should be pointed out ttiet approach
presented in Paper D can benefit from more advanced modelschmibn
approaches for both the railway circulation problem andtli@er maintenance
planning subproblem. This is discussed in more detail iniGe&.5.3.

The previous work most closely related to Papers E and F isezard
with maintenance scheduling with economic dependencieseam mainte-
nance activities. As an example, two activities may shaees#me dismantling
activity, or may be performed in parallel. Our work and poed approaches
differ mainly in the economic effect of grouping activitieIhe situation is
illustrated in Figure 5.3. Most articles on maintenance et®avith economic
dependencies consider a common setup cost for all maintersantivities per-
formed at a single maintenance occasion. The approachustrdted in Fig-
ure 5.3(a), where activities A, B and C all share a commorpsetst,S1. The
setup cost is used to represent the actual cost of dismauatlid preparation
work before, during and after the maintenance occasion. dstroases, the
setup cost is also constant and therefore independent atathef the main-
tenance occasion. This is the approach taken in [68, 70784.275]. In some
other papers, the cost is allowed to vary with the mainteeaacasion date,
see for example the work by Almgrext al.[8, 9].

Common costs are suitable for the modeling of costs due tedtectiv-
ities, for example where there is a single shared cost agsdcwith taking
down the system [8, 244, 279], and where the setup cost ipémdkent on the
activities performed during the opportunity. This is trwe many practical
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Figure 5.3: Economic dependencies with a common setup apswith tree-
shaped setups [263] (b) and with DAG-shaped setups [8] (c).

Figure 5.4: Economic dependencies due to parallel-timatdur computa-
tions.

applications, which is why we include the same type of timpehdent com-
mon setup cost in Papers E and F. The model is however lesbsuivhen
the actual activities carried out during the opportunityehenore intricate de-
pendencies, and when the duration of the stop has a signitfi@et on the
total cost. The single work most closely related to PaperadERis due to
van Dijkhuizen and van Harten [263], who consider sharegisetsts and de-
pendencies that form a tree. The situation is illustrateigure 5.3(b), where
setup S2 is shared between activitieand B, and setugb1 is shared between
setupS1 and activityC'. If in this example activityA or B were planned for
a single stop, then botb1 and .52 would have to be carried out. However, if
only activity C was to be carried out, then only setéip would have to be per-
formed. The tree breakdown of dependence is attractives siraorresponds
more closely to the assembly structure of many units (see, the paper by
Sculli and Suraweera [228]), and is therefore suitable poegent setup costs
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due to the disassembly of a unit.

However, it is worth noting that a tree structure does notathe modeling
of situations like the one in Figure 5.3(c), where setlips shared between ac-
tivities A and B, while setupS2 is shared between activity andC. Almgren
et al.[8] give an informal example of this type of more complex degencies
between setups in the area of jet engine maintenance, whene dre several
possible ways to disassemble and reassemble the engifés tase, only one
disassembly path in Figure 5.3(c) needs to be taken to reasigke compo-
nent. Since an industrial gas turbine and a jet engine aiitasimconstruction,
the example in [8] is also relevant for our application. Heareone significant
difference is that a jet engine is usually replaced as a mditlaen serviced of-
fline. Gas turbines used for the application we consider #iem @erviced on
site, and the main cost driver is the downtime of the gas texbi

In Papers E and F, we therefore opted for a downtime-depéndstmodel
more accurately representing the loss-of-productiorscézir this purpose, we
use a detailed but manageable model of economic dependeh@eo the ef-
fect of parallel work on downtime. In this model, illustrdten Figure 5.4,
work in an activity is divided into different globglhases Typical phases in-
clude the shutdown of the turbine, one or several maintenphases, a startup
phase, and a testing phase. All jobs (at a single mainter@tasion) which
are performed within a phase can be done in parallel, buttihegs have to be
performed in series. Activities which cannot be done in elrahould there-
fore be separated into different phases. After computiegatbrk time for the
activities at an opportunity, we can then proceed to comaui@dditional night
and weekend rest time, as shown in Paper F.

As an example, the work-time model illustrated in Figure &ohtains
phases 1-3. In the figure, maintenance of tyipeonsists of the activitied 1,
A2 and A3, B consists ofB1, B2 and B3 andC consists ofC1, C2 andC3.
The activities{ A1, B1, C1}, {A2, B2,C2} and{A3, B3, C3} can be done in
parallel. Each activity has a duration (except the leftnaost rightmost nodes
which are used to indicate the start and finish of the maimemaccasion).
Therefore, the work time duratiar; (not considering night and weekend rest)
for a maintenance occasigrcan be computed as the longest path in the graph,
or equivalently as

u; = max{Al, B1,C1} + max{A2, B2, C2} + max{A3, B3,C3}.

Given a work time duration:;, a downtime cost; for the occasiorj and
a functionD (given in Paper F) adding resting time, we can then compw@te th
cost of a single occasighdue to downtime a&cjD(u;). Note that the cost of
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downtime is unique for each occasion. This is importantesingractice, the
downtime cost varies with the price of the produced comnyaatitd the cost of
operation. For the same reason, there might also be perfattsmmtime that

are essentially free with regard to downtime cost. Suclogsroccur when the
plant is down due to external circumstances not capturedhéyrtaintenance
model. Examples include the maintenance of other systemsamsidered

within the application, and downtime due to weekends orti@ageriods. As

far as we know, the approach outlined above has not beenkefmte in the

field of maintenance planning.

Contributions

In Papers D—F, we have studied the problem of preventive teraamce plan-
ning and scheduling under condition monitoring. In tramitl maintenance
planning, preventive maintenance is statically schedakedesign-time. In
condition-based maintenance, preventive (and ideallsective) maintenance
must continuously be rescheduled (and therefore re-ptiria¢ake full advan-
tage of potential cost savings. In essence, the problemdgriamically de-
cide which maintenance activities should be grouped tagethwhich point in
time. For rail vehicles, this includes the routing of vebito the maintenance
workshop. We have developed a simulation environment émtststic predic-
tive maintenance where vehicles are dynamically routedraathtenance is
planned into packages. We have also developed a tool forgtastic opti-
mization of preventive maintenance stops. In detail, thetrdautions of this
thesis are the following:

» A methodology for dynamic planning of the maintenance afris, in
which trains are rerouted to maintenance shops accorduhgn@amically
changing maintenance deadline estimates. Maintenaneeksiged and
planned according to the vehicle occupancy in the workshop.

A precise definition of the maintenance scheduling probhth oppor-
tunities, which allows maintenance to be planned with régarboth
loss-of-production costs and direct maintenance costs.aM prove
that the scheduling problem iP-complete.

« An implementation of a heuristic algorithm that can quyckblve the
problem for practical purposes. We also describe the imghgation
and the deployment of the scheduling tool, PO

* An evaluation of the results of maintenance schedulingoom ¥ariants
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of a real-world scenario, and a comparison of the resultsiohfyorithm
to the results from using mixed integer linear programming.

5.2 Industrial Impact

The work presented in this thesis has had substantial impactustry. All
included papers have either been implemented and deployediustry, or
have been evaluated on data from real-world industrialiegjbns. In detail,
the industrial impact has been the following:

» The polynomial-time stack analysis algorithm that is preéed in Paper
A (which has also been further developed in Paper B) was dpedl
with the goal of being applicable for the Rubus OS from AngtiSys-
tems [19]. In particular, the hybrid system model in RubusdoB8sists
of one set of time-triggered offline-scheduled tasks, fogetvith event-
triggered tasks in the form of higher-priority interrupska and lower-
priority soft real-time tasks. The statically schedulesksacan share a
single execution stack, and can be considered a singleatos. The
stack analysis from Paper A with polynomial complexity wasrefore
chosed for deployment [117], and is included in the Rubusdé&lop-
ment environment.

» The best-effort response-time analysis method presémtedper C has
been applied to models of industrial systems, but has nateet indus-
trial deployment. However, it seems likely that the develbpnethod
could be used to estimate the worst-case response-time rigal an-
dustrial system. The simulator RTSSim is generic and cansked to
simulate the behavior of most commercial RTOS:s. Howewrtie
method to be useful for large-scale complex real-time syst& model
extraction tool should be employed to simplify the simulapgogram
and decrease simulation time. Such a tool (MXTC, Model eXioa
Tool for C) is currently in development along the lines of #proach
proposed in [14].

» The approach for combined maintenance routing and plgmmioposed
in Paper D have been developed in collaboration with Bombafdans-
portation AB, and has been evaluated on real timetable datarain
circulation plans. The interest from the railway industastbeen sig-
nificant, and we have frequently shown the demonstratoricgijgn in
relevant practical fora. However, the approach has noteen loleployed
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in practice. One possible explanation for this is that thléndustry, hav-
ing a history spanning 150 years back, is slightly more coadige than
other industrial areas. In addition, there has traditilgrizéen less com-
petition in the rail industry than in other industrial arehg to a state-
owned railway system. The relatively recent deregulatidche Swedish
railway sector has changed this picture substantiallyhbatalso divided
maintenance responsibility between several actors. Tieakso still a
lack of competition between operators, which have not wibikeavor
of introducing new technology. However, the plans to furttieregulate
the railway sector and allow competing operators on equaigewill
likely open up for approaches such as the one proposed irr Bape

Furthermore, the maintenance packaging heuristic froneFapvas the
basis for later development into the maintenance optimized in Pa-
pers E-F. The optimization algorithms employed in the tqtépers have
been implemented and integrated in a tool, PiQwhich has been de-
ployed and is currently in use at Siemens Industrial Turbzrimery AB
(SIT AB). The development effort started with an extensiénhe ap-
proach proposed in Paper D, and was then further developebbse
collaboration with SIT AB. The development and deployméefdreis
described in Paper F. PM@ has now been running operatively for al-
most a year within two maintenance contracts. in the first®¥is
fully operational, while in the second, PM®@is used for validation and
testing purposes of the full CBM strategy. Testing is doneéniyigfor
gaining feedback from practical experience, monitoringmfironmen-
tal variables and time increments. Within a few years, fauive peo-
ple working within maintenance planning are expected tothedools
for 10-15 different operational contracts. The estimatedlability im-
provement of using PM@©ris 0.5-1.0 %, a substantial increase consid-
ering that availability is currently in the range of 97-98 Phis amounts
to a decrease in downtime of 16-50 %.

5.3 Publications Included in the Thesis

This section lists the papers included in this thesis (idiclg bibliographical
data) and details my contribution to each of them.

» K. Hanninen, J. Maki-Turja, M. Bohlin, J. Carlson, and M.IMo De-
termining maximum stack usage in preemptive shared stastkm®)s. In
Proceedings of the 87IEEE Real-Time Systems Symposium, Decem-
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ber 2006.

| was one of the authors of the paper. My main contributiorestbhe
construction of the algorithm and the proofs of safety andeminess.

M. Bohlin, K. Hanninen, J. M&ki-Turja, J. Carlson, and M.IMoBound-
ing shared-stack usage in systems with offsets and preceslelm Pro-
ceedings of the 20Euromicro Conference on Real-Time Systems, July
2008.

| was the main author of the paper and coordinated the workont ¢
structed both algorithms and most of the proofs with some laeld
checking from the other authors. | also implemented theratgas and
helped in performing the evaluations.

M. Bohlin, Y. Lu, J. Kraft, P. Kreuger and T. Nolte. Best-&iff Simula-
tion-Based Timing Analysis using Hill-Climbing with RanuhoRestarts.

In Proceedings of the I5international Conference on Real-time and
Embedded Computing Systems and Applications, August 2009.

I was the main author of the paper and coordinated the worlont ¢
structed and implemented the optimization algorithm.

M. Bohlin, M. Forsgren, A. Holst, B. Levin, M. Aronsson, aRd Stein-
ert. Reducing vehicle maintenance using condition moimi¢pand dy-
namic planning. In Proceedings of th& ¥ET International Conference
on Railway Condition Monitoring, June 2008.

| was the main author of the paper and coordinated the workple-
mented the heuristic optimization algorithms and perfatrie evalua-
tion.

M. Bohlin, M. Waérja, A. Holst, P. Slottner, and K. Doganay. tdmza-
tion of condition-based maintenance for industrial gakihes: Require-
ments and results. In Proceedings of ASME Turbo Expo 2009%ePo
for Land, Sea and Air, paper number GT2009-59935, Orlantiwida,
USA, June 20009.

| was the main author of the paper and coordinated the workerd p
formed the experiments and designed and implemented tiripation
software.

M. Bohlin, K. Doganay, and P. Kreuger. Scheduling gas nebnain-
tenance based on condition data. In Proceedings of thdrizbvative
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Applications of Artificial Intelligence Conference, Pasad, California,
USA, July 20089.

| was the main author of the paper and coordinated the worksipthed
and implemented the optimization software and set up anfbipeed
the experiments with help regarding schedule feasibitityif M. Warja
at Siemens Industrial Turbomachinery AB.

5.4 Relevant Publications Not Included in the Thesis

This section lists related papers authored and co-authxyrdioe thesis author
that are not included in the thesis.

» M. Bohlin. Composing global constraints for local seartihProceed-
ings of 18" International Conference on Applications of Declarative-P
gramming and Knowledge Management, Fraunhofer FIRSTjrBend
University of Potsdam, 2004.

» M. Bohlin. Design and implementation of a graph-based tairg model
for local search. Licentiate thesis, April 2004.

* M. Bohlin, K. Hanninen, and J. M&ki-Turja. Shared stacklgsia in
transaction-based systems. In J. Hansson, editor, Workoigr&ss Pro-
ceedings of the IEEE Real-Time Systems Symposium, pagd$ 30e-
cember 2007.

» M. Bohlin, K. Hanninen, J. M&ki-Turja, J. Carlson, and M.IMo Safe
shared stack bounds in systems with offsets and precedefexgmical
Report ISSN 1404-3041 ISRN MDH-MRTC-221/2008-1-SE, Mdid+
en University, January 2008.

» M. Bohlin, P. Kreuger, M. Aronsson, and Malin Forsgren. atser for
flexibel planering och schemalaggning av tagtidtabellarSvedish).
Technical Report T2006:08, SICS (Swedish Institute of CotapSci-
ence), 2006. ISSN 1100-3154.

» M. Bohlin, Waldemar Kocjan, and P. Kreuger. Designing glldzhedul-
ing constraints for local search: A generic approach. TeethiReport
T2002-20, Malardalen University, November 2002.

» M. Bohlin. Constraint satisfaction by local search. TeéchhReport
T2002:07, Mélardalen University, June 2002.
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M. Bohlin. Improving cost calculations for global constits in local
search. In Pascal Van Hentenryck, editor, Principles aadtle of Con-
straint Programming, page 772. Springer, September 2002.

J. Ekman, A. Holst, M. Aronsson, M. Bohlin, M. Forsgren, &d.arsen.
Time - en gemensam informationsutbytesplattform for jagstransport-
branschen (In Swedish). Technical Report T2006:03, SIG&(&h
Institute of Computer Science), 2006. ISSN 1100-3154.

K. Hanninen, J. Maki-Turja, M. Bohlin, J. Carlson, and M.IMo Analys-
ing stack usage in preemptive shared stack systems. TetlReport
ISSN 1404-3041 ISRN MDH-MRTC-202/2006-1-SE, Malardalem-U
versity, July 2006.

K. Hanninen, J. Mé&ki-Turja, M. Bohlin, J. Carlson, and M. Mo De-
termining maximum stack usage in preemptive shared stastkmsg. In
Proceedings of the™Real-Time in Sweden Conference, pages 118-126,
August 2007.

P. Kreuger, M. Aronsson, and M. Bohlin. Leveranstagplaecifikation
och atagande (In Swedish). Technical Report T2006:02, $82&dish
Institute of Computer Science), 2006. ISSN 1100-3154.

Yue Lu, M. Bohlin, J. Kraft, P. Kreuger, T. Nolte, and C. Nwisn.
Approximate timing analysis of complex legacy real-timstsyns using
simulation optimization. In Proceedings of the Work-Ire@ress track
of the 29" IEEE Real-Time Systems Symposium, December 2008.

B. Levin, A. Holst, M. Bohlin, R. Steinert, and M. AronssoBynamic
maintenance. In Proceedings of the 21st International &ssgnd Ex-
hibition on Condition Monitoring and Diagnostic EngineegyiManage-
ment, June 2008.

M. Warja, P. Slottner, and M. Bohlin. Customer adapted nesiance
plan (CAMP), a process for optimization of gas turbine mataince.
In Proceedings of the ASME Turbo Expo 2008 Gas Turbine Teethni
Congress and Exposition, June 2008.

M. Aronsson, M. Bohlin and P. Kreuger. MILP formulations@fmu-
lative constraints for railway scheduling — A comparatitedy. To
appear in Proceedings of th& ®vorkshop on Algorithmic Methods and
Models for Optimization of Railways, 2009.
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5.5 Future Work

The work in this thesis could be developed further in seves}s. In this
section, we outline some possible future research diregtio

5.5.1 Stack Analysis

» The step from thanalysisof stack requirements to thigesign optimiza-

tion of real-time systems with the goal of minimizing stack reqments
is quite small, and is therefore a prime candidate for futasearch.

» The stack analysis of real systems still require that thgimam stack

usage per task is computed. This problem is in itself commead has
previously been solved using abstract interpretation beroainalysis
methods. An alternative would be to analyze the shared stazlbest-
effort manner, similar to what we propose for response-timalysis in
Paper C.

5.5.2 Best-effort Response-time Analysis

» Automatic or semi-automatic model extraction is a preigitpifor the

industrial deployment of the best-effort response-timalysis methods
presented in Paper C. This work is ongoing (see, for exarfiilé8, 139,

140]), but further research efforts are needed here to dsimzde the
usefulness of the proposed approaches.

The validity of the analyzed model with regard to temponaperties
is crucial in order to obtain any confidence in the respoime-tesults.
Here, model validation [224] could be employed to ensurtttteamodel
is an accurate representation of the modeled system.

The optimization method in itself can be improved in manysvaFor
example, in some applications, a correlation seems tolestateen high
(or low) input values for certain inputs and high resporisestfor the
task under analysis. The algorithm could be modified to gataistics
regarding the existence of such relations. It could alsai@aved by
placing more focus (in a intensification phase) on selectaiges that
have previously yielded high response-times.

The lower-bound on worst-case response time that the rdetteds
cannot be used in safety-critical applications without saneasure of
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accuracy. Statistical estimates of the worst-case resgiimg could be
useful for this purpose.

5.5.3 Maintenance Scheduling

Outlined below are some possible ways in which the maintemgrhanning
concept presented in Papers D—F could be further develdgest of the ex-
tensions proposed below are currently being investigat&iGs.

» The maintenance planning and scheduling approachesnpeese Pa-
pers D—F could be further developed in that risks in the fofstatistical
distributions of failure probabilities could be expligitintroduced, and
the cost of corrective maintenance could be balanced aghmsost of
preventive maintenance.

» The maintenance schedule optimization as presented er®&@nd F is
for a single machine only. In practice, A production plardasnposed of
several machines, where maintenance activities as wefleasftects of
breakdown are correlated. One possible extension of thke presented
in Papers E and F would be to consider several machines, ci@the
in e.g. a series-parallel fashion. Also, there are obviawsatages in
performing maintenance for several machines at the same timce
this maintenance can be done in parallel, minimizing thed thawn time
of the plant. This type of maintenance has been considemdausly
in, for example, [144,172,216, 284, 286].

» Paper D focuses on demonstrating that it is possible tacesthe number
of maintenance stops when stochastic maintenance in thedbmdi-
vidual subsystem accumulators are present. The plannitigoehaogy
could benefit from more advanced models and solution appesafor
both the railway circulation problem and for the maintereptanning
subproblem. More rigorous approaches at solving the fopnablem
can be found in e.g. [162]. The latter problem is discussegt@at de-
tail in Paper E—F. Although the focus is on a different depient area,
the railway domain could equally benefit from the proposddtam for
maintenance planning.

* Finally, for a company maintaining several units, there side con-
straints which are present in the real world but not considién this
thesis. For example, the availability of spare parts andrlags well
as the travel plans for repair crews, are in many cases tifociimely
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maintenance. For the railway domain, the resource conssrahich are
present in the workshop (a limited number of tracks, and trdigura-
tion of equipment mounted at a track) should also be cornsitler

5.6 Conclusions

The goal of the work included in the thesis was to solve redligtrial, combi-
natorial, problems, and for the work to have a substantadttpral impact. In
this goal, we acknowledged the fact that optimization apphes for real com-
binatorial problem solving can fail due to unrealistic anddcurate models,
and a lack of understanding of the real industrial probledhtae environment
in which deployed software is going to be used. To avoid theshave worked
continuously in close collaboration with industrial pats to understand the
application and its specific constraints. In solving thebems described in
Papers A-F, we have used several different methods from wempcience
and artificial intelligence depending on the problem type anr estimates of
the difficulty of solving the problems to optimality. The #ig work has also
had substantial impact in industry and academia.
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Abstract

This paper presents a novel method to determine the maxirtask siemory
used in preemptive, shared stack, real-time systems. Widgra general and
exact problem formulation applicable for any preemptivetegn model based
on dynamic (run-time) properties.

We also show how to safely approximate the exact stack usagsibg
static (compile time) information about the system model tre underlying
run-time system on a relevant and commercially availabitesy model: A
hybrid, statically and dynamically, scheduled system.

Comprehensive evaluations show that our technique signific reduces
the amount of stack memory needed compared to existingsisadchniques.
For typical task sets a decrease in the order of 70% is typical
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6.1 Introduction

In conventional multitasking systems, each thread of ek@tiftask) has its
own allocated execution stack. In systems with a large nuwit@sks a large
number of stacks are required. Hence the total amount of RA&tled for the
stacks can grow exceedingly large.

Stack sharing is a memory model in which several tasks shrere@mmon
run-time stack. It has been shown that stack sharing cart ieschnemory
savings [9, 16] compared to the conventional stack modek Stared stack
model is applicable to both non-preemptive as well as prégmgystems, and
it is especially suitable in resource constrained embeddabtime systems
with limited amount of memory. Stack sharing is currentlpgorted by many
commercial real-time kernels, e.g. [3,18, 20, 32].

The traditional method to calculate the memory requireséorta shared
run-time stack in preemptive systems is to sum the maximackstsage of
tasks in each preemption level and possibly consider aditioverheads such
as memory used by interrupts and context switches. A magoviaick with the
traditional calculation method is that it often results irepallocation of stack
memory by presuming that all tasks with maximum stack usagach priority
level can preempt each other in a nested fashion duringimm-tHowever,
there may, in many cases, be no actual possibility for theslestto preempt
each other (e.g. due to explicit or implicit separation me). Moreover, the
possible preemptions may not be able to occur in a nestetbfash

Taking advantage of the fact that many real-time systembéxhi pre-
dictable temporal behavior, it is possible to identify fibées preemption sce-
narios, i.e., which preemptions can in fact occur, and wdretiey can occur in
a nested fashion or not. Therefore, a more accurate stabjsenean be made.
One example of a system that lends itself to such analysisiged, stati-
cally and dynamically, scheduled system. Such a systematsid an off-line
scheduler producing the static schedule and a fixed prisgheduler (FPS)
that dispatches tasks at run-time. The commercial operatystem, Rubus
OS by Arcticus Systems AB [3], supports such a system modeé Rubus
OS is mainly used in resource-constrained embedded malgystems. For
instance, in the vehicular industry, Volvo Constructioruipgnent (VCE) [33],
BAE Systems Hagglunds [15], and Haldex Traction System§dildise the
Rubus OS in their vehicles or components.

In this paper, we present the general problem of analyzingases sys-
tem stack for resource constrained preemptive real-tirmenys. We provide
a general and exact problem formulation applicable for mppE&e systems
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based on dynamic run-time properties. We also present aixipmate stack
analysis method to derive a safe upper bound on stack usagjatia offset
based, fixed priority and preemptive systems that use agbtaek. We evalu-
ate and show that the proposed method gives significantlgrioygper bounds
on stack memory requirements than existing stack dimeimgianethods for
fixed priority systems.

Paper outline. Section 6.2 describes related work and sets the context
for the contributions of this paper. In sections 6.3, 6.4] &b we present
the exact formulation of determining the maximum stack esaigd our safe
approximation of the stack usage for our target system mo8ektion 6.6
presents an evaluation of our approximative analysis ntettiod Section 6.7
concludes the paper.

6.2 Related work

The notion of shared stack has been used in several pubheat describe the
ability to utilize either a common run-time stack or a poorafi-time stacks.
For example, in [20], stack sharing is performed by havingal pf available
stack areas. When a task starts executing, it fetches a stanklie pool, and
returns it at termination. In [21], Middhet al. address stack sharing in the
sense that the stack of a task can grow into the stack areatifeartask.

In this paper, we use the notion of stack sharing when setasias use one
common, statically allocated, run-time stack. This typstatk sharing can be
efficiently implemented in systems where tasks have rucetapletion seman-
tics, and do not suspend themselves. This type of stackghiarsupported by
several commercial real-time operating systems, e.g8[32].

6.2.1 Stack analysis

In [4], Baker presents the Stack Resource Policy (SRP) #vaips stack shar-
ing among processes in static and in some dynamic priorggmptive sys-
tems. The basic method to determine the maximum amount c sage in
SRP is to identify the maximum stack usage for tasks at edolitgrievel (or
preemption level) and then to sum up these maximums for edatitp level.

A safe upper bound9PL) on the total stack usage using information about
priority levels can formally be expressed as:

SPL= Z ietasggvffh priol(Si) (6'1)
leprio-levels
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wheres; is the maximum stack usage of taisk

Gaiet al.[11] present SRP with preemption thresholds (SRPT). They pr
sent a procedure to minimize shared stack usage, withgoajdzing schedu-
lability, by use of non-preemption groups for tasks usind®’$RThey extend
the work of Saksena and Wang [27] by taking the stack usagasttinto
account when establishing non-preemption groups.

In [9] Davis et al. address stack memory requirements by using non-
preemption groups to reduce the amount of memory neededsfuarad stack.
They show that the number of preemption levels requiredyfpical systems
can be relatively small, while maintaining schedulahility

Although non-preemption groups can reduce the amount of Rwkted
for a shared stack, the use of non-preemption groups affesystem by re-
stricting the occurrences of preemptions, which can havegative affect on
schedulability. Also, the method we present in this paperfaether reduce the
system stack by performing our analysis after preemptiongg have been as-
signed.

6.2.2 Preemption analysis

A large number of publications address preemption anafgsidifferent rea-

sons, see, e.g. [2,7,10,17,24,25,29]. For example, injé@Et al. present a
technigue to bound cache-related preemption delays in-fixiedity preemp-

tive systems. They account for task phasing and nested ptesnpatterns
among tasks to establish an upper bound on the cache timiayg idéoduced
by preemptions. Our work relates to theirs in the sense thatlgo investigate
occurrences of nested preemption patterns. However, gactokes differ in

that Leeet al. are mainly interested in timing delays caused by cachedeiga
and preemption patterns whereas we address shared memuaigersents as
an effect of nested preemption patterns.

In [10], Dobrin and Fohler present a method to reduce the murabpre-
emptions in fixed priority based systems. They define thraddmental con-
ditions that have to be satisfied in order for a preemptionctuno The same
conditions form the basis of our upper bound method destiib&ection 6.5.

6.3 Stack analysis of preemptive systems

The primary purpose of an execution stack is to store lodal which consists
of variables and state registers, parameters to subreuaimreturn addresses.
Real-time systems typically have a separate stack, dtgtatcated, for each
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task. However, under certain conditions, tasks can shark $b achieve a
lower overall memory footprint of the system.

In this paper we consider systems where a subset of tasksagaraon,
statically allocated, run-time stack. For this to be pdssitve assume that a
task only uses the stack between the start time of an instartéhe finishing
time of that instance, i.e., no data remains on the stack &eninstance of a
task to the next. Furthermore, we require non-interleatass execution [4,
9]. If v; begins executing between the start and finishvofthenwv; is not
allowed to resume execution unti} has finished. In practice, this is ensured
by not allowing tasks to suspend themselves voluntarilytodve suspended
by blocking once they have started their execution. In radhis means that
OS-primitives likes| eep() andwait _for _event () cannot be used, and
that any blocking on shared resources must be handled befecaition start,
e.g., with a semaphore protocol like immediate inheritgorogocol [6].

We formally define the start and finishing time of a task inséam;, as
follows:

st; The absolute time when; actually begins executing.
ft; The absolute time when; terminates its execution.

At any given point in time, the worst case total stack usagh@tystem equals
the sum of the stack usage for each individual task instahbas, withs;(¢)
denoting the actual stack usagevpfat timet, the maximum stack usage of the
system can be expressed as follows:

tetime instant Z si(t) (6.2)

v, €task instances

This corresponds to the amount of memory that must be digitimidocated
for the shared stack to ensure the absence of stack overftovs eFor some
systems, e.g., non-preemptive, statically schedule@sysivith simple task
code, it might be possible to directly compute or estimate). In general,
however, they are not directly computable before the systerecuted.

