
Mälardalen University Press Dissertations

A STUDY OF COMBINATO

INDUSTRIAL COMPUTER

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations

No. 79

A STUDY OF COMBINATORIAL OPTIMIZATION PR

INDUSTRIAL COMPUTER SYSTEMS

Markus Bohlin

2009

School of Innovation, Design and Engineering

RIAL OPTIMIZATION PROBLEMS IN

Copyright © Markus Bohlin, 2009
ISSN 1651-4238
ISBN 978-91-86135-47-8
Printed by Mälardalen University, Västerås, Sweden

Mälardalen University

A STUDY OF COMBINATO

som för avläggande av teknologie
innovation, design och teknik,

december, 2009,

Fakultetsopponent:

Akademin för

Mälardalen University Press Dissertations

No. 79

A STUDY OF COMBINATORIAL OPTIMIZATION PROBLEMS IN INDUSTRIAL
COMPUTER SYSTEMS

Markus Bohlin

Akademisk avhandling

eknologie doktorsexamen i datavetenskap vid
innovation, design och teknik, kommer att offentligen försvaras

2009, 14.00 i Beta, Mälardalens högskola, Västerås.

Fakultetsopponent: prof. Petru Eles, Linköpings Universitet

Akademin för innovation, design och teknik

OBLEMS IN INDUSTRIAL

vid Akademin för
kommer att offentligen försvaras måndagen 14

Västerås.

Linköpings Universitet

Abstract

A combinatorial optimization problem is an optimization problem where the number of possible
solutions is finite and grows combinatorially with the problem size. Combinatorial problems exist
everywhere in industrial systems. This thesis focuses on solving three such problems which arise
within two different areas where industrial computer systems are often used. Within embedded
systems and real-time systems, we investigate the problems of allocating stack memory for a system
where a shared stack may be used, and of estimating the highest response time of a task in a system of
industrial complexity. We propose a number of different algorithms to compute safe upper bounds on
run-time stack usage whenever the system supports stack sharing. The algorithms have in common
that they can exploit commonly-available information regarding timing behavior of the tasks in the
system. Given upper bounds on the individual stack usage of the tasks, it is possible to estimate the
worst-case stack behavior by analyzing the possible and impossible preemption patterns. Using
relations on offset and precedences, we form a preemption graph, which is further analyzed to find
safe upper-bounds on the maximal preemptions chain in the system. For the special case where all
tasks exist in a single static schedule and share a single stack, we propose a polynomial algorithm to
solve the problem. For generalizations of this problem, we propose an exact branch-and-bound
algorithm for smaller problems and a polynomial heuristic algorithm for cases where the branch-and-
bound algorithm fails to find a solution in reasonable time. All algorithms are evaluated in
comprehensive experimental studies. The polynomial algorithm is implemented and shipped in the
developer tool set for a commercial real-time operating system, Rubus OS. The second problem we
study in the thesis is how to estimate the highest response time of a specified task in a complex
industrial real-time system. The response-time analysis is done using a best-effort approach, where a
detailed model of the system is simulated on input constructed using a local search procedure. In an
evaluation on three different systems we can see that the new algorithm was able to produce higher
response times much faster than what has previously been possible. Since the analysis is based on
simulation and measurement, the results are not safe in the sense that they are always higher or equal
to the true response time of the system. The value of the method lies instead in that it makes it
possible to analyze complex industrial systems which cannot be analyzed accurately using existing
safe approaches. The third problem is in the area of maintenance planning, and focus on how to
dynamically plan maintenance for industrial systems. Within this area we have focused on industrial
gas turbines and rail vehicles. We have developed algorithms and a planning tool which can be used
to plan maintenance for gas turbines and other stationary machinery. In such problems, it is often the
case that performing several maintenance actions at the same time is beneficial, since many of these
jobs can be done in parallel, which reduces the total downtime of the unit. The core of the problem is
therefore how to (or how not to) group maintenance activities so that a composite cost due to spare
parts, labor and loss of production due to downtime is minimized. We allow each machine to have
individual schedules for each component in the system. For rail vehicles, we have evaluated the effect
of re-planning maintenance in the case where the component maintenance deadline is set to reflect a
maximum risk of breakdown in a Gaussian failure distribution. In such a model, we show by
simulation that re-planning of maintenance can reduce the number of maintenance stops when the
variance and expected value of the distribution are increased. For the gas turbine maintenance
planning problem, we have evaluated the planning software on a real-world scenario from the oil and
gas industry and compared it to the solutions obtained from a commercial integer programming
solver. It is estimated that the availability increase from using our planning software is between 0.5 to
1.0 %, which is substantial considering that availability is currently already at 97-98 %.

ISSN 1651-4238
ISBN 978-91-86135-47-8

Abstract

A combinatorial optimization problem is an optimization problem where the
number of possible solutions is finite and grows combinatorially with the prob-
lem size. Combinatorial problems exist everywhere in industry. This thesis
focuses on solving three such problems which arise within two different areas
where industrial computer systems are often used. Within embedded and real-
time systems, we investigate the problems of allocating stack memory for a sys-
tem where a shared stack may be used, and of estimating the highest response
time of a task in a system of industrial complexity. We propose a number of
different algorithms to compute safe upper bounds on run-time stack usage
whenever the system supports stack sharing. The algorithmshave in common
that they can exploit commonly-available information regarding timing behav-
ior of the tasks in the system. Given upper bounds on the individual stack
usage of the tasks, it is possible to estimate the worst-casestack behavior by
analyzing the possible and impossible preemption patterns. Using relations on
offset and precedences, we form a preemption graph, which isfurther analyzed
to find safe upper-bounds on the maximal preemptions chain inthe system.
For the special case where all tasks exist in a single static schedule and share a
single stack, we propose a polynomial algorithm to solve theproblem. For gen-
eralizations of this problem, we propose an exact branch-and-bound algorithm
for smaller problems and a polynomial heuristic algorithm for cases where the
branch-and-bound algorithm fails to find a solution in reasonable time. All
algorithms are evaluated in comprehensive experimental studies. The poly-
nomial algorithm is implemented and shipped in the developer tool set for a
commercial real-time operating system, Rubus OS.

The second problem we study in the thesis is how to estimate the highest
response time of a specified task in a complex industrial real-time system. The
response-time analysis is done using a best-effort approach, where a detailed
model of the system is simulated on input constructed using alocal search pro-

i

ii

cedure. In an evaluation on three different models we can seethat the new
algorithm was able to produce higher response times much faster than a previ-
ous approach based on an evolutionary algorithm. Since the analysis is based
on simulation and measurement, the results are not safe in the sense that they
are not always higher or equal to the true response time. The value of the
method lies instead in that it makes it possible to analyze complex industrial
systems which cannot be analyzed accurately using existingsafe approaches.

The third problem is in the area of maintenance planning, andfocuses on
how to dynamically plan maintenance for industrial systems. Within this area
we have focused on industrial gas turbines and rail vehicles. We have devel-
oped algorithms and a planning tool which can be used to plan maintenance
for gas turbines and other stationary machinery. In such problems, it is often
the case that performing several maintenance actions at thesame time is bene-
ficial, since many of these jobs can be done in parallel, whichreduces the total
downtime of the unit. The core of the problem is therefore howto (or how not
to) group maintenance activities so that a composite cost due to spare parts, la-
bor and loss of production due to downtime can be minimized. We allow each
machine to have individual schedules for each component in the system. For
rail vehicles, we have evaluated the effect of re-planning maintenance in the
case where the component maintenance deadline is set to reflect the maximum
tolerable risk of subsystem usage counter overrun, modeledusing a Gaussian
distribution. In such a model, we show by simulation that re-planning of main-
tenance can reduce the number of maintenance stops when the variance and
expected value of the distribution are increased. For the gas turbine mainte-
nance planning problem, we have evaluated the planning software on a real-
world scenario from the oil and gas industry and compared it to the solutions
obtained from a commercial integer programming solver. It is estimated that
the availability increase from using our planning softwareis between 0.5 to
1.0 %, which is substantial considering that availability is currently already at
97–98 %.

To my family

Acknowledgments

During my doctoral studies I have had the pleasure to work with many tal-
ented, intelligent people. In this limited space I will try my best to express
my gratitude to you. First of all I would like to thank my main advisor Björn
Lisper, my industrial advisor Per Kreuger and my co-advisorMikael Sjödin.
You have been a great help with a ton of issues and have also complemented
each other surprisingly well: Björn have kept his eyes on thedetails and the
process, which have helped in getting things right, Per haveguided me past
obstacles in the combinatorial optimization area, as well as forced me to focus
on other things than local search (or some other method I havepreferred over
the years), and Mikael deserves much credit for being relentless in the quest
for the perfect scientific paper, thereby motivating me to work harder.

My time as a doctoral student has been particularly varied since I’ve also
worked at the Swedish Institute of Computer Science (SICS).At SICS, Martin
Aronsson has been my informal mentor, for which I am very grateful. I hope
we can continue working together, since there always are newthings I can
learn from you. Björn Levin: you deserve my deepest gratitude for securing
funding during my studies, as well as having supported me in my ambitions
in plenty of other areas. Your leadership skills and willpower have contin-
ued to impress me; the latter has also given me ample opportunity to practice
my argumentation skills! Anders Holst, Jan Ekman, Malin Forsgren, Rebecca
Steinert, Kivanc Doganay and Javier Ubillos: you have all become much more
than colleagues in the course of my work at SICS, and I’m very much look-
ing forward to continue working with you. Other people I haveparticularly
enjoyed working with include Charlotta Jörsäter, Janusz Launberg and Tobias
Bexelius.

Being a research scientist at SICS, a natural part of work hasbeen to collect
information and disseminate and deploy results in industry. I have therefore
had the great fortune of being able to work with people from the “real world”,

v

vi

discussing and trying to solve real problems that actually matters in industry.
At Siemens Industrial Turbomachinery AB I have met many competent and
open individuals, not being afraid to speak their mind and always striving for
excellence. Of those, two people in particular deserve my gratitude. Mathias
Wärja, the manager of the project I had the pleasure of participating in, is of
the most inspiring and energetic persons I have ever met. Pontus Slottner has
taught me a lot about how a gas turbine works and in particularhow it de-
teriorates in different conditions. I’ve really enjoyed working, travelling and
spending time with you guys. I also want to thank Bengt Svensson for his time
and patience with a newcomer in the field, Mathias Persson forhis help regard-
ing planning of gas turbine maintenance activities, and Sven-Gunnar Sundkvist
for our pleasant conversations about the United States in general and the Grand
Canyon in particular.

I have also worked with several people at Bombardier Transportation in
Västerås. First of all I want to thank Ulf Westberg for his critical eyes and
involvement in our shared research projects. I’m very much looking forward to
working with you in the future. I also want to thank Peter Oom and Ola Sellin
for their patience and support. Finally, Stefan Larsen has been a great support
and showed much enthusiasm over the years, which has helped tremendously.

Doing research at Mälardalen University (MdH) has been a quite different
experience from working at SICS. Being a research university, the focus have
always been on producing excellent research and publications, but the close
ties that MdH has with industry also helps in keeping the research focussed
on real-world problems with industrial and practical relevance. But what I
have enjoyed the most is spending time with the people there.Working with
my close friend and colleague Jan Carlson has always been inspirational and
great fun. I have lost track of the number of small and large favors you have
granted me, but I sincerely hope that I can make it up to you some day. Other
people I have been working with and that deserve my deepest gratitude include
Kaj Hänninen, Johan Kraft, Jukka Mäki-Turja, Yue Lu, ThomasNolte, Radu
Dobrin, and Waldemar Kocjan.

Finally, for being the sunshine in my life, I am eternally grateful to my wife
Veronica and my daughter Idun.

Thank you!

Pasadena, CA, USA
July 2009

Contents

List of Figures . 1
List of Tables . 3
List of Algorithms . 5

I Thesis 7

1 Introduction 9
1.1 Real-world Optimization . 9
1.2 Problem Overview . 12
1.3 Thesis Outline . 15

2 Combinatorial Problems 19
2.1 Graph Theory . 19
2.2 Satisfiability and Optimization 24
2.3 Computational Complexity 33
2.4 Summary . 35

3 Real-Time Systems 37
3.1 Real-Time Operating Systems 39
3.2 Shared Resources and Stack Sharing 42
3.3 Response-Time Analysis . 46
3.4 Summary . 49

4 Maintenance Planning 51
4.1 Introduction . 51
4.2 Reliability-Centered Maintenance 56
4.3 Specific Maintenance Practices 60
4.4 Maintenance Optimization 63

vii

viii Contents

4.5 Summary . 68

5 Related Work and Thesis Contributions 69
5.1 Academic Contributions . 69
5.2 Industrial Impact . 81
5.3 Publications Included in the Thesis 82
5.4 Relevant Publications Not Included in the Thesis 84
5.5 Future Work . 86
5.6 Conclusions . 88

Bibliography 89

II Included Papers 117

6 Paper A:
Determining maximum stack usage in preemptive shared stacksys-
tems 119
6.1 Introduction . 121
6.2 Related work . 122
6.3 Stack analysis of preemptive systems 123
6.4 System model for hybrid scheduled systems 126
6.5 Stack analysis of hybrid scheduled systems 127
6.6 Evaluation . 131
6.7 Conclusions and future work 135
Bibliography . 136

7 Paper B:
Bounding shared-stack usage in systems with offsets and prece-
dences 141
7.1 Introduction . 143
7.2 Stack sharing in preemptive systems 145
7.3 System model . 148
7.4 Preemption analysis for offset-based systems 149
7.5 Algorithms . 153
7.6 Evaluation . 157
7.7 Conclusions and future work 161
Bibliography . 163

Contents ix

8 Paper C:
Best-Effort Simulation-Based Timing Analysis using Hill-Climbing
with Random Restarts 167
8.1 Introduction . 169
8.2 Best-Effort Response-Time Analysis 171
8.3 The Optimization Algorithm 175
8.4 Case Studies . 178
8.5 Experimental Evaluation . 182
8.6 Conclusions . 191
Bibliography . 191

9 Paper D:
Reducing Vehicle Maintenance using Condition Monitoring and
Dynamic Planning 195
9.1 Background . 197
9.2 Contribution . 198
9.3 Wear model . 199
9.4 Construction of service packages 202
9.5 Routing of vehicles . 204
9.6 Test case . 205
9.7 Results . 206
9.8 Discussion . 207
Bibliography . 208

10 Paper E:
Optimization of condition-based maintenance for industrial gas tur-
bines: Requirements and results 211
10.1 Introduction . 213
10.2 Gas Turbine Maintenance . 214
10.3 Gas Turbine Maintenance Planning 220
10.4 The Gas Turbine Maintenance Process 227
10.5 Evaluation . 229
10.6 Conclusions . 233
Bibliography . 234

11 Paper F:
Scheduling Gas Turbine Maintenance Based on Condition Data 237
11.1 Introduction . 239
11.2 Background . 240

x Contents

11.3 Problem Description . 242
11.4 A Tool for Maintenance Scheduling 248
11.5 Development and Deployment 249
11.6 Estimated and Measured Benefits 253
11.7 Conclusions and Future Work 256
Bibliography . 257

Glossary 259

List of Figures

2.1 A directed acyclic graph and one of its topological orderings. . 20
2.2 A cycle with two chords. 23
2.3 Unique explored edges for different discrepancy values. 31

3.1 Electronics and communication in the Volkswagen Phaeton. . 38
3.2 Execution stack organization and typical contents. 44
3.3 Task structure with separate stacks and a globally shared stack. 44
3.4 Example of execution and shared stack traces.45

4.1 Unrelated replacements and inspections, and the same situation
with synchronized inspections 58

4.2 Schematics of a gas turbine 60
4.3 Percentage of gas turbine component contributions to down time 62

5.1 Offset relations and the resulting preemption graph 72
5.2 Example of a maximum stack utilization preemption chain. . 73
5.3 Economic dependencies with setups. 78
5.4 Economic dependencies due to parallel time.78

6.1 Varying the number of priority levels of TT tasks133
6.2 Zoom of Fig. 6.1 . 134
6.3 Varying stack usage of TT tasks 135
6.4 Varying the number of TT tasks 136
6.5 Varying the load of TT tasks 137

7.1 Important activities and time points for a task instanceυk. . . 150
7.2 An example preemption graph and a maximal PPC. 153
7.3 Varying system load. 159

1

2 List of Figures

7.4 Varying maximum priority. 160
7.5 Varying the number of tasks in the system. 161
7.6 Varying the number of transactions. 162

8.1 Results for model 1. 185
8.2 Results for model 2. 186
8.3 Results for the validation model. 187
8.4 Convergence for model 1 using 2-4 subsystems. 188

9.1 The probability density for the increase in a global counter un-
til a subsystem counter reaches its deadline. 202

9.2 Reduction in number of maintenance stops as a function ofac-
tual additional component lifetime. 207

10.1 Component maintenance activities and life extension.. 217
10.2 EOH/EOC accumulator. 218
10.3 Point in time for planned maintenance action. 219
10.4 Replacement type items and their dependencies. 223
10.5 Inspections and their dependencies. 224

11.1 Dependencies and relative timeliness constraints between ac-
tivities for a component. 245

11.2 System architecture. 249

List of Tables

4.1 Phasing of maintenance activities 59

8.1 Task parameters for Model 1. 179
8.2 Task parameters for Model 2. 181
8.3 Simulator input parameters for the considered models. 182
8.4 Parameter selection. 183
8.5 Average end result and point when HCRR passes the second

best end result. 189
8.6 Convergence for the different methods. 190

10.1 Interval increases obtained from the prognostics tool. 230
10.2 Results of maintenance optimization for a new gas turbine. . . 232
10.3 Results of maintenance optimization for a gas turbine with ran-

domly chosen history. 233

11.1 Results of maintenance optimization for a new gas turbine. . . 254
11.2 Results of maintenance optimization for a gas turbine with ran-

domly chosen history. 255
11.3 Comparison of results between CPLEX 9.0 and PMOPT. . . . 255

3

List of Algorithms

2.1 Topological sort using depth-first search. 21
2.2 Longest paths algorithm for a topologically sorted DAG.. . . 22
2.3 Maximal cliques in an interval graph. 24
2.4 Depth-first branch and bound search for non-binary optimiza-

tion problems with an objective functionz. 26
2.5 Limited Discrepancy Search for non-binary optimization prob-

lems. 30

7.1 Computing a maximal PPC in a generic preemption graph. . .154

8.1 Hill Climbing with Random Restarts 177
8.2 Neighborhood procedure . 178

10.1 Optimization algorithm (stage 1). 226

5

I

Thesis

7

Chapter 1

Introduction

As long as man has existed, he has tried to do his best, given what he pos-
sesses and the current circumstances affecting him. In the modern day (and
in a more formal setting), this activity is calledoptimization, and is normally
undertaken with the goal of minimizing or maximizing some form of objective
function. Optimization is an activity whose importance cannot be overstated,
and its presence is a reality in many different industrial settings. In practice
and in its most general form, optimization is a broad area that encompasses en-
tire fields and many subareas. Today, the term “optimization” seems to be most
commonly used when there exists a more or less clear (but at a first glance often
hopelessly complicated) mathematical formulation of the problem to be opti-
mized. Nonetheless, the term applies just as well to less rigorous optimization
approaches.

A combinatorial optimization problemcan be loosely defined as an opti-
mization problem in which the set of feasible solutions is discrete [173, 186].
This thesis is concerned with obtaining practical solutions for three industrial
combinatorial optimization problems in the areas of embedded real-time sys-
tems and condition-based maintenance.

1.1 Real-world Optimization
When applying optimization methods to real problems, several practical issues
emerge. First and foremost, it is significant that many industrial-size optimiza-
tion problems (and indeed two out of three problems in this thesis) do not seem
solvable, due to their complexity and size, to the absolute optimum — at least
not without a substantial effort to find and “tune” the right method. In practice,

9

10 Chapter 1. Introduction

however, other aspects, such as optimization response time, model correctness
and the possibility to work interactively with the optimization tool (not to even
mention budget limits imposed on the development project),can be equally or
more important than finding the absolute optimum.

In addition, there are several other important issues that have not always
been treated with the same emphasis as more theoretical problems and solu-
tions. First of all, uncertainties and a lack of accurate information during the
development phase often lead to a less than perfect problem model. It might
even be that the problem to be solved is not fully understood.Related to this
issue is the question of realism of the chosen optimization model. Since the
optimization model is by necessity a simplification of reality, the engineers
and/or planning personnel using the system frequently haveknowledge of cir-
cumstances that are not even present in the optimization model. Many users
react with disapointment when realizing that the optimization model is a sim-
plification of what is considered the real problem, and therefore does not pro-
duce the best possible solution. The consequences of the twoissues include
inadequate tool support and a less efficient planning process.

The issues above arise too often in practice to be ignored. Inthe best case,
the effects can be that planners compensate by starting follow an experimental
optimization approach based on trial-and-error until an acceptable solution is
found. In the worst case, the optimization approach may, after much time and
effort has been spend in developing and deploying it, prove unusable in prac-
tice. Since all models are in practice simplifications of reality, it can appear that
there is little that can be done. However, by making sure thatthe chosen opti-
mization model and associated working process captures most of the relevant
side constraints, the risk of deployment failure can at least be reduced. The
technical or practical solution for ensuring that the modelis accurate enough is
less important. However, a close and continuous collaboration in terms of dis-
cussing proposed models and solution approaches is recommended. In many
cases, conceptually simple solutions such as multi-phase optimization, pre- or
post-processing or even manual actions can be preferable for handling side con-
straints. Planning software users should also be allowed to“tweak” a resulting
solution using some form of sensitivity analysis, so that additional knowledge
of a situation can be taken into account without modifying the software. In ad-
dition, the application should ideally be designed so that additional constraints
and features can be added with as little effort as possible.

Naturally, even if the issues above are not applicable, for many real-world
problems there currently exist no complete solution methods guaranteeing op-
timality within reasonable time limits. The goal of this thesis has therefore

1.1 Real-world Optimization 11

been to develop optimization methodsuseful in practicefor three industrial
combinatorial problems; run-time stack analysis, response-time analysis and
condition-based maintenance scheduling and planning. Thecore requirements
for this objective to be met were the following.

Practicality, in that the proposed solutions should be applicable for realprob-
lems while including the application-relevant side constraints.

Scalability, in that it should be possible to obtain acceptable solutionsfor
problems of realistic size for the intended application.

Responsiveness,in that the optimization or analysis should not take too long
to run, so that users can experiment with the optimization software.
However, requirements on optimization response time obviously differ
between different application domains and end users. The main goal has
been that the optimization software should be able to produce solutions
within at most a few minutes, which we judged to be the upper time limit
for the studied applications.

Cost effectiveness,in that the optimization methods should be scalable, but
not take too much time and effort to develop.

The ambition of the work presented in this thesis was that it should have
substantial practical impact. We claim that this ambition has been fulfilled,
considering that it has resulted in two different deployed applications within
industry. Methods for run-time stack dimensioning presented in Papers A and
B have been implemented and integrated into the commercial Rubus develop-
ment environment by Arcticus Systems AB1 (see [117]), and a software appli-
cation for maintenance scheduling based on Papers E and F hasbeen delivered
and is currently in use at Siemens Industrial Turbomachinery AB. Although
both of these have yet to see wider use, it is, at least to us, clear that the prac-
tical utility of the methods and resulting tools have been demonstrated. On the
other hand, Papers C and D present methods that have not yet been applied
directly in industry. However, the methods in both papers have practical value,
and discussions regarding industrial deployment are ongoing. Furthermore,
some of the ideas regarding maintenance scheduling found inPaper D were
later developed into what is presented in Papers E and F, which motivates its
inclusion in the thesis.

1Web page: http://www.arcticus-systems.com

12 Chapter 1. Introduction

1.2 Problem Overview
The thesis is concerned with solving practical problems within industry and
academia. In particular, the objective of the thesis work was to propose solu-
tions that were useful in practice and could yield a clear, well-defined benefit.
In the different projects this thesis springs from, there has been a clearly iden-
tified problem area and customer. This has placed constraints on the choice of
methodology and chosen techniques. The following three main problems are
addressed in the thesis:

1.2.1 Real-time System Stack Analysis

Many embedded computer systems are safety-critical, in that erroneous behav-
ior can cause physical damage and possibly loss of life. At the same time,
producers strive to increase margins by reducing production costs (and actual
product costs), such as the cost of hardware, as much as possible. The over-
dimensioning of hardware such as CPU:s and RAM is not only costly, but does
not in many cases add any value whatsoever to the intermediate and/or end
users. For example, an embedded real-time control system equipped with 1M
of memory does not add any value (in terms of functionality orperformance)
over the same system equipped with 16k memory, except for theadditional
cost of the hardware.

However, ensuring that hardware is notunder-dimensionedis an issue of
high significance. If the hardware used is under-dimensioned, temporal and
functional correctness of the system can be compromised. This can be highly
dangerous in safety-critical areas such as automotive and avionic applications.
One example where under-dimensioning can lead to malfunctioning is theex-
ecution stack. The execution stack in a software application is used to store lo-
cal variables, parameter values and return addresses, and can grow and shrink
depending on application-specific behavior. If the allocated stack is not large
enough, the program will read and write unallocated memory space, which typ-
ically leads to an application crash or unspecified application behavior. This
can have devastating effects in a safety-critical environment, which is why
guarantees regarding stack allocation are important.

In traditional real-time systems, each thread of executionhas an individual
execution stack. In systems with a large number of threads, alarge number of
stacks are consequently required. Hence, the total amount of RAM needed for
the stacks can grow quite large. A common feature of many real-time operat-
ing systems is that they employstack sharing, in which a global run-time stack
is shared among the tasks in the system, thereby reducing theamount of RAM

1.2 Problem Overview 13

needed. In Papers A and B, we address the problem of how to obtain safe and
tight upper bounds on shared stack space in systems with one or more shared
execution stacks. The proposed solutions make it possible to reduce costs by
using only the amount of RAM actually needed for correct application behav-
ior. At the same time, our algorithms guarantee that a correctly specified real-
time system will never run out of stack space as long as the amount of memory
that the analysis recommends is made available for the execution stack.

1.2.2 Best-Effort Response-Time Analysis

Response-time analysis is the process of obtaining an estimate of the time from
an event to when the processing of that event is finished. The worst-case re-
sponse time (WCRT) of a task is the highest possible response time for any
instance of that task. Using traditional response-time analysis (RTA), it is (un-
der certain assumptions) possible to obtain safeupperbounds on the WCRT
of one or several tasks in a system. However, many embedded systems break
the assumptions of basic RTA by containing code features such as unbounded
loops and task interaction affecting response time. In addition, data-dependent
execution times may lead to pessimistic response-time results. For these sys-
tems, it is difficult or even impossible to obtain a tight and safe upper bound on
task response time using RTA.

As a complement to RTA,best-effort worst-case response-time analysis
can be employed to find alower bound on the actual worst-case response time.
Best-effort worst-case response-time analysis involves measuring the real or
simulated specific response times of the system given a largeset of sample
inputs, in order to provoke the system to show its worst behavior (with regard
to response time). In most cases, both the best-effort worst-case response-time
and the upper bound worst-case response time are inexact, and the true worst-
case response time usually lies somewhere in between.

Measurements of response time are often performed using an instrumented
executable for the target system [157]. However, for large systems with com-
plex behavior and long response times, running the actual system may be time-
consuming. Considering that the number of samples often canbe in the order
of thousands or even millions, the total evaluation time caneasily become pro-
hibitively long. Therefore, it has previously been proposed [35, 118, 139–141]
instead to analyze simpler but still detailed models of the target system. Us-
ing simulation, the evaluation time of a single sample can beimproved sig-
nificantly, therefore allowing more samples to be examined.In Paper C, we
address the problem of provoking the system to exhibit long response times

14 Chapter 1. Introduction

by controlling the system input parameters using a local search method. The
method is based on hill-climbing with random restarts usinga representation
suitable for capturing the essential properties of the problem.

1.2.3 Dynamic Maintenance Scheduling

In an industrial setting, breakdowns can have a significant impact on short and
long-term profitability. During a breakdown, fixed costs of equipment, real
estate, labor, etc. remain constant while production is essentially zero. Preven-
tive maintenance, which aims at avoiding breakdowns by periodic inspections
and servicing in an effort to capture developing faults early, is therefore an
important activity.

However, maintenance is an often underdeveloped area, which in turn often
implies excessive maintenance costs. For example, Wireman[278] claims that
up to 1/3 of maintenance costs are unnecessary. Estimates ofmaintenance ex-
penses range from 15–70 % of the total production cost [33,53,155]. It is also
common that maintenance schedules are constructed mainly for the warranty
period of the product. Newly developed products almost always experience
a burn-in period with an increased failure rate. This supports a conservative
approach when constructing maintenance schedules. The warranty period is
also special in that during this period, the manufacturer has liabilities with re-
gard to product functionality. When the warranty period ends, the maintenance
schedules are often reused without revision. The sub-optimality of this prac-
tice becomes clear when considering that the lifetime of industrial machinery
can reach 30 to 40 years. A careful analysis after a run-in period can there-
fore often reduce maintenance costs significantly with onlymarginal effects on
reliability.

In addition, maintenance is rarely scheduled and planned inconjunction
with production. Since maintenance usually has a negative effect on produc-
tion, it should ideally be coordinated and planned so that the effects on produc-
tion are minimized, while the maintenance costs are kept below an acceptable
level. Today, maintenance is often scheduled once, and the short and medium-
term maintenance optimization is left to the person in charge of short-term
maintenance planning. Although maintenance planning personnel in many
cases perform a remarkable job in making sure that maintenance is done ac-
cording to plan while taking care of daily disturbances, it is unrealistic to ex-
pect planning personnel to produce optimized plans with regard to a life-cycle
cost perspective. The information load is also expected to increase with the
inclusion of condition monitoring and condition-based maintenance. There-

1.3 Thesis Outline 15

fore, we are convinced that decision support tools are important to control the
maintenance planning process.

In Papers D–F, we study the problem of how to carry out preventive main-
tenance as efficiently as possible, evaluating potential short-term profits in an
overriding life cycle cost perspective. The goal of preventive maintenance op-
timization is to minimize total costs while still maintaining assets according to
maintenance requirements. Reliability data regarding component lifetimes is
in general of limited quality or even non-existent, especially for new compo-
nents. On top of that, there are many other business factors influencing mainte-
nance interval length for commercial equipment. Therefore, we have opted for
a deterministic maintenance model where we assume that the risk of failure is
negligible for preventive maintenance done within the interval. The proposed
solution performs maintenance schedule optimization using heuristic methods,
and has been estimated to save substantial costs in practice.

1.3 Thesis Outline
The thesis is organized as follows.

Part I contains an introduction to the thesis and background material.

Chapter 1 gives an informal introduction to the thesis, together witha
problem description, the goal objectives, and the thesis contribu-
tions.

Chapter 2 contains an introduction to the theoretical topics relatedto
this thesis, including graph theory and algorithms, combinatorial
optimization and search, complexity, and mixed-integer linear pro-
gramming.

Chapter 3 introduces real-time systems, scheduling, response-timeanal-
ysis, handling of shared resources, and related work on stack anal-
ysis and best-effort response-time analysis. The chapter serves as
an introduction to Papers A, B and C.

Chapter 4 discusses maintenance practices for gas turbines and rail ve-
hicles, including maintenance policies, availability andreliability,
condition-based and reliability-centered maintenance, and mainte-
nance optimization. The chapter serves as an introduction to Papers
D, E and F.

Chapter 5 outlines the academic and industrial contributions of Papers
A–F, and lists the author’s publications included in this thesis, as

16 Chapter 1. Introduction

well as publications related to his doctoral studies but notincluded
in the thesis. The chapter also concludes the thesis by discussing
future work.

Part II contains the six papers on the topics of run-time stack analysis, best-
effort response-time analysis and condition-based maintenance planning,
which constitute the main academic contribution of this thesis.

Paper A presents a new method to compute the amount of stack mem-
ory used in a real-time system. We consider preemptive systems in
which some of the tasks can share a single run-time stack, andpro-
vide an exact problem formulation, based on run-time properties,
which is applicable for any preemptive system model. The main
contribution is that we show how it is possible at compile-time to
safely approximate the exact stack usage for a commerciallyavail-
able system model: A hybrid, statically and dynamically, sched-
uled system. Comprehensive evaluations show that our technique
can significantly reduce the amount of stack memory needed. A
decrease in the order of 70% is typical in the evaluation.

Paper B extends Paper A by considering a more generic task model and
by presenting two new methods to bound the stack memory. The
first method is a branch-and-bound search for possible preemption
patterns, and the second approximates the first in polynomial time.
In addition, precedence relations are considered. We evaluate the
new methods and previous approaches on random task sets and
compare them with each other. The evaluation shows that our ex-
act method can significantly reduce the amount of stack memory
needed in the more generic system model considered.

Paper C presents an efficient best-effort approach for response-time anal-
ysis, based on the well-known hill-climbing metaheuristic. We tar-
get complex industrial systems where response-time measurements
or simulation is the only option. A simple yet novel hill-climbing
algorithm, where controlled randomization is added in the form of
full and partial random restarts, is used to generate input data to a
simulated real-time system, where priorities, preemptions and task
communication are taken into account. In a thorough evaluation
on three models constructed from existing industrial systems, the
new algorithm is compared to the current state-of-practice(Monte
Carlo simulation) and a previously proposed method. The pro-

1.3 Thesis Outline 17

posed method was found to be more accurate and on average 42
times faster than the second-best method.

Paper D propose to use online maintenance planning in order to avoid
the frequent train service interventions which is often associated
with condition monitoring. A dynamic planning software applica-
tion is used to quickly find new train circulations adapted for the
current maintenance requirements of a fleet of vehicles, andthe
number of maintenance stops is minimized using a heuristic for
dynamic packaging of maintenance activities. At the same time,
we actively keep the risk of breakdowns low. An evaluation us-
ing real-world timetables and vehicle plans shows that the number
of service interventions can be reduced significantly compared to
traditional cyclic maintenance.

Paper E builds on Paper D and describes and evaluates a novel con-
dition-based gas turbine maintenance strategy. The basis of the
strategy is that maintenance should be repeatedly re-optimized to
fit into the time intervals where production losses are leastcostly
and result in the lowest possible impact. A prerequisite is that ac-
curate dynamic lifetime estimates are available. The approach is
evaluated on a gas turbine used in a real-world scenario, where
input from operation data, maintenance schedules and operator re-
quirements are taken into account. In the evaluation, typical cost
reductions range from 25 to 65 %, and the calculated availability
increase in practice is estimated to range from 0.5 to 1.0 %.

Paper F builds on Paper E and describes the implementation and de-
ployment of the optimization tool. The optimization problem is
formally defined, and we argue that feasibility in it is NP-complete.
We outline a heuristic algorithm that can quickly solve the problem
for practical purposes. We also compare the algorithm with mixed-
integer linear programming, and discuss the deployment process
of the application. Compared to a mixed integer programmingap-
proach, our algorithm is not optimal, but is much faster.

Chapter 2

Combinatorial Problems

This chapter contains a review of graph theory and combinatorial optimization
methods and techniques used in this thesis. For much more in-depth informa-
tion, the interested reader is referred to books by West [272], Golumbic [104]
and McKee and McMorris [165] for basic and intermediate graph theory. The
book by Papadimitriou [187] contains an extensive overviewof computational
complexity, while Garey and Johnson [95] provide an accessible overview
of NP-completeness and related topics. Constraint programmingis covered
in several books, including [18, 158, 257], while most well-known AI-based
search methods are described in [214]. For integer and linear programming,
the reader is referred to books by Nemhauser and Wolsey [173]and Papadim-
itriou and Steiglitz [186]. An introduction to mathematical programming with
many examples is also given by Winston [277].

2.1 Graph Theory
A graphis a pairG = (V,E) whereV is a set ofverticesandE is a set ofedges
connecting two vertices. In adirectedgraph, the set of edges are directed, i.e.,
on the form(vi, vj), and referred to asarcs. In anundirectedgraph, each edge
can be represented by two arcs(vi, vj) and(vj , vi). Vertices connected by an
edge are said to beadjacentor neighbors. A complete(undirected) graph is
fully connected in that all vertices are directly connectedto all other vertices.

A graphH is asubgraphof another graphG if H ’s vertex set is a subset of
G’s vertex set and ifH ’s edge set is a subset ofG’s edge set, restricted to the
vertices inH. A subgraphH of G is inducedif it contains all edges inG con-
necting nodes inH. A pathis a sequence of distinct verticesv1, v2, . . . , vk ∈ V

19

20 Chapter 2. Combinatorial Problems

such that there exist arcs(v1, v2), (v2, v3), . . . , (vk−1, vk) ∈ E. A path is acy-
cle if in addition there exists an arc(vk, v1) ∈ E. A graph isacyclic if it does
not contain any cycle.

A weightedgraph is a graph with an additional weight functionw(e) map-
ping edges to weights. Thedistanceof a pathv1, v2, . . . , vk ∈ V in a weighted
graph is

∑k−1
i=1 w((vi, vi+1)). A shortest pathbetween two nodes is a path for

which no other paths exist between the two nodes with a lower distance. For
graphs with non-negative weights, a shortest path can be found inO(D · |E|+
X · |V |) using Dijkstra’s algorithm [57,76]. Here,D andX represent the time
needed to maintain a queue of vertices sorted according to shortest distance to
the source node;D is the time needed to decrease the distance of a vertex, and
X is the time to extract and remove the vertex with lowest distance from the
queue. If the queue is implemented using an efficient data structure such as
a Fibonacci heap [89], the amortized time complexity of Dijkstra’s algorithm
becomesO(|E|+ |V | log |V |).

A B

C

D

E

F

G

AB C DE FG

Figure 2.1: A directed acyclic graph (top) and one of its topological orderings
(bottom).

In Papers A and B, we are interested in finding thelongestpaths within
certain induced subgraphs of a graph representing the possible preemptions
that can occur within a set of tasks. Since shortest paths caneasily be found
in graphs with non-negative weights, it may come as a surprise that finding
longest paths is much harder. In fact, the longest path problem isNP-complete

2.1 Graph Theory 21

for generic graphs [258]. Fortunately, it turns out that fordirected acyclic
graphs (DAGs), both shortest and longest paths can be found inO(|E| + |V |)
time. The method is based on first performing atopological sort[127, 247]
and then processing the vertices in topological order (as described in [57]). A
topological ordering of a directed acyclic graph is a linearordering of its nodes
in which each node comes before all nodes to which it has outbound edges;
an example is shown in Figure 2.1. Note that every DAG has one or more
topological orderings.

Algorithm 2.1 produces a topological ordering of a DAG basedon depth-
first search (DFS). The algorithm is from the book by Cormenet al. [57], but
is originally due to Tarjan [246]. An alternative was described by Kahn as
early as 1962 [127]. Algorithm 2.1 has its entry point in the functionDFS and
loops through each node of the graph in an arbitrary order, initiating a DFS
that terminates when it hits any node that has already been visited since the
beginning of the topological ordering. The arrayvisited is used to keep track
of which vertices has been visited so far, andL is the list of vertices in inverse
order; both are updated during the execution of the algorithm. Finally,u is the
current vertex andv is a vertex adjacent tou.

Algorithm 2.1: Topological sort using depth-first search.

VISIT(u, visited , V, E, L)
(1) if visited [u] = false

(2) visited [u]← true

(3) foreach (u, v) ∈ E
(4) VISIT(v, visited , V, E, L)
(5) L← L ∪ {u}

DFS(V,E)
(1) L← ∅
(2) foreachu ∈ V
(3) visited [u]← false

(4) foreachu ∈ V
(5) VISIT(u, visited , V, E, L)
(6) return L

Given a topological ordering, a linear time algorithm for finding longest
(and shortest) paths can then be obtained by processing vertices in the topolog-
ical order, updating distance labels of adjacent nodes accordingly. The method
we use in Papers A and B is given in Algorithm 2.2, and takes a list L of

22 Chapter 2. Combinatorial Problems

the vertices in the graph in topological order, the set of edgesE and a weight
functionw, and returns the longest path distancel(u) from any node to any
nodeu, and the predecessor nodep(u) in one such path, whereε is used to
denote the absence of a predecessor. Note that the linear time complexity of
the algorithm is important in applications where longest paths must be found
repeatedly. For example, in Papers A and B,|V | longest paths must be found in
different induced subgraphs, yielding a total time complexity of O(|V | · |E|).

Algorithm 2.2: Longest paths algorithm for a topologically sorted DAG.

LONGESTPATHS(L,E,w, l, p)
(1) foreachu ∈ L
(2) l[u]← 0
(3) p[u]← ε
(4) foreachu ∈ L
(5) foreach (u, v) ∈ E
(6) if l[u] + w(u, v) > l[v]
(7) l[v]← l[u] + w[u, v]
(8) p[v]← u

2.1.1 Cliques

In the previous section, we briefly discussed the technical solution in our ap-
proach to stack analysis — presented in Papers A and B — which consists of
repeatedly searching for longest paths within certain induced subgraphs of a
preemption graph (defined in Paper A, and illustrated in Figures 5.1 and 5.2).
The induced subgraphs in which we will be searching for longest paths later on
are calledcliques. They consist of subgraphs where each vertex is connected
to every other vertex. Formally, a clique is then a complete subgraph. A clique
is maximalif it cannot be extended with any node. The problem of finding a
maximal clique is in generalNP-complete [272]. However, polynomial-time
algorithms are known for certain types of graphs. In this section, we will re-
view two graph families where this property holds, and wherethe number of
maximal cliques are also bounded linearly.

The following assumes that we have an undirected graph. Achord is an
edge between non-consecutive vertices in a cycle. A cycle, together with the
edges in the cycle, which are also an induced subgraph, is then chordless; since
it is an induced subgraph, it only contains the edges in the cycle, and can there-
fore not contain a chord. Note that all cycles of length 3 are chordless. A graph
is chordal if and only if it contains no chordless cycles. A chordal graph is

2.1 Graph Theory 23

illustrated in Figure 2.2. Chordal graphs are sometimes referred to astriangu-
latedgraphs, and chordless cycles of length 4 or more are simply called holes.
A perfect elimination order (PEO)is an ordering of the verticesV in a graph

Figure 2.2: A cycle (solid) with two chords (dashed). The subgraph shown
is chordal, but removing any of the dashed edges would resultin a chordless
cycle of length 4.

such that each vertexv forms a clique together with all adjacent vertices occur-
ring later in the ordering. A graph has a PEO if and only if it ischordal [90].
Chordal graphs can be recognized in linear time by finding a PEO, which can be
done using lexicographical breadth-first search (BFS) [58,212] inO(|V |+|E|).
Given a PEO, the set of maximal cliques can be found by testingeach PEO-
induced clique for maximality [165]. In addition, chordal graphs can have at
most|V |maximal cliques [272]. Both these properties are useful when obtain-
ing a safe upper bound on stack usage later in Papers A and B. Inan interval
graph, the vertices can be represented by intervals[a, b] in a single dimension,
and the edges correspond to interval intersection. In otherwords, there is an
edge between two intervals[a, b] and [c, d] if and only if a < d andc < b.
All interval graphs are chordal; a PEO is given by ordering the vertices after
their interval “start point” (i.e. according toa in the interval[a, b]), breaking
ties arbitrarily.

A simple algorithm (shown in Algorithm 2.3) for finding maximal cliques
in an interval graph is based on processing two queuesLs andLe consisting
of the intervals sorted by start and end time, respectively.The algorithm is in
eitherbuild or breakmode, starting in break mode. For each start point, the
corresponding vertex is marked as active, and the mode is setto “build”. If the

24 Chapter 2. Combinatorial Problems

current mode is “build” when an end point is scanned, then allactive vertices
are output as a maximal clique, and the mode is set to “break”.A vertex is
always marked as inactive when its end point is scanned.

Algorithm 2.3: Maximal cliques in an interval graph.

MAXCLIQUES(V)
(1) Ls ← V ordered by start time
(2) Le ← V ordered by end time
(3) m← break,Q← ∅, q ← ∅
(4) while Ls 6= ∅ ∨ Le 6= ∅
(5) (a, b)← FIRST(Ls)
(6) (c, d)← FIRST(Le)
(7) if a < d
(8) Ls ← Ls \ {(a, b)}
(9) q ← q ∪ {(a, b)}
(10) m← build
(11) else
(12) Le ← Le \ {(c, d)}
(13) if m = build thenQ← Q ∪ {q}
(14) m← break
(15) q ← q \ {(c, d)}
(16) return Q

2.2 Satisfiability and Optimization
The classical definition of optimization is the process of finding the highest-
or lowest-ranked solution to a problem, as measured by one ormoreobjective
functions. In multi-objective optimization, several objective functions exist that
should simultaneously be optimized. In this case, several different optimality
criteria exist, the most common ones being based on aggregate objective func-
tions and Pareto optimality [79].

In this thesis, we use the term “optimization” loosely in that we also use it
for approaches where the absolute optimum is not required. This thesis is also
only concerned with single-objective optimization; although aggregate objec-
tive functions are used, a natural interpretation of aggregation exists in that the
objective is to minimize cost. Obviously, not all optimization problems are
of minimization type. However, for maximization problem, if the function to
maximize is well-defined, then minimizing the negation of this will maximize
the original function.

2.2 Satisfiability and Optimization 25

The sought-after solution to the problem is specified as a setof variables
that should be assigned values. Inunconstrainedoptimization, the problem
variables are allowed to take any possible value. Inconstrainedoptimization,
on the other hand, there exist a set ofconstraintsthat restrict the set of feasible
solutions to the problem. For single-objective constrained minimization, the
goal is therefore to find a solution that is

1. feasible, i.e., satisfies a set ofconstraints, and

2. near-optimalin that it, as far as possible, minimizes the cost function.

Constrained optimization can further be divided into several subclasses de-
pending on the type of constraints and cost function used. Some of the most
well-known subclasses are

• linear programming, in which the cost function is linear, and all con-
straints are linear inequalities;

• mixed integer programming, in which some of the variables have inte-
grality constraints;

• 0–1 integer optimization, in which all variables are restricted to values
of either 0 or 1;

• quadratic programming, in which the cost function is quadratic, and all
constraints are linear inequalities; and

• nonlinear programming, in which the cost function and all constraints
can contain nonlinear parts.

A satisfiabilityproblem is concerned only with finding a feasible solution
for a set of constraints, and can also be seen as an optimization problem with
a constant objective. Acombinatorial problemis an optimization problem
where the set of feasible solutions is finite [186]. Combinatorial problems
are abundant in all areas where discrete resource-constrained problems either
appear naturally or when a discretization of an otherwise continuous problem
may be beneficial. Examples of well-known combinatorial problems include
the vehicle routing problem [52, 60] (an overview can be found in [255]),
the traveling salesman problem [17], the knapsack problem [132, 160], the
cutting stock problem [65, 101, 190] and the generalized assignment prob-
lem [47,213,225]. Some well-known combinatorial puzzles and games include
Chess [269] and the related eight queens problem [238], Sudoku [150,282] and
Go [36,146,211].

26 Chapter 2. Combinatorial Problems

2.2.1 Branch and Bound

When no suitable polynomial-time algorithm exists for a discrete satisfaction
or optimization problem, one strategy might be to simply search the entire set
of feasible solutions (or a subset thereof) for a solution. This is often referred
to ascombinatorial search. Because combinatorial search can in many cases
take exponential time to solve the problem, methods to cut down on the size of
the search space have been devised. One of the most common approaches is
thebranch and bound method, in which a tree of partial solutions are explored.
The branch and bound method is used in Paper B for performing stack analysis.

The branch and bound method works as follows. For a minimization prob-
lem, alower boundon the objective function is established (preferably in poly-
nomial time) for each node in the tree. A lower bound is a function that is al-
ways less or equal to the optimal objective value. If the lower bound is greater
than the objective function of the best found solution (which in turn is an upper
bound on the optimal objective value), then the corresponding node can be re-
moved from the search, since the node lower bound guaranteesthat no search
from that node can ever yield an objective lower than the lowest found so far.
If the node is not removed, the search continues bybranchingon that node.

Several branching strategies exist depending on the problem structure and
the representation of a solution; common choices include domain splitting
(in which the domain of a variable is split into two parts) andvariable as-
signment. Note that branch and bound can be implemented using depth-first
search, breadth-first search or other variants; pseudocodefor a simple depth-
first branch and bound algorithm is shown in Algorithm 2.4. The original
branch and bound method was conceived in 1960 by Land and Doigto solve
generalizations of linear programming to discrete variables [145].

Algorithm 2.4: Depth-first branch and bound search for non-binary opti-
mization problems with an objective functionz.

BB(node)
(1) if LEAF(node) then return node

(2) (s0, . . . , sb−1)← SUCCESSORS(node)
(3) best ← NIL

(4) for i = 0 to b− 1
(5) if LOWERBOUND(si) < z(best)
(6) best ← argminz(best , BB(si))
(7) return best

2.2 Satisfiability and Optimization 27

2.2.2 Constraints and Propagation

Informally, aconstraint satisfaction problem (CSP)can be defined as follows.

Given a set of constraints, is there an assignment to the variables
in the constraints such that all constraints are satisfied?

A special case of a CSP is thepropositional satisfiability problem (SAT), which
can informally be defined as follows:

Given a Boolean formula in conjunctive normal form, is therea
truth assignment to the variables satisfying the formula?

CSP and SAT have been studied in numerous books and articles,and SAT
was the first problem shown to beNP-complete [54]. Both CSP and SAT are
core problems in computing theory and mathematical logic. Much of the effort
spent on constraint satisfaction and satisfiability research can be attributed to
the generality of CSP and SAT. In practice, solution methodsfor CSP and
SAT are useful for solving problems in automated reasoning,computer-aided
design, computer-aided manufacturing, machine vision, databases, robotics,
integrated circuit design, and computer network design.

Conventional constraint satisfaction methods have been shown to work well
on a large number of problems from real life, like scheduling, planning and re-
source allocation problems. Unfortunately, these methodsare in general time-
and space consuming. Because of this, they are not always suitable. For exam-
ple, adynamicplanning problem is a planning problem where the parameters
change during the execution of the plan. This calls for a planner that is able to
recover from changes in the plan within reasonable time limits.

Constraint Propagation

Constraint propagation is a technique for search space reduction taken from
the area of constraint programming [154]. In its purest form, constraint prop-
agation simply involves removing values from the domains offree variables
which are inconsistent with the current partial assignmentand the constraints
in the problem. Constraint propagation can be described as programmed search
where the domains of the problem variables are narrowed iteratively, accord-
ing to the constraints in the problem, as the search progresses. The two most
common propagation approaches aredomain propagation, where the domains
are modeled explicitly as a set of the allowed values, andinterval propaga-
tion [151], where only the interval of the domain is stored. In general, domain
propagation prunes the search space more efficient than interval propagation.