We note that the total stack usage depends on three basierpesp

(i) the stack memory usage of each task instance
(i) the possible preemptions that may occur between anyitgt@ances
(i) the ways in which preemptions can be nested

Determining the stack memory usage of a single task insteageires
knowledge of the possible control-flow paths within the tasde [14]. In [5]
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Brylow et al. present a static checker for interrupt driven software. dhiecker
is able to calculate the stack size of assembler programsdolyping a control-
flow graph annotated with information about time, spacestgadnd liveness.

However, due to the difficulties in determining the exactktasage at
every point in time for a given task instance, shared-staatyais methods
often assume that whenever a task is preempted, it is predmagten it uses
its maximum stack depth. We make the same assumption, arfj tseenote
the maximum stack usage for task instange Thus, whenv; and v; are
instances of the same task, we haje= S;. Bounds on maximum stack
usage for a given task can be derived by abstract interpretasing tools such
as Absint [1] and Bound-T [30].

In order to calculate the maximum stack usage of the fullesystve need
to account for all possible preemption patterns. Under fseimption of non-
interleaving task execution, a task instancg,is preempted by another task
instancey;, if (and only if) the following holds:

st; < sty < ﬁ, (63)

In particular, we are interested in chains of nested prelemgut We define
apreemption chaitio be a se{vy, vs,. .., v} Of task instances such that

st < stg < --- < st < ft, < fp_p <o < fty (6.4)

Under the assumption that the worst case stack usage of adaskwhen
the task is preempted, the worst case stack usd@e’ for a shared stack
preemptive system can be expressed as follows:

SWC = PCeprertIelr’r?s(tion chains ;C Si (6'5)

This formulation, however, cannot be directly used for gnialg and di-
mensioning the shared system stack since it is based on treily (only
available at run-time) propertieg; andft,. To be able to statically analyze the
system, one has to relate the static (compile-time) pragsett these dynamic
properties. This is done by establishing how the system madbeduling
policy, and run-time mechanism constrain the values of titaah start and
finishing times. The problem can be viewed as a schedulingl@mowith the
objective of maximizing the total stack usage of the schesdiubject to system
constraints on how tasks are ordered in the schedule.
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6.4 System model for hybrid scheduled systems

The system model we adopt is based on the commercial opgrsystem
Rubus OS by Arcticus Systems AB [3], which supports the etiecwof both
time triggered and event triggered tasks. The Rubus OS islyriatended for,
and used in dependable resource-constrained embedddthrealystems.

The system model is a hybrid, static and dynamic, schedyktém where
a subset of the tasks are dispatched by a static cyclic stdrgtime triggered
tasks). The rest of the tasks are dispatched by events iny#itens (event
triggered tasks). The static schedule is constructedrdfdnd a fixed priority
scheduler (FPS) dispatches tasks at run-time. The evggeted tasks can be
categorized in two different classes: (i) event-triggergdrrupts which have
higher priority than the time-triggered tasks, and (ii) ksround scheduled
event-triggered tasks which have lower priority than theetitriggered tasks.

The time triggered tasks share a common system stack. I¢iskijective
of this paper to analyze, and ultimately dimension this etiaystem stack
efficiently. The time-triggered subsystem is used to hoittgaritical appli-
cations. Hence, to isolate it from any erroneous eventyrigd tasks, it uses
its own stack.

6.4.1 Formal system model

The system model used in this paper can be seen as an offsdtrhasel with
static offsets [12, 22, 23, 31], defined as follows: The syste, consists of a

set ofk transactiong’y, . . ., I'x.. Each transactioh; is activated by a periodic
sequence of events with peridd. For non-periodic, event$; denotes the
minimum inter-arrival time between two consecutive everifbe activating
events are mutually independent, i.e., phasing betwean tharbitrary. A
transaction]';, containgT';| tasks, and each task may not be activated (released
for execution) until a time, offset, elapses after the airvf the activating
event.

We user;; to denote a task. The first subscript denotes which tramsacti
the task belongs to, and the second subscript denotes thieenwhthe task
within the transaction. A tasks;, is defined by a worst case execution time
(Ci;), an offset ), a deadline D;;), maximum jitter {J;;), maximum block-
ing from lower priority tasks B;;), and a priority {;;). FurthermoreS;; is
used to denote the maximum stack usage pfThe system model is formally
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expressed as:

T ={(I'1, T1), ... (Tw, Ti)}
I'; ::{Tila s 7Ti|Fi‘}
Tij Z:<Cij70ijﬂDij’ J,

ij» Bij, P,

i3> Sij)

We assume that the system is schedulable and that the weestesponse-
time for each task,K;;), has been calculated [23]. Due to the non-interleaving
criterion for stack sharing, we require that tasks exhilit-to-completion se-
mantics when activated, i.e., they cannot suspend thegsehn invocation of
a task can be viewed as a function call from the operatingsysand the in-
vocation terminates when the function call returns. Whekstabare the same
priority, they are served on a first-come first-served basis.

We assume that if access to shared resources is not handtbe byatic
scheduler by time separation, a resource sharing protolketenvblocking is
done before start of execution is employed (such as the stackirce protocol
[4] or the immediate inheritance protocol [6]).

Relating back to Rubus OS, one can view the system as a ttanmshased
system with one transactioi,, corresponding to the static schedule (time-
triggered tasks) and any number of transactions correspgmal higher prior-
ity event triggered tasks (interrupts). For the even-eiggl transactions there
are no restrictions placed on offset, deadline or jitter,, ithey can each be
either smaller or greater than the period. Sihgeepresents the static sched-
ule, which is cyclical with period’;, offset, jitter and deadline are less than
the period, i.e.Oy;, Dy;, Ji; < 1} for the time-triggered transaction. How
a scheduler can generate a feasible schedule with integferterrupts is de-
scribed in [22, 28].

It is the objective of this paper to find a tight upper bound loa $hared
system stack for the tasks in the time-triggered transa€tioTaskj belonging
toI'; we will denoter;;. The tasks in the transaction can be preempted by other
tasks in the transaction and by higher priority event trigddgasks.

179

6.5 Stack analysis of hybrid scheduled systems

In this section, we describe a polynomial time method toldistaa safe upper
bound on the shared stack usage for the system model dekiriBection 6.4.
The upper bound is safe in the sense that the run-time stackesger exceed
the calculated upper bound.

A safe upper-bound estimate of the exact problem can be fbynging
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offsets and maximum response times as approximations wdlestart and fin-
ishing times. Generalizing the preemption criteria idédi by Dobrin and
Fohler [10], we form the binary relation; < 7; with the interpretation that

Ty may be preempted by;. The relation holds whenever (1), can become
ready beforer,;, (2) 7; possibly finishes (i.e., has a response time) after the
start ofr;;, and (3)r; has lower priority tharm;. The relation can now for-
mally be defined as:

Tt = Ttj = Oy < Otj + th + Bt]‘ A Otj < Ry NPy < Ptj (66)

Lemma 1. The< relation is a safe approximation of the possible preemgtion
between tasks iir;. That is, ifr,; can under any run-time circumstance be
preempted by;;, thenr; < 7,; will hold.

Proof of Lemma 1. Suppose that;; is preempted by;;. We show that this
implies (1)O¢; < Oy + Jij + Bej, (2) Oy < Ry, and (3)Py; < Py

(3) follows directly from the preemption. Now letbe the time instant
whenr; has finished blocking, which implies< O,; + J;; + B;;. Then
a possibly empty intervdk, st;;] of execution with higher priority tham;
follows, in whichr; cannot execute becausg; < P;;. Sincery; must start
beforer;;, we can conclude that,; < ¢, which together wittO,; < st;; and
t < O + Jij + Byj gives uDy; < Oy + Jij + By and (1). From Equation
6.3 we havet;; < ft; and this together witl),; < st,; and ft;; < Ry; leads

to Oy; < Ry; and (2), which completes the proof. O

The upper-bound problem can now be informally stated asfgtfie max-
imum stack usage of all possible preemption chaink,in This equals find-
ing the time instant in the schedule which has a maximum sigaekge, given
the approximation of actual start and finishing times witisets and response
times respectively, and assuming that at all preemptioagpthempted task
uses its maximal stack.

A sequencé) of tasks is gpossible preemption chaii?PC) if it holds that
Ty < T¢; for all 7, 7¢; in QQ wherer,; occurs before; in the sequence. The
stack usag&Ug of a PPCQ is the sum of the stack usage of the individual
tasks in the chain, i.e§Ug = ZmeQ St

A straightforward computation of a safe upper bound for aoéédsks in-
volves computing the stack usage for all PPCs. However, fmtafn tasks
there exise™ — 1 different PPCs in the worst case, which yields an exponlentia
time complexity for an algorithm based on this idea. A morfeicient algo-
rithm can be constructed by first finding sets of tasks whitbwarlap in time
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without regarding priorities. These sets can then be ify&®td, in turn, to find
a PPC with maximal stack usage. We let the relatign< 7,; hold whenever
the semiclosed interval®,;, R;;) and[O,;, R,;) intersect, or more formally:

Tei 3 Ty = O < Ryj N Oy < Ry (6.7)

The relation= is a relaxation of the< relation. Thatisy; < 7; — 7 =
75 To see this, suppose that < ; which impliesOy; < Oy; + Jij + Byj A
O; < Ry;, according to Equation 6.6. Sin€&; + Ji; + By < Ry; follows
from the notion of response time, we haVg < R;; A O; < Ry;, which also
is the definition ofry; < ;.

We can now define aoverlap setX,. as a set of tasks where:

VT, Tej € Ky @ Ty 2Ty

The stack usagéUy, of an overlap sef(, is defined as the maximum
stack usageé'Ug of all PPCs() where( C K,

SUk. = SU, 6.8

LV o SNCLC) (©8)

K, is maxima] if and only if, there exists no overlap sét,, such that', C
K.

Lemma 2. For any PPCQ, there exists a maximal overlap skt. such that
QC K,.

Proof of Lemma 2. From the definitions of a PPC and theand < relations,
we know that for all tasks;; < 7¢; in @ it also holds thatr; < 7;;, and thus
@ is an overlap set. Then, eithé} is maximal, or it can become maximal by
extending it with additional tasks. In either case, the lentolds. O

In all, the algorithm for computing the upper bound PUB onrifeximum
stack usage for a set of taskscan be summarized as follows:

1. Find the maximal overlap setslh:
K ={K,Ks,...,K;}.

2. For each of them, compuf/k, according to Equation 6.8.

3. The upper bound of the stack usage fgrcan now be computed as
follows:

SUB = V%I:EEXK(SUKT) (6.9)
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Informally, we start by finding all sets of tasks that can terin time
based on their offsets and worst case response times, wéiely sipproxi-
mates their actual start and finishing times. For each suqtse we find all
possible preemption chains (PPCs) by also taking taskipe®and maximal
jitter and blocking time into account, and compute the staskge for each
chain. The stack usage &f; is the maximum stack usage of all its PPCs, and
the maximum stack usagé€ {/B) of the system is then obtained by taking the
maximum stack usage of ever.

6.5.1 Correctness

In order to claim correctness of our approximate stack amlynethod, we
have to show that it never underestimates the actual stagjeuhat can occur
during run-time.

Theorem 1. The value computed by tt%/B algorithm is a safe upper bound
on the actual worst case stack usage for taskis;inFormally, SWC < SUB.

Proof of Theorem 1. Let ¥ C T'; be the sequence of tasks instances par-
ticipating in the preemption situation which cause the waase stack us-
age, that is,SWC = Zmeq, Sy;. According to Lemma 1, we must have
Ty = Ty; for taskst; and 7 that occur in that order in¥, and thusV is a
PPC withSUy = SWC. Then, Lemma 2 ensures that there exists a maxi-
mal overlap setX,. such thatl C K, and we haveSUy < SUg,. Thus,
SWC < SUk, < SUB, which concludes the proof. O

6.5.2 Computational complexity

The relaxation of into interval intersection (Equation 6.7) allows us to effi-
ciently compute an upper bound on the stack usage (Equa@yibypapplying
a polynomial longest path algorithm on the linearly-bowhdamber of maxi-
mal overlap sets.

To first see that the set of maximal overlap skts= {K;, Ks,..., K}
contain at most: elements, i.e.k < n, consider the grapll';, E'), whereI;
is the set of vertices anfll = {r;7; | (7 = T5) A T, 7; € I'h}is the
set of edges. From Equation 6.7, we have that edges € E correspond to
intersection of the semi-closed intervéd3,;, R;;) and [Oy;, R;;), and there-
fore the graph is amterval graph[19]. Because every interval graph is also
chordal[19], all maximal complete subgraphs(ifi;, E), which correspond to
all maximal overlap sets, can be found in linear time [26] rtkermore, for
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chordal graphs there exists at massuch sets, and thus we have at most
overlap sets [19].

The problem of finding the worst PPC within a single overlap Isg is
significantly easier than for an arbitrary set of tasks. &indolds thatr; <
7,5 for all tasksr;, 74; € K,, and therefore in particular that,; < R.; for
all tasks inK,., we need only look for a maximum stack usage cl@iwhere
(1) Oy < Oy5 + Jij + By, and (2)P; < P for all tasksry; andr; in that
order in@ to find the worst PPC. A directed graph consisting of task&jn
and arcs corresponding to properties (1) and (2) is acyatid,for such graphs
a longest-path type algorithm can be used to find the worst [BRCThere
exist longest-path algorithms with a time complexity(@fn + m), wheren
is the number of tasks and is the number of possible preemptions, of which
there are at most(n — 1)/2. Taking the maximum of a maximal PPC in each
set, K., of which there are at most, we will, therefore, find a maximum stack
size PPC in at mog?(n?) time.

6.6 Evaluation

We evaluate the efficiency of our proposed method to estahblisafe upper
bound on shared stack usage by randomly generating realiséd task sets.
The size, load and stack usage of the task sets are derivadafreheel-loader
application by Volvo Construction Equipment [33]. We useeth different

methods to calculate the shared system stack usage:

SPL The traditional method to dimension a shared system staskifoyning
up the maximum stack usage in each priority level.

SUB The safe upper bound on the shared stack usage presentedion$e5
SLB A lower bound on on the shared stack usage, for each task set.

The lower bound is established using simple heuristicstties to maxi-
mize shared stack usage by generating only feasible premmgatenarios for
the task set, and thus, represents scenarios that defioéelpccur. From all
PPCs, the heuristic selects a sample set of roughly 500 £h&iar each of
them, the method tries to construct a feasible arrival pafier the ET tasks
and actual execution time values that cause an actual ptEenietween the
tasks in the chain. The quality of this heuristic method ddgs as the length
of the chains or the total number of PPCs increases, whiclbeaeen in the
figures.

By establishing a safe upper bound and a feasible lower hovadknow
that the actual worst case stack usage is bounded by SUB a@BdTdk rea-
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son for including SLB is to give an indication on the maximumaant of
improvement there might be for SUB.
6.6.1 Simulation setup

In our simulator we generate random task sets as input totdok analysis
application. The task generator takes the following in@ugmeters:

 Total number of TT (time triggered) tasks (default = 250)

 Total load of TT tasks (default = 60%)

* Minimum and maximum priorities of TT tasks (default =1 ar) 3

* Minimum and maximum stack usage of TT tasks (default = 128 an
2048)

» Total number of ET (event triggered) tasks (default = 8)
« Total load of ET tasks (default = 20%)

» The shortest possible minimum inter-arrival time of an B3kt (default
=1,000)

The generated schedule for TT tasks is always 10,000 tims.uXli ET tasks
have higher priority than TT tasks. The default values feritiput parameters
represent a base configuration derived from a real apmici3].

Using these parameters a task set with the following chariatts is gen-
erated:

e Each TT offset Q;) is randomly and uniformly distributed between 0
and 10,000.

» Worst case execution times for TT taskg,, are initially randomly as-
signed between 1 and 1000 time units. The execution timesdjested
by multiplying all Cy; by a fraction, so that the the TT load (as defined
by the input parameter) is obtained.

o TT priorities are assigned randomly between minimum andimam
value with a uniform distribution.
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6.6.2 Results

Each diagram shows three graphs corresponding to the stagie \calculated
by the three methods: SPL, SUB, and SLB. Each point in thehgregpresents
the mean value of 100 generated task sets. We also measar@8%h confi-
dence interval for the mean values. These are not shown $ecétheir small
size (less than 7% of the y-value for each point). We also aredsthe CPU
time to calculate an upper bound on shared stack usage fogeaerated task
set. Using the method described in Section 6.5, the calonktook less than
63ms per task set, on an Intel Pentium 4, 2.8GHz with 512MBAIIR
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Figure 6.1: Varying the number of priority levels of TT tasks

In Fig. 6.1, we vary the maximum priority for TT tasks betwekmnd
300, keeping the minimum priority at 1. This gives a disttibn of possible
priorities (priority levels), from 1 ton, wheren is indicated by the x-axis.
We see, in Fig. 6.2 which zooms in on Fig. 6.1, for maximum fities up to
10, that the difference in stack usage between SPL and SURBsxloticeable
with a low number of priority levels. However, for larger nbars of priority
levels the difference is significant. SPL is not expectedatieh out before all
tasks actually have unique priorities, whereas our met&adBj) flattens out
significantly earlier. We conclude that the maximum numbfetaeks in any
preemption chain is increasing very slowly (or not at all)entithe number of
TT tasks increases above a certain value, since the syssehislgonstant.

In Fig. 6.3, we vary the maximum stack usage of each TT taskedwst
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Figure 6.2: Varying the number of priority levels of TT tagkeom of Fig. 6.1)

128 bytes and 4096 bytes. We do this by assigning an initeadksof 128

bytes for each TT task, i.e. initially the stack size vadatis zero. We then
vary the stack size between 128 and 512 bytes, 128 and 1024, taid so
on. The diagram shows that SUB gives significantly lower @alon shared
stack usage than the traditional SPL. We also notice that@ease in stack
variation scales up, linearly, the differences between &RLSUB. The linear-
ity is expected, since an increase in stack variation doeaffext occurrences
of possible preemptions in the system, i.e., possible dgsteemptions are
retained.

In Fig. 6.4 we vary the maximum number of TT tasks between 523t
We see that the shared stack usage of the traditional SPlamadically in-
creasing in the beginning. This is due to the fact that whennimber of
TT tasks is lower than the maximum priority of TT tasks (32RanTT tasks
have unique priorities. SUB, on the other hand, increaseshrslower than
SPL because the maximum number of tasks involved in any gréemchain
is slowly increasing. SUB is expected to further approach SiRce increas-
ing the number of tasks will increase the likelihood of largember of tasks
involved in the preemption chains.

In Fig. 6.5, we vary the total load of TT tasks between 10%)(8rid 70%

(0.7). The figure shows that the shared stack usage of SPhs$art, whereas,
SUB is slowly increasing. SPL is expected to be constantsinis only af-
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Figure 6.3: Varying stack usage of TT tasks

fected by the number of priority levels and unaffected bydbtial preemp-
tions that can occur in a system. The increase of SUB is duacieasing
response-times of TT tasks when the TT load increases, whiitincrease
the likelihood of larger number of tasks involved in nesteggmptions.

6.7 Conclusions and future work

This paper presents a novel method to determine the maxirtack siemory
used in preemptive, shared stack, real-time systems. Widera general and
exact problem formulation applicable for any preemptivstesn model based
on dynamic (run-time) properties.

By approximating these run-time properties, together wifitrmation about
the underlying run-time system, we present a method toysafgiroximate the
maximum system stack usage at compile time. We do this foleaamst and
commercially available system model: A hybrid, staticallyd dynamically,
scheduled system. Such a system model provides lot of st&titnation that
we can use to estimate the dynamic start- and finishing-tinitasr method
finds the nested preemption pattern that results in the maxishared stack
usage. We prove that our method is a safe upper bound of the gystem
stack usage and show that our method has a polynomial timplegity.

In a comprehensive simulation study, we evaluated our igqakerand com-
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Figure 6.4: Varying the number of TT tasks

pared it to the traditional method to estimate stack usage.fild that our
method significantly reduces the amount of stack memoryetkeor realis-
tically sized task sets, a decrease in the order of 70% isdy/pi

In this paper, we focused on a system model for a given comatesal-
time operating system. In the future, we plan to extend opr@pmation
method to a more general system model, to incorporate afetiteres of the
general model for tasks with offsets [12]. Such an extengioald make the
presented analysis technique applicable to a wider ranggstéms.

Our current method could also be extended to account for ¢ypes of
information that can further limit the number of possiblegmptions. We cur-
rently only account for separation in time (offsets and oese-times) between
tasks. However, in many systems other types of informasoch as prece-
dence and mutual-exclusion relations may exists betwesks tdéhus limiting
the possible preemptions.

The method presented here could also be used in synthestoafigura-
tion tools that generate optimized systems from given apptin constraint.
In this case, the results from our analysis can be used taegyitimization
or heuristic techniques that try to map application funidty to run-time
objects.
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Abstract

The paper presents two novel methods to bound the stack npeused
in preemptive, shared stack, real-time systems. The firthadeis based on
branch-and-bound search for possible preemption pati@nasthe second one
approximates the first in polynomial time. The work extends/jpus meth-
ods by considering a more general task-model, in which sligaan share the
same stack. In addition, the new methods account for precedand offset
relations. Thus, the methods give tight bounds for a larg@feealistic sys-
tems. The methods have been implemented and a comprehenaluation,
comparing our new methods against each other and agaissingxinethods,
is presented. The evaluation shows that our exact methodigaificantly
reduce the amount of stack memory needed.
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7.1 Introduction

In order to limit the amount of RAM set aside for stack-memiorgmbedded
systems, many RTOSes provide means to execute multiple task single,
shared, stack (e.g. Rubus [3], Fusion [28], Erika [10], SMX][ etc.). In
order to make maximum use of this ability to share stack-mgme need
methods to properly dimension the memory allocated to thekstThis paper
shows how to exploit commonly available knowledge of precee and offsets
between tasks to calculate a tight upper bound on the améstaak-memory
used.

In shared stack systems, one stack-frame is added to themsgsitack
for each level of preemption. Thus, the maximum stack-usagers during
some worst-case preemption pattern. In simple task modefarfionly used
in real-time scheduling theory), where tasks are assumée iodependent,
any preemption pattern is possible — thus we have to pesgiailg assume
that all tasks may be active and preempted at the point wihere use the
most stack. The system’s maximum stack-usage thus bechimgs(where
S; denotes the maximum stack-usage of tgskThe consequence is that in
these models the benefits of using a shared stack is limited.

In many systems we have information that let us deduce tima¢ gweemp-
tion patterns are impossible. For example, in a system whmenéple tasks
share the same priority, no preemptions among these tasksoasible (as-
suming FIFO scheduling within a priority level and an edvlgeking resource
allocation protocol such as the immediate inheritanceqaal). In this case,
the system’s maximum stack-usage beco@,snaxp(si) (wherep denotes
a priority level andmax, maximizes over the tasks within that priority level).
If the number of priority levels is low enough, this type ofadysis can pro-
vide a much lower bound on stack usage than the above sum lbvesks.
Davis et al. describes this type of stack analysis and generalize itltoval
non-preemption groups to be defined [8].

However, limiting the scheduler by lowering the number abpty levels
or manually defining non-preemption groups has drawbaakse & limits the
schedulability of the system and places extra burden onrtmeers to define
non-preemption groups. Also, in many systems there is ex@g information
available that would allow us to further reduce the posgiipEEmptions in the
system.

In this paper we present novel techniques to exploit infeimnaabout
precedence and offset relations between tasks to furtimitrthe humber of
possible preemption-patterns. We perform a system widengp&on analysis
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to find the worst case preemption pattern with respect tkkstaage. This al-
lows us to calculate a tight bound on the amount of stack mgmeeded in
the system. The intuition behind the techniques is thatsttiskt have prece-
dence relations will, under certain conditions, never pngieeach other, and
tasks with offset relations may only preempt each otherefrésponse-time
of the first task is longer than the offset to the second tadkusTa prereg-
uisite to perform our analysis is that the response-timeratehse jitter are
known for all tasks. We build our analysis on the transaetidask-model
introduced by Tindell [27] which was formalized and extetdyy Gutiérrez
and Harbour [13]. Given the safe approximations of respdinses and jitter
resulting from the schedulability analysis presented ly,, éMaki-Turja and
Nolin [20], we here present two methods to bound the systankstsage. We
present one algorithm that searches the whole search spaessible preemp-
tions which has exponential complexity, and a safe appration method with
polynomial complexity. We provide an evaluation of the twethods, com-
paring them with each other and with the method of summatian priority
levels described above.

The transactional task-model allows for modeling of lagenplex and re-
alistic real-time systems. Hence, the methods presentexldnalear practical
value. The methods can be used in a verification/validatluase of system
development in order to formally verify that stack overflow wot occur dur-
ing runtime. The approximation method (due to its bettertiome complexity)
could also be used in optimizing allocation, mapping, amfigaration tools
that automate the process of allocating tasks to nodestiibdited systems.
Paper outline. The remainder of this paper is organized as follows. Sec-
tion 7.1.1 describes related work and sets the context ®cdmtributions of
this paper. In Section 7.2, we discuss stack sharing anaitsetjuences, and
in Section 7.3 we present the system model that we use. 8etdopresents
the exact formulation of determining the maximum stack esagd gives the
theoretical framework for Section 7.5, which describe®atgms for bound-
ing the stack usage of systems with offsets and precedeBeeton 7.6 gives
an experimental evaluation of our analysis methods, antid®et. 7 concludes
the paper and suggests future work.

7.1.1 Related work

A large number of publications have addressed preemptialysia for specific
reasons, see, e.g. [2,9, 15,21, 22, 25]. Our work is relat¢lde sense that we
also investigate possible preemptions. However, our tibgscdiffer, since
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we analyze system wide premption patterns to investigate ¢ffect on stack
memory requirements for a task model with offsets and preness.

Throughout the years, a number of publications have adellestack shar-
ing. Baker presented the Stack Resource Policy (SRP) thatitsestack shar-
ing among processes with shared resources [4]. Chattetjale study stack
boundedness for interrupt-driven programs [6]. In [8] Batial. address stack
memory requirements and non-preemption groups to redwredistack us-
age. Gaet al.[11] present the Stack Resource Policy with preemption dtre
olds (SRPT) which extends the work of Saksena and Wang [24{cbgunt-
ing for stack usage when establishing non-preemption grolp[12] Ghat-
tas and Dean investigate stack space requirements undangtien threshold
scheduling. Middhaet al. [18] propose the MTSS stack sharing technique
that allows a stack to grow into other tasks. In [23] Regethal. present a
method to guarantee stack safety of interrupt-driven sty computing the
worst-case memory requirements of individual interruptdiars and perform
preemption analysis between handlers. In [14] we preseantegpproximate
stack analysis method to derive a safe upper bound on thedsbktack usage
of a static time-driven schedule in offset-based, hybritesitled (interrupt-
and time-driven) fixed priority preemptive systems. In thigper, we extend
that work by supporting stack sharing across several tctioss for the task
model with offsets. Here we also take precedence relatistzsaccount to
further reduce possible preemptions.

7.2 Stack sharing in preemptive systems

In this paper we consider systems where several tasks usgla,sstatically
allocated, run-time stack. For this to be possible, a tagk uses the stack be-
tween the start time of an instaneg, and the finishing time of that instance,
i.e., no data remains on the stack from one instance of adasletnext. This
is ensured by not allowing tasks to suspend themselves teollyn In practice
this means that OS-primitives lilkd eep() andwai t _f or _event () can-
not be used. An invocation of a task can be viewed as a funcétiirom the
operating system, and the invocation terminates when thetifin call returns
(thus any persistent context must be stored outside of doi)st

It is also required that a task instance never experienaakiblg once it
has started execution, i.e., we can never preempt the éxgdatk because a
needed resource is locked by a lower priority task. This lBea®d by using
an early blockingresource access protocol such as the immediate inheritance
protocol [5] or the stack resource policy [4].
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The motivation for allowing tasks to share a common stack this
shared stack can be smaller than the sum of the individugtstaithout jeop-
ardizing the correctness of the application. Shared-saaakysis aims at (pre
run-time) deriving a safe, but tight, approximation of therst case (run-time)
size of the shared stack. As long as the amount of memorgaligtallocated
for the shared stack does not exceed this bound, the absksizelo overflow
errors is guaranteed.

At any given point in time, the size of the shared stack equrdsum of
the current stack usage for each active task instance. Tkienua size of the
shared stack thus depends on two factors: (i) the stack nyemsage of each
task instance, and (ii) the possible preemption patterrengnasks.

Due to the difficulties in determining the exact stack usagevary point
in time for a task instance, shared-stack analysis metlypitsaily assume that
whenever a task is preempted, it is preempted at its maxintack gdepth. We
make the same assumption. Bounds on maximum stack usagegif@matask
can be derived by abstract interpretation using tools sscAksint [1] and
Bound-T [26].

Previous traditional approaches to account for the secacirf i.e., the
possible preemption patterns, is based on the fact that st ome task from
each priority level (or preemption level, if these two coptsedo not coincide)
can be active at the same time. Thus, a simple and safe apgaramounding
the maximum shared stack usage is to sum the maximum indivstiack usage
of tasks at each priority (or preemption) level. We call tigigproach SPL (Sum
of all Priority Levels), as described by Dawésal.[8]. SPL uses the following
function to calculate a stack usage bound:

Z max ({S; : 7; has priorityp}) (7.1)

peall priority levels

whereS; denotes the maximum stack usage of task

However, this approach can be very pessimistic, since itrags a worst-
case situation where tasks with maximum stack usage fromm gaarity level
preempt each other in a nested fashion. In practice, thiatgih could be im-
possible to achieve because of factors such as release teedines, prece-
dence constraints, and other dependencies that affect tablesican execute.

The analysis approach proposed in this paper reduces thigres of the
traditional method by investigating the possible preeomppatterns in more
detail. We formally define the start- and finishing time of sktanstancey;, as
follows:

st; The absolute time whem; actually begins its execution.



7.2 Stack sharing in preemptive systems 147

ft; The absolute time wheg; terminates its execution.

Assume that a task instance is preempted by another task instange
The use of an early-blocking resource protocol then enghiagt;, < fi; if
st; < st;, and the following holds:

sty < Stj < ftj < ftl (72)

In this paper we are interested in chains of nested preengptan-called
preemption chains We define a preemption chain to be a sequeR¢ce =

{v1,v2,...,v;} Of task instances such that
st < stg < --- < st < ftp < ftp_; <o < fty. (7.3)
Lemmal. PC = {vy,vs,...,v} is a preemption chain if and only if for all

instances;, v; in PC wherei < j, it holds thatst; < st; < ft; < ft;.

Proof of Lemma 1. The proof of Lemma 1 follows trivially from Equations
(7.2) and (7.3).

Let AlIPC be the set of all preemption chains in all runtime scenarios.
Then, under the assumption that the worst case stack $sadea task instance
v; can occur at any time during its execution, a bound on thetwaise stack
usageSW(C for a preemptive shared stack system can be expressedasdoll

SWC = max ZI;C S;. (7.4)

This formulation, however, cannot be directly used for gnialg and di-
mensioning the shared system stack since it is based on thaiy (only
available at run-time) properties; andft,. To be able to statically analyze
the system, one has to relate the static task propertiegse tthynamic prop-
erties. This is done by establishing how the system modke&diding policy,
and run-time mechanism constrain the values of the actaglatd finishing
times.

In previous work we have described how this can be done fosplegial
case that only tasks in the same transaction share stackiii4]paper extends
the analysis in the sense that we allow stack sharing amdnilgeay transac-
tions consisting of fixed priority tasks with offsets. Wealmprove the way
precedence relations are accounted for in the preemptiaigsas.
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7.3 System model

The system model used in this paper is an offset-based (wactional) task
model which was introduced by Tindell [27]. Later it was faihy defined and
extended by Gutiérrez and Harbour [13] and further imprayeon by Maki-
Turja and Nolin [20]. Gutiérrez and Harbour show how thisktasdel can
be used to model precedence relations in a distributedrayate perform a
holistic schedulability analysis for the entire system][18 [14, 19] we show
how it can be used to model hybrid, static and dynamic, sdbeddsystems,
which is supported by a commercial operating system pravige Arcticus
Systems [3].

The system model is defined as follows: the systEBngonsists of a set of
k transactiond’, ..., I'y. Each transactiof', is activated by an event, and
T, denotes the minimum inter-arrival time between two conSeelevents.
The activating events can be mutually independent, i.etriresactions may
execute with arbitrary phasing. A transactibp contains|T',| tasks. A task
may not be released for execution until a certain time @ffige) has elapsed
after the arrival of the activating event.

We user,; to denote a task. The first subscript denotes which tramsacti
the task belongs to, and the second subscript denotes thg afdhe task
within the transaction. A task;;, is defined by a worst-case execution time
(Cs;), an offset Oy;), a deadline Dy;), a maximum jitter {,;), @ maximum
blocking from lower priority tasks®,;), and a priority {,;). S, is used to
denote the maximum stack usagergf. When referring to the stack usage
of a specific instance; of a taskr,; we sometimes usg; instead ofS;; to
simplify the presentation.

The system model is formally expressed as:

r={{T,T1),...., Tk Tk)}
s :={7e1,..., Tqr,|}
Tsi ::<Csi708i7DSi1 JsiaBSiv-PSia Ssz>

Jitter is assumed to be a nonnegative variation in taskselémes, and
the deadline of a task is relative to the triggering of thesection. There are
no other restrictions placed on deadline or jitter, i.eeytban each be either
smaller or greater than the transaction period.

We assume that offsets are nonnegative and smaller tharettoz pthat
the system is schedulable, and that worst-case response (fify}) have been
calculated for all tasks [20]. Response times are measuvedthe triggering
event of the transaction, i.e., including offset and jitter
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In addition, we define a binary non-preemption relatiomPRE between
tasks such that iNOPRET,;, 7;) thent,; can not be preempted hy;. The
relation is reflexive, because two instances of the samedasknever pre-
empt each other. For the analysis in this paper, informattmut precedences
between tasks in the system are taken into account by ergtitdise as non-
preemption relations. Two tasks with a precedence reldween them will
not preempt each other given that the response times of helts tare less
than the transaction period. Additional mutual exclusiofoimation can, if
available, also be encoded usingPRE

We assume the system is scheduled with fixed priority sciveglwlith fifo-
scheduling of tasks with the same priority. Further, we amsthat an early-
blocking resource access protocol, such as the immediageiiance protocol,
is used.

7.4 Preemption analysis for offset-based systems

In the rest of the paper we assume that all tasks share a costaxcin The
upper bound problem for multiple transactions can then fognmally stated as
finding the maximum stack usage of all possible preempti@insh no matter
in which transaction they occur.

Stack analysis for multiple transactions is naturally mooenplex than
analysis of one single transaction, since tasks in differ@msactions may
interfere in nontrivial ways depending on relative pri@stand the phasing be-
tween transactions. To get a safe upper bound on the stazkvsizherefore
need to examine all possible phasing patterns betweerattmss.

A straightforward approach for analyzing multiple trartgatstack behav-
ior is to analyse the transactions in isolation, using tha &r all transactions
as an upper bound on the total stack consumption. Each ttamsa&an be
analyzed using the method developed in [14] or any other odetfihe result
obtained is a safe upper bound if the analysis for each tctingas safe.

Unfortunately, the latter approach ignores that the glstadk upper bound
may be significantly lower, since all possible transactmal preemption pat-
terns may not occur at the same time. One example of this is wine stack-
intensive tasks with equal priority both influence the sthokind in their re-
spective transaction. The bound obtained can be pessgirsistie no two tasks
with equal priority can both be active at the same time.

In this section, we propose a new, more elaborate algoritimichwtakes
this into account. The method is based on a precise analf/$ie aelaxed
global precedence chains that are possible. The algori#sa hon-polynomial
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time complexity but is nonetheless usable for analyzingjstzally sized task
sets. However, since sufficiently large task sets will ndesanalyzable using
non-polynomial algorithms, we also propose a less acciatstill competi-
tive approximate method with a polynomial time complexitiie method is a
generalization of the one presented in [14] to handle setrargsactions.

7.4.1 Pairwise preemptions

Since task preemption is one of the factors influencing the of the shared
stack, a first step is to formulate a safe approximation okibtes pairwise
preemptions. For this, we first define the release titef a task instance;
as the absolute time when is ready to start executing.

Let o, denote the activation time of the transaction releasinghatance
v, Of a taskry;. Then, we have the following relations on the start time and
release time of:

ag + Oy < sty. (7.5)

rty < ag + Og + Jg. (7.6)
These concepts are illustrated in Figure 7.1.

Qg Ttk St fti
1 1

T

time ——

Offset

Release jitter

Blocking caused by shared resources
Delay caused by higher priority tasks
Executing

BONDO

Figure 7.1: Important activities and time points for a tasit@anceyy,.

We usey,;; to denote the offset phasing between two tasksand 7,;
in the same transactioll,, and define it as the minimum distance from an
instance ofr,; to the next instance af,;, or formally:

wsji = (OSZ — Osj) mOdTS. (77)

Generalizing the preemption criteria by Dobrin and For@&njvhich is further
extended in [14], we form the binary relatiegy < 7; with the interpretation
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that 7,, may be preempted by,;. We let the relation hold whenever (a);
has lower priority tham;, (b) 7,; does not have a non-preemption relation to
7¢j, and either (cly, andr; are in different transactions (and can possibly
intersect due to unknown phasing), (¢2) can be delayed by jitter, possibly
starting after the next invocation af;, or (c3) 75; can possibly finish after
the start of the next invocation ef;. Formally, the relation can be defined as
follows:

(a) (b)
—— —
Tsi = Tt5 = P, < Ptj /\"NOPRE(TSi,th) (78)
AN (s#tV Jgj > tsji V Ry — Og > Ty — 155
M~ N
(c1) (c2) (c3)

Lemma 2. The < relation is a safe approximation of the possible preemp-
tions between tasks. That is,7f; can under any run-time circumstance be
preempted by;;, thenr,; < 7; holds.

Proof of Lemma 2. If an instancev,, of 7,; is preempted by an instanag
of 7, then we must have,; < P,;, "NOPRET;, 7¢;) and st < st; < ft.
From the assumption about the resource protocol, we knowthacan not
start betweent; and st;, and thus we must hawe, < rt;.
If s # t, thent,; < 7; holds. Thus, for the remaining proof we assume

s = t, and consider two cases:
Case Lilf O,; < Oy, theny;; = T + Oy — Osj.
If o, < g, we have

st < ftpy = a1+ 0 <o + Ry =

Osj — Osi < Rsi — Osi = Ts — 155 < Rsi — Ogie
If ap > oy, theno; + T < ay, and we have

sty < r1t; = ap + Oy < g +Osj+<]sj =

o+ Ts 4+ O4 < Oél-i-Osj +Js; =

Ts + Osi - Osj < Jsj = wsji < Jsj-
Case 2:f O, > Osj, thenwsji =0y — Osj
If a, > oy, we have

sty < 1t; = ap + 04 < g +Osj+<]sj =

a; + Og; <Oél+05j+J5j =

Oy — Osj < Jsj = '(/Jsji < Jsj-
If ar, < oy, thenay, + T < oy, and we have

sty < ftpy = o+ 05 <o+ Ry =

Ozk+TS+Osj < ar+ Rs =
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T + Osj — 04 < Ry; — Oy =

Ts - ’(/}sji < Rsi - Osi-
In all four subcases, we either hallg — 1,;; < Rs; — Og OF g5 < Jgj,
which means that,; < 7;; holds. O

7.4.2 Possible preemption chains

A sequence) of tasks is gpossible preemption chaifPPC) if it holds that
Tei = Ty; for all 743, 75 in @ wherer,; occurs before,; in the sequence.

In other words () is a PPC if and only if the relatior holds transitively
between all tasks i). For example, the sequenge, 712, 713} is a PPC if
and only ifr;; < 712,711 < 713 andris < 713. If it only holds thatr;; < 715
andrs < 7113, then@ is nota PPC.

The stack usagé&Ug of a PPCQ is the sum of the stack usage of the
individual tasks in the chain, i.eSUqg = > S

T €Q P8t
Lemma 3. If PC = {vy,vs,...,v} is a preemption chain, an@ = {s,;,,
Tsains - - - » Tspin p 1S @ COrresponding sequence of tasks such thae PC is

an instance of_;, , thenQ is a PPC.

1q
Proof of Lemma 3. For all task instances,,, v, in a preemption chairPC,
if p < ¢ then it holds thatst, < st, < ft,. Sincev, andv, are instances of
Ts,i, @NdT, ;. respectively, Lemma 2 implies that; < 7. ,, and thusQ is
a PPC. n

A PPCQ for which no other PPC has a higher stack usage in the same
system is called anaximal stack usagePC, or more informally, anaximal
PPC. The stack upper bound problem can now be stated as fimdagimum
stack usage PPC. We refer to this as the MAXPPC problem. Wepnove
that the stack usage of a maximal PEXGn a systent” is a safe upper bound
on the stack usage of.

Theorem 1. The stack usage of a maximal PRLis a safe upper bound on
the actual worst case stack usage for a syskiem

Proof of Theorem 2. Let ¥ be the sequence of tasks instances participating
in the preemption situation which cause the worst case staelge, that is,
SWC =3y Ssi- According to Lemma 3, we have thhtis a PPC with
SUy = SWC. SinceQ is a maximal PPCSUy < SUg, which concludes
the proof. O
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7.5 Algorithms

In [14], we proposed a polynomial method for stack analysis single trans-
action of the type described in Section 7.3. The polynonmmaétbehavior of
this method comes from the fact that a single transactioresgmted by tasks
with offsets and response times can be efficiently analyaiuspecialized
graph algorithms [16]. These algorithms cannot be direaplylied to analysis
of a global stack shared by several transactions. When anglgsingle trans-
action in isolation, the task offsets and response timesheansed to bound
the time interval within which the tasks will execute. Howewvhen several
transactions are considered, we no longer have a commaeatmti time, and
therefore the graph algorithms used in [14] are no longelicgdge. We there-
fore propose to analyze smaller systems using an exactithlgpmguaranteed
to find a maximal PPC. For larger systems, we propose to uséyagooial
approximation, described in Section 7.5.4.

7.5.1 An exact algorithm for the MAXPPC problem

We solve the problem of finding a maximal PPC by forming a @&d)pre-
emption graphof nodes representing tasks, and edges representing lgossib
preemptions, as defined in (7.8). An example taskset (asguwhi= B = 0
and-NOPRET;, T¢;) for all tasks) and its corresponding preemption graph is
shown in Figure 7.2, where solid edges represent possibngstions within

a transaction, and dashed edges represent possible preesiEtween differ-
ent transactions.

Task O P R S

11 0 3854 4 @ ,@

T12 1697 3837 1 SN 0
2 NV I
2

1
2

13 4635 4 4781 '
3
1
3

/7 ) AN
393 l///// | \/\/\\ |
21
3699 3

Figure 7.2: An example of a preemption graph, also showigkstin a maxi-
mal PPC.

T21 0
T22 617
723 2588

The preemption graph is not necessarily transitive, asreigu2 shows.
This implies that not all paths in the preemption graph fofdCB. As an ex-
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ample, the patl®) = {11, 712, 723, 713} iS hot a PPC since several preemption
relations, for example the one betwegp andr; 3, are missing.

The method is based on a branch-and-bound search for PPias grdph,
recursively building PPC&*. An outline of the algorithm is given in Algo-
rithm 7.1. Initially, Q° = M = (). If in any recursive step the total stack
usageSUy: is greater than the stack usa§&), of the current maximal PPC
M, then@® becomes the new maximum. We defineaver setC'(Q) of a
PPCQ as a set of tasks for which all tasks@(Q) can possibly preempt all
tasks in@. A cover set ignaximalif it cannot be extended by any other task.
The algorithm maintain€’(Q?) and then recursively examines an extension
Q™ = QU {r,} of Q° for each task; in C(Q"). We also apply a bound-
ing function UB to terminate search in branches which cleasinnot contain
a maximum PPC. This bounding function is further discusaeskiction 7.5.2.

Algorithm 7.1: Computing a maximal PPC in a generic preemption graph.

MaxPPCQ)

(1) if SUg > SUp then M < Q

(2) C(Q) = {th | VTsi € Q~Tsi < ’th}

(3) if SUg +UB(C(Q)) < SUp then return
(4) foreachr; € C(Q)

(5) MaxPPCQRU{r,})

In Section 7.5.3, we show that thégorithmdescribed i€xactin the sense
that it always computes the maximal PPC, and therefore soheeMAXPPC
problem. We also show that the methodéde because the stack usage of the
maximal PPC is an upper bound on the stack usage of the system.

Note that our method dftack boundings not exact, since the relation is
in itself a (safe) approximation. Also, there are otherdestunaccounted for.
For example, there may be further restrictions on the plessibsting patterns
due to mutual exclusion, and the tasks may not use their maxistack when
preempted.

7.5.2 Bounding the maximal PPC

Choosing the right function for the bounding step in Algomit 7.1 is essential
to guarantee correctness and to acquire a method usabledticer Asafe
upper bound functioon the maximal PPC stack usage for a set of tasksa
function UB for which UBC') > SUk, whereK C C'is a maximal PPC. We
use the most stack-intensive path in the preemption gragtmsa byC'(Q) as
the UB function, which we refer to as the PUB method. A hedapash (w.r.t.
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stack space) in a directed acyclic graph can be fouré(im+ 1) time, where
n is the number of vertices and is the number of edges [7].

Theorem 2. PUB is a safe upper bound function on the maximal PPC stack
usage.

Proof of Theorem 3. From the definition of a PPC in Section 7.4.2, we have
that a maximal PPCX C C is a path with stack usag€Ux. PUB results in
the maximum stack usage of any pathC C. Therefore,PUB(C) > SUk,
which concludes the proof. O

We refer to the combination of the branch-and-bound metinodlgo-
rithm 7.1 with the most stack-intensive path relaxation Bpl@s bounding
function, as the PPCBB algorithm.

7.5.3 Correctness

In order to claim correctness of Algorithm 7.1 we need to shioat it com-
putes a maximal PPC. Theorem 1 then gives us that the stagk néthe PPC
computed by Algorithm 7.1 is an upper bound on the stack ushgfee sys-
tem. We first need to prove a lemma regarding the stack usag®BC when
extended with tasks from a cover set.

Lemmad4. If Q isa PPC,C(Q) is a cover set of), and K C C(Q) is another
PPC, thenQ U K is a PPC with stack usag€Uqux = SUg + SUk.

Proof of Lemma 4. All tasks in@ can be preempted by all tasksGH{ @), and
since@ and K are both PPCs andl C C'(Q), QU K is a PPC. Furthermore,
Q N C(Q) = 0 because no task can preempt itself, and tQus K = (), and

SUQUK = ZT,gq‘,EQUK Ssi = ZTsiGQ Ss’i + ZthGK Stj = SUQ + SUK D
We can now prove that Algorithm 7.1 is correct.

Theorem 3. If UB is a safe stack usage upper bound function, then Algo-
rithm 7.1 terminates with a maximal PPC.

Proof of Theorem 4. The proof is given in two parts.

We first assume thaiB(C') = oo for all inputs C, so that Algorithm 7.1
never returns on line (3). Given a PP@ and any task; from a maximal
cover setC'(Q), we can form a new s€’ = Q U {r;;} which is also a PPC
(from Lemma 4). Thereforé) is always a PPC, and since the algorithm ex-
tends@ with one task fronC(Q) and Q N C(Q) = 0, the algorithm will
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terminate. Ifry; is notinC(Q), then@ U {7;} is not a PPC. All together, the
algorithm explores all PPCs, including a maximal PPC whidh be stored in
M and consequently returned when the algorithm terminates.

Now assume thdlB is a safe upper bound function on the maximal PPC
stack usage in a set of tasks. From Lemma 4 we Bdig,x = SUg + SUk
for all PPCsK C C(Q), and subsequently this also holddifis a maximal
PPCinC(Q), in which case) U K is also a maximal PPC i) UC(Q) (from
the definition of cover set). Sint#B is safe,SUg + UB(C(Q)) > SUguxk-
Thus, ifSUg + UB(C(Q)) < SUy whereM is the most stack-intensive PPC
found so far, there is no PPC i U C(Q) which has a higher stack usage than
M, and we can return from this branch without losing any maxiswéutions.
O

7.5.4 Polynomial approximations

Algorithm 7.1 is non-polynomial. In Section 7.6, we showttdaspite this,
the algorithm can be used to analyze realistically sizelkt¢ass. However, an
exponential analysis method will still be too time-consngfor practical use
when the number of tasks under analysis is too large. Weftivereropose
a polynomial time approximation for analyzing stack sizeevehthe number
of tasks is too high to be analyzed using the branch-andsowthod. The
approximation is a combination of two methods. The first 8, A, is based
on analysis of individual transactions in isolation, ansesdially uses the sum
for all transactions as an upper bound on the total stackuropson. The
method is described in [14], but has been modified for theectiiask model,
to account for precedence constraints and to allow respiimss larger than
the period. STLA is a safe upper bound if the analysis for d¢eatisaction is
safe, and runs i0(kn?) time, wherek is the number of transactions, ands
the maximal number of tasks in a single transaction.

STLA is overly pessimistic in situations where equally pitiaed stack-
intensive tasks in different transactions influence thiatsd transaction stack
upper bound. Since the tasks have equal priority, they dammeempt each
other, and the global upper bound obtained is pessimist@.reiedy this,
we also use a second polynomial method to obtain a differppeuubound.
The method, called PUB, finds a maximum stack usage path iglobal pre-
emption graph of all tasks in the system, and is the same osg&rided in
Section 7.5.2 and used as an upper bound function in PPCBB.

To illustrate the difference between PPCBB, STLA and PUB)jsier
the task set illustrated in Figure 7.2. The maximal PPC is thsk set is
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{711,712, T23} With a total stack usage of 8. This is the result that PPCBB
would return. In contrast, STLA would compute an upper bolpdonsider-

ing the two transaction; = {711, 712, 713} @andl’y = {721, 722, T23} in is0O-
lation, computing the PPQgr 1, 712 } with stack usage 5 fdry and{rs2, 723}

for I'; with a stack usage of 4. The sum, 9, would be returned as the re-
sult. Finally, PUB would return the stack usage 10 of the mstestk intensive
path {711, 712, 723, 713} in the graph, which is not a PPC but is nonetheless,
as shown in the proofs of Theorem 1 and 2, a safe approximatighe stack
usage of the system.

Sincer,; < ™; = Py; < P, a stack usage patR can never include
two tasks on the same priority level. If we would relax tkerelation into
<'= Ps; < Pyj, the stack usage of the most stack intensive path would tsd equ
to the maximum stack for each priority level in the systemerEffiore, PUB is
always at least as good as the traditional approach (SPL)préfsose to use
the minimum of PUB and STLA (referred to as STLA_PUB) as a polyial
time alternative to PPCBB. Since both PUB and STLA are safé¢ ASPUB
is also safe.

7.6 Evaluation

We evaluate the efficiency of our proposed methods by gengnatndom task
sets and calculating the stack upper bounds. All tasks im gagerated task set
share one common stack. We use three methods (SPL, STLA_IPRBBB)
to calculate an upper bound on the shared system stack. thieugyper bounds
are illustrated by the following graphs:

SPL: The traditional approach to determine an upper boumeh
maximum stack usage of each priority/preemption level).

STLA _PUB: This represents the minimum of the polynomialmoels STLA
(analysis of individual transactions) and PUB (longesthpat
global preemption graph). See Section 7.5.4 for details.

PPCBB: Non polynomial branch-and-bound based method wiilgdst
path relaxation. See Section 7.5.1 and 7.5.2 for detalils.

7.6.1 Simulation setup

We run the stack analysis application on an Intel Pentium.®8 Z5Hz with
512 MB of RAM. We generate random task sets as input to thé staalysis
application. The task generator takes the following inparameters (default
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values represent the base configuration of each analysis):

Parameter Default
Number of transactions 5
Number of tasks 60
Total system load 40%
Task priority (min—max) 1-32

Task stack usage (min-max) 128-2048 bytes
Probability of precedence 10%

Using these parameters, task sets with the following clberiatics are gener-
ated:

» The period timel’; of each transaction is set to 10,000.

» Each task offset@;;) is randomly and uniformly distributed between 0
andT;/2.

» Task priorities and the stack usages are assigned randiatviygen min-
imum and maximum value with a uniform distribution.

» The total system load, and the number of tasks in the systentis-
tributed among the transactions in such way that all trafgac have
the same amount of load and the same number of tasks.

» Worst case execution time§;,;, are initially assigned to each task in
such way that tasks are separated in time within a transacTioe exe-
cution times are then adjusted by a fraction, so that thedfaé $ystem
load (as defined by the input parameter) is obtained, prigggtime sep-
aration of tasks within a transaction.

» Each task is assigned a precedence relation with a pralyapkcified
by the precedence probability attribute. For example,éf phobability
of precedence for,; is 10%, then for each succeeding task (i.e., task
with larger or equal offset than;;) in I', there is a 10% probability that
Tsi 1S given precedence over the task. When all precedencessigaed,
transitive precedences are established, exg; tias precedence ovey;
andr,; has precedence ovey, thent,; has precedence oveyy.

» We assign deadlin®,; = T, for each task. All tasks are required to meet
their deadlines (otherwise the task set is considered edsdable). In
case the generated task set is unschedulable, the taskisetisded and
a new task set is generated.
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7.6.2 Results

Each point in the graphs represents the mean stack usagé cdridomly gen-
erated schedulable task sets. For each point, a confidetecesih(confidence
level of 95%) is shown to indicate the reliability of the figgt For each di-
agram, we vary one parameter, keeping all other parameteosding to the
base configuration. In addition to calculating upper boundsalso measured
the mean execution time for each method. The mean execiries for SPL
lies in the range of micro seconds, for STLA_PUB the mean @i@g time
lies in the in the range of milliseconds and for PPCBB in thegeafrom mil-
liseconds up to five seconds.
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Figure 7.3: Varying system load.

In Figure 7.3 we vary the total system load from 10% to 60%. ¥eeted,
the stack upper bound using the traditional method (SPLotist&ant and un-
affected by variations in load. This is due to the fact thalt 8Rly considers
priorities when calculating the upper bound. Both STLA Paigl PPCBB
produces upper bounds that are slowly increasing with asing load. This
is natural, since increasing the load, keeping all otheampaters according to
the base configuration, typically results in larger respdimes, which in turn
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increases the number of possible preemptions in the system.
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Figure 7.4: Varying maximum priority.

In Figure 7.4 we vary the maximum priority of tasks from 1 ta 6dhis
gives a possible priority distribution of 1 t§ wheren is indicated by the x-
axis. We observe that for small valuesrmthe difference between the methods
is small. For larger values amthe difference is significant.

In Figure 7.5 we vary the number of tasks in the system fromol000.
With a low number of tasks in the system, there is a largeripitiggthat tasks
have unique priorities hence considered to be part of a gréemchain by
SPL. SPLA_PUB and PPCBB goes one step further and examiaemption
patterns, with a tighter upper bound as a result.

In Figure 7.6 we vary the number of transactions from 1 to 26.9é£ that
both SPLA_PUB and PPCBB increase when increasing the nuoflieans-
actions in the system. With more transactions, the arlifphasing between
them increases the possibility of nested preemptions |tiregln increased
shared stack usage. SPL is constant and unaffected byioariathe number
of transactions. Again, this is expected, since SPL onlittars priorities.
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Figure 7.5: Varying the number of tasks in the system.

7.7 Conclusions and future work

Allowing tasks to share a common run-time stack can redueeathount of
RAM needed for an application. However, in order to safefjuee the over-
all run-time stack, one must be able to analyze possiblengpgen patterns
statically. And from those preemption patters deduce tlssipte stack-usage.
Static information about system model, scheduling poliog aun-time mech-
anism can be used to constrain the values of the dynamiqtaglerties that
affect possible preemptions, and thus also shared stageusa

A task model with such static information is the task modé¢hwifsets (the
transactional task model) where priorities, offsets aret@dences limit the
possible preemption patterns. We have, for that task mddeéloped a system
wide preemption analysis that safely approximates theahpteemptions and
forms a basis for safe upper bound of the total shared stadeus

We presented two novel methods for determining a safe uppandon
the stack usage. Both methods analyze a graph consistiaglksf &nd possible
preemptions between these. The first method is an exacthsEarmaximal
possible preemption chains. The second method is a corirafttwo algo-
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Figure 7.6: Varying the number of transactions.

rithms, both being polynomial approximations of the firse formally showed
that both methods are safe in the sense that they will newdgrestimate the
amount of stack space needed.

The methods have a clear practical value in a verificatididlaon phase
of system development. They can be used to formally verdystack overflow
will not occur during run time. In a simulation study, we evatied our tech-
niques and compared it to the traditional method to estirsiaek usage. We
found that our exact method significantly reduced the amofstack memory
needed. In our simulations, a decrease in the order of 40%ypa=l, with a
runtime in the order of seconds. Our polynomial approxioratonsequently
yields about 20% higher bound compared to the exact method.