28 Chapter 2. Combinatorial Problems

However, interval propagation is faster and uses less memory space. Interval
propagation is used in Papers E–F to reduce the search space during main-
tenance optimization. For more information on constraint programming and
propagation, see the books by Marriott and Stuckey [158], Tsang [257], and
Apt [18]. Except for interval propagation, constraint programming is not con-
sidered in this thesis. However, it is worth noting that the methodology has pre-
viously been used to formulate and solve many practical scheduling and plan-
ning problems (see, for example, work by Kreugeret al. [142, 143], Fox [88],
Sadehet al. [216, 217], Le Pape [188], Smithet al. [234–236], Davenport and
Tsang [62] and El Sakkout and Wallace [219]). Scheduling problems are often
formulated using specialized global constraints, as described in the articles by
Beldiceanu [30] and Régin [209,210].

2.2.3 Mixed Integer Programming

A linear programming problem (LP) consists of a vector ofn real-valued de-
cision variablesx = (x1, . . . , xn), a linear objective functionz and a set ofm
linear inequalities as shown below in Equation (2.1)

maxz = c1x1 + c2x2 + · · · + cnxn

subject to
a11x1 + a12x2 + · · · + a1nxn ≤ b1
a21x1 + a22x2 + · · · + a2nxn ≤ b2

...
...

. . .
...

...
am1x1 + am2x2 + · · · + amnxn ≤ bm
x1 ≥ 0

x2 ≥ 0
. . .

...
xn ≥ 0

(2.1)

A feasible solution to Equation (2.1) is an assignment ofx that satisfies all
m inequalities; an optimal solution is a feasible solution which mazimizesz.
In vector notation, a linear programming problem can be defined [173] as

max{cx : Ax ≤ b, x ∈ Rn
+} (2.2)

wherec is a 1 × n matrix, b = (b1, . . . , bm) a m-dimensional vector,A an
m × n matrix containing rational numbers,Rn

+ is the set of nonnegative real

2.2 Satisfiability and Optimization 29

p-dimensional vectors andx = (x1, . . . , xn) is the variable vector. The lin-
ear programming problem is most commonly solved using the simplex algo-
rithm [277] created by George Danzig in 1947. Linear programming is in P;
Khachian [133] derived the first polynomial algorithm (O(n5)) in 1979. Since
then, more practically useful polynomial algorithms have been found, starting
with Karmarkar’s algorithm [128].

A mixed integer programming (MIP) problem can be defined as

max{cx+ hy : Ax+Gy ≤ b, x ∈ Rn
+, y ∈ Zp

+} (2.3)

where in additionh is a 1 × p matrix,G anm × p matrix containing ratio-
nal numbers,Zp

+ is the set of nonnegative integern-dimensional vectors, and
y = (y1, . . . , yp) is the integer variable vector. The obvious difference be-
tween MIP and LP problems are that in MIP, some of the variables are only
allowed to take integer values. Perhaps surprisingly, thisin general makes MIP
much harder. Mixed integer programming is in factNP-complete, even when
restricted to binary (0–1) variables [130]. Even so, MIP optimization models
have been remarkably successful in representing many real-world problems,
and MIP solvers such as CPLEX from ILOG [121] and Xpress-Optimizer from
Dash Optimization [61] are considered by many to be the standard tool for
solving combinatorial problems. In Papers E and F, we use a MIP solver as
comparison against our heuristic approach.

2.2.4 Limited Discrepancy Search

Many industrial problems can be solved using tree search methods, especially
if guiding heuristics are available. For example, best-first search methods such
as A* search [114,175] have been successful on many problems. However, A*
search relies on the availability of a good admissible heuristic, and if no such
heuristic is available, A* search will use too much memory onsome problems
to be practically useful. Depth-first search methods avoidsthe memory issues
with breadth-first search and A*. However, it can easily get stuck in unproduc-
tive areas of the search tree when the heuristic fails. Limited discrepancy search
(LDS, [91,115,129,138,266]) addresses this problem. The basic idea of LDS
is to use depth-first search guided by a heuristic, but allow aspecified number
of so-calleddiscrepantchoices that disagree with the heuristic. The maxi-
mum number of discrepant choices allowed in each path from root to leaf is
thediscrepancyparameterk. The basic LDS procedure, introduced by Harvey
and Ginsberg in [115] and further improved by Korf in [138], works primar-
ily on binary search trees, although Harvey and Ginsberg discuss extensions

30 Chapter 2. Combinatorial Problems

to non-binary problems. In [266], Walsh improves LDS by firstconsidering
discrepancies that occur at the top of the search tree. This is done by intro-
ducing a depth limit that is iteratively increased. In [129], LDS is extended
to handle arbitrary CSPs, constraint propagation and learning of the variable
ordering heuristic. In [91], Furcy and Koenig extend beam search [215, 283]
with LDS-type backtracking.

Algorithm 2.5, which is used in Papers E–F, shows an extension of LDS
along the lines of the ideas proposed in [129]. The algorithmis also modified
to continue searching for a best possible solution as measured by an objective
function z, which is infinitely-valued for the empty nodeNIL . In [115], it
is discussed whether all discrepant choices emanating froma specific node
should be treated equally, i.e., counted as depleting one unit of discrepancy, or
whether each further step away from the heuristic should be counted as using
up one more discrepant choices [129]. In Algorithm 2.5, the latter view is
taken. Figure 2.3 shows the unique paths explored for each choice of k in a
tree with branching factor 3.

Algorithm 2.5: Limited Discrepancy Search for non-binary optimization
problems.

LDS-PROBE(node, k, d, b)
(1) if LEAF(node) then return node

(2) (s0, . . . , sb−1)← SUCCESSORS(node)
(3) best ← NIL

(4) for i = max(0, k − (b− 1)(d− 1)) to min(b− 1, k)
(5) best ← argminz(best , LDS-PROBE(si, k − i))
(6) return best

LDS(node,maxdepth)
(1) for k ← 0 to maximum depth
(2) result ← LDS-PROBE(node, k,maxdepth)
(3) if result 6= NIL then return result

(4) return nil

In [138], Korf improved LDS so that it only generates paths with exactlyk
discrepancies. This is done by keeping track of the remaining depthd, pruning
branches for whichd ≤ k. It is worth pointing out that in modifying LDS to
non-binary trees, a similar improvement can be done if the maximum branch-
ing factorb is known. At most,d discrepant choices can be made in a subtree
of depthd, each choice using up at mostb−1 discrepancies. Given that choices

2.2 Satisfiability and Optimization 31

(a) k = 0 (b) k = 1

(c) k = 2 (d) k = 3 (e) k = 4

(f) k = 5 (g) k = 6

Figure 2.3: Unique explored edges for different discrepancy values in a tree
with branching factor 3.

are ordered according to falling heuristic value (so that the preferred choices
occur early), we can therefore prune theith choice if(b − 1)(d − 1) + i < k,
or in other words, start with choice numbermax(0, k − (b − 1)(d − 1)). The
function call SUCCESSORS(node) returns a list of feasible successor nodes in
increasing order of heuristic value. The discrepancy parameter isk.

2.2.5 Local Search

Local search, or iterative improvement, is an alternative approach to optimiza-
tion using complete methods. Local search methods have the advantage that
as soon as a feasible solution has been found, this solution is always available
during the search. This property is commonly known asanytime behavior, and
is of particular interest when feasible solutions are easily found, or when the
iterative improvement can work solely by manipulating feasible solutions. An-
other advantage of local search methods is that they can solve certain problems
much more efficiently that regular constraint solvers. At the same time, tech-
niques based on local search often have quite modest resource consumption.

32 Chapter 2. Combinatorial Problems

In Paper C, we use local search in the form of a hill-climbing algorithm with
random restarts to solve the best-effort response-time analysis problem, and in
Paper D, a local search procedure is used to find alternative routes for a train in
need of maintenance.

In iterative improvement, a given candidate solution is improved in several
repeated steps by changing small parts of the solution. The resulting set of
candidate solutions is called the neighborhood. The algorithm then proceeds
by selecting as the next solution either the first found improving neighbor or
one of the best neighbors. In the hill-climbing algorithm [214], the search
terminates when a local minimum has been reached. Other methods, such as
Tabu search [102] or Simulated Annealing [136] have mechanisms to escape
local minima. The initial starting point of the local searchis usually generated
randomly or using a constructive heuristic.

The neighborhood is one of the parameters that affect the performance of
local search algorithms the most. The neighborhood should be chosen so that
neighbors who are likely to improve the objective are included. However, if the
neighborhood is too large, the local search procedure will consequently spend
a large amount of time exploring it, especially if the neighbor that improves the
objective value the most is wanted. If it is also non-trivialto compute the objec-
tive value of a candidate, the exploration process in itselfcan take a significant
amount of time. One example is the combined problem of maintenance routing
and scheduling presented in Paper D, where the cost of a traincirculation de-
pends on the maintenance schedules of the train units. Sincethe maintenance
schedules are also dependent on the circulations, new maintenance schedules
have to be found to evaluate neighbors. A common technique for evaluating
neighbors more efficiently is therefore to compute only the cost difference that
the transition yields. This is sometimes called incremental computation [10].
In the planning algorithm outlined in Paper D, we update costs by observing
that only the maintenance schedules of the trains where the neighboring circu-
lation differs needs to be recomputed.

It is generally agreed that randomization may help local search procedures
overcome local minima. Stochastic behavior may be introduced in numerous
ways, one of the most basic being to introducerandom restartsin the search
after a fixed number of transitions. Walser [265], Selman et al. [229], Gent
and Walsh [97, 98] and Gu et al. [107] take this approach, as dowe in Paper
C. Another common randomization strategy is to introducerandom walkin the
search. Random walk is the occasional random transition (ortransitions) in the
search space, the probability taking a random transition depending on a param-
eter typically supplied by the user of the search algorithm.A third possibility

2.3 Computational Complexity 33

is to change the neighborhood of an assignment according to aprobabilistic
distribution. In the well-known WalkSAT algorithm, introduced by Selman et
al. [229], a successor assignment is selected by picking an unsatisfied clause at
random, and from this clause selecting promising variables. In Paper C, we in-
troduce randomness in the neighbor selection by only considering a randomly-
chosen subset of the full neighborhood obtained by changinga single variable
value.

2.3 Computational Complexity
Computational complexity [187] is an area of computer science and mathe-
matics concerned with time and space consumption, the expressive power of
different computational mechanisms and the related complexity classes. In this
section, we will give a short summary of the theory ofNP-completeness. The
interested reader is referred to [95,187] for more information. We will use the
theory in Paper F when provingNP-completeness of the maintenance schedul-
ing problem.

2.3.1 Decision Problems

A decision problemis a problem whose answer is “yes” or “no”. A typical
example is SAT, introduced in Section 2.2. Other examples are:

Knapsack Given a knapsack of unit capacity and a set ofn items, each itemi
having a sizeai ∈ (0, 1] and avaluebi, is there a subset of items fitting
in the knapsack with a higher value than a given lower threshold k?

Bin-packing Given a set ofk bins of unit capacity and a set ofn items, each
item i having a sizeai ∈ (0, 1], is there a packing (i.e., assignment of
items to bins) of all items using the available bins?

2.3.2 Complexity Classes

It is common to adopt a view in which decision problems arelanguages(i.e.,
subsets of binary strings0, 1∗ in which the language consists of all strings
that encode a “yes” problem instance). A languageL ∈ P if there exists a
deterministic polynomial time bounded Turing machineM that can decideL,
i.e., for each stringx ∈ {0, 1}∗:

• if x ∈ L thenM(x) accepts, and

• if x 6∈ L thenM(x) rejects.

34 Chapter 2. Combinatorial Problems

Intuitively, the classP corresponds to problems that can always be efficiently
solved. A languageL ∈ NP if there is a polynomialp and a polynomial time
bounded Turing machineM such that for each stringx ∈ {0, 1}∗:

• if x ∈ L then there is a stringy of polynomially bounded length, i.e.,
|y| ≤ p(|x|), such thatM(x, y) accepts, and

• if x 6∈ L then for any stringy such that|y| ≤ p(|x|),M(x, y) rejects.

The stringy that helps verifying thatx is indeed a “yes” instance is called
asolutionto the problem; thus,NP is the class of problems that have short and
quickly verifiable solutions. As an example, given a knapsack instance and a
proposed solution in the form of a subset of items, it is easy to check whether
this subset 1) fits inside the container, and 2) has a value higher thank. Clearly,
the knapsack problem is inNP.

A languageL belongs to the classco-NP if and only if L ∈ NP; thus,
co-NP is the set of problems that have short, quickly-verifiable “counterexam-
ples”. For instance, the languageL of prime numbers allows for counterexam-
ples in the form of factorizations for a numbern, which is proof thatn 6∈ L.

2.3.3 Reductions

Let L1 andL2 be two languages inNP. Then,L1 reduces toL2 if there is
a polynomial time deterministic Turing machineT that, given a stringx ∈
{0, 1}∗, outputs a stringy such thatx ∈ L1 if and only if y ∈ L2. In other
words,T translates problem instances of typeL1 into instances of typeL2. As
a consequence, ifL1 reduces toL2 andL2 is polynomial time decidable, then
so isL1. This type of reduction is also called apolynomial-time many-one
reduction, polynomial transformationor Karp reduction. Reductions of this
type are very useful in provingNP-completeness.

2.3.4 NP-Completeness

A languageL is NP-hard if every languageL′ ∈ NP reduces toL. A language
is NP-completeif L ∈ NP andL is NP-hard. AnNP-complete languageL is
a hardest language inNP in that a polynomial time algorithm forL implies that
there exist polynomial time algorithms for every language in NP (i.e.,P=NP).

Once one problemL has proven to beNP-hard, other problems can be
established asNP-hard by giving polynomial-time reductions fromL to these
problems. SAT was shown in [54] to beNP-hard; the proof idea is to show that
for any languageL in NP, there exists a deterministic polynomial-time Turing

2.4 Summary 35

machine that can translate stringsx ∈ {0, 1}∗ into SAT formulasf such that
the existence of a truth assignment satisfyingf implies thatx ∈ L.

2.4 Summary
This chapter reviews some topics in graph theory, combinatorial optimization
and complexity, which are useful for understanding the methods employed in
Papers A–F. In graph theory, algorithms for computing longest paths in di-
rected acyclic graphs and cliques in interval graphs (whichare special cases
of chordal graphs) are described as background material forPapers A and B.
Some different methods for combinatorial problem solving used throughout
this thesis were outlined, including local search, which isused in Papers C and
D, and Limited Discrepancy Search in particular, used in Papers E and F. The
chapter also contains some basic complexity theory, which is used in proving
NP-completeness of the maintenance scheduling problem presented in the last
two papers of the thesis.

Chapter 3

Real-Time Systems

Using computers for process control and physical interaction is becoming more
and more common in areas where control has previously been provided entirely
by mechanical or electrical means. Anembedded systemis a computer system
that is part of a larger system, performing some of the functions of that system
[120]. Their role is often to replace a traditional mechanical solution, thereby
reducing production costs, increasing efficiency and enhancing functionality of
the product.

Embedded systems are almost ubiquitous in nearly all of today’s technolog-
ically focused industry, including the telecommunication, automation, aircraft,
automotive and railroad industries. According to Hanssonet al., the software
account for a major part of the value growth in the automotiveindustry [113].
A classical example of an embedded system is the computers controlling crit-
ical functionality in a road vehicle, such as lock-free brakes, steering, igni-
tion, airbags and traction control. Embedded systems are also becoming an in-
creasingly important part of our daily lives. For example, nearly all consumer
electronics on the market contain one or more computationalunits, providing
extended functionality, intelligent behavior and overallease of use. One mo-
tivation for using an embedded system is often reduction of costs. Another is
the addition of advanced functionality, which would not be possible without
computers. In a typical modern automobile, embedded systems manage, e.g.,
driving assistance, information, and entertainment features [223]. This implies
that both safety-critical features and less critical features need to be managed in
the same system. Figure 3.1 illustrates the complexity level of electronic sys-
tems that has been reached in a modern automobile. The Volkswagen Phaeton

37

38 Chapter 3. Real-Time Systems

shown in the figure contains 11,136 electrical parts, 61 ECUs(of which 31 can
be externally diagnosed), an optical bus for infotainment data, sub-networks,
and 3 CAN-buses connecting 35 ECUs. Communication-wise, there are ap-
proximately 2,500 signals in 250 CAN messages [149].

Figure 3.1: The electronic systems (blue) and communications channels (or-
ange) in a Volkswagen Phaeton automobile (Image is from [149] and is cour-
tesy of Volkswagen AG).

A real-time system (RTS) is a system in whichtimelinessis equally im-
portant for the system to work properly as thefunctional correctnessof the
implementation [241]. A common misconception is that an RTSis a system
that responds quickly [240]. Instead, an RTS can be defined asa system with
a temporallypredictableresponse. As an example, the triggering of an au-
tomobile airbag is an application in which timeliness is crucial. Obviously,
triggering the airbag too late is disastrous for the passenger. However, trigger-
ing the airbag tooearly is equally fatal, since the airbag is only inflated fully
for a very short period of time. Inflating the airbag too earlywill therefore
result in the airbag being partially deflated at the time the driver or passenger

3.1 Real-Time Operating Systems 39

hits the airbag.
Many real-time and embedded systems are resource-constrained in that the

resources available to perform its intended functionalityare limited. A typical
processor used in an embedded system is much less powerful than the proces-
sor used in a desktop computer. Also, the amount of memory available is often
measured in kilobytes instead of gigabytes. In addition, since many embedded
systems are safety critical, we must be sure that the limitedresources available
are enough for sufficient system safety and correct temporaland functional
behavior. One such limited resource is computational capacity. If the applica-
tion requires more computational capacity than what is available in the form
of the processor being used, the application will most likely exhibit a temporal
behavior the system has not been designed for. Going back to the previous
example of an automobile airbag, this could result in the airbag deploying too
late. Another example of a limited resource is the memory available for the
application. If the application requires more memory than is available, data
corruption and/or a program crash can result. Both situations can be consid-
ered fatal; a consequence of either can be that the program may not function
as intended, which is potentially devastating in a safety-critical application.
Therefore, analysis methods are needed to guarantee the predictable behavior
of the system. To be useful in practice, such methods also have to be suitable
for industrial use, in that they should be easy to use and havean acceptable
computational complexity.

3.1 Real-Time Operating Systems
A real-time operating system (RTOS) is an operating system which is specif-
ically engineered for real-time applications. In practice, this means that the
operating system has functionality for fulfilling application timing constraints.
RTOS:s usually provide services such as real-time scheduling, mutual exclu-
sion and intra-system communication. In general, an RTS consists of a set of
processors running an RTOS and interacting over one or several communica-
tion networks, such as CAN [64,122,176,179,252], FlexRay [87] or TTP [137].
On each processor, a set oftasksare executed. The tasks, representing the dif-
ferent computations to be performed by the application, aredispatched by a
scheduling algorithm of the underlying RTOS. A specific invocation of a task
is called atask instance, or just instancefor short. Each task has anexecution
time, which is in general dependent on the environment it is executing in. This
includes factors such as processor speed (varying dynamically with voltage in
many newer processors), processor and bus caches, memory latency, communi-

40 Chapter 3. Real-Time Systems

cation delays and state and input parameters of the task. Allof these can affect
execution time. The exact execution time for all possible situations is there-
fore either hard or impossible to obtain. A common approximation is to use a
worst-case execution time (WCET)estimate, assumed to be a safe approxima-
tion of the actual execution time under all circumstances. WCET estimates can
be found by measurements and/or simulation (see for examplework by Edgar
and Burns [78], the commercial toolVirtualTime[203] andARTISST[67]) and
static analysis methods [81–83, 195, 196, 276]. Tools basedon abstract inter-
pretation, such as Bound-T [248] and AbsInt [3], can also be used for WCET
analysis of software systems.

Timing constraints are abundant in RTS:s. Some of the most commonly
used timing constraints includerelease timeanddeadlineconstraints, specify-
ing the earliest invocation time and the latest finishing time of a task respec-
tively. Tasks invoked repeatedly with a fixed time interval (e.g. the wheel
speed of an automobile should be sampled every millisecond)are calledpe-
riodic tasks, while tasks lacking a predetermined inter-arrival time are called
aperiodic tasks. Finally, tasks that can arrive with aminimum inter-arrival
time, but also less frequently, are calledsporadic tasks.

3.1.1 Scheduling

One of the most important parts of an RTOS is the scheduling algorithm it
uses to dispatch tasks. The scheduling algorithm determines in what order ar-
riving tasks should execute by dispatching tasks ready for execution. There
exist a plethora of scheduling algorithms [46, 230], and this thesis only gives
a short overview. Scheduling is divided intoofflineandonline scheduling. In
the offline scheduling approach (e.g., [80, 201, 280]), scheduling decisions are
made before system deployment, and result in a fixed schedule. At runtime,
the dispatcher simply schedules tasks according to the predetermined sched-
ule. Although most suitable for periodic execution, offline-scheduled systems
have the advantage of full predictability; the schedule canbe engineered to ful-
fill almost any imaginable temporal constraint in advance ofdeployment. For
examples of temporal constraints that can be fulfilled by an offline scheduler,
see [80]. Once the schedule has been developed, verified and tested, the tem-
poral correctness is guaranteed as long as WCET estimates aresafe. On the
other hand, offline-scheduled systems can be inflexible withregard to software
maintenance and continuous development. In essence, adding a single task to
an RTS can result in the full schedule needing to be rebuilt.

In online scheduling (e.g., [152]), tasks are scheduled at runtime depend-

3.1 Real-Time Operating Systems 41

ing on the current state of the system. The schedule is therefore generated
continuously during the execution of the RTS. In essence, anonline schedul-
ing algorithm dispatches the task that has the highestpriority of the tasks
in the ready queue. Therefore, online scheduling algorithms differ mostly
in how tasks are prioritized. Infixed priority pre-emptive scheduling(FPS,
[20, 21, 44, 131, 148, 250, 253]), tasks are assigned a priority during design-
time, which is then used during runtime to dispatch tasks. Noassumptions are
made in FPS regardinghow tasks are prioritized. Two specific priority assign-
ment policies that can be used for FPS arerate monotonic(RM, [152]) and
deadline monotonic(DM, [22]).

In RM, tasks are assigned a priority according torate (or, equivalently,
periods); a high rate (i.e. a short period) is translated into a high priority. Liu
and Layland showed in [152] that a set ofn tasks with unique priorities can
always be scheduled if

n∑

i=1

Ci

Ti
≤ n(n

√
2− 1)

whereCi is the execution time andTi is the period of taski, under the as-
sumptions that tasks do not share resources, deadlines are equal to periods, and
context switches are instantaneous. RM isoptimalin the sense that if any static
priority scheduling policy can meet all deadlines, then RM can as well. DM is
similar to RM, but tasks are assigned priorities according to deadlines instead
of periods [22]). DM is also optimal in the same sense as RM butthis also
holds when deadlines are less than periods.

A third priority assignment algorithm isearliest deadline first(EDF, [109,
152,242]). Here, task instances are assigned a priority according to their dead-
line. EDF is optimal in the sense that if tasks characterizedby arrival time,
execution time and deadline can be scheduled by any algorithm, then EDF can
also schedule the tasks. When deadlines equal periods, EDF isschedulable
when

n∑

i=1

Ci

Ti
≤ 1

Recent results in real-time scheduling theory also make it possible to com-
bine several execution models in one system while still guaranteeing a pre-
dictable timing behavior (see, for example, [1,2,38,109]). Regardless of which
scheduling algorithm is used in an RTS, the timeliness of thesystem must be
guaranteed off-line (i.e., before deployment) usingschedulability analysis. If
the system is deemedunschedulable(i.e., some temporal requirements cannot
be guaranteed), then changes in the architecture and/or design are necessary

42 Chapter 3. Real-Time Systems

to guarantee proper timeliness. For offline scheduling, this process is straight-
forward, since a generated schedule can simply be tested forthe necessary
temporal requirements. However, the major hurdle in offlinescheduling is to
generate a feasible schedule in the first place. For approaches to generate of-
fline schedules, see [80,222,280]. The schedulability analysis of online sched-
uled systems simply means testing whether the associated schedulability test is
fulfilled.

3.2 Shared Resources and Stack Sharing
A shared resourceis a resource that cannot safely be accessed by more than
one task at the same time. Typical shared resources include memory-mapped
external devices and operating system firmware or software services. Access
to shared resources is usually protected usingsemaphores, mutexesor similar
mechanisms. Mutexes can be locked and unlocked; a task that tries to lock
an already locked mutex isblockeduntil the mutex is unlocked by the task
that locked it in the first place. A consequence of this is thathigh-priority tasks
may be blocked for extended time periods by low-priority tasks, a phenomenon
calledpriority inversion. There exist several protocols to avoid priority inver-
sion, the most common ones beingpriority inheritance, priority ceiling and
immediate inheritance. Semaphores are similar to mutexes, but can also allow
several tasks to access the same resource at once.

In the priority inheritance protocol (PIP, see [231, 232]),the priority of a
task holding a shared resource is raised to the same level as ahigher-prioritized
task trying to access the same resource. In addition, the restriction that a task
may only lock a resource for a single execution is imposed. This solves the
problem of priority inversion, but may introduce deadlocks. Although dead-
locks can be prevented by, e.g., imposing a total ordering ofthe resource ac-
cesses, blocking chains can still occur. Ifn is the number of lower priority tasks
andm the number of distinct resources, a blocking for the duration of at most
min(n,m) critical sections is possible [105], which is considered impractical
in many real-time applications.

In the priority ceiling protocol (PCP, [105, 231, 232]), apriority ceiling is
defined for each shared resource as the maximum priority of any task which
may lock the resource. In PCP, the priority of a task holding aresource is
raised to the priority ceiling whenever a task is blocked on the resource. The
consequence of this is that a task can be blocked at most once for each resource.
In addition, deadlocks are also prevented. The immediate inheritance protocol
(IIP, [45]), is a simplification of PCP. In it, the priority ofa task locking a

3.2 Shared Resources and Stack Sharing 43

resource is immediately raised to the priority ceiling. This protocol can be
implemented with relative ease, and has the advantages of having the same
worst-case behavior as PCP.

3.2.1 Stack Sharing

Yet another type of resource available to embedded systems is random access
memory (RAM), which is used to store temporary data during the execution
of a program. There are two main types of methods for allocating memory:
staticanddynamicmemory allocation. Static memory is allocated once, at the
start of the task, and the allocated memory is freed when the task terminates.
Dynamic (orheap) memory, on the other hand, is allocated upon request from
the application, and must normally be freed explicitly by the application when
the memory is not needed anymore. Failure to do so results in amemory leak,
one reason why many embedded applications are restricted toonly use static
memory allocation.

One important part of the statically allocated memory is theexecution stack,
used to store local variables, function-call parameters and return addresses. A
typical execution stack organization and some example content are illustrated
in Figure 3.2. The allocation of stack space is critical in that if not enough
stack space is available, a stack overflow exception will usually be raised or
other data will be overwritten. Both situations may lead to aprogram crash or
that the application does not perform as intended.

In conventional multitasking systems, each thread of execution (task) has
its own allocated execution stack. In systems with a large number of tasks, a
large number of stacks are therefore required. Consequently, the total amount
of RAM needed for the stacks can grow exceedingly large. In order to limit
the amount of RAM set aside for stack-memory in embedded systems, many
RTOS:s provide means to execute multiple tasks on a single shared stack (e.g.
Rubus [19], Fusion [259], Erika [85], SMX [167]). The two different task
structures are shown in Figure 3.3.

Allowing tasks to share a single stack means that we must find some way of
guaranteeing stackconsistency(i.e., that the different stack areas of the tasks
do not grow into each other). If we assume that a task starts using the stack
as soon as it starts executing, and returns all stack space oncompletion, we
can preserve stack consistency by ensuring that whenever a task is preempted,
it does not resume execution until all tasks occupying stackspace above it
have completed. This is ensured in practice by not allowing tasks to suspend
themselves voluntarily or to be suspended by blocking once they have started

44 Chapter 3. Real-Time Systems

Function Arguments

Return Address

Saved Frame Pointer

Local Variables

0x1020

0x1024

0x1018

0x101C

0x1014

0x1010

0x100C

0x1028

0x102C

Unused Stack Space0x1008

0x1004

0x1000

0x1030

0x1034

Figure 3.2: Execution stack organization and typical contents.

Task A

TCB

Program

Stack memory

Task B

TCB

Program

Stack memory

Task A

TCB

Program

Task B

TCB

Program

Shared stack memory

Figure 3.3: Task structure with separate stacks for each task (left) and a glob-
ally shared stack (right).

their execution. The stack resource policy (SRP), introduced in [24] by Baker
(further developed in [25]) uses this principle to permit stack sharing among
processes in static and in some dynamic priority preemptivesystems.

In shared stack systems, one stack-frame is added to the system’s stack for
each level of preemption, as shown in Figure 3.4. Thus, the maximum stack
usage occurs during a worst-case preemption pattern. In simple task mod-
els (commonly used in real-time scheduling theory), where tasks are assumed
to be independent, any preemption pattern is possible. Therefore, we have
to (pessimistically) assume that all tasks may be active andpreempted at the

3.2 Shared Resources and Stack Sharing 45

Unused Stack Space

Used Stack Space
for Task B

Used Stack Space
for Task A

Used Stack Space
for Task C

A B C

Time

C B A

Execution Trace

Stack Trace

Current time

Figure 3.4: Example of execution and shared stack traces.

point where they use the most stack. The system’s maximum stack-usage thus
becomes

∑
Si (whereSi denotes the maximum stack-usage of taski). The

consequence is that in these models the benefits of using a shared stack are
limited.

However, in many systems, we have information that lets us deduce that
some preemption patterns are impossible. For example, in a system where
multiple tasks share the same priority, no preemptions among these tasks are
possible (assuming first in, first out (FIFO) scheduling within a priority level
and an early-blocking resource allocation protocol such asIIP). In this case,
the system’s maximum stack-usage becomes

∑

p

max
p

(Si),

wherep denotes a priority level andmaxp maximizes over the tasks within
that priority level. If the number of priority levels is low enough, this type of
analysis can provide a much lower bound on stack usage. Daviset al. describe
this type of stack analysis and generalize it to allow non-preemption groups
to be defined [63]. In Papers A and B, we develop the ideas on stack sharing
further in the case where information regarding timing relations between tasks
is available.

46 Chapter 3. Real-Time Systems

3.3 Response-Time Analysis
The response time of a task instance is the time between the invocation of
the instance and the time point at which the instance finishesits execution.
Response-time analysis (RTA, [20, 230]) is a family of techniques that can be
used to compute the response time (RT) of the tasks in a systemunder different
scheduling policies. The worst-case response time (WCRT) ofa task is then
the highest possible response time for any instance of that task. The goal of
RTA is to obtain safe upper bounds on the response times of oneor several
tasks in a system, ideally obtaining tight WCRT estimates.

In the rest of this section, it is assumed that for all tasks, deadlines are less
than or equal to the period times. The basic response-time analysis without
blocking, introduced by Liu and Layland [152], defines the worst-case response
timeRi of a taski as the solution to the following equation:

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉

Cj (3.1)

whereCi is the WCET andTi is the period of taski andhp(i) denotes the
set of tasks with higher or equal priority thani. Under the assumptions that
the system does not suffer from jitter and no task is blocked (i.e., no shared
resources exist), RTA will yield upper-bounds on the finishing time of all tasks.

3.3.1 Extensions

In PCP or IIP, a taski can be blocked for at most one critical region by a task
with lower priority. The classical RTA can be extended for the case where
deadlines can be larger than the period [233], and to take blocking time, jitter
and preemption delays into account [20].

In a transactional task model, tasks are divided intotransaction. All tasks
in a single transaction share one common activation event, and tasks within a
single transaction may have dependencies in their release times (so-calledoff-
sets). In classical RTA without offsets, the critical instant for a task (i.e., the
situation leading to the highest possible response time) occurs when it is re-
leased at the same time as all higher priority tasks [59]. Whenadding offsets,
this assumption is overly pessimistic since some tasks can never be released
at the same time. To tighten the analysis, Tindell [249] relaxed the notion of
critical instant to mean a time point when at least one task with higher or equal
priority in every transaction is released at the same time. In order to find the
critical instant that maximizes the response time of the task under analysis,

3.3 Response-Time Analysis 47

an exact response-time analysis with offsets must try everypossible combina-
tion of candidates among all transactions in the system, which is intractable
for larger task sets. Tindell therefore provided (also in [249]) an approximate
RTA with a lower time complexity. Palencia Gutiérrez and González Harbour
formalized and generalized Tindell’s work in [108], and in [156], Mäki-Turja
and Nolin tightened the analysis and improved its run time. For tasks with
offsets and jitter, Redell also presented a variant of the exact worst-case RTA
in [206]. In systems where jitter is important, such as when computing end-
to-end response times [108, 251] or when low jitter values are necessary to
improve control performance [28],best-caseresponse time analysis also be-
comes important to minimize jitter estimation. This is considered in work by
Palencia Gutiérrezet al. [110] and Redell and Sanfridsson [205]. In systems
where precedence information (task execution order) is available, such as in
distributed systems, RTA can be pessimistic due to the infeasibility of some
critical instance situations. Palencia and Harbour take precedences where each
task can have at most one successor into account in [184], andRedell extends
this approach to allow a task to have several successors in [204].

3.3.2 Best-Effort Response-Time Analysis

As a complement to RTA,best-effort worst-case response-time analysiscan
be employed to find an (ideally tight)lower WCRT bound for a task. If the
best-effort worst-case response-time equals the worst-case response time upper
bound, as obtained by RTA, then both the upper and the lower bounds areexact.
However, in most cases, both the best-effort worst-case response-time estimate
and the worst-case response time upper bound are inexact, and the true worst-
case response time usually lies somewhere in between.

Two situations are common when trying to apply RTA to real industrial
systems. First and foremost, it may be difficult to perform RTA due to, e.g.,
inter-task communication, which has to be taken into account. This often re-
quires manual work and a deep understanding of how the systemworks. Sec-
ond, RTA may return extremely pessimistic WCRT estimates dueto pessimism
from the WCET estimates used for task execution time, and due to the chain
effects this has on the WCRT calculations.

Unfortunately, systems that exhibit behavior like this areabundant. An
example of an industrial real-time system where RTA is not applicable is the
control system for industrial robots, developed by ABB. This system has a very
complex temporal behavior. Some tasks have execution timesvarying radically
due to input-dependent IPC and globally shared state variables, and some tasks

48 Chapter 3. Real-Time Systems

may even change scheduling priority. The analytical methods’ use of a task-
level WCET attribute will in such cases be very pessimistic since the tasks are
not independent; there are often dependencies that result in mutual exclusion
between different tasks’ WCET scenario.

As a result, a more detailed system model is necessary for thetiming ana-
lyzis of such systems. Ideally, the model should describe the detailed execution
control flow on a code level with respect to resource usage andinteraction, e.g.,
inter-process communication, CPU time and logical resources. Methods based
on measurements or simulations, have previously been shownto work well
in analyzing such large and detailed models, since they onlysample the sys-
tem state space rather than attempting to search it exhaustively. Wegener and
Grochtmann claim ([270], page 277) that

In practice, dynamic testing is the most important analytical
method for assuring the quality of real-time systems.

According to the same source, testing activities typicallyconsume 50 % of the
overall development effort and budget for real-time systems.

Simulation-based analysis can also be far more efficient in finding potential
timing problems than system-level testing, the dominatingmethod in industry
today. Clever response time sampling can also be superior torandom sampling
and yield results that, together with statistical confidence estimates, can be
used when few other alternatives exist. Several frameworksalready exist for
the timing simulation of real-time system models, e.g., thecommercial tool
VirtualTime[203] and the academic toolARTISST[67]. These solutions rely
on Monte Carlo simulation, which can be described as keepingthe highest
result from a set of randomized simulations.

An alternative method is to use metaheuristics, such as evolutionary algo-
rithms or local search. Evolutionary algorithms have previously been tried with
success in the related area of test-case generation; a review of metaheuristic
search techniques for non-functional system property testing is given by Afzal
et al.[4]. Research on test-case generation for timing analysis often focuses on
measurements of execution time or analyzing systems for schedulability. For
an example of the former, Wegener and Grochtmann [270] analyze WCET and
best-case execution time (BCET) by measuring the executiontime of a pro-
gram, with input generated using an evolutionary algorithm. The method was
evaluated on a number of real-time programs, and compared toMonte Carlo
(random) sampling. Tasks, preemptions and communication are not consid-
ered. The results show that the evolutionary approach foundmore extreme ex-
ecution times in all cases tried. More recently, Mueller andWegener [271] pro-

3.4 Summary 49

vided a comparison of static analysis techniques and evolutionary algorithms,
with regard to WCET and BCET analysis, for several real-time applications.
The authors conclude that static analysis and evolutionarytesting are comple-
mentary methods. Khan and Bate [134] also analyze WCET by generating test
data using a genetic algorithm. The paper investigates the effectiveness of sin-
gle and multi-criteria optimization for complex processors using criteria such
as the number of cache and branch prediction misses and the number of loop
iterations.

In the line of work which is most closely related to Paper C, evolution-
ary algorithms are used for verifying timing constraints ina real-time system.
Here, it is common that response time is considered directly. Related work in
this area is described and compared to Paper C in Section 5.1.2.

3.4 Summary
In this chapter, we provided an overview of embedded real-time systems and ar-
gued why predictability and timing requirements are essential in safety-critical
applications. We also gave random-access memory (in particular, stack mem-
ory) as an example of an important resource in embedded real-time systems.
We described real-time operating systems and common functionality found in
an RTOS, including the scheduling of tasks, the access of shared resources and,
in particular, stack sharing, in which several tasks can share a single run-time
stack. We also gave a brief overview of shared stack analysis. We then con-
tinued with an overview of timing predictability in the formof response-time
analysis, in which safe upper bounds on the latest finishing time of a task can
be established. Finally, the chapter ended with a section onthe shortcomings
of RTA and alternatives in the form of response-time analysis based on mea-
surements or simulation.

Chapter 4

Maintenance Planning

This chapter provides a review of maintenance practices forgas turbines and
rail vehicles. The chapter is organized as follows. First, an introduction to the
state of practice in maintenance is given. Some common maintenance policies
are presented, definitions of metrics such as availability and reliability, and
the practices of condition-based maintenance (CBM) are outlined. Reliability-
centered maintenance is discussed next, followed by maintenance practices for
gas turbines and trains are discussed. The area of maintenance optimization is
then described. The chapter ends with a summary.

4.1 Introduction
In an industrial setting, breakdowns can have a significant impact on sustain-
ability and short and long-term profitability. During a breakdown, fixed costs
of equipment, real estate and labor remain constant while production is essen-
tially zero. Therefore, rapid repair is critical to business success. Maintenance
strategies define why, when and in what way maintenance is performed. There
exist several types of maintenance strategies, and in practice, a mix of differ-
ent strategies are almost always used. Repairing equipmentafter a breakdown
is known ascorrective maintenance (CM), and is the most basic maintenance
strategy; as such, it exists in some form in all manufacturing organizations.
However, in many situations, the direct and indirect costs of a breakdown can
be unacceptably large. This can be due to a loss of revenue or asituation where
breakdown can have catastrophic consequences, such as physical injury and a
substantial risk for loss of life. One example of the first is process industry

51

52 Chapter 4. Maintenance Planning

maintenance, where significant run-time is required after startup to begin pro-
ducing output of sufficient quality. The goods in process at the time of break-
down, as well as the goods manufactured for a period after thebreakdown,
may therefore be either unusable or of less value. Breakdowns that can lead to
physical injury and loss of life exist in for example automotive, aerospace and
railway applications, nuclear power generation and the chemical industry.

Because of this, corrective maintenance strategies are usually complemen-
ted by breakdown avoidance strategies in a process calledpreventive main-
tenance (PM). In this strategy, equipment is routinely inspected and serviced
in an effort to capture developing faults early, hopefully reducing the num-
ber of breakdowns to an acceptable level. Preventive inspections also include
advanced techniques for detecting invisible faults and therecording of deteri-
oration data. The resulting time series of deterioration data can then be com-
pared and analyzed to determine if a component has been subject to unusually
heavy wear or if sudden negative trends become present. Bothwould indi-
cate an imminent equipment problem. Preventive maintenance is traditionally
done according to a plan specified in maintenance intervals of a suitable length
and unit. For example, gas turbine maintenance is done in intervals of equiva-
lent operational hours (EOH), equivalent number of cycles (from start to stop,
EOC), and calendar time. Road and rail vehicle maintenance intervals are usu-
ally specified in either travelled distance or calendar time, or both. For gas
turbines, typical interval lengths (in calendar time) range from one year and
up; trains are serviced as often as once per week.

Corrective and preventive maintenance policies can be regarded as the “tra-
ditional” maintenance practices, and have been in use for decades. Unfortu-
nately, both corrective and preventive maintenance have drawbacks. For cor-
rective maintenance, this includes downtime in productionand high mainte-
nance costs due to secondary effects from equipment breakdown. Of great
importance are also the safety and environmental issues that can be associated
with malfunctioning equipment and breakdowns. However, preventive main-
tenance has other drawbacks, including high maintenance costs due to pes-
simistic maintenance intervals. Furthermore, preventivemaintenance is (un-
fortunately) in itself a source of breakdowns due to the increased risk of human
error from performing the maintenance tasks. In the end, thestrategy still does
not guarantee that the maintained equipment will not sufferbreakdowns.

Maintenance is in general also costly, and much of it is unnecessary and
avoidable. According to Wireman [278], as much as 1/3 of maintenance costs
are due to bad planning, overtime costs, and limited or misuse of preventive
maintenance, and are therefore unnecessary. Companies canspend as much as

4.1 Introduction 53

its net income on maintenance [166]. Further, in [155] it is stated that main-
tenance expenses are usually in the range of 15–40 % of the total production
cost on a yearly basis; Coetzee [53] and Bevilancqua and Braglia [33] estimate
these expenses to 15–50 % and 15–70 % respectively. In [11], Alsyouf states
that

The lack or ineffectiveness of planning and scheduling can sig-
nificantly restrict the maintenance department in achieving its ob-
jectives and can thus prevent the company from maximising busi-
ness profits and offering competitive advantages.

It is reasonable to define “good” maintenance as when corrective mainte-
nance is kept low, and as few preventive maintenance actionsas possible are
done [55]. Bengtsson [31] points out that fulfilling this goal demands great
skill in planning proper preventive maintenance intervalsand tasks. The ef-
fect on production of preventive and corrective maintenance activities is also
important [43,73]. For example, it might be beneficial to perform some main-
tenance activities in advance in exchange for overall higher availability, or less
impact on production.

4.1.1 Maintenance Policies

A maintenance policyis a set of rules for how maintenance of a system should
be carried out. In this section, we describe some common maintenance policies
for preventive maintenance. The maintenance policies presented below are
based on mathematical models using results from reliability theory and renewal
theory. For a theoretical background, see books by Gertsbakh [99] (on which
this section is based), Barlow and Proschan [27] and Høylandand Rausand
[119].

The most common preventive maintenance policies are theblock, group
and age replacement policies. In the block replacement policy (also called
periodic replacement), the unit is, for a period timeT , preventively replaced
at time instantsT, 2T, 3T, In addition to the PM replacements, CM is
also present in that the unit is replaced at each failure which appears between
preventive replacements. A variant where only operationaltime is considered
and the goal is to maximize stationary availability is described in [99]. In a
periodic group repairpolicy, a set ofn units are serviced with a period ofT . At
service, all machines are renewed completely. No repairs are undertaken within
operational periods. In anagereplacement policy, a unit is replaced on failure
or when its age reachesT , whichever occurs first. This differs from block

54 Chapter 4. Maintenance Planning

replacement in that age is measured relative to the previousreplacement of the
component. Extensions of the age replacement policy, with goal of maximizing
availability where repair time is non-negligible, also exist (see, for example,
[99]).

4.1.2 Availability and Reliability

Theavailability of a unit (or system) is the percentage of time the unit is avail-
able for production. Similar but slightly different is the concept ofreliability,
where downtime due to preventive maintenance is not taken into account. In
power production and the oil and gas industry, availabilityand reliability have
a great impact on plant economy. Peak periods of production are when most
of the income is generated, which is why planned outages are scheduled for
nonpeak periods [37] and power purchase contracts frequently have clauses on
capacity payments. According to the same source, a 1 % reduction in plant
availability could cost as much as $500,000 per year in loss of income on a 100
MW plant. Today, availability for small to medium size units(below 100 MW)
is already between 94–97 %. For trains, availability is a very important param-
eter in deciding how many trains are needed for running the intended traffic. If
train units have high availability, this may mean that fewertrains are needed to
give an adequate service level. In [37], availability is formally defined as

A = 1− PM + CM + EO

T

wherePM is the amount of time spent on preventive maintenance,CM is the
amount of corrective maintenance,T is the time period andEO is the equiv-
alent outage hours due to reduced capacity. For a system generating power,
EO can be defined asEO = TR(1 − LA/LD) whereTR is the time period
of reduced load,LA is the actual load andLD is the desired load. Similar
definitions can be constructed for vehicle maintenance, butthe most common
usage is to setEO = 0. Since availability is often a parameter in maintenance
contracts, it is not common that other definitions are used. One example is to
define availability asA = 1 −MP /T whereMP is time intended for produc-
tion which is instead spent on maintenance. Such definitionsare suitable for
evaluating maintenance performance.

SinceCM andEO depend on actual conditions at runtime, an optimistic
assumption of no load reduction and no corrective maintenance yields the fol-
lowing theoretical availability, which is used later in Papers E and F:

AT = 1− PM

T

4.1 Introduction 55

If the expected amount of corrective maintenance is available for a maintenance
schedule, then this could easily be included in the calculations for availability
when performing or after optimization. Since more maintenance is actually
done when maintenance activities are grouped together, theamount of cor-
rective maintenance would almost certainly be lower, whichmeans a higher
availability than expected.

4.1.3 Condition-Based Maintenance

Condition-based maintenance was introduced to try to avoidthe pitfalls of tra-
ditional maintenance policies by maintaining the correct equipment at the right
time. CBM is based on using real-time data to prioritize and optimize main-
tenance resources using a process of state observation called condition mon-
itoring. A CBM system will ideally monitor the system continuously,acting
with a preventive maintenance activity when maintenance isactually necessary.
Predictive maintenance (PdM)takes this one step further by adding dynamic
lifetime estimates and deterioration models to predict thefuture wear of com-
ponents, allowing for production and maintenance planningin advance. In
recent years, instrumentation and better tools for condition data analysis have
indeed made it possible to accurately predict both the future deterioration and
existing imminent failures of many components subject to physical wear. Ide-
ally, CBM in this form will allow maintenance personnel to doonly the right
things, minimizing spare parts cost, system downtime and time spent on main-
tenance.

Although CBM in theory allows maintenance to be performed just before
a potential failure becomes critical, in practice, maintenance still needs to be
scheduled and planned in advance. As a direct consequence ofthe more exact
knowledge of the maintenance need of the product, CBM maintenance “inter-
vals” no longer remain fixed in time and easily predicted. Instead, they vary
depending on the condition of several components and a variety of other fac-
tors. In [200], it is stated that in order to maximize the benefits from CBM for
the enterprise, it is as important to focus on the aftermarket supply chain — i.e.
the back-end of the process, including maintenance — as it isto develop bet-
ter data gathering, diagnostic and prognostic techniques.Further, it is shown
that optimizing the value chain results in lower costs and higher availability.
Failure to plan properly for CBM, as with normal preventive and corrective
maintenance, will result in availability loss due to poor grouping of mainte-
nance, suboptimal usage of labor, and other cost inefficiencies.

56 Chapter 4. Maintenance Planning

4.2 Reliability-Centered Maintenance
In this section, we outline maintenance practices based on the reliability-cent-
ered maintenance (RCM) methodology [92,169,171,181,182,287]. RCM is an
approach aimed at improving and optimizing maintenance practices by focus-
ing on identifying and implementing the maintenance policies that can most
efficiently manage the risk of equipment failure. In this section, we mainly
use the terminology from the NAVAIR 00-25-403 management manual [171],
which is consistent with the original RCM report by Nowlan and Heap [181]
and compliant with the SAE JA1011 standard [218]. Accordingto the last
source, RCM addresses at least the following seven questions:

1. What is the item supposed to do, and what are its performancestandards?

2. In what ways can the item fail to provide the required functionality?

3. What events cause each of these failures?

4. What are the immediate consequences to the unit when each failure oc-
curs?

5. In what way does each failure matter?

6. Is there an activity that can be systematically performedto proactively
prevent (or at least diminish to a satisfactory degree) the consequences
of the failure?

7. If a suitable preventive maintenance activity cannot be found, then what
should be done instead?

The initial part of the RCM process, corresponding to questions 1-5, is to
identify the operating context and identify failure modes,its possible causes
and effects. This is often done by performing a failure mode,effects and criti-
cality analysis (FMECA). In answering questions 2 and 3, thefailure character-
istics of a physical system are defined in terms ofpotentialandfunctionalfail-
ures. A potential failure is “a definable and detectable condition that indicates
that a functional failure will occur,” while a functional failure is “the inability
of an item to perform a specific function within specified limits” ([171], page
1–3). In addition, ahidden functional failureis defined as a functional failure
undetected during normal operation.

Question 6 (“What systematic task can be performed proactively to prevent,
or to diminish to a satisfactory degree, the consequences ofthe failure?”) is

4.2 Reliability-Centered Maintenance 57

answered by setting up a set of maintenance tasks, divided into the following
categories:

Servicing tasks include replenishment or replacement of consumables such
as fuel, oil, filters, and anti-freezing agents, which are depleted during
normal operations.

Lubrication tasks consists of the application of lubricants to specified com-
ponents.

On condition tasks are periodic or continuous inspections designed to detect
potential failures and therefore allow repair prior to a functional failure.

Failure finding tasks are preventive maintenance tasks performed at specified
intervals to determine whether hidden failures have occurred.

Hard time tasks are the scheduled removal of an item or a restorative action
at some specified maximum age.

For on condition tasks, the estimated time from a potential to a functional
failure (the PF interval) is used to determine inspection intervals. Methods for
estimating the PF interval include lab testing, analyticalmethods, in-service
data evaluation and engineering judgment, which can be based on operator and
maintainer input, component design knowledge and experience from different
applications with similar components [171]. In reality, the true time from a
potential to a functional failure is stochastic and will vary depending on the
environment and operational conditions. For failure modesthat can have safety
or environmental effects, it is therefore important to select a PF interval that
captures the situations that are possible. Note that CBM canbe seen as on
condition tasks with a very short inspection interval, corresponding roughly to
the effective sample frequency of the condition monitoringequipment.