In future work our methods can be used to further reduce #ekdtound
by more detailed modeling of the system behavior. For exantpk assump-
tion that each task uses its maximum stack when preemptedeadyo overly
pessimistic result if the stack usage is highly variabldrduexecution. With
knowledge about the variation of stack usage, one might apésk into sev-
eral segments, each with its own stack usage. These segonsnthen be
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modeled as separate tasks with precedence constraint$yeange should ob-
tain a tighter bound on the stack usage. Furthermore, assitaithnique could
also be used to split up a task that uses shared resources thiegpart that
uses the resource can be modeled as a task with a mutualierdeakation to
other tasks that uses the same resource.
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Abstract

Today, many companies developing real-time systems haveeams for ac-
curate timing analysis, as the software violates the assangpof traditional
analytical methods for response-time analysis, and areooaplex for ex-
haustive analysis using e.g. model checking. This papesepte an efficient
best-effort approach for timing analysis targeting sudtens, where simula-
tions of a detailed system model are controlled by a simpi@geel optimiza-
tion algorithm, based on hill climbing with random restgHkCRR). Using a
simulation-based approach implies that the result is natajteed to be the
worst-case response time, but on the other hand, the metiodhandle in
principle any software design. Unlike previous approagctiesnew algorithm
directly manipulates simulation parameters such as exectitnes, arrival jit-
ter and input stimulus.

A thorough evaluation is also presented, where HCRR is comipto
Monte Carlo simulation (the current state-of-practicedl anpreviously pro-
posed method. The evaluation is performed using a set oflafion models
constructed from existing systems in the robotics and wddiicdomain, and
shows that for the three models investigated, the propostidad was 4-11 %
more accurate and vastly more efficient than the other methisdour eval-
uation, HCRR found the second-best result on average 42 tfaster than
the second-best method. For the largest model, HCRR usgd dh®b of the
simulations needed by the second-best method to reach itie esult, im-
plying that HCRR scales to larger systems. For the moststé@atnodel, our
new method found the highest-known response time 1628 fias¢ésr than the
second-best method.



8.1 Introduction 169

8.1 Introduction

Today, most existing embedded real-time systems have beerioped in a
traditional code-oriented manner. Many of them are alsotaaied over ex-
tended periods of time, sometimes spanning decades, dwhighp they be-
come larger and more complex due to the iterative changeg magbart of
the system evolution and maintenance. The increasing exibpmakes these
systems increasingly hard and expensive to maintain arify.ver

One specific problem with such systems is the risk for intodaiy timing-
related errors. A natural approach to avoid timing-relaadrs in real-time
software would be to use established analytical methodsegponse-time
analysis (RTA, [10, 15]), which provides exact worst-casgponse times of
tasks, given correct worst-case execution times (WCET)rdlhye a system’s
correctness with respect to temporal requirements can &gieed.

The ability to perform timing analysis, using RTA or otherans, does not
only improve the quality of the system verification, but cégsoaeduce devel-
opment and maintenance costs significantly as potentiahgirelated errors
can be identified early, during the design of new featured tla@reby avoided.
Timing errors can otherwise only be detected in late vetificgphases, where
detected bugs often case major costs and delays. Moreowergterrors of-
ten only occur under very specific conditions, which are hardetect using
testing.

Sadly, it is not possible to make practical use of RTA on adajygantity
of existing industrial software systems, as they violadaksumptions of the
method. Such systems might have been initially designdbwittiming anal-
ysis in mind, or development personnel may have introduddetions of RTA
during the system evolution, and thereby lost the analjibabi

The authors have observed several issues with respect tarR&®Aisting
industrial/embedded software systems. Some relevantprarare:

» Tasks communicate and trigger other tasks in complex wrdeated
patterns.

» Task WCET often depends on input.
» The task priority is sometimes changed dynamically.

» Deadlines are not always defined explicitly, but manifesstumctional
errors when different timeouts expire.

Moreover, some implementations observed in industriakeodkes it very
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hard to perform static WCET analysis. Consider the follonergmple, where
a task reads all messages in a message queue and processc¢betingly:

do {
nmsg = recei veMessage( MyMessageQueue) ;
process_nsg(nsg) ;

} while (nmsg != NO MESSACGE) ;

There are at least two aspects in this example which are loaehal-
yse statically. First, even though the maximum allowed gusige is usually
known, the actual maximum at runtime is not; the developeag have over-
dimensioned the queue as a safety margin. Second, and muogéamtly, other
tasks may preempt the execution of the loop and refill the gudhen this
happens, the number of loop iterations is no longer boungtiéddmaximum
queue size.

The impact of mechanisms like buffered queues and priokignges can
cause very intricate scenarios, where the worst-case rgeointuitive and ex-
tremely hard to predict manually. For instance, in one ofihailation models
(Model 1, described in Section 8.4.1) used for evaluatioawfapproach, the
worst-case response time of the task in focus surprisinigiyndt occur when
the model received the maximum amount of input events. ddstéhe worst
case turned out to occur when the input events formed a coshpkifferent
and very intricate pattern. The details of this case is desdrin [13]. The
system model used by analytical methods such as RTA is toplisiio to al-
low accurate timing analysis of such systems with such bergvinstead a
detailed model is required, where also relevant task behaein be described.

An example of an industrial real-time system where RTA isapglicable
is the control system for industrial robots developed by ABBis system has a
very complex temporal behavior, where some tasks have ggadimes vary-
ing radically due to input-dependent IPC and globally stiastate variables,
and where tasks may even change scheduling priority. Thigtanah meth-
ods’ use of a task-level WCET attribute will in such cases brg pessimistic
since the tasks are not independent; there are often depegadevhich result
in mutual exclusion between different tasks’ WCET scenario.

A more detailed system model is therefore necessary fongranalysis
of such systems. lIdeally, the model should describe thdledtaxecution
control flow on a code level with respect to resource usagéraechction, e.g.,
inter-process communication, CPU time and logical ressircSimulation-
based methods has previously been shown to work well in simgypuch large
and detailed models, since they only sample the systemsgiate rather than
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attempting to search it exhaustively. Moreover, simutatiased analysis is far
more efficient in finding potential timing problems than gystlevel testing,
the dominating method in industry today. Several framewakeady exist
for timing simulation of real-time system models, e.g., twenmercial tool
VirtualTime[19] and the academic to@RTISST[7]. These solutions rely on
Monte Carlo simulation, which can be described as keepiaditphest results
from a set of randomized simulations.

In this paper, we show that a detailed representation ofithelation pa-
rameters in combination with a focused optimization algponi can yield sub-
stantially better results than both Monte Carlo simulatfahich is the cur-
rent state-of-practice) and another previously proposeitiod MABERA[14].
Specifically, we propose a new approach where key aspectedfyistem at
hand are encoded directly as parameters in the algorithnth¥veuse a fairly
straightforward optimization method based on the wellvindill-climbing
algorithm [20]. Surprisingly enough, nobody seems to haeel this before.

The paper contains the following contributions: 1) We giveexplicit
representation of simulation instances in the form of ispatich as execu-
tion time, arrival jitter and external input stimulus is aefil, 2) we present a
novel algorithm for manipulating simulation parameterssédd on the simple
idea of hill-climbing with random restarts (HCRR), and 3) giee a thorough
experimental evaluation of performance, scaling and ageree of the new
algorithm, comparing the results to those obtained from NERR\ and Monte
Carlo simulation. In the evaluation, we show that the neveidigm is signif-
icantly better than previous approaches in identifyingesxie response times
using a limited number of simulations.

The paper outline is as follows. Section 8.2 presents latgk and the
new input representation. Section 8.3 presents the newoapprproposed
in this paper, and Section 8.4 describes a set of case-stodglsmused to
evaluate the approach. The evaluation is presented indBe®th, and finally,
Section 8.6 concludes.

8.2 Best-Effort Response-Time Analysis

Response-time analysis is certainly not something newbasites the stan-
dard approaches such as RTA [10, 15], formal analysis td@dJPPAAL [6,
22] can also be used for exhaustive analysis of softwaressstbut for industrial-
sized models, the state space can grow too large for them twdumtically
useful.

The use of evolutionary algorithms for different types ofttease gener-
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ation has also been studied for quite some time. In [2], derdgorithms
were used to generate test cases for a software relay systariruelectrical
networks. The purpose of the genetic algorithm is to provuikg response
times for the software, which executed in a simulation envinent. Nossal
et al [17] describe various extensions of the traditionalagie algorithm [9]
to better suit the type of problems in the real-time domainoréirecently,
Mueller and Wegener [16] gave a comprehensive comparisatatit analy-
sis techniques and evolutionary algorithms, with regardciwedulability, for
several real-time applications.

In [21], Samii et al aim to find extreme response times forritisted sys-
tems by optimizing a set of simulation parameters for modeigaining tem-
poral attributes and communication. They use a genetiaitigo to explore
combinations of task execution times in order to maximiz:&nend response
time. Flow of control within tasks is not considered. Thaisults depend on
the method developed by Racu and Ernst [18] for identifyitgpsions where
decreased execution times can lead to increased respores fThe analysis
framework by Kim et al [11] also has a similar basis of temptarsk attributes.

In [14], we presented MABERA, a meta-heuristic approachbfest-effort
response-time analysis of models of complex legacy systesing ideas from
genetic algorithms [9].

The approach is based on a simulator using a schedule ofrandmber
generator seeds, in turn used to generate random numbetefparameters
of the adhering system model. The seed of the random numberager can
be changed at arbitrary time points, and thus provide a cctod&ol mecha-
nism. Due to the seed schedule representation, only mntetiased in the
evolutionary algorithm, which inserts randomly selected/seeds at specific
simulation time points. The effect of seed switching is thatentire execution
trace for the rest of the simulation is changed. Unfortugdtes implies that
it is not possible to modify a restricted subset of the siriofaparameters,
for example the execution time for a specific code segmeat,rtight on its
own severely affect the response time. For heuristic methodvork well,
small changes in a candidate solution should have smalldiigaable effects
on the objective function. This clearly doesn't hold for MERA, where a
newly inserted seed makes the rest of the simulation beravpletely differ-
ent. Readers can refer to [14] for a more thorough descrigtithe MABERA
approach.
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8.2.1 Simulation of Complex Real-Time Systems

The analysis method presented in this paper is based onnthwasor frame-

work RTSSim[13], which allows for simulating models describing botiet
functional and temporal behaviour of tasks. An RTSSim satioh model

consists of a set of tasks, sharing a single processor. Bakhin RTSSim

is a C program, which executes in a “sandbox” environmert wiinilar ser-

vices and runtime mechanisms as a normal real-time opgratistem, e.g.,
task scheduling, inter-process communication (messagess) and synchro-
nization (semaphores). The scheduling policy or RTSSimésmptive fixed-

priority scheduling and each task has scheduling attrébatech as priority,
periodicity and offset. It is possible to change these patars dynamically,
in the task model code, to implement a custom schedulingyaln top of the

default scheduling policy.

In RTSSim, time is represented in a discrete manner usingtager sim-
ulation clock, which is only advanced explicitly by the task the simulation
model, using a special routineXECUTE. Calls to this routine models the
tasks’ consumption of CPU time.

All time-related operations in RTSSim, such as timeouts ativation of
time-triggered tasks, are driven by the simulation clodkiclr makes the simu-
lation result independent of process scheduling and pagnce of the simula-
tion computer. The response time of tasks is measured waettevscheduler
is invoked, which happens for example at IPC, task switckesCUTE state-
ments, operations on semaphores, task activations and tabksiend. This,
together with the simulation clock behaviour, guarantbasthe measured re-
sponse time is exact.

The simulation framework allows for three types of selawiovhich are
directly controlled by simulator input data.

1. selection of execution times (faxECUTE),
2. selection of task-arrival jitter, and
3. selection of task control flow.

A simulation in RTSSim is completely deterministic given @esific input,
in this paper referred to assamulation instance Monte Carlo simulation is
realized by providing a randomly generated simulationainse.

The models used for the evaluation in this paper were mandealigned
to contain similar modeling and analysis challenges ase¢hésystems, and
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contain only the aspects which were considered intereftimg a timing anal-
ysis perspective. In general, however, a major issue whieig sgnulation for

analysis of existing systems is how to obtain the necessiamylation model,

which should be a subset of the original program focusing emakiour of
significance for task scheduling, communication and atlonaof logical re-

sources. For many systems, manual modeling would be fain@sdonsuming
and error prone. An approach for automated model extraetierproposed
in [3] and a tool implementing this approach is in developtheamedVXTC

— Model eXtraction Tool for C. The MXTC tool targets large ilamentations
in C, consisting of millions of lines of code, and is based doren of program

slicing [23]. The model extraction tool was however not yettane enough for
producing real models for the HCRR evaluation in this papere to the size
of industrial systems, virtually all “dark corners” of the @ogramming lan-
guage will be encountered, which leads to a quite compldxwdach must be
very stable, and at the same time scalable to large quamitisode. However,
an evaluation using MXTC and HCRR on a large industrial systeplanned
during 2009.

Problem Definition We can define the problem of best-effort response-time
analysis with explicit input as follows. We are given a moofed real-time sys-
tem, which can be simulated on simulation instangesonsisting of simulator
parameters. LeR(S) denote the highest response time measured for the task
under analysis in the simulation of instan€eThe goal of the problem is then

to find a simulation instanc8* that maximizesR, subject to the constraints

on S* outlined in Section 8.2.1.

8.2.2 Input Representation

A simulation instance is a set of parameters that exactyrdene the outcome
of a simulation. In this paper, a simulation instance is @spnted using a
set of sequences of integers, where each sequence is ésdavith either an
arrival jitter of a task, an execution time, or an environtaémput stimulus.
Each value then directly decides a selection of either jigeecution time, or
state in the task control flow. The advantage of this appraatiat the direct
relationship between representation and model propertaé®s it possible to
locally refine specific aspects of a given simulation instéanc

1Such environmental input stimulus is represented as variombar of events generated by
environmental task in Model 1 and Validation Model, and vasi@xecution time of Software
Circuits (SWCs) in Model 2 in Section 8.4.
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Let J; be a sequence of actual jitter valugs experienced by instance
of a taskr;. We restrictj;,- to integer values in the intervé), ub(J;)], where
ub(J;) is an upper bound on jitter for tagkin units of the smallest measur-
able time interval (clock ticks) for the target system. Rertmore, lefX;, be
a sequence of values for a certain environmental input &tignor execution
time in the simulated program, adg, be thej*" such input value. We assume
that all stimulus and execution timéé,g are of integer type and have upper
and lower bounds, so thét(X) < X,{ < ub(Xy) for all k,j. Execution
times are used only for deciding CPU time consumptio®ExfCUTE primi-
tives. Bounds on execution times can be analysed using staaiysis [24] or
estimated through measurements.

A simulation instances, defining a fully deterministic simulation of the
model, is therefore a set

{J1,J2, .., T, X1, Xo,y ., X } (8.1)

wheren is the number of tasks which have non-zero jitter ands the num-
ber of environmental stimulus arekECUTE statements. Denote hy; and
M, the number of values that are used to represent jitter sequerand in-
put sequenc&,. N; and M; can be determined empirically by tracing how
many values the simulator uses for each value. In the®yand M}, can be
unbounded, and for some long simulatioNs,and M may grow to unaccept-
able levels. In such cases, we suggest ta\getind M, to a fixed acceptable
level. If there are not enough input values in the sequehessimulator should
report a warning, and start reuse values from the start a$¢hj@ence. For the
evaluated models in this papéy; and M, were long enough to represent all
values used.

8.3 The Optimization Algorithm

In the rest of this paper, we focus on analysing the respamsedf a specific
given task by varying the simulation instances used as ifguuhe simulator.
Analysis of an entire system can easily be done by perforroinganalysis
several times, once for each task in the system.

8.3.1 Random Restart Hill Climbing

Our initial idea was to use a representation of the inputrpatars to RTSSim,
which more directly corresponded to simulation parameieara full genetic
algorithm [9]. However, initial experiments with the croser operator, which
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is the operator most often associated with genetic algosttproved unsuc-
cessful and did not show any significant improvement over MRBA. In-
stead of focusing on the crossover operator, we chose tatigate iterative
improvement of a single individual as an alternative. Inhed out that hill-
climbing [20], augmented with random restarts whenevercalloninimum
was detected, gave much better performance than MABERA.

The proposed new optimization algorithm, HCRR, is therefoased on
hill climbing using random-restarts. Hill-climbing hasthdvantage of being
one of the simplest metaheuristics available, and is baséuddea of starting
at a random point, and then repeatedly taking small step®ipgiupwards
(wrt. the objective function, which in this paper is the maasl response time)
whenever such search directions exist. If no such stepg exiscal minimum
may have been reached. Several techniques for escapihgiliodaa exist (for
example Tabu Search [8] and simulated annealing [12]), médtaf limited
experiments conducted did not show any significant perfaceaadvantage
over hill-climbing with random restarts.

Advantages of HCRR come from the combination of a strictlyaldm-
provement part, which quickly converges to high respomsedj with diversi-
fication mechanisms (jump-back to equal candidates, ahdektarts) that are
important to avoid local maxima. In contrast, MABERA dodshploy such
a mechanism, and consequently can easily get stuck in Igt@has. In ad-
dition, the local improvement functionality of MABERA iséfficient in that
it is not clearly connected to existing critical featurestioé solution candi-
date. Monte Carlo search, on the other hand, has no mechanahfor local
improvement, and therefore exhibits unsatisfactory crgesmce.

HCRR works by iteratively changing a small portion of the raloplaram-
eter set, and restarts after a fixed number of non-improvimglations have
been tried.

The implementation of HCRR is given in Algorithm 8.1. Heree tsimu-
lation budget is denotedofsims, andRT(q) denotes the end time of the task
under analysis in the simulation instanggvhen the worst response time oc-
curred. The consumption time point of a simulation intjtof any type (jitter,
execution time, or environmental input stimulus) is expeﬂdsaéfMg. q[Xij]
is the current value on in the simulation instance. The functionrnd (7, )
returns a random number betwekand« if | < wu; otherwise, it returng.
A completely random simulation instance can also be geeénaging the call
rnd_inst().

HCRR takes a currently best candidates{) as input, which should be a
random simulation instance when first called. It then bebynshoosing as
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Algorithm 8.1: Hill Climbing with Random Restarts

HCRR(nofsims,m,k,best)
curr < MONTECARLO(min(m, nofsims), rnd_inst())
nofsims <— nofsims —m
if R(curr) > R(best) then best < curr
E « {curr}
nonimp < 0
while nofsims > 0
if nonimp > nR
return HCRR(nofsims,m,k,best)
else if(nonimp + 1) modnB = nB
curr < random element il
nb < NBH(curr, |k - len(curr)])
SIMULATE (nb)
nofsims < nofsims — 1
if R(nb) > R(best) then best < nb
if R(nb) > R(curr)
curr <— nb
E «+ {nb}
nonimp < 0
else
nonimp <— nonimp + 1
if R(nb) = R(curr)thenE < EU {nb}
return best

starting point the best simulation instance framn (m, nofsims) randomly
selected candidates using theoMTECARLO method. Then, in each iteration,
k -len(curr) random values of the current simulation instanger (which has
len(curr) input values) used befol&T (curr) are selected and modified using
the neighborhood procedureeN, shown in Algorithm 8.2.

The response time for the task under analysis is measureshhing RTSSim
using the SMULATE (nb) call on a neighbonb. Modifications suggested by
NBH that increase response time are accepted, and change&theask re-
sponse time are rejected. Modifications that have equabnsgptime are re-
jected but saved for future reference, as described below.

A pure hill-climbing procedure is susceptible to gettingchtin local max-
ima, and can therefore exhibit less than satisfactory pmdoce on many
problems. In order to avoid convergence to locally optintaba and to im-
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Algorithm 8.2: Neighborhood procedure
NBH(inst,n)
fork=1ton .

Q = {X] € inst | TM] < ET(inst)}
X/ « random input variable i)
V = {Ib(X;)...ub(X;)} \ {inst[X7]}
v < random value i/
inst[X]] < v

prove the probability of finding a true global maximum, twdfelient diversi-

fication mechanisms were implemented. First of all, aftBrnon-improving

iterations, the algorithm jumps back to a previously entered, randomly se-
lected simulation instance with an equal response timedatinrent instance.
This distributes focus over a number of equal instanceschvbhan help in

avoiding small local maxima. The second technique is a commethod for

avoiding local maxima by restarting the hill-climbing peattre from a random
location after a number of iterations. In HCRR, a randomantss performed
after a sequence ofR non-improving iterations.

8.4 Case Studies

This section describes two industrial cases and one validaase in the form
of simulation models. The models have similar architecturg analysis prob-
lems as two industrial real-time applications in use at ABB4nd Arcticus
Systems [4]. Although the simulation models contain redyi few tasks, at
most 11, their behavioural complexity is significant due t.,eshared vari-
ables, sporadic events and dynamic priority changes.

Model 1 (M1) is representing a control system for industr@bots de-
veloped by ABB Robotics, which is not possible to analysengisinalytical
methods such as RTA [5, 15]. This model has previously beed ts eval-
uate MABERA in [14]. Model 2 (M2) is constructed from a tesipépation
used by Arcticus Systems [4], which develops the Rubus RT€28 in many
vehicular systems. We also use a simplified version of Model Yalidation
(MV), where the code violating the assumptions of RTA hasnbenoved.
The purpose of this model is to investigate how close theorsptimes found
by HCRR are to the true worst-case response times derivedAy R

The scheduling policy used is preemptive priority-baségedaling for all
models. Models 2 and 3 use preemptive fixed-priority schiedulModel 1
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uses a preemptive scheduler and mainly static prioritigs¢tntains one task
that changes priority dynamically.

8.4.1 Model 1

This model describes a fictive system designed to be repegserfor a control
system for industrial robotics, developed by ABB. The ABBtgyn is quite
large, containing around 3 millions lines of code and is nmulgsable using
traditional analytical methods, such as RTA. Model 1 is otmamaller scale,
but is designed to include some behavioural mechanismstfierABB system
which RTA can not take into account:

» tasks with intricate dependencies in temporal behavioertd IPC and
shared state variables;

« the use of buffered message queues for IPC, where triggar@ssages
may be delayed;

« tasks that change scheduling priority or periods dynaltyjda response
to system events.

The modeled fictive system controls a set of electric motasset on pe-
riodic sensor readings and aperiodic events. The calouktecessary for a
real control system are, however, not included in the maithel;model only
describes behaviour with a significant impact on the temmiaaviour of the
system, such as resource usage (e.g., CPU time), taskdtasand impor-
tant state changes. The model contains four periodic taghglve parameters
shown in Table 8.1 (a lower valued priority is more signifigan

Table 8.1: Task parameters for Model 1.

Task Priority  Period Depends on
PLAN 5 40000 ul

CTRL 4or2 10000 or 20000 PLAN, IO, Ul
10 3 5000 Sensor
DRIVE 1 2000 CRTL, Ul

The environmental input stimulus in this problem is a segeaf integers
from zero to two, denoting the number of external events déinatgenerated
by a sensor, measured in one 10 task period. The 10O task thefs sgually
many messages to the CTRL task. The CTRL task may changety@od
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periodicity in response to two specific events in the modak PLAN task is
responsible for planning the movement of the physical dlijennected to the
motors. The CTRL task calculates control signals for thearsotvith respect
to coordinates sent from the PLAN task and 10 events proviyeitie 10 task.
The DRIVE task actuates the motors based on the CTRL taskipuwihich
impact the execution time of the CTRL task.

The model also describes a user interface (Ul) which gemespbradic
events which impacts the system behaviour. There are types bdf user inter-
face events: START, STOP and GETSTATUS. The START and ST@Rtsv
makes the system change between two system modes, IDLE afRK\NG,
with different temporal behaviours. The GETSTATUS evenkewaPLAN,
CTRL and DRIVE send a status message to the user interfadeh wicreases
the execution time of those task instances. The task in fotasalysis is the
CTRL task.

8.4.2 Model 2

This model describes a fictive system based on a test apphidabm Arcticus
systems, developers of the Rubus RTOS [4] which is used myhezhicles.
This model uses a pipe-and-filter architecture, and cositajmeriodic transac-
tions and one interrupt-driven task, in total 11 tasks. Tteriarrival time of
the interrupt is 5000 simulation time units, with the offaetd maximum jitter
500 and 100 simulation time units respectively. Tasks migger other tasks
using trigger ports. The parameters of tasks and their ¢xectimes are given
in Table 8.2.

This model is less complex than the two earlier models inttiexe exist no
shared variables or IPC via message passing which can ittigstetsks’ timing
and functional behaviour. Instead, the tasks have largati@rs in execution
times, which makes the state space of this model very large this model,
the evaluation focuses on the end-to-end response time tfthsaction with a
periodicity of 30,000 simulation time units, which also tains the tasks with
the lowest priority.

8.4.3 Validation

Simulation-based methods for response-time analysisiha@mmon that the
result is not guaranteed to be a safe upper bound on the sspiome. We
therefore constructed a validation model, analysableguRifA, with the pur-
pose to investigate how close the response times given byRH&R to the
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Table 8.2: Task parameters for Model 2.
Task Period Off. Jitter Prio. Execution
swclT_1 5000 500 100 O [100, 200]

swelT 2 5000 500 100 O [100, 200]
swcA 1 5000 0 O 1 [400, 500]
SswcA 2 10000 O O 1 [400, 500]
swcA 3 30000 O O 1 [400, 500]
sweB 2 10000 0 O 1 [400, 500]
sweB 3 30000 0 O 1 [400, 500]
SWcA_et2 10000 0 O 2 [500, 600]
SwcA_et3 30000 0 O 2 [500, 600]
swcB_et2 10000 0 O 2 [500, 600]
swcC etl 30000 O O 2 [500, 600]

worst-case response times derived using RTA. Hence, RTAldlpwovide an
upper bound on the worst-case response time, which the aiimnibased re-
sults should approach but not exceed. The validation medesed on Model
1, but with the following simplifications:

» Selected shared state variables are removed.

» Dynamic changes of priority and period are removed, ondifistat-
tributes are used.

* Iteration loop bounds are added manually.

As a consequence, the validation model has considerabgrlcemplexity,
and exhibit quite different timing properties when compli@ Model 1. For
instance, the worst-case response time of the CTRL taslkclwas in Model 1
is the task under analysis) is only 52 % of the highest regptimes found for
this task in Model 1.

Due to our extensive knowledge of this specific model, we c¢agdduce
that in order to improve the accuracy of the RTA (without lgegptimistic),
the DRIVE task should be modeled as two separate tasks. Tivesksks
represent two different WCETSs of the DRIVE task, dependin@aare spo-
radic event, where the minimum inter-arrival time is knowdowever, it is
important to realize that such model refinements are hargtyan practice,
for real industrial systems, as the temporal behavior ofi systems are rarely
documented in detail. This refinement of the model had a majpact with
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respect to RTA, yielding a worst-case response time of 44&fihed model)
instead of 5982 (without refinement).

8.5 Experimental Evaluation

This section presents an evaluation of accuracy, conveegamd scaling prop-
erties of HCRR, using in total 7 different versions of the miscddescribed in
Section 8.4. The experiments were done by running HCRR,raptemen-

tation of MABERA (MAB) and Monte Carlo (MC) simulation, on éhthree

models previously described. Table 8.3 highlights the sypieinput param-
eters for the three models, i.e., the decision variablesralbed by HCRR,

MABERA or the Monte Carlo method.

Table 8.3: Simulator input parameters for the consideredetso

Input Arrival EXxecution
Model Stimulus _ Jitter Time
Model 1 Variable  Variable  Constant
Model 2 N/A 0 Variable

Validation Model Variable Variable  Constant

The goal of the analysis is to find extreme response times &peaific
task in the model. The results are, with the exception of féi@il, obtained
from running 100 samples of each algorithm and test casé, ssauople being
allowed to run 10,000 simulations, in order to get a good canispn for a
fixed time length. The simulation budget was considerecoregtde due to the
convergence of HCRR on our most realistic model (Model 1 &periments
were performed on an Intel Core 2 Duo, 2.33 GHz with 2 GB of RAM.

For MABERA, the population was obtained by scaling the papah size
of 10,000 used in [14] to reflect the change in number of sitrara per sam-
ple. The ratio is 81,400 in [14] to 10,000 in this paper. Assule we use a
population size of 1250, which is 1/8 of the original popidatsize. The same
fraction of parents as for the original method is used, wiighslates to a se-
lection of 12 parents in each generation. For each of these, 104 mutatiens
generated. In order to ensure that MABERA used exactly I0dd@ulations
in total, the original termination threshold was disabled.

For the parameters in HCRR, the jump-back threshol§))(should be rela-
tively small to spread the search over the set of equal catelgblutions found
so far. However, the random restart threshol®) should be larger in order
not to erase any progress made so far, but small enough ®tfestart from a
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local minimum as soon as possible. The fracttoof input values changed in
each iteration should provide a good balance between pdarge( fractions)
and low dimensionality (smaller fractions).

To select the parameters for HCRR, we performed a small nuofhse-
quential experiments on Model 1, varying one parameter ahe. tFor each
parameter set, we measured the convergence as the aveshgedodt in any
iteration (i.e., simulation) for 20 sample runs, or moreriafly:

20 S j
_ D i1 Zj:l R

¢ 20-8

wheres is the number of simulations arféf denotes the response time found
after;j simulations in sample ruh The number of simulations was 500 feB
andk and 3000 fomR. The parameters giving quickest convergenck & 2,

nR = 300, andk = 0.02) were then used for all experiments. The results of
the experiments are shown in Table 8.4.

Table 8.4: Parameter selection.
nB=nR=00 k=002,nR=00 k=0.02,nB =2

k c nB C nR C

0.01 7796.76 100 7931.37 1000 8308.11
0.02 8010.90 50 7902.86 300 8312.05
0.03 7988.83 20 7939.70 100 8304.17
0.04 7976.14 10 7972.72 50 8254.26
0.05 796180 7 7992.25

0.07 794469 5 7944.27

0.10 776159 4 8001.89

0.15 764562 3 7919.24

0.20 7604.48 2 8024.98

0.30 748333 1 7944.27

To show the effects of scaling on the three algorithms, Mdded used
to create larger systems by instantiating several indep@nidstances of it,
thereby creating independent “subsystems” where eaclysigins is a com-
plete model as described in Section 8.4, including tasksjtievents, state
variables and message queues. The subsystems are coyjdeglendent,
except that they share the same CPU. The model setup candréddaising
the following parameters:

SUBSYSTEMS: The number of subsystems to use, varied betivaed 4.
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CPU_SPEED: The scale factor for all execution times.d &k the original
execution time for a singlexecuTE statement in the model,
thenC/CPU_SPEED is the resulting execution time in the
multiply instantiated model.

OFFSET: The relative offsets between subsystems, allofeindiffer-
ent "phasings" between subsystems. Throughout the experi-
ments, a phasing of 20000 time units has been used.

To avoid priority clashes, new priorities are assigned gishee formula
P™ = 10P° + I, whereP™ is the new priority,P° is the old priority, and is
the subsystem index. For CPU_SPEED we use factors of 1.01 B%nd 2.2
when having 1, 2, 3 and 4 subsystem instances respectively.

8.5.1 Timing Results

The obtained lower bounds on worst-case response timel@stgalted by the
following labels:

MC:  The traditional Monte Carlo approach to generate sitiuidnstances
using random input data.

MAB: The MABERA approach, using a population size of 1250 dfieh
12 parents are selected for reproduction, unless statedvadte. The
algorithm is modified to run for a limited number of simulat#

HCRR: The new algorithm based on random restart hill cligbifhe algo-
rithm is given in Algorithm 8.1.

Figure 8.1 shows the results obtained for Model 1 from Sadid.1. The
top of the figure contains the response time distributionthefthree algo-
rithms, where the MABERA results are taken from [14]. Reswere ob-
tained using 200 sample runs for MABERA, 200 runs for MC, af@ funs
for HCRR. For MABERA and MC, each sample required on averagd®
simulations. Each HCRR sample was allowed 10,000 simuigti®he bottom
of Figure 8.1 shows convergence (mean RT and 95 % confidetemais),
using the standard parameters of 10,000 simulations, éothitee algorithms
with 100 samples for each algorithm.

The upper part of Figure 8.1 shows that HCRR managed to finkiigfeest
known response time, 8474, in all 100 sample runs. The highsponse time
found by MABERA was 8349, and this value was only found onglsitime.
The MC approach managed to find a maximum response time of 88®¢h is
also found once. Note that HCRR was only allowed approximat % of the
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Figure 8.1: Final RT distributions and convergence (meamiRI 95 % confi-
dence intervals) for model 1.

number of simulations used by MC and MABERA. If we comparerthmber
of simulations done when the highest known response timdauasl, HCRR
was approximately 1628 times faster than MABERA and MC. Tingimes
for one sample of all algorithms were less than 3 minutes.

Figure 8.2 shows the obtained results for Model 2 (Sectidr2Busing the
standard parameters. In this model, the tasks have larggigas in execution
times, which makes the state space very large. We can sed@RiR yields
a result approximately 5 % higher than what is obtained frbettvo other
methods. Interestingly, it looks like HCRR was still slowpyogressing to-
wards higher response times at 10,000 simulations, while MABERA and
MC seems to have converged quite early to a much lower rdsaitModel 2,
all algorithms finished in less than one minute per sample.
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Figure 8.2: Final RT distributions and convergence (meamiRI 95 % confi-
dence intervals) for model 2.

In Figure 8.3, we can see the results for the validation mddstribed in
Section 8.4.3, again using the standard parameters. Iti@ddive show the
RTA results. Here, HCRR could find a response time of 4432 @mesample
run, which was also confirmed by RTA to be the worst-case resptime. As
before, the difference between MABERA and MC appears to lite gmall.
MABERA found the worst case in a few samples, while MC did rimtt it
is questionable if the difference is statistically sigrafit. For the validation
model, MC took less than 50 seconds, MABERA less than 130nslsc@and
HCRR less than 90 seconds for one sample run.

Figure 8.4 shows how the different methods scale to largetesys, by il-
lustrating the convergence for Model 1 when increasing toeehsize to 2,
3 and 4 subsystems (model instances). As expected, sinctatieespace in-
creases with number of subsystems, all three algorithmsgecge slower when
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system size is increased. For two subsystems, HCRR is tentfjsbetter than
both MC and MABERA, with all results reported being higheautithe maxi-
mum result found for both MC and MABERA.. The results for 3 angldbsys-
tems indicate that the difference between the methods @eei@s system size
is increased, although HCRR produced on average 4.7 to 1behresults
than both MC and MABERA. For 4 subsystems, neither of the pastlappear
to have converged. However, during the 10,000 simulatid@RR progressed
more quickly to higher response times than both MC and MABER#ntimes
for a single sample when having 2 subsystems were below 44 b aminutes
for MC, MABERA and HCRR. Sample runtimes were below 5, 10 amaii6-
utes for 3 subsystems and below 8, 16 and 10 minutes for 4 sigivsy.

Table 8.5: Average end result and point when HCRR passestiung best
end result.

MC MABERA HCRR Passe3™ best

M1-1 7682 8065 8474 224
M1-2 9693 9750 10844 238
M1-3 13555 13789 14672 521
M1-4 15235 15298 16013 764
M2 6031 6002 6299 634
MV 4286 4288 4432 89

The average end results are summarized in Table 8.5. Theolashn also
shows the average number of simulations needed for HCRRt&nothe end
result of the second best method (using 10,000 simulatiohs)we can see,
HCRR reached the second-best result 13 to 112 times fasteitiie second-
best method did. For all tried models, HCRR on average oftpeed the
other methods in less than 800 simulations, which corredptmless than 1.5
minutes of computation time on the PC used for the experisaent

8.5.2 Average Convergence

To measure average convergence more exactly, we use thieereldference
in average response-time results over a time sparsohulations. We say that
a method has for practical purposes converged (on averdgs) w

1-R*"R® < . (8.2)
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whereﬁ(k) is the average response-time result at simulatidior a set of
samples. Using this definition, convergence will never biected before at
leastd simulations has been performed. In order to measure cogweggfor
the evaluation presented in this papémbviously needs to be less than the
number of simulations (10,000) performed in each sample th&fefore use

d = 1000 for the convergence comparison. For the tolerance paranvete
chose a value of = 0.001. In other words, if the average progress in 1000
simulations is lower thaf.1%, we declare that the method has converged on
average. It should be pointed out that different parametétgive radically
different results on convergence, and true convergeneaihed and detected
only whene = 0 andd is sufficiently large.

Table 8.6: Convergence on iteratigérto response tim@%(k) for the different
methods.

mC MABERA HCRR
k E(k) k E(k’) k R(k)
M1-1 7632 7670 7356 8062 4090 8466
M1-2 4806 9660 6518 9728 7093 10830
M1-3 3527 13502 7801 13773 5568 14578
M1-4 3410 15175 5104 15271 6948 15881
M2 3656 5997 3552 5991 9556 6295
MV — — — - 1661 4432

Table 8.6 summarizes the convergence results, obtainedEruation. (8.2)
with the parameters above, for Model 1 with 1-4 subsystemt{Mo M1-4),
Model 2 (M2), and the validation model (MV). In general, wencsee that
HCRR converged to significantly higher response times th&BERA and
MC. For the validation model, the only method to convergédimitL0,000 sim-
ulations was HCRR. Overall, the results are mostly consistéth what can
be seen in Figure 8.1, 8.2 and 8.3, but also classified thealevage progress
for HCRR on M2 in Figure 8.2 as convergence. Running the dlguarlonger
would either yield slightly higher results or confirm coryence.

For M1-4, convergence of HCRR is also detected in iterati@f86after a
slow progress between simulation 6000 and 8000, but as wesaemin Fig-
ure 8.4, more average progress is made after simulation. &#@pling more
than 100 runs for M1-4 would most likely even out the sloperagimulation
6000. In any case, HCRR has clearly not converged after QGibBulations,
and running the algorithm longer would likely yield evenlingg results.
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8.6 Conclusions

Simulation-based analysis of complex real-time systensstha potential to
provide engineers with timing properties of real-time sys$ not conforming
to classical real-time analysis models such as Respomse-Analysis (RTA).
In this paper, a new best-effort approach for simulatioseliatiming analy-
sis has been presented, and the new algorithm, based onlitibi@g with
Random Restarts (HCRR), is shown in our evaluation to findenamcurate
worst-case response time faster than alternative methads as MABERA
and Monte Carlo simulation.

In evaluating HCRR, three models of industrial real-timsteyns have
been simulated, and the results show that HCRR was 4-11 % accteate
than the second-best method, and between 13 to 112 timeeequicreach-
ing the end result of the second-best method. In one case RHEZ&A 1628
times quicker in finding its more accurate result than thesddest method.
An analysis of convergence indicate that for two cases oabgfeven higher
respones times could be achieved by letting HCRR run longer.

Industrial deployment of HCRR requires an efficient methmreiktracting
simulation models from complex software systems. A tooltf@t purpose,
MXTC, is currently in development. This uses mainly statialgsis, but also
measurements in order to obtain execution-time data fomibeel. The simu-
lation model analyzed by HCRR could however use data from Wexalysis
tools as well, for supported hardware platforms. The exeotttme measure-
ments requires context-switch recording with accuratesiimmps. This is pos-
sible in most real-time operating systems.
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Abstract

It is a common fear in industry that introducing conditiorseéd maintenance
(CBM), with its constant monitoring of several subsystemd, lead to more
frequent service interventions compared to traditionalicymaintenance, ef-
fectively countering the potential value of implementing\g. Because of this,
adoption of CBM must be done with great care, and the maintmargani-
zation and planning process needs to be geared for moreilikyxibo harvest
the potential value in CBM for rail vehicles, we propose tantxine condi-
tion monitoring with online maintenance planning. We usedaptive plan-
ning software module to quickly find new suitable vehicle ement plans,
and a heuristic packing module to reconstruct maintenaackgges with as
few maintenance stops as possible. This prevents vehiaes Visiting the
maintenance depot too frequently. At the same time, weelgtkeep the risk
of breakdowns low. Evaluation of our methods in a simulatedrenment
for train operation and maintenance, using real-world tieddes and vehicle
plans, show that by taking the operation times of individc@hponents into
account, it is indeed possible to reduce the amount of maaniee as well as
the number of service interventions significantly compaeetdaditional cyclic
maintenance.
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9.1 Background

Advanced methods for effective maintenance planning haea linder devel-
opment for several decades [4, 8, 14]. Still, a common maariee approach
within production, manufacturing, industry, transpddatetc., is cyclic main-
tenance planning, where maintenance is carried out wittédgiermined in-
tervals without taking the equipment condition into acadénl7-19].

The period between service interventions is often basedpereknowl-
edge about the equipment usage, its lifetime and the ratetefidration [9,
16, 20, 23]. The main reason for performing cyclic mainterais that main-
tenance costs and equipment availability are easier ateddor in the gen-
eral production plan and budget. A consequence, howevéhaisparts of
the equipment may be replaced much earlier than their optiepdacement
time [6]. Another consequence is the increased risk of umm@d maintenance
(caused by unexpected failures), which can be far moreyctsn planned
service interventions [20]. Both cases show that cyclicntesiance can cause
unnecessary maintenance expenses [18].

In recent years, the interest in developing and improvinthods that are
not based on cyclic maintenance has increased. Such appsoare for exam-
ple condition based maintenance (CBM) and predictive reamrice (PdM) [2,
11,12]. These approaches are in general based on the aesddute mainte-
nance costs by performing maintenance on equipment onlpweeessary [3,
5]. For this purpose, various metrics (such as distancelteal; hours of opera-
tion, the number of times a door has been opened and closed aeid sensor-
based methods (such as oil analysis, vibration analysig, ean be used to
continuously measure and monitor the condition of the egeint [10, 13].

Prediction models for when maintenance should be perforomedquip-
ment introduce more uncertainty and complexity into thenplag process,
compared to cyclic maintenance. Also, there is a fear instigiithat the num-
ber of service interventions will increase using condittmased approaches,
since the maintenance planning is based on the indepenatedition of indi-
vidual subsystems rather than on the system as a whole as ay¢lic main-
tenance approach.

In other words, since each subsystem reaches its replateimeninde-
pendently, there is a risk of much more frequent, small v@stions instead of
a few, large, pre-scheduled ones. Therefore, it is desitabtombine subsys-
tems that are in need of service, immediately or in the nearduinto service
packages that are fitted into pre-planned maintenance opies. This ap-
proach is usually referred to as opportunistic mainten0é4) [15,19,21,22].
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The idea of OM is to combine equipment parts in need of seitiatare
functionally or economically dependent, such that the @lVeraintenance cost
is reduced. Opportunistic maintenance is for the same nsaalso desirable
with condition based approaches.

We propose a method that takes maintenance scheduling fagtegy than
OM. Instead of performing maintenance on service packagpseaplanned
and fixed opportunities, service packages are maintaindgramically plan-
ned maintenance opportunities based on the condition oivtie system
as well as equipment recommendations provided by the metwuéas. The
main goal is the same as with OM — lowering maintenance costgheut
introducing unnecessary complexity into the producti@nping process. The
potential gain of condition based opportunistic maintemais even greater
than for regular OM, since the observed increase in lifetoheomponents
under condition monitoring can be utilized to a fuller exten

The focus in this paper is on lowering maintenance costs thyaiag the
number of maintenance stops and interventions. The methbdsed on an
idea of more efficiently using subsystem information, tiglo@a better model
for handling uncertainty in use and wear. This is used to awpthe ability of
an optimizer to repeatedly or continuously improve the regiance schedule.

9.2 Contribution

In this paper, we present a dynamic approach for combiniediption of main-
tenance deadlines with repeated re-planning of vehicleansemaintenance
actions. Our aim is to develop a maintenance scheme thabgesand causes
minimal change to established practices, while givingdasgvings in main-
tenance costs. We also use subsystem information (e.gystabs counters)
more efficiently, by better modelling the way in which cemtgiin the predic-
tion of the actual maintenance deadline increases with time

Our approach is based on frequent re-optimization of theymrtion and
maintenance plans for each unit, in this paper manifestedl togin in a fleet.
For each candidate solution investigated, the servicegmmskneeded are con-
structed and adapted to the maintenance need of the situaii the candi-
date solution. The plans are re-optimized as soon as signifchanges in
the planned operation or in the system condition are detetaking into ac-
count information of average wear and variance, predictearfrom planned
unusual loads, planned use, availability requirements, Bie most common
change that triggers a re-optimization of the maintenahae, fis the contin-
uous reduction in uncertainty between the operational tewsrof individual
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subsystems (e.g. the number of hours on the compressor nuthier of cy-
cles of the doors) and the global counter for the whole sydiarthis case
the aggregated distance travelled by the train) as themyistbeing used (see
Section 3 below). We also assume that each subsystem hadefipee op-
erational limit based on recommendations from the manufact One could
introduce a more complex model, taking into account theagqitobability
density of failures given the use of each component. Howevgrassumption,
and the way we re-optimize the maintenance plan, has thentay@of not in-
creasing the risk of breakdowns in any way, since the lingeduare identical
to the ones used to plan the traditional cyclic maintenanbedule.

We have tested our method in a simulator for train traffic eftgyed in an
earlier project, using real time tables and realistic fireljuency data as input,
in addition to recommended service intervals for diffeigrgtems (see Section
6). From the simulation results we show that our method iddeduces the
number of service interventions to well below the level fpclic maintenance
while reducing maintenance costs and without increasiegigk of failures.
With relatively simple measures and available service,adatamethod is also
relatively easily applicable in practice.

9.3 Wear model

We assume that the unit to maintain consists of a number opoasnts or
subsystems. The manufacturer provides a recommended mwaxaperation
interval before service for each component, measured iesomt (e.g. hours,
kilometres, or cycles). We also assume that service of coents was orig-
inally lumped together into predefined service packagesh &ath its own
global recommended maximum operation length. The lattgrésumably
chosen to keep the risk of any of the included componentsimgnover its
recommended length below some low level.

We wish to compare the situation when service is performaedan this
global operation length with when service is based on theadios lengths of
individual components, with respect to both the amount dhieaance and the
number of service interventions. Specifically, we want e if¢he number of
service interventions can be reduced in spite of basindcgeon the individual
components’ operation lengths.

There are two different sources of uncertainty that shootdoe confused
with each other. The first concerns at which operation leadtilure will oc-
cur for a specific component. This uncertainty is not the $aaiithis study, but
we will assume that if service is performed before the recemahed operation
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length for each component, then the risk of failure will re@mbelow some
acceptable level, identical to that of the cyclic maintereapproach.

The other uncertainty concerns the relation between thgithal opera-
tion lengths and the global operation length, i.e. how fasitsage counters on
the subsystems advance as the global usage counter ircréaygeical exam-
ple is the maintenance of trains, where maintenance is hagedrily on the
travelled distance of the vehicle, whereas the use of theamadbequipment to
a large extent is governed by the characteristics of thefspeautes traversed
by the vehicle, or by other elements that are unrelated t&itbmetres trav-
elled. For instance, the number of times the doors will benepeer kilometre
naturally depends on how many stops the train makes, whitlrindepends
on the time table. Similarly, the HVAC (air conditioner) tmiill be used more
on awarm day than on a cold day. Since many of these condai@nsnknown
when the traditional cyclic maintenance schedule is ddtexd) a large safety
margin must be included when selecting the maximum globedaifon length.
It is the reduction of this uncertainty, between the gloh@@ration length and
that of the components, that we wish to harness.

When designing a traditional cyclic maintenance schedidedban a global
operation counter, an assumption has to be made conceh@ngte at which
each subsystem counter is advancing relative to the glolaiter. In our case,
this is equivalent to determining a distribution over howtfee global counter
has advanced before the subsystem counter has reachadiftsTo ensure
that the risk of running a subsystem counter over its limlbger than some
acceptable level, the limit for this subsystem on the glabahter must be cho-
sen a certain amount earlier than the expected average (egled-igure 9.1).
Differently put, a fairly large safety margin is needed i ti,sage varies a lot.

To be more precise, let us assume that the incregsef a subsystem
counter is approximately normally distributed, with pasders that depend
on the increase, of the global counter:

¢ ~ N(kpmd, ksVd) (9.1)

wherek,,, andk, are constants. To keep the risk sufficiently low, the ser-
vice deadline for the global countety, must be selected such that there is a
number,a, of standard deviations left before the subsystem sengegllthe,
o, is reached:

co = kmdy + aksr/do (9.2)

In the simulations the level of uncertainty is a parameteictviis varied,
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whereas the global deadling is fixed to make the results correspond to a
fixed risk level. The uncertainty is then measured as thefaft between the
deadlinedy and the global counter increask,, that would give the subsystem
deadlinecy on average (i.e. without the margin @ktandard deviations):

Co = kmdm = k'mdo.f (93)

This gives the standard deviation constanas:

(f —DVdo

a

ks = km, (9.4)

Given the above equations (9.1), (9.2), (9.3) and (9.4), aregenerate a
random increase in each subsystem couafgiven an increase in the global
counterd, and then calculate a new global deadlifiefrom the remaining
subsystem lifetimesy.

The reduction of uncertainty that we benefit from, stems ftohetfact that,
at each point where we re-calculate the maintenance sahetiete is no un-
certainty in the events that have already passed. We kngw,exactly how
many times the doors were opened for the distance that hastimelled.
We only have an uncertainty and a safety margin for the distaimat will be
travelled in the future.

Note that if there is no uncertainty, then there is nothingdm with dy-
namic planning since we have assumed that the recommeneéeatiop limit
is a hard deadline: We need to get to the depot with a frequaetgyrmined by
the most constraining limit. Also, if one limit is much tightthan the others
(and the uncertainty is less than this difference), therethee again no alter-
natives: The global limit should be selected as the mosttcaing1g limit and
counted in the same unit.

The interesting case is when there are several componethtdimnits of
the same order as the most constraining one, and they havelemavaria-
tion relative to each other. In the simulations (see Seditelow), we have
therefore used ten components with the same mean and \anialative to
the global limit. This seems a realistic assumption for mapstems. Also
note that although the components in the simulations hadahee mean and
variance, they were sampled independently and conseguiwtrged in their
behaviour in the same way as components in real systems dio #mel same
way that has been feared to cause the many extra servicedantems.
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Figure 9.1: The probability density for the increase in églacounter until a
subsystem counter reaches its deadline. The global deatjlimust be well
before the expected counter incredsg unless our method is used.

9.4 Construction of service packages

When maintenance deadlines are not fixed but variable in tefraalendar
time during operation, service needs to be organized intkggges dynamically
in order to reap the benefits of CBM.

We call each time period in which maintenance can be done atemsince
opportunity Each opportunity starts at time point; and has a fixed capacity
¢;, which we assume is the length of the time period for the dppdy. The
goal of the service packing problem is then, for a fixed plaomération, to
allocate individual maintenance activitigs each with a deadline at; and
duration ofd; time units, to the opportunities given by the maintenanee pl
such that no deadline is missed. If we ug¢) to denote the opportunity that
is allocated to, we get the constraint of equation (9.5).

V] . ta(j) < €4 (95)
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In addition, the total duration of the maintenance actsgtallocated to
an opportunity should not exceed its capacity, or more fdynexpressed by
equation (9.6):

Vi: Y di<c (9.6)
ja(j)=i

The activities allocated to a single opportunity formeavice package

In preventive maintenance optimization, a common assumjofiten made
is that the machinery to be maintained will run for an infirdtaount of time,
and that preventive maintenance is periodic. The objeafveptimization
then becomes finding the optimal recurring maintenancevatefor the com-
ponents of the system.

If maintenance opportunities are unlimited in duratioraftts, for all op-
portunities: it holds thate; = oo) and the single objective is to reduce the
average number of depot stops per time unit, then, undee thesumptions,
there exists a simple maintenance packing strategy whioptimal: Define
the activity with the earliest deadline as ttritical activity, and schedule ser-
vice for this activity at the latest possible time beforedleadline. For obvious
reasons, the maintenance opportunity chosen this way éocritical activity
is inevitable. Once we have such a depot stop, we create ias@ackage that
includes all activities that do not depend on a precedinyigctin addition
to the critical activity. Clearly, no other strategy can gete fewer service
packages per time unit.

In reality, these conditions rarely hold. For example, rexiance is usually
planned for depot stops of limited durations only, and tleeeoften several
optimization criteria, such as unused lifetime of compdgsgenost of down-
time at different calendar dates, and risk factors assstiatth doing mainte-
nance too late, that must be taken into account and balagedéusaeach other.
Therefore, we use a slightly more advanced service packgagitnm, which
can be more easily tailored for different objectives.

In order to reduce the number of non-empty service packagegmploy
a simple allocation strategy that works as follows. Maiatge activities for
a single vehicle are sorted according to their deadlineth thie activity that
needs service at the earliest point in time first. Then, in,ture try to find a
suitable opportunity for each activity. The search for dahle maintenance
opportunity is done in two phases. In the first phase, we oohsider oppor-
tunities which are already non-empty. The possible suchemopty opportu-
nities that do not occur too early or too late are tried in coording to date,
starting with the latest one first. The first opportunity fdwwhose capacity can
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also hold the activity in question is selected for assigrimierthe case that no
such opportunity is found, we enter the second phase whieopbrtunities

are tried, including the empty ones. We once again searchpportunities

in reverse chronological order, and the first one that cad tia activity in

question is selected for assignment.

In addition, we can also control the length of the time inéiim which
we search for suitable opportunities as assignment cardid&Ve do this by
varying a parametey and search only for opportunitiefor which equation
(9.7) hold.

pej <t < ej (9.7)

In our experiments, we let = 0.5.

9.5 Routing of vehicles

In order to meet maintenance requirements and to reducauthber of main-
tenance stops to a minimum, vehicles must be routed dyn#ynioand from
the depot. We formulate the routing problem as follows.

We are given a set of transpoffsand a set of vehicleg. Each vehicle
has a set of deadlinds; = {e;1, ;2, ..., €; } for component/subsystem main-
tenance, identical to the deadlines in Section 4. Each lesaiso has an initial
transportl;. Each transport has a departure and arrival station, depaahd
arrival time, and a length in kilometres.

A feasible vehicle plan for a vehicle is a cyclic sequencearigports, start-
ing with the initial transport, where consecutive transparrive to and depart
from the same station, respecting departure and arrivastinAll transports
should be allocated to exactly one vehicle. In additionretere constraints
on maintenance that need to be fulfilled. Each vehicle shogilshaintained in
time, that is, all deadlines should be preceded by a cornepg maintenance
activity.

The problem of determining optimal vehicle routes is NPdhar gen-
eral [7], and therefore we chose to use a heuristic methoadhdoréiutes that
are suitable. In the simulator, component wear is simulfdedach transport
in order of arrival time, and for each simulation step, a namiif candidate
plans are generated and evaluated using a cost functio daadidate plan
consists of a vehicle plan and a maintenance plan, genesatddscribed in
Section 4, and the selection of candidate plans is basedeamahnual process
used today for vehicle re-planning. The method we use foicleehouting is
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simpler than, for example, the one found in [1], but servestirpose of aiding
service package re-planning well enough.

Two vehicles that are stationary at the same time on a giaiostcan,
given enough spare time, swap future vehicle plans. In esseur method
is to apply a small set of such swaps between pairs of vehiclesder to
improve the current situation. In practice, we generate afsmodified plans
and evaluate the set using the cost function described bséacting the plan
with the lowest cost for execution. For all vehiclesrhich miss a deadline,
we generate and evaluate all possible swaps before theimkeauks between
1 and other vehicles that occupy the same station at the samae ti

The evaluation is done as follows. For each vehicle plan,atteeation
algorithm in Section 4 is applied, resulting in a new maiateze plan. Each
plan consists of assigned maintenance datgsfor each vehicle and active
maintenance deadling;. Definer;; = e; —m, as the lifetime remaining when
service is carried out.

Ideally, we wantr;; to be positive and small, but not smaller than an extra
safety margins. We penalize maintenance withg per kilometre for early
maintenance and, per kilometre for late maintenance. In addition, we use a
large base cosB),, for deadline misses and a cd3} per used maintenance
opportunity. Formally, we have the following cost functipar vehiclei and
maintenance deadline

wg(rij — s) ifry; > s
Cij = wL(s — Tij) if 0 < ri; < S (9.8)
BM—‘r’LULS—‘r’w]\/[Tij if Tij <0

Denote the number of used opportunities:a¥he total cost for all vehicles
then becomes

C=> iy jCij+ Box (9.9)

In our experiments, we used aghe original deadline divided by 12, and
letwg = 0.1, wy, = 3.0, Byy = 10000 and Bp = 100.

9.6 Testcase

We have evaluated our method using a simulator of train mewsrand repair
shop activity that was developed in a previous project. Tihaulator uses
actual service data from Bombardier Regina trains opeiiatéte Malardalen
region in Sweden, and accumulates wear as described undsar“ivodel”
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above. We have during these tests focused on reducing thbaemwhservice
interventions, to make the point of this paper clear. In aenmpractical setting,
other objective functions could be used instead, such aothemaintenance
cost.