From a long-term scheduling perspective, there is little difference between
the categories, since we, on a high-level, do not need to distinguish between
what work is contained in the maintenance activity. In otherwords, in this the-
sis, a replacement (hard time task above) of a component is considered repair to
a as-good-as-new state for the component, while inspections (servicing, lubri-
cation, on-condition and failure-finding tasks) are considered “as-good-as-old”
maintenance, in that we assume that such activities do not affect component
lifetime. However, one significant difference between replacements and in-
spections is that these tasks affect each other quite substantially; since replace-
ments restore component lifetime fully, it would serve little or no purpose to

58 Chapter 4. Maintenance Planning

Time

Age

Overhaul Replacement

Inspections

Time

Age

Overhaul Replacement

Inspections

Inspection schedule
reset

Figure 4.1: Unrelated replacements/overhauls and inspections of a single com-
ponent (top), and the same situation with synchronized inspections, resulting
in the elimination of unnecessary inspections (bottom).

schedule inspections independently of the performed replacements, as shown
in the top of Figure 4.1. Therefore, we consider inspectionsof a component
as dependent on the component replacements that occur during operation, as
shown in the bottom part of Figure 4.1.

Once the requirements for each maintenance activity are completed, the re-
sulting maintenance specification ispackagedinto work packages. As pointed
out in [171], properly packaged preventive maintenance is more cost effective
than unpackaged.. Maintenance packing is done by grouping activities that are
“natural” in that they have common intervals, access the same subsystems of
the unit, and/or require the same type of skills. Next, the flexibility of activ-
ity intervals needs to be determined. Safety-critical or environmentally-related
activities often dictate where the groups can be performed,while economic
or operational tasks can often be moved more freely. To reduce PM tracking

4.2 Reliability-Centered Maintenance 59

Activities
Time units Not phased Phased
100 1,2,3 1,2,3,5,6
200 1,2,3,4,5 1,2,3,4,7
300 1,2,3 1,2,3,5,8
400 1,2,3,4,5,6,7,8,9 1,2,3,4,9
500 Repeat with 100 unit package

Table 4.1: Phasing of maintenance activities

problems, maintenance packages are also often created using multiples of a
base interval.

After the initial grouping of tasks based on frequency and common factors,
it may be beneficial to additionallyphasemaintenance activities in order to
level the resource requirements. The following example from [171] illustrates
this idea. Suppose that maintenance activities 1,2 and 3 arepackaged at 100
time units, activities 4 and 5 at 200 units, and activities 6-9 at 400 units. Phas-
ing activities essentially means spreading their occurrence over the packages
to level the maintenance effort. One possible phasing of activities is shown in
Table 4.1; note that under the “Phased” column, activities 6–9 are still repeated
at 400 hour intervals, although in different packages from the scenario where
phasing have not been performed.

The concept of “flexible packaging,” where activities are packaged dynam-
ically based on the accumulated usage or wear of the individual components,
is also mentioned in [171]. According to the same source,

This concept allows maintenance to be performed uniquely
for each end item, and therefore requires significant management
oversight or facilitization using automated rulesets and tracking to
ensure all maintenance is performed across the population before
the RCM-derived tasks intervals. While significant operational
and economic advantages are possible, the oversight required to
ensure safety is not compromised should be carefully considered
before adopting this approach. Development of reliable PHM1

systems will make this kind of approach more easily accomplished.
An additional consideration is the need to reliably predictbudget,
material, and resource requirements when the maintenance pack-
ages and intervals are not fixed.

1Prognostics and Health Management

60 Chapter 4. Maintenance Planning

Figure 4.2: Schematics of a gas turbine. Image by Jeff Dahl, licensed under the
Creative Commons License: http://creativecommons.org/licenses/by-sa/3.0/.

Papers D–F in this thesis are concerned with dynamically optimizing the pack-
aging of maintenance. Finally, to adjust to experiences gained during opera-
tion, RCM advocates constant review and the adjustment of maintenance prac-
tices for the lifetime of the machinery.

4.3 Specific Maintenance Practices
Maintenance practices differ much between application areas, since industrial
areas may have substantially different operational characteristics and demands.
In this section, we will outline maintenance practices for gas turbines and train
units.

4.3.1 Gas Turbines

A gas turbineis a rotary engine that uses the Brayton cycle to extract energy
from a flow of combustion gas [37]. The archetypical example of a gas turbine
is the jet engine [163], depicted in Figure 4.2. Axial flow gasturbines are typi-
cally constructed using acompressor(upstream), producing compressed air to
acombustion chamber, where fuel (diesel oil, natural gas, etc.) is injected. The
resulting fuel-air mixture is ignited, thereby increasingthe volume and veloc-
ity (and temperature) of the gas flow, which drives theturbine (downstream).
The turbine is coupled to the compressor, which sustains thecombustion cycle.
Gas turbines are found in jet aircraft, naval vessels, locomotives, battle tanks,
generators and oil and gas applications. The main advantageof gas turbines is
a better power-to-weight and power-to-size ratio than for piston engines.

4.3 Specific Maintenance Practices 61

Theoretically, a higher combustion temperature means greater efficiency,
but the materials (steel alloys, nickel, ceramic, etc.) used to construct the en-
gine parts limit the temperature at which the cycle can operate. The wear of
components such as turbine blades, guide vanes, burners, and the combustion
chamber itself is increased significantly with higher temperature, and consid-
erable engineering effort is therefore spent into cooling turbine parts. One
example is that the blades, guide vanes and combustion chamber are typically
constructed to allow a cooling air flow to pass through the component. Al-
though this can reduce the air flow by as much as 25 % in a modern gas turbine,
cooling of this type is necessary to reduce maintenance to anacceptable level.

Turbine Maintenance

Due to its simpler construction with fewer moving parts, a gas turbine is in
theory more reliable and easier to maintain than a piston engine. In practice,
however, turbine components are worn heavily due to a higherworking speed
and temperature. In Figure 4.3, the contribution to gas turbine down time due
to some major components, according to [37], is shown. According to the
figure, the components in the hot parts of the gas turbine (including the first
stage of the turbine) contribute 65 % of the down time of a typical gas turbine.
The focus of our case study on gas turbine maintenance — presented in Pa-
pers E and F — is therefore on the hot parts, which includes thecombustion
chamber and blades and guide vanes in the compressor turbine. Turbine blades
and guide vanes are also highly sensitive to dust, fine sand, and salts in naval
environments, which works as abrasives. Therefore, air filters are fitted in en-
vironments such as deserts and on oil platforms. In some applications, filters
have to be fitted and changed several times daily.

Today, the condition of the gas turbine is mainly estimated by inspection
at previously planned stops. Since the gas turbine usually is in more or less
constant use in between maintenance stops, the turbine cannot be inspected
and/or repaired for relatively long periods of time. Therefore, methods have
been developed that can not only estimate and monitor the condition and wear
of the turbine during operation, but also helppredict the future maintenance
need of turbine components. The future condition of a gas turbine depends on
parameters such as actual work load profile, quality of fuel,humidity, parti-
cle levels, etc. Of course, these factors have always affected the condition of
the turbine, but it is not until recently that it has been possible to estimate and
measure these correctly for individual components during operation. In the
past, it has therefore been necessary to construct maintenance intervals from

62 Chapter 4. Maintenance Planning

 0

 5

 10

 15

 20

 25

 30
C

om
bu

st
or

C
an

s

F
irs

t S
ta

ge
N

oz
zl

es

F
irs

t S
ta

ge
B

la
de

s

C
on

tr
ol

s

B
ea

rin
gs

C
om

pr
es

so
r

B
la

de
s

C
ou

pl
in

g

S
ea

ls

G
en

er
at

or

Figure 4.3: Percentage of gas turbine component contributions to down time,
from [37].

the critical component (or components) that require the highest maintenance
frequency. In addition, an additional worst-case scenariomargin has been nec-
essary, taking into accounts factors such as possible load variations, difference
in environment, and other sources of uncertainty. These sources of pessimism
present in today’s maintenance intervals are natural candidates for improve-
ment using CBM.

4.3.2 Train Maintenance

Vehicle maintenance differs in several ways from the maintenance of stationary
equipment. The largest difference is that vehicles are mobile, their current and
future location being dependent on the previous and future planned jobs for the
vehicle. For rail vehicles, the planned jobs are usually present in the form of
a timetable. Instead of having mobile repair crews visitingthe site for mainte-
nance work, the train regularly visits one or several maintenance workshops as
a part of the normal duty of the train. Another difference is that the train dis-
patching central must make sure that the train is indeed sentto the workshop
when needed. Given a timetable, the problem of allocating trains in the form
of locomotives, carriages and/or multiple units to the timetabled transports is
called therolling stock rostering problemor therolling stock circulation prob-
lem [6, 12, 86, 191, 227], and isNP-hard when constraints on maintenance are
present [84]. We look closer on an operational version of this planning problem

4.4 Maintenance Optimization 63

when maintenance constraints are added in Paper D.
Since the freedom to plan maintenance is limited by the trainrostering, the

execution of maintenance actions is also limited to the timeintervals when the
train is actually in a workshop. These intervals may be different from the pre-
dicted time intervals since trains are dispatched according to the global train
supply and the demand in the network for an operator. In addition, time-
consuming setup activities are present in the shunting (movements on a rail
yard) of trains to and from the workshop, and parts of the maintenance equip-
ment might be located at other, specialized workshops in thevicinity of the
main maintenance workshop. On top of this, it is frequently the case that there
are several maintenance workshops located in different strategic areas of the
network, often having different track layout and resource restrictions. Of im-
portance is also the layout of the workshops, which have several resource limi-
tations. First and foremost, a workshop contains a number oftracks for vehicles
under maintenance. It is also common that tracks have different setups in the
form of stationary equipment, such as lifts, graves and power lines. The cur-
rent state of practice in short-term maintenance planning is, in our experience,
manual planning with the aid of computerized maintenance management sys-
tems, spreadsheets and possibly project planning tools. InPaper D, we assume
that the timetabled visits to the maintenance shop are planned in such a way
that no workshop resource restrictions (except limited duration) apply.

4.4 Maintenance Optimization
In this section, we will give an overview of the previous workin maintenance
optimization. The area of optimal maintenance and maintenance planning and
scheduling has been active since the 60s, starting with the seminal work by
Barlow and Hunter [26]. The book by Barlow and Proschan [27] gives a good
theoretical background on reliability theory. Gertsbakh [99] also provides a
good foundation of the area together with some applications.

Plenty of survey papers of the area also exist. An excellent but slightly
dated overview of the many maintenance planning and scheduling applications
considered is given by Dekker [69]. More up-to-date reviewsare given by Bu-
dai et al. [43], focusing on planning models for maintenance and production,
and Nicolai and Dekker [174], studying previous work in optimal maintenance
of multi-component systems. Furthermore, the state of the art in applications of
maintenance optimization models is discussed by Dekker andScarf [71]. More
generic mathemathical maintenance models are also reviewed by Scarf [226].
Other surveys of the area can be found in, e.g., [50, 73, 164, 193, 262, 267].

64 Chapter 4. Maintenance Planning

Also worth mentioning is the review of gas turbine life management by Vit-
tal et al. [264], the book by Chenet al. [49] on machine scheduling, and
the significant amount of work on maintenance management (see, for exam-
ple, [34, 92, 126, 170, 183, 194, 256] and the literature review of the same area
by Garg and Deshmukh [96]).

Multi-unit Maintenance

In multi-unit maintenances, the system under consideration consists of multiple
units, which have identical or individual characteristicsregarding failure, costs,
setup activities, etc. An overview of multi-unit maintenances is given by Cho
and Parlar [50]. The research papers [7, 32, 42, 66, 124, 159,192, 198, 285]
all consider multi-unit systems. In addition, the effect onthe system if one
unit is down is sometimes considered. In aseries system, the system is down
whenever one of the units is down; this is the model that was most suitable for
the systems considered in this thesis. In aparallel system, the system is down
if all units are down. A system can also be a hybrid between series and parallel.
A special case hybrid is thek-out-of-n system model, where the system is up
as long as at leastk units are working.

An example of multi-unit maintenance research is given in Bris et al. [41,
42], who apply a genetic algorithm to the problem of minimizing perfect pre-
ventive maintenance (returning the maintained component to a state as good
as new), in simulated series-parallel systems with a finite horizon. Availability
requirements are considered with regard to corrective maintenance activities;
preventive maintenance is assumed to be instantaneous. Sortrakul et al. [237]
use genetic algorithms to optimize both preventive maintenance and production
scheduling, which is a deterministic single-machine scheduling problem [23]
with the goal of minimizing the total weighted completion time. Preventive
maintenance restores the machine to a “good as new” condition, and minimal
repair is assumed for corrective maintenance. Pascualet al. [189] consider life
cycle costs when planning maintenance consisting of preventive and correc-
tive maintenance. Other approaches, for example those madeby Jayabalan and
Chaudhuri [123] and Usheret al. [261], also consider systems under deteriora-
tion, but are not directly related to the work presented in this thesis.

Opportunistic Maintenance

The work discussed so far has in common that maintenance activities for dif-
ferent units have been considered more or less independent with regard to costs
and duration. Of great economic importance in multi-unit systems is that the

4.4 Maintenance Optimization 65

corrective or preventive maintenance of one unit is often, due to system stand-
still or shared costs, anopportunityto perform maintenance of other units at
the same time. Opportunistic maintenance (OM) is maintenance where such
opportunities for more efficient maintenance exist. Opportunities can either
be fixed in time and occur at specific dates, or occur due to the preventive or
corrective repair of other units. However, the most common use of the term
“opportunistic maintenance” is to denote models where unitfailure and repair
offers an opportunity for preventive maintenance of other units.

In [72], Dekker and Smeitink consider the allocation of preventive main-
tenance with unit duration to randomly occurring opportunities with a random
duration. The authors discuss the prioritization of maintenance activities based
on the component-specific cost of deviating from the optimalpoint of pre-
ventive maintenance. Extensions to the case when maintenance duration is
non-uniform are also considered, and the authors note that for each opportu-
nity, the optimal packing of maintenance can be decided by solving a knapsack
problem [132, 160]. Galante and Passannanti [94] study the problem of de-
ciding which components to maintain in order to guarantee a required level
of reliability up to the next planned stop. The authors propose an exact cost-
minimizing algorithm for this problem, and apply it to a realcase regarding
ship maintenance.

Maintenance with Economic Dependencies

In addition to opportunistic maintenance, there are other reasons why the joint
execution of maintenance activities may be beneficial. For example, two ac-
tivities may share a setup activity such as dismantling, or may be executed in
parallel. Maintenance research where this is considered issometimes called
maintenance witheconomic dependencies. An overview of the area can be
found in the review paper by Dekkeret al. [73].

Several articles on maintenance models with economic dependencies have
also been published. In these articles, economic dependencies are usually mod-
eled as sharedsetup costs. The most common case is when setup costs are mod-
eled as a constant which is independent on the clustered activities. This is the
approach taken in [68, 70, 74, 273–275]. van Dijkhuizen and van Harten [263]
consider a more generic dependency tree, where the leaves correspond to “ba-
sic” activities and the non-leaves (minus the root) are setup activities. Pre-
decessor setups to an activity can therefore be shared with other activities in
different branches emanating from the setups. Almgrenet al. [9] study oppor-
tunistic replacement schedules where opportunities are possible maintenance

66 Chapter 4. Maintenance Planning

occasions. The duration of activities is not directly considered in the model,
but shared setup costs, in the same form as in [275] and in Papers E and F, are
taken into account. Setup costs may also be dependent on the calendar time
of the opportunity. The problem is formulated as a MIP model,an extension
of the model proposed by Dickmanet al. [75] in that stronger constraints are
used. The model is also a generalization of what was proposedin Andréas-
son [15, 16] by allowing time dependency. The authors shows that for each
set of fixed maintenance opportunities (where setup costs are therefore in ef-
fect), the remaining problem decomposes into a linear programming problem.
Therefore, binary integer variables are only needed for theopportunities. As
another extension from Dickmanet al. [75], it is shown that, for costs which
are non-increasing with time, replacements will only occurat positive integer
multiples of individual component deadlines.

In [245], Tan and Kramer consider opportunistic maintenance in the chem-
ical processing industry. Monte Carlo simulation is used toestimate costs,
which allows a very generic cost structure at the expense of determinism. A ge-
netic algorithm is proposed to solve the optimization problem. The cost of pro-
duction loss is considered uniform for the planning horizon, and opportunistic
costs are estimated once for each component only. More complex dependen-
cies between maintenance activities are therefore not considered. Marseguerra
et al. [159] also apply Monte Carlo simulation and use genetic algorithms. In
addition, they consider other properties such as the numberof maintenance
technicians available. In [288], Zhouet al. propose a scheduling algorithm
for preventive imperfect maintenance of a multi-unit system based on dynamic
programming, extending the work in [287]. Opportunities are assumed to exist
whenever a component reaches its reliability threshold, and preventive mainte-
nance is grouped using opportunistic cost savings due to downtime and main-
tenance costs. The downtime cost model for an activity grouped together with
one at its threshold is to subtract the first cost from the total cost.

Goyal and Kusy [106] determine maintenance frequencies fora set of ma-
chines, where setup costs are constant and maintenance stops are scheduled
periodically. Operating costs are assumed to increase proportionately to the
length of maintenance intervals. Yamayeeet al. [281] use dynamic program-
ming to optimize maintenance schedules with respect to equipment reliability,
demand of generating units and maintenance cost. The main difference be-
tween the work by Yamayeeet al. and our work is that in the former, main-
tenance is scheduled for power-generating units on a high level. In our work,
maintenance is scheduled for a single unit with the aim of obtaining mainte-
nance packages for individual components. Since we are focused on the main-

4.4 Maintenance Optimization 67

tenance of a single unit, we also use a more detailed downtimemodel where
small-scale effects such as resting periods are taken into account. In [275],
Wildemanet al. discuss maintenance scheduling for a multi-component sys-
tem with constant co-allocation cost savings, and where deterioration of com-
ponents is also taken into account. In addition, a polynomial solution approach
is presented. The polynomial solution is optimal if groups areconsecutive, i.e.,
the groups are in the same order as the preferred time point ofthe activities.
In a model with a more complex setup structure, it may be optimal to group
activities non-consecutively if the earnings from doing sooutweigh the costs.

Rail Vehicle Maintenance

From a system perspective, maintenance of vehicles is more complex than
maintenance of stationary equipment. This is because the vehicles have to
be routed to a workshop before maintenance can be performed.Therefore, re-
search in rail vehicle maintenance often includes the associated routing prob-
lems. An exception is present in work by Haniet al. [111, 112] who focus
on the detailed planning of work performed in the train maintenance facilities
only. Cordeauet al. [56] give a survey of models for optimization of train
routing and scheduling.

In Paper D, we approach the problem of routing vehicles to theworkshop
so that maintenance costs are minimized. We also consider the sub-problem
of grouping maintenance activities such that the number of maintenance oc-
casions is minimized. The problem of determining optimal vehicle routes is
NP-hard in general [84], which is why we chose a heuristic method to find
suitable routes.

Train maintenance routing has been considered before, and is often seen
as part of the related problem of assigning trains to timetable trips. A closely
related problem to the one we have considered has also been studied by An-
deregget al. [12], who propose a heuristic routing approach usable in a long-
term perspective. Packaging of maintenance is not considered. Maróti and
Kroon [161, 162] also consider the operational maintenancerouting problem
without considering maintenance packaging. In [161], a multi-commodity flow
model is proposed to solve the problem. In [162], an integer programming for-
mulation is presented, and a shortest path heuristic is proposed to solve the
problem for a planning horizon of 1–3 days. Evaluations on a realistically-
sized example show that the heuristic performs well in practice.

Sriskandarajahet al.[239] consider an overhaul scheduling problem for the
Hong Kong Mass Transit Railway Corporation (MTRC). The routing of trains

68 Chapter 4. Maintenance Planning

is not considered, but workshop capacity and work force requirements are
present in the model. Pěnǐckaet al. [197] formalize a train maintenance rout-
ing problem and propose generation of possible changes to the traffic schedule
to fulfill the model. The model is conceptually similar to therouting problem
in Paper D without the sub-problem of maintenance packaging. Unfortunately,
the approach is not evaluated on simulated or real data, and it is not stated
whether the approach has been implemented.

4.5 Summary
This chapter contained an overview of maintenance practices with a focus on
maintenance planning for rail vehicles and gas turbines. Wedescribed some
common maintenance practices today, including the block, group and age re-
placement policies. We discussed some different definitions of availability and
reliability, and gave a brief overview of condition-based and predictive main-
tenance. An overview of the RCM approach was also given, and then some
specific issues with regard to maintenance of gas turbines and trains were de-
scribed. The section ended with an overview of related work in maintenance
optimization, with a focus on maintenance where there existeconomic advan-
tages in grouping maintenance. We also discussed the specific problems that
arise in train maintenance.

Chapter 5

Related Work and Thesis
Contributions

This chapter gives an overview of the academic and industrial contributions of
the thesis, and relate our work to previous approaches to stack analysis, best-
effort worst-case response-time analysis and maintenanceoptimization. The
chapter is organized as follows. In the first section, a summary of the academic
contributions is given, followed by a more detailed description of the contribu-
tions within each of the three areas. For each area, a comparison with related
work and a summary of the academic contributions of the corresponding in-
cluded papers are given. The industrial impact of the thesisis then described,
followed by a list of the included publications together with a description of
the author’s role. Also included is a list of other publications by the author.
The chapter ends with a discussion on future work.

5.1 Academic Contributions
The academic contributions of this thesis can be summarizedas follows:

• In the area of stack analysis, we give several new efficient algorithms for
analysis of shared-stack usage, and compare the algorithmsto previous
approaches.

• In the area of best-effort response-time analysis, we givea new efficient
hill-climbing algorithm with random restarts for the problem of estimat-
ing the highest response-time in a complex system, and evaluate and

69

70 Chapter 5. Related Work and Thesis Contributions

compare the algorithm with a previous evolutionary algorithm.

• In the area of maintenance planning, we give several new methods for
dynamic planning of train and gas turbine maintenance, and compare
the results to the state-of-practice.

In the rest of this section, we briefly describe the differences between Pa-
pers A–F and related work in the three areas of shared stack analysis, best-
effort response-time analysis and dynamic maintenance planning. For each
area we also outline the academic contributions of the included papers.

5.1.1 Shared Stack Analysis

The term stack sharing is commonly used to describe the ability to utilize ei-
ther a common run-time stack or a pool of run-time stacks. Stack sharing in
the SMX RTOS [167] is an example of the latter, where releasedtasks fetch
a stack from the pool of available stack areas, returning it on termination. A
different approach is proposed by Middhaet al. [168], where the stack of a
task is allowed to grow into the stack area of another task. However, the most
common type of stack sharing seems to have evolved from Baker[24, 25],
where the proposedstack resource policy (SRP)allows tasks to share a single
run-time stack. Stack consistency is achieved by not allowing preempted tasks
to resume until all tasks occupying stack space above it havefinished. SRP
permits stack sharing among processes in static and in some dynamic priority
preemptive systems. This type of stack sharing can be efficiently implemented
in systems where tasks have run-to-completion semantics and do not suspend
themselves, and is supported by several commercial real-time operating sys-
tems, e.g. RTA-OS [153], Rubus OS [19] and Fusion RTOS [259].In Papers
A and B, we use this notion of stack sharing, and assume that several tasks use
one common, statically allocated, run-time stack.

Since in SRP, a preempted task is not allowed to resume until the tasks oc-
cupying the stack space above it have terminated, the possible preemptions be-
tween tasks become crucial in determining the maximum possible stack mem-
ory usage. The basic method to determine this in SRP and similar policies is
to identify the maximum stack usage for the tasks on a single priority level (or
preemption level). Since tasks on the same priority level cannot preempt each
other, the sum of these maximums for all priority levels thenconstitutes a safe
upper bound on the total stack usage.

Several authors have also addressed the minimization of stack space alloca-
tion. A common way of reducing the number of possible preemptions (thereby

5.1 Academic Contributions 71

also reducing stack requirements), is to allow tasks to disable preemptions from
tasks up to a specified priority, the so-calledpreemption threshold. Tasks with
a higher priority than the threshold are still allowed to preempt. Wang and
Saksena [268] address the problem of determining an optimalpriority and pre-
emption threshold for a given task set. However, due to a potentially large
search space, the branch and bound algorithm presented is not very efficient.
In [220] Saksena and Wang revisit the efficiency problem of the algorithm
in [268] and present three algorithms with different computational complexity.
Gai et al. [93] introduce SRP with preemption thresholds (SRPT) and give a
procedure that can minimize shared-stack usage without jeopardizing schedu-
lability. The procedure achieves this by using non-preemption groups for tasks
using SRPT, and extends [220] by taking the stack usage of tasks into account.
Ghattas and Dean [100] also investigate stack space requirements under pre-
emption threshold scheduling. Daviset al. [63] also address stack memory
requirements by using non-preemption groups to reduce the amount of mem-
ory needed for a shared stack. It is shown that the number of preemption levels
required for typical systems can be relatively small, whilestill maintaining
schedulability.

Although non-preemption groups and preemption thresholdscan reduce the
amount of RAM needed for a shared stack, the use of these affects a system by
restricting the occurrences of preemptions, which can havea negative effect on
schedulability. Furthermore, the method we present in thispaper can be applied
after preemption groups have been assigned, thereby reducing the system stack
further.

To obtain an upper bound on stack memory usage for a given task, the
possible control-flow paths of the task within an application must be ana-
lyzed [116]. Bounds on maximum stack usage of a given task canbe found
by abstract interpretation of an application with tools such as AbsInt [3] and
Bound-T [248]. Chatterjeeet al. [48] study stack boundedness for interrupt-
driven programs. The programs are modeled using the interrupt calculus of
Palsberg and Ma [185]. In [208] Regehret al. present a method to guarantee
stack safety of interrupt-driven software. The method works by computing the
worst-case memory requirements of individual interrupt handlers, and by then
performing preemption analysis between handlers.

A large number of publications also address preemption analysis, see, e.g.
[13,51,77,147,202,207,243]. For example, in [147] Leeet al. present a tech-
nique to bound cache-related preemption delays in fixed-priority preemptive
systems. Our work relates to theirs in that we also investigate nested preemp-
tion patterns. However, our objectives differ in that Leeet al. focus on timing

72 Chapter 5. Related Work and Thesis Contributions

0 5 10 15 20 25 30

P1

P4

P2a

P2b

P2b

P2a

P1

P4

P3

P3

Figure 5.1: Offset relations (left) and the resulting preemption graph (right) for
a set of tasks with priority 1–4.

delays caused by cache reloading and preemption patterns, whereas we address
shared memory requirements.

Contributions

In the previous section, we saw that the most common analysistechnique for
stack sharing is to use the sum of the stack usage for each preemption level.
However, in some cases, more information that can be used forcomputing a
safe stack upper bound exists. One source of available information is the tim-
ing relations between tasks. For example, data regarding the earliest possible
activation time point, a so-calledoffset, can together with response time data
aid in deciding which preemption patterns are possible. Thesituation is illus-
trated in Figure 5.1, showing five tasks of different priority. The tasks are also
affected by a short high-priority service interrupt which is taken into account
in the response times of the tasks. Tasks are named P1–P4, with a high number
indicating a high priority; note that P2a and P2b share the same priority. The
release time points and latest finishing time points of the task set, assumed to
be schedulable, are shown. We assume a maximum stack usage of1 for each
task. The relations (due to offsets and response times) between tasks make it
possible to deduce that none of the tasks P1, P2a and P2b can bepreempted by
any of tasks P3 and P4, since they will never execute simultaneously. Further-
more, tasks P2a and P2b share the same priority and thereforemay not preempt
each other.

The information on possible and impossible preemptions canbe collected
in the form of apreemption graph, shown in the rightmost part of Figure 5.1. In

5.1 Academic Contributions 73

Transaction 1

Transaction 2

Transaction 3

LEGEND

Transaction #

t11

p 29

s 150

t14

p 27

s 579

t15

p 6

s 1743

t12

p 23

s 187

t13

p 29

s 1117

t23

p 12

s 1915

t21

p 12

s 2006

t24

p 15

s 1687

t25

p 14

s 496

t22

p 4

s 2024

t32

p 13

s 1768

t34

p 16

s 680

t31

p 20

s 396

t35

p 14

s 1625

t33

p 14

s 222

Task

Prio

Stack

Figure 5.2: Example of a maximum stack utilization preemption chain in a
system with three transactions and 15 tasks in total. Thin arcs indicate possible
intra-transaction preemptions between tasks due to increasing priority and off-
set relations The thick arcs indicate the longest path in themaximum possible
preemption chain. Note that of the possible inter-transaction preemptions, only
the ones in the longest path are shown.

this figure, an arc between two tasks indicates that the tasksmay be preempted
in the order of the arc. From this graph, we can deduce that we will need
at most 2 units of stack space, a significant reduction from the estimate of 4
obtained from using the sum of the maximum stack usage on eachlevel.

Paper A develops this idea further for systems where tasks that share the
same stack have an offset relation. However, in some systems, groups of tasks
(called transactions) share a single activation event. The different activation
events in those systems are independent. Therefore, preemptions that are im-
possible due to offsets and response times can only be accurately taken into
account within transactions. In Paper B, the ideas from Paper A are extended
to handle this more generic system model, and to further tighten the analysis us-

74 Chapter 5. Related Work and Thesis Contributions

ing non-preemption relations from other sources, for example shared resources
or precedence relations. A small example of a maximum stack utilization pre-
emption pattern is shown in Figure 5.2.

In more detail, the contributions are the following:

• A general and exact formulation of the maximum stack usage problem,
which is applicable for any preemptive system model based ondynamic
(run-time) properties.

• Several novel methods to determine the maximum stack memory used
in preemptive, shared stack, real-time systems. By approximating the
run-time properties, together with information about the underlying run-
time system, these methods can safely approximate the maximum sys-
tem stack usage at compile time. The thesis also contains proofs of cor-
rectness of the given algorithms.

• Two comprehensive simulation studies where we have evaluated our
techniques and compared them to the traditional methods to estimate
stack usage. We found that our methods significantly reducedthe amount
of stack memory needed.

5.1.2 Best-effort Response-time Analysis

Recall that the response time of a task is the time taken from task invocation
to termination. Although analysis of response-time with regard to other as-
pects than the worst-case response-time, for example average response-time
can also be interesting, we will focus on worst-case response time. Worst-case
response-time analysis includes standard approaches suchas RTA [125, 152]
and formal analysis tools like UPPAAL [29, 260], which can also be used for
this purpose. However, the state space for industrial-sized models can grow too
large for formal analysis tools to be practically useful.

An alternative method is to use metaheuristics such as genetic (or evolu-
tionary) algorithms [103]. In Section 3.3.2, we described related work with re-
gard to metaheuristics for execution-time analysis. However, the line of work
most closely related to Paper C is the use of evolutionary algorithms for ver-
ifying timing constraints in a real-time system. In this line of work, response
time is often considered directly, since it is more appropriate in a system-wide
analysis than execution time is. As an example, Alanderet al. [5] use genetic
algorithms to generate test cases for a software relay system used in electrical
networks. The purpose of the genetic algorithm is to provokehigh response

5.1 Academic Contributions 75

times for the software, which executes as a single task in a simulation environ-
ment. Preemptions and communication between tasks are therefore not con-
sidered. Another approach is given by Briandet al. [39, 40], who investigate
using genetic algorithms for stress-testing real-time systems in the sense that
test cases that maximize the chances of deadline misses are constructed. The
genetic algorithm operates on a sequence of release times for aperiodic tasks.
Input data is not considered, since this is considered estimated for in the tasks’
WCET.

A problem with evolutionary algorithms is that they are not particularly
suitable to guaranteeing a high testing coverage. Tliliet al. [254] extend the
basic evolutionary testing approach by seeding the algorithm with test data to
achieve a higher structural coverage. Experiments show an increased reliability
in the results and an increased efficiency in terms of generations needed.

In a distributed system, response time can involve communication over sev-
eral distributed nodes, and timing analysis is therefore more complex than for
single nodes. Samiiet al. [221] aim to find extreme response times for dis-
tributed systems by optimizing a set of simulation parameters for models con-
taining temporal attributes and communication. A genetic algorithm is used to
explore combinations of task execution times in order to maximize end-to-end
response time. The flow of control within tasks is not considered. Their results
depend on the method developed by Racu and Ernst [199] for identifying sit-
uations where decreased execution times can lead to increased response times.
Also worth mentioning is the analysis framework by Kimet al. [135], which
has a similar basis in the use of temporal task attributes.

Kraft et al.[141] present a meta-heuristic approach for best-effort response-
time analysis of models of complex legacy systems using ideas from genetic
algorithms. The approach is based on a simulator using a schedule of ran-
dom number generator seeds, in turn used to generate random numbers for the
parameters of the adhering system model. The seed of the random number
generator can be changed at arbitrary time points, and thus provides a form of
control mechanism.

The work presented in Paper C is an extension of [141], introducing an
explicit representation of input data that is more suitablefor the analysis un-
dertaken. Contrary to previous approaches, we use the well-known, but in this
area rarely used, hill-climbing algorithm for response-time analysis, and we
take into account system-level properties such as preemptions and task com-
munication. To the best of our knowledge, this approach at response-time anal-
ysis has not been tried before. Results are promising in thatconvergence for
small systems is very quick, and the less complex algorithm performed, in all

76 Chapter 5. Related Work and Thesis Contributions

cases tried, better than the genetic algorithm we used for comparison..
Wegener and Grochtmann [270] use evolutionary algorithms for finding

extreme WCET and BCET estimates. They report that local search, such as
hill climbing and simulated annealing, had little effect inimproving the results
of the evolutionary algorithm, and suggest that this effectcomes from already
having reached a fitness plateau or local minima by using the evolutionary
algorithm. The authors then state:

The optimal solution sought represents an isolated and small
subdomain and is best found by sampling the input domain widely.

We believe that this conclusion is also valid for estimatingresponse time. It
is likely that the results obtained in Paper C can partially be accounted to the
randomization and iterative restart of the hill-climbing algorithm, which helps
in exploring plateaus and escape local minima.

Contributions

Paper C proposes an complementary approach to traditional RTA, in contrast
can be applied to a wide range of complex industrial systems,but does not
guarantee that the produced estimates are upper bounds on the WCRT. The
approach is based on simulation optimization, which is capable of reproducing
the application behavior that causes a specific response time. The main merit
of the proposed approach is that it can be used for testing purposes: showing
that the response time of a taskexceedsthe task deadline is enough to deem
the system unschedulable, and therefore unsafe. More specifically, Paper C
contains the following contributions:

• An explicit representation of simulation instances in theform of inputs
such as execution time, arrival jitter and external input stimulus has been
defined.

• A novel algorithm for manipulating simulation parameters, based on the
well-known idea of hill-climbing with random restarts.

• A thorough experimental evaluation of performance, scaling and conver-
gence of the new algorithm, comparing the results to those obtained from
using a genetic algorithm and Monte Carlo simulation. In theevaluation,
we show that the new algorithm is significantly better than previous ap-
proaches in identifying extreme response times using a limited number
of simulations.

5.1 Academic Contributions 77

5.1.3 Maintenance Planning and Scheduling

In this section, we compare the work in Papers D–F with what has previously
been done in the area of maintenance planning. The body of research aimed
at the railway sector is significantly smaller than for the more generic problem
of maintenance planning with economic dependencies. The main differences
between Paper D and the previous work in the railway domain isthat in the
former, we study stochastic maintenance predictions in theform of a Gaussian
distribution, where the risk level of overrunning a subsystem counter is the ba-
sis for setting a maintenance deadline in a global unit, for example distance.
We also include the risk levels and the change in safe lifetime estimates occur-
ring during condition monitoring as the input to the planning problem. This
problem in turn is composed of two subproblems; first, findingsuitable circu-
lation plans so that the maintenance cost is minimized, and second, the packing
of maintenance on a component level as a subproblem to compute the global
maintenance cost. As far as we know, this approach has not been tried before
in the railway domain. However, it should be pointed out thatthe approach
presented in Paper D can benefit from more advanced models andsolution
approaches for both the railway circulation problem and forthe maintenance
planning subproblem. This is discussed in more detail in Section 5.5.3.

The previous work most closely related to Papers E and F is concerned
with maintenance scheduling with economic dependencies between mainte-
nance activities. As an example, two activities may share the same dismantling
activity, or may be performed in parallel. Our work and previous approaches
differ mainly in the economic effect of grouping activities. The situation is
illustrated in Figure 5.3. Most articles on maintenance models with economic
dependencies consider a common setup cost for all maintenance activities per-
formed at a single maintenance occasion. The approach is illustrated in Fig-
ure 5.3(a), where activities A, B and C all share a common setup cost,S1. The
setup cost is used to represent the actual cost of dismantling and preparation
work before, during and after the maintenance occasion. In most cases, the
setup cost is also constant and therefore independent on thedate of the main-
tenance occasion. This is the approach taken in [68,70,74,273–275]. In some
other papers, the cost is allowed to vary with the maintenance occasion date,
see for example the work by Almgrenet al. [8,9].

Common costs are suitable for the modeling of costs due to shared activ-
ities, for example where there is a single shared cost associated with taking
down the system [8, 244, 279], and where the setup cost is independent on the
activities performed during the opportunity. This is true for many practical

78 Chapter 5. Related Work and Thesis Contributions

S1

A B C

(a) Common setups

S1

S2 C

A B

(b) Tree-shaped setups

S1 S2

A B C

(c) DAG-shaped setups

Figure 5.3: Economic dependencies with a common setup cost (a), with tree-
shaped setups [263] (b) and with DAG-shaped setups [8] (c).

A1 A2 A3

B1 B2 B3

C1 C2 C3

Figure 5.4: Economic dependencies due to parallel-time duration computa-
tions.

applications, which is why we include the same type of time-dependent com-
mon setup cost in Papers E and F. The model is however less suitable when
the actual activities carried out during the opportunity have more intricate de-
pendencies, and when the duration of the stop has a significant effect on the
total cost. The single work most closely related to Papers E and F is due to
van Dijkhuizen and van Harten [263], who consider shared setup costs and de-
pendencies that form a tree. The situation is illustrated inFigure 5.3(b), where
setup S2 is shared between activitiesA andB, and setupS1 is shared between
setupS1 and activityC. If in this example activityA or B were planned for
a single stop, then bothS1 andS2 would have to be carried out. However, if
only activityC was to be carried out, then only setupS1 would have to be per-
formed. The tree breakdown of dependence is attractive since it corresponds
more closely to the assembly structure of many units (see, e.g., the paper by
Sculli and Suraweera [228]), and is therefore suitable to represent setup costs

5.1 Academic Contributions 79

due to the disassembly of a unit.
However, it is worth noting that a tree structure does not allow the modeling

of situations like the one in Figure 5.3(c), where setupS1 is shared between ac-
tivitiesA andB, while setupS2 is shared between activityB andC. Almgren
et al. [8] give an informal example of this type of more complex dependencies
between setups in the area of jet engine maintenance, where there are several
possible ways to disassemble and reassemble the engine. In this case, only one
disassembly path in Figure 5.3(c) needs to be taken to reach asingle compo-
nent. Since an industrial gas turbine and a jet engine are similar in construction,
the example in [8] is also relevant for our application. However, one significant
difference is that a jet engine is usually replaced as a unit and then serviced of-
fline. Gas turbines used for the application we consider are often serviced on
site, and the main cost driver is the downtime of the gas turbine.

In Papers E and F, we therefore opted for a downtime-dependent cost model
more accurately representing the loss-of-production costs. For this purpose, we
use a detailed but manageable model of economic dependencies due to the ef-
fect of parallel work on downtime. In this model, illustrated in Figure 5.4,
work in an activity is divided into different globalphases. Typical phases in-
clude the shutdown of the turbine, one or several maintenance phases, a startup
phase, and a testing phase. All jobs (at a single maintenanceoccasion) which
are performed within a phase can be done in parallel, but the phases have to be
performed in series. Activities which cannot be done in parallel should there-
fore be separated into different phases. After computing the work time for the
activities at an opportunity, we can then proceed to computean additional night
and weekend rest time, as shown in Paper F.

As an example, the work-time model illustrated in Figure 5.4contains
phases 1–3. In the figure, maintenance of typeA consists of the activitiesA1,
A2 andA3, B consists ofB1, B2 andB3 andC consists ofC1, C2 andC3.
The activities{A1, B1, C1}, {A2, B2, C2} and{A3, B3, C3} can be done in
parallel. Each activity has a duration (except the leftmostand rightmost nodes
which are used to indicate the start and finish of the maintenance occasion).
Therefore, the work time durationuj (not considering night and weekend rest)
for a maintenance occasionj can be computed as the longest path in the graph,
or equivalently as

uj = max{A1, B1, C1}+max{A2, B2, C2}+max{A3, B3, C3}.

Given a work time durationuj , a downtime costlj for the occasionj and
a functionD (given in Paper F) adding resting time, we can then compute the
cost of a single occasionj due to downtime aslpcjD(uj). Note that the cost of

80 Chapter 5. Related Work and Thesis Contributions

downtime is unique for each occasion. This is important since in practice, the
downtime cost varies with the price of the produced commodity and the cost of
operation. For the same reason, there might also be periods of downtime that
are essentially free with regard to downtime cost. Such periods occur when the
plant is down due to external circumstances not captured by the maintenance
model. Examples include the maintenance of other systems not considered
within the application, and downtime due to weekends or vacation periods. As
far as we know, the approach outlined above has not been triedbefore in the
field of maintenance planning.

Contributions

In Papers D–F, we have studied the problem of preventive maintenance plan-
ning and scheduling under condition monitoring. In traditional maintenance
planning, preventive maintenance is statically scheduledat design-time. In
condition-based maintenance, preventive (and ideally corrective) maintenance
must continuously be rescheduled (and therefore re-planned) to take full advan-
tage of potential cost savings. In essence, the problem is todynamically de-
cide which maintenance activities should be grouped together at which point in
time. For rail vehicles, this includes the routing of vehicles to the maintenance
workshop. We have developed a simulation environment for stochastic predic-
tive maintenance where vehicles are dynamically routed andmaintenance is
planned into packages. We have also developed a tool for the heuristic opti-
mization of preventive maintenance stops. In detail, the contributions of this
thesis are the following:

• A methodology for dynamic planning of the maintenance of trains, in
which trains are rerouted to maintenance shops according todynamically
changing maintenance deadline estimates. Maintenance is packaged and
planned according to the vehicle occupancy in the workshop.

• A precise definition of the maintenance scheduling problemwith oppor-
tunities, which allows maintenance to be planned with regard to both
loss-of-production costs and direct maintenance costs. Wealso prove
that the scheduling problem isNP-complete.

• An implementation of a heuristic algorithm that can quickly solve the
problem for practical purposes. We also describe the implementation
and the deployment of the scheduling tool, PMOPT.

• An evaluation of the results of maintenance scheduling on four variants

5.2 Industrial Impact 81

of a real-world scenario, and a comparison of the results of our algorithm
to the results from using mixed integer linear programming.

5.2 Industrial Impact
The work presented in this thesis has had substantial impactin industry. All
included papers have either been implemented and deployed in industry, or
have been evaluated on data from real-world industrial applications. In detail,
the industrial impact has been the following:

• The polynomial-time stack analysis algorithm that is presented in Paper
A (which has also been further developed in Paper B) was developed
with the goal of being applicable for the Rubus OS from Arcticus Sys-
tems [19]. In particular, the hybrid system model in Rubus OSconsists
of one set of time-triggered offline-scheduled tasks, together with event-
triggered tasks in the form of higher-priority interrupt tasks and lower-
priority soft real-time tasks. The statically scheduled tasks can share a
single execution stack, and can be considered a single transaction. The
stack analysis from Paper A with polynomial complexity was therefore
chosed for deployment [117], and is included in the Rubus ICEdevelop-
ment environment.

• The best-effort response-time analysis method presentedin Paper C has
been applied to models of industrial systems, but has not yetseen indus-
trial deployment. However, it seems likely that the developed method
could be used to estimate the worst-case response-time for areal in-
dustrial system. The simulator RTSSim is generic and can be used to
simulate the behavior of most commercial RTOS:s. However, for the
method to be useful for large-scale complex real-time systems, a model
extraction tool should be employed to simplify the simulated program
and decrease simulation time. Such a tool (MXTC, Model eXtraction
Tool for C) is currently in development along the lines of theapproach
proposed in [14].

• The approach for combined maintenance routing and planning proposed
in Paper D have been developed in collaboration with Bombardier Trans-
portation AB, and has been evaluated on real timetable data and train
circulation plans. The interest from the railway industry has been sig-
nificant, and we have frequently shown the demonstrator application in
relevant practical fora. However, the approach has not yet been deployed

82 Chapter 5. Related Work and Thesis Contributions

in practice. One possible explanation for this is that the rail industry, hav-
ing a history spanning 150 years back, is slightly more conservative than
other industrial areas. In addition, there has traditionally been less com-
petition in the rail industry than in other industrial areasdue to a state-
owned railway system. The relatively recent deregulation of the Swedish
railway sector has changed this picture substantially, buthas also divided
maintenance responsibility between several actors. Thereis also still a
lack of competition between operators, which have not worked in favor
of introducing new technology. However, the plans to further deregulate
the railway sector and allow competing operators on equal terms will
likely open up for approaches such as the one proposed in Paper D.

Furthermore, the maintenance packaging heuristic from Paper D was the
basis for later development into the maintenance optimizerused in Pa-
pers E–F. The optimization algorithms employed in the latter papers have
been implemented and integrated in a tool, PMOPT, which has been de-
ployed and is currently in use at Siemens Industrial Turbomachinery AB
(SIT AB). The development effort started with an extension of the ap-
proach proposed in Paper D, and was then further developed inclose
collaboration with SIT AB. The development and deployment effort is
described in Paper F. PMOPT has now been running operatively for al-
most a year within two maintenance contracts. in the first, PMOPT is
fully operational, while in the second, PMOPT is used for validation and
testing purposes of the full CBM strategy. Testing is done mainly for
gaining feedback from practical experience, monitoring ofenvironmen-
tal variables and time increments. Within a few years, four or five peo-
ple working within maintenance planning are expected to usethe tools
for 10–15 different operational contracts. The estimated availability im-
provement of using PMOPT is 0.5–1.0 %, a substantial increase consid-
ering that availability is currently in the range of 97–98 %.This amounts
to a decrease in downtime of 16–50 %.

5.3 Publications Included in the Thesis
This section lists the papers included in this thesis (including bibliographical
data) and details my contribution to each of them.

• K. Hänninen, J. Mäki-Turja, M. Bohlin, J. Carlson, and M. Nolin. De-
termining maximum stack usage in preemptive shared stack systems. In
Proceedings of the 27th IEEE Real-Time Systems Symposium, Decem-

5.3 Publications Included in the Thesis 83

ber 2006.

I was one of the authors of the paper. My main contributions are the
construction of the algorithm and the proofs of safety and correctness.

• M. Bohlin, K. Hänninen, J. Mäki-Turja, J. Carlson, and M. Nolin. Bound-
ing shared-stack usage in systems with offsets and precedences. In Pro-
ceedings of the 20th Euromicro Conference on Real-Time Systems, July
2008.

I was the main author of the paper and coordinated the work. I con-
structed both algorithms and most of the proofs with some help and
checking from the other authors. I also implemented the algorithms and
helped in performing the evaluations.

• M. Bohlin, Y. Lu, J. Kraft, P. Kreuger and T. Nolte. Best-Effort Simula-
tion-Based Timing Analysis using Hill-Climbing with Random Restarts.
In Proceedings of the 15th International Conference on Real-time and
Embedded Computing Systems and Applications, August 2009.

I was the main author of the paper and coordinated the work. I con-
structed and implemented the optimization algorithm.

• M. Bohlin, M. Forsgren, A. Holst, B. Levin, M. Aronsson, andR. Stein-
ert. Reducing vehicle maintenance using condition monitoring and dy-
namic planning. In Proceedings of the 4th IET International Conference
on Railway Condition Monitoring, June 2008.

I was the main author of the paper and coordinated the work. I imple-
mented the heuristic optimization algorithms and performed the evalua-
tion.

• M. Bohlin, M. Wärja, A. Holst, P. Slottner, and K. Doganay. Optimiza-
tion of condition-based maintenance for industrial gas turbines: Require-
ments and results. In Proceedings of ASME Turbo Expo 2009: Power
for Land, Sea and Air, paper number GT2009-59935, Orlando, Florida,
USA, June 2009.

I was the main author of the paper and coordinated the work. I per-
formed the experiments and designed and implemented the optimization
software.

• M. Bohlin, K. Doganay, and P. Kreuger. Scheduling gas turbine main-
tenance based on condition data. In Proceedings of the 21st Innovative

84 Chapter 5. Related Work and Thesis Contributions

Applications of Artificial Intelligence Conference, Pasadena, California,
USA, July 2009.

I was the main author of the paper and coordinated the work. I designed
and implemented the optimization software and set up and performed
the experiments with help regarding schedule feasibility from M. Wärja
at Siemens Industrial Turbomachinery AB.

5.4 Relevant Publications Not Included in the Thesis
This section lists related papers authored and co-authoredby the thesis author
that are not included in the thesis.

• M. Bohlin. Composing global constraints for local search.In Proceed-
ings of 15th International Conference on Applications of Declarative Pro-
gramming and Knowledge Management, Fraunhofer FIRST, Berlin, and
University of Potsdam, 2004.

• M. Bohlin. Design and implementation of a graph-based constraint model
for local search. Licentiate thesis, April 2004.

• M. Bohlin, K. Hänninen, and J. Mäki-Turja. Shared stack analysis in
transaction-based systems. In J. Hansson, editor, Work in Progress Pro-
ceedings of the IEEE Real-Time Systems Symposium, pages 37-40, De-
cember 2007.

• M. Bohlin, K. Hänninen, J. Mäki-Turja, J. Carlson, and M. Nolin. Safe
shared stack bounds in systems with offsets and precedences. Technical
Report ISSN 1404-3041 ISRN MDH-MRTC-221/2008-1-SE, Mälardal-
en University, January 2008.

• M. Bohlin, P. Kreuger, M. Aronsson, and Malin Forsgren. Ansatser för
flexibel planering och schemaläggning av tågtidtabeller (In Swedish).
Technical Report T2006:08, SICS (Swedish Institute of Computer Sci-
ence), 2006. ISSN 1100-3154.