For the simulator setup, we used actual time tables and legblens for 10
vehicles from the autumn of 2003 as a basis for our experisnera be able
to evaluate our method, we created 10 artificial componemtedch vehicle,
each taking 6 minutes to maintain and having a base deadiii20® km of
operation. Re-planning of maintenance was done as sooly ashicle arrived
at a station. To reduce planning time to an acceptable lexelised a planning
horizon of 30 days for the experiments. The planning horigatable because
the vehicle plans include several stops at the depot wiltigrtime period, and
the maintenance deadline used is usually covered withirek wktypical train
operation. Maintenance opportunities were assumed to deept whenever
trains visited the single maintenance depot used for thiscpéar time period
and train operator.

The pre-existing time tables and vehicle plans alreadywtteal for vehicle
maintenance in that vehicles passed the depot approxiyratek a week. To
add flexibility and maintenance opportunities, we augnettie vehicle plans
with two extra vehicles stationed in the depot. For theséclehwe also added
pre-scheduled trips to and from the depot to a larger hubbgedthese trips
could be used on demand when trains needed to be reroutesideplot, which
is in practice necessary to obtain flexibility and abilitystthedule maintenance
at a precise date.

9.7 Results

As mentioned in the Background section, there is a risk thaings gained
from condition based maintenance are lost in repeatedsvisithe mainte-
nance shop. In Figure 9.2, we observe that by using our methechumber
of service interventions is in fact reduced to well belowlghe! of traditional,
cyclic maintenance. This is achieved while retaining a gl part of the
cost reduction for the actual maintenance actions and witmzreasing the
risk of breakdowns. Conclusively, our proposed approachreduce mainte-
nance costs without introducing any major negative sidecedt
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Figure 9.2: The reduction in number of visits to the maintergashop as a
function of actual additional component lifetime after tteplacement that
would occur using traditional cyclic maintenance.

9.8 Discussion

In this paper, we propose an approach at maintenance ptaforirail vehicles
based on the monitoring of individual subsystem counteish &s compressor
run time and number of door open-close cycles. Our appraaehsy to imple-
ment, since subsystem counters are already available iy nzees. The key
to harvesting the gains of condition monitoring is to repdat re-construct
maintenance packages based on wear estimates. In this wagrnweduce the
need for some of the large safety margins usually presenbst maintenance
schemes without increasing the risk of failure.

A natural next step is to build a wear model that better hanthie other
source of uncertainty, i.e. the lifetime of a component dosystem given its
own usage counter. This can either be done based on theissatigilable to
e.g. an operator of a fleet, or it can be based on manufactyplied statistics.
However, in both cases it is non-trivial to ensure that tHected risk level is
not exceeded in the system.
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The maintenance packing algorithm used today is based aistiesiand is
therefore in many cases not optimal. Our planned future wanlkdes investi-
gating better optimization models and algorithms, capgumore of the main-
tenance planning process such as resource requiremestspfcgpare parts
and manpower, availability, life-cycle costs, etc. Yet thieo extension would
be to take care of repairs, handling spare part needs usimigeades and pre-
liminary root-cause analysis. Such extensions would nikelyl require more
exchange of information between the actors involved.
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Abstract

In oil and gas applications, the careful planning and exenutf preventive
maintenance is important due to the high costs associat#dsivutdown of
critical equipment. Optimization and lifetime managementquipment such
as gas turbines is therefore crucial in order to achieve aiglilability and re-
liability. In this paper, a novel condition-based gas tngbmaintenance strat-
egy is described and evaluated. Using custom-made gas¢untgintenance
planning software, maintenance is repeatedly reoptimiadi into the time
intervals where production losses are least costly andtiiesihe lowest pos-
sible impact. The strategy focuses on accurate onlinénfifeestimates for gas
turbine components, where algorithms predicting futur@nteaance require-
ments are used to produce maintenance deadlines. Thiseerthat the gas
turbines are maintained in accordance with the conditionsite. To show the
feasibility and economic effects of a customer-adaptedhteaance planning
process, the maintenance plan for a gas turbine used in-avoelal scenario
is optimized using a combinatorial optimization algoritlmd input from gas
turbine operation data, maintenance schedules and opezgtdrements. The
approach was validated through the inspection of a refergas turbine after
a predetermined time interval. It is shown that savings neagubstantial com-
pared to a traditional preventive maintenance plan. In tfaduation, typical
cost reductions range from 25 to 65 %. The calculated avhilaimcrease in
practice is estimated to range from 0.5 to 1 %. In additionyrone reduc-
tions of approximately 12 % are expected, due solely to imguigplanning.
This indicates significant improvements.
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NOMENCLATURE

CBM Condition-based Maintenance
EOC Equivalent Operating Cycles

EOH Equivalent Operating Hours

INSP  Inspection

OEM  Original Equipment Manufacturer
PM-opt Preventive Maintenance Optimizer
REPL Replacement

RFC  Retirement For Cause

10.1 Introduction

Condition-based Maintenance (CBM) is a term for methodsraathodology
that, based on the actual condition and predicted futurgingbeory allows
maintenance to be performed at the best possible date for@anponent.
Typical applications include components that do not fastamtaneously, but
deteriorate in a quantifiable and, preferably, observalalg @ver a period of
time. An early failure indication enables the user to avbid tonsequences
of an unexpected breakdown. Early signs can be detectedebysth of di-
agnostic equipment and/or by analytical calculationsnigikhe actual service
conditions of the equipment into account — so-called pragjns. According
to [9], equipment operators increasingly use conditioseldlamaintenance in-
stead of, or in addition to, scheduled maintenance to relifetiene equipment
operating costs.

However, merely having diagnostics and/or prognosticsotsemough to
derive all or even most benefits from CBM. In [10], it is statbdt in order
to maximize the benefits from CBM for the enterprise, it is mpartant to
focus on the aftermarket supply chain — i.e. the back-enchefgrocess,
including maintenance — as it is to develop better data gattpediagnostic
and prognostic techniques. Further, it is shown that ogtimgithe value chain
results in lower costs and higher availability.

In practice, better knowledge of the actual maintenanceireqpents of
the components of a machine should be reflected in mainteriatervals dy-
namically adapted to the current condition and predictedjeof the compo-
nents. For gas turbines, predictions regarding future corapt condition and
lifetime are based on factors such as load profile, qualifyef ambient tem-
perature, particle levels, and so on. To maximize the benefiCBM, main-
tenance also needs to be replanned whenever the currenticoraohd future
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predictions, and hence the future maintenance intendads)ge significantly.

With a growing emphasis on life cycle cost reduction for tapquipment
such as gas turbines, equipment operators are increaginghtigating poten-
tial cost reductions. One way to minimize life cycle costd amaximize earn-
ings is to optimize maintenance according to a customegsiip condition.
Achieving an optimal or near-optimal maintenance plan,clviminimizes the
total cost, depends on the availability of diagnostics ardypostics, as well
as on maintenance planning technologies. Successfuliptpafso involves
developing accurate and comprehensive user knowledgeritecause solu-
tions engineered for one user can then be adapted to thdispeads of other
users [2].

The maintenance process adopted in this paper combinegioaridfor-
mation with the requirements of the operator. This is doreder to carry out
maintenance as efficiently as possible, thus ensuring titahpal short-term
profits will be evaluated in an overriding life cycle costgeective. To manage
all relevant information, a preventive maintenance opation tool (PM-opt)
has been developed. PM-opt plans preventive maintenancerfiplex techni-
cal systems and maximizes earnings for a system operatarisidone through
the use of an advanced prognosis process and input from aatopesgard-
ing operation profile, ambient conditions and financial dateh as production
value and standstill costs. This information is procesed®M-opt, generating
an optimized preventive maintenance schedule adapteddperation-unique
situation, hence maximizing profit. The process is also sttpd by an ad-
vanced diagnostic tool to further increase reliability andilability.

The goal is to provide operating conditions that will in@eavailability
with predictable scheduled maintenance, based on conditionitoring as-
sessment, with little or no downtime during deployments.y &hanges in,
for example, operation profile will instantly affect the peative maintenance.
Also, if an unplanned opportunity occurs, maintenance @arebscheduled if
it is profitable to use this 'new slot’. PM-opt can deal witledle situations and
re-optimize maintenance if this is financially justifiabter the operator of the
gas turbine.

10.2 Gas Turbine Maintenance

For gas turbines, maintenance planning is usually done mayths in ad-
vance due to the user’s cost associated with a period of ghiséuinactivity.

The date and duration of a maintenance period are deterriminadvance to
coincide where possible with other scheduled stops, sugtaas shutdowns
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and vacations. CBM offers a potentially more flexible apptoaln it, the
amount of flexibility depends on factors such as risk williegs, condition
of components, value of production and future operatiorilproThe major
advantages of CBM include the possibility to adapt the nesiabce plan ac-
cording to user-specific demands and needs and transparegasding the
possible consequences of different choices. Also, eaclpopent can be uti-
lized as efficiently as possible. This reduces downtime astscand increases
the potential earnings due to an increased number of opgriadiurs.

10.2.1 Equivalent Operating Hours and Cycles

Today, maintenance schedules are often based on EOH/E@@atains, which
model the equivalent operating hours and cycles used uriferett opera-
tional conditions. In a time interval from O B, EOH is calculated as

T
EOH =5 x EOC+ [ Cy(t)Cy(t)Cu (t)Crraigy (¢) dt (10.1)
t=0

where EOC is the total number of cycles. The fac@y$t), Cs(t), C, (t) and
Cr7a4:5 (t) are used to model operational conditiol;(¢) depends on load,
Cy(t) on fuel quality,C,,(t) on the presence of water injection, a@@ 4z
on the presence of a significant exhaust temperature differeHowever, the
model is rather coarse in how these variables are handlethdfufactors such
as ambient air temperature and pressure, rotational spsedisutlet tempera-
tures are not taken into sufficient consideration. Instde@lEOH calculations
have substantial built-in safety margins to accommodateeidations and con-
ditions not explicitly modeled. A more detailed model isréfere used for the
CBM approach in this paper.

10.2.2 Condition-based Maintenance

The benefits of utilizing CBM to reduce lifecycle cost congzhto a time-
based preventive approach have been well-documentedovegetrs. How-
ever, CBM has become a catch-all term for any type of healthitoiong [7].
A majority of papers written on CBM or Health Management ofdiimes fo-
cuses on the areas of diagnostics and prognostics. Thengaamgtechniques
and emerging technologies that are making engine mongtaniore complete
and informative. Basic parameter monitoring can and doagge valuable in-
formation on the performance of an engine [3]. Through liggeht processing
and integration with other parameters, valuable inforomatian be acquired,
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including actual life consumed, life remaining, and the ditan of the gas
turbine relating to its operation profile and ambient candi.

These approaches mean dealing with a large amount of datéhiSoea-
son, statistical approaches are becoming popular toolifeomanagement
[13]. Applications include calculating the risk involved éxtending the life
of components. For example, Retirement For Cause (RFC)approach that
allows each component in an engine to be used for the fulhéxtkits safe
life [5]. Statistical approaches like Weibull analysis aapular in the world
of industrial gas turbines. Original equipment manufaatsi{OEM’s) usually
have databases on the number of parts retired from servcéuastion of op-
erating parameters. These samples can, however, be quite and the root
cause may not be properly identified.

10.2.3 Component Life Assessment

Maintenance is all about increasing equipment life by @& that verify
component functionality and detect faults before they ac@u typical sce-
nario is seen in Fig. 10.1. The component life is assesseathtraaintenance
event and, depending on the result, new optimistic and péstsc curves are
drawn [12].

A gas turbine component is subjected to a number of potedéimlage
mechanisms, related to the temperature and load that ipissex! to, the spe-
cific environment it operates in, or a combination therenfessence, the life-
time is estimated using models of gas turbine componentidedéon that,
given engine state parameters like rotational speeds,eminair pressure and
temperature, compressor outlet temperature, estimatbohéuinlet tempera-
ture and pressure, turbine exhaust temperature and amientéength, return
the approximate life consumption during the analyzed tinoeeément. A sim-
ilar approach is used to predict fatigue damage. Howevstead of a time in-
crement length, a number of cycle parameters like loaditegalad dwell time
within certain load ranges would be used. The models wereldegd using
available knowledge from calculations and field experiefid@s is described
in more detail in [12, 15].

A prognostics tool uses the deterioration models to caleulze residual
lifetime (depending on a customer’s operation profile, emvinental condi-
tions and actual gas turbine data). It can be described atvane@ed EOH/EOC
calculator, keeping track of every damage location on tretgebine’s com-
ponents. When a certain damage location reaches a prede¢ertimit, either
an inspection or a replacement is necessary. (see Fig. /sZhe operation
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(3): Plant Component Replacement/Repair at the Next Inspection

(4): Replace Toupin (ABB) 1995

Figure 10.1: Component maintenance activities and liferesibn.

commences, EOH/EOC is accumulated on each damage locatiording to
the deterioration models. The location with the highest amaf accumu-
lated damage represents the condition of the componentréBtation time is
the time needed for an OEM to plan and execute a maintenasicehés varies
with different components.

The operator’s specific characteristics are used, in coatibimwith knowl-
edge about the wear of components, to customize an optinraaroptimal
maintenance plan for the gas turbine components. The nmainée plan is
also dynamically updated in order to increase the precisitime prediction of
the point in time at which a planned maintenance action megtdsformed.
Figure 10.3 describes the dynamic maintenance plan and mfowriation is
gathered during the operation to more precisely estimaedint in time for
a maintenance action. Here, an inspection done at tinisepremature in the
sense that not enough observable damage has been accumdiberefore,
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Figure 10.2: EOH/EOC accumulator.

inspecting the turbine at a later timewill decrease the uncertainty of when
replacement of the worn component has to be done. Also, $heassociated
with postponing an action can be calculated.

10.2.4 Component Life Extension and Risks

Every life extension beyond the normal operation regimenadhat there is a
risk of triggering a damage mechanism that has not prewdiesn considered
for the component in question (due to initial design requiats or due to the
lack of understanding and knowledge of the damage mechanigmnestion).
Damage mechanisms may also interact in ways previouslyaundred. In the-
ory, therefore, every increase in life time means a riskdase that needs to be
addressed.

If the life extension is based upon a prognostics analysigrevlife times
are based upon actual service conditions rather than dpsigh conditions,
the risk of failure due to any of the typical design damage hmaisms like
creep, oxidation and fatigue, should be taken into accdlrg.remaining risks
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Figure 10.3: Point in time for planned maintenance action.

are due to previously unseen failure mechanisms, and duewtcombinations
of damage mechanisms including material deterioratiorih Bbthese are real
and have to be seriously considered. Due to the huge pdtengatending
service life, it is in many cases desirable to do so anywayortter to do
this with minimum risk, it is proposed the extension be acglished in the
following way:

e Considering type of material, operation temperatures aad,|deter-
mine which known damage mechanisms and combinations theoetlal
possibly occur in each relevant component.

e Based upon what can possibly occur, define component irispec¢hat
can detect upcoming damage with sufficient accuracy.

e Based upon how good the inspection methods are, that is, &own f
advance they can be expected to detect upcoming damagenaete
suitable maximum inspection intervals.
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When life is prolonged, performing the risk mitigation inspens de-
scribed above at the defined maximum inspection intervadgamgly recom-
mended, even if the prognostics model shows a life increbseveral magni-
tudes.

As a gas turbine accumulates operation hours it will be btesdd see
some patterns during inspections and overhauls. By ekigasample compo-
nents during inspections, the status of one set of compsnastcompared to
standard lifetimes and to other sets of components opgratider the same
conditions, can be determined. This means that the benéfite @procedure
indicated in Fig. 10.1 are used. However, usually the gdsnaris disassem-
bled at least once before most components are scrappeslirajlaccess to the
components for detailed status assessment. Thereforé&kggpsample com-
ponents for destructive testing even before reaching thegiected end of life,
valuable knowledge about actual service conditions caraireed and service
life can be extended accordingly. This also means that exaterate lifetime
improvements become much more valuable to the end user [12].

If the components in one stage “always” look notably goods #hould
mean that there is something in the conditions at the siteigHanient to the
components. This also means that when adding a new set ofoc@nts, the
expectation on their actual life could be increased someaithe “halfway”
inspection can be adjusted towards the half-life that shbalexpected in this
specific gas turbine.

Postponing the first inspection beyond the “safe life” limfithe compo-
nent should not be recommended, however, since there iyakvpossibility
that conditions may have changed to the worse. Additiorfatyganargins may
be desired depending on the circumstances.

10.3 Gas Turbine Maintenance Planning

One of the major questions, if not the most important one etafswered by
persons responsible for the maintenance management afidpsets, is when
to do a maintenance action: “The maintenance action is daecattain date
— can it be postponed?” This optimization problem clearjobgs to the
advanced maintenance sphere. This and other questionsliregaptimal or

near-optimal decision making is becoming more and more ftapbtogether
with an increased focus on cost minimization and profitgbiiithin the gas
turbine sector. The type of problem dealt with is however gy complex
nature, and the question is therefore difficult to answepkiniTo handle the
complexity of the problem, one option is to use combinatasj@imization
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methods, which can handle a wide variety of side constrants different
costs.

10.3.1 Maintenance Optimization

Because frequent preventive maintenance is costly, optimaear-optimal

maintenance planning is a primary interest for many gasrtanbsers. A well-

known fact is that components in a gas turbine face diffenedr, depending
on parameters such as environment, load, events, fuel ayygethe like. This

means that two identical gas turbines with different opesatan present sig-
nificant differences in wear. In order to make an optimizatevery component
in a gas turbine must be monitored and the accumulated dgoiv@perating

hours (EOH) and equivalent operating cycles (EOC) must Iosidered. In

addition, predictions based on an estimate of the expeatedef wear should
be available in order to compute expected maintenanceidead|

The wear of components of equal type can be expected to bendmhsim-
ilar. Therefore, several components are usually grouptedaiiset, represented
by a single (composed) component. As an example, a singlpaoemt could
be used for all guide vanes in the first stage of the gas turfiine residual life-
time of the composed component is represented by the moste@eonponent
in this set. As long as operation is normal and a componerttisubjected to
damage (e.qg., due to foreign objects or deviation in tentpexgrofile causing
uneven wear), all components in a set are replaced at thetsameHowever,
if components face unequal wear, the replacement of sucpaoemts must be
done with great care. Failure to do this properly may resigtib-optimization,
causing increased costs for an operator due to higher mainte frequency
as a function of uneven component wear. This is avoided bythef a highly
detailed component database with component traceakslitiring an effec-
tive replacement schedule throughout the gas turbinestik.

10.3.2 Maintenance Setup

Considering only the cost of spare parts, a theoreticaltimagd maintenance
strategy is to always perform maintenance as late as pessible condition,
and hence the deadlines, of the components in the gas tunthémge stochasti-
cally throughout the lifetime of the turbine due to enviramntal factors such as
particle levels, fuel quality, load, temperature, moistlavels, to name a few.
This will also spread out the individual maintenance deedliover time. The
theoretically optimal strategy will thus result in many manance stops spread
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out more or less evenly, in turn resulting in a maintenanbedale unaccept-
able to many customers. Thus, a strategy for the co-allmtati maintenance
in order to reduce the number of maintenance stops is refjuifeflexible
strategy that can meet a wide variety of maintenance remeinés is to use op-
timization. There, a cost function for the maintenance daleeis minimized
while a set of requirements on the resulting plan are salisfie

Components in PM-opt

In PM-opt, each component is associated with 1) a set of ewémice activi-

ties with specified duration and cost, and 2) a maintenarteedsite, which is

a sequence of activities (replacements and inspectioas}iiould be repeated
according to a specified pattern. The component also haitsli@srent condi-

tion, which is measured in the consumed lifetime of the camepd schedule,

thus indicating, according to the best knowledge at thag fimstant, the exact
“location” in the component maintenance schedule.

Maintenance ltems

In order to model maintenance to a sufficient level of degesingle gas turbine
component is represented in PM-opt by a sequence of maimteriems. A
maintenance item is the basic activity the optimizer hasyddd corresponds
to the individual, more or less regular, maintenance a@iidone at a mainte-
nance stop. Items should be allocated to maintenance stog$hus constitute
one of the major parameters in the time to solve the problem.
Maintenance items are divided into two different main typespections
and replacements of a component. Reconditioning a comp@eodeled us-
ing a replacement maintenance item. Regardless of its pa@) each main-
tenance item has a maximum uptime before that maintenamecehas to be
done (typically the maintenance interval length beforerepéction or a re-
placement) and a maintenance type, which contains data sis aod dura-
tions associated with the exact type of maintenance. Thgnotime point
from which this maximum uptime is measured is different chelieg on type.
Each maintenance item also has data regarding the actualemance ac-
tivities carried out (for example, work time consumptiordaa cost specifi-
cation for the maintenance). In addition to this, mainte&eaitems can be
restricted to occur in a certain calendar interval, defingéi earliest and a
latest date for maintenance. Items with due dates typicapend on the dates
of other items. A set of maintenance activities associafddaxcomponent can
be visualized as a tree of dependencies regarding maximtimejms shown
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Figure 10.4: Replacement type items and their dependencies

in Fig. 10.4 and 10.5.

Replacement Maintenance ltems

For replacement items, uptime is measured from the pregagiplacement
maintenance item for the same component. The outcome o$padtion could
potentially affect the lifetime predictions of a componedbwever, since this
is unknown at planning time, this information has to be fed the optimizer
after the inspection has been done and when the resultsaiteldes.

In addition to a maximum uptime, each replacement maintemaem also
has a minimum uptime that has to pass before a replacemevrsatiowed
for this component, as well as an earliest and latest catetata for mainte-
nance. Figure 10.4 shows an example of replacements anditheidepen-
dencies. Since replacements (REPL in Fig. 10.4 and 10.5alsanrepresent
overhauls and other significant maintenance activitiess, jtossible to differ
between such activities and have different inspection dudes for different
replacement items.

Inspection Maintenance Items

For inspection maintenance items, uptime is measured fhenptevious in-
spection of the same component. Uptime is measured fromréeeging re-
placement item if there is no preceding inspection item. g in Fig. 10.5,
each replacement is followed by a number of inspectionsettmponent in
question. When a component is replaced, a new inspectiomigiehis rolled
out.



224 Paper E

INSP 1.1 INSP 1.2
Max_up=23 [ Max_up=23
y
REPL 1 nsp21 | insp22
N~ P Max_up=34 Max_up=34
REPL 2
|~

INSP 3.1 INSP 3.2
REPL3 [ \iax up=42 [ Max_up=42

Figure 10.5: Inspections and their dependencies.

Opportunities

An opportunity is a time point at which maintenance can besddn PM-opt,

all opportunities must be specified, since the optimizel mat plan mainte-
nance on a date which is not an opportunity. An opportunitysesis of a date,
a maximum work duration at the opportunity (its capacitypase cost for
usage (deducted as soon as at least one maintenance itdocéed to the
opportunity), a downtime cost (deducted for each downtinreute of the op-
portunity) and a specification of the number of labor shiftsise. This forms
the basis for computing the customer costs of maintenance.

10.3.3 Maintenance Package Planning

In traditional maintenance planning, maintenance packageh containing a
set of maintenance activities for a set of components ardepeemined and
preplanned. The situation changes when the current condiind therefore
the different maintenance needs of the individual comptmehthe turbine,
is known. The problem is to decide which maintenance a@ishould be
grouped together at which point in time, thus forming a dyitamaintenance
package. For each package, the component to be servicddrfitstthe latest
date at which the maintenance package can be performed. logeMeach
maintenance item is associated with a turbine stop times{tgpping and cool-
ing down the turbine and the like), a duration of the actuéildies contained
in the maintenance item, and a restart time (including testformed before
start). The allocation of a maintenance item also givestds® cost propor-
tional to its wasted lifetime. In addition, each maintersitem has a cost
associated with the labor and material used. Costs dueteaised labor level
are modeled by an individual multiplier for each labor levBlach potential
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maintenance stop is also associated with a base cost fay tienstop and a
variable cost that is associated with the actual downtinteettop.

Maintenance Optimization Algorithm

The optimization algorithm used is divided into two stag@he first stage
(shown in Alg. 10.1) applies a depth-first branch-and-boatybrithm [11]
augmented by a heuristic to find the best possible maintenplan. On top
of this, an iterative widening technique called Limited &&pancy Search [6]
is used to find better maintenance plans fast. In short, thediage selects
individual maintenance activities in turn, ordered by @asing deadline. The
algorithm then tries to allocate the selected maintenactbéts to each possi-
ble opportunity, and evaluates the results of doing thiomlgination with the
previously-committed allocations. The possible oppdties are then sorted
according to increasing cost, and the best one is committetufther eval-
uation. The search then proceeds by selecting the nextitgdtivturn for
allocation. If at any instant an inconsistency is detectieel search backtracks
to the previous choice, and the next best opportunity isl fristead. At each
allocation choicef opportunities at the most are evaluated; wherever no op-
portunities exist, the search backtracks. In the experispéinwas found that
iteratively increasing from O to 2, resolving the problem for eaghprovides
good performance and quickly returns feasible improvingtgms.

When all activities have been allocated to opportunities cibst of the re-
sulting plan can be established. If the generated plan isrtéan the best one
found at that point, it is saved for future reference. Thedethen backtracks
in order to find better plans. Also, a simple, lower bound @& tost of an
incomplete plan is computed and used to backtrack as sobe émter bound
is higher than the cost of the best plan found at that point.

The second stage of the algorithm is similar to the first. Gifferdnce,
however, is that a breadth-first technique similar to A* skdi 1] is used (in-
stead of a depth-first strategy). In this stage, a set ofgl@itins (“nodes”) are
kept ordered according to a heuristic value, which is the stie partial plan
cost and the lower bound for the unallocated maintenandgtaes. The node
with the lowest heuristic value is selected first, and is exiea into several
new nodes, which are inserted into the set. The expansiamis by splitting
the set of possible opportunities for an activity into twdsseThis yields two
new nodes, each having one part of the opportunity set foadheity.

Since planning an activity at an early point in time incur®atdn lifetime
loss for the corresponding component, the optimizer falates maintenance
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Algorithm 10.1: Optimization algorithm (stage 1).

0 T= firstitem in TL |«
Sortlist of maint. Sort list of dates
time order in cost order

Remove D from DL : -
Increase W by 1 —>| Increase iter by 1 |<—| W=1 |

T }

Restore TL,
DL and W

T.

BACKTRACK

Yvy

A

NO
D = item #W in DL Remove first
item from TL
o 1

T feasible
? Save TL,
atb? DL and W
YES T
Plan complete? RECURSION
YES

NO

New costrecord?

Save plan as
best found so far

dates over early ones. However, since downtime costs avdalen into con-
sideration, it may be even more favorable to place an agtiain earlier date.
This is true if it already contains other maintenance aigigi(in which case the
downtime increase will be smaller or even zero) or if the diimva has a signif-
icantly lower cost at the earlier opportunity. It was disemd that this simple
heuristic works very well in practice and in many cases cabeoimproved
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upon. In fact, in the case where each opportunity has an eguaitime cost,
the optimizer closely mimics the behavior of a human plaringng his/her
best to use the components to their maximum.

The A* algorithm is guaranteed to find the optimal solutiovegi enough
time. However, since the search space is huge, finding thealpsolution is
not plausible. In practice, the first stage of the algoritmovjales a solution
with sufficiently high quality for most purposes within a shiesponse time,
mainly due to the heuristics employed.

Problem Complexity

As a note on the problem difficulty from an optimization persiive, the plan-
ning problem can be seen as a generalized and more comglfcae of bin-
packing [1, 4], a well-known difficult problem in which the tipization time
in practice is proportional to an exponential function of fhroblem size [8].
For this and other reasons, bin-packing problems are yssalved only to
approximation using heuristics. This has turned out to beitalde choice,
since the heuristics used produce good solutions withinxaoution time of
seconds.

In [14], maintenance planning is done for a more restrictiystem where
certain mathematical properties of the cost function mo#d And where the
potential gain of co-allocating maintenance is constanaficactivities. In our
model, cost is a function of component and downtime costss itakes our
model more expressive and, thus, not solvable using thenpotial solution
approach in [14]. However, the heuristic used guarantesgstiie same solu-
tions are explored for problems where the restrictions 4j fibld.

10.4 The Gas Turbine Maintenance Process

A strategy for gas turbine maintenance planning is propaéisaticonsists of
online lifetime prediction using a prognostics tool andilmalmaintenance op-
timization using PM-opt. The workflow during CBM includesetfollowing
steps:

1. Identification of single and composed components ancespanding
activities (maintenance items). If a maintenance actigép belong to
more than a single component, it is either split into segeaativities for
the components in question or added as an activity for a geplerce-
holder component for “hard to specify” maintenance, whipars sev-
eral components.
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10.

11.

12.

13.

Lifetime predictions using a prognostics tool for suiégatlomponents.

. Lifetime predictions using regular EOH/EOC estimatescfumponents

without suitable damage accumulation algorithms.