• M. Bohlin, Waldemar Kocjan, and P. Kreuger. Designing global schedul-
ing constraints for local search: A generic approach. Technical Report
T2002-20, Mälardalen University, November 2002.

• M. Bohlin. Constraint satisfaction by local search. Technical Report
T2002:07, Mälardalen University, June 2002.

5.4 Relevant Publications Not Included in the Thesis 85

• M. Bohlin. Improving cost calculations for global constraints in local
search. In Pascal Van Hentenryck, editor, Principles and Practice of Con-
straint Programming, page 772. Springer, September 2002.

• J. Ekman, A. Holst, M. Aronsson, M. Bohlin, M. Forsgren, andS. Larsen.
Time - en gemensam informationsutbytesplattform för järnvägstransport-
branschen (In Swedish). Technical Report T2006:03, SICS (Swedish
Institute of Computer Science), 2006. ISSN 1100-3154.

• K. Hänninen, J. Mäki-Turja, M. Bohlin, J. Carlson, and M. Nolin. Analys-
ing stack usage in preemptive shared stack systems. Technical Report
ISSN 1404-3041 ISRN MDH-MRTC-202/2006-1-SE, Mälardalen Uni-
versity, July 2006.

• K. Hänninen, J. Mäki-Turja, M. Bohlin, J. Carlson, and M. Nolin. De-
termining maximum stack usage in preemptive shared stack systems. In
Proceedings of the 9th Real-Time in Sweden Conference, pages 118-126,
August 2007.

• P. Kreuger, M. Aronsson, and M. Bohlin. Leveranstågplan: specifikation
och åtagande (In Swedish). Technical Report T2006:02, SICS(Swedish
Institute of Computer Science), 2006. ISSN 1100-3154.

• Yue Lu, M. Bohlin, J. Kraft, P. Kreuger, T. Nolte, and C. Norström.
Approximate timing analysis of complex legacy real-time systems using
simulation optimization. In Proceedings of the Work-In-Progress track
of the 29th IEEE Real-Time Systems Symposium, December 2008.

• B. Levin, A. Holst, M. Bohlin, R. Steinert, and M. Aronsson.Dynamic
maintenance. In Proceedings of the 21st International Congress and Ex-
hibition on Condition Monitoring and Diagnostic Engineering Manage-
ment, June 2008.

• M. Wärja, P. Slottner, and M. Bohlin. Customer adapted maintenance
plan (CAMP), a process for optimization of gas turbine maintenance.
In Proceedings of the ASME Turbo Expo 2008 Gas Turbine Technical
Congress and Exposition, June 2008.

• M. Aronsson, M. Bohlin and P. Kreuger. MILP formulations ofcumu-
lative constraints for railway scheduling — A comparative study. To
appear in Proceedings of the 9th Workshop on Algorithmic Methods and
Models for Optimization of Railways, 2009.

86 Chapter 5. Related Work and Thesis Contributions

5.5 Future Work
The work in this thesis could be developed further in severalways. In this
section, we outline some possible future research directions.

5.5.1 Stack Analysis

• The step from theanalysisof stack requirements to thedesign optimiza-
tion of real-time systems with the goal of minimizing stack requirements
is quite small, and is therefore a prime candidate for futureresearch.

• The stack analysis of real systems still require that the maximum stack
usage per task is computed. This problem is in itself complex, and has
previously been solved using abstract interpretation or other analysis
methods. An alternative would be to analyze the shared stackin a best-
effort manner, similar to what we propose for response-timeanalysis in
Paper C.

5.5.2 Best-effort Response-time Analysis

• Automatic or semi-automatic model extraction is a prerequisite for the
industrial deployment of the best-effort response-time analysis methods
presented in Paper C. This work is ongoing (see, for example,[118,139,
140]), but further research efforts are needed here to demonstrate the
usefulness of the proposed approaches.

• The validity of the analyzed model with regard to temporal properties
is crucial in order to obtain any confidence in the response-time results.
Here, model validation [224] could be employed to ensure that the model
is an accurate representation of the modeled system.

• The optimization method in itself can be improved in many ways. For
example, in some applications, a correlation seems to existbetween high
(or low) input values for certain inputs and high response-time for the
task under analysis. The algorithm could be modified to gather statistics
regarding the existence of such relations. It could also be improved by
placing more focus (in a intensification phase) on selectingvalues that
have previously yielded high response-times.

• The lower-bound on worst-case response time that the method yields
cannot be used in safety-critical applications without some measure of

5.5 Future Work 87

accuracy. Statistical estimates of the worst-case response time could be
useful for this purpose.

5.5.3 Maintenance Scheduling

Outlined below are some possible ways in which the maintenance planning
concept presented in Papers D–F could be further developed.Most of the ex-
tensions proposed below are currently being investigated at SICS.

• The maintenance planning and scheduling approaches presented in Pa-
pers D–F could be further developed in that risks in the form of statistical
distributions of failure probabilities could be explicitly introduced, and
the cost of corrective maintenance could be balanced against the cost of
preventive maintenance.

• The maintenance schedule optimization as presented in Papers E and F is
for a single machine only. In practice, A production plant iscomposed of
several machines, where maintenance activities as well as the effects of
breakdown are correlated. One possible extension of the work presented
in Papers E and F would be to consider several machines, connected
in e.g. a series-parallel fashion. Also, there are obvious advantages in
performing maintenance for several machines at the same time, since
this maintenance can be done in parallel, minimizing the total down time
of the plant. This type of maintenance has been considered previously
in, for example, [144,172,216,284,286].

• Paper D focuses on demonstrating that it is possible to reduce the number
of maintenance stops when stochastic maintenance in the form of indi-
vidual subsystem accumulators are present. The planning methodology
could benefit from more advanced models and solution approaches for
both the railway circulation problem and for the maintenance planning
subproblem. More rigorous approaches at solving the formerproblem
can be found in e.g. [162]. The latter problem is discussed ingreat de-
tail in Paper E–F. Although the focus is on a different deployment area,
the railway domain could equally benefit from the proposed solution for
maintenance planning.

• Finally, for a company maintaining several units, there are side con-
straints which are present in the real world but not considered in this
thesis. For example, the availability of spare parts and labor, as well
as the travel plans for repair crews, are in many cases crucial for timely

88 Chapter 5. Related Work and Thesis Contributions

maintenance. For the railway domain, the resource constraints which are
present in the workshop (a limited number of tracks, and the configura-
tion of equipment mounted at a track) should also be considered.

5.6 Conclusions
The goal of the work included in the thesis was to solve real industrial, combi-
natorial, problems, and for the work to have a substantial practical impact. In
this goal, we acknowledged the fact that optimization approaches for real com-
binatorial problem solving can fail due to unrealistic and inaccurate models,
and a lack of understanding of the real industrial problem and the environment
in which deployed software is going to be used. To avoid this,we have worked
continuously in close collaboration with industrial partners to understand the
application and its specific constraints. In solving the problems described in
Papers A–F, we have used several different methods from computer science
and artificial intelligence depending on the problem type and our estimates of
the difficulty of solving the problems to optimality. The thesis work has also
had substantial impact in industry and academia.

Bibliography

[1] L. A BENI, Server Mechanisms for Multimedia Applications, Tech. Re-
port RETIS TR98-01, Scuola Superiore S. Anna, Pisa, Italy, 1998.

[2] L. A BENI AND G. BUTTAZZO, Integrating Multimedia Applications in
Hard Real-Time Systems, in Proceedings of the 19th IEEE Real-Time
Systems Symposium, IEEE Computer Society, 1998, pp. 4–13.

[3] AbsInt. Web page,
http://www.absint.com/stackanalyzer/.

[4] W. A FZAL , R. TORKAR, AND R. FELDT, A systematic review of
search-based testing for non-functional system properties, Information
and Software Technology, 51 (2009), pp. 957–976.

[5] J. ALANDER, T. MANTERE, G. MOGHADAMPOUR, AND J. MATILA ,
Searching Protection Relay Response Time Extremes Using Genetic Al-
gorithm — Software Quality by Optimization, in Proceedings of the In-
ternational Conference on Advances in Power System Control, Opera-
tion and Management, vol. 1, 1997, pp. 95–99.

[6] A. A LFIERI, R. GROOT, L. KROON, AND A. SCHRIJVER, Efficient Cir-
culation of Railway Rolling Stock, Transportation Science, 40 (2006),
pp. 378–391.

[7] H. A LLAOUI , S. LAMOURI , A. ARTIBA , AND E. AGHEZZAF, Simul-
taneously schedulingn jobs and the preventive maintenance on the two-
machine flow shop to minimize the makespan, International Journal of
Production Economics, 1 (2008), pp. 161–167.

89

90 Bibliography

[8] T. A LMGREN, N. ANDRÉASSON, D. ANEVSKI, M. PATRIKSSON, A.-
B. STRÖMBERG, AND J. SVENSSON, Optimization of opportunistic re-
placement activities: A case study in the aircraft industry, tech. report,
Chalmers University, Göteborg, May 2008.

[9] T. A LMGREN, N. ANDRÉASSON, M. PATRIKSSON, A.-B. STRÖM-
BERG, AND A. WOJCIECHOWSKI, The replacement problem: A poly-
hedral and complexity analysis, Tech. Report Preprint 2009:4, Chalmers
University, Göteborg, January 2009.

[10] B. ALPERN, R. HOOVER, B. K. ROSEN, P. F. SWEENEY, AND F. K.
ZADECK, Incremental Evaluation of Computational Circuits, in Pro-
ceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algo-
rithms, San Francisco, California, January 1990, pp. 32–42.

[11] I. A LSYOUF, Maintenance practices in swedish industries: Survey re-
sults, International Journal of Production Economics, (2009), pp. 212–
223.

[12] L. A NDEREGG, S. EIDENBENZ, M. GANTENBEIN, C. STAMM , D. S.
TAYLOR , B. WEBER, AND P. WIDMAYER , Train Routing Algorithms:
Concepts, Design Choices, and Practical, in Proceedings of the 5th

Workshop on Algorithm Engineering and Experiments, Society for In-
dustrial and Applied Mathematics, 2003, pp. 106–118.

[13] J. H. ANDERSON, S. RAMAMURTHY , AND K. JEFFAY, Real-Time
Computing with Lock-Free Shared Objects, ACM Transactions on Com-
puter Systems, 15 (1997), pp. 134–165.

[14] J. ANDERSSON, J. HUSELIUS, C. NORSTRÖM, AND A. WALL , Ex-
tracting Simulation Models from Complex Embedded Real-Time Sys-
tems, in Proceedings of the International Conference on Software En-
gineering Advances, ICSEA’06, IEEE, Oct. 2006.

[15] N. ANDRÉASSON, Optimization of opportunistic replacement activities
in deterministic and stochastic multi-component systems, licentiate the-
sis, Chalmers University, May 2004.

[16] N. ANDRÉASSON, Utvärdering av matematiska modeller för optimer-
ing av opportunistiska underhållsbeslut för flygmotorer, tech. report,
Chalmers University, Göteborg, May 2005.

Bibliography 91

[17] D. L. APPLEGATE, R. E. BIXBY, V. CHVATAL , AND W. J. COOK,
The Traveling Salesman Problem: A Computational Study, Princeton
University Press, January 2007.

[18] K. R. APT, Principles of Constraint Programming, Cambridge Univer-
sity Press, August 2003.

[19] Arcticus Systems. Web page,
http://www.arcticus-systems.com.

[20] N. AUDSLEY, A. BURNS, R. DAVIS , K. TINDELL , AND

A. WELLINGS, Fixed Priority Pre-emptive Scheduling: an Historical
Perspective, Real-Time Systems, 8 (1995), pp. 129–154.

[21] N. AUDSLEY, A. BURNS, M. RICHARDSON, K. TINDELL , AND A. J.
WELLINGS, Applying New Scheduling Theory to Static Priority Pre-
emptive Scheduling, Software Engineering Journal, 8 (1993), pp. 284–
292.

[22] N. C. AUDSLEY, A. BURNS, M. F. RICHARDSON, AND A. J.
WELLINGS, Real-Time Scheduling: the Deadline-Monotonic Approach,
in Proceedings of the IEEE Workshop on Real-Time Operating Systems
and Software, 1991.

[23] K. R. BAKER AND D. TRIETSCH, Principles of Sequencing and
Scheduling, John Wiley \& Sons, Inc., 2009.

[24] T. P. BAKER, A Stack Based Resource Allocation Policy for Real-Time
Processes, in Proceedings of the 11th IEEE Real-Time Systems Sympo-
sium, IEEE Computer Society, 1990.

[25] T. P. BAKER, Stack-Based Scheduling of Realtime Processes, Real-
Time Systems, 3 (1991), pp. 67–99.

[26] R. BARLOW AND L. HUNTER, Optimum Preventive Maintenance Poli-
cies, Operations Research, 8 (1960), pp. 90–100.

[27] R. E. BARLOW AND F. PROSCHAN, Mathematical Theory of Reliabil-
ity, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 1996.

92 Bibliography

[28] I. BATE, P. NIGHTINGALE , AND A. CERVIN, Establishing timing re-
quirements and control attributes for control loops in Real-Time sys-
tems, in Proceedings of the 15th Euromicro Conference on Real-time
Systems, IEEE Computer Society, 2003, pp. 121–128.

[29] G. BEHRMANN, A. DAVID , J. HÅKANSSON, M. HENDRIKS, K. G.
LARSEN, P. PETTERSSON, AND W. Y I, UPPAAL 4.0, in Proceedings
of the International Conference on Quantitative Evaluation of Systems,
2006.

[30] N. BELDICEANU AND E. CONTEJEAN, Introducing Global Constraints
in CHIP, Mathematical and Computer Modelling, 20 (1994), pp. 97–
123.

[31] M. BENGTSSON, On Condition Based Maintenance and its Implemen-
tation in Industrial Settings, PhD thesis, Mälardalen University Press
Dissertation, November 2007.

[32] M. BERG, General trigger-off replacement procedures for two-unit sys-
tems, Naval Research Logistics, (1978), pp. 15–29.

[33] M. BEVILACQUA AND M. BRAGLIA , The Analytic Hierarchy Process
Applied to Maintenance Strategy Selection, Reliability Engineering &
System Safety, 70 (2000), pp. 71–83.

[34] B. BLANCHARD , D. VERMA, AND E. PETERSON, Maintainability:
A Key to Effective Serviceability and Maintenance Management, John
Wiley & Sons, Inc., New York, USA, 1995.

[35] M. BOHLIN , Y. LU, J. KRAFT, P. KREUGER, AND T. NOLTE, Best-
Effort Simulation-Based Timing Analysis using Hill-Climbing with Ran-
dom Restarts, in Proceedings of the 15th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications,
IEEE Computer Society, August 2009.

[36] B. BOUZY AND T. CAZENAVE, Computer Go: an AI Oriented Survey,
Artificial Intelligence, 132 (2001), pp. 39–103.

[37] M. P. BOYCE, Gas Turbine Engineering Handbook, Gulf Professional
Publishing, Boston, MA, USA, 2006.

Bibliography 93

[38] S. A. BRANDT, S. BANACHOWSKI, C. LIN , AND T. BISSON, Dynamic
Integrated Scheduling of Hard Real-Time, Soft Real-Time and Non-Real-
Time Processes, in Proceedings of the 24th IEEE Real-Time Systems
Symposium, IEEE Computer Society, 2003.

[39] L. C. BRIAND , Y. LABICHE, AND M. SHOUSHA, Stress Testing Real-
Time Systems with Genetic Algorithms, in Proceedings of the 2005
conference on Genetic and evolutionary computation, Washington DC,
USA, 2005, ACM, pp. 1021–1028.

[40] L. C. BRIAND , Y. LABICHE, AND M. SHOUSHA, Using genetic al-
gorithms for early schedulability analysis and stress testing in real-
time systems, Genetic Programming and Evolvable Machines, 7 (2006),
pp. 145–170.

[41] R. BRIS, Parallel simulation algorithm for maintenance optimization
based on directed acyclic graph, Reliability Engineering & System
Safety, 93 (2008), pp. 874–884.

[42] R. BRIS, E. CHÂTELET, AND F. YALAOUI , New method to minimize
the preventive maintenance cost of series-parallel systems, Reliability
Engineering & System Safety, 82 (2003), pp. 247–255.

[43] G. BUDAI -BALKE , R. DEKKER, AND R. NICOLAI , A Review of Plan-
ning Models for Maintenance and Production, tech. report, Erasmus
University Rotterdam, Econometric Institute, 2006. Econometric In-
stitute Report 2006-44.

[44] A. BURNS, K. TINDELL , AND A. WELLINGS, Effective Analysis for
Engineering Real-Time Fixed Priority Schedulers, IEEE Transactions
on Software Engineering, 21 (1995), pp. 475–480.

[45] A. BURNS AND A. WELLINGS, Real-Time Systems and Programming
Languages: Ada 95, Real-Time Java and Real-Time POSIX, Addison
Wesley Longmain, March 2001.

[46] G. C. BUTTAZZO, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[47] D. G. CATTRYSSE, M. SALOMON , AND L. N. VAN WASSENHOVE,
A Set Partitioning Heuristic for the Generalized Assignment Problem,
European Journal of Operations Research, 72 (1994), pp. 167–174.

94 Bibliography

[48] K. CHATTERJEE, D. MA , R. MAJUMDAR, T. ZHAO, T. HENZINGER,
AND J. PALSBERG, Stack size analysis for interrupt-driven programs,
in Proceedings of the 10th Annual International Static Analysis Sympo-
sium, June 2003.

[49] B. CHEN, C. N. POTTS, AND G. J. WOEGINGER, A review of ma-
chine scheduling: Complexity, algorithms and approximability, vol. 3
of Handbook of Combinatorial Optimization, Kluwer Academic Pub-
lishers, 1998.

[50] D. I. CHO AND M. PARLAR, A survey of maintenance models for
multi-unit systems, European Journal of Operations Research, 51 (1991),
pp. 1–23.

[51] H. CHO, B. RAVINDRAN , AND E. D. JENSEN, A Space-Optimal Wait-
Free Real-Time Synchronization Protocol, in Proceedings of the 17th Eu-
romicro Conference on Real-Time Systems, IEEE Computer Society,
July 2005.

[52] G. CLARKE AND J. W. WRIGHT, Scheduling of Vehicles from a Central
Depot to a Number of Delivery Points, Operations Research, 12 (1964),
pp. 568–581.

[53] J. COETZEE, Maintenance, Trafford Publishing, 2004.

[54] S. A. COOK, The Complexity of Theorem-Proving Procedures, in Pro-
ceedings of the3rd Annual ACM Symposium on Theory of Computing,
Shaker Heights, Ohio, 1971, pp. 151–158.

[55] R. COOKE AND J. PAULSEN, Concepts for Measuring Maintenance
Performance and Methods for Analysing Competing Failure Modes, Re-
liability Engineering & System Safety, 5 (1997), pp. 135–141.

[56] J. CORDEAU, P. TOTH, AND D. V IGO, A Survey of Optimization
Models for Train Routing and Scheduling, Transportation Science, 32
(1998), pp. 380–404.

[57] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, In-
troduction to Algorithms, MIT Press, Cambridge, MA, USA, second ed.,
2001.

Bibliography 95

[58] D. G. CORNEIL, Graph-Theoretic Concepts in Computer Science,
Springer Verlag, 2005, ch. Lexicographic Breadth First Search - A Sur-
vey, pp. 1–19.

[59] M. COUTINHO, J. RUFINO, AND C. ALMEIDA , Response Time Anal-
ysis of Asynchronous Periodic and Sporadic Tasks Sheduled by a Fixed
Priority Preemptive Algorithm, in Proceedings of the 20th Euromi-
cro Conference on Real-Time Systems, IEEE Computer Society, 2008,
pp. 156–167.

[60] G. B. DANTZIG AND J. H. RAMSER, The Truck Dispatching Problem,
Management Science, 6 (1959), pp. 80–91.

[61] Dash Optimization. Web page,
http://www.dashoptimization.com.

[62] A. DAVENPORT AND E. TSANG, Solving Constraint Satisfaction Se-
quencing Problems by Iterative Repair, in The 1st International Confer-
ence on The Practical Application of Constraint Technologies and Logic
Programming, april 1999, pp. 345–357.

[63] R. DAVIS , N. MERRIAM, AND N. TRACEY, How Embedded Applica-
tions using an RTOS can stay within On-chip Memory Limits, in Pro-
ceedings of the Work-in-Progress and Industrial Experience Session,
Euromicro Conference on Real-Time Systems, June 2000.

[64] R. I. DAVIS , A. BURNS, R. J. BRIL , AND J. J. LUKKIEN , Controller
Area Network (CAN) schedulability analysis: Refuted, revisited and re-
vised, Real-Time Systems, 35 (2007), pp. 239–272.

[65] J. M. V. DE CARVALHO , LP Models for Bin Packing and Cutting
Stock Problems, European Journal of Operations Research, 141 (2002),
pp. 253–273.

[66] K. S. DE SMIDT-DESTOMBES, M. C. VAN DER HEIJDEN, AND A. VAN

HARTEN, Availability of k-out-of-N systems under block replacement
sharing limited spares and repair capacity, International Journal of Pro-
duction Economics, 107 (2007), pp. 404–421.

[67] D. DECOTIGNY AND I. PUAUT, ARTISST: An Extensible and Modu-
lar Simulation Tool for Real-Time Systems, in Proceedings of the IEEE
International Symposium on Object-Oriented Real-Time Distributed
Computing, 2002.

96 Bibliography

[68] R. DEKKER, Integrating optimisation, priority setting, planning and
combining of maintenance activities, European Journal of Operations
Research, 82 (1995), pp. 225–240.

[69] R. DEKKER, Applications of Maintenance Optimization Models: A Re-
view and Analysis, Reliability Engineering & System Safety, 51 (1996),
pp. 229–240.

[70] R. DEKKER, R. V. EGMOND, J. FRENK, AND R. WILDEMAN , A
General Approach for the Coordination of Maintenance Frequencies,
Econometric Institute Report EI 9539-/A, Erasmus University Rotter-
dam, Econometric Institute, 1995.

[71] R. DEKKER AND P. SCARF, On the Impact of Optimisation Models in
Maintenance Decision Making: the State of the Art, Reliability Engi-
neering & System Safety, 60 (1998), pp. 111–119.

[72] R. DEKKER AND E. SMEITINK , Preventive Maintenance at Oppor-
tunities of Restricted Duration, Tech. Report 1991-38, Faculteit der
Economische Wetenschappen en Econometrie, Vrije Universiteit, Ams-
terdam, April 1991.

[73] R. DEKKER, R. E. WILDEMAN , AND F. A. VAN DER

DUYN SCHOUTEN, A Review of Multi-Component Maintenance
Models with Economic Dependence, Mathematical Methods of
Operations Research, 45 (1997), pp. 411–435.

[74] R. DEKKER, R. E. WILDEMAN , AND R. VAN EGMOND, Joint Re-
placement in an Operational Planning Phase, European Journal of Op-
erations Research, 91 (1996), pp. 74–88.

[75] B. DICKMAN , S. EPSTEIN, AND Y. W ILAMOWSKY , A mixed integer
linear programming formulation for multi-component deterministic op-
portunistic replacement, The Journal of the Operational Research Soci-
ety of India, (1991), pp. 165–175.

[76] E. W. DIJKSTRA, A Note on Two Problems in Connexion With Graphs,
Numerische Mathematik, 1 (1959), pp. 269–271.

[77] R. DOBRIN AND G. FOHLER, Reducing the Number of Preemptions in
Fixed Priority Scheduling, in Proceedings of the 16th Euromicro Con-
ference on Real-time Systems, IEEE Computer Society, 2004.

Bibliography 97

[78] S. EDGAR AND A. BURNS, Statistical Analysis of WCET for Schedul-
ing, in Proceedings of the 22th IEEE Real-Time Systems Symposium,
IEEE Computer Society, 2001.

[79] M. EHRGOTT, Multicriteria Optimization, Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2005.

[80] C. EKELIN , An Optimization Framework for Scheduling of Embedded
Real-Time Systems, PhD thesis, Chalmers University of Technology,
2004.

[81] J. ENGBLOM, Static Properties of Commercial Embedded Real-Time
Programs, and Their Implication for Worst-Case Execution Time Anal-
ysis, in Proceedings of the 5th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, IEEE Computer Society, June 1999.

[82] J. ENGBLOM AND A. ERMEDAHL, Modeling Complex Flows for Worst-
Case Execution Time Analysis, in Proceedings of the 21st IEEE Real-
Time Systems Symposium, IEEE Computer Society, 2000, pp. 163–174.

[83] J. ENGBLOM, A. ERMEDAHL , M. NOLIN , J. GUSTAFSSON, AND

H. HANSSON, Worst-Case Execution-Time Analysis for Embedded
Real-Time Systems, International Journal on Software Tools for Tech-
nology Transfer, 4 (2003), pp. 437–455.

[84] T. ERLEBACH, M. GANTENBEIN, D. HÜRLIMANN , G. NEYER,
A. PAGOURTZIS, P. PENNA, K. SCHLUDE, K. STEINHÖFEL, D. S.
TAYLOR , AND P. WIDMAYER , On the Complexity of Train Assignment
Problems, in Proceedings of the 12th International Symposium on Algo-
rithms and Computation, London, UK, 2001, Springer-Verlag, pp. 390–
402.

[85] Evidence Srl. Web page,
http://www.evidence.eu.com.

[86] P. FIOOLE, L. KROON, G. MARÓTI, AND A. SCHRIJVER, A rolling
stock circulation model for combining and splitting of passenger trains,
European Journal of Operations Research, 174 (2006), pp. 1281–1297.

[87] FlexRay. Web page,
http://www.flexray.com.

98 Bibliography

[88] M. S. FOX, Constraint-directed Search: A Case Study of Job-Shop
Scheduling, Morgan Kaufmann Publishers, 1987.

[89] M. L. FREDMAN AND R. E. TARJAN, Fibonacci Heaps and Their Uses
in Improved Network Optimization Algorithms, Journal of the ACM, 34
(1987), pp. 596–615.

[90] D. R. FULKERSON AND O. A. GROSS, Incidence Matrices and Interval
Graphs, Pacific Journal of Mathematics, 15 (1965), pp. 835–855.

[91] D. FURCY AND S. KOENIG, Limited Discrepancy Beam Search, in Pro-
ceedings of the 19th International Joint Conference on Artificial Intelli-
gence, L. P. Kaelbling and A. Saffiotti, eds., Professional Book Center,
July 2005, pp. 125–131.

[92] H. A. GABBAR , H. YAMASHITA , K. SUZUKI , AND Y. SHIMADA ,
Computer-aided RCM-based plant maintenance management system,
Robotics and Computer-Integrated Manufacturing, 19 (2003), pp. 449–
458.

[93] P. GAI , G. LIPARI, AND M. D. NATALE , Minimizing Memory Utiliza-
tion of Real-Time Task Sets in Single and Multi-Processor Systems-on-a-
Chip, in Proceedings of the 22th IEEE Real-Time Systems Symposium,
IEEE Computer Society, 2001.

[94] G. GALANTE AND G. PASSANNANTI, An exact algorithm for preven-
tive maintenance planning of series-parallel systems, Reliability Engi-
neering & System Safety, 94 (2009), pp. 1517–1525.

[95] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman, January 1979.

[96] A. GARG AND S. DESHMUKH, Maintenance Management: Literature
Review and Directions, Journal of Quality in Maintenance Engineering,
12 (2006), pp. 205–238.

[97] I. P. GENT AND T. WALSH, Towards an understanding of hill-climbing
procedures for SAT, in AAAI, 1993, pp. 28–33.

[98] I. P. GENT AND T. WALSH, The search for satisfaction, tech. report,
Dept. of Computer Science, University of Strathclyde, 1999.

Bibliography 99

[99] I. GERTSBAKH, Reliability Theory With Applications to Preventive
Maintenance, Springer-Verlag, Berlin, Germany, 2005.

[100] R. GHATTAS AND A. DEAN, Preemption Threshold Scheduling: Stack
Optimality, Enhancements and Analysis, in Proceedings of the 13th

IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, IEEE Computer Society, April 2007.

[101] P. C. GILMORE AND R. E. GOMORY, A Linear Programming Approach
to the Cutting-Stock Problem, Operations Research, 9 (1961), pp. 849–
859.

[102] F. GLOVER AND M. L AGUNA, Tabu Search, in Modern Heuristic Tech-
niques for Combinatorial Optimization, C. R. Reeves, ed., McGraw-
Hill, 1995, ch. 3, pp. 70–150.

[103] D. E. GOLDBERG, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley Professional, January 1989.

[104] M. C. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs,
no. 57 in Annals of Discrete Mathematics, Elsevier, February 2004.

[105] J. B. GOODENOUGH AND L. SHA, The Priority Ceiling Protocol: A
Method for Minimizing the Blocking of High Priority Ada Tasks, in Pro-
ceedings of the 2nd International Workshop on Real-time Ada Issues,
New York, NY, USA, 1988, ACM, pp. 20–31.

[106] S. K. GOYAL AND M. I. K USY, Determining Economic Maintenance
Frequency for a Family of Machines, The Journal of the Operational
Research Society, 36 (1985), pp. 1125–1128.

[107] J. GU, P. W. PURDOM, J. FRANCO, AND B. W. WAH, Algorithms for
the Satisfiability (SAT) Problem: a Survey, in Discrete Mathematics and
Theoretical Computer Science: Satisfiability (SAT) Problem, vol. 35,
1997, pp. 19–152.

[108] J. C. P. GUTIERREZ AND M. G. HARBOUR, Schedulability Analysis
for Tasks with Static and Dynamic Offsets, in Proceedings of the 19th

IEEE Real-Time Systems Symposium, IEEE Computer Society, 1998.

[109] J. C. P. GUTIERREZ AND M. G. HARBOUR, Response Time Analysis
for Tasks Scheduled under EDF within Fixed Priorities, in Proceedings

100 Bibliography

of the 24th IEEE Real-Time Systems Symposium, IEEE Computer So-
ciety, 2003.

[110] J. GUTIÈRREZ, J. GARCÍA , AND M. HARBOUR, Best-Case Analysis
for Improving the Worst-Case Schedulability Test for Distributed Hard
Real-Time Systems, in Proceedings of the 10th Euromicro Conference
on Real-time Systems, Los Alamitos, CA, USA, 1998, IEEE Computer
Society, pp. 35–44.

[111] Y. HANI , L. AMODEO, F. YALAOUI , AND H. CHEN, Simulation based
optimization of a train maintenance facility, Journal of Intelligent Man-
ufacturing, 19 (2008), pp. 293–300.

[112] Y. HANI , H. CHEHADE, L. AMODEO, AND F. YALAOUI , Simulation
based optimization of a train maintenance facility model using genetic
algorithms, in Service Systems and Service Management, 2006 Interna-
tional Conference on, vol. 1, 2006, pp. 513–518.

[113] H. HANSSON, M. NOLIN , AND T. NOLTE, Beating the Automotive
Code Complexity Challenge, in National Workshop on High-Confidence
Automotive Cyber-Physical Systems, April 2008.

[114] P. E. HART, N. J. NILSSON, AND B. RAPHAEL, Correction to "A For-
mal Basis for the Heuristic Determination of Minimum Cost Paths",
SIGART Bulletin, (1972), pp. 28–29.

[115] W. D. HARVEY AND M. L. GINSBERG, Limited Discrepancy Search,
in Proceedings of the 14th International Joint Conference on Artificial
Intelligence, 1995, pp. 607–615.

[116] R. HECKMANN AND C. FERDINAND, Verifying Safety-Critical Timing
and Memory-Usage Properties of Embedded Software by Abstract Inter-
pretation, in Proceedings of the Design, Automation and Test in Europe,
March 2005.

[117] K. HÄNNINEN , J. MÄKI -TURJA, S. SANDBERG, J. LUNDBÄCK ,
M. L INDBERG, M. NOLIN , AND K.-L. L UNDBÄCK, Framework for
Real-Time Analysis in Rubus-ICE, in Proceedings of the 13th IEEE In-
ternational Conference on Emerging Technologies and Factory Automa-
tion, IEEE, 2008.

Bibliography 101

[118] J. HUSELIUS, J. KRAFT, H. HANSSON, AND S. PUNNEKKAT , Evalu-
ating the Quality of Models Extracted from Embedded Real-Time Soft-
ware, in ECBS, IEEE Computer Society, 2007, pp. 577–585.

[119] A. HØYLAND AND M. RAUSAND, System Reliability Theory - Models
and Statistical Methods, John Wiley & Sons, Inc., USA, 1994.

[120] IEEE Standard 610.10-1994. Glossary of Computer Hardware Termi-
nology, IEEE, 1994. ISBN 1-55937-492-6.

[121] ILOG CPLEX. Web page,
http://www.ilog.com, 2009.

[122] ISO 11898-1:2003. Road vehicles – Controller area network (CAN) –
Part 1: Data link layer and physical signalling, International Organiza-
tion for Standards, 2003.

[123] V. JAYABALAN AND D. CHAUDHURI, Cost Optimization of Mainte-
nance Scheduling for a System with Assured Reliability, IEEE Transac-
tions on Reliability, 41 (1992), pp. 21–25.

[124] J. JHANG AND S. SHEU, Optimal age and block replacement policies
for a multi-component system with failure interaction, Journal of Sys-
tems Science, 5 (2000), pp. 593–603.

[125] M. JOSEPH AND P. PANDYA , Finding Response Times in a Real-Time
System, The Computer Journal, 29 (1986), pp. 390–395.

[126] Y. JUANG, S. LIN , AND H. KAO, A knowledge management system
for series-parallel availability optimization and design, Expert Systems
with Applications, 34 (2008), pp. 181–193.

[127] A. B. KAHN, Topological Sorting of Large Networks, Communications
of the ACM, 5 (1962), pp. 558–562.

[128] N. KARMARKAR , A New Polynomial-Time Algorithm for Linear Pro-
gramming, Combinatorica, (1984), pp. 373–395.

[129] W. KAROUI, M.-J. HUGUET, P. LOPEZ, AND W. NAANAA , YIELDS:
A Yet Improved Limited Discrepancy Search for CSPs, in CPAIOR, P. V.
Hentenryck and L. A. Wolsey, eds., vol. 4510 of Lecture Notesin Com-
puter Science, Springer, 2007, pp. 99–111.

102 Bibliography

[130] R. M. KARP, Reducibility Among Combinatorial Problems, in Com-
plexity of Computer Computations, R. E. Miller and J. W. Thatcher,
eds., Plenum Press, 1972, pp. 85–103.

[131] D. I. KATCHER, H. ARAKAWA , AND J. K. STROSNIDER, Engineering
and Analysis of Fixed Priority Schedulers, IEEE Transactions on Soft-
ware Engineering, 19 (1993), pp. 920–934.

[132] H. KELLERER, U. PFERSCHY, AND D. PISINGER, Knapsack Prob-
lems, Springer, Berlin, Germany, 2004.

[133] L. G. KHACHIAN , A Polynomial Algorithm in Linear Programming,
Doklady Akademii Nauk SSSR, (1979), pp. 1093–1096. Englishtrans-
lation in Doklady Mathematics 20, 191-194, 1979.

[134] U. KHAN AND I. BATE, WCET Analysis of Modern Processors Using
Multi-Criteria Optimisation, in Search Based Software Engineering, In-
ternational Symposium on, vol. 0, Los Alamitos, CA, USA, 2009, IEEE
Computer Society, pp. 103–112.

[135] K. K IM , J. L. DIAZ , L. L. BELLO, J. M. LOPEZ, C.-G. LEE, AND

S. L. MIN, An Exact Stochastic Analysis of Priority-Driven Periodic
Real-Time Systems and Its Approximations, IEEE Transactions on Com-
puters, 54 (2005), pp. 1460–1466.

[136] S. KIRKPATRICK, C. D. GELATT, AND M. P. VECCHI, Optimization
by Simulated Annealing, Science, 220 (1983), pp. 671–680.

[137] H. KOPETZ AND G. GRÜNSTEIDL, TTP — A Protocol for Fault-
Tolerant Real-Time Systems, Computer, 27 (1994), pp. 14–23.

[138] R. E. KORF, Improved Limited Discrepancy Search, in Proceedings
of the 8th Innovative Applications of Artificial Intelligence Conference,
Menlo Park, CA, USA, 1996, AAAI Press, pp. 286–291.

[139] J. KRAFT, RTSSim – A Simulation Framework for Complex Embedded
Systems, Tech. Report., Mälardalen University, March 2009.

[140] J. KRAFT, J. HUSELIUS, A. WALL , AND C. NORSTRÖM, Extract-
ing Simulation Models from Complex Embedded Real-Time Systems, in
Real-Time in Sweden 2007, August 2007.

Bibliography 103

[141] J. KRAFT, Y. LU, C. NORSTRÖM, AND A. WALL , A Metaheuristic Ap-
proach for Best Effort Timing Analysis Targeting Complex Legacy Real-
Time Systems, in Proceedings of the 14th IEEE Real-Time and Embed-
ded Technology and Applications Symposium, IEEE Computer Society,
April 2008.

[142] P. KREUGER AND M. A RONSSON, A Constraint Model for a Cyclic
Time Personnel Routing and Scheduling Problem, Technical Report
T2001:04, SICS, September 2001.

[143] P. KREUGER, M. CARLSSON, T. SJÖLAND, AND E. ÅSTRÖM, Se-
quence Dependent Task Extensions for Trip Scheduling, Technical Re-
port T2001:04, SICS, May 2001.

[144] R. LAGGOUNE, A. CHATEAUNEUF, AND D. A ISSANI, Opportunistic
Policy for Optimal Preventive Maintenance of a Multi-Component Sys-
tem in Continuous Operating Units, Computers & Chemical Engineer-
ing, In Press, Corrected Proof (2009).

[145] A. H. LAND AND A. G. DOIG, An Automatic Method of Solving Dis-
crete Programming Problems, Econometrica, 28 (1960), pp. 497–520.

[146] C. LEE, M. WANG, G. CHASLOT, J. HOOCK, A. RIMMEL , O. TEY-
TAUD , S. TSAI, S. HSU, AND T. HONG, The Computational Intelli-
gence of MoGo Revealed in Taiwan’s Computer Go Tournaments, IEEE
Transactions on Computational Intelligence and AI in Games, (2009).

[147] C. G. LEE, K. LEE, J. HAHN , Y. M. SEO, S. L. MIN , R. HA ,
S. HONG, C. Y. PARK , M. LEE, AND C. S. KIM , Bounding Cache-
Related Preemption Delay for Real-Time Systems, IEEE Transactions
on Software Engineering, 27 (2001), pp. 805–826.

[148] J. P. LEHOCZKY, Fixed Priority Scheduling of Periodic Task Sets with
Arbitrary Deadlines, in Proceedings of the 11th IEEE Real-Time Sys-
tems Symposium, IEEE Computer Society, 1990, pp. 201–213.

[149] J. LEOHOLD, Communication Requirements for Automotive Systems.
Keynote presentation at 5th IEEE International Workshop on Factory
Communication Systems, September 2004. Available 2009-08-17 at
http://www.ict.tuwien.ac.at/wfcs2004/downloads/keynote_leohold.pdf.

[150] R. LEWIS, Metaheuristics can Solve Sudoku Puzzles, Journal of Heuris-
tics, 13 (2007), pp. 387–401.

104 Bibliography

[151] O. LHOMME, Consistency Techniques for Numeric CSPs, in Proceed-
ings of the 13th International Joint Conference on Artificial Intelligence,
1993, pp. 232–238.

[152] C. LIU AND J. LAYLAND , Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment, Journal of the ACM, 20 (1973),
pp. 46–61.

[153] Live Devices ETAS Group. Web page,
http://en.etasgroup.com/products/rta/.

[154] A. K. MACKWORTH, Consistency in networks of relations, Artificial
Intelligence, 8 (1977), pp. 99–118.

[155] B. MAGGARD AND D. RHYNE, Total Productive Maintenance: A
Timely Integration of Production and Maintenance, Production & In-
ventory Management Journal, 33 (1992), pp. 6–10.

[156] J. MÄKI -TURJA AND M. NOLIN, Efficient Implementation of Tight
Response-Times for Tasks with Offsets, Real-Time Systems, 40 (2008),
pp. 77–116.

[157] M. MARCHESOTTI, M. M IGLIARDI , AND R. PODESTA, A
measurement-based analysis of the responsiveness of the Linux kernel,
in 13th Annual IEEE International Symposium and Workshop on Engi-
neering of Computer Based Systems, 2006, pp. 10 pp.–408.

[158] K. MARRIOTT AND P. J. STUCKEY, Programming with Constraints,
An Introduction, MIT Press, 1998.

[159] M. MARSEGUERRA, E. ZIO, AND L. PODOFILLINI , Condition-Based
Maintenance Optimization by Means of Genetic Algorithms and Monte
Carlo Simulation, Reliability Engineering & System Safety, 77 (2002),
pp. 151–165.

[160] S. MARTELLO AND P. TOTH, Knapsack Problems, John Wiley & Sons
Ltd., Chichester, England, 1990.

[161] G. MARÓTI AND L. K ROON, Maintenance Routing for Train Units:
The Transition Model, Transportation Science, 39 (2005), pp. 518–525.

[162] G. MARÓTI AND L. K ROON, Maintenance routing for train units:
The interchange model, Computers & Operations Research, 34 (2007),
pp. 1121–1140.

Bibliography 105

[163] J. D. MATTINGLY , Elements of Gas Turbine Propulsion, McGraw-Hill,
Inc, Singapore, third ed., 1996.

[164] J. J. MCCALL , Maintenance Policies for Stochastically Failing Equip-
ment: A Survey, Management Science, 11 (1965), pp. 493–524.

[165] T. A. MCKEE AND F. MCMORRIS, Topics in Intersection Graph The-
ory, no. QA 166.105.M34 in SIAM Monographs on Discrete Mathemat-
ics and Applications, Society for Industrial and Applied Mathematics,
1999.

[166] K. MCKONE AND E. WEISS, TPM: Planned and Autonomous Main-
tenance: Bridging the Gap between Practice and Research, Production
and Operations Management, 7 (1998), pp. 335–351.

[167] Micro Digital Inc.: smx® Special Features. Available 2009-10-20 at:
http://www.smxinfo.com/rtos/kernel/smxfeatr.pdf.

[168] B. MIDDHA , M. SIMPSON, AND R. BARUA, MTSS: Multi Task Stack
Sharing for Embedded Systems, in Proceedings of the of the ACM In-
ternational Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, San Francisco, CA, Sept 2005.

[169] J. MOUBRAY, Reliability-Centered Maintenance - RCM II, Industrial
Press, Inc., New York, second ed., 1997.

[170] D. MURTHY, A. ATRENS, AND J. ECCLESTON, Strategic maintenance
management, Journal of Quality in Maintenance Engineering, 8 (2002),
pp. 287 – 305.

[171] NAVAIR 00-25-403 Management Manual: Guidelines for the naval avi-
ation reliability-centered maintenance process, July 2005. Direction of
Commander, Naval Air Systems Command.

[172] A. NEELAKANTESWARA RAO AND B. BHADURY, Opportunistic
maintenance of multi-equipment system: a case study, Quality and Re-
liability Engineering International, 16 (2000), pp. 487–500.

[173] G. L. NEMHAUSER AND L. A. WOLSEY, Integer and Combinatorial
Optimization, Wiley-Interscience, November 1999.

106 Bibliography

[174] R. NICOLAI AND R. DEKKER, Optimal Maintenance of Multi-
Component Systems: a Review, tech. report, Erasmus University Rot-
terdam, Econometric Institute, Aug. 2006. Econometric Institute Report
2006-26.

[175] N. J. NILSSON, Problem-Solving Methods in Artificial Intelligence,
McGraw-Hill Pub. Co., 1971.

[176] T. NOLTE, H. HANSSON, M. NOLIN , AND S. PUNNEKKAT , Tim-
ing Analysis of CAN-Based Automotive Communication Systems, CRC
Press, Taylor & Francis Group, 2008.

[177] T. NOLTE, H. HANSSON, AND C. NORSTRÖM, Effects of Varying
Phasings of Message Queuings in CAN Based Systems, in Proceedings
of the 8th International Conference on Real-Time Computing Systems
and Applications, IEEE Computer Society, 2002, pp. 261–266.

[178] T. NOLTE, H. HANSSON, AND C. NORSTRÖM, Minimizing CAN
Response-Time Jitter by Message Manipulation, in Proceedings of the
8th IEEE Real-Time and Embedded Technology and Applications Sym-
posium, IEEE Computer Society, September 2002, pp. 197–206.

[179] T. NOLTE, M. NOLIN , AND H. HANSSON, Real-Time Server-Based
Communication for CAN, IEEE Transactions on Industrial Informatics,
1 (2005), pp. 192–201.

[180] T. NOLTE, G. RODRÍGUEZ-NAVAS , J. PROENZA, S. PUNNEKKAT,
AND H. HANSSON, Towards Analyzing the Fault-Tolerant Operation of
Server-CAN, in Proceedings of the 10th IEEE International Conference
on Emerging Technologies and Factory Automation, IEEE, September
2005.

[181] F. S. NOWLAN AND H. F. HEAP, Reliability-Centered Maintenance,
U.S. Department of Commerce, Springfield, V.A., 1978.

[182] R. OVERMAN, RCM, Condition Monitoring, or Both?, Maintenance
Technology, (2002), pp. 25–28.

[183] R. PAGE, Maintenance Management and Delay Reduction, Mainte-
nance & Asset Management, 17 (2002), pp. 5–13.

Bibliography 107

[184] J. C. PALENCIA AND M. G. HARBOUR, Exploiting Precedence Rela-
tions in the Schedulability Analysis of Distributed Real-Time Systems,
in Proceedings of the 20th IEEE Real-Time Systems Symposium, IEEE
Computer Society, 1999, pp. 328–339.

[185] J. PALSBERG AND D. MA, A typed interrupt calculus, in Proceed-
ings of the 7th International Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems, London, UK, 2002, Springer-Verlag,
pp. 291–310.

[186] C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimiza-
tion; Algorithms and Complexity, Dover Publications, 1998.

[187] C. M. PAPADIMITRIOU , Computational Complexity, Addison-Wesley,
Reading, Massachusetts, 1994.

[188] C. L. PAPE, Constraint Propagation in Planning and Scheduling, tech.
report, Robotics Laboratory, Department of Computer Science, Stanford
University, Palo Alto, CA, 1991.

[189] R. PASCUAL, V. MERUANE, AND P. REY, On the effect of downtime
costs and budget constraint on preventive and replacement policies, Re-
liability Engineering & System Safety, 93 (2008), pp. 144–151.

[190] A. E. PAULL , Linear Programming, A Key to Optimum Newsprint Pro-
duction, Pulp and Paper Magazine of Canada, 57 (1956), pp. 85–90.

[191] M. PEETERS AND L. K ROON, Circulation of Railway Rolling Stock:
A Branch-and-Price Approach, Computers & Operations Research, 35
(2008), pp. 538–556.

[192] H. PHAM AND H. WANG, Optimal(s;T) opportunistic maintenance of
a k-out-of-n : G system with imperfect PM and partial failure, Naval
Research Logistics, 3 (2000), pp. 223–239.

[193] W. P. PIERSKALLA AND J. A. VOELKER, A survey of maintenance
models: The control and surveillance of deteriorating systems, Naval
Research Logistics, 23 (1976), pp. 353–388.

[194] L. M. PINTELON AND L. F. GELDERS, Maintenance management de-
cision making, European Journal of Operations Research, 58 (1992),
pp. 301–317.

108 Bibliography

[195] P. P. PUSCHNER AND A. BURNS, Guest Editorial: A Review of Worst-
Case Execution-Time Analysis, Real-Time Systems, 18 (2000), pp. 115–
128.

[196] P. P. PUSCHNER AND C. KOZA, Calculating the Maximum Execution
Time of Real-Time Programs, Real-Time Systems, 1 (1989), pp. 159–
176.

[197] M. PĚNIČKA , A. K. STRUPCHANSKA, AND D. BJØRNER, Train Main-
tenance Routing, in Proceedings of the Symposium on Formal Methods
for Railway Operation and Control Systems, L’Harmattan Hongrie, May
2003.

[198] N. RACHANIOTIS AND C. PAPPIS, Preventive maintenance and up-
grade system: Optimizing the whole performance system by compo-
nents’ replacement or rearrangement, International Journal of Produc-
tion Economics, 1 (2008), pp. 236–244.

[199] R. RACU AND R. ERNST, Scheduling Anomaly Detection and Optimi-
sation for Distributed Systems with Preemptive Task-Sets, in Proceed-
ings of the 12th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, IEEE Computer Society, April 2006, pp. 325–334.

[200] R. RAJAMANI , J. WANG, AND K. Y. JOENG, Condition Based Main-
tenance for Aircraft Engines, in Proceedings of the ASME Turbo Expo,
2004. Paper no. GT2004-54127.

[201] K. RAMAMRITHAM , Allocation and Scheduling of Complex Periodic
Tasks, in Proceedings of the 10th International Conference on Dis-
tributed Computing Systems, IEEE Computer Society, May 1990,
pp. 108–115.

[202] H. RAMAPRASAD AND F. MUELLER, Bounding Preemption Delay
within Data Cache Reference Patterns for Real-Time Tasks, in Proceed-
ings of the 12th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, IEEE Computer Society, April 2006.

[203] Rapita Systems. Web page,
http://www.rapitasystems.com, 2008.

[204] O. REDELL, Analysis of Tree-Shaped Transactions in Distributed Real-
Time Systems, in Proceedings of the 16th Euromicro Conference on
Real-time Systems, IEEE Computer Society, 2004, pp. 239–248.

Bibliography 109

[205] O. REDELL AND M. SANFRIDSON, Exact Best-Case Response Time
Analysis of Fixed Priority Scheduled Tasks, in Proceedings of the 14th

Euromicro Conference on Real-time Systems, IEEE Computer Society,
2002, pp. 165–172.

[206] O. REDELL AND M. TÖRNGREN, Calculating Exact Worst Case Re-
sponse Times for Static Priority Scheduled Tasks with Offsets and Jit-
ter, in Proceedings of the 8th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, Los Alamitos, CA, USA, September
2002, IEEE Computer Society, pp. 164–172.

[207] J. REGEHR, Scheduling Tasks with Mixed Preemption Relations for Ro-
bustness to Timing Faults, in Proceedings of the 23rd IEEE Real-Time
Systems Symposium, IEEE Computer Society, 2002.

[208] J. REGEHR, A. REID, AND K. WEBB, Eliminating Stack Overflow by
Abstract Interpretation, ACM Transactions in Embedded Computing
Systems, 4 (2005), pp. 751–778.

[209] J.-C. RÉGIN, A Filtering Algorithm for Constraints of Difference in
CSPs, in Proceedings of the 12th National Conference on Artificial In-
telligence, Menlo Park, California, 1994, AAAI Press, pp. 362–367.

[210] J.-C. REGIN AND J.-F. PUGET, A Filtering Algorithm for Global Se-
quencing Constraints, in Principles and Practice of Constraint Program-
ming, 1997, pp. 32–46.

[211] J. M. ROBSON, The Complexity of Go, in Information Processing 83,
Proceedings of the 9th World Computer Congress, R. E. A. Mason, ed.,
North-Holland/IFIP, 1983, pp. 413–417.

[212] D. J. ROSE, R. E. TARJAN, AND G. S. LUEKER, Algorithmic Aspects
of Vertex Elimination on Graphs, SIAM Journal of Computing, 5 (1976),
pp. 266–283.

[213] G. T. ROSS AND R. M. SOLAND, A Branch and Bound Algorithm for
the Generalized Assignment Problem, Mathematical Programming, 8
(1975), pp. 91–103.

[214] S. RUSSELL AND P. NORVIG, Artificial Intelligence: A Modern Ap-
proach, Prentice Hall, Second ed., 2003.

110 Bibliography

[215] I. SABUNCUOGLU AND M. BAYIZ , Job shop scheduling with beam
search, European Journal of Operations Research, 118 (1999), pp. 390–
412.

[216] N. SADEH, Look-ahead Techniques for Micro-opportunistic Job Shop
Scheduling, PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, March 1991.

[217] N. SADEH, S. OTSUKA, AND R. SCHNELBACH, Predictive and reac-
tive scheduling with the micro-boss production schedulingand control
system, in Proceedings of the IJCAI-93 Workshop on Knowledge-based
Production Planning, Scheduling, & Control, Chambery, France, Aug
1993.

[218] SAE JA1011: Evaluation Criteria for Reliability-CenteredMaintenance
(RCM) Processes, August 1998. Society of Automotive Engineers.

[219] H. E. SAKKOUT AND M. WALLACE , Probe backtrack search for mini-
mal perturbation in dynamic scheduling, Constraints, 5 (2000), pp. 359–
388.

[220] M. SAKSENA AND Y. WANG, Scalable Real-Time System Design Us-
ing Preemption Thresholds, in Proceedings of the 21st IEEE Real-Time
Systems Symposium, IEEE Computer Society, 2000.

[221] S. SAMII , S. RAFILIU , P. ELES, AND Z. PENG, A Simulation Method-
ology for Worst-Case Response Time Estimation of Distributed Real-
Time Systems, in Proceedings of Design, Automation and Test in Eu-
rope, vol. 10-14, IEEE, Mar. 2008, pp. 556–561.

[222] K. SANDSTRÖM, C. ERIKSSON, AND G. FOHLER, Handling Interrupts
with Static Scheduling in an Automotive Vehicle Control System, in Pro-
ceedings of the 5th International Conference on Real-Time Computing
Systems and Applications Symposium, IEEE Computer Society, 1998,
pp. 158–165.

[223] A. SANGIOVANNI -V INCENTELLI AND M. D I NATALE , Embedded Sys-
tem Design for Automotive Applications, Computer, 40 (2007), pp. 42–
51.

[224] R. G. SARGENT, Validation and verification of simulation models, in
Proceedings of the 36textrmth conference on Winter simulation, Wash-
ington, D.C., 2004, Winter Simulation Conference, pp. 17–28.

Bibliography 111

[225] M. SAVELSBERGH, A Branch-and-Price Algorithm for the Generalized
Assignment Problem, Operations Research, 45 (1997), pp. 831–841.

[226] P. A. SCARF, On the Application of Mathematical Models in Mainte-
nance, European Journal of Operations Research, 99 (1997), pp. 493–
506.

[227] A. SCHRIJVER, Minimum Circulation of Railway Stock, CWI Quarterly,
6 (1993), pp. 205–217.

[228] D. SCULLI AND A. W. SURAWEERA, Tramcar Maintenance, The Jour-
nal of the Operational Research Society, 30 (1979), pp. 809–814.

[229] B. SELMAN , H. A. KAUTZ , AND B. COHEN, Noise strategies for lo-
cal search, in Proceedings of the 12th National Conference on Artificial
Intelligence, Menlo Park, California, 1994, AAAI Press, pp. 337–343.

[230] L. SHA , T. ABDELZAHER, K.-E. ÅRZÉN, A. CERVIN, T. BAKER,
A. BURNS, G. BUTTAZZO, M. CACCAMO, J. LEHOCZKY, AND A. K.
MOK, Real Time Scheduling Theory: A Historical Perspective, Real-
Time Systems, 28 (2004), pp. 101–155.

[231] L. SHA , J. P. LEHOCZKY, AND R. RAJKUMAR, Priority Inheri-
tance Protocols: An Approach To Real-Time Synchronisation, Tech.
Report CMU-CS-87-181, Computer Science Department, Carnegie-
Mellon University, 1987.

[232] L. SHA , R. RAJKUMAR , AND J. LEHOCZKY, Priority Inheritance Pro-
tocols: An Approach to Real-Time Synchronization, IEEE Transactions
on Computers, 39 (1990), pp. 1175–1185.

[233] M. SJÖDIN AND H. HANSSON, Improved Response-Time Analysis Cal-
culations, in Proceedings of the 19th IEEE Real-Time Systems Sympo-
sium, IEEE Computer Society, 1998.

[234] S. SMITH , OPIS: A Methodology and Architecture for Reactive Schedul-
ing, in Intelligent Scheduling, M. Zweben and M. Fox, eds., Morgan
Kaufmann, 1994.

[235] S. SMITH , N. KENG, AND K. K EMPF, Exploiting Local Flexibility
During Execution of Pre-computed Schedules, Tech. Report CMU-RI-
TR-90-13, Robotics Institute, Pittsburgh, PA, June 1990.

112 Bibliography

[236] S. SMITH , Reactive Scheduling Systems, in Intelligent Scheduling Sys-
tems, D. Brown and W. Scherer, eds., Kluwer Press, 1995.

[237] N. SORTRAKUL, H. NACHTMANN , AND C. CASSADY, Genetic al-
gorithms for integrated preventive maintenance planning and produc-
tion scheduling for a single machine, Computers in Industry, 56 (2005),
pp. 161–168.

[238] R. SOSIC AND J. GU, Efficient Local Search with Conflict Minimiza-
tion: A Case Study of the N-Queens Problem, IEEE Transactions on
Knowledge and Data Engineering, 6 (1994), pp. 661–668.

[239] C. SRISKANDARAJAH, A. K. S. JARDINE, AND C. K. CHAN, Main-
tenance Scheduling of Rolling Stock Using a Genetic Algorithm, The
Journal of the Operational Research Society, 49 (1998), pp.1130–1145.

[240] J. A. STANKOVIC , Misconceptions About Real-Time Computing, Com-
puter, 21 (1988), pp. 10–19.

[241] J. A. STANKOVIC AND K. RAMAMRITHAM , eds.,Tutorial: hard real-
time systems, IEEE Computer Society Press, Los Alamitos, CA, USA,
1989.

[242] J. A. STANKOVIC , K. RAMAMRITHAM , AND M. SPURI, Deadline
Scheduling for Real-Time Systems: EDF and Related Algorithms,
Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[243] J. STASCHULAT, S. SCHLIECKER, AND R. ERNST, Scheduling Analy-
sis of Real-Time Systems with Precise Modeling of Cache Related Pre-
emption Delay, in Proceedings of the 17th Euromicro Conference on
Real-Time Systems, IEEE Computer Society, 2005.

[244] A.-B. STRÖMBERG AND T. ALMGREN, Optimering av underhålls-
planer leder till strategier för utvecklingsprojekt, in Logistikutveckling
- teori möter praktik, artiklar från PLANs Forsknings- och tillämpn-
ingskonferens, August 2008, pp. 169–180.

[245] J. S. TAN AND M. A. K RAMER, A General Framework for Preventive
Maintenance Optimization in Chemical Process Operations, Computers
& Chemical Engineering, 21 (1997), pp. 1451–1469.

[246] R. TARJAN, Depth-first search and linear graph algorithms, SIAM
Journal of Computing, 1 (1972), pp. 146–160.

Bibliography 113

[247] R. E. TARJAN, Edge-Disjoint Spanning Trees and Depth-First Search,
Acta Informatica, 6 (1976), pp. 171–185.

[248] Tidorum. Web page,
http://www.tidorum.fi/bound-t/.

[249] K. TINDELL , Using Offset Information to Analyse Static Priority Pre-
emptively Scheduled Task Sets, Tech. Report YCS-182, Dept. of Com-
puter Science, University of York, England, 1992.

[250] K. TINDELL AND A. BURNS, Fixed Priority Scheduling of Hard
Real-time Multi-media Disk Traffic, The Computer Journal, 37 (1994),
pp. 691–697.

[251] K. TINDELL AND J. CLARK , Holistic Schedulability Analysis for Dis-
tributed Hard Real-Time Systems, Microprocessing and Microprogram-
ming, 40 (1994), pp. 117–134.

[252] K. TINDELL , H. HANSSON, AND A. WELLINGS, Analysing Real-Time
Communications: Controller Area Network (CAN), in Proceedings of
the 16th IEEE Real-Time Systems Symposium, IEEE Computer Society,
1995.

[253] K. W. TINDELL , A. BURNS, AND A. J. WELLINGS, An Extendible Ap-
proach for Analyzing Fixed Priority Hard Real-Time Tasks, Real-Time
Systems, 6 (1994), pp. 133–151.

[254] M. TLILI , S. WAPPLER, AND H. STHAMER, Improving Evolutionary
Real-Time Testing, in Proceedings of the 8th annual conference on Ge-
netic and evolutionary computation, Seattle, Washington,USA, 2006,
ACM, pp. 1917–1924.

[255] P. TOTH AND D. V IGO, The Vehicle Routing Problem, SIAM Mono-
graphs on Discrete Mathematics and Applications, Society for Industrial
and Applied Mathematics, 2001.

[256] A. TSANG, Strategic dimensions of maintenance management, Journal
of Quality in Maintenance Engineering, 8 (12 April 2002), pp. 7–39.

[257] E. TSANG, Foundations of Constraint Satisfaction, Academic Press,
1994.

114 Bibliography

[258] R. UEHARA AND Y. UNO, Efficient Algorithms for the Longest Path
Problem, in Algorithms and Computation, 2005, pp. 871–883.

[259] Unicoi Systems. Web page,
http://www.unicoi.com/fusion_rtos/fusion_rtos.htm.

[260] UPPAAL Website. Web page,
http://www.uppaal.com, 2008.

[261] J. S. USHER, A. H. KAMAL , AND W. H. SYED, Cost optimal pre-
ventive maintenance and replacement scheduling, IIE Transactions, 30
(1998), pp. 1121–1128.

[262] C. VALDEZ-FLORES AND R. M. FELDMAN , A survey of preventive
maintenance models for stochastically deteriorating single-unit systems,
Naval Research Logistics, 36 (1989), pp. 419–446.

[263] G. VAN DIJKHUIZEN AND A. VAN HARTEN, Optimal clustering of
frequency-constrained maintenance jobs with shared set-ups, European
Journal of Operations Research, 99 (1997), pp. 552–564.

[264] S. VITTAL , P. HAJELA, AND A. JOSHI, Review of Approaches to
Gas Turbine Life Management, in Proceedings of the 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, vol. 2, 2004,
pp. 876–886.

[265] J. P. WALSER, Integer Optimization by Local Search, vol. 1637 of Lec-
ture Notes in Artificial Intelligence, Springer, 1999.

[266] T. WALSH, Depth-bounded Discrepancy Search, in Proceedings of the
15th International Joint Conference on Artificial Intelligence, August
1997, pp. 1388–1393.

[267] H. WANG, A Survey of Maintenance Policies of Deteriorating Systems,
European Journal of Operations Research, 139 (2002), pp. 469–489.

[268] Y. WANG AND M. SAKSENA, Scheduling Fixed-Priority Tasks with
Preemption Threshold, in Proceedings of the 6th International Confer-
ence on Real-Time Computing Systems and Applications Symposium,
IEEE Computer Society, 1999.

[269] J. WATKINS, Across the Board: The Mathematics of Chessboard Prob-
lems, Princeton University Press, 2004.

Bibliography 115

[270] J. WEGENER ANDM. GROCHTMANN, Verifying Timing Constraints of
Real-Time Systems by Means of Evolutionary Testing, Real-Time Sys-
tems, 15 (1998), pp. 275–298.

[271] J. WEGENER AND F. MUELLER, A Comparison of Static Analysis and
Evolutionary Testing for the Verification of Timing Constraints, Real-
Time Systems, 21 (2001), pp. 241–268.

[272] D. B. WEST, Introduction to Graph Theory, Prentice Hall, first ed.,
1996.

[273] R. WILDEMAN , R. DEKKER, AND A. SMIT , Combining Maintenance
Activities in an Operational Planning Phase: a Dynamic Programming
Approach, "Papers" Series 9424-a, Erasmus University of Rotterdam -
Econometric Institute, 1994.

[274] R. E. WILDEMAN AND R. DEKKER, Dynamic influences in multi-
component maintenance, Quality and Reliability Engineering Interna-
tional, 13 (1997), pp. 199–207.

[275] R. E. WILDEMAN , R. DEKKER, AND A. C. J. M. SMIT , A Dynamic
Policy for Grouping Maintenance Activities, European Journal of Oper-
ations Research, 99 (1997), pp. 530–551.

[276] R. WILHELM , J. ENGBLOM, A. ERMEDAHL , N. HOLSTI,
S. THESING, D. WHALLEY, G. BERNAT, C. FERDINAND, R. HECK-
MANN , T. MITRA , F. MUELLER, I. PUAUT, P. PUSCHNER,
J. STASCHULAT, AND P. STENSTRÖM, The Worst-Case Execution-Time
Problem—Overview of Methods and Survey of Tools, ACM Transactions
in Embedded Computing Systems, 7 (2008), pp. 1–53.

[277] W. L. WINSTON, Introduction to Mathematical Programming: Appli-
cations and Algorithms, Duxbury Resource Center, 2003.

[278] T. WIREMAN, World Class Maintenance Management, Industrial Press,
Inc., 1990.

[279] M. WÄRJA, P. SLOTTNER, AND M. BOHLIN, Customer Adapted Main-
tenance Plan (CAMP), a Process for Optimization of Gas Turbine Main-
tenance, in Proceedings of the ASME Turbo Expo, 2008. Paper no.
GT2008-50240.

116 Bibliography

[280] J. XU AND D. L. PARNAS, Scheduling Processes with Release Times,
Deadlines, Precedence, and Exclusion Relations, IEEE Transactions on
Software Engineering, 3 (1990), pp. 360–369.

[281] Z. YAMAYEE , K. SIDENBLAD , AND M. YOSHIMURA, A Computation-
ally Efficient Optimal Maintenance Scheduling Method, IEEE Transac-
tions on Power Apparatus and Systems, PAS-102 (1983), pp. 330–338.

[282] T. YATO AND T. SETA, Complexity and Completeness of Finding An-
other Solution and Its Application to Puzzles, IEICE Transactions on
Fundamentals of Electronics, Communication and Computer Sciences,
86 (2003), pp. 1052–1060.

[283] W. ZHANG, State-space search, Springer, 1999.

[284] X. ZHENG AND N. FARD, A Maintenance Policy for Repairable Sys-
tems Based on Opportunistic Failure-Rate Tolerance, IEEE Transac-
tions on Reliability, 40 (1991), pp. 237–244.

[285] X. ZHENG AND N. FARD, Hazard-Rate Tolerance Method for an
Opportunistic-Replacement Policy, IEEE Transactions on Reliability, 1
(1992), pp. 13–20.

[286] X. ZHOU, L. X I , AND J. LEE, A dynamic opportunistic maintenance
policy for continuously monitored systems, Journal of Quality in Main-
tenance Engineering, 12 (2006), pp. 294–305.

[287] X. ZHOU, L. X I , AND J. LEE, Reliability-centered predictive mainte-
nance scheduling for a continuously monitored system subject to degra-
dation, Reliability Engineering & System Safety, 92 (2007), pp. 530–
534.

[288] X. ZHOU, L. X I , AND J. LEE, Opportunistic preventive mainte-
nance scheduling for a multi-unit series system based on dynamic pro-
gramming, International Journal of Production Economics, 118 (2009),
pp. 361–366.

II

Included Papers

117

Chapter 6

Paper A:
Determining maximum
stack usage in preemptive
shared stack systems

Kaj Hänninen, Jukka Mäki-Turja, Markus Bohlin, Jan Carlson
and Mikael Nolin.

In Proceedings of the 27th IEEE Real-Time Systems Symposium.

December 5–8, 2006, Rio de Janeiro, Brazil.

119

Abstract

This paper presents a novel method to determine the maximum stack memory
used in preemptive, shared stack, real-time systems. We provide a general and
exact problem formulation applicable for any preemptive system model based
on dynamic (run-time) properties.

We also show how to safely approximate the exact stack usage by using
static (compile time) information about the system model and the underlying
run-time system on a relevant and commercially available system model: A
hybrid, statically and dynamically, scheduled system.

Comprehensive evaluations show that our technique significantly reduces
the amount of stack memory needed compared to existing analysis techniques.
For typical task sets a decrease in the order of 70% is typical.

6.1 Introduction 121

6.1 Introduction

In conventional multitasking systems, each thread of execution (task) has its
own allocated execution stack. In systems with a large number of tasks a large
number of stacks are required. Hence the total amount of RAM needed for the
stacks can grow exceedingly large.

Stack sharing is a memory model in which several tasks share one common
run-time stack. It has been shown that stack sharing can result in memory
savings [9, 16] compared to the conventional stack model. The shared stack
model is applicable to both non-preemptive as well as preemptive systems, and
it is especially suitable in resource constrained embeddedreal-time systems
with limited amount of memory. Stack sharing is currently supported by many
commercial real-time kernels, e.g. [3,18,20,32].

The traditional method to calculate the memory requirements for a shared
run-time stack in preemptive systems is to sum the maximum stack usage of
tasks in each preemption level and possibly consider additional overheads such
as memory used by interrupts and context switches. A major drawback with the
traditional calculation method is that it often results in over allocation of stack
memory by presuming that all tasks with maximum stack usage in each priority
level can preempt each other in a nested fashion during run-time. However,
there may, in many cases, be no actual possibility for these tasks to preempt
each other (e.g. due to explicit or implicit separation in time). Moreover, the
possible preemptions may not be able to occur in a nested fashion.

Taking advantage of the fact that many real-time system exhibit a pre-
dictable temporal behavior, it is possible to identify feasible preemption sce-
narios, i.e., which preemptions can in fact occur, and whether they can occur in
a nested fashion or not. Therefore, a more accurate stack analysis can be made.
One example of a system that lends itself to such analysis is ahybrid, stati-
cally and dynamically, scheduled system. Such a system consists of an off-line
scheduler producing the static schedule and a fixed priorityscheduler (FPS)
that dispatches tasks at run-time. The commercial operating system, Rubus
OS by Arcticus Systems AB [3], supports such a system model. The Rubus
OS is mainly used in resource-constrained embedded real-time systems. For
instance, in the vehicular industry, Volvo Construction Equipment (VCE) [33],
BAE Systems Hägglunds [15], and Haldex Traction Systems [13] all use the
Rubus OS in their vehicles or components.

In this paper, we present the general problem of analyzing a shared sys-
tem stack for resource constrained preemptive real-time systems. We provide
a general and exact problem formulation applicable for preemptive systems

122 Paper A

based on dynamic run-time properties. We also present an approximate stack
analysis method to derive a safe upper bound on stack usage instatic offset
based, fixed priority and preemptive systems that use a shared stack. We evalu-
ate and show that the proposed method gives significantly lower upper bounds
on stack memory requirements than existing stack dimensioning methods for
fixed priority systems.

Paper outline. Section 6.2 describes related work and sets the context
for the contributions of this paper. In sections 6.3, 6.4, and 6.5 we present
the exact formulation of determining the maximum stack usage and our safe
approximation of the stack usage for our target system model. Section 6.6
presents an evaluation of our approximative analysis method, and Section 6.7
concludes the paper.

6.2 Related work
The notion of shared stack has been used in several publications to describe the
ability to utilize either a common run-time stack or a pool ofrun-time stacks.
For example, in [20], stack sharing is performed by having a pool of available
stack areas. When a task starts executing, it fetches a stack from the pool, and
returns it at termination. In [21], Middhaet al. address stack sharing in the
sense that the stack of a task can grow into the stack area of another task.

In this paper, we use the notion of stack sharing when severaltasks use one
common, statically allocated, run-time stack. This type ofstack sharing can be
efficiently implemented in systems where tasks have run-to-completion seman-
tics, and do not suspend themselves. This type of stack sharing is supported by
several commercial real-time operating systems, e.g. [3,18,32].

6.2.1 Stack analysis

In [4], Baker presents the Stack Resource Policy (SRP) that permits stack shar-
ing among processes in static and in some dynamic priority preemptive sys-
tems. The basic method to determine the maximum amount of stack usage in
SRP is to identify the maximum stack usage for tasks at each priority level (or
preemption level) and then to sum up these maximums for each priority level.
A safe upper bound (SPL) on the total stack usage using information about
priority levels can formally be expressed as:

SPL =
∑

l∈prio-levels

max
i∈tasks with priol

(Si) (6.1)

6.3 Stack analysis of preemptive systems 123

whereSi is the maximum stack usage of taski.
Gai et al. [11] present SRP with preemption thresholds (SRPT). They pre-

sent a procedure to minimize shared stack usage, without jeopardizing schedu-
lability, by use of non-preemption groups for tasks using SRPT. They extend
the work of Saksena and Wang [27] by taking the stack usage of tasks into
account when establishing non-preemption groups.

In [9] Davis et al. address stack memory requirements by using non-
preemption groups to reduce the amount of memory needed for ashared stack.
They show that the number of preemption levels required for typical systems
can be relatively small, while maintaining schedulability.

Although non-preemption groups can reduce the amount of RAMneeded
for a shared stack, the use of non-preemption groups affectsa system by re-
stricting the occurrences of preemptions, which can have a negative affect on
schedulability. Also, the method we present in this paper can further reduce the
system stack by performing our analysis after preemption groups have been as-
signed.

6.2.2 Preemption analysis

A large number of publications address preemption analysisfor different rea-
sons, see, e.g. [2,7,10,17,24,25,29]. For example, in [17]Leeet al. present a
technique to bound cache-related preemption delays in fixed-priority preemp-
tive systems. They account for task phasing and nested preemption patterns
among tasks to establish an upper bound on the cache timing delay introduced
by preemptions. Our work relates to theirs in the sense that we also investigate
occurrences of nested preemption patterns. However, our objectives differ in
that Leeet al. are mainly interested in timing delays caused by cache reloading
and preemption patterns whereas we address shared memory requirements as
an effect of nested preemption patterns.

In [10], Dobrin and Fohler present a method to reduce the number of pre-
emptions in fixed priority based systems. They define three fundamental con-
ditions that have to be satisfied in order for a preemption to occur. The same
conditions form the basis of our upper bound method described in Section 6.5.

6.3 Stack analysis of preemptive systems
The primary purpose of an execution stack is to store local data which consists
of variables and state registers, parameters to subroutines and return addresses.
Real-time systems typically have a separate stack, statically allocated, for each

124 Paper A

task. However, under certain conditions, tasks can share stack to achieve a
lower overall memory footprint of the system.

In this paper we consider systems where a subset of tasks use acommon,
statically allocated, run-time stack. For this to be possible, we assume that a
task only uses the stack between the start time of an instanceand the finishing
time of that instance, i.e., no data remains on the stack fromone instance of a
task to the next. Furthermore, we require non-interleavingtask execution [4,
9]. If υj begins executing between the start and finish ofυi, thenυi is not
allowed to resume execution untilυj has finished. In practice, this is ensured
by not allowing tasks to suspend themselves voluntarily, orto be suspended
by blocking once they have started their execution. In practice this means that
OS-primitives likesleep() andwait_for_event() cannot be used, and
that any blocking on shared resources must be handled beforeexecution start,
e.g., with a semaphore protocol like immediate inheritanceprotocol [6].

We formally define the start and finishing time of a task instance υi, as
follows:

st i The absolute time whenυi actually begins executing.

ft i The absolute time whenυi terminates its execution.

At any given point in time, the worst case total stack usage ofthe system equals
the sum of the stack usage for each individual task instance.Thus, withsi(t)
denoting the actual stack usage ofυi at timet, the maximum stack usage of the
system can be expressed as follows:

max
t∈time instant

∑

υi∈task instances

si(t) (6.2)

This corresponds to the amount of memory that must be statically allocated
for the shared stack to ensure the absence of stack overflow errors. For some
systems, e.g., non-preemptive, statically scheduled systems with simple task
code, it might be possible to directly compute or estimatesi(t). In general,
however, they are not directly computable before the systemis executed.

We note that the total stack usage depends on three basic properties:

(i) the stack memory usage of each task instance

(ii) the possible preemptions that may occur between any twoinstances

(iii) the ways in which preemptions can be nested

Determining the stack memory usage of a single task instancerequires
knowledge of the possible control-flow paths within the taskcode [14]. In [5]

6.3 Stack analysis of preemptive systems 125

Brylow et al. present a static checker for interrupt driven software. Thechecker
is able to calculate the stack size of assembler programs by producing a control-
flow graph annotated with information about time, space, safety and liveness.

However, due to the difficulties in determining the exact stack usage at
every point in time for a given task instance, shared-stack analysis methods
often assume that whenever a task is preempted, it is preempted when it uses
its maximum stack depth. We make the same assumption, and useSi to denote
the maximum stack usage for task instanceυi. Thus, whenυi and υj are
instances of the same task, we haveSi = Sj . Bounds on maximum stack
usage for a given task can be derived by abstract interpretation using tools such
as AbsInt [1] and Bound-T [30].

In order to calculate the maximum stack usage of the full system, we need
to account for all possible preemption patterns. Under the assumption of non-
interleaving task execution, a task instance,υi, is preempted by another task
instance,υj , if (and only if) the following holds:

st i < stj < ft i (6.3)

In particular, we are interested in chains of nested preemptions. We define
apreemption chainto be a set{υ1, υ2, . . . , υk} of task instances such that

st1 < st2 < · · · < stk < ftk < ftk−1 < · · · < ft1 (6.4)

Under the assumption that the worst case stack usage of a taskoccur when
the task is preempted, the worst case stack usageSWC for a shared stack
preemptive system can be expressed as follows:

SWC = max
PC∈preemption chains

∑

υi∈PC

Si (6.5)

This formulation, however, cannot be directly used for analyzing and di-
mensioning the shared system stack since it is based on the dynamic (only
available at run-time) propertiesst i andft i. To be able to statically analyze the
system, one has to relate the static (compile-time) properties to these dynamic
properties. This is done by establishing how the system model, scheduling
policy, and run-time mechanism constrain the values of the actual start and
finishing times. The problem can be viewed as a scheduling problem with the
objective of maximizing the total stack usage of the schedule, subject to system
constraints on how tasks are ordered in the schedule.

126 Paper A

6.4 System model for hybrid scheduled systems

The system model we adopt is based on the commercial operating system
Rubus OS by Arcticus Systems AB [3], which supports the execution of both
time triggered and event triggered tasks. The Rubus OS is mainly intended for,
and used in dependable resource-constrained embedded real-time systems.

The system model is a hybrid, static and dynamic, scheduled system where
a subset of the tasks are dispatched by a static cyclic scheduler (time triggered
tasks). The rest of the tasks are dispatched by events in the system (event
triggered tasks). The static schedule is constructed off-line and a fixed priority
scheduler (FPS) dispatches tasks at run-time. The event-triggered tasks can be
categorized in two different classes: (i) event-triggeredinterrupts which have
higher priority than the time-triggered tasks, and (ii) background scheduled
event-triggered tasks which have lower priority than the time-triggered tasks.

The time triggered tasks share a common system stack. It is the objective
of this paper to analyze, and ultimately dimension this shared system stack
efficiently. The time-triggered subsystem is used to host safety critical appli-
cations. Hence, to isolate it from any erroneous event-triggered tasks, it uses
its own stack.

6.4.1 Formal system model

The system model used in this paper can be seen as an offset based model with
static offsets [12, 22, 23, 31], defined as follows: The system, Γ, consists of a
set ofk transactionsΓ1, . . . ,Γk. Each transactionΓi is activated by a periodic
sequence of events with periodTi. For non-periodic, eventsTi denotes the
minimum inter-arrival time between two consecutive events. The activating
events are mutually independent, i.e., phasing between them is arbitrary. A
transaction,Γi, contains|Γi| tasks, and each task may not be activated (released
for execution) until a time, offset, elapses after the arrival of the activating
event.

We useτij to denote a task. The first subscript denotes which transaction
the task belongs to, and the second subscript denotes the number of the task
within the transaction. A task,τij , is defined by a worst case execution time
(Cij), an offset (Oij), a deadline (Dij), maximum jitter (Jij), maximum block-
ing from lower priority tasks (Bij), and a priority (Pij). Furthermore,Sij is
used to denote the maximum stack usage ofτij . The system model is formally

6.5 Stack analysis of hybrid scheduled systems 127

expressed as:

Γ :={〈Γ1, T1〉, . . . , 〈Γk, Tk〉}
Γi :={τi1, . . . , τi|Γi|}
τij :=〈Cij , Oij , Dij , Jij , Bij , Pij , Sij〉

We assume that the system is schedulable and that the worst case response-
time for each task, (Rij), has been calculated [23]. Due to the non-interleaving
criterion for stack sharing, we require that tasks exhibit run-to-completion se-
mantics when activated, i.e., they cannot suspend themselves. An invocation of
a task can be viewed as a function call from the operating system, and the in-
vocation terminates when the function call returns. When tasks share the same
priority, they are served on a first-come first-served basis.

We assume that if access to shared resources is not handled bythe static
scheduler by time separation, a resource sharing protocol where blocking is
done before start of execution is employed (such as the stackresource protocol
[4] or the immediate inheritance protocol [6]).

Relating back to Rubus OS, one can view the system as a transaction based
system with one transaction,Γt, corresponding to the static schedule (time-
triggered tasks) and any number of transactions corresponding to higher prior-
ity event triggered tasks (interrupts). For the even-triggered transactions there
are no restrictions placed on offset, deadline or jitter, i.e., they can each be
either smaller or greater than the period. SinceΓt represents the static sched-
ule, which is cyclical with periodTt, offset, jitter and deadline are less than
the period, i.e.,Otj , Dtj , Jtj ≤ Tt for the time-triggered transaction. How
a scheduler can generate a feasible schedule with interfering interrupts is de-
scribed in [22,28].

It is the objective of this paper to find a tight upper bound on the shared
system stack for the tasks in the time-triggered transactionΓt. Taskj belonging
toΓt we will denoteτtj . The tasks in the transaction can be preempted by other
tasks in the transaction and by higher priority event triggered tasks.

6.5 Stack analysis of hybrid scheduled systems
In this section, we describe a polynomial time method to establish a safe upper
bound on the shared stack usage for the system model described in Section 6.4.
The upper bound is safe in the sense that the run-time stack can never exceed
the calculated upper bound.

A safe upper-bound estimate of the exact problem can be foundby using

128 Paper A

offsets and maximum response times as approximations of actual start and fin-
ishing times. Generalizing the preemption criteria identified by Dobrin and
Fohler [10], we form the binary relationτti ≺ τtj with the interpretation that
τti may be preempted byτtj . The relation holds whenever (1)τti can become
ready beforeτtj , (2) τti possibly finishes (i.e., has a response time) after the
start ofτtj , and (3)τti has lower priority thanτtj . The relation can now for-
mally be defined as:

τti ≺ τtj ≡ Oti < Otj + Jtj +Btj ∧Otj < Rti ∧ Pti < Ptj (6.6)

Lemma 1. The≺ relation is a safe approximation of the possible preemptions
between tasks inΓt. That is, ifτti can under any run-time circumstance be
preempted byτtj , thenτti ≺ τtj will hold.

Proof of Lemma 1. Suppose thatτti is preempted byτtj . We show that this
implies (1)Oti < Otj + Jtj +Btj , (2)Otj < Rti, and (3)Pti < Ptj .

(3) follows directly from the preemption. Now lett be the time instant
whenτtj has finished blocking, which impliest ≤ Otj + Jtj + Btj . Then
a possibly empty interval[t, sttj] of execution with higher priority thanτtj
follows, in whichτti cannot execute becausePti < Ptj . Sinceτti must start
beforeτtj , we can conclude thatstti < t, which together withOti ≤ stti and
t ≤ Otj + Jtj +Btj gives usOti < Otj + Jtj +Btj and (1). From Equation
6.3 we havesttj < ftti and this together withOtj ≤ sttj and ftti ≤ Rti leads
toOtj < Rti and (2), which completes the proof. �

The upper-bound problem can now be informally stated as finding the max-
imum stack usage of all possible preemption chains inΓt. This equals find-
ing the time instant in the schedule which has a maximum stackusage, given
the approximation of actual start and finishing times with offsets and response
times respectively, and assuming that at all preemptions the preempted task
uses its maximal stack.

A sequenceQ of tasks is apossible preemption chain(PPC) if it holds that
τti ≺ τtj for all τti, τtj in Q whereτti occurs beforeτtj in the sequence. The
stack usageSUQ of a PPCQ is the sum of the stack usage of the individual
tasks in the chain, i.e.,SUQ =

∑

τti∈Q Sti.
A straightforward computation of a safe upper bound for a setof tasks in-

volves computing the stack usage for all PPCs. However, for aset ofn tasks
there exist2n−1 different PPCs in the worst case, which yields an exponential
time complexity for an algorithm based on this idea. A more efficient algo-
rithm can be constructed by first finding sets of tasks which all overlap in time

6.5 Stack analysis of hybrid scheduled systems 129

without regarding priorities. These sets can then be investigated, in turn, to find
a PPC with maximal stack usage. We let the relationτti � τtj hold whenever
the semiclosed intervals[Oti, Rti) and[Otj , Rtj) intersect, or more formally:

τti � τtj ≡ Oti < Rtj ∧Otj < Rti (6.7)

The relation� is a relaxation of the≺ relation. That is,τti ≺ τtj → τti �
τtj . To see this, suppose thatτti ≺ τtj which impliesOti < Otj +Jtj +Btj ∧
Otj < Rti, according to Equation 6.6. SinceOtj + Jtj + Btj ≤ Rtj follows
from the notion of response time, we haveOti < Rtj ∧Otj < Rti, which also
is the definition ofτti � τtj .

We can now define anoverlap setKr as a set of tasks where:

∀τti, τtj ∈ Kr : τti � τtj

The stack usageSUKr
of an overlap setKr is defined as the maximum

stack usageSUQ of all PPCsQ whereQ ⊆ Kr:

SUKr
= max

∀Q⊆Kr :PPC (Q)
(SUQ) (6.8)

Kr is maximal, if and only if, there exists no overlap set,Ks, such thatKr ⊂
Ks.

Lemma 2. For any PPCQ, there exists a maximal overlap setKr such that
Q ⊆ Kr.

Proof of Lemma 2. From the definitions of a PPC and the≺ and� relations,
we know that for all tasksτti ≺ τtj in Q it also holds thatτti � τtj , and thus
Q is an overlap set. Then, eitherQ is maximal, or it can become maximal by
extending it with additional tasks. In either case, the lemma holds. �

In all, the algorithm for computing the upper bound PUB on themaximum
stack usage for a set of tasksΓt can be summarized as follows:

1. Find the maximal overlap sets inΓt:
K = {K1,K2, . . . ,Kk}.

2. For each of them, computeSUKr
according to Equation 6.8.

3. The upper bound of the stack usage forΓt can now be computed as
follows:

SUB = max
∀Kr∈K

(SUKr
) (6.9)

130 Paper A

Informally, we start by finding all sets of tasks that can overlap in time
based on their offsets and worst case response times, which safely approxi-
mates their actual start and finishing times. For each such set (Ki), we find all
possible preemption chains (PPCs) by also taking task priorities and maximal
jitter and blocking time into account, and compute the stackusage for each
chain. The stack usage ofKi is the maximum stack usage of all its PPCs, and
the maximum stack usage (SUB) of the system is then obtained by taking the
maximum stack usage of everyKi.

6.5.1 Correctness

In order to claim correctness of our approximate stack analysis method, we
have to show that it never underestimates the actual stack usage that can occur
during run-time.

Theorem 1. The value computed by theSUB algorithm is a safe upper bound
on the actual worst case stack usage for tasks inΓt. Formally,SWC ≤ SUB .

Proof of Theorem 1. Let Ψ ⊆ Γt be the sequence of tasks instances par-
ticipating in the preemption situation which cause the worst case stack us-
age, that is,SWC =

∑

τti∈Ψ Sti. According to Lemma 1, we must have
τti ≺ τtj for tasksτti and τtj that occur in that order inΨ, and thusΨ is a
PPC withSUΨ = SWC . Then, Lemma 2 ensures that there exists a maxi-
mal overlap setKr such thatΨ ⊆ Kr, and we haveSUΨ ≤ SUKr

. Thus,
SWC ≤ SUKr

≤ SUB , which concludes the proof. �

6.5.2 Computational complexity

The relaxation of≺ into interval intersection (Equation 6.7) allows us to effi-
ciently compute an upper bound on the stack usage (Equation 6.9) by applying
a polynomial longest path algorithm on the linearly-bounded number of maxi-
mal overlap sets.

To first see that the set of maximal overlap setsK = {K1,K2, . . . ,Kk}
contain at mostn elements, i.e.,k ≤ n, consider the graph(Γt, E), whereΓt

is the set of vertices andE = {τtiτtj | (τti � τtj) ∧ τti, τtj ∈ Γt} is the
set of edges. From Equation 6.7, we have that edgesτtiτtj ∈ E correspond to
intersection of the semi-closed intervals[Oti, Rti) and [Otj , Rtj), and there-
fore the graph is aninterval graph[19]. Because every interval graph is also
chordal[19], all maximal complete subgraphs in(Γt, E), which correspond to
all maximal overlap sets, can be found in linear time [26]. Furthermore, for

6.6 Evaluation 131

chordal graphs there exists at mostn such sets, and thus we have at mostn
overlap sets [19].

The problem of finding the worst PPC within a single overlap set Kr is
significantly easier than for an arbitrary set of tasks. Since it holds thatτti �
τtj for all tasksτti, τtj ∈ Kr, and therefore in particular thatOti < Rtj for
all tasks inKr, we need only look for a maximum stack usage chainQ where
(1)Oti < Otj + Jtj + Btj , and (2)Pti < Ptj for all tasksτti andτtj in that
order inQ to find the worst PPC. A directed graph consisting of tasks inKr

and arcs corresponding to properties (1) and (2) is acyclic,and for such graphs
a longest-path type algorithm can be used to find the worst PPC[8]. There
exist longest-path algorithms with a time complexity ofO(n + m), wheren
is the number of tasks andm is the number of possible preemptions, of which
there are at mostn(n− 1)/2. Taking the maximum of a maximal PPC in each
set,Kr, of which there are at mostn, we will, therefore, find a maximum stack
size PPC in at mostO(n3) time.

6.6 Evaluation
We evaluate the efficiency of our proposed method to establish a safe upper
bound on shared stack usage by randomly generating realistic sized task sets.
The size, load and stack usage of the task sets are derived from a wheel-loader
application by Volvo Construction Equipment [33]. We use three different
methods to calculate the shared system stack usage:

SPL The traditional method to dimension a shared system stack bysumming
up the maximum stack usage in each priority level.

SUB The safe upper bound on the shared stack usage presented in Section 6.5

SLB A lower bound on on the shared stack usage, for each task set.

The lower bound is established using simple heuristics thattries to maxi-
mize shared stack usage by generating only feasible preemption scenarios for
the task set, and thus, represents scenarios that definitelycan occur. From all
PPCs, the heuristic selects a sample set of roughly 500 chains. For each of
them, the method tries to construct a feasible arrival pattern for the ET tasks
and actual execution time values that cause an actual preemption between the
tasks in the chain. The quality of this heuristic method degrades as the length
of the chains or the total number of PPCs increases, which canbe seen in the
figures.

By establishing a safe upper bound and a feasible lower bound, we know
that the actual worst case stack usage is bounded by SUB and SLB. The rea-

132 Paper A

son for including SLB is to give an indication on the maximum amount of
improvement there might be for SUB.

6.6.1 Simulation setup

In our simulator we generate random task sets as input to the stack analysis
application. The task generator takes the following input parameters:

• Total number of TT (time triggered) tasks (default = 250)

• Total load of TT tasks (default = 60%)

• Minimum and maximum priorities of TT tasks (default = 1 and 32)

• Minimum and maximum stack usage of TT tasks (default = 128 and
2048)

• Total number of ET (event triggered) tasks (default = 8)

• Total load of ET tasks (default = 20%)

• The shortest possible minimum inter-arrival time of an ET task (default
= 1,000)

The generated schedule for TT tasks is always 10,000 time units. All ET tasks
have higher priority than TT tasks. The default values for the input parameters
represent a base configuration derived from a real application [33].

Using these parameters a task set with the following characteristics is gen-
erated:

• Each TT offset (Oti) is randomly and uniformly distributed between 0
and 10,000.

• Worst case execution times for TT tasks,Cti, are initially randomly as-
signed between 1 and 1000 time units. The execution times getadjusted
by multiplying allCti by a fraction, so that the the TT load (as defined
by the input parameter) is obtained.

• TT priorities are assigned randomly between minimum and maximum
value with a uniform distribution.

6.6 Evaluation 133

6.6.2 Results

Each diagram shows three graphs corresponding to the stack usage calculated
by the three methods: SPL, SUB, and SLB. Each point in the graphs represents
the mean value of 100 generated task sets. We also measured the 95% confi-
dence interval for the mean values. These are not shown because of their small
size (less than 7% of the y-value for each point). We also measured the CPU
time to calculate an upper bound on shared stack usage for each generated task
set. Using the method described in Section 6.5, the calculations took less than
63ms per task set, on an Intel Pentium 4, 2.8GHz with 512MB of RAM.

 0

 50

 100

 150

 200

 250

 50 100 150 200 250

S
ha

re
d

st
ac

k
us

ag
e

(K
B

)

Maximum priority of TT tasks

SPL SUB SLB

Figure 6.1: Varying the number of priority levels of TT tasks

In Fig. 6.1, we vary the maximum priority for TT tasks between1 and
300, keeping the minimum priority at 1. This gives a distribution of possible
priorities (priority levels), from 1 ton, wheren is indicated by the x-axis.
We see, in Fig. 6.2 which zooms in on Fig. 6.1, for maximum priorities up to
10, that the difference in stack usage between SPL and SUB is less noticeable
with a low number of priority levels. However, for larger numbers of priority
levels the difference is significant. SPL is not expected to flatten out before all
tasks actually have unique priorities, whereas our method (SUB) flattens out
significantly earlier. We conclude that the maximum number of tasks in any
preemption chain is increasing very slowly (or not at all) when the number of
TT tasks increases above a certain value, since the system load is constant.

In Fig. 6.3, we vary the maximum stack usage of each TT task between

134 Paper A

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10

S
ha

re
d

st
ac

k
us

ag
e

(K
B

)

Maximum priority of TT tasks

SPL SUB SLB

Figure 6.2: Varying the number of priority levels of TT tasks(zoom of Fig. 6.1)

128 bytes and 4096 bytes. We do this by assigning an initial stack of 128
bytes for each TT task, i.e. initially the stack size variation is zero. We then
vary the stack size between 128 and 512 bytes, 128 and 1024 bytes, and so
on. The diagram shows that SUB gives significantly lower values on shared
stack usage than the traditional SPL. We also notice that an increase in stack
variation scales up, linearly, the differences between SPLand SUB. The linear-
ity is expected, since an increase in stack variation does not affect occurrences
of possible preemptions in the system, i.e., possible nested preemptions are
retained.

In Fig. 6.4 we vary the maximum number of TT tasks between 5 and275.
We see that the shared stack usage of the traditional SPL is dramatically in-
creasing in the beginning. This is due to the fact that when the number of
TT tasks is lower than the maximum priority of TT tasks (32), most TT tasks
have unique priorities. SUB, on the other hand, increases much slower than
SPL because the maximum number of tasks involved in any preemption chain
is slowly increasing. SUB is expected to further approach SPL since increas-
ing the number of tasks will increase the likelihood of larger number of tasks
involved in the preemption chains.

In Fig. 6.5, we vary the total load of TT tasks between 10% (0.1) and 70%
(0.7). The figure shows that the shared stack usage of SPL is constant, whereas,
SUB is slowly increasing. SPL is expected to be constant since it is only af-

6.7 Conclusions and future work 135

 0

 20

 40

 60

 80

 100

 120

 0 512 1024 1536 2048 2560 3072 3584 4096

S
ha

re
d

st
ac

k
us

ag
e

(K
B

)

Maximum stack usage of TT tasks (bytes)

SPL SUB SLB

Figure 6.3: Varying stack usage of TT tasks

fected by the number of priority levels and unaffected by theactual preemp-
tions that can occur in a system. The increase of SUB is due to increasing
response-times of TT tasks when the TT load increases, whichwill increase
the likelihood of larger number of tasks involved in nested preemptions.

6.7 Conclusions and future work
This paper presents a novel method to determine the maximum stack memory
used in preemptive, shared stack, real-time systems. We provide a general and
exact problem formulation applicable for any preemptive system model based
on dynamic (run-time) properties.

By approximating these run-time properties, together withinformation about
the underlying run-time system, we present a method to safely approximate the
maximum system stack usage at compile time. We do this for a relevant and
commercially available system model: A hybrid, staticallyand dynamically,
scheduled system. Such a system model provides lot of staticinformation that
we can use to estimate the dynamic start- and finishing-times. Our method
finds the nested preemption pattern that results in the maximum shared stack
usage. We prove that our method is a safe upper bound of the exact system
stack usage and show that our method has a polynomial time complexity.

In a comprehensive simulation study, we evaluated our technique and com-

136 Paper A

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

S
ha

re
d

st
ac

k
us

ag
e

(K
B

)

Number of TT tasks

SPL SUB SLB

Figure 6.4: Varying the number of TT tasks

pared it to the traditional method to estimate stack usage. We find that our
method significantly reduces the amount of stack memory needed. For realis-
tically sized task sets, a decrease in the order of 70% is typical.

In this paper, we focused on a system model for a given commercial real-
time operating system. In the future, we plan to extend our approximation
method to a more general system model, to incorporate all thefeatures of the
general model for tasks with offsets [12]. Such an extensionwould make the
presented analysis technique applicable to a wider range ofsystems.

Our current method could also be extended to account for other types of
information that can further limit the number of possible preemptions. We cur-
rently only account for separation in time (offsets and response-times) between
tasks. However, in many systems other types of information,such as prece-
dence and mutual-exclusion relations may exists between tasks, thus limiting
the possible preemptions.

The method presented here could also be used in synthesis andconfigura-
tion tools that generate optimized systems from given application constraint.
In this case, the results from our analysis can be used to guide optimization
or heuristic techniques that try to map application functionality to run-time
objects.

Bibliography 137

 0

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
ha

re
d

st
ac

k
us

ag
e

(K
B

)

Total load of TT tasks

SPL SUB SLB

Figure 6.5: Varying the load of TT tasks

Bibliography
[1] AbsInt. Web page,

http://www.absint.com/stackanalyzer/.

[2] J. H. ANDERSON, S. RAMAMURTHY , AND K. JEFFAY, Real-Time Com-
puting with Lock-Free Shared Objects, ACM Transactions on Computer
Systems, 15 (1997), pp. 134–165.

[3] Arcticus Systems. Web page,
http://www.arcticus-systems.com.

[4] T. P. BAKER, A Stack Based Resource Allocation Policy for Real-Time
Processes, in Proceedings of the 11th IEEE Real-Time Systems Sympo-
sium, IEEE Computer Society, 1990.

[5] D. BRYLOW, N. DAMGAARD , AND J. PALSBERG, Static checking of
interrupt-driven software, in Proceedings of the 23th International Con-
ference on Software Engineering, May 2001.

[6] A. BURNS AND A. WELLINGS, Real-Time Systems and Programming
Languages, Addison-Wesley, second ed., 1996, ch. 13.10.1 Immediate
Ceiling Priority Inheritance.

138 Bibliography

[7] H. CHO, B. RAVINDRAN , AND E. D. JENSEN, A Space-Optimal Wait-
Free Real-Time Synchronization Protocol, in Proceedings of the 17th Eu-
romicro Conference on Real-Time Systems, IEEE Computer Society,
July 2005.

[8] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, In-
troduction to Algorithms, MIT Press, Cambridge, MA, USA, second ed.,
2001.

[9] R. DAVIS , N. MERRIAM, AND N. TRACEY, How Embedded Applica-
tions using an RTOS can stay within On-chip Memory Limits, in Pro-
ceedings of the Work-in-Progress and Industrial Experience Session, Eu-
romicro Conference on Real-Time Systems, June 2000.

[10] R. DOBRIN AND G. FOHLER, Reducing the Number of Preemptions in
Fixed Priority Scheduling, in Proceedings of the 16th Euromicro Confer-
ence on Real-time Systems, IEEE Computer Society, 2004.

[11] P. GAI , G. LIPARI, AND M. D. NATALE , Minimizing Memory Utilization
of Real-Time Task Sets in Single and Multi-Processor Systems-on-a-Chip,
in Proceedings of the 22th IEEE Real-Time Systems Symposium, IEEE
Computer Society, 2001.

[12] J. C. P. GUTIERREZ AND M. G. HARBOUR, Schedulability Analysis for
Tasks with Static and Dynamic Offsets, in Proceedings of the 19th IEEE
Real-Time Systems Symposium, IEEE Computer Society, 1998.

[13] Haldex Traction Systems. Web page,
http://www.haldex-traction.com/.

[14] R. HECKMANN AND C. FERDINAND, Verifying Safety-Critical Timing
and Memory-Usage Properties of Embedded Software by Abstract Inter-
pretation, in Proceedings of the Design, Automation and Test in Europe,
March 2005.

[15] BAE Systems Hägglunds. Web page,
http://www.haggve.se.

[16] K. HÄNNINEN , J. LUNDBÄCK , K.-L. L UNDBÄCK , J. MÄKI -TURJA,
AND M. NOLIN, Efficient Event-Triggered Tasks in an RTOS, in Pro-
ceedings of the 2005 International Conference on Embedded Systems and
Applications, June 2005.