. Construction of maintenance requirements. In this pleas®intenance

specification is entered into PM-opt. The specification iasf re-
quirements that have to be fulfilled in all maintenance pthas will be
constructed, and includes the maximum lifetime of the comepts in
the gas turbine.

. Contract period specification. PM-opt needs to know havg lthe gas

turbine maintenance schedule should be.

. Opportunity specification. In this phase, the loss of patidn costs and

their corresponding calendar time intervals for the canttpeeriod are
specified.

. Initial maintenance planning, where PM-opt is used tinoige mainte-

nance and get an initial maintenance plan.

. Lifetime revisions using a prognostics tool. At inspect or when con-

dition data has been read from the gas turbines, new lifstame com-
puted and inserted into PM-opt.

. Handling of unexpected events. These are inserted mgramlun-

planned activities into the maintenance schedule, togettib suitable
adjustments on remaining lifetime of the components adfg:ct

Handling production changes. Production changes niedrhe future
opportunities, costs and priorities change, and such @swamyst be fed
into PM-opt in order to produce relevant results.

Handling other changes in the maintenance plan. Whendirgenance
plan of the gas turbine is changed for other reasons not pareCBM
process, PM-opt still needs new maintenance schedulesasmainte-
nance is still planned according to the current state oftjp@ac

Date adjustment. PM-opt needs to know which part of thet@@ance
plan has already been executed and, consequently, whisftiastare
still pending (and thus needs to be scheduled).

Repetition of steps 8-12 until the maintenance contsdatished.
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10.5 Evaluation

In this section, the approach presented in this paper isiated using a real
world scenario in the oil and gas business. The gas turbiee fas evaluation
(a Siemens SGT-600) consists of 17 components with inditichaintenance
schedules. For some of the components, maintenance deseligre deter-
mined from predictive lifetime analyses using a prognastiol. Other com-
ponents in the gas turbine were required to be maintaineordiog to their

original maintenance schedules.

10.5.1 Setup

The standard maintenance schedule, which is used for cisopais based on
the EOH/EOC calculations described in Eqn. (10.1) in SeeR.1. For the
gas turbine in questior;, (¢) was on average 0.72, and the other factors were
always 1.0.

The critical components in the gas generator stage (combushamber,
burners, compressor turbine guide vanes, and blades) wadeled and eval-
uated in a prognostics tool to determine suitable inspedtitervals. How-
ever, at the time of writing, lifetime data was not availatdethe combustion
chamber and burner components. Therefore, the originaiter@nce dead-
lines were used for these components. For the critical compis, the relative
increases obtained from using the prognostics tool, coeaptr the standard
maintenance schedule, are shown in Tab. 10.1. The apprakialidated as
described in Sect. 10.5.3.

In Tab. 10.1, replacements marketh were not present in the EOH/EOC
schedule, and are therefore not included in the prognostiedsile. Replace-
ments marked/nwere not necessary in the prognostic schedule, since tihe est
mated component lifetimes were significantly higher thandandard lifetime
of the turbine.

Maintenance Scenarios

A standard maintenance contract of 15 years was assumedhfoh main-
tenance should be optimized with regard to both maintenaoses and costs
due to loss of production. The maintenance deadlines wekasthe basis for
computing suitable maintenance packages (and schedsieg) RM-opt. The
resulting schedules were analyzed with regard to 1) costafyztion losses
and 2) maintenance costs. PM-opt was set to run for 30 se@drttle most,
producing the best maintenance schedule found withinithis period.
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Table 10.1: Increases in maintenance intervals obtaired the prognostics
tool.

Prognostics
Component Inspection Replacement
Guide Vanes Stage 1 88 % n/a
Guide Vanes Stage 2 151 % n/n
Combustion Chamber 0% 0%
Burners 0% 0%
Blades Stage 1 101 % n/n
Blades Stage 2 41 % n/n
Blades Stage 3 245 % n/n
Blades Stage 4 72 % n/n

The evaluation was done on two scenarios. In the first sagragh costs
for lost production were assumed. The exception was foreetiweek period
during the summer, where maintenance could be done withguhagative
effects on production. Such opportunities for maintenanith reduced or
negligible negative effects on production are common ictiea. In the second
scenario, no such favorable opportunities were made dlaila the optimizer.
In both scenarios, a low cost was associated with all maames stops. This
cost corresponds to shutdown and startup costs. Maintenaas assumed to
be done using one single shift of labor only.

10.5.2 Results

In the evaluation, four different maintenance strateggstdvo situations in
two different scenarios were compared. The scenarios watrapsto simu-
late maintenance planning for a new gas turbine and for aughse with a
non-empty maintenance history, in the cases where a sdatopavas either
absent or present. The four maintenance strategies weup setsimulate ei-
ther the absence or the presence of advanced prognostifs amntenance
optimization respectively.
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New Gas Turbine

Table 10.2 shows results for a simulated brand new gas turt8ince a new
gas turbine should have an empty maintenance history, mipbooent lifetimes

are set to their predicted values. Where lifetimes are obthfrom the stan-
dard maintenance schedule for the gas turbine, the negasaartenance time
points are already synchronized according to the maintsaackages de-
termined for the original maintenance schedule. This mékegplanning of

maintenance packages easier, especially in the beginhthg contract.

In Tab. 10.2, the rows “EOH” and “Progn” give the results fohedules
obtained by planning maintenance activities at the lassiptesdate, given by
the maintenance intervals obtained from standard EOH letions and the
prognostics tool respectively. This corresponds to therdtecally best possi-
ble case from a direct maintenance perspective (in othedsyoot considering
the effect on the customer) and is obtained without usingraimymization of
production losses. On the other hand, the rows marked “EQHaogl “Progn
opt” provide results for schedules obtained by optimizingimtenance with
regard to both maintenance and customer (loss of prodyatmsts. Results
are given for two scenarios; one where there is an alreagygmeed produc-
tion stop of three weeks during the summer (“With seasorgd”stand one
where production is assumed to continue throughout the yetnout advan-
tageous maintenance opportunities (“Without seasonal’)stdn this second
case, maintenance can be freely placed. However, sincetenairce stops
always incur a significant cost, more focus must be placedrouping main-
tenance activities together in suitable packages.

In Tab. 10.2, results are reported in the form of availap(livail”), main-
tenance costs (“Maint index”) and productive days spenbgl@naintenance
(“DT days”). Availability is computed as the number of prative days when
maintenance isot done (not including seasonal stops, which are assumed to
be unproductive) divided by the total number of productiegsifor the main-
tenance contract. Direct maintenance costs include rahtand work costs.
Maintenance costs are expressed using an index. In it, J08sents the cost
of doing maintenance according to the maintenance ineo@hputed using
the EOH/EOC calculations in Egn. (10.1), the current stéteractice. The
highlighted line in Tab. 10.2 is the reference case cormedipg to mainte-
nance being done at the latest possible date.

As can be seen in Tab. 10.2, better lifetime estimates haghnifisant re-
sult on maintenance costs, availability and downtime. Addhe optimization
of maintenance (with regard to both maintenance costs ayiiption losses)
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Table 10.2: Results of maintenance optimization for a nesvtgebine.

With seasonal stop Without seasonal stop
Avail Maint DT Avail Maint DT

% index days % index days
EOH 97.60 100 131 97.60 100 131
EOHopt 99.99 109 042 98.15 120 101
Progn 98.20 61 98 98.20 61 98

Progn opt 100.0 62 0 98.81 75 65

yields even better results, and increases direct maintenaosts slightly. This
is natural, since production losses in this care are vertjycasd optimization
is done with regard to both loss of production costs and timeintenance
costs. Table 10.2 also shows that for a schedule with no éalyaous oppor-
tunities, downtime can be reduced by more than 50 % using pPivind a
prognostics tool.

Used Gas Turbine

Table 10.3 shows the same scenario as that used in the psesaéation, but
for a simulated gas turbine that is assumed to already becinTlse scenario
is simulated by randomizing the initial state of the gas ingbcomponents.
The already-used lifetimes of the gas turbine componente agproximated
by a random number drawn from a uniform distribution betw8eand the
maintenance interval for the component.

As expected, Tab. 10.3 shows in general higher costs and bxaédability
than Tab. 10.2 due to a more spread out maintenance needj &Jjgingnostics
tool and PM-opt in this scenario also yields significant kssuowntime can
be reduced by 65 % for a schedule with no advantageous opiittet) com-
pared to the current state of practice. In the case wheresalaspportunities
are present, downtime can be reduced from 259 to 11.6 days.

10.5.3 Validation

The extended lifetimes shown in Tab. 10.1 are estimatesnéned to be val-
idated in practice. A partial validation has been done in theeference gas
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Table 10.3: Results of maintenance optimization for a gasinte with ran-
domly chosen history.

With seasonal stop Without seasonal stop

Avail Maint DT Availl Maint DT
% index days % index days

EOH 95.26 121 259 95.26 121 259
EOHopt 99.56 133 24.0 97.49 149 137
Progn 96.03 79 217 96.03 79 217
Prognopt 99.79 82 116 98.35 85 90

turbine that had operated under the same conditions useledifetime pre-

dictions was dismantled and thoroughly inspected for tleiiglation of typ-

ical damage mechanisms, such as creep and oxidation. Tieduwas dis-

mantled after 20 000 EOH, which is the standard maintenameeval for type

SGT-600. The analysis showed that the accumulated damagsigvaficantly

less than predicted using the EOH/EOC calculations in Ebh1j. However,

final validation has to wait until one or more reference gabities have been
dismantled after a longer operational period.

The PM-opt software is currently in use for gas turbine nmexiahce plan-
ning at Siemens Industrial Turbomachinery AB. Calculaishow a possible
increase in availability of 0.5 to 1 % in practice. Even whesttér lifetime
predictions are not available and maintenance intervasapt at the same
length as before, significant reductions of preventive temiance downtime
are possible. Reductions of downtime by approximately 12w sblely to
the improved planning of preventive maintenance actwitiee expected in the
general case.

10.6 Conclusions

In this paper, a new condition-based maintenance stratagylescribed where-
in lifetime predictions and maintenance optimization asenbined to safely
decrease the maintenance costs, both direct and indioedas turbines. The
potential of the proposed approach was demonstrated usieagl-avorld sce-
nario, where maintenance planned using conventional rdetvas compared
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with plans obtained from the process described in this papke approach
was validated through the inspection of a reference gasneidfter a prede-
termined time interval. The results in this paper show thaintenance costs
may be decreased substantially by using better lifetimdigtions (based on
customer requirements and the production plan) and by usaigtenance op-
timization, minimizing maintenance downtime and productiosses. In the
simulations, direct maintenance costs were reduced by 38 %, while at
the same time costs associated with downtime were reducggizglly 50 to
65 %. Finally, calculations regarding the effects of using &pproach in this
paper in practice show a possible increase in availabifit§.6 to 1 %, and
expected downtime reductions of approximately 12 % dudystateémproved
planning. Both represent significant improvements.
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Abstract

We describe the implementation and deployment of a softd@aoésion sup-
port tool for the maintenance planning of gas turbines. Tdut is used to

plan the maintenance for turbines manufactured and magdaby Siemens
Industrial Turbomachinery AB (SIT AB) with the goal to reduthe direct

maintenance costs and the often very costly productioresodaring mainte-
nance downtime. The optimization problem is formally dedinend we argue
that feasibility in it is NP-complete. We outline a heugstilgorithm that can
quickly solve the problem for practical purposes, and \a#dthe approach
on a real-world scenario based on an oil production facilMye also com-

pare the performance of our algorithm with results from gsimxed integer

linear programming, and discuss the deployment of the egijidin. The exper-
imental results indicate that downtime reductions up to &3 be achieved,
compared to traditional preventive maintenance. In agljtusing our tool

is expected to improve availability with up to 1% and reduce humber of
planned maintenance days with 12%. Compared to a mixedeinfgggram-

ming approach, our algorithm not optimal, but is orders ofjniaude faster
and produces results which are useful in practice. Our &ssilts and SIT
AB'’s estimates based on operational use both indicate itpaifisant savings
can be achieved by using our software tool, compared to er@nice plans
with fixed intervals.
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11.1 Introduction

Preventive maintenance can reduce breakdowns and costssdsd with them,
but is also costly when done frequently. That is why consilier effort (e.qg.

[3,10]) has previously been spent on optimizing mainteeaswthat the ex-
pected total cost due to failures and preventive maintenamainimized. Most
preventive maintenance approaches use fixed scheduled) at@ optimized
for minimum cost in advance. However, there are many sinatin which

maintenance re-planning is in practice necessary to bdilegta continue op-
eration and to lower costs. For example, unexpected breaigiforce the
production unit to stop for emergency repair, and it wouldub&vise not to

consider performing other maintenance tasks at the sange tther exam-
ples include production stops for other reasons than maanize, which pro-
vides valuable opportunities for maintenance. The intotida of condition

monitoring has also lead to the replacement of preventiviter@ance with
condition-based corrective maintenance, which is by ealess predictable
than a fixed preventive maintenance plan.

In this paper, we present the ideas behind a tool, PV@reventive Main-
tenance Optimizer), for gas turbine maintenance planidOrPT was devel-
oped for Siemens Industrial Turbomachinery AB (SIT AB), ofi¢he leading
manufacturers of gas turbines of small and medium size. @bmes are used
for power-generation in various production facilitiesttbfien have high down-
time costs. A typical gas turbine application is offshorkeptatforms, where
time spent without power can cause an extremely high lossvefue. In such
applications, small improvements in terms of overall alaility, which is one
expected outcome of implementing CBM, have a substantgitipe effect on
the total income for the customer.

Condition-based gas turbine maintenance, where comptbfetime is de-
pendent on factors such as load profile, quality of fuel, @mibiemperature,
and particle levels, is becoming more and more common. Afjhdifetime
predictions can sometimes be performed with high precjsi@mintenance time
points will still vary depending on the conditions on sitedahe actual time
points will therefore also diverge from their original esétes.

The approach presented in this paper aims at providing antbiwh can
quickly optimize maintenance when unplanned events makeuhrent main-
tenance schedule unsuitable. We use a rolled-out repeggenof a determin-
istic future maintenance schedule, which makes it possittigke into account
positive effects of co-allocation, maintenance oppotiesj overall availabil-
ity, horizon effects and costs due to both maintenance assddé-production.
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Proper risk analysis and deterioration model identificatan in many
practical cases be difficult to perform from scratch. As aseguence, main-
tenance intervals are often based on analytical modelslzast practice”. In-
stead of using failure rate distributions to make tradeb#sveen costs for
breakdown and preventive maintenance, we therefore asawsate deadline
for maintenance activities, which simplifies the problend amakes it easy to
adapt already existing maintenance plans for use in PMO

The contributions of this paper include that we 1) precisieline the main-
tenance scheduling problem discussed, 2) argue that theiptaproblem is
NP-complete, 3) outline an algorithm that can quickly sdlve problem for
practical purposes, 4) show results for a real-world séen&) compare the
results of our algorithm to the results from using mixedgetelinear program-
ming, and 6) discuss the implementation and deployment cOPM

11.1.1 Related Work

Maintenance optimization is certainly not a new topic. Ageallent overview
of the many applications considered can be found in [3]. &) fliynamic pro-
gramming is used to optimize maintenance planning witheetsfo acceptable
equipment reliability, demand of generating units and tegiance cost. How-
ever, overall availability as a fraction of the total timenist considered, and
the crew and resource model used does not consider downtiendiay and
week rest.

Other approaches to maintenance optimization are basedooteMCarlo
simulations combined with genetic algorithms [8]. In a tethapproach de-
scribed in [10], pre-planned maintenance opportunitiestaken into account
similarly to our own method. However, their approach is m@terministic in
contrast to our optimization method.

In [11], maintenance planning is done for a more restriciygtem where
certain properties of the cost function must hold, and wipatential gain of
co-allocating maintenance is constant for all activitiés.our model, cost is
a function of component costs and indirect costs, resuftimgp unavailability
of the gas turbine due to maintenance. This makes our model expressive,
and thus unsolvable using the polynomial solution appraa¢hl].

11.2 Background

The common practice of gas turbine maintenance plannireytisto base the
schedules on Equivalent Operating Hours (EOH) and cycles the number
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of turbine restarts). The number of operating hours is mediifvith factors
for load, fuel quality, presence of water injection, andgtimited extent) sig-
nificant exhaust temperature differences. However, theefischot detailed
enough in how these variables are handled, and factors suamhient air
temperature and pressure, rotational speeds, and moikedetatlet tempera-
tures are not included. Instead, the EOH calculations halstantial built-in
safety margins to accommodate for variables not expliaithdeled.

In order to improve overall maintenance efficiency, new alaltions for es-
timating the remaining lifetime of gas turbine componerasdad on operation
profile, environmental conditions, and condition data ivtetd through inspec-
tions and sensors on the gas turbine has been developed BABSH lifetime
prediction tool, producing deterministic lifetime estites, has also been de-
veloped. The lifetime estimates produced by the tool ineltelevant safety
margins. Therefore, changes in lifetime should not affisgtlevels negatively
as long as the gas turbine is serviced within its predicfetidne. In fact, risk
levels can in many cases be dramatically reduced, sincéétienke prediction
tool also detects and decreases maintenance intervalafoudpines operating
under conditions with increased component wear (for exarhigh load, high
humidity or low fuel quality).

11.2.1 Improved Analytical Lifetime Predictions

Gas turbine component lifetime is to a great extent detexthiny operation
temperatures. However, it is also determined by the extretagonal load and
pressures that some parts are exposed to. The gas turbirdscatso highly

sensitive to ambient conditions (mainly inlet air pressanel temperature).
The following procedure is employed to calculate the conembiifetime for a

specific situation.

1. First, the overall energy balance of the gas turbine isutated using
heat balance evaluations based on measurements of pedsunpera-
tures and rotational speeds at various locations in theugbime.

2. Based upon the energy balance input, we then calculatexjhected
mass flow, temperature and pressure at locations wherersetsmmot
easily be placed or hamper performance (such as within thgdspass,
inside the combustion chamber, and inside the rotors). almilations
are performed using standard methods from combustionikimetero-
dynamics, flow distribution and cooling codes.
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3. Finally, we compute the mechanical response to the tHeae@dynam-
ical and mechanical loads for component sets that interachamically
with each other.

The results of step 2 and 3 are then used to compute an exiéetiete. Some
of the involved calculations are carried out using the fialeanent method (see
for example [13]). However, the applied fluid and solid madsle specifically
adapted to gas turbine conditions and materials.

Calculation time for the process outlined above can rangm fiveeks to
months per iteration. Therefore, a pre-computed appraiomas used for
real-life prediction. The approximation is refined by mamarection using
experience from service and risk assessments to be acamatgh and to
provide sufficient safety margins.

11.3 Problem Description

In this section, we first give an informal description of tleheduling problem
that PMQCpTis aimed at solving. We then define the duration model addpted
this paper, which includes calculations of total work arbgtme for an main-
tenance stop. This is followed by a more rigorous definitibthe scheduling
problem we want to solve. The section ends with an argumenvfiy fea-
sibility in the maintenance scheduling problem is NP-catsland why new
solution methods are needed to solve it.

We can informally describe the Maintenance Scheduling Wipiportuni-
ties Problem (MSOP) as the problem of allocating maintee@emsto dates
for k£ independent components in a single unit and for a time pevfod
weeks, so that constraints on timeliness, work time capaait total avail-
ability are satisfied. The allocation should minimize diraed indirect main-
tenance costs, including spare parts, labor, and valueodiugtion lost due to
maintenance.

Each component has a cyclical schedule of arbitrary lerggthsisting of
inspectionsandreplacementsThe date of a replacement depends only on the
previous replacement, while inspections depend on thequs\vtem regard-
less of type. We assume that the obtained lifetime estimated as input to
the optimizer are safe in the sense that if maintenance ideadire met, risk
levels are negligible. Also, we assume that the given corapbschedules are
followed and that deviations are taken into account by updahe schedule
data. The problem is therefore deterministic in nature.
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11.3.1 Duration Models

To estimate work time at a maintenance stop, each maintentm has a
duration specificatiom\; = (Aj;, Ay, ..., Ap;) divided into non-negative
work phaseg\;;, where at least one phase has to be non-zero. The set of work
phases are denoted I/ All items with activities within a single phase at a
single stop are assumed to be fully independent, and cagftiheribe executed

in parallel. In contrast, the phases themselves have to be ioan orderly
fashion, and therefore have to be executed serially. Tlawairk timew; of

a stop can thus be computed as the sum of the maximum work tireach
block.

As an example, consider the two duration specificatithd,0,5) and
(4,0, 2, 3) allocated to the same stop. The working time for the diffeptrases
then becomeét, 1, 2, 5), and the total work time at the stop is 12.

Given the total work time at a stop, we can now computedbentime
We assume that a working day consistsiAdfiours, and that all calendar weeks
(consisting of 6 working days) are alike. The downtime of sgonpty stops
is computed by adding night-rest time for each day when alkweas not
finished, and week-rest time for each week when all work wadinished,
using the following function.

D(W) =W + (24 — A) m/ - 1} + 24{;1/1 - 1} (11.1)

For empty stopsD(W) = 0. In the rest of this paper, we assume tHat 10.

11.3.2 Optimization Model

We assume that maintenance items denoted by Z have been rolled out
to cover weeks 1 té (the horizonof the problem). The decision variabig)
represent the date of itein The schedule end is modeled by the artificial item
T at dateh + 1, and the schedule start is modeled by another artificial item
at date 0. The possible allocation dates within the scheat@lenodeled by a
finite setO of opportunitiesj with datesy; and work time capacity;.

Timeliness constraints are expressed as follows. Eachiiteas arelease
timeo; and adeadlined; relative toi's predecessop;. Each item also has an
optionalearliestandlatest dateof execution {"" and ™). We assume that
each replacement for a component starts a new sequenceetiimns, which
makes items from previous sequences redundant. We catlrollit items that
do not have to be executethsoletatems.
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Each item: has aterminator s; that makes obsolete ifi is done later or
at the same date as. For simplicity, we force obsolete items to be allocated
to the same date as their terminator. Formally, we define rb@igateobs(),
with the meaning that activity is made obsolete by its terminatey, as fol-
lows.

obs(i) = t[i] = t[s] (11.2)

Replacements always haveas their terminator, which implies that they are
only made obsolete by being moved over the problem horizofmhe top of
Figure 11.1 illustrates relative timeliness constraingde@se times and dead-
lines) between pairs of tasks as well as predecessor anth&gomnrelationships
in a fictional schedule.

The first items in the schedule for each component is calledd¢hothead
items, and is denotefl. All head items are assumed to haies their prede-
cessor. To ensure that the gaps after sequences of itemetamodarge, we
use special items representing the end of such sequencesalMgaich items
tail items. The set of tail item£ consists of 1) the last replacement for each
component, and 2) the last item in each inspection sequ@ydercing all tail
items to be obsolete, the normal deadline constraints ertkat end gaps are
smaller than required for all feasible solutions. The cpisare illustrated in
the bottom of Figure 11.1.

Each item also has atem costc; consisting of work and material cost.
The value of production per hour at an opporturjifg denoted;. In addition,
we use a fixedasecost ¢;) for opening up opportunity. The base cost is
associated with setup costs for shutting down and restattie gas turbine,
travel expenses, and other costs that cannot be modelegl msiterial, work
or downtime costs.

Minimum availability is specified by the user via the paraenet (where
0 < a < 1). The total availability is defined as the productive timé sppent
on preventive maintenance divided by the total availabdelpctive time. The
constraints in the problem can now be stated.

» Each item; should be allocated to a datg] that is less than or equal to
its deadline.

Viel: tm < t[pi] + d; (11.3)
» Each item has to respect its absolute allocation interval.

Vie Tt < gfi] < ¢ (11.4)
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of a component.

uonduossaqg wajgoid £'TT

144



246 Paper F

Each tail item has to be obsolete.

Vi € L : obs(i) (11.5)

» Each non-tail item should be either obsolete or allocated to a date larger
than its offset.

Vi eI\ L :obs(i)Vt[i]>t[p]+o; (11.6)

 For each opportunity, the total work timeu; allocated toj must be
lower than the capacity gf.

Vi€O:u; =Y max Ay
bEB ¢[;)=5,; A—obs(4) (11.7)

VjGOZUjSU]‘

» The availability of the plan should be greater than the minnh avail-
ability a.

1

- Dlu.) < —

—51 > D) <h(1-a)
JjeEO

JieL:t[i]=6;

(11.8)

The objective of the optimization problem is to minimize ttwst func-
tion f, defined as follows.

f(t) = Z c; + Z ZJD(UJ) + Z bj (119)
€L e JjEO
—obs(%) FieL:t[i]=6;
The first term is the maintenance cost of all items within théZon, the
second term is the indirect costs for the opportunities,thadhird term is the
base costs.

11.3.3 Complexity

Feasibility in MSOP (or FMSOP for short), that is, the quastivhether any
feasible solution to MSOP exists, is NP-complete. We arguthis section
that 1) FMSOP is in NP by outlining a polynomial-time veritica algorithm
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([2]), and 2) that there is a polynomial-time reduction frtime bin packing
problem (BPP; see for example [4]), to FMSOP.

The objective of BPP is to pack items {1, ...,n} of given sizes; into
as few bins (with fixed capacity’) as possible. The used capacity of a bin
is computed as the sum of the weights of the items in the bire ddtision
variant of BPP answers the question whether a packing fogamn number
of bins B exists.

1. Given a candidate solutiofi to FMSOP (i.e. an assignment of dates
to the maintenance items ), we can verify the constraints on struc-
ture and timeliness by simply testing Equations (11.3),41,111.5) and
(11.6) for the given dates of the item and its predecessoteantdnator.
This can be done in linear time to the number of items. The agpa
constraints in Egn. (11.7) can easily be verified by invesiigy the items
allocated to that opportunity in tim@(nm). The availability constraint
in Eqn. (11.8) can be verified in a similar way as for the capamn-
straints. This together with computations of the downtimection in
Eqgn. (11.1) can be done in tim®(nm). The procedure outlined above
is clearly polynomial, and therefore FMSOP is in NP.

2. We can translate a given BPP into a FMSOP by hadrapportunities,
each opportunity (wherel < j < B) having datej; = j and capacity
v; = V. Letthe horizom, = B + 1. Each BPP iteniis translated into a
FMSOP replacement iteinwith | as predecessdi,as release time3
as deadlin@;“i“ = 0 andt"® = h. The duratiom\;; = a; if b =4 and 0
otherwise, i.e., the duration (weight) of an item is alwaysip a unique
phase iM\;. All items i have an artificial iterm + ¢ as terminator, which
in turn have release time 1, deadliher 1, t"" = 0, tM™ = h + 1, T
as terminator and arbitrary duration. By definition, thé items, being
replacements, have to occur@atwhich is outside the schedule. Let the
minimum availability requirement = 0.0.

The transformed problem corresponds directly to BPP, siheach BPP
item is represented by a FMSOP replacement, 2) each BPP lep-is
resented by a FMSOP opportunity with unique date and equualoity,
and 3) the total duration of an opportunity is computed asstira of
the item durations at that opportunity, since all duratiarsin unique
working phases, which corresponds directly to the sum ofvights of
items in a bin in BPP. All other constructs of FMSOP are disdldnd
therefore do not constrain the solution, and therefore, BRPspecial
case of FMSOP.
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If we could find a solution to the transformed FMSOP using ayipol
mial time algorithm, we could then use that algorithm to edBPP (which is
NP-complete, see [5]) in polynomial time. This, togethethmthe previous
conclusion that FMSOP is in NP, shows that FMSOP is NP-cotaple

Efficient polynomial-time approximations exist for the fpacking prob-
lem; see for example [4]. However, MSOP differs in objectitem BPP,
and has complicating side constraints that are missing iR. BBr example,
in MSOP, each opportunity (date) can have a different cépdsase cost and
downtime cost. In BPP, a bin is defined only by its capacityicllis also uni-
form. Another difference is that items in MSOP can partiaitserlap within
an opportunity due to the work time model used. This makesphitking
approaches inapplicable to MSOP. It is currently an opeaueisghether poly-
nomial-time approximation schemes exist for MSOP.

11.4 A Tool for Maintenance Scheduling

The optimization software consists of two separate progrdrat communi-
cate using files; PMO®T1-GUI and MAINTOPT. The architecture is shown in
Figure 11.2. MANTOPT is written in C++, and PM®T-GUI is written in
the C++/CLI programming language using the .NET platforrM@®,T does
not require any special installation procedure; it simpigs as a stand-alone
application on any computer where the .NET framework isaithesd.

The schedule and related information are considered topbaject, and is
stored in gproject file A typical user would load a previously created project
file directly after starting PM®T. PMOPT-GUI makes it possible to edit the
project file, and immediately displays the effects of ediisch as costs and
availability. Edits include changing lifetime estimatadding/deleting compo-
nents and activities and moving/copying activities witaimd between compo-
nents.