Bibliography 139

[17] C. G. LEE, K. LEE, J. HAHN , Y. M. SEO, S. L. MIN , R. HA , S. HONG,
C. Y. PARK , M. LEE, AND C. S. KIM , Bounding Cache-Related Pre-
emption Delay for Real-Time Systems, IEEE Transactions on Software
Engineering, 27 (2001), pp. 805–826.

[18] Live Devices ETAS Group. Web page,
http://en.etasgroup.com/products/rta/.

[19] T. A. MCKEE AND F. MCMORRIS, Topics in Intersection Graph Theory,
no. QA 166.105.M34 in SIAM Monographs on Discrete Mathematics and
Applications, Society for Industrial and Applied Mathematics, 1999.

[20] Micro Digital Inc.: smx® Special Features. Available 2009-10-20 at:
http://www.smxinfo.com/rtos/kernel/smxfeatr.pdf.

[21] B. M IDDHA , M. SIMPSON, AND R. BARUA, MTSS: Multi Task Stack
Sharing for Embedded Systems, in Proceedings of the of the ACM Inter-
national Conference on Compilers, Architecture, and Synthesis for Em-
bedded Systems, San Francisco, CA, Sept 2005.

[22] J. MÄKI -TURJA, K. HÄNNINEN , AND M. NOLIN, Efficient Develop-
ment of Real-Time Systems Using Hybrid Scheduling, in International
Conference on Embedded Systems and Applications, June 2005.

[23] J. MÄKI -TURJA AND M. NOLIN, Fast and tight response-times for tasks
with offsets.

[24] H. RAMAPRASAD AND F. MUELLER, Bounding Preemption Delay
within Data Cache Reference Patterns for Real-Time Tasks, in Proceed-
ings of the 12th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, IEEE Computer Society, April 2006.

[25] J. REGEHR, Scheduling Tasks with Mixed Preemption Relations for Ro-
bustness to Timing Faults, in Proceedings of the 23rd IEEE Real-Time
Systems Symposium, IEEE Computer Society, 2002.

[26] D. J. ROSE AND R. E. TARJAN, Algorithmic Aspects of Vertex Elimina-
tion, in STOC ’75: Proceedings of the 7th annual ACM symposium on
Theory of computing, New York, NY, USA, 1975, ACM Press, pp. 245–
254.

140 Bibliography

[27] M. SAKSENA AND Y. WANG, Scalable Real-Time System Design Us-
ing Preemption Thresholds, in Proceedings of the 21st IEEE Real-Time
Systems Symposium, IEEE Computer Society, 2000.

[28] K. SANDSTRÖM, C. ERIKSSON, AND G. FOHLER, Handling Interrupts
with Static Scheduling in an Automotive Vehicle Control System, in Pro-
ceedings of the 5th International Conference on Real-Time Computing
Systems and Applications Symposium, IEEE Computer Society, 1998,
pp. 158–165.

[29] J. STASCHULAT, S. SCHLIECKER, AND R. ERNST, Scheduling Analysis
of Real-Time Systems with Precise Modeling of Cache RelatedPreemp-
tion Delay, in Proceedings of the 17th Euromicro Conference on Real-
Time Systems, IEEE Computer Society, 2005.

[30] Tidorum. Web page,
http://www.tidorum.fi/bound-t/.

[31] K. T INDELL , Using Offset Information to Analyse Static Priority Pre-
emptively Scheduled Task Sets, Tech. Report YCS-182, Dept. of Com-
puter Science, University of York, England, 1992.

[32] Unicoi Systems. Web page,
http://www.unicoi.com/fusion_rtos/fusion_rtos.htm.

[33] Volvo Construction Equipment. Web page,
http://www.volvoce.com.

Chapter 7

Paper B:
Bounding shared-stack
usage in systems with offsets
and precedences

Markus Bohlin, Kaj Hänninen, Jukka Mäki-Turja, Jan Carlson
and Mikael Nolin.

In Proceedings of the 20th Euromicro Conference on Real-Time
Systems.

July 2–4, 2008, Prague, Czech Republic.

141

Abstract

The paper presents two novel methods to bound the stack memory used
in preemptive, shared stack, real-time systems. The first method is based on
branch-and-bound search for possible preemption patterns, and the second one
approximates the first in polynomial time. The work extends previous meth-
ods by considering a more general task-model, in which all tasks can share the
same stack. In addition, the new methods account for precedence and offset
relations. Thus, the methods give tight bounds for a large set of realistic sys-
tems. The methods have been implemented and a comprehensiveevaluation,
comparing our new methods against each other and against existing methods,
is presented. The evaluation shows that our exact method cansignificantly
reduce the amount of stack memory needed.

7.1 Introduction 143

7.1 Introduction

In order to limit the amount of RAM set aside for stack-memoryin embedded
systems, many RTOSes provide means to execute multiple tasks on a single,
shared, stack (e.g. Rubus [3], Fusion [28], Erika [10], SMX [17], etc.). In
order to make maximum use of this ability to share stack-memory we need
methods to properly dimension the memory allocated to the stack. This paper
shows how to exploit commonly available knowledge of precedence and offsets
between tasks to calculate a tight upper bound on the amount of stack-memory
used.

In shared stack systems, one stack-frame is added to the system’s stack
for each level of preemption. Thus, the maximum stack-usageoccurs during
some worst-case preemption pattern. In simple task models (commonly used
in real-time scheduling theory), where tasks are assumed tobe independent,
any preemption pattern is possible — thus we have to pessimistically assume
that all tasks may be active and preempted at the point where they use the
most stack. The system’s maximum stack-usage thus becomes

∑
Si (where

Si denotes the maximum stack-usage of taski). The consequence is that in
these models the benefits of using a shared stack is limited.

In many systems we have information that let us deduce that some preemp-
tion patterns are impossible. For example, in a system wheremultiple tasks
share the same priority, no preemptions among these tasks are possible (as-
suming FIFO scheduling within a priority level and an early-blocking resource
allocation protocol such as the immediate inheritance protocol). In this case,
the system’s maximum stack-usage becomes

∑

p maxp(Si) (wherep denotes
a priority level andmaxp maximizes over the tasks within that priority level).
If the number of priority levels is low enough, this type of analysis can pro-
vide a much lower bound on stack usage than the above sum over all tasks.
Davis et al. describes this type of stack analysis and generalize it to allow
non-preemption groups to be defined [8].

However, limiting the scheduler by lowering the number of priority levels
or manually defining non-preemption groups has drawbacks, since it limits the
schedulability of the system and places extra burden on the engineers to define
non-preemption groups. Also, in many systems there is even more information
available that would allow us to further reduce the possiblepreemptions in the
system.

In this paper we present novel techniques to exploit information about
precedence and offset relations between tasks to further limit the number of
possible preemption-patterns. We perform a system wide preemption analysis

144 Paper B

to find the worst case preemption pattern with respect to stack usage. This al-
lows us to calculate a tight bound on the amount of stack memory needed in
the system. The intuition behind the techniques is that tasks that have prece-
dence relations will, under certain conditions, never preempt each other, and
tasks with offset relations may only preempt each other if the response-time
of the first task is longer than the offset to the second task. Thus, a prereq-
uisite to perform our analysis is that the response-time andrelease jitter are
known for all tasks. We build our analysis on the transactional task-model
introduced by Tindell [27] which was formalized and extended by Gutiérrez
and Harbour [13]. Given the safe approximations of response-times and jitter
resulting from the schedulability analysis presented by, e.g., Mäki-Turja and
Nolin [20], we here present two methods to bound the system stack usage. We
present one algorithm that searches the whole search space of possible preemp-
tions which has exponential complexity, and a safe approximation method with
polynomial complexity. We provide an evaluation of the two methods, com-
paring them with each other and with the method of summation over priority
levels described above.

The transactional task-model allows for modeling of large,complex and re-
alistic real-time systems. Hence, the methods presented have a clear practical
value. The methods can be used in a verification/validation phase of system
development in order to formally verify that stack overflow will not occur dur-
ing runtime. The approximation method (due to its better run-time complexity)
could also be used in optimizing allocation, mapping, and configuration tools
that automate the process of allocating tasks to nodes in distributed systems.
Paper outline. The remainder of this paper is organized as follows. Sec-
tion 7.1.1 describes related work and sets the context for the contributions of
this paper. In Section 7.2, we discuss stack sharing and its consequences, and
in Section 7.3 we present the system model that we use. Section 7.4 presents
the exact formulation of determining the maximum stack usage, and gives the
theoretical framework for Section 7.5, which describes algorithms for bound-
ing the stack usage of systems with offsets and precedences.Section 7.6 gives
an experimental evaluation of our analysis methods, and Section 7.7 concludes
the paper and suggests future work.

7.1.1 Related work

A large number of publications have addressed preemption analysis for specific
reasons, see, e.g. [2, 9, 15, 21, 22, 25]. Our work is related in the sense that we
also investigate possible preemptions. However, our objectives differ, since

7.2 Stack sharing in preemptive systems 145

we analyze system wide premption patterns to investigate their effect on stack
memory requirements for a task model with offsets and precedences.

Throughout the years, a number of publications have addressed stack shar-
ing. Baker presented the Stack Resource Policy (SRP) that permits stack shar-
ing among processes with shared resources [4]. Chatterjeeet al. study stack
boundedness for interrupt-driven programs [6]. In [8] Daviset al. address stack
memory requirements and non-preemption groups to reduce shared stack us-
age. Gaiet al. [11] present the Stack Resource Policy with preemption Thresh-
olds (SRPT) which extends the work of Saksena and Wang [24] byaccount-
ing for stack usage when establishing non-preemption groups. In [12] Ghat-
tas and Dean investigate stack space requirements under preemption threshold
scheduling. Middhaet al. [18] propose the MTSS stack sharing technique
that allows a stack to grow into other tasks. In [23] Regehret al. present a
method to guarantee stack safety of interrupt-driven software by computing the
worst-case memory requirements of individual interrupt handlers and perform
preemption analysis between handlers. In [14] we presentedan approximate
stack analysis method to derive a safe upper bound on the shared stack usage
of a static time-driven schedule in offset-based, hybrid scheduled (interrupt-
and time-driven) fixed priority preemptive systems. In thispaper, we extend
that work by supporting stack sharing across several transactions for the task
model with offsets. Here we also take precedence relations into account to
further reduce possible preemptions.

7.2 Stack sharing in preemptive systems
In this paper we consider systems where several tasks use a single, statically
allocated, run-time stack. For this to be possible, a task only uses the stack be-
tween the start time of an instance,υi, and the finishing time of that instance,
i.e., no data remains on the stack from one instance of a task to the next. This
is ensured by not allowing tasks to suspend themselves voluntarily. In practice
this means that OS-primitives likesleep() andwait_for_event() can-
not be used. An invocation of a task can be viewed as a functioncall from the
operating system, and the invocation terminates when the function call returns
(thus any persistent context must be stored outside of the stack).

It is also required that a task instance never experiences blocking once it
has started execution, i.e., we can never preempt the executing task because a
needed resource is locked by a lower priority task. This is achieved by using
anearly blockingresource access protocol such as the immediate inheritance
protocol [5] or the stack resource policy [4].

146 Paper B

The motivation for allowing tasks to share a common stack is that this
shared stack can be smaller than the sum of the individual stacks without jeop-
ardizing the correctness of the application. Shared-stackanalysis aims at (pre
run-time) deriving a safe, but tight, approximation of the worst case (run-time)
size of the shared stack. As long as the amount of memory statically allocated
for the shared stack does not exceed this bound, the absence of stack overflow
errors is guaranteed.

At any given point in time, the size of the shared stack equalsthe sum of
the current stack usage for each active task instance. The maximum size of the
shared stack thus depends on two factors: (i) the stack memory usage of each
task instance, and (ii) the possible preemption patterns among tasks.

Due to the difficulties in determining the exact stack usage at every point
in time for a task instance, shared-stack analysis methods typically assume that
whenever a task is preempted, it is preempted at its maximum stack depth. We
make the same assumption. Bounds on maximum stack usage for agiven task
can be derived by abstract interpretation using tools such as AbsInt [1] and
Bound-T [26].

Previous traditional approaches to account for the second factor, i.e., the
possible preemption patterns, is based on the fact that at most one task from
each priority level (or preemption level, if these two concepts do not coincide)
can be active at the same time. Thus, a simple and safe approach for bounding
the maximum shared stack usage is to sum the maximum individual stack usage
of tasks at each priority (or preemption) level. We call thisapproach SPL (Sum
of all Priority Levels), as described by Daviset al. [8]. SPL uses the following
function to calculate a stack usage bound:

∑

p∈all priority levels

max
(
{Si : τi has priorityp}

)
(7.1)

whereSi denotes the maximum stack usage of taskτi.
However, this approach can be very pessimistic, since it assumes a worst-

case situation where tasks with maximum stack usage from each priority level
preempt each other in a nested fashion. In practice, this situation could be im-
possible to achieve because of factors such as release times, deadlines, prece-
dence constraints, and other dependencies that affect whentasks can execute.

The analysis approach proposed in this paper reduces the pessimism of the
traditional method by investigating the possible preemption patterns in more
detail. We formally define the start- and finishing time of a task instanceυi, as
follows:

st i The absolute time whenυi actually begins its execution.

7.2 Stack sharing in preemptive systems 147

ft i The absolute time whenυi terminates its execution.

Assume that a task instanceυi is preempted by another task instanceυj .
The use of an early-blocking resource protocol then ensuresthat ftj < fti if
sti < stj , and the following holds:

sti < stj < ftj < fti . (7.2)

In this paper we are interested in chains of nested preemptions, so-called
preemption chains. We define a preemption chain to be a sequencePC =
{υ1, υ2, . . . , υk} of task instances such that

st1 < st2 < · · · < stk < ftk < ftk−1 < · · · < ft1. (7.3)

Lemma 1. PC = {υ1, υ2, . . . , υk} is a preemption chain if and only if for all
instancesυi, υj in PC wherei < j, it holds thatsti < stj < ftj < fti .

Proof of Lemma 1. The proof of Lemma 1 follows trivially from Equations
(7.2) and (7.3).

Let AllPC be the set of all preemption chains in all runtime scenarios.
Then, under the assumption that the worst case stack usageSi of a task instance
υi can occur at any time during its execution, a bound on the worst case stack
usageSWC for a preemptive shared stack system can be expressed as follows:

SWC = max
PC∈AllPC

∑

υi∈PC

Si. (7.4)

This formulation, however, cannot be directly used for analyzing and di-
mensioning the shared system stack since it is based on the dynamic (only
available at run-time) propertiesst i and ft i. To be able to statically analyze
the system, one has to relate the static task properties to these dynamic prop-
erties. This is done by establishing how the system model, scheduling policy,
and run-time mechanism constrain the values of the actual start and finishing
times.

In previous work we have described how this can be done for thespecial
case that only tasks in the same transaction share stack [14]. This paper extends
the analysis in the sense that we allow stack sharing among arbitrary transac-
tions consisting of fixed priority tasks with offsets. We also improve the way
precedence relations are accounted for in the preemption analysis.

148 Paper B

7.3 System model
The system model used in this paper is an offset-based (or transactional) task
model which was introduced by Tindell [27]. Later it was formally defined and
extended by Gutiérrez and Harbour [13] and further improvedupon by Mäki-
Turja and Nolin [20]. Gutiérrez and Harbour show how this task model can
be used to model precedence relations in a distributed system and perform a
holistic schedulability analysis for the entire system [13]. In [14, 19] we show
how it can be used to model hybrid, static and dynamic, scheduled systems,
which is supported by a commercial operating system provided by Arcticus
Systems [3].

The system model is defined as follows: the system,Γ, consists of a set of
k transactionsΓ1, . . . ,Γk. Each transactionΓs is activated by an event, and
Ts denotes the minimum inter-arrival time between two consecutive events.
The activating events can be mutually independent, i.e. thetransactions may
execute with arbitrary phasing. A transactionΓs contains|Γs| tasks. A task
may not be released for execution until a certain time (theoffset) has elapsed
after the arrival of the activating event.

We useτsi to denote a task. The first subscript denotes which transaction
the task belongs to, and the second subscript denotes the index of the task
within the transaction. A task,τsi, is defined by a worst-case execution time
(Csi), an offset (Osi), a deadline (Dsi), a maximum jitter (Jsi), a maximum
blocking from lower priority tasks (Bsi), and a priority (Psi). Ssi is used to
denote the maximum stack usage ofτsi. When referring to the stack usage
of a specific instanceυj of a taskτsi we sometimes useSj instead ofSsi to
simplify the presentation.

The system model is formally expressed as:

Γ :={〈Γ1, T1〉, . . . , 〈Γk, Tk〉}
Γs :={τs1, . . . , τs|Γs|}
τsi :=〈Csi, Osi, Dsi, Jsi, Bsi, Psi, Ssi〉

Jitter is assumed to be a nonnegative variation in task release times, and
the deadline of a task is relative to the triggering of the transaction. There are
no other restrictions placed on deadline or jitter, i.e., they can each be either
smaller or greater than the transaction period.

We assume that offsets are nonnegative and smaller than the period, that
the system is schedulable, and that worst-case response times (Rsi) have been
calculated for all tasks [20]. Response times are measured from the triggering
event of the transaction, i.e., including offset and jitter.

7.4 Preemption analysis for offset-based systems 149

In addition, we define a binary non-preemption relationNOPRE between
tasks such that ifNOPRE(τsi, τtj) thenτsi can not be preempted byτtj . The
relation is reflexive, because two instances of the same taskcan never pre-
empt each other. For the analysis in this paper, informationabout precedences
between tasks in the system are taken into account by encoding these as non-
preemption relations. Two tasks with a precedence relationbetween them will
not preempt each other given that the response times of both tasks are less
than the transaction period. Additional mutual exclusion information can, if
available, also be encoded usingNOPRE.

We assume the system is scheduled with fixed priority scheduling with fifo-
scheduling of tasks with the same priority. Further, we assume that an early-
blocking resource access protocol, such as the immediate inheritance protocol,
is used.

7.4 Preemption analysis for offset-based systems
In the rest of the paper we assume that all tasks share a commonstack. The
upper bound problem for multiple transactions can then be informally stated as
finding the maximum stack usage of all possible preemption chains, no matter
in which transaction they occur.

Stack analysis for multiple transactions is naturally morecomplex than
analysis of one single transaction, since tasks in different transactions may
interfere in nontrivial ways depending on relative priorities and the phasing be-
tween transactions. To get a safe upper bound on the stack size we therefore
need to examine all possible phasing patterns between transactions.

A straightforward approach for analyzing multiple transaction stack behav-
ior is to analyse the transactions in isolation, using the sum for all transactions
as an upper bound on the total stack consumption. Each transaction can be
analyzed using the method developed in [14] or any other method. The result
obtained is a safe upper bound if the analysis for each transaction is safe.

Unfortunately, the latter approach ignores that the globalstack upper bound
may be significantly lower, since all possible transaction-local preemption pat-
terns may not occur at the same time. One example of this is when two stack-
intensive tasks with equal priority both influence the stackbound in their re-
spective transaction. The bound obtained can be pessimistic since no two tasks
with equal priority can both be active at the same time.

In this section, we propose a new, more elaborate algorithm which takes
this into account. The method is based on a precise analysis of the relaxed
global precedence chains that are possible. The algorithm has a non-polynomial

150 Paper B

time complexity but is nonetheless usable for analyzing realistically sized task
sets. However, since sufficiently large task sets will neverbe analyzable using
non-polynomial algorithms, we also propose a less accuratebut still competi-
tive approximate method with a polynomial time complexity.The method is a
generalization of the one presented in [14] to handle several transactions.

7.4.1 Pairwise preemptions

Since task preemption is one of the factors influencing the size of the shared
stack, a first step is to formulate a safe approximation of possible pairwise
preemptions. For this, we first define the release timert i of a task instanceυi
as the absolute time whenυi is ready to start executing.

Let αk denote the activation time of the transaction releasing an instance
υk of a taskτsi. Then, we have the following relations on the start time and
release time ofυk:

αk +Osi ≤ stk . (7.5)

rtk ≤ αk +Osi + Jsi. (7.6)

These concepts are illustrated in Figure 7.1.

��

time -

αk rtk stk
. . .

ftk

Offset
Release jitter

� Blocking caused by shared resources
Delay caused by higher priority tasks
Executing

Figure 7.1: Important activities and time points for a task instanceυk.

We useψsji to denote the offset phasing between two tasksτsj and τsi
in the same transactionΓs, and define it as the minimum distance from an
instance ofτsj to the next instance ofτsi, or formally:

ψsji = (Osi −Osj) modTs. (7.7)

Generalizing the preemption criteria by Dobrin and Fohler [9], which is further
extended in [14], we form the binary relationτsi ≺ τtj with the interpretation

7.4 Preemption analysis for offset-based systems 151

that τsi may be preempted byτtj . We let the relation hold whenever (a)τsi
has lower priority thanτtj , (b) τsi does not have a non-preemption relation to
τtj , and either (c1)τsi andτtj are in different transactions (and can possibly
intersect due to unknown phasing), (c2)τtj can be delayed by jitter, possibly
starting after the next invocation ofτsi, or (c3) τsi can possibly finish after
the start of the next invocation ofτtj . Formally, the relation can be defined as
follows:

τsi ≺ τtj ≡
(a)

︷ ︸︸ ︷

Psi < Ptj ∧
(b)

︷ ︸︸ ︷

¬NOPRE(τsi, τtj) (7.8)

∧
(
s 6= t
︸ ︷︷ ︸

(c1)

∨ Jsj > ψsji
︸ ︷︷ ︸

(c2)

∨ Rsi −Osi > Ts − ψsji
︸ ︷︷ ︸

(c3)

)

Lemma 2. The≺ relation is a safe approximation of the possible preemp-
tions between tasks. That is, ifτsi can under any run-time circumstance be
preempted byτtj , thenτsi ≺ τtj holds.

Proof of Lemma 2. If an instanceυk of τsi is preempted by an instanceυl
of τtj , then we must havePsi < Ptj , ¬NOPRE(τsi, τtj) and stk < stl < ftk .
From the assumption about the resource protocol, we know that τsi can not
start betweenrt l andstl , and thus we must havestk < rt l .

If s 6= t, thenτsi ≺ τtj holds. Thus, for the remaining proof we assume
s = t, and consider two cases:
Case 1:If Osi < Osj , thenψsji = Ts +Osi −Osj .
If αk ≤ αl, we have

stl < ftk ⇒ αl +Osj < αk +Rsi ⇒
Osj −Osi < Rsi −Osi ⇒ Ts − ψsji < Rsi −Osi.

If αk > αl, thenαl + Ts ≤ αk, and we have
stk < rt l ⇒ αk +Osi < αl +Osj + Jsj ⇒
αl + Ts +Osi < αl +Osj + Jsj ⇒
Ts +Osi −Osj < Jsj ⇒ ψsji < Jsj .

Case 2:If Osi ≥ Osj , thenψsji = Osi −Osj .
If αk ≥ αl, we have

stk < rt l ⇒ αk +Osi < αl +Osj + Jsj ⇒
αl +Osi < αl +Osj + Jsj ⇒
Osi −Osj < Jsj ⇒ ψsji < Jsj .

If αk < αl, thenαk + Ts ≤ αl, and we have
stl < ftk ⇒ αl +Osj < αk +Rsi ⇒
αk + Ts +Osj < αk +Rsi ⇒

152 Paper B

Ts +Osj −Osi < Rsi −Osi ⇒
Ts − ψsji < Rsi −Osi.

In all four subcases, we either haveTs − ψsji < Rsi − Osi or ψsji < Jsj ,
which means thatτsi ≺ τtj holds. �

7.4.2 Possible preemption chains

A sequenceQ of tasks is apossible preemption chain(PPC) if it holds that
τsi ≺ τtj for all τsi, τtj in Q whereτsi occurs beforeτtj in the sequence.

In other words,Q is a PPC if and only if the relation≺ holds transitively
between all tasks inQ. For example, the sequence{τ11, τ12, τ13} is a PPC if
and only ifτ11 ≺ τ12, τ11 ≺ τ13 andτ12 ≺ τ13. If it only holds thatτ11 ≺ τ12
andτ12 ≺ τ13, thenQ is not a PPC.

The stack usageSUQ of a PPCQ is the sum of the stack usage of the
individual tasks in the chain, i.e.,SUQ =

∑

τsi∈Q Ssi.

Lemma 3. If PC = {υ1, υ2, . . . , υk} is a preemption chain, andQ = {τs1i1 ,
τs2i2 , . . . , τskik} is a corresponding sequence of tasks such thatυq ∈ PC is
an instance ofτsqiq , thenQ is a PPC.

Proof of Lemma 3. For all task instancesυp, υq in a preemption chainPC ,
if p < q then it holds thatstp < stq < ftp . Sinceυp andυq are instances of
τspip andτsqiq respectively, Lemma 2 implies thatτspip ≺ τsqiq , and thusQ is
a PPC. �

A PPCQ for which no other PPC has a higher stack usage in the same
system is called amaximal stack usagePPC, or more informally, amaximal
PPC. The stack upper bound problem can now be stated as findinga maximum
stack usage PPC. We refer to this as the MAXPPC problem. We nowprove
that the stack usage of a maximal PPCQ in a systemΓ is a safe upper bound
on the stack usage ofΓ.

Theorem 1. The stack usage of a maximal PPCQ is a safe upper bound on
the actual worst case stack usage for a systemΓ.

Proof of Theorem 2. LetΨ be the sequence of tasks instances participating
in the preemption situation which cause the worst case stackusage, that is,
SWC =

∑

τsi∈Ψ Ssi. According to Lemma 3, we have thatΨ is a PPC with
SUΨ = SWC . SinceQ is a maximal PPC,SUΨ ≤ SUQ , which concludes
the proof. �

7.5 Algorithms 153

7.5 Algorithms
In [14], we proposed a polynomial method for stack analysis of a single trans-
action of the type described in Section 7.3. The polynomial time behavior of
this method comes from the fact that a single transaction represented by tasks
with offsets and response times can be efficiently analyzed using specialized
graph algorithms [16]. These algorithms cannot be directlyapplied to analysis
of a global stack shared by several transactions. When analyzing a single trans-
action in isolation, the task offsets and response times canbe used to bound
the time interval within which the tasks will execute. However, when several
transactions are considered, we no longer have a common activation time, and
therefore the graph algorithms used in [14] are no longer applicable. We there-
fore propose to analyze smaller systems using an exact algorithm, guaranteed
to find a maximal PPC. For larger systems, we propose to use a polynomial
approximation, described in Section 7.5.4.

7.5.1 An exact algorithm for the MAXPPC problem

We solve the problem of finding a maximal PPC by forming a (directed)pre-
emption graphof nodes representing tasks, and edges representing possible
preemptions, as defined in (7.8). An example taskset (assuming J = B = 0
and¬NOPRE(τsi, τtj) for all tasks) and its corresponding preemption graph is
shown in Figure 7.2, where solid edges represent possible preemptions within
a transaction, and dashed edges represent possible preemptions between differ-
ent transactions.

Task O P R S
τ11 0 1 3854 4
τ12 1697 2 3837 1
τ13 4635 4 4781 2
τ21 0 3 393 2
τ22 617 1 3854 1
τ23 2588 3 3699 3

τ11 τ12 τ13

τ21 τ22 τ23

Figure 7.2: An example of a preemption graph, also showing tasks in a maxi-
mal PPC.

The preemption graph is not necessarily transitive, as Figure 7.2 shows.
This implies that not all paths in the preemption graph form PPCs. As an ex-

154 Paper B

ample, the pathQ = {τ11, τ12, τ23, τ13} is not a PPC since several preemption
relations, for example the one betweenτ12 andτ13, are missing.

The method is based on a branch-and-bound search for PPCs in this graph,
recursively building PPCsQi. An outline of the algorithm is given in Algo-
rithm 7.1. Initially, Q0 = M = ∅. If in any recursive step the total stack
usageSUQ i is greater than the stack usageSUM of the current maximal PPC
M , thenQi becomes the new maximum. We define acover setC(Q) of a
PPCQ as a set of tasks for which all tasks inC(Q) can possibly preempt all
tasks inQ. A cover set ismaximalif it cannot be extended by any other task.
The algorithm maintainsC(Qi) and then recursively examines an extension
Qi+1 = Qi ∪ {τtj} of Qi for each taskτtj in C(Qi). We also apply a bound-
ing function UB to terminate search in branches which clearly cannot contain
a maximum PPC. This bounding function is further discussed in Section 7.5.2.

Algorithm 7.1: Computing a maximal PPC in a generic preemption graph.

MAX PPC(Q)
(1) if SUQ > SUM thenM ← Q
(2) C(Q) = {τtj | ∀τsi ∈ Q.τsi ≺ τtj}
(3) if SUQ + UB(C(Q)) ≤ SUM then return
(4) foreach τtj ∈ C(Q)
(5) MAX PPC(Q ∪ {τtj})

In Section 7.5.3, we show that thealgorithmdescribed isexactin the sense
that it always computes the maximal PPC, and therefore solves the MAXPPC
problem. We also show that the method issafe, because the stack usage of the
maximal PPC is an upper bound on the stack usage of the system.

Note that our method ofstack boundingis not exact, since the≺ relation is
in itself a (safe) approximation. Also, there are other factors unaccounted for.
For example, there may be further restrictions on the possible nesting patterns
due to mutual exclusion, and the tasks may not use their maximum stack when
preempted.

7.5.2 Bounding the maximal PPC

Choosing the right function for the bounding step in Algorithm 7.1 is essential
to guarantee correctness and to acquire a method usable in practice. Asafe
upper bound functionon the maximal PPC stack usage for a set of tasksC is a
function UB for which UB(C) ≥ SUK , whereK ⊆ C is a maximal PPC. We
use the most stack-intensive path in the preemption graph spanned byC(Q) as
the UB function, which we refer to as the PUB method. A heaviest path (w.r.t.

7.5 Algorithms 155

stack space) in a directed acyclic graph can be found inO(n+m) time, where
n is the number of vertices andm is the number of edges [7].

Theorem 2. PUB is a safe upper bound function on the maximal PPC stack
usage.

Proof of Theorem 3. From the definition of a PPC in Section 7.4.2, we have
that a maximal PPCK ⊆ C is a path with stack usageSUK . PUB results in
the maximum stack usage of any pathA ⊆ C. Therefore,PUB(C) ≥ SUK ,
which concludes the proof. �

We refer to the combination of the branch-and-bound method in Algo-
rithm 7.1 with the most stack-intensive path relaxation (PUB) as bounding
function, as the PPCBB algorithm.

7.5.3 Correctness

In order to claim correctness of Algorithm 7.1 we need to showthat it com-
putes a maximal PPC. Theorem 1 then gives us that the stack usage of the PPC
computed by Algorithm 7.1 is an upper bound on the stack usageof the sys-
tem. We first need to prove a lemma regarding the stack usage ofa PPC when
extended with tasks from a cover set.

Lemma 4. If Q is a PPC,C(Q) is a cover set ofQ, andK ⊆ C(Q) is another
PPC, thenQ ∪K is a PPC with stack usageSUQ∪K = SUQ + SUK .

Proof of Lemma 4. All tasks inQ can be preempted by all tasks inC(Q), and
sinceQ andK are both PPCs andK ⊆ C(Q),Q∪K is a PPC. Furthermore,
Q ∩ C(Q) = ∅ because no task can preempt itself, and thusQ ∩K = ∅, and
SUQ∪K =

∑

τsi∈Q∪K Ssi =
∑

τsi∈Q Ssi +
∑

τtj∈K Stj = SUQ + SUK . �

We can now prove that Algorithm 7.1 is correct.

Theorem 3. If UB is a safe stack usage upper bound function, then Algo-
rithm 7.1 terminates with a maximal PPC.

Proof of Theorem 4. The proof is given in two parts.
We first assume thatUB(C) = ∞ for all inputsC, so that Algorithm 7.1

never returns on line (3). Given a PPCQ and any taskτtj from a maximal
cover setC(Q), we can form a new setQ′ = Q ∪ {τtj} which is also a PPC
(from Lemma 4). Therefore,Q is always a PPC, and since the algorithm ex-
tendsQ with one task fromC(Q) andQ ∩ C(Q) = ∅, the algorithm will

156 Paper B

terminate. Ifτsi is not inC(Q), thenQ ∪ {τsi} is not a PPC. All together, the
algorithm explores all PPCs, including a maximal PPC which will be stored in
M and consequently returned when the algorithm terminates.

Now assume thatUB is a safe upper bound function on the maximal PPC
stack usage in a set of tasks. From Lemma 4 we haveSUQ∪K = SUQ + SUK

for all PPCsK ⊆ C(Q), and subsequently this also holds ifK is a maximal
PPC inC(Q), in which caseQ∪K is also a maximal PPC inQ∪C(Q) (from
the definition of cover set). SinceUB is safe,SUQ + UB(C(Q)) ≥ SUQ∪K .
Thus, ifSUQ + UB(C(Q)) ≤ SUM whereM is the most stack-intensive PPC
found so far, there is no PPC inQ∪C(Q) which has a higher stack usage than
M , and we can return from this branch without losing any maximal solutions.
�

7.5.4 Polynomial approximations

Algorithm 7.1 is non-polynomial. In Section 7.6, we show that despite this,
the algorithm can be used to analyze realistically sized task-sets. However, an
exponential analysis method will still be too time-consuming for practical use
when the number of tasks under analysis is too large. We therefore propose
a polynomial time approximation for analyzing stack size where the number
of tasks is too high to be analyzed using the branch-and-bound method. The
approximation is a combination of two methods. The first one,STLA, is based
on analysis of individual transactions in isolation, and essentially uses the sum
for all transactions as an upper bound on the total stack consumption. The
method is described in [14], but has been modified for the current task model,
to account for precedence constraints and to allow responsetimes larger than
the period. STLA is a safe upper bound if the analysis for eachtransaction is
safe, and runs inO(kn3) time, wherek is the number of transactions, andn is
the maximal number of tasks in a single transaction.

STLA is overly pessimistic in situations where equally prioritized stack-
intensive tasks in different transactions influence the isolated transaction stack
upper bound. Since the tasks have equal priority, they cannot preempt each
other, and the global upper bound obtained is pessimistic. To remedy this,
we also use a second polynomial method to obtain a different upper bound.
The method, called PUB, finds a maximum stack usage path in theglobal pre-
emption graph of all tasks in the system, and is the same one described in
Section 7.5.2 and used as an upper bound function in PPCBB.

To illustrate the difference between PPCBB, STLA and PUB, consider
the task set illustrated in Figure 7.2. The maximal PPC in this task set is

7.6 Evaluation 157

{τ11, τ12, τ23} with a total stack usage of 8. This is the result that PPCBB
would return. In contrast, STLA would compute an upper boundby consider-
ing the two transactionsΓ1 = {τ11, τ12, τ13} andΓ2 = {τ21, τ22, τ23} in iso-
lation, computing the PPCs{τ11, τ12} with stack usage 5 forΓ1 and{τ22, τ23}
for Γ2 with a stack usage of 4. The sum, 9, would be returned as the re-
sult. Finally, PUB would return the stack usage 10 of the moststack intensive
path{τ11, τ12, τ23, τ13} in the graph, which is not a PPC but is nonetheless,
as shown in the proofs of Theorem 1 and 2, a safe approximationon the stack
usage of the system.

Sinceτsi ≺ τtj → Psi < Ptj , a stack usage pathP can never include
two tasks on the same priority level. If we would relax the≺ relation into
≺′≡ Psi < Ptj , the stack usage of the most stack intensive path would be equal
to the maximum stack for each priority level in the system. Therefore, PUB is
always at least as good as the traditional approach (SPL). Wepropose to use
the minimum of PUB and STLA (referred to as STLA_PUB) as a polynomial
time alternative to PPCBB. Since both PUB and STLA are safe, STLA_PUB
is also safe.

7.6 Evaluation
We evaluate the efficiency of our proposed methods by generating random task
sets and calculating the stack upper bounds. All tasks in each generated task set
share one common stack. We use three methods (SPL, STLA_PUB,PPCBB)
to calculate an upper bound on the shared system stack. Thus,the upper bounds
are illustrated by the following graphs:

SPL: The traditional approach to determine an upper bound (sum of
maximum stack usage of each priority/preemption level).

STLA_PUB: This represents the minimum of the polynomial methods STLA
(analysis of individual transactions) and PUB (longest path in
global preemption graph). See Section 7.5.4 for details.

PPCBB: Non polynomial branch-and-bound based method with longest
path relaxation. See Section 7.5.1 and 7.5.2 for details.

7.6.1 Simulation setup

We run the stack analysis application on an Intel Pentium 4, 2.18 GHz with
512 MB of RAM. We generate random task sets as input to the stack analysis
application. The task generator takes the following input parameters (default

158 Paper B

values represent the base configuration of each analysis):

Parameter Default
Number of transactions 5
Number of tasks 60
Total system load 40%
Task priority (min–max) 1–32
Task stack usage (min–max) 128–2048 bytes
Probability of precedence 10%

Using these parameters, task sets with the following characteristics are gener-
ated:

• The period timeTs of each transaction is set to 10,000.

• Each task offset (Osi) is randomly and uniformly distributed between 0
andTs/2.

• Task priorities and the stack usages are assigned randomlybetween min-
imum and maximum value with a uniform distribution.

• The total system load, and the number of tasks in the system,is dis-
tributed among the transactions in such way that all transactions have
the same amount of load and the same number of tasks.

• Worst case execution times,Csi, are initially assigned to each task in
such way that tasks are separated in time within a transaction. The exe-
cution times are then adjusted by a fraction, so that the the total system
load (as defined by the input parameter) is obtained, preserving time sep-
aration of tasks within a transaction.

• Each task is assigned a precedence relation with a probability specified
by the precedence probability attribute. For example, if the probability
of precedence forτsi is 10%, then for each succeeding task (i.e., task
with larger or equal offset thanτsi) in Γs, there is a 10% probability that
τsi is given precedence over the task. When all precedences are assigned,
transitive precedences are established, e.g, ifτsi has precedence overτsj
andτsj has precedence overτsk, thenτsi has precedence overτsk.

• We assign deadlineDsi = Ts for each task. All tasks are required to meet
their deadlines (otherwise the task set is considered unschedulable). In
case the generated task set is unschedulable, the task set isdiscarded and
a new task set is generated.

7.6 Evaluation 159

7.6.2 Results

Each point in the graphs represents the mean stack usage of 100 randomly gen-
erated schedulable task sets. For each point, a confidence interval (confidence
level of 95%) is shown to indicate the reliability of the figures. For each di-
agram, we vary one parameter, keeping all other parameters according to the
base configuration. In addition to calculating upper bounds, we also measured
the mean execution time for each method. The mean execution times for SPL
lies in the range of micro seconds, for STLA_PUB the mean execution time
lies in the in the range of milliseconds and for PPCBB in the range from mil-
liseconds up to five seconds.

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60

S
ha

re
d

st
ac

k
us

ag
e

(k
B

)

System load (%)

SPL
STLA_PUB

PPCBB

Figure 7.3: Varying system load.

In Figure 7.3 we vary the total system load from 10% to 60%. As expected,
the stack upper bound using the traditional method (SPL) is constant and un-
affected by variations in load. This is due to the fact that SPL only considers
priorities when calculating the upper bound. Both STLA_PUBand PPCBB
produces upper bounds that are slowly increasing with increasing load. This
is natural, since increasing the load, keeping all other parameters according to
the base configuration, typically results in larger response times, which in turn

160 Paper B

increases the number of possible preemptions in the system.

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70

S
ha

re
d

st
ac

k
us

ag
e

(k
B

)

Max. priority of tasks

SPL
STLA_PUB

PPCBB

Figure 7.4: Varying maximum priority.

In Figure 7.4 we vary the maximum priority of tasks from 1 to 64. This
gives a possible priority distribution of 1 ton, wheren is indicated by the x-
axis. We observe that for small values onn the difference between the methods
is small. For larger values onn the difference is significant.

In Figure 7.5 we vary the number of tasks in the system from 10 to 100.
With a low number of tasks in the system, there is a larger possibility that tasks
have unique priorities hence considered to be part of a preemption chain by
SPL. SPLA_PUB and PPCBB goes one step further and examines preemption
patterns, with a tighter upper bound as a result.

In Figure 7.6 we vary the number of transactions from 1 to 20. We see that
both SPLA_PUB and PPCBB increase when increasing the numberof trans-
actions in the system. With more transactions, the arbitrary phasing between
them increases the possibility of nested preemptions, resulting in increased
shared stack usage. SPL is constant and unaffected by variation in the number
of transactions. Again, this is expected, since SPL only considers priorities.

7.7 Conclusions and future work 161

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

S
ha

re
d

st
ac

k
us

ag
e

(k
B

)

Number of tasks in system

SPL
STLA_PUB

PPCBB

Figure 7.5: Varying the number of tasks in the system.

7.7 Conclusions and future work
Allowing tasks to share a common run-time stack can reduce the amount of
RAM needed for an application. However, in order to safely reduce the over-
all run-time stack, one must be able to analyze possible preemption patterns
statically. And from those preemption patters deduce the possible stack-usage.
Static information about system model, scheduling policy and run-time mech-
anism can be used to constrain the values of the dynamic task-properties that
affect possible preemptions, and thus also shared stack usage.

A task model with such static information is the task model with offsets (the
transactional task model) where priorities, offsets and precedences limit the
possible preemption patterns. We have, for that task model,developed a system
wide preemption analysis that safely approximates the actual preemptions and
forms a basis for safe upper bound of the total shared stack usage.

We presented two novel methods for determining a safe upper bound on
the stack usage. Both methods analyze a graph consisting of tasks and possible
preemptions between these. The first method is an exact search for maximal
possible preemption chains. The second method is a combination of two algo-

162 Paper B

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16 18 20

S
ha

re
d

st
ac

k
us

ag
e

(k
B

)

Number of transactions

SPL
STLA_PUB

PPCBB

Figure 7.6: Varying the number of transactions.

rithms, both being polynomial approximations of the first. We formally showed
that both methods are safe in the sense that they will never underestimate the
amount of stack space needed.

The methods have a clear practical value in a verification/validation phase
of system development. They can be used to formally verify that stack overflow
will not occur during run time. In a simulation study, we evaluated our tech-
niques and compared it to the traditional method to estimatestack usage. We
found that our exact method significantly reduced the amountof stack memory
needed. In our simulations, a decrease in the order of 40% wastypical, with a
runtime in the order of seconds. Our polynomial approximation consequently
yields about 20% higher bound compared to the exact method.

In future work our methods can be used to further reduce the stack bound
by more detailed modeling of the system behavior. For example, the assump-
tion that each task uses its maximum stack when preempted maylead to overly
pessimistic result if the stack usage is highly variable during execution. With
knowledge about the variation of stack usage, one might split a task into sev-
eral segments, each with its own stack usage. These segmentscan then be

Bibliography 163

modeled as separate tasks with precedence constraints, andthus we should ob-
tain a tighter bound on the stack usage. Furthermore, a similar technique could
also be used to split up a task that uses shared resources where the part that
uses the resource can be modeled as a task with a mutual exclusion relation to
other tasks that uses the same resource.

Acknowledgement
This work was partially supported by the Swedish Foundationfor Strategic
Research via the strategic research centre PROGRESS.

Bibliography
[1] AbsInt. Web page,

http://www.absint.com/stackanalyzer/.

[2] J. H. ANDERSON, S. RAMAMURTHY , AND K. JEFFAY, Real-Time Com-
puting with Lock-Free Shared Objects, ACM Transactions on Computer
Systems, 15 (1997), pp. 134–165.

[3] Arcticus Systems. Web page,
http://www.arcticus-systems.com.

[4] T. P. BAKER, A Stack Based Resource Allocation Policy for Real-Time
Processes, in Proceedings of the 11th IEEE Real-Time Systems Sympo-
sium, IEEE Computer Society, 1990.

[5] A. BURNS AND A. WELLINGS, Real-Time Systems and Programming
Languages, Addison-Wesley, second ed., 1996, ch. 13.10.1 Immediate
Ceiling Priority Inheritance.

[6] K. CHATTERJEE, D. MA , R. MAJUMDAR, T. ZHAO, T. HENZINGER,
AND J. PALSBERG, Stack size analysis for interrupt-driven programs, in
Proceedings of the 10th Annual International Static Analysis Symposium,
June 2003.

[7] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, In-
troduction to Algorithms, MIT Press, Cambridge, MA, USA, second ed.,
2001.

164 Bibliography

[8] R. DAVIS , N. MERRIAM, AND N. TRACEY, How Embedded Applica-
tions using an RTOS can stay within On-chip Memory Limits, in Pro-
ceedings of the Work-in-Progress and Industrial Experience Session, Eu-
romicro Conference on Real-Time Systems, June 2000.

[9] R. DOBRIN AND G. FOHLER, Reducing the Number of Preemptions in
Fixed Priority Scheduling, in Proceedings of the 16th Euromicro Confer-
ence on Real-time Systems, IEEE Computer Society, 2004.

[10] Evidence Srl. Web page,
http://www.evidence.eu.com.

[11] P. GAI , G. LIPARI, AND M. D. NATALE , Minimizing Memory Utilization
of Real-Time Task Sets in Single and Multi-Processor Systems-on-a-Chip,
in Proceedings of the 22th IEEE Real-Time Systems Symposium, IEEE
Computer Society, 2001.

[12] R. GHATTAS AND A. DEAN, Preemption Threshold Scheduling: Stack
Optimality, Enhancements and Analysis, in Proceedings of the 13th IEEE
Real-Time and Embedded Technology and Applications Symposium,
IEEE Computer Society, April 2007.

[13] J. C. P. GUTIERREZ AND M. G. HARBOUR, Schedulability Analysis for
Tasks with Static and Dynamic Offsets, in Proceedings of the 19th IEEE
Real-Time Systems Symposium, IEEE Computer Society, 1998.

[14] K. HÄNNINEN , J. MÄKI -TURJA, M. BOHLIN , J. CARLSON, AND

M. NOLIN, Determining Maximum Stack Usage in Preemptive Shared
Stack Systems, in Proceedings of the 27th IEEE Real-Time Systems Sym-
posium, IEEE Computer Society, 2006.

[15] C. G. LEE, K. LEE, J. HAHN , Y. M. SEO, S. L. MIN , R. HA , S. HONG,
C. Y. PARK , M. LEE, AND C. S. KIM , Bounding Cache-Related Pre-
emption Delay for Real-Time Systems, IEEE Transactions on Software
Engineering, 27 (2001), pp. 805–826.

[16] T. A. MCKEE AND F. MCMORRIS, Topics in Intersection Graph Theory,
no. QA 166.105.M34 in SIAM Monographs on Discrete Mathematics and
Applications, Society for Industrial and Applied Mathematics, 1999.

[17] Micro Digital Inc.: smx® Special Features. Available 2009-10-20 at:
http://www.smxinfo.com/rtos/kernel/smxfeatr.pdf.

Bibliography 165

[18] B. M IDDHA , M. SIMPSON, AND R. BARUA, MTSS: Multi Task Stack
Sharing for Embedded Systems, in Proceedings of the of the ACM Inter-
national Conference on Compilers, Architecture, and Synthesis for Em-
bedded Systems, San Francisco, CA, Sept 2005.

[19] J. MÄKI -TURJA, K. HÄNNINEN , AND M. NOLIN, Efficient Develop-
ment of Real-Time Systems Using Hybrid Scheduling, in International
Conference on Embedded Systems and Applications, June 2005.

[20] J. MÄKI -TURJA AND M. NOLIN, Fast and tight response-times for tasks
with offsets.

[21] H. RAMAPRASAD AND F. MUELLER, Bounding Preemption Delay
within Data Cache Reference Patterns for Real-Time Tasks, in Proceed-
ings of the 12th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, IEEE Computer Society, April 2006.

[22] J. REGEHR, Scheduling Tasks with Mixed Preemption Relations for Ro-
bustness to Timing Faults, in Proceedings of the 23rd IEEE Real-Time
Systems Symposium, IEEE Computer Society, 2002.

[23] J. REGEHR, A. REID, AND K. WEBB, Eliminating Stack Overflow
by Abstract Interpretation, ACM Transactions in Embedded Computing
Systems, 4 (2005), pp. 751–778.

[24] M. SAKSENA AND Y. WANG, Scalable Real-Time System Design Us-
ing Preemption Thresholds, in Proceedings of the 21st IEEE Real-Time
Systems Symposium, IEEE Computer Society, 2000.

[25] J. STASCHULAT, S. SCHLIECKER, AND R. ERNST, Scheduling Analysis
of Real-Time Systems with Precise Modeling of Cache RelatedPreemp-
tion Delay, in Proceedings of the 17th Euromicro Conference on Real-
Time Systems, IEEE Computer Society, 2005.

[26] Tidorum. Web page,
http://www.tidorum.fi/bound-t/.

[27] K. T INDELL , Using Offset Information to Analyse Static Priority Pre-
emptively Scheduled Task Sets, Tech. Report YCS-182, Dept. of Com-
puter Science, University of York, England, 1992.

[28] Unicoi Systems. Web page,
http://www.unicoi.com/fusion_rtos/fusion_rtos.htm.

Chapter 8

Paper C:
Best-Effort
Simulation-Based Timing
Analysis using
Hill-Climbing with
Random Restarts

Markus Bohlin, Yue Lu, Johan Kraft, Per Kreuger and Thomas
Nolte.

In Proceedings of the 15th International Conference on Real-time
and Embedded Computing Systems and Applications.

August 24–26, 2009, Beijing, People’s Republic of China.

167

Abstract

Today, many companies developing real-time systems have nomeans for ac-
curate timing analysis, as the software violates the assumptions of traditional
analytical methods for response-time analysis, and are toocomplex for ex-
haustive analysis using e.g. model checking. This paper presents an efficient
best-effort approach for timing analysis targeting such systems, where simula-
tions of a detailed system model are controlled by a simple yet novel optimiza-
tion algorithm, based on hill climbing with random restarts(HCRR). Using a
simulation-based approach implies that the result is not guaranteed to be the
worst-case response time, but on the other hand, the method can handle in
principle any software design. Unlike previous approaches, the new algorithm
directly manipulates simulation parameters such as execution times, arrival jit-
ter and input stimulus.

A thorough evaluation is also presented, where HCRR is compared to
Monte Carlo simulation (the current state-of-practice) and a previously pro-
posed method. The evaluation is performed using a set of simulation models
constructed from existing systems in the robotics and vehicular domain, and
shows that for the three models investigated, the proposed method was 4-11 %
more accurate and vastly more efficient than the other methods. In our eval-
uation, HCRR found the second-best result on average 42 times faster than
the second-best method. For the largest model, HCRR used only 7.6 % of the
simulations needed by the second-best method to reach the same result, im-
plying that HCRR scales to larger systems. For the most realistic model, our
new method found the highest-known response time 1628 timesfaster than the
second-best method.

8.1 Introduction 169

8.1 Introduction
Today, most existing embedded real-time systems have been developed in a
traditional code-oriented manner. Many of them are also maintained over ex-
tended periods of time, sometimes spanning decades, duringwhich they be-
come larger and more complex due to the iterative changes made as part of
the system evolution and maintenance. The increasing complexity makes these
systems increasingly hard and expensive to maintain and verify.

One specific problem with such systems is the risk for introducing timing-
related errors. A natural approach to avoid timing-relatederrors in real-time
software would be to use established analytical methods forresponse-time
analysis (RTA, [10, 15]), which provides exact worst-case response times of
tasks, given correct worst-case execution times (WCET). Thereby, a system’s
correctness with respect to temporal requirements can be guaranteed.

The ability to perform timing analysis, using RTA or other means, does not
only improve the quality of the system verification, but can also reduce devel-
opment and maintenance costs significantly as potential timing-related errors
can be identified early, during the design of new features, and thereby avoided.
Timing errors can otherwise only be detected in late verification phases, where
detected bugs often case major costs and delays. Moreover, timing errors of-
ten only occur under very specific conditions, which are hardto detect using
testing.

Sadly, it is not possible to make practical use of RTA on a large quantity
of existing industrial software systems, as they violate the assumptions of the
method. Such systems might have been initially designed without timing anal-
ysis in mind, or development personnel may have introduced violations of RTA
during the system evolution, and thereby lost the analyzability.

The authors have observed several issues with respect to RTAin existing
industrial/embedded software systems. Some relevant examples are:

• Tasks communicate and trigger other tasks in complex undocumented
patterns.

• Task WCET often depends on input.

• The task priority is sometimes changed dynamically.

• Deadlines are not always defined explicitly, but manifest as functional
errors when different timeouts expire.

Moreover, some implementations observed in industrial code makes it very

170 Paper C

hard to perform static WCET analysis. Consider the followingexample, where
a task reads all messages in a message queue and process them accordingly:

do {
msg = receiveMessage(MyMessageQueue);
process_msg(msg);

} while (msg != NO_MESSAGE);

There are at least two aspects in this example which are hard to anal-
yse statically. First, even though the maximum allowed queue size is usually
known, the actual maximum at runtime is not; the developers may have over-
dimensioned the queue as a safety margin. Second, and more importantly, other
tasks may preempt the execution of the loop and refill the queue. When this
happens, the number of loop iterations is no longer bounded by the maximum
queue size.

The impact of mechanisms like buffered queues and priority changes can
cause very intricate scenarios, where the worst-case is counter-intuitive and ex-
tremely hard to predict manually. For instance, in one of thesimulation models
(Model 1, described in Section 8.4.1) used for evaluation ofour approach, the
worst-case response time of the task in focus surprisingly did not occur when
the model received the maximum amount of input events. Instead, the worst
case turned out to occur when the input events formed a completely different
and very intricate pattern. The details of this case is described in [13]. The
system model used by analytical methods such as RTA is too simplistic to al-
low accurate timing analysis of such systems with such behaviors, instead a
detailed model is required, where also relevant task behavior can be described.

An example of an industrial real-time system where RTA is notapplicable
is the control system for industrial robots developed by ABB. This system has a
very complex temporal behavior, where some tasks have execution times vary-
ing radically due to input-dependent IPC and globally shared state variables,
and where tasks may even change scheduling priority. The analytical meth-
ods’ use of a task-level WCET attribute will in such cases be very pessimistic
since the tasks are not independent; there are often dependencies which result
in mutual exclusion between different tasks’ WCET scenario.

A more detailed system model is therefore necessary for timing analysis
of such systems. Ideally, the model should describe the detailed execution
control flow on a code level with respect to resource usage andinteraction, e.g.,
inter-process communication, CPU time and logical resources. Simulation-
based methods has previously been shown to work well in analysing such large
and detailed models, since they only sample the system statespace rather than

8.2 Best-Effort Response-Time Analysis 171

attempting to search it exhaustively. Moreover, simulation-based analysis is far
more efficient in finding potential timing problems than system-level testing,
the dominating method in industry today. Several frameworks already exist
for timing simulation of real-time system models, e.g., thecommercial tool
VirtualTime[19] and the academic toolARTISST[7]. These solutions rely on
Monte Carlo simulation, which can be described as keeping the highest results
from a set of randomized simulations.

In this paper, we show that a detailed representation of the simulation pa-
rameters in combination with a focused optimization algorithm can yield sub-
stantially better results than both Monte Carlo simulation(which is the cur-
rent state-of-practice) and another previously proposed method,MABERA[14].
Specifically, we propose a new approach where key aspects of the system at
hand are encoded directly as parameters in the algorithm. Wethen use a fairly
straightforward optimization method based on the well-known hill-climbing
algorithm [20]. Surprisingly enough, nobody seems to have tried this before.

The paper contains the following contributions: 1) We give an explicit
representation of simulation instances in the form of inputs such as execu-
tion time, arrival jitter and external input stimulus is defined, 2) we present a
novel algorithm for manipulating simulation parameters, based on the simple
idea of hill-climbing with random restarts (HCRR), and 3) wegive a thorough
experimental evaluation of performance, scaling and convergence of the new
algorithm, comparing the results to those obtained from MABERA and Monte
Carlo simulation. In the evaluation, we show that the new algorithm is signif-
icantly better than previous approaches in identifying extreme response times
using a limited number of simulations.

The paper outline is as follows. Section 8.2 presents related work and the
new input representation. Section 8.3 presents the new approach proposed
in this paper, and Section 8.4 describes a set of case-study models used to
evaluate the approach. The evaluation is presented in Section 8.5, and finally,
Section 8.6 concludes.

8.2 Best-Effort Response-Time Analysis
Response-time analysis is certainly not something new, andbesides the stan-
dard approaches such as RTA [10, 15], formal analysis tools like UPPAAL [6,
22] can also be used for exhaustive analysis of software systems, but for industrial-
sized models, the state space can grow too large for them to bepractically
useful.

The use of evolutionary algorithms for different types of test case gener-

172 Paper C

ation has also been studied for quite some time. In [2], genetic algorithms
were used to generate test cases for a software relay system used in electrical
networks. The purpose of the genetic algorithm is to provokehigh response
times for the software, which executed in a simulation environment. Nossal
et al [17] describe various extensions of the traditional genetic algorithm [9]
to better suit the type of problems in the real-time domain. More recently,
Mueller and Wegener [16] gave a comprehensive comparison ofstatic analy-
sis techniques and evolutionary algorithms, with regard toschedulability, for
several real-time applications.

In [21], Samii et al aim to find extreme response times for distributed sys-
tems by optimizing a set of simulation parameters for modelscontaining tem-
poral attributes and communication. They use a genetic algorithm to explore
combinations of task execution times in order to maximize end-to-end response
time. Flow of control within tasks is not considered. Their results depend on
the method developed by Racu and Ernst [18] for identifying situations where
decreased execution times can lead to increased response times. The analysis
framework by Kim et al [11] also has a similar basis of temporal task attributes.

In [14], we presented MABERA, a meta-heuristic approach forbest-effort
response-time analysis of models of complex legacy systemsusing ideas from
genetic algorithms [9].

The approach is based on a simulator using a schedule of random number
generator seeds, in turn used to generate random numbers forthe parameters
of the adhering system model. The seed of the random number generator can
be changed at arbitrary time points, and thus provide a crudecontrol mecha-
nism. Due to the seed schedule representation, only mutation is used in the
evolutionary algorithm, which inserts randomly selected new seeds at specific
simulation time points. The effect of seed switching is thatthe entire execution
trace for the rest of the simulation is changed. Unfortunately this implies that
it is not possible to modify a restricted subset of the simulation parameters,
for example the execution time for a specific code segment, that might on its
own severely affect the response time. For heuristic methods to work well,
small changes in a candidate solution should have small but noticeable effects
on the objective function. This clearly doesn’t hold for MABERA, where a
newly inserted seed makes the rest of the simulation behave completely differ-
ent. Readers can refer to [14] for a more thorough description of the MABERA
approach.

8.2 Best-Effort Response-Time Analysis 173

8.2.1 Simulation of Complex Real-Time Systems

The analysis method presented in this paper is based on the simulator frame-
work RTSSim, [13], which allows for simulating models describing both the
functional and temporal behaviour of tasks. An RTSSim simulation model
consists of a set of tasks, sharing a single processor. Each task in RTSSim
is a C program, which executes in a “sandbox” environment with similar ser-
vices and runtime mechanisms as a normal real-time operating system, e.g.,
task scheduling, inter-process communication (message queues) and synchro-
nization (semaphores). The scheduling policy or RTSSim is preemptive fixed-
priority scheduling and each task has scheduling attributes such as priority,
periodicity and offset. It is possible to change these parameters dynamically,
in the task model code, to implement a custom scheduling policy, on top of the
default scheduling policy.

In RTSSim, time is represented in a discrete manner using an integer sim-
ulation clock, which is only advanced explicitly by the tasks in the simulation
model, using a special routine,EXECUTE. Calls to this routine models the
tasks’ consumption of CPU time.

All time-related operations in RTSSim, such as timeouts andactivation of
time-triggered tasks, are driven by the simulation clock, which makes the simu-
lation result independent of process scheduling and performance of the simula-
tion computer. The response time of tasks is measured whenever the scheduler
is invoked, which happens for example at IPC, task switches,EXECUTE state-
ments, operations on semaphores, task activations and whentasks end. This,
together with the simulation clock behaviour, guarantees that the measured re-
sponse time is exact.

The simulation framework allows for three types of selections which are
directly controlled by simulator input data.

1. selection of execution times (forEXECUTE),

2. selection of task-arrival jitter, and

3. selection of task control flow.

A simulation in RTSSim is completely deterministic given a specific input,
in this paper referred to as asimulation instance. Monte Carlo simulation is
realized by providing a randomly generated simulation instance.

The models used for the evaluation in this paper were manually designed
to contain similar modeling and analysis challenges as the real systems, and

174 Paper C

contain only the aspects which were considered interestingfrom a timing anal-
ysis perspective. In general, however, a major issue when using simulation for
analysis of existing systems is how to obtain the necessary simulation model,
which should be a subset of the original program focusing on behaviour of
significance for task scheduling, communication and allocation of logical re-
sources. For many systems, manual modeling would be far too time-consuming
and error prone. An approach for automated model extractionare proposed
in [3] and a tool implementing this approach is in development, namedMXTC
– Model eXtraction Tool for C. The MXTC tool targets large implementations
in C, consisting of millions of lines of code, and is based on aform of program
slicing [23]. The model extraction tool was however not yet mature enough for
producing real models for the HCRR evaluation in this paper.Due to the size
of industrial systems, virtually all “dark corners” of the Cprogramming lan-
guage will be encountered, which leads to a quite complex tool, which must be
very stable, and at the same time scalable to large quantities of code. However,
an evaluation using MXTC and HCRR on a large industrial system is planned
during 2009.

Problem Definition We can define the problem of best-effort response-time
analysis with explicit input as follows. We are given a modelof a real-time sys-
tem, which can be simulated on simulation instancesS, consisting of simulator
parameters. LetR(S) denote the highest response time measured for the task
under analysis in the simulation of instanceS. The goal of the problem is then
to find a simulation instanceS∗ that maximizesR, subject to the constraints
onS∗ outlined in Section 8.2.1.

8.2.2 Input Representation

A simulation instance is a set of parameters that exactly determine the outcome
of a simulation. In this paper, a simulation instance is represented using a
set of sequences of integers, where each sequence is associated with either an
arrival jitter of a task, an execution time, or an environmental input stimulus1.
Each value then directly decides a selection of either jitter, execution time, or
state in the task control flow. The advantage of this approachis that the direct
relationship between representation and model propertiesmakes it possible to
locally refine specific aspects of a given simulation instance.

1Such environmental input stimulus is represented as various number of events generated by
environmental task in Model 1 and Validation Model, and various execution time of Software
Circuits (SWCs) in Model 2 in Section 8.4.

8.3 The Optimization Algorithm 175

Let Ji be a sequence of actual jitter valuesjir experienced by instancer
of a taskτti. We restrictjir to integer values in the interval[0, ub(Ji)], where
ub(Ji) is an upper bound on jitter for taski in units of the smallest measur-
able time interval (clock ticks) for the target system. Furthermore, letXk be
a sequence of values for a certain environmental input stimulus or execution
time in the simulated program, andXj

k be thejth such input value. We assume
that all stimulus and execution timesXj

k are of integer type and have upper
and lower bounds, so thatlb(Xk) ≤ Xj

k ≤ ub(Xk) for all k, j. Execution
times are used only for deciding CPU time consumption ofEXECUTE primi-
tives. Bounds on execution times can be analysed using static analysis [24] or
estimated through measurements.

A simulation instanceS, defining a fully deterministic simulation of the
model, is therefore a set

{J1,J2, . . . ,Jn,X1,X2, . . . ,Xm} (8.1)

wheren is the number of tasks which have non-zero jitter andm is the num-
ber of environmental stimulus andEXECUTE statements. Denote byNi and
Mk the number of values that are used to represent jitter sequenceJi and in-
put sequenceXk. Ni andMk can be determined empirically by tracing how
many values the simulator uses for each value. In theory,Ni andMk can be
unbounded, and for some long simulations,Ni andMk may grow to unaccept-
able levels. In such cases, we suggest to setNi andMk to a fixed acceptable
level. If there are not enough input values in the sequence, the simulator should
report a warning, and start reuse values from the start of thesequence. For the
evaluated models in this paper,Ni andMk were long enough to represent all
values used.

8.3 The Optimization Algorithm
In the rest of this paper, we focus on analysing the response time of a specific
given task by varying the simulation instances used as inputfor the simulator.
Analysis of an entire system can easily be done by performingour analysis
several times, once for each task in the system.

8.3.1 Random Restart Hill Climbing

Our initial idea was to use a representation of the input parameters to RTSSim,
which more directly corresponded to simulation parameters, in a full genetic
algorithm [9]. However, initial experiments with the crossover operator, which

176 Paper C

is the operator most often associated with genetic algorithms, proved unsuc-
cessful and did not show any significant improvement over MABERA. In-
stead of focusing on the crossover operator, we chose to investigate iterative
improvement of a single individual as an alternative. It turned out that hill-
climbing [20], augmented with random restarts whenever a local minimum
was detected, gave much better performance than MABERA.

The proposed new optimization algorithm, HCRR, is therefore based on
hill climbing using random-restarts. Hill-climbing has the advantage of being
one of the simplest metaheuristics available, and is based on the idea of starting
at a random point, and then repeatedly taking small steps pointing upwards
(wrt. the objective function, which in this paper is the measured response time)
whenever such search directions exist. If no such steps exist, a local minimum
may have been reached. Several techniques for escaping local minima exist (for
example Tabu Search [8] and simulated annealing [12]), but aset of limited
experiments conducted did not show any significant performance advantage
over hill-climbing with random restarts.

Advantages of HCRR come from the combination of a strictly local im-
provement part, which quickly converges to high response times, with diversi-
fication mechanisms (jump-back to equal candidates, and full restarts) that are
important to avoid local maxima. In contrast, MABERA doesn’t employ such
a mechanism, and consequently can easily get stuck in local optimas. In ad-
dition, the local improvement functionality of MABERA is inefficient in that
it is not clearly connected to existing critical features ofthe solution candi-
date. Monte Carlo search, on the other hand, has no mechanismat all for local
improvement, and therefore exhibits unsatisfactory convergence.

HCRR works by iteratively changing a small portion of the model param-
eter set, and restarts after a fixed number of non-improving simulations have
been tried.

The implementation of HCRR is given in Algorithm 8.1. Here, the simu-
lation budget is denotednofsims , andRT(q) denotes the end time of the task
under analysis in the simulation instanceq when the worst response time oc-
curred. The consumption time point of a simulation inputXj

i of any type (jitter,
execution time, or environmental input stimulus) is expressed asTMj

i . q [X
j
i]

is the current value ofXj
i in the simulation instanceq . The functionrnd(l, u)

returns a random number betweenl andu if l < u; otherwise, it returnsl.
A completely random simulation instance can also be generated using the call
rnd_inst().

HCRR takes a currently best candidate (best) as input, which should be a
random simulation instance when first called. It then beginsby choosing as

8.3 The Optimization Algorithm 177

Algorithm 8.1: Hill Climbing with Random Restarts

HCRR(nofsims,m,k ,best)
curr ← MONTECARLO(min(m,nofsims), rnd_inst())
nofsims ← nofsims −m
if R(curr) > R(best) then best ← curr

E← {curr}
nonimp ← 0
while nofsims > 0

if nonimp > nR

return HCRR(nofsims,m,k ,best)
else if(nonimp + 1) modnB = nB

curr ← random element inE
nb ← NBH(curr , bk · len(curr)c)
SIMULATE (nb)
nofsims ← nofsims − 1
if R(nb) > R(best) then best ← nb

if R(nb) > R(curr)
curr ← nb

E← {nb}
nonimp ← 0

else
nonimp ← nonimp + 1
if R(nb) = R(curr) thenE← E ∪ {nb}

return best

starting point the best simulation instance frommin(m,nofsims) randomly
selected candidates using the MONTECARLO method. Then, in each iteration,
k · len(curr) random values of the current simulation instancecurr (which has
len(curr) input values) used beforeRT(curr) are selected and modified using
the neighborhood procedure NBH, shown in Algorithm 8.2.

The response time for the task under analysis is measured by running RTSSim
using the SIMULATE (nb) call on a neighbornb. Modifications suggested by
NBH that increase response time are accepted, and changes that decrease re-
sponse time are rejected. Modifications that have equal response time are re-
jected but saved for future reference, as described below.

A pure hill-climbing procedure is susceptible to getting stuck in local max-
ima, and can therefore exhibit less than satisfactory performance on many
problems. In order to avoid convergence to locally optimal areas and to im-

178 Paper C

Algorithm 8.2: Neighborhood procedure

NBH(inst , n)
for k = 1 to n
Q = {Xj

i ∈ inst | TMj
i < ET(inst)}

Xj
i ← random input variable inQ

V = {lb(Xi) . . . ub(Xi)} \ {inst [Xj
i]}

v ← random value inV
inst [Xj

i]← v

prove the probability of finding a true global maximum, two different diversi-
fication mechanisms were implemented. First of all, afternB non-improving
iterations, the algorithm jumps back to a previously encountered, randomly se-
lected simulation instance with an equal response time to the current instance.
This distributes focus over a number of equal instances, which can help in
avoiding small local maxima. The second technique is a common method for
avoiding local maxima by restarting the hill-climbing procedure from a random
location after a number of iterations. In HCRR, a random restart is performed
after a sequence ofnR non-improving iterations.

8.4 Case Studies
This section describes two industrial cases and one validation case in the form
of simulation models. The models have similar architectureand analysis prob-
lems as two industrial real-time applications in use at ABB [1] and Arcticus
Systems [4]. Although the simulation models contain relatively few tasks, at
most 11, their behavioural complexity is significant due to e.g., shared vari-
ables, sporadic events and dynamic priority changes.

Model 1 (M1) is representing a control system for industrialrobots de-
veloped by ABB Robotics, which is not possible to analyse using analytical
methods such as RTA [5, 15]. This model has previously been used to eval-
uate MABERA in [14]. Model 2 (M2) is constructed from a test application
used by Arcticus Systems [4], which develops the Rubus RTOS used in many
vehicular systems. We also use a simplified version of Model 1for validation
(MV), where the code violating the assumptions of RTA has been removed.
The purpose of this model is to investigate how close the response times found
by HCRR are to the true worst-case response times derived by RTA.

The scheduling policy used is preemptive priority-based scheduling for all
models. Models 2 and 3 use preemptive fixed-priority scheduling. Model 1

8.4 Case Studies 179

uses a preemptive scheduler and mainly static priorities, but contains one task
that changes priority dynamically.

8.4.1 Model 1

This model describes a fictive system designed to be representative for a control
system for industrial robotics, developed by ABB. The ABB system is quite
large, containing around 3 millions lines of code and is not analysable using
traditional analytical methods, such as RTA. Model 1 is of much smaller scale,
but is designed to include some behavioural mechanisms fromthe ABB system
which RTA can not take into account:

• tasks with intricate dependencies in temporal behaviour due to IPC and
shared state variables;

• the use of buffered message queues for IPC, where triggering messages
may be delayed;

• tasks that change scheduling priority or periods dynamically, in response
to system events.

The modeled fictive system controls a set of electric motors based on pe-
riodic sensor readings and aperiodic events. The calculations necessary for a
real control system are, however, not included in the model;the model only
describes behaviour with a significant impact on the temporal behaviour of the
system, such as resource usage (e.g., CPU time), task interactions and impor-
tant state changes. The model contains four periodic tasks with the parameters
shown in Table 8.1 (a lower valued priority is more significant).

Table 8.1: Task parameters for Model 1.
Task Priority Period Depends on
PLAN 5 40000 UI
CTRL 4 or 2 10000 or 20000 PLAN, IO, UI
IO 3 5000 Sensor
DRIVE 1 2000 CRTL, UI

The environmental input stimulus in this problem is a sequence of integers
from zero to two, denoting the number of external events thatare generated
by a sensor, measured in one IO task period. The IO task then sends equally
many messages to the CTRL task. The CTRL task may change priority and

180 Paper C

periodicity in response to two specific events in the model. The PLAN task is
responsible for planning the movement of the physical object connected to the
motors. The CTRL task calculates control signals for the motors with respect
to coordinates sent from the PLAN task and IO events providedby the IO task.
The DRIVE task actuates the motors based on the CTRL task output, which
impact the execution time of the CTRL task.

The model also describes a user interface (UI) which generate sporadic
events which impacts the system behaviour. There are three types of user inter-
face events: START, STOP and GETSTATUS. The START and STOP events
makes the system change between two system modes, IDLE and WORKING,
with different temporal behaviours. The GETSTATUS event makes PLAN,
CTRL and DRIVE send a status message to the user interface, which increases
the execution time of those task instances. The task in focusof analysis is the
CTRL task.

8.4.2 Model 2

This model describes a fictive system based on a test application from Arcticus
systems, developers of the Rubus RTOS [4] which is used in heavy vehicles.
This model uses a pipe-and-filter architecture, and contains 3 periodic transac-
tions and one interrupt-driven task, in total 11 tasks. The inter-arrival time of
the interrupt is 5000 simulation time units, with the offsetand maximum jitter
500 and 100 simulation time units respectively. Tasks may trigger other tasks
using trigger ports. The parameters of tasks and their execution times are given
in Table 8.2.

This model is less complex than the two earlier models in thatthere exist no
shared variables or IPC via message passing which can impactthe tasks’ timing
and functional behaviour. Instead, the tasks have large variations in execution
times, which makes the state space of this model very large. For this model,
the evaluation focuses on the end-to-end response time of the transaction with a
periodicity of 30,000 simulation time units, which also contains the tasks with
the lowest priority.

8.4.3 Validation

Simulation-based methods for response-time analysis havein common that the
result is not guaranteed to be a safe upper bound on the response time. We
therefore constructed a validation model, analysable using RTA, with the pur-
pose to investigate how close the response times given by HCRR are to the

8.4 Case Studies 181

Table 8.2: Task parameters for Model 2.
Task Period Off. Jitter Prio. Execution
swcIT_1 5000 500 100 0 [100, 200]
swcIT_2 5000 500 100 0 [100, 200]
swcA_1 5000 0 0 1 [400, 500]
swcA_2 10000 0 0 1 [400, 500]
swcA_3 30000 0 0 1 [400, 500]
swcB_2 10000 0 0 1 [400, 500]
swcB_3 30000 0 0 1 [400, 500]
swcA_et2 10000 0 0 2 [500, 600]
swcA_et3 30000 0 0 2 [500, 600]
swcB_et2 10000 0 0 2 [500, 600]
swcC_et1 30000 0 0 2 [500, 600]

worst-case response times derived using RTA. Hence, RTA should provide an
upper bound on the worst-case response time, which the simulation-based re-
sults should approach but not exceed. The validation model is based on Model
1, but with the following simplifications:

• Selected shared state variables are removed.

• Dynamic changes of priority and period are removed, only static at-
tributes are used.

• Iteration loop bounds are added manually.

As a consequence, the validation model has considerably lower complexity,
and exhibit quite different timing properties when compared to Model 1. For
instance, the worst-case response time of the CTRL task (which as in Model 1
is the task under analysis) is only 52 % of the highest response times found for
this task in Model 1.

Due to our extensive knowledge of this specific model, we could deduce
that in order to improve the accuracy of the RTA (without being optimistic),
the DRIVE task should be modeled as two separate tasks. Thesetwo tasks
represent two different WCETs of the DRIVE task, depending ona rare spo-
radic event, where the minimum inter-arrival time is known.However, it is
important to realize that such model refinements are hard to apply in practice,
for real industrial systems, as the temporal behavior of such systems are rarely
documented in detail. This refinement of the model had a majorimpact with

182 Paper C

respect to RTA, yielding a worst-case response time of 4432 (refined model)
instead of 5982 (without refinement).

8.5 Experimental Evaluation
This section presents an evaluation of accuracy, convergence and scaling prop-
erties of HCRR, using in total 7 different versions of the models described in
Section 8.4. The experiments were done by running HCRR, a reimplemen-
tation of MABERA (MAB) and Monte Carlo (MC) simulation, on the three
models previously described. Table 8.3 highlights the types of input param-
eters for the three models, i.e., the decision variables controlled by HCRR,
MABERA or the Monte Carlo method.

Table 8.3: Simulator input parameters for the considered models.

Model Input
Stimulus

Arrival
Jitter

Execution
Time

Model 1 Variable Variable Constant
Model 2 N/A 0 Variable
Validation Model Variable Variable Constant

The goal of the analysis is to find extreme response times for aspecific
task in the model. The results are, with the exception of Figure 8.1, obtained
from running 100 samples of each algorithm and test case, each sample being
allowed to run 10,000 simulations, in order to get a good comparison for a
fixed time length. The simulation budget was considered reasonable due to the
convergence of HCRR on our most realistic model (Model 1). The experiments
were performed on an Intel Core 2 Duo, 2.33 GHz with 2 GB of RAM.

For MABERA, the population was obtained by scaling the population size
of 10,000 used in [14] to reflect the change in number of simulations per sam-
ple. The ratio is 81,400 in [14] to 10,000 in this paper. As a result, we use a
population size of 1250, which is 1/8 of the original population size. The same
fraction of parents as for the original method is used, whichtranslates to a se-
lection of12 parents in each generation. For each of these, 104 mutationsare
generated. In order to ensure that MABERA used exactly 10,000 simulations
in total, the original termination threshold was disabled.

For the parameters in HCRR, the jump-back threshold (nB) should be rela-
tively small to spread the search over the set of equal candidate solutions found
so far. However, the random restart threshold (nR) should be larger in order
not to erase any progress made so far, but small enough to force restart from a

8.5 Experimental Evaluation 183

local minimum as soon as possible. The fractionk of input values changed in
each iteration should provide a good balance between power (larger fractions)
and low dimensionality (smaller fractions).

To select the parameters for HCRR, we performed a small number of se-
quential experiments on Model 1, varying one parameter at a time. For each
parameter set, we measured the convergence as the average best result in any
iteration (i.e., simulation) for 20 sample runs, or more formally:

C =

∑20
i=1

∑S
j=1R

j
i

20 · S

whereS is the number of simulations andRj
i denotes the response time found

afterj simulations in sample runi. The number of simulations was 500 fornB

andk and 3000 fornR. The parameters giving quickest convergence (nB = 2,
nR = 300, andk = 0.02) were then used for all experiments. The results of
the experiments are shown in Table 8.4.

Table 8.4: Parameter selection.
nB = nR = ∞ k = 0.02,nR = ∞ k = 0.02,nB = 2

k C nB C nR C

0.01 7796.76 100 7931.37 1000 8308.11
0.02 8010.90 50 7902.86 300 8312.05
0.03 7988.83 20 7939.70 100 8304.17
0.04 7976.14 10 7972.72 50 8254.26
0.05 7961.80 7 7992.25
0.07 7944.69 5 7944.27
0.10 7761.59 4 8001.89
0.15 7645.62 3 7919.24
0.20 7604.48 2 8024.98
0.30 7483.33 1 7944.27

To show the effects of scaling on the three algorithms, Model1 is used
to create larger systems by instantiating several independent instances of it,
thereby creating independent “subsystems” where each subsystem is a com-
plete model as described in Section 8.4, including tasks, input events, state
variables and message queues. The subsystems are completely independent,
except that they share the same CPU. The model setup can be described using
the following parameters:

SUBSYSTEMS: The number of subsystems to use, varied between1 and 4.

184 Paper C

CPU_SPEED: The scale factor for all execution times. LetC be the original
execution time for a singleEXECUTEstatement in the model,
thenC/CPU_SPEED is the resulting execution time in the
multiply instantiated model.

OFFSET: The relative offsets between subsystems, allowingfor differ-
ent "phasings" between subsystems. Throughout the experi-
ments, a phasing of 20000 time units has been used.

To avoid priority clashes, new priorities are assigned using the formula
Pn = 10P o + I, wherePn is the new priority,P o is the old priority, andI is
the subsystem index. For CPU_SPEED we use factors of 1.0, 1.5, 1.8 and 2.2
when having 1, 2, 3 and 4 subsystem instances respectively.

8.5.1 Timing Results

The obtained lower bounds on worst-case response time are illustrated by the
following labels:

MC: The traditional Monte Carlo approach to generate simulation instances
using random input data.

MAB: The MABERA approach, using a population size of 1250 of which
12 parents are selected for reproduction, unless stated otherwise. The
algorithm is modified to run for a limited number of simulations.

HCRR: The new algorithm based on random restart hill climbing. The algo-
rithm is given in Algorithm 8.1.

Figure 8.1 shows the results obtained for Model 1 from Section 8.4.1. The
top of the figure contains the response time distributions ofthe three algo-
rithms, where the MABERA results are taken from [14]. Results were ob-
tained using 200 sample runs for MABERA, 200 runs for MC, and 100 runs
for HCRR. For MABERA and MC, each sample required on average 81,400
simulations. Each HCRR sample was allowed 10,000 simulations. The bottom
of Figure 8.1 shows convergence (mean RT and 95 % confidence intervals),
using the standard parameters of 10,000 simulations, for the three algorithms
with 100 samples for each algorithm.

The upper part of Figure 8.1 shows that HCRR managed to find thehighest
known response time, 8474, in all 100 sample runs. The highest response time
found by MABERA was 8349, and this value was only found one single time.
The MC approach managed to find a maximum response time of 8390, which is
also found once. Note that HCRR was only allowed approximately 12 % of the

8.5 Experimental Evaluation 185

 0.2
 0.4

M
C

 0.2
 0.4

R
el

at
iv

e
fr

eq
ue

nc
y

M
A

B

 0.4
 0.8

 7200 7400 7600 7800 8000 8200 8400 8600

H
C

R
R

Response time

 7400
 7600
 7800
 8000
 8200
 8400
 8600

 0 2000 4000 6000 8000 10000M
ea

n
re

sp
on

se
 ti

m
e

Simulations

MC MAB HCRR

Figure 8.1: Final RT distributions and convergence (mean RTand 95 % confi-
dence intervals) for model 1.

number of simulations used by MC and MABERA. If we compare thenumber
of simulations done when the highest known response time wasfound, HCRR
was approximately 1628 times faster than MABERA and MC. The runtimes
for one sample of all algorithms were less than 3 minutes.

Figure 8.2 shows the obtained results for Model 2 (Section 8.4.2) using the
standard parameters. In this model, the tasks have large variations in execution
times, which makes the state space very large. We can see thatHCRR yields
a result approximately 5 % higher than what is obtained from the two other
methods. Interestingly, it looks like HCRR was still slowlyprogressing to-
wards higher response times at 10,000 simulations, while both MABERA and
MC seems to have converged quite early to a much lower result.For Model 2,
all algorithms finished in less than one minute per sample.

186 Paper C

 0.1
 0.2

M
C

 0.1
 0.2

R
el

at
iv

e
F

re
qu

en
cy

M
A

B

 0.1
 0.2

 5800 5900 6000 6100 6200 6300 6400

H
C

R
R

Response time

 5900
 6000
 6100
 6200
 6300
 6400

 0 2000 4000 6000 8000 10000M
ea

n
re

sp
on

se
 ti

m
e

Simulations

MC MAB HCRR

Figure 8.2: Final RT distributions and convergence (mean RTand 95 % confi-
dence intervals) for model 2.

In Figure 8.3, we can see the results for the validation modeldescribed in
Section 8.4.3, again using the standard parameters. In addition, we show the
RTA results. Here, HCRR could find a response time of 4432 in every sample
run, which was also confirmed by RTA to be the worst-case response time. As
before, the difference between MABERA and MC appears to be quite small.
MABERA found the worst case in a few samples, while MC did not,but it
is questionable if the difference is statistically significant. For the validation
model, MC took less than 50 seconds, MABERA less than 130 seconds, and
HCRR less than 90 seconds for one sample run.

Figure 8.4 shows how the different methods scale to larger systems, by il-
lustrating the convergence for Model 1 when increasing the model size to 2,
3 and 4 subsystems (model instances). As expected, since thestate space in-
creases with number of subsystems, all three algorithms converge slower when

8.5 Experimental Evaluation 187

 0.2
 0.4

M
C

 0.2
 0.4

R
el

at
iv

e
F

re
qu

en
cy

M
A

B

 0.3
 0.6
 0.9

 4000 4100 4200 4300 4400 4500

H
C

R
R

Response time
RTA

 4000
 4100
 4200
 4300
 4400
 4500

 0 2000 4000 6000 8000 10000M
ea

n
re

sp
on

se
 ti

m
e

Simulations

MC MAB HCRR RTA

Figure 8.3: Final RT distributions and convergence (mean RTand 95 % confi-
dence intervals) for the validation model.

188 Paper C

 9600
 9800

 10000
 10200
 10400
 10600
 10800
 11000

 0 2000 4000 6000 8000 10000

M
ea

n
re

sp
on

se
 ti

m
e

Simulations, 2 subsystems

 13250
 13500
 13750
 14000
 14250
 14500
 14750

 0 2000 4000 6000 8000 10000

M
ea

n
re

sp
on

se
 ti

m
e

Simulations, 3 subsystems

 15000
 15200
 15400
 15600
 15800
 16000
 16200

 0 2000 4000 6000 8000 10000M
ea

n
re

sp
on

se
 ti

m
e

Simulations, 4 subsystems

MC MAB HCRR

Figure 8.4: Convergence (mean RT and 95 % confidence intervals) for model
1 using 2-4 subsystems.

8.5 Experimental Evaluation 189

system size is increased. For two subsystems, HCRR is consistently better than
both MC and MABERA, with all results reported being higher than the maxi-
mum result found for both MC and MABERA. The results for 3 and 4subsys-
tems indicate that the difference between the methods decrease as system size
is increased, although HCRR produced on average 4.7 to 11 % higher results
than both MC and MABERA. For 4 subsystems, neither of the methods appear
to have converged. However, during the 10,000 simulations,HCRR progressed
more quickly to higher response times than both MC and MABERA. Runtimes
for a single sample when having 2 subsystems were below 4, 7 and 5 minutes
for MC, MABERA and HCRR. Sample runtimes were below 5, 10 and 6min-
utes for 3 subsystems and below 8, 16 and 10 minutes for 4 subsystems.

Table 8.5: Average end result and point when HCRR passes the second best
end result.

MC MABERA HCRR Passes2nd best
M1-1 7682 8065 8474 224
M1-2 9693 9750 10844 238
M1-3 13555 13789 14672 521
M1-4 15235 15298 16013 764
M2 6031 6002 6299 634
MV 4286 4288 4432 89

The average end results are summarized in Table 8.5. The lastcolumn also
shows the average number of simulations needed for HCRR to obtain the end
result of the second best method (using 10,000 simulations). As we can see,
HCRR reached the second-best result 13 to 112 times faster than the second-
best method did. For all tried models, HCRR on average outperformed the
other methods in less than 800 simulations, which corresponds to less than 1.5
minutes of computation time on the PC used for the experiments.

8.5.2 Average Convergence

To measure average convergence more exactly, we use the relative difference
in average response-time results over a time span ofd simulations. We say that
a method has for practical purposes converged (on average) when

1−R(k−d)
/R

(k) ≤ ε (8.2)

190 Paper C

whereR
(k)

is the average response-time result at simulationk for a set of
samples. Using this definition, convergence will never be detected before at
leastd simulations has been performed. In order to measure convergence for
the evaluation presented in this paper,d obviously needs to be less than the
number of simulations (10,000) performed in each sample. Wetherefore use
d = 1000 for the convergence comparison. For the tolerance parameter, we
chose a value ofε = 0.001. In other words, if the average progress in 1000
simulations is lower than0.1%, we declare that the method has converged on
average. It should be pointed out that different parameterswill give radically
different results on convergence, and true convergence is reached and detected
only whenε = 0 andd is sufficiently large.

Table 8.6: Convergence on iterationk to response timeR
(k)

for the different
methods.

MC MABERA HCRR

k R
(k)

k R
(k)

k R
(k)

M1-1 7632 7670 7356 8062 4090 8466
M1-2 4806 9660 6518 9728 7093 10830
M1-3 3527 13502 7801 13773 5568 14578
M1-4 3410 15175 5104 15271 6948 15881
M2 3656 5997 3552 5991 9556 6295
MV – – – – 1661 4432

Table 8.6 summarizes the convergence results, obtained from Equation. (8.2)
with the parameters above, for Model 1 with 1-4 subsystems (M1-1 to M1-4),
Model 2 (M2), and the validation model (MV). In general, we can see that
HCRR converged to significantly higher response times than MABERA and
MC. For the validation model, the only method to converge within 10,000 sim-
ulations was HCRR. Overall, the results are mostly consistent with what can
be seen in Figure 8.1, 8.2 and 8.3, but also classified the slowaverage progress
for HCRR on M2 in Figure 8.2 as convergence. Running the algorithm longer
would either yield slightly higher results or confirm convergence.

For M1-4, convergence of HCRR is also detected in iteration 6948 after a
slow progress between simulation 6000 and 8000, but as we cansee in Fig-
ure 8.4, more average progress is made after simulation 8000. Sampling more
than 100 runs for M1-4 would most likely even out the slope after simulation
6000. In any case, HCRR has clearly not converged after 10,000 simulations,
and running the algorithm longer would likely yield even higher results.

8.6 Conclusions 191

8.6 Conclusions
Simulation-based analysis of complex real-time systems has the potential to
provide engineers with timing properties of real-time systems not conforming
to classical real-time analysis models such as Response-Time Analysis (RTA).
In this paper, a new best-effort approach for simulation-based timing analy-
sis has been presented, and the new algorithm, based on Hill Climbing with
Random Restarts (HCRR), is shown in our evaluation to find more accurate
worst-case response time faster than alternative methods such as MABERA
and Monte Carlo simulation.

In evaluating HCRR, three models of industrial real-time systems have
been simulated, and the results show that HCRR was 4-11 % moreaccurate
than the second-best method, and between 13 to 112 times quicker in reach-
ing the end result of the second-best method. In one case, HCRR was 1628
times quicker in finding its more accurate result than the second-best method.
An analysis of convergence indicate that for two cases out ofsix, even higher
respones times could be achieved by letting HCRR run longer.

Industrial deployment of HCRR requires an efficient method for extracting
simulation models from complex software systems. A tool forthat purpose,
MXTC, is currently in development. This uses mainly static analysis, but also
measurements in order to obtain execution-time data for themodel. The simu-
lation model analyzed by HCRR could however use data from WCETanalysis
tools as well, for supported hardware platforms. The execution-time measure-
ments requires context-switch recording with accurate timestamps. This is pos-
sible in most real-time operating systems.

Acknowledgement
This work was supported by the Swedish Foundation for Strategic Research
via the strategic research centre PROGRESS. We are grateful to Jan Carlson,
Mikael Sjödin, and Björn Lisper for comments and improvement suggestions.

Bibliography
[1] ABB Group. Web page,

http://www.abb.com.

[2] J. ALANDER, T. MANTERE, G. MOGHADAMPOUR, AND J. MATILA ,
Searching Protection Relay Response Time Extremes Using Genetic Al-
gorithm — Software Quality by Optimization, in Proceedings of the In-

192 Bibliography

ternational Conference on Advances in Power System Control, Operation
and Management, vol. 1, 1997, pp. 95–99.

[3] J. ANDERSSON, J. HUSELIUS, C. NORSTRÖM, AND A. WALL , Ex-
tracting Simulation Models from Complex Embedded Real-Time Systems,
in Proceedings of the International Conference on SoftwareEngineering
Advances, ICSEA’06, IEEE, Oct. 2006.

[4] Arcticus Systems. Web page,
http://www.arcticus-systems.com.

[5] N. AUDSLEY, A. BURNS, R. DAVIS , K. TINDELL , AND A. WELLINGS,
Fixed Priority Pre-emptive Scheduling: an Historical Perspective, Real-
Time Systems, 8 (1995), pp. 129–154.

[6] G. BEHRMANN, A. DAVID , J. HÅKANSSON, M. HENDRIKS, K. G.
LARSEN, P. PETTERSSON, AND W. Y I, UPPAAL 4.0, in Proceedings
of the International Conference on Quantitative Evaluation of Systems,
2006.

[7] D. DECOTIGNY AND I. PUAUT, ARTISST: An Extensible and Modular
Simulation Tool for Real-Time Systems, in Proceedings of the IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed Comput-
ing, 2002.

[8] F. GLOVER AND M. L AGUNA, Tabu Search, in Modern Heuristic Tech-
niques for Combinatorial Optimization, C. R. Reeves, ed., McGraw-Hill,
1995, ch. 3, pp. 70–150.

[9] D. E. GOLDBERG, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, Addison-Wesley Professional, January 1989.

[10] M. JOSEPH AND P. PANDYA , Finding Response Times in a Real-Time
System, The Computer Journal, 29 (1986), pp. 390–395.

[11] K. K IM , J. L. DIAZ , L. L. BELLO, J. M. LOPEZ, C.-G. LEE, AND S. L.
M IN, An Exact Stochastic Analysis of Priority-Driven Periodic Real-Time
Systems and Its Approximations, IEEE Transactions on Computers, 54
(2005), pp. 1460–1466.

[12] S. KIRKPATRICK, C. D. GELATT, AND M. P. VECCHI, Optimization by
Simulated Annealing, Science, 220 (1983), pp. 671–680.

Bibliography 193

[13] J. KRAFT, RTSSim – A Simulation Framework for Complex Embedded
Systems, Tech. Report., Mälardalen University, March 2009.

[14] J. KRAFT, Y. LU, C. NORSTRÖM, AND A. WALL , A Metaheuristic Ap-
proach for Best Effort Timing Analysis Targeting Complex Legacy Real-
Time Systems, in Proceedings of the 14th IEEE Real-Time and Embedded
Technology and Applications Symposium, IEEE Computer Society, April
2008.

[15] C. LIU AND J. LAYLAND , Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment, Journal of the ACM, 20 (1973),
pp. 46–61.

[16] F. MUELLER AND J. WEGENER, A Comparison of Static Analysis and
Evolutionary Testing for the Verification of Timing Constraints, Real-
Time Systems, 21 (2001), pp. 268–241.

[17] R. NOSSAL AND T. M. GALLA , Solving NP-Complete Problems in Real-
Time System Design by Multichromosome Genetic Algorithms, in Pro-
ceedings of the SIGPLAN 1997 Workshop on Languages, Compilers, and
Tools for Real-Time Systems, 1997, pp. 68–76.

[18] R. RACU AND R. ERNST, Scheduling Anomaly Detection and Optimi-
sation for Distributed Systems with Preemptive Task-Sets, in Proceedings
of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium, IEEE Computer Society, April 2006, pp. 325–334.

[19] Rapita Systems. Web page,
http://www.rapitasystems.com, 2008.

[20] S. RUSSELL AND P. NORVIG, Artificial Intelligence: A Modern Ap-
proach, Prentice Hall, Second ed., 2003.

[21] S. SAMII , S. RAFILIU , P. ELES, AND Z. PENG, A Simulation Method-
ology for Worst-Case Response Time Estimation of Distributed Real-
Time Systems, in Proceedings of Design, Automation and Test in Europe,
vol. 10-14, IEEE, Mar. 2008, pp. 556–561.

[22] UPPAAL Website. Web page,
http://www.uppaal.com, 2008.

[23] M. WEISER, Program Slicing, in Proceedings of the International Con-
ference on Software Engineering, IEEE Press, 1981, pp. 439–449.

194 Bibliography

[24] R. WILHELM , J. ENGBLOM, A. ERMEDAHL , N. HOLSTI, S. THESING,
D. WHALLEY, G. BERNAT, C. FERDINAND, R. HECKMANN , T. MI-
TRA, F. MUELLER, I. PUAUT, P. PUSCHNER, J. STASCHULAT, AND

P. STENSTRÖM, The Worst-Case Execution-Time Problem—Overview of
Methods and Survey of Tools, ACM Transactions in Embedded Comput-
ing Systems, 7 (2008), pp. 1–53.

Chapter 9

Paper D:
Reducing Vehicle
Maintenance using
Condition Monitoring and
Dynamic Planning

Markus Bohlin, Malin Forsgren, Anders Holst, Björn Levin, Mar-
tin Aronsson and Rebecca Steinert.

In Proceedings of the 4th IET International Conference on Rail-
way Condition Monitoring.

18–20 June 2008, Derby, United Kingdom of Great Britain and
Northern Ireland.

195

Abstract

It is a common fear in industry that introducing condition based maintenance
(CBM), with its constant monitoring of several subsystems,will lead to more
frequent service interventions compared to traditional cyclic maintenance, ef-
fectively countering the potential value of implementing CBM. Because of this,
adoption of CBM must be done with great care, and the maintenance organi-
zation and planning process needs to be geared for more flexibility. To harvest
the potential value in CBM for rail vehicles, we propose to combine condi-
tion monitoring with online maintenance planning. We use anadaptive plan-
ning software module to quickly find new suitable vehicle movement plans,
and a heuristic packing module to reconstruct maintenance packages with as
few maintenance stops as possible. This prevents vehicles from visiting the
maintenance depot too frequently. At the same time, we actively keep the risk
of breakdowns low. Evaluation of our methods in a simulated environment
for train operation and maintenance, using real-world timetables and vehicle
plans, show that by taking the operation times of individualcomponents into
account, it is indeed possible to reduce the amount of maintenance as well as
the number of service interventions significantly comparedto traditional cyclic
maintenance.

9.1 Background 197

9.1 Background

Advanced methods for effective maintenance planning have been under devel-
opment for several decades [4, 8, 14]. Still, a common maintenance approach
within production, manufacturing, industry, transportation etc., is cyclic main-
tenance planning, where maintenance is carried out within predetermined in-
tervals without taking the equipment condition into account [6,17–19].

The period between service interventions is often based on expert knowl-
edge about the equipment usage, its lifetime and the rate of deterioration [9,
16, 20, 23]. The main reason for performing cyclic maintenance is that main-
tenance costs and equipment availability are easier accounted for in the gen-
eral production plan and budget. A consequence, however, isthat parts of
the equipment may be replaced much earlier than their optimal replacement
time [6]. Another consequence is the increased risk of unplanned maintenance
(caused by unexpected failures), which can be far more costly than planned
service interventions [20]. Both cases show that cyclic maintenance can cause
unnecessary maintenance expenses [18].

In recent years, the interest in developing and improving methods that are
not based on cyclic maintenance has increased. Such approaches are for exam-
ple condition based maintenance (CBM) and predictive maintenance (PdM) [2,
11,12]. These approaches are in general based on the desire to reduce mainte-
nance costs by performing maintenance on equipment only when necessary [3,
5]. For this purpose, various metrics (such as distance travelled, hours of opera-
tion, the number of times a door has been opened and closed, etc.), and sensor-
based methods (such as oil analysis, vibration analysis, etc.) can be used to
continuously measure and monitor the condition of the equipment [10,13].

Prediction models for when maintenance should be performedon equip-
ment introduce more uncertainty and complexity into the planning process,
compared to cyclic maintenance. Also, there is a fear in industry that the num-
ber of service interventions will increase using conditionbased approaches,
since the maintenance planning is based on the independent condition of indi-
vidual subsystems rather than on the system as a whole as in the cyclic main-
tenance approach.

In other words, since each subsystem reaches its replacement time inde-
pendently, there is a risk of much more frequent, small interventions instead of
a few, large, pre-scheduled ones. Therefore, it is desirable to combine subsys-
tems that are in need of service, immediately or in the near future, into service
packages that are fitted into pre-planned maintenance opportunities. This ap-
proach is usually referred to as opportunistic maintenance(OM) [15,19,21,22].

198 Paper D

The idea of OM is to combine equipment parts in need of servicethat are
functionally or economically dependent, such that the overall maintenance cost
is reduced. Opportunistic maintenance is for the same reasons also desirable
with condition based approaches.

We propose a method that takes maintenance scheduling a stepfurther than
OM. Instead of performing maintenance on service packages at pre-planned
and fixed opportunities, service packages are maintained atdynamically plan-
ned maintenance opportunities based on the condition of thewhole system
as well as equipment recommendations provided by the manufacturers. The
main goal is the same as with OM – lowering maintenance costs –without
introducing unnecessary complexity into the production planning process. The
potential gain of condition based opportunistic maintenance is even greater
than for regular OM, since the observed increase in lifetimeof components
under condition monitoring can be utilized to a fuller extent.

The focus in this paper is on lowering maintenance costs by reducing the
number of maintenance stops and interventions. The method is based on an
idea of more efficiently using subsystem information, through a better model
for handling uncertainty in use and wear. This is used to improve the ability of
an optimizer to repeatedly or continuously improve the maintenance schedule.

9.2 Contribution
In this paper, we present a dynamic approach for combining prediction of main-
tenance deadlines with repeated re-planning of vehicle useand maintenance
actions. Our aim is to develop a maintenance scheme that is simple and causes
minimal change to established practices, while giving large savings in main-
tenance costs. We also use subsystem information (e.g. subsystem counters)
more efficiently, by better modelling the way in which certainty in the predic-
tion of the actual maintenance deadline increases with time.