Whenever the user requests an optimization of the curremterance
plan, PMCPT-GUI produces a rolled-out representation of the specifinat
which is passed on to the optimizer. Time is translated integer values, so
that MAINT OPT does not need to be aware of the time scale. As soonas M
TOPT finishes, the solution file is read back into PM®GUI and shown to
the user.
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- Optimizer parameters
Load/save _ pjtial Schedule
project - Constraints [\

Project file — [~
PMOpt-GUI MaintOpt
[
—] |
Pl
Optimized schedule
User Figure 11.2: System architecture.

11.4.1 MAINTOPT and the Optimization Algorithm

The optimization algorithm should be able to produce maiatee schedules
within a limited time in order to be used interactively. Thetimization al-
gorithm in MAINTOPT is based on Limited Discrepancy Search (LDS) [6].
Maintenance items are assigned in order of increasing itegdind the value-
selection heuristic picks opportunities in increasingt @sder, with a bias for
late opportunities. Only consistent assignments are densil; variable do-
mains are pruned using interval propagation [7]. In our erpents, we have
found that iteratively increasing the LDS widihfrom 0 to 2, resolving the
problem for eaclk, gives overall good performance. The default optimization
time is set to 30 seconds, which is more than enough for ndnmatnces.

11.5 Development and Deployment

Manual planning is the norm in the gas turbine field, and leefoMOPT and
the lifetime prediction tool, SIT AB did not have any manualautomatic
procedures for improving maintenance schedules. A stdnsiaredule was
used, which is equal to 20 000 operating hours and assumesstanblevel of
degradation at a standard pace for all components of theigziae. When the
lifetime prediction techniques outlined in this paper hag developed, the
need for maintenance planning in order to take advantagestilple lifetime
extensions soon became apparent.

The Swedish Institute of Computer Science (SICS) was firstaarhed by
SIT AB regarding maintenance scheduling optimizationmyithe summer of
2006 at an international conference related to conditionitanng. This first
contact resulted in a sequence of meetings during the auithithe purpose
of evaluating the feasibility of the project idea. At thimg point, the core
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maintenance optimization engine AMTOPT) had already been developed
for use in a different project in the railway domain. HoweverAINTOPT
was in its infancy, and it became obvious during our collation with SIT
AB that we had to extend it with side constraints and objechixnction terms
previously not considered. One example is the availabilitystraints and the
focus on downtime as a critical parameter, which was notgmteis MAIN -
TOPT at that time. However, being able to demonstrate the earsiome of
the planning software together with demonstrator appéoatfrom previous
projects helped a lot during these initial meetings.

Before starting the PM®©Tr development process, a commercial product
for maintenance optimization had been evaluated at SIT Al 6f the main
problems with the product was that it was not able to modebirgmt proper-
ties of the gas turbine planning problem, such as seasonatigas and usage
profiles for different parameters like load, particle leyednd environmental
factors. More importantly, generic tools often use costedaon statistics. In
reality, it is not uncommon that one prefers not to use théstially optimal
point of lowest cost due to the need for safety margins. Thmseguences of
some types of failures are also too severe to be estimatad stitistical ap-
proaches. In addition, for a complex machine such as a gamé&yit can be
impractical to identify all possible failures, the corregging statistical distri-
butions, and all consequences and associated costs fofadlacé. Instead of
having too many estimates, it was decided that a safe deafdlireach main-
tenance activity was a better alternative.

SIT AB were heavily involved in the specification and devehgmt through-
out the project, and this was a main factor behind the sufidesstcome.
Without close collaboration with SIT AB, many details regjag the applica-
tion area would have been missed due to lack of knowledgeahdatea. It
would also have been difficult to motivate necessary dedigmges without
support from our main contacts.

Throughout the project, five people from SICS were directiolved. We
had two main contact persons at SIT AB, and several site nessagere di-
rectly involved.

11.5.1 First Versions

In November 2006, SICS received a spreadsheet containiegrjndraft spec-
ification of the problem to be solved. The spreadsheet shsoetk ideas
regarding calculations on downtime and maintenance &ctackaging, and
it was decided that a prototype should be developed from tth# specifica-
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tion. The prototype was nothing more than a simple grapHicait-end to
MAINTOPT without any interaction. Nonetheless, it served the pupafs
showing the feasibility of the project proposal well. Aftiis pre-study and
basic demonstration, we began discussions regarding ¢fEcpeconomy and
deliverables in early 2007. Soon after that the contracts wigned and devel-
opment started. We finished the first release (version 0.8)idkApril 2007.
Due to time pressure, the first version ended up being mor@uaitatype than
mature software. With many test releases in between, vedswas finally
shipped in June 2007.

From experience with the first releases, we soon realizedhizages in the
optimization engine were rather straightforward to impdem However, main-
tenance and extensions that primarily affected the manageofithe problem
model proved to be much more time consuming. One of the bigeblems
was to keep the model consistent and to handle the entir¢ sstioactions and
model parameters. For example, changes in the mainteneinegige made af-
ter running the gas turbine for some time needed to be syniZsw with the
already laid-out maintenance schedule up to the curreetpiomt. \We soon re-
alized that we had severely underestimated the work indalvenanaging the
maintenance schedule. Other areas that needed moreaittran expected
were models of work time, application security, licensimgnagement of gas
turbine maintenance projects, and user accounts and riggriagement.

11.5.2 Second Version

We made several changes to the basic design of PM©the second phase of
the project to simplify the maintenance of the applicatiod &cilitate future
extensions. Rewriting the core of the application from ®travas perhaps the
largest one, but significant changes were also made in thehsalgorithm. In
the beginning, MINTOPT was a pure branch-and-bound algorithm based on
A* search [9]. However, after extensive experimentatiothvéiample main-
tenance projects it became apparent that A* search, beisgdban breadth-
first search, was spending too much time exploring highHeégeisions in the
search tree, and failed in finding feasible solutions gyicBlince responsive-
ness of the application was one of the main criteria of PN Qve resorted
to experimentation with heuristics, and after a while, tf@SL procedure was
added as a first stage of the algorithm. Lately, the secorg #t& search has
been completely removed from AINTOPT, since it does not really help in
solving typical problem instances. In our experience,esystesponsiveness
and producing a reasonably good solution fast was more itapiothan pro-
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ducing the absolute optimum. Tuning heuristics turned oltet an important
task, as the standard A* and LDS algorithms were of limitelli&avithout
guidance using the specific problem characteristics.

With major changes to the GUI and improved heuristics, arsgeoajor
version (version 2.0) was released in March 2008. This eargias delivered
two months in advance of its deadline due to the much improeed design,
which helped speed up the implementation of new featureseShen, more
improvements have been made, with a new release in Augusiathe year.
The latest release (version 2.4) was shipped in Novembe3.200

11.5.3 Deployment at SIT AB

During the development of PM®X, it became increasingly clear that a plan-
ning tool of this type is not easily deployed. First of allykmersonnel need to
be educated in the theories behind condition-based mainterplanning, and
in how an automated tool can help in adjusting a schedulestomer-specific
conditions. In addition, it was necessary to gain adequetiglt into main-
tenance planning practices in order to increase the usabilithe PMCpT
tool. During the development of the first version, suggestiand ideas for the
usability enhancement of the software were continuoustgudised. Before
deployment could begin, suitable business models alsodae developed,
evaluations of current technology needed to be completrdppnel had to be
trained in using the tool, and data acquisition routineskimg processes and
suitable information flows needed to be established. ThezePMCPT was
not deployed in operational use until early 2008 after thease of version 2.0.

Currently, PMQrT is used by two people, mainly for planning of mainte-
nance after deviations have occurred. PRMas been running operatively for
verification/validation of the global CBM strategy for fiveomths. It is used
within two maintenance contracts; in the first, PM®©is fully operational,
while it is used for validation and testing purposes in theogé one. Testing
is done mainly for gaining feedback from practical expecgsmmonitoring of
environmental variables (e.g. temperatures), and timeiments. In a couple
of years, four or five people working within maintenance plag are expected
to use the tools for 10-15 different operational contracts.

11.5.4 Application Maintenance and support

Maintenance of PM®Twere performed by SICS on demand when bug reports
were filed, which happened mostly from our main contact peaplSIT AB
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after new releases had been shipped. Naturally, most bugsregorted just
after the delivery of version 1.0.

Overall, larger improvements were mostly related to the @ the us-
ability of the system. Current users have direct contadt wit and are able to
ask guestions as well as request changes. During the devefdpour under-
standing of the domain improved and matured, and severabiements of
the problem models were gradually implemented. Some clsangee explic-
itly requested by SIT AB, while others were necessary to niakeode base
easy to maintain. As an example, the specification of tharopdition model
was changed several times, and the work time model, by reffoesSIT AB,
was updated to more accurately capture the real duratiemtitoe and cost of
a maintenance opportunity. Another change was proposeuehyavelopment
team regarding the model of dependencies between maimeitams and the
handling of obsolete items. The first model proposed wasitoplistic in that
there was no difference between inspections and replademen

11.6 Estimated and Measured Benefits

In this section, PM®T is evaluated on a real world scenario in the oil and gas
business. The turbine under consideration has 17 compontitindividual
schedules. A standard maintenance schedule for the sitesegdsas a compar-
ison. The critical components in the gas generator stagetfah lifetime data
was available (compressor turbine guide vanes and bladeg) wodeled and
evaluated in a prognostics tool to determine suitable ictspe intervals. The
average increase in inspection time was 116 %, and replaxterfte the crit-
ical components were not necessary, since their prediifedirie were much
longer than the standard maintenance contract length ofdfsy The scenario
is described in more detail in [1].

A partial validation of the obtained lifetimes has been donthat a ref-
erence gas turbine having operated under the same corsditias dismantled
after a standard maintenance interval of 20 000 operatingstand thoroughly
inspected. The analysis showed that the accumulated damseggignificantly
less than predicted using the standard EOH calculationaeMer, final valida-
tion has to wait until one or more reference gas turbines baea dismantled
after a longer operational period.

The evaluation was done on two scenarios. The first scenadahhree
week seasonal stop during the summer, where maintenanicemdone with-
out any negative effects on production. Such opportunitiemaintenance are
common in practice. In the second scenario, no such fawm@gbortunities
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With seasonal stop Without seasonal stop
Avail  Maint DT Avail Maint DT
% index days % index days
EOH 97.60 100 131 97.60 100 131
EOHopt 99.99 109 042 98.15 120 101
Progn 98.20 61 98 98.20 61 98

Prognopt 100.0 62 0 98.81 75 65

Table 11.1: Results of maintenance optimization for a nesvtgebine.

existed. In both scenarios, a low base cost was associatie@lunaintenance
stops, and high costs were associated with loss of producilibe schedules
resulting from running PM@T were analyzed with regard to 1) cost of pro-
duction losses and 2) maintenance costs. PVi®as set to run for at most 30
seconds.

11.6.1 Results

Table 11.1 shows results for a simulated brand new gas wirbirhe rows
“EOH” and “Progn” correspond to planning maintenance atlést possible
date, as specified using standard EOH calculations and tigngstics tool
respectively. This approach minimizes direct maintenaosts while ignor-
ing other costs. The rows marked “EOH opt” and “Progn opt'tespond to
optimizing maintenance using P MQ.

Results are reported in the form of availability (“Availtaintenance costs
(“Maint index”) and productive days spent doing maintera(ttbT days”).
Maintenance costs are expressed using an index. In it, J08sents the cost
of doing maintenance according to the maintenance inteo@hputed using
the standard schedule. In Tab. 11.1, this corresponds toothdypeset in
boldface.

As can be seenin Tab. 11.1, better lifetime estimates haghiisant result
on maintenance costs, availability and downtime. Adding diptimization
of maintenance using PMEY yields even better results, and increases direct
maintenance costs slightly. This is natural, since pradndbsses in this case
are very costly and optimization is done with regard to bo#islof production
costs and direct maintenance costs. Table 11.1 also shaivitha schedule
with no advantageous opportunities, downtime can be retlbgemore than
50 % using PM@®@T and a prognostics tool.
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With seasonal stop

Without seasonal stop

Avail  Maint DT Avail Maint DT
% index days % index days
EOH 95.26 121 259 95.26 121 259
EOHopt 99.56 133 240 97.49 149 137
Progn 96.03 79 217 96.03 79 217
Prognopt 99.79 82 116 98.35 85 90

Table 11.2: Results of maintenance optimization for a gasinia with ran-
domly chosen history.

With seasonal stop

Without seasonal stop

Diff. Gap Time Diff. Gap Time
New turbine % % % %
EOH opt —6.1 0 40m - 00 8h
Prognopt —1.1 0 27m +93 75.6 8h
Used turbine
EOHopt —-23.6 1.79 8h - 8h
Prognopt —0.6 0.95 8h - 0 8h

Table 11.3: Comparison of results between CPLEX 9.0 and PMO

Used Gas Turbine

Table 11.2 shows the same scenario but for a simulated dais¢walready in
use. The scenario is simulated by setting the already-ufetidnes of the gas
turbine components to a random number drawn from a unifostridition

between zero and the maintenance interval for the compoenexpected,
Tab. 11.2 shows higher costs and lower availability than Tal due to a more
spread out maintenance need. Using a prognostics tool andr@Nh this

scenario also yields significant results. Downtime can Heced by 65 % for
a schedule with no advantageous opportunities, comparéitetourrent state
of practice. In the case where seasonal opportunities asept, downtime can
be reduced from 259 to 11.6 days.

11.6.2 Comparis

on with CPLEX

In order to investigate how far away from the optimum the itsftom PMGOPT
are, we formulated MSOP as a mixed integer linear programimioblem. We
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used ILOG CPLEX 9.0 on a mainframe computer with a 2.2 GHz @@k

AMD Opteron CPU and 8 GB of RAM to solve the problem. The totedtime

for each case was limited to 8 hours. Although running anrétgo for such

a long time is not suitable for our needs, the comparisolhgstiés us valuable
insight in where PM@®T can be improved. In contrast, PM®@was run on a
laptop with a 1.6 GHz Intel CPU for 30 seconds in each case.

Results for the eight different cases (described prewousle compared
in Tab. 11.3.Diff gives the relative difference between the best found cost
for PMOPT and CPLEX, with negative values indicating that CPLEX fouand
better solution than PM@r. TheGapcolumn gives the relative optimality gap
(distance to the relaxed optimum) as returned by CPLEX, Wigiher values
indicating that the gap is larger. The gap is infinite if nosibée solution
was found within 8 hours. Th&mecolumn report CPU runtime for proving
optimality, with a cutoff at 8 hours.

For the two cases with a new turbine and seasonal stops, CRlaBEXable
to find the exact optimal solution (indicated by a gap valu®)f For the
two cases with a used turbine and seasonal stops, CPLEX had foetter
solutions than PM®T when 8 hours had passed, with a quite small optimality
gap. While CPLEX produces slightly better results for caséh Wifetimes
from the prognostics tooRrogn), the instances with standard EOH lifetimes
appears to benefit more significantly. It is notable that CRk&ports a result
which is more than 23% better than PM®in the case with EOH lifetimes
and seasonal stops. However, when there are no seasorgIGRIfEX cannot
find a solution even close to the result from P®Qwithin 8 hours.

11.7 Conclusions and Future Work

We described the development and deployment of an opptytbhased main-
tenance planning tool, PMe€X, specifically designed to fit the purpose of im-
proving the maintenance schedules for gas turbines frorABLTThe goal was
to reduce both direct maintenance costs and productioago3$anks to close
collaboration with key personnel at SIT AB, we gained impattinsights into
industrial maintenance planning, which allowed us to desigd implement
the maintenance planning tool. We believe that this hagitoned greatly to
the success of PME.

We formally described and characterized the schedulingleno as NP-
complete, and discussed a heuristic algorithm for solMin@ur experiments
on a real-world example showed significantly reduced dawat{with up to
65%) and costs. Experiments with CPLEX gave even greatesghut at the



Bibliography 257

cost of much longer solution times. Expected effects in firakuse include
large availability improvements, and preventive maintex@areductions with
up to 12 %. Future plans include fleet level planning and labsource opti-
mization and scheduling, and application to other domalilis.are also con-
sidering investigating solution sensitivity with regacdgarameter changes.
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Glossary

A

A* search (A*) Best-first search procedure which uses an admissible heuris
tic estimate plus the path cost so far to decide which node to
expand. p. 29

aperiodic task A task which is not released periodically. p. 40

availability The fraction of time a system is in an operational statep. 54

B

best-case execution time (BCET)The lowest possible execution time of a
task. p. 48

best-effort worst-case response-tim@he highest found response time for a
task in a set of simulated or real measurements. p. 13

best-first search Search procedure in which the most promising node, as mea-
sured by a heuristic, is chosen for expansion. p. 29

blocking The prevention of a task to execute due to a shared resouwrce be
ing locked by another task. p. 42

branch and bound An algorithm for combinatorial optimization problems,
where the candidates are systematically constructed. A-hop
fully large number of solution candidates are discardedrboyp
ing that all completions of a partial solution are non-oatim
This is done using upper and lower bounds on the objective fun
tion. p. 26
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breadth-first search (BFS) Search procedure in which all branches of the
current node are expanded before continuing with the nedetno

thus exploring the tree in a breadth-first manner. p. 23
C
chord An edge between non-consecutive vertices in a path. p. 22
chordal A graph ischordal if it contains no chordless cycles of length
greater than three. p. 22
clique A complete subgraph. p. 22

combinatorial optimization problem A combinatorial optimization problem
is an optimization problem where the set of feasible sohstis
discrete. p.9

condition-based maintenance (CBM)Maintenance which is based on more
or less real-time condition data. p.51

condition monitoring Continuous or non-continuous monitoring of an asset
in order to determine its condition and operational statys.55

constraint A formal description of a requirement which must hold for all
acceptable solutions to a problem. p. 25

constraint programming (CP) "A programming paradigm where relations be-
tween variables are stated in the form of constraints. Caims$
differ from the common primitives of imperative programmgin
languages in that they do not specify a step or sequenceps ste
to execute, but rather the properties of a solution to bedtun
From Wikipedia. p. 27

constraint satisfaction problem (CSP) The problem of whether a conjuction
of constraints have a satisfying truth assignment. p. 27

controller-area network (CAN) A vehicle bus standard designed to allow micro-
controllers and devices to communicate with each otherimvith
a vehicle without a host computer. Communication is pryerit
based. See [64,122,176-180, 252]. p. 39

corrective maintenance (CM) Maintenance which is done in order to restore
an asset to operational status after a breakdown. p.51
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D

deadline (DL) The latest time point a task should have finished its exeutio
p. 40

deadline monotonic (DM) A scheduling algorithm where tasks are priori-
tized according to increasing deadline. p. 41

depth-first search (DFS) Search procedure in which one branch of the cur-
rent node is recursively expanded until a leaf is reachads th

exploring the tree in a depth-first manner. p.5
directed acyclic graph (DAG) A directed graph which does not contain any
cycles. p.1
domain The set of possible values for a variable. p. 27
domain propagation The removal of all inconsistent values in a domain.
p. 27
E
earliest deadline first (EDF) A dynamic scheduling algorithm which always
executes the active task with earliest deadline. p. 41

embedded systemA computer system that is part of larger system, perform-
ing some of the functions of that system [120]. p. 37

Equivalent Operational Cycles (EOC) The total number of start-stop cycles
of an industrial gas turbine. p. 52

Equivalent Operational Hours (EOH) A time unit used for industrial gas-
turbine maintenance planning, based on the number of gycles
load, fuel quality, the presence of water injection, andptes-
ence of significant exhaust temperature differences. p. 52

evolutionary algorithm A population-based metaheuristic optimization al-
gorithm inspired by biological evolution. p.70

execution stack Statically allocated memory, which is used during run-time
to store return adresses, parameters in function calls@a |
variables. p. 43

execution time (ET) The time a task instance spends actively computing its
result. p. 39



262 Glossary

F

failure mode and effects analysis (FMEA) Analysis done to identify the dif-
ferent ways in which a machine can fail and the effects of such
failure. p. 262

failure mode, effects and criticality analysis (FMECA) Extension of FMEA
with a criticality analysis used to chart failure mode proltities
against the severity of their consequences. p. 56

firstin, first out (FIFO) Processing of events according to a first-come first-
served basis. p. 45

fixed priority pre-emptive scheduling (FPS)A scheduling algorithm where
the active task with highest priority is always executedp. 41

functional failure "The inability of an item to perform a specific function
within specified limits”, (from [171]). p. 56

G

genetic algorithm A specific type of evolutionary algorithm where individu-
als in the population are described by strings of data, aretevh
individuals are reproduced using either combination oiviidd
uals, or mutation of single individuals. p. 74

H

hill-climbing algorithm  An algorithm which explores a neighborhood of can-
didate solutions, selecting an improving candidate as e n
step. The algorithm normally terminates when no improving
neighbors can be found. p. 32

Hill-Climbing with Random Restarts (HCRR) An algorithm for provoking
high response-times for a specific task in a real-time system
The algorithm is based on hill climbing and employing random
restarts, for iteratively producing input to a real-timestgm.
The generated consists of jitter, execution times, andreate
stimulus. p.1
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immediate inheritance protocol (IIP) A simplification of PCP where the pri-
ority of the locking task is immediately raised, even befatfeer
tasks are blocked on the same resource. p. 42

instance A specific task invocation. p. 39

interval graph A graph where the vertices can be represented by 1-dimension
al intervals, and the edges correspond to interval intémsec
p. 23

interval propagation The removal of values at the endpoints of the domain
of a variable. p. 27

iterative improvement A search algorithm which iteratively applies improv-

ing transformations to a candidate solution. p. 31
J
jitter Time variation in a periodic event, such as the activatioenev
of a task in a real-time system. p. 46
L

limited discrepancy search (LDS) Search method based on restricting search
to paths which make at most a limited number of choices which
do not agree with a given heuristic. LDS was introduced by
Harvey and Ginsberg in [115]. p. 29

linear programming (LP) An optimization methodology in which the objec-
tive is a linear function, the constraints are linear indijes,
and variables are real-valued. p. 25

local search A search algorithm which only searchiegally for improving
solutions. p. 31

M

MABERA (MAB) An evolutionary algorithm for provoking high response-
times for a specific task in a real-time system. The algorithm
is based on mutation of chromosomes consisting of a random
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number generator seed schedule, which in turn control {hat in
generated to a program. See [141]. p.171

maintenance policy A set of rules for when maintenance should be performed.
p. 53

maximal clique (maxclique) A clique which is not a subgraph of a larger
clique in the same graph. In other words, a clique is a maxeliq
if it cannot be extended with any node.

mixed integer programming (MIP) An optimization methodology in which
the objective is to minimize (or maximize) a linear objeetiv
function, subject to a set of constraints expressed usiveati
inequalities, and where a subset of the variables arece=xtrio
take integer values only. p. 25

multi-unit maintenance Maintenance where a system consists of multiple
units or subsystems, and where the units interact in some way

p. 64
N
neighborhood A set of candidate solutions obtained from the current smiut
by local transformations in local search. p. 32
@)

objective function A function which specifies what is to be optimized. Typ-
ical examples include utility or value (for maximizationopr
lems) and cost (for minimization problems). p.9

offline scheduling A scheduling algorithm which follows a predetermined

execution schedule. p. 40
offset The release time point of a task relative to the transactitiviea
tion time point. p. 46

online scheduling A scheduling algorithm which makes scheduling decisions
during system execution based on the currently active satks.
p. 40
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Opportunistic Maintenance (OM) Maintenance policy in which certain ac-
tivities are performed prior to their optimal time pointlifi$ low-
ers the total cost of maintenance. p. 65

optimization Activity which aims at minimizing or maximizing an objectiv
function. p.9

P

Path Upper-Bound (PUB) An algorithm for computing the maximum stack
usage in a transaction-based stack-sharing system, baetho
ing a preemption graph of possible preemptions and taskis, an
by using a longest-path algorithm, computing an upper bauwnd
the maximal PPC. p. 154

perfect elimination order (PEO) An ordering of the vertices in a graph, such
that each vertex forms a clique together with all adjacerttogs
which occur later in the ordering. p. 23

periodic task A task which is periodically released for scheduling. p. 40

possible preemption chain (PPC)A sequence of task instances in increasing
priority order, where each instance have the possibiliteinhg
preempted by all following instances. p. 128

Possible Preemption-Chain, Branch-and-Bound (PPCBB)AnN algorithm for
computing the maximum stack usage in a transaction-basektst
sharing system, based on forming a preemption graph oftdessi
preemptions and tasks, and, by using branch-and-bound, com
puting a maximal PPC. The bounding procedure used is PUB.
p. 155

potential failure "A definable and detectable condition that indicates that a
functional failure will occur", (from [171]). p. 56

precedence A relation between two tasks stating in which order they $hou
execute. p. 47

predictive maintenance (PdM) Techniques and methods for predicting fu-
ture breakdowns, so that preventive activities can be pldnn
and performed in a timely fashion, thereby preventing treaky
down. p. 55
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preemption chain A sequence of task instances, vo, vs, ... wherew; is
preempted by, which is preempted bys, and so on. p. 125

preemption threshold (PT) A priority threshold defined for each task, used
to enforce that only tasks with a higher priority than the#fold
are allowed to preempt the former task. p.71

preventive maintenance (PM) Maintenance consisting of inspection, servic-
ing and replacement tasks which are done in order to catch and
prevent breakdowns from occurring. p. 52

Preventive Maintenance Optimizer (PM-opt)A software tool for planning
maintenance, developed in Papers D—F. p. 214

priority ceiling protocol (PCP) A resource access protocol in which the pri-
ority of a task holding a resource is raised tpréority ceiling
whenever another task is blocked on the same resourge 42

priority inheritance protocol (PIP) A resource access protocol in which the
priority of a task holding a shared resource is raised to dinees
level as a higher-prioritized task trying to access the seane
source. p. 42

prognostics and health management (PHM)Protective and diagnostic or
prognostic devices and systems. Sometimes referred to as
condition-based maintenance (CBM). p. 59

propositional satisfiability problem (SAT) The problem of whether a set of
Boolean clauses on disjunctive normal form has a satistyirt

assignment. p. 27
R
random access memory (RAM)A type of volatile memory used for tempo-
rary storage during program execution. p. 12

rate monotonic (RM) A scheduling algorithm where tasks are prioritized ac-
cording to increasing period time. p. 41

real-time operating system (RTOS)An operating system specifically engi-
neered for real-time applications. p. 39
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real-time system (RTS) A system in which timeliness is equally important
for the system to work properly as is functional correctness
p. 38

release time The time instant that a task instance is released for scimgdul
p. 40

reliability ~ The fraction of time a system is either under preventive teain
nance or in an operational state. p. 54

reliability-centered maintenance (RCM) Maintenance methodology and
process in which a maintenance scheme based on the réjiabili
of the system components is developed. p. 56

response time (RT) The time between the invocation of a task instance and
the time point the instance finishes its execution. p. 46

response-time analysis (RTA)Family of techniques used to compute the re-
sponse time of the tasks in a system under different schreguli
policies. p. 13

RTSSim A real-time operating system simulator where tasks exeicute
a “sandbox” environment. The scheduling policy is preewapti
priority-based scheduling. p.173

S

schedulability analysis Design-time analysis aimed at determining whether
a proposed real-time system is schedulable or not. p. 41

sporadic task A task whose releases have a specified minimum inter-arrival
time. p. 40

Stack per Transaction Level Analysis (STLA)A method for computing an
upper bound on the stack usage of a transaction-based stack-
sharing system, in which the sum of the stack usage of each
individual transaction, as computed by the PUB algoriths, i
used. p. 156

stack resource policy (SRP)A mechanism for resource allocation which can
eliminate deadlocks and unbounded priority inversioneinted
by Baker in [24]. SRP will only allow jobs to enter the ready
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queue when all of the resources they need are available., Also
in SRP a running task will inherit the priority of higher priigy
tasks blocked on any locked resource. p. 44

stack resource policy with preemption thresholds (SRPTAn algorithm for
sharing resources in multiprocessor systems, togethkiavgto-
cedure for assigning preemption thresholds to tasks [98].71

Stack Upper Bound algorithm (PUB) An algorithm for computing an upper
bound on the stack usage in a hybrid stack-sharing systeargwh
the offsets and response times of tasks are used to compute a
maximal PPC. p. 129

T

time-triggered protocol (TTP) An control system platform technology that
supports the design of embedded systems. Communication is

time-triggered. See [137] for more information. p. 39
transaction A group of tasks, each having an offset which is relative to a
shared activation event. p. 46
transactional task model A task model in which tasks may have dependen-
cies in their release times. p. 46
W
worst-case execution time (WCET)The highest possible execution time of a
task. p. 40

worst-case response time (WCRT)'he highest possible response time for a
task. p. 13