Our approach is based on frequent re-optimization of the production and
maintenance plans for each unit, in this paper manifested bya train in a fleet.
For each candidate solution investigated, the service packages needed are con-
structed and adapted to the maintenance need of the situation and the candi-
date solution. The plans are re-optimized as soon as significant changes in
the planned operation or in the system condition are detected, taking into ac-
count information of average wear and variance, predicted wear from planned
unusual loads, planned use, availability requirements, etc. The most common
change that triggers a re-optimization of the maintenance plan, is the contin-
uous reduction in uncertainty between the operational counters of individual

9.3 Wear model 199

subsystems (e.g. the number of hours on the compressor or thenumber of cy-
cles of the doors) and the global counter for the whole system(in this case
the aggregated distance travelled by the train) as the system is being used (see
Section 3 below). We also assume that each subsystem has a predefined op-
erational limit based on recommendations from the manufacturer. One could
introduce a more complex model, taking into account the actual probability
density of failures given the use of each component. However, our assumption,
and the way we re-optimize the maintenance plan, has the advantage of not in-
creasing the risk of breakdowns in any way, since the limits used are identical
to the ones used to plan the traditional cyclic maintenance schedule.

We have tested our method in a simulator for train traffic, developed in an
earlier project, using real time tables and realistic faultfrequency data as input,
in addition to recommended service intervals for differentsystems (see Section
6). From the simulation results we show that our method indeed reduces the
number of service interventions to well below the level for cyclic maintenance
while reducing maintenance costs and without increasing the risk of failures.
With relatively simple measures and available service data, our method is also
relatively easily applicable in practice.

9.3 Wear model
We assume that the unit to maintain consists of a number of components or
subsystems. The manufacturer provides a recommended maximum operation
interval before service for each component, measured in some unit (e.g. hours,
kilometres, or cycles). We also assume that service of components was orig-
inally lumped together into predefined service packages, each with its own
global recommended maximum operation length. The latter ispresumably
chosen to keep the risk of any of the included components running over its
recommended length below some low level.

We wish to compare the situation when service is performed based on this
global operation length with when service is based on the operation lengths of
individual components, with respect to both the amount of maintenance and the
number of service interventions. Specifically, we want to see if the number of
service interventions can be reduced in spite of basing service on the individual
components’ operation lengths.

There are two different sources of uncertainty that should not be confused
with each other. The first concerns at which operation lengtha failure will oc-
cur for a specific component. This uncertainty is not the focus of this study, but
we will assume that if service is performed before the recommended operation

200 Paper D

length for each component, then the risk of failure will remain below some
acceptable level, identical to that of the cyclic maintenance approach.

The other uncertainty concerns the relation between the individual opera-
tion lengths and the global operation length, i.e. how fast the usage counters on
the subsystems advance as the global usage counter increases. A typical exam-
ple is the maintenance of trains, where maintenance is basedprimarily on the
travelled distance of the vehicle, whereas the use of the onboard equipment to
a large extent is governed by the characteristics of the specific routes traversed
by the vehicle, or by other elements that are unrelated to thekilometres trav-
elled. For instance, the number of times the doors will be opened per kilometre
naturally depends on how many stops the train makes, which inturn depends
on the time table. Similarly, the HVAC (air conditioner) unit will be used more
on a warm day than on a cold day. Since many of these conditionsare unknown
when the traditional cyclic maintenance schedule is determined, a large safety
margin must be included when selecting the maximum global operation length.
It is the reduction of this uncertainty, between the global operation length and
that of the components, that we wish to harness.

When designing a traditional cyclic maintenance schedule based on a global
operation counter, an assumption has to be made concerning the rate at which
each subsystem counter is advancing relative to the global counter. In our case,
this is equivalent to determining a distribution over how far the global counter
has advanced before the subsystem counter has reached its limit. To ensure
that the risk of running a subsystem counter over its limit islower than some
acceptable level, the limit for this subsystem on the globalcounter must be cho-
sen a certain amount earlier than the expected average value(see Figure 9.1).
Differently put, a fairly large safety margin is needed if the usage varies a lot.

To be more precise, let us assume that the increase,c, of a subsystem
counter is approximately normally distributed, with parameters that depend
on the increase,d, of the global counter:

c ∼ N(kmd, ks
√
d) (9.1)

wherekm andks are constants. To keep the risk sufficiently low, the ser-
vice deadline for the global counter,d0, must be selected such that there is a
number,a, of standard deviations left before the subsystem service deadline,
c0, is reached:

c0 = kmd0 + aks
√

d0 (9.2)

In the simulations the level of uncertainty is a parameter which is varied,

9.3 Wear model 201

whereas the global deadlined0 is fixed to make the results correspond to a
fixed risk level. The uncertainty is then measured as the factor, f , between the
deadlined0 and the global counter increase,dm, that would give the subsystem
deadlinec0 on average (i.e. without the margin ofa standard deviations):

co = kmdm = kmd0f (9.3)

This gives the standard deviation constantks as:

ks =
(f − 1)

√
do

a
km (9.4)

Given the above equations (9.1), (9.2), (9.3) and (9.4), we can generate a
random increase in each subsystem counterc given an increase in the global
counterd, and then calculate a new global deadlined0 from the remaining
subsystem lifetimesc0.

The reduction of uncertainty that we benefit from, stems fromthe fact that,
at each point where we re-calculate the maintenance schedule, there is no un-
certainty in the events that have already passed. We know, e.g., exactly how
many times the doors were opened for the distance that has been travelled.
We only have an uncertainty and a safety margin for the distance that will be
travelled in the future.

Note that if there is no uncertainty, then there is nothing togain with dy-
namic planning since we have assumed that the recommended operation limit
is a hard deadline: We need to get to the depot with a frequencydetermined by
the most constraining limit. Also, if one limit is much tighter than the others
(and the uncertainty is less than this difference), then there are again no alter-
natives: The global limit should be selected as the most constraining limit and
counted in the same unit.

The interesting case is when there are several components with limits of
the same order as the most constraining one, and they have a random varia-
tion relative to each other. In the simulations (see Section6 below), we have
therefore used ten components with the same mean and variance relative to
the global limit. This seems a realistic assumption for manysystems. Also
note that although the components in the simulations had thesame mean and
variance, they were sampled independently and consequently diverged in their
behaviour in the same way as components in real systems do andin the same
way that has been feared to cause the many extra service interventions.

202 Paper D

Figure 9.1: The probability density for the increase in a global counter until a
subsystem counter reaches its deadline. The global deadline d0 must be well
before the expected counter increasedm, unless our method is used.

9.4 Construction of service packages
When maintenance deadlines are not fixed but variable in termsof calendar
time during operation, service needs to be organized into packages dynamically
in order to reap the benefits of CBM.

We call each time period in which maintenance can be done a maintenance
opportunity. Each opportunityi starts at time pointti and has a fixed capacity
ci, which we assume is the length of the time period for the opportunity. The
goal of the service packing problem is then, for a fixed plan ofoperation, to
allocate individual maintenance activitiesj, each with a deadline atej and
duration ofdj time units, to the opportunities given by the maintenance plan,
such that no deadline is missed. If we usea(j) to denote the opportunity thatj
is allocated to, we get the constraint of equation (9.5).

∀j : ta(j) ≤ ej (9.5)

9.4 Construction of service packages 203

In addition, the total duration of the maintenance activities allocated to
an opportunity should not exceed its capacity, or more formally expressed by
equation (9.6):

∀i :
∑

j:a(j)=i

dj ≤ ci (9.6)

The activities allocated to a single opportunity form aservice package.
In preventive maintenance optimization, a common assumption often made

is that the machinery to be maintained will run for an infiniteamount of time,
and that preventive maintenance is periodic. The objectiveof optimization
then becomes finding the optimal recurring maintenance intervals for the com-
ponents of the system.

If maintenance opportunities are unlimited in duration (that is, for all op-
portunitiesi it holds thatci = ∞) and the single objective is to reduce the
average number of depot stops per time unit, then, under these assumptions,
there exists a simple maintenance packing strategy which isoptimal: Define
the activity with the earliest deadline as thecritical activity, and schedule ser-
vice for this activity at the latest possible time before thedeadline. For obvious
reasons, the maintenance opportunity chosen this way for the critical activity
is inevitable. Once we have such a depot stop, we create a service package that
includes all activities that do not depend on a preceding activity, in addition
to the critical activity. Clearly, no other strategy can generate fewer service
packages per time unit.

In reality, these conditions rarely hold. For example, maintenance is usually
planned for depot stops of limited durations only, and thereare often several
optimization criteria, such as unused lifetime of components, cost of down-
time at different calendar dates, and risk factors associated with doing mainte-
nance too late, that must be taken into account and balanced against each other.
Therefore, we use a slightly more advanced service packing algorithm, which
can be more easily tailored for different objectives.

In order to reduce the number of non-empty service packages,we employ
a simple allocation strategy that works as follows. Maintenance activities for
a single vehicle are sorted according to their deadlines, with the activity that
needs service at the earliest point in time first. Then, in turn, we try to find a
suitable opportunity for each activity. The search for a suitable maintenance
opportunity is done in two phases. In the first phase, we only consider oppor-
tunities which are already non-empty. The possible such non-empty opportu-
nities that do not occur too early or too late are tried in turnaccording to date,
starting with the latest one first. The first opportunity found whose capacity can

204 Paper D

also hold the activity in question is selected for assignment. In the case that no
such opportunity is found, we enter the second phase where all opportunities
are tried, including the empty ones. We once again search foropportunities
in reverse chronological order, and the first one that can hold the activity in
question is selected for assignment.

In addition, we can also control the length of the time interval in which
we search for suitable opportunities as assignment candidates. We do this by
varying a parameterp and search only for opportunitiesi for which equation
(9.7) hold.

pej ≤ ti ≤ ej (9.7)

In our experiments, we letp = 0.5.

9.5 Routing of vehicles
In order to meet maintenance requirements and to reduce the number of main-
tenance stops to a minimum, vehicles must be routed dynamically to and from
the depot. We formulate the routing problem as follows.

We are given a set of transportsT and a set of vehiclesV . Each vehiclei
has a set of deadlinesEi = {ei1, ei2, ..., eil} for component/subsystem main-
tenance, identical to the deadlines in Section 4. Each vehicle also has an initial
transportIi. Each transport has a departure and arrival station, departure and
arrival time, and a length in kilometres.

A feasible vehicle plan for a vehicle is a cyclic sequence of transports, start-
ing with the initial transport, where consecutive transports arrive to and depart
from the same station, respecting departure and arrival times. All transports
should be allocated to exactly one vehicle. In addition, there are constraints
on maintenance that need to be fulfilled. Each vehicle shouldbe maintained in
time, that is, all deadlines should be preceded by a corresponding maintenance
activity.

The problem of determining optimal vehicle routes is NP-hard in gen-
eral [7], and therefore we chose to use a heuristic method to find routes that
are suitable. In the simulator, component wear is simulatedfor each transport
in order of arrival time, and for each simulation step, a number of candidate
plans are generated and evaluated using a cost function. Each candidate plan
consists of a vehicle plan and a maintenance plan, generatedas described in
Section 4, and the selection of candidate plans is based on the manual process
used today for vehicle re-planning. The method we use for vehicle routing is

9.6 Test case 205

simpler than, for example, the one found in [1], but serves the purpose of aiding
service package re-planning well enough.

Two vehicles that are stationary at the same time on a given station can,
given enough spare time, swap future vehicle plans. In essence, our method
is to apply a small set of such swaps between pairs of vehiclesin order to
improve the current situation. In practice, we generate a set of modified plans
and evaluate the set using the cost function described below, selecting the plan
with the lowest cost for execution. For all vehiclesi which miss a deadline,
we generate and evaluate all possible swaps before the deadline miss between
i and other vehicles that occupy the same station at the same time.

The evaluation is done as follows. For each vehicle plan, theallocation
algorithm in Section 4 is applied, resulting in a new maintenance plan. Each
plan consists of assigned maintenance datesmij for each vehiclei and active
maintenance deadlineeij . Definerij = ei−mi as the lifetime remaining when
service is carried out.

Ideally, we wantrij to be positive and small, but not smaller than an extra
safety margins. We penalize maintenance withwE per kilometre for early
maintenance andwL per kilometre for late maintenance. In addition, we use a
large base costBM for deadline misses and a costBO per used maintenance
opportunity. Formally, we have the following cost functionper vehiclei and
maintenance deadlinej:

Cij =

wE(rij − s) if rij > s

wL(s− rij) if 0 ≤ rij ≤ s
BM + wLs+ wMrij if rij < 0

(9.8)

Denote the number of used opportunities asx. The total cost for all vehicles
then becomes

C =
∑

i
∑

jCij +BOx (9.9)

In our experiments, we used ass the original deadline divided by 12, and
letwE = 0.1, wL = 3.0,BM = 10000 andBO = 100.

9.6 Test case
We have evaluated our method using a simulator of train movements and repair
shop activity that was developed in a previous project. The simulator uses
actual service data from Bombardier Regina trains operatedin the Mälardalen
region in Sweden, and accumulates wear as described under “Wear model”

206 Paper D

above. We have during these tests focused on reducing the number of service
interventions, to make the point of this paper clear. In a more practical setting,
other objective functions could be used instead, such as thetotal maintenance
cost.

For the simulator setup, we used actual time tables and vehicle plans for 10
vehicles from the autumn of 2003 as a basis for our experiments. To be able
to evaluate our method, we created 10 artificial components for each vehicle,
each taking 6 minutes to maintain and having a base deadline of 7200 km of
operation. Re-planning of maintenance was done as soon as any vehicle arrived
at a station. To reduce planning time to an acceptable level,we used a planning
horizon of 30 days for the experiments. The planning horizonis stable because
the vehicle plans include several stops at the depot within this time period, and
the maintenance deadline used is usually covered within a week of typical train
operation. Maintenance opportunities were assumed to be present whenever
trains visited the single maintenance depot used for the particular time period
and train operator.

The pre-existing time tables and vehicle plans already accounted for vehicle
maintenance in that vehicles passed the depot approximately once a week. To
add flexibility and maintenance opportunities, we augmented the vehicle plans
with two extra vehicles stationed in the depot. For these vehicles we also added
pre-scheduled trips to and from the depot to a larger hub nearby. These trips
could be used on demand when trains needed to be rerouted to the depot, which
is in practice necessary to obtain flexibility and ability toschedule maintenance
at a precise date.

9.7 Results

As mentioned in the Background section, there is a risk that savings gained
from condition based maintenance are lost in repeated visits to the mainte-
nance shop. In Figure 9.2, we observe that by using our method, the number
of service interventions is in fact reduced to well below thelevel of traditional,
cyclic maintenance. This is achieved while retaining a substantial part of the
cost reduction for the actual maintenance actions and without increasing the
risk of breakdowns. Conclusively, our proposed approach can reduce mainte-
nance costs without introducing any major negative side effects.

9.8 Discussion 207

Figure 9.2: The reduction in number of visits to the maintenance shop as a
function of actual additional component lifetime after thereplacement that
would occur using traditional cyclic maintenance.

9.8 Discussion
In this paper, we propose an approach at maintenance planning for rail vehicles
based on the monitoring of individual subsystem counters, such as compressor
run time and number of door open-close cycles. Our approach is easy to imple-
ment, since subsystem counters are already available in many cases. The key
to harvesting the gains of condition monitoring is to repeatedly re-construct
maintenance packages based on wear estimates. In this way, we can reduce the
need for some of the large safety margins usually present in most maintenance
schemes without increasing the risk of failure.

A natural next step is to build a wear model that better handles the other
source of uncertainty, i.e. the lifetime of a component or subsystem given its
own usage counter. This can either be done based on the statistics available to
e.g. an operator of a fleet, or it can be based on manufacturer supplied statistics.
However, in both cases it is non-trivial to ensure that the selected risk level is
not exceeded in the system.

208 Bibliography

The maintenance packing algorithm used today is based on heuristics and is
therefore in many cases not optimal. Our planned future workincludes investi-
gating better optimization models and algorithms, capturing more of the main-
tenance planning process such as resource requirements, cost of spare parts
and manpower, availability, life-cycle costs, etc. Yet another extension would
be to take care of repairs, handling spare part needs using error codes and pre-
liminary root-cause analysis. Such extensions would most likely require more
exchange of information between the actors involved.

Acknowledgement
This work has been funded by VINNOVA, The Swedish Governmental Agency
for Innovation Systems.

Bibliography
[1] L. A NDEREGG, S. EIDENBENZ, M. GANTENBEIN, C. STAMM , D. S.

TAYLOR , B. WEBER, AND P. WIDMAYER , Train Routing Algorithms:
Concepts, Design Choices, and Practical, in Proceedings of the 5th Work-
shop on Algorithm Engineering and Experiments, Society forIndustrial
and Applied Mathematics, 2003, pp. 106–118.

[2] M. B EVILACQUA AND M. BRAGLIA , The Analytic Hierarchy Process
Applied to Maintenance Strategy Selection, Reliability Engineering &
System Safety, 70 (2000), pp. 71–83.

[3] A. CHELBI AND D. A IT-KADI , Inspection and Predictive Maintenance
Strategies, International Journal of Computer Integrated Manufacturing,
11 (1998), pp. 226–231.

[4] R. DEKKER, Applications of Maintenance Optimization Models: A Re-
view and Analysis, Reliability Engineering & System Safety, 51 (1996),
pp. 229–240.

[5] R. DEKKER AND P. SCARF, On the Impact of Optimisation Models in
Maintenance Decision Making: the State of the Art, Reliability Engineer-
ing & System Safety, 60 (1998), pp. 111–119.

[6] J. ENDRENYI, S. ABORESHEID, R. ALLAN , G. ANDERS, S. ASGAR-
POOR, R. BILLINTON , N. CHOWDHURY, E. DIALYNAS , M. FIPPER,

Bibliography 209

R. FLETCHER, C. GRIGG, J. MCCALLEY, S. MELIOPOULOS, T. MIEL-
NIK , P. NITU , N. RAU , N. REPPEN, L. SALVADERI , A. SCHNEIDER,
AND C. SINGH, The Present Status of Maintenance Strategies and the
Impact of Maintenance on Reliability, IEEE Transactions on Power Sys-
tems, 16 (2001), pp. 638–646.

[7] T. ERLEBACH, M. GANTENBEIN, D. HÜRLIMANN , G. NEYER,
A. PAGOURTZIS, P. PENNA, K. SCHLUDE, K. STEINHÖFEL, D. S.
TAYLOR , AND P. WIDMAYER , On the Complexity of Train Assignment
Problems, in Proceedings of the 12th International Symposium on Algo-
rithms and Computation, London, UK, 2001, Springer-Verlag, pp. 390–
402.

[8] A. GARG AND S. DESHMUKH, Maintenance Management: Literature
Review and Directions, Journal of Quality in Maintenance Engineering,
12 (2006), pp. 205–238.

[9] A. JARDINE, D. BANJEVIC, AND V. M AKIS, Optimal replacement pol-
icy and the structure of software for condition-based maintenance, Jour-
nal of Quality in Maintenance Engineering, 3 (1997), pp. 109–119.

[10] A. JARDINE, D. BANJEVIC, M. WISEMAN, S. BUCK, AND T. JOSEPH,
Optimizing a Mine Haul Truck Wheel Motors Condition Monitoring Pro-
gram Use of Proportional Hazards Modeling, Journal of Quality in Main-
tenance Engineering, 7 (2001), pp. 286–302.

[11] H.-B. JUN, D. KIRITSIS, M. GAMBERA , AND P. XIROUCHAKIS, Pre-
dictive Algorithm to Determine The Suitable Time to Change Automotive
Engine Oil, Computers & Industrial Engineering, 51 (2006), pp. 671–
683.

[12] L. M AILLART AND S. POLLOCK, Cost-optimal condition-monitoring for
predictive maintenance of 2-phase systems, IEEE Transactions on Relia-
bility, 51 (2002), pp. 322–330.

[13] L. M ANN , A. SAXENA , AND G. M. KNAPP, Statistical-Based or
Condition-Based Preventive Maintenance?, Journal of Quality in Main-
tenance Engineering, 1 (1995), pp. 46–59.

[14] J. J. MCCALL , Maintenance Policies for Stochastically Failing Equip-
ment: A Survey, Management Science, 11 (1965), pp. 493–524.

210 Bibliography

[15] A. NEELAKANTESWARA RAO AND B. BHADURY, Opportunistic main-
tenance of multi-equipment system: a case study, Quality and Reliability
Engineering International, 16 (2000), pp. 487–500.

[16] P. A. SCARF, On the Application of Mathematical Models in Mainte-
nance, European Journal of Operations Research, 99 (1997), pp. 493–
506.

[17] A. TSANG, Strategic dimensions of maintenance management, Journal of
Quality in Maintenance Engineering, 8 (12 April 2002), pp. 7–39.

[18] J. VELASQUEZ, R. VILLAFAFILA , P. LLORET, L. MOLAS,
A. SUMPER, S. GALCERAN, AND A. SUDRIA, Development and Im-
plementation of a Condition Monitoring System in a Substation, in Pro-
ceedings of the 9th International Conference on Electrical Power Quality
and Utilisation, October 2007, pp. 1–5.

[19] H. WANG, A Survey of Maintenance Policies of Deteriorating Systems,
European Journal of Operations Research, 139 (2002), pp. 469–489.

[20] R. C. M. YAM , P. TSE, L. L I , AND P. TU, Intelligent predictive decision
support system for condition-based maintenance, The International Jour-
nal of Advanced Manufacturing Technology, 17 (2001), pp. 383–391.

[21] X. ZHENG AND N. FARD, A Maintenance Policy for Repairable Systems
Based on Opportunistic Failure-Rate Tolerance, IEEE Transactions on
Reliability, 40 (1991), pp. 237–244.

[22] X. ZHOU, L. X I , AND J. LEE, A dynamic opportunistic maintenance
policy for continuously monitored systems, Journal of Quality in Mainte-
nance Engineering, 12 (2006), pp. 294–305.

[23] X. ZHOU, L. X I , AND J. LEE, Reliability-centered predictive mainte-
nance scheduling for a continuously monitored system subject to degra-
dation, Reliability Engineering & System Safety, 92 (2007), pp. 530–534.

Chapter 10

Paper E:
Optimization of
condition-based
maintenance for industrial
gas turbines: Requirements
and results

Markus Bohlin, Mathias Wärja, Anders Holst, Pontus Slottner
and Kivanc Doganay.

Paper number GT2009-59935.

In Proceedings of ASME Turbo Expo 2009: Power for Land, Sea
and Air.

June 8–12, 2009, Orlando, Florida, USA.

211

Abstract

In oil and gas applications, the careful planning and execution of preventive
maintenance is important due to the high costs associated with shutdown of
critical equipment. Optimization and lifetime managementfor equipment such
as gas turbines is therefore crucial in order to achieve highavailability and re-
liability. In this paper, a novel condition-based gas turbine maintenance strat-
egy is described and evaluated. Using custom-made gas turbine maintenance
planning software, maintenance is repeatedly reoptimizedto fit into the time
intervals where production losses are least costly and result in the lowest pos-
sible impact. The strategy focuses on accurate online lifetime estimates for gas
turbine components, where algorithms predicting future maintenance require-
ments are used to produce maintenance deadlines. This ensures that the gas
turbines are maintained in accordance with the conditions on site. To show the
feasibility and economic effects of a customer-adapted maintenance planning
process, the maintenance plan for a gas turbine used in a real-world scenario
is optimized using a combinatorial optimization algorithmand input from gas
turbine operation data, maintenance schedules and operator requirements. The
approach was validated through the inspection of a reference gas turbine after
a predetermined time interval. It is shown that savings may be substantial com-
pared to a traditional preventive maintenance plan. In the evaluation, typical
cost reductions range from 25 to 65 %. The calculated availability increase in
practice is estimated to range from 0.5 to 1 %. In addition, downtime reduc-
tions of approximately 12 % are expected, due solely to improved planning.
This indicates significant improvements.

10.1 Introduction 213

NOMENCLATURE
CBM Condition-based Maintenance
EOC Equivalent Operating Cycles
EOH Equivalent Operating Hours
INSP Inspection
OEM Original Equipment Manufacturer
PM-opt Preventive Maintenance Optimizer
REPL Replacement
RFC Retirement For Cause

10.1 Introduction
Condition-based Maintenance (CBM) is a term for methods andmethodology
that, based on the actual condition and predicted future use, in theory allows
maintenance to be performed at the best possible date for each component.
Typical applications include components that do not fail instantaneously, but
deteriorate in a quantifiable and, preferably, observable way over a period of
time. An early failure indication enables the user to avoid the consequences
of an unexpected breakdown. Early signs can be detected by the use of di-
agnostic equipment and/or by analytical calculations taking the actual service
conditions of the equipment into account — so-called prognostics. According
to [9], equipment operators increasingly use condition-based maintenance in-
stead of, or in addition to, scheduled maintenance to reducelifetime equipment
operating costs.

However, merely having diagnostics and/or prognostics is not enough to
derive all or even most benefits from CBM. In [10], it is statedthat in order
to maximize the benefits from CBM for the enterprise, it is as important to
focus on the aftermarket supply chain — i.e. the back-end of the process,
including maintenance — as it is to develop better data gathering, diagnostic
and prognostic techniques. Further, it is shown that optimizing the value chain
results in lower costs and higher availability.

In practice, better knowledge of the actual maintenance requirements of
the components of a machine should be reflected in maintenance intervals dy-
namically adapted to the current condition and predicted usage of the compo-
nents. For gas turbines, predictions regarding future component condition and
lifetime are based on factors such as load profile, quality offuel, ambient tem-
perature, particle levels, and so on. To maximize the benefits of CBM, main-
tenance also needs to be replanned whenever the current condition and future

214 Paper E

predictions, and hence the future maintenance intervals, change significantly.
With a growing emphasis on life cycle cost reduction for capital equipment

such as gas turbines, equipment operators are increasinglyinvestigating poten-
tial cost reductions. One way to minimize life cycle costs and maximize earn-
ings is to optimize maintenance according to a customer’s specific condition.
Achieving an optimal or near-optimal maintenance plan, which minimizes the
total cost, depends on the availability of diagnostics and prognostics, as well
as on maintenance planning technologies. Successful planning also involves
developing accurate and comprehensive user knowledge, in part because solu-
tions engineered for one user can then be adapted to the specific needs of other
users [2].

The maintenance process adopted in this paper combines condition infor-
mation with the requirements of the operator. This is done inorder to carry out
maintenance as efficiently as possible, thus ensuring that potential short-term
profits will be evaluated in an overriding life cycle cost perspective. To manage
all relevant information, a preventive maintenance optimization tool (PM-opt)
has been developed. PM-opt plans preventive maintenance for complex techni-
cal systems and maximizes earnings for a system operator. This is done through
the use of an advanced prognosis process and input from an operator regard-
ing operation profile, ambient conditions and financial datasuch as production
value and standstill costs. This information is processed in PM-opt, generating
an optimized preventive maintenance schedule adapted to anoperation-unique
situation, hence maximizing profit. The process is also supported by an ad-
vanced diagnostic tool to further increase reliability andavailability.

The goal is to provide operating conditions that will increase availability
with predictable scheduled maintenance, based on condition-monitoring as-
sessment, with little or no downtime during deployments. Any changes in,
for example, operation profile will instantly affect the preventive maintenance.
Also, if an unplanned opportunity occurs, maintenance can be re-scheduled if
it is profitable to use this ’new slot’. PM-opt can deal with these situations and
re-optimize maintenance if this is financially justifiable for the operator of the
gas turbine.

10.2 Gas Turbine Maintenance
For gas turbines, maintenance planning is usually done manymonths in ad-
vance due to the user’s cost associated with a period of gas turbine inactivity.
The date and duration of a maintenance period are determinedin advance to
coincide where possible with other scheduled stops, such asplant shutdowns

10.2 Gas Turbine Maintenance 215

and vacations. CBM offers a potentially more flexible approach. In it, the
amount of flexibility depends on factors such as risk willingness, condition
of components, value of production and future operation profile. The major
advantages of CBM include the possibility to adapt the maintenance plan ac-
cording to user-specific demands and needs and transparencyregarding the
possible consequences of different choices. Also, each component can be uti-
lized as efficiently as possible. This reduces downtime and costs and increases
the potential earnings due to an increased number of operating hours.

10.2.1 Equivalent Operating Hours and Cycles

Today, maintenance schedules are often based on EOH/EOC calculations, which
model the equivalent operating hours and cycles used under different opera-
tional conditions. In a time interval from 0 toT , EOH is calculated as

EOH = 5× EOC+

∫ T

t=0

Cx(t)Cf (t)Cw(t)CT7diff (t) dt (10.1)

where EOC is the total number of cycles. The factorsCx(t), Cf (t), Cw(t) and
CT7diff (t) are used to model operational conditions;Cx(t) depends on load,
Cf (t) on fuel quality,Cw(t) on the presence of water injection, andCT7diff

on the presence of a significant exhaust temperature difference. However, the
model is rather coarse in how these variables are handled. Further, factors such
as ambient air temperature and pressure, rotational speeds, and outlet tempera-
tures are not taken into sufficient consideration. Instead,the EOH calculations
have substantial built-in safety margins to accommodate for variations and con-
ditions not explicitly modeled. A more detailed model is therefore used for the
CBM approach in this paper.

10.2.2 Condition-based Maintenance

The benefits of utilizing CBM to reduce lifecycle cost compared to a time-
based preventive approach have been well-documented over the years. How-
ever, CBM has become a catch-all term for any type of health monitoring [7].
A majority of papers written on CBM or Health Management of Machines fo-
cuses on the areas of diagnostics and prognostics. There aremany techniques
and emerging technologies that are making engine monitoring more complete
and informative. Basic parameter monitoring can and does provide valuable in-
formation on the performance of an engine [3]. Through intelligent processing
and integration with other parameters, valuable information can be acquired,

216 Paper E

including actual life consumed, life remaining, and the condition of the gas
turbine relating to its operation profile and ambient conditions.

These approaches mean dealing with a large amount of data. For this rea-
son, statistical approaches are becoming popular tools forlife management
[13]. Applications include calculating the risk involved in extending the life
of components. For example, Retirement For Cause (RFC) is anapproach that
allows each component in an engine to be used for the full extent of its safe
life [5]. Statistical approaches like Weibull analysis arepopular in the world
of industrial gas turbines. Original equipment manufacturers (OEM’s) usually
have databases on the number of parts retired from service asa function of op-
erating parameters. These samples can, however, be quite small, and the root
cause may not be properly identified.

10.2.3 Component Life Assessment

Maintenance is all about increasing equipment life by activities that verify
component functionality and detect faults before they occur. A typical sce-
nario is seen in Fig. 10.1. The component life is assessed at each maintenance
event and, depending on the result, new optimistic and pessimistic curves are
drawn [12].

A gas turbine component is subjected to a number of potentialdamage
mechanisms, related to the temperature and load that it is exposed to, the spe-
cific environment it operates in, or a combination thereof. In essence, the life-
time is estimated using models of gas turbine component deterioration that,
given engine state parameters like rotational speeds, ambient air pressure and
temperature, compressor outlet temperature, estimated turbine inlet tempera-
ture and pressure, turbine exhaust temperature and an increment length, return
the approximate life consumption during the analyzed time increment. A sim-
ilar approach is used to predict fatigue damage. However, instead of a time in-
crement length, a number of cycle parameters like loading rate and dwell time
within certain load ranges would be used. The models were developed using
available knowledge from calculations and field experience. This is described
in more detail in [12,15].

A prognostics tool uses the deterioration models to calculate the residual
lifetime (depending on a customer’s operation profile, environmental condi-
tions and actual gas turbine data). It can be described as an advanced EOH/EOC
calculator, keeping track of every damage location on the gas turbine’s com-
ponents. When a certain damage location reaches a predetermined limit, either
an inspection or a replacement is necessary. (see Fig. 10.2). As the operation

10.2 Gas Turbine Maintenance 217

Upper Allowable Degradation Limit

D
eg
ra
d
a
ti
o
n
 L
ev
el

Time

Conservative Case

(1)

(2)

(3)

(4)

(1), (2): Acceptable Indicators for Further Reliable Operation

(3): Plant Component Replacement/Repair at the Next Inspection

(4): Replace

Uncertainty

in Expected

Degradation

Condition

Optimistic Case

Toupin (ABB) 1995

Figure 10.1: Component maintenance activities and life extension.

commences, EOH/EOC is accumulated on each damage location according to
the deterioration models. The location with the highest amount of accumu-
lated damage represents the condition of the component. Thereaction time is
the time needed for an OEM to plan and execute a maintenance task; this varies
with different components.

The operator’s specific characteristics are used, in combination with knowl-
edge about the wear of components, to customize an optimal ornear-optimal
maintenance plan for the gas turbine components. The maintenance plan is
also dynamically updated in order to increase the precisionin the prediction of
the point in time at which a planned maintenance action must be performed.
Figure 10.3 describes the dynamic maintenance plan and how information is
gathered during the operation to more precisely estimate the point in time for
a maintenance action. Here, an inspection done at timex is premature in the
sense that not enough observable damage has been accumulated. Therefore,

218 Paper E

Figure 10.2: EOH/EOC accumulator.

inspecting the turbine at a later timey will decrease the uncertainty of when
replacement of the worn component has to be done. Also, the risk associated
with postponing an action can be calculated.

10.2.4 Component Life Extension and Risks

Every life extension beyond the normal operation regime means that there is a
risk of triggering a damage mechanism that has not previously been considered
for the component in question (due to initial design requirements or due to the
lack of understanding and knowledge of the damage mechanismin question).
Damage mechanisms may also interact in ways previously unheard of. In the-
ory, therefore, every increase in life time means a risk increase that needs to be
addressed.

If the life extension is based upon a prognostics analysis, where life times
are based upon actual service conditions rather than designpoint conditions,
the risk of failure due to any of the typical design damage mechanisms like
creep, oxidation and fatigue, should be taken into account.The remaining risks

10.2 Gas Turbine Maintenance 219

Figure 10.3: Point in time for planned maintenance action.

are due to previously unseen failure mechanisms, and due to new combinations
of damage mechanisms including material deterioration. Both of these are real
and have to be seriously considered. Due to the huge potential in extending
service life, it is in many cases desirable to do so anyway. Inorder to do
this with minimum risk, it is proposed the extension be accomplished in the
following way:

• Considering type of material, operation temperatures and load, deter-
mine which known damage mechanisms and combinations thereof could
possibly occur in each relevant component.

• Based upon what can possibly occur, define component inspections that
can detect upcoming damage with sufficient accuracy.

• Based upon how good the inspection methods are, that is, how far in
advance they can be expected to detect upcoming damage, determine
suitable maximum inspection intervals.

220 Paper E

When life is prolonged, performing the risk mitigation inspections de-
scribed above at the defined maximum inspection intervals isstrongly recom-
mended, even if the prognostics model shows a life increase of several magni-
tudes.

As a gas turbine accumulates operation hours it will be possible to see
some patterns during inspections and overhauls. By extracting sample compo-
nents during inspections, the status of one set of components, as compared to
standard lifetimes and to other sets of components operating under the same
conditions, can be determined. This means that the benefits of the procedure
indicated in Fig. 10.1 are used. However, usually the gas turbine is disassem-
bled at least once before most components are scrapped, allowing access to the
components for detailed status assessment. Therefore, by picking sample com-
ponents for destructive testing even before reaching theirexpected end of life,
valuable knowledge about actual service conditions can be gained and service
life can be extended accordingly. This also means that even moderate lifetime
improvements become much more valuable to the end user [12].

If the components in one stage “always” look notably good, this should
mean that there is something in the conditions at the site that is lenient to the
components. This also means that when adding a new set of components, the
expectation on their actual life could be increased somewhat and the “halfway”
inspection can be adjusted towards the half-life that should be expected in this
specific gas turbine.

Postponing the first inspection beyond the “safe life” limitof the compo-
nent should not be recommended, however, since there is always a possibility
that conditions may have changed to the worse. Additional safety margins may
be desired depending on the circumstances.

10.3 Gas Turbine Maintenance Planning
One of the major questions, if not the most important one, to be answered by
persons responsible for the maintenance management of gas turbines, is when
to do a maintenance action: “The maintenance action is due ata certain date
— can it be postponed?” This optimization problem clearly belongs to the
advanced maintenance sphere. This and other questions regarding optimal or
near-optimal decision making is becoming more and more important together
with an increased focus on cost minimization and profitability within the gas
turbine sector. The type of problem dealt with is however of avery complex
nature, and the question is therefore difficult to answer simply. To handle the
complexity of the problem, one option is to use combinatorial optimization

10.3 Gas Turbine Maintenance Planning 221

methods, which can handle a wide variety of side constraintsand different
costs.

10.3.1 Maintenance Optimization

Because frequent preventive maintenance is costly, optimal or near-optimal
maintenance planning is a primary interest for many gas turbine users. A well-
known fact is that components in a gas turbine face differentwear, depending
on parameters such as environment, load, events, fuel type,and the like. This
means that two identical gas turbines with different operators can present sig-
nificant differences in wear. In order to make an optimization, every component
in a gas turbine must be monitored and the accumulated equivalent operating
hours (EOH) and equivalent operating cycles (EOC) must be considered. In
addition, predictions based on an estimate of the expected future wear should
be available in order to compute expected maintenance deadlines.

The wear of components of equal type can be expected to be somewhat sim-
ilar. Therefore, several components are usually grouped into a set, represented
by a single (composed) component. As an example, a single component could
be used for all guide vanes in the first stage of the gas turbine. The residual life-
time of the composed component is represented by the most worn component
in this set. As long as operation is normal and a component is not subjected to
damage (e.g., due to foreign objects or deviation in temperature profile causing
uneven wear), all components in a set are replaced at the sametime. However,
if components face unequal wear, the replacement of such components must be
done with great care. Failure to do this properly may result in sub-optimization,
causing increased costs for an operator due to higher maintenance frequency
as a function of uneven component wear. This is avoided by theuse of a highly
detailed component database with component traceability,ensuring an effec-
tive replacement schedule throughout the gas turbine’s lifetime.

10.3.2 Maintenance Setup

Considering only the cost of spare parts, a theoretically optimal maintenance
strategy is to always perform maintenance as late as possible. The condition,
and hence the deadlines, of the components in the gas turbinechange stochasti-
cally throughout the lifetime of the turbine due to environmental factors such as
particle levels, fuel quality, load, temperature, moisture levels, to name a few.
This will also spread out the individual maintenance deadlines over time. The
theoretically optimal strategy will thus result in many maintenance stops spread

222 Paper E

out more or less evenly, in turn resulting in a maintenance schedule unaccept-
able to many customers. Thus, a strategy for the co-allocation of maintenance
in order to reduce the number of maintenance stops is required. A flexible
strategy that can meet a wide variety of maintenance requirements is to use op-
timization. There, a cost function for the maintenance schedule is minimized
while a set of requirements on the resulting plan are satisfied.

Components in PM-opt

In PM-opt, each component is associated with 1) a set of maintenance activi-
ties with specified duration and cost, and 2) a maintenance schedule, which is
a sequence of activities (replacements and inspections) that should be repeated
according to a specified pattern. The component also handlesits current condi-
tion, which is measured in the consumed lifetime of the component schedule,
thus indicating, according to the best knowledge at that time instant, the exact
“location” in the component maintenance schedule.

Maintenance Items

In order to model maintenance to a sufficient level of detail,a single gas turbine
component is represented in PM-opt by a sequence of maintenance items. A
maintenance item is the basic activity the optimizer handles, and corresponds
to the individual, more or less regular, maintenance activities done at a mainte-
nance stop. Items should be allocated to maintenance stops,and thus constitute
one of the major parameters in the time to solve the problem.

Maintenance items are divided into two different main types: inspections
and replacements of a component. Reconditioning a component is modeled us-
ing a replacement maintenance item. Regardless of its main type, each main-
tenance item has a maximum uptime before that maintenance item has to be
done (typically the maintenance interval length before an inspection or a re-
placement) and a maintenance type, which contains data on costs and dura-
tions associated with the exact type of maintenance. The origin time point
from which this maximum uptime is measured is different depending on type.

Each maintenance item also has data regarding the actual maintenance ac-
tivities carried out (for example, work time consumption and a cost specifi-
cation for the maintenance). In addition to this, maintenance items can be
restricted to occur in a certain calendar interval, defined by an earliest and a
latest date for maintenance. Items with due dates typicallydepend on the dates
of other items. A set of maintenance activities associated with a component can
be visualized as a tree of dependencies regarding maximum uptime, as shown

10.3 Gas Turbine Maintenance Planning 223

REPL 1
Max_up=52

INSP 1.1 INSP 1.2

REPL 2
Max_up=78

INSP 2.1 INSP 2.2

REPL 3
Max_up=104 INSP 3.1 INSP 3.2

Figure 10.4: Replacement type items and their dependencies.

in Fig. 10.4 and 10.5.

Replacement Maintenance Items

For replacement items, uptime is measured from the preceding replacement
maintenance item for the same component. The outcome of an inspection could
potentially affect the lifetime predictions of a component. However, since this
is unknown at planning time, this information has to be fed into the optimizer
after the inspection has been done and when the results are available.

In addition to a maximum uptime, each replacement maintenance item also
has a minimum uptime that has to pass before a replacement is even allowed
for this component, as well as an earliest and latest calendar date for mainte-
nance. Figure 10.4 shows an example of replacements and their time depen-
dencies. Since replacements (REPL in Fig. 10.4 and 10.5) canalso represent
overhauls and other significant maintenance activities, itis possible to differ
between such activities and have different inspection schedules for different
replacement items.

Inspection Maintenance Items

For inspection maintenance items, uptime is measured from the previous in-
spection of the same component. Uptime is measured from the preceding re-
placement item if there is no preceding inspection item. As shown in Fig. 10.5,
each replacement is followed by a number of inspections of the component in
question. When a component is replaced, a new inspection schedule is rolled
out.

224 Paper E

REPL 1

INSP 1.1
Max_up=23

INSP 1.2
Max_up=23

REPL 2

INSP 2.1
Max_up=34

INSP 2.2
Max_up=34

REPL 3
INSP 3.1

Max_up=42
INSP 3.2

Max_up=42

Figure 10.5: Inspections and their dependencies.

Opportunities

An opportunity is a time point at which maintenance can be done. In PM-opt,
all opportunities must be specified, since the optimizer will not plan mainte-
nance on a date which is not an opportunity. An opportunity consists of a date,
a maximum work duration at the opportunity (its capacity), abase cost for
usage (deducted as soon as at least one maintenance item is allocated to the
opportunity), a downtime cost (deducted for each downtime minute of the op-
portunity) and a specification of the number of labor shifts to use. This forms
the basis for computing the customer costs of maintenance.

10.3.3 Maintenance Package Planning

In traditional maintenance planning, maintenance packages each containing a
set of maintenance activities for a set of components are predetermined and
preplanned. The situation changes when the current condition, and therefore
the different maintenance needs of the individual components of the turbine,
is known. The problem is to decide which maintenance activities should be
grouped together at which point in time, thus forming a dynamic maintenance
package. For each package, the component to be serviced firstlimits the latest
date at which the maintenance package can be performed. In PM-opt, each
maintenance item is associated with a turbine stop time (forstopping and cool-
ing down the turbine and the like), a duration of the actual activities contained
in the maintenance item, and a restart time (including testsperformed before
start). The allocation of a maintenance item also gives riseto a cost propor-
tional to its wasted lifetime. In addition, each maintenance item has a cost
associated with the labor and material used. Costs due to increased labor level
are modeled by an individual multiplier for each labor level. Each potential

10.3 Gas Turbine Maintenance Planning 225

maintenance stop is also associated with a base cost for using the stop and a
variable cost that is associated with the actual downtime ofthe stop.

Maintenance Optimization Algorithm

The optimization algorithm used is divided into two stages.The first stage
(shown in Alg. 10.1) applies a depth-first branch-and-boundalgorithm [11]
augmented by a heuristic to find the best possible maintenance plan. On top
of this, an iterative widening technique called Limited Discrepancy Search [6]
is used to find better maintenance plans fast. In short, the first stage selects
individual maintenance activities in turn, ordered by increasing deadline. The
algorithm then tries to allocate the selected maintenance activity to each possi-
ble opportunity, and evaluates the results of doing this in combination with the
previously-committed allocations. The possible opportunities are then sorted
according to increasing cost, and the best one is committed for further eval-
uation. The search then proceeds by selecting the next activity in turn for
allocation. If at any instant an inconsistency is detected,the search backtracks
to the previous choice, and the next best opportunity is tried instead. At each
allocation choice,k opportunities at the most are evaluated; wherever no op-
portunities exist, the search backtracks. In the experiments, it was found that
iteratively increasingk from 0 to 2, resolving the problem for eachk, provides
good performance and quickly returns feasible improving solutions.

When all activities have been allocated to opportunities, the cost of the re-
sulting plan can be established. If the generated plan is better than the best one
found at that point, it is saved for future reference. The search then backtracks
in order to find better plans. Also, a simple, lower bound of the cost of an
incomplete plan is computed and used to backtrack as soon as the lower bound
is higher than the cost of the best plan found at that point.

The second stage of the algorithm is similar to the first. One difference,
however, is that a breadth-first technique similar to A* search [11] is used (in-
stead of a depth-first strategy). In this stage, a set of partial plans (“nodes”) are
kept ordered according to a heuristic value, which is the sumof the partial plan
cost and the lower bound for the unallocated maintenance activities. The node
with the lowest heuristic value is selected first, and is expanded into several
new nodes, which are inserted into the set. The expansion is done by splitting
the set of possible opportunities for an activity into two sets. This yields two
new nodes, each having one part of the opportunity set for theactivity.

Since planning an activity at an early point in time incurs a cost in lifetime
loss for the corresponding component, the optimizer favorslate maintenance

226 Paper E

Algorithm 10.1: Optimization algorithm (stage 1).

S o rt l is t o f m a in t .
ite m s (T L) in
 t im e o rd e r

P la n c om p le te ?

D = item #W in D L

T fe a s ib le
a t D ?

N e w c o s t re c o rd ?

S a v e p la n a s
b e s t fo u n d s o fa r

R em o ve D fro m D L
In c re a s e W b y 1

ite r> iL im it?

In c re a s e ite r b y 1

R e s to re T L ,
D L a n d W

S T A R T

Y E S

N O

N O

Y E S

Y E S

Y E S

N O

N O

B A C K T R A C K

N O

Y E S

D L em p ty ?

W >W L im it?

N O

Y E S

ite r= 0

T = f ir s t i tem in T L

S o r t lis t o f d a te s
(D L) fo r T

in c o s t o rd e r

W = 1

E N D

R em o ve f ir s t
i tem fro m T L

R E C U R S IO N

S a v e T L ,
D L a n d W

dates over early ones. However, since downtime costs are also taken into con-
sideration, it may be even more favorable to place an activity at an earlier date.
This is true if it already contains other maintenance activities (in which case the
downtime increase will be smaller or even zero) or if the downtime has a signif-
icantly lower cost at the earlier opportunity. It was discovered that this simple
heuristic works very well in practice and in many cases cannot be improved

10.4 The Gas Turbine Maintenance Process 227

upon. In fact, in the case where each opportunity has an equaldowntime cost,
the optimizer closely mimics the behavior of a human plannertrying his/her
best to use the components to their maximum.

The A* algorithm is guaranteed to find the optimal solution given enough
time. However, since the search space is huge, finding the optimal solution is
not plausible. In practice, the first stage of the algorithm provides a solution
with sufficiently high quality for most purposes within a short response time,
mainly due to the heuristics employed.

Problem Complexity

As a note on the problem difficulty from an optimization perspective, the plan-
ning problem can be seen as a generalized and more complicated form of bin-
packing [1, 4], a well-known difficult problem in which the optimization time
in practice is proportional to an exponential function of the problem size [8].
For this and other reasons, bin-packing problems are usually solved only to
approximation using heuristics. This has turned out to be a suitable choice,
since the heuristics used produce good solutions within an execution time of
seconds.

In [14], maintenance planning is done for a more restrictivesystem where
certain mathematical properties of the cost function must hold and where the
potential gain of co-allocating maintenance is constant for all activities. In our
model, cost is a function of component and downtime costs. This makes our
model more expressive and, thus, not solvable using the polynomial solution
approach in [14]. However, the heuristic used guarantees that the same solu-
tions are explored for problems where the restrictions in [14] hold.

10.4 The Gas Turbine Maintenance Process
A strategy for gas turbine maintenance planning is proposedthat consists of
online lifetime prediction using a prognostics tool and online maintenance op-
timization using PM-opt. The workflow during CBM includes the following
steps:

1. Identification of single and composed components and corresponding
activities (maintenance items). If a maintenance activitycan belong to
more than a single component, it is either split into separate activities for
the components in question or added as an activity for a generic place-
holder component for “hard to specify” maintenance, which spans sev-
eral components.

228 Paper E

2. Lifetime predictions using a prognostics tool for suitable components.

3. Lifetime predictions using regular EOH/EOC estimates for components
without suitable damage accumulation algorithms.

4. Construction of maintenance requirements. In this phase, a maintenance
specification is entered into PM-opt. The specification consists of re-
quirements that have to be fulfilled in all maintenance plansthat will be
constructed, and includes the maximum lifetime of the components in
the gas turbine.

5. Contract period specification. PM-opt needs to know how long the gas
turbine maintenance schedule should be.

6. Opportunity specification. In this phase, the loss of production costs and
their corresponding calendar time intervals for the contract period are
specified.

7. Initial maintenance planning, where PM-opt is used to optimize mainte-
nance and get an initial maintenance plan.

8. Lifetime revisions using a prognostics tool. At inspections or when con-
dition data has been read from the gas turbines, new lifetimes are com-
puted and inserted into PM-opt.

9. Handling of unexpected events. These are inserted manually as un-
planned activities into the maintenance schedule, together with suitable
adjustments on remaining lifetime of the components affected.

10. Handling production changes. Production changes mean that the future
opportunities, costs and priorities change, and such changes must be fed
into PM-opt in order to produce relevant results.

11. Handling other changes in the maintenance plan. When the maintenance
plan of the gas turbine is changed for other reasons not part of the CBM
process, PM-opt still needs new maintenance schedules, so that mainte-
nance is still planned according to the current state of practice.

12. Date adjustment. PM-opt needs to know which part of the maintenance
plan has already been executed and, consequently, which activities are
still pending (and thus needs to be scheduled).

13. Repetition of steps 8-12 until the maintenance contractis finished.

10.5 Evaluation 229

10.5 Evaluation
In this section, the approach presented in this paper is evaluated using a real
world scenario in the oil and gas business. The gas turbine used for evaluation
(a Siemens SGT-600) consists of 17 components with individual maintenance
schedules. For some of the components, maintenance deadlines were deter-
mined from predictive lifetime analyses using a prognostics tool. Other com-
ponents in the gas turbine were required to be maintained according to their
original maintenance schedules.

10.5.1 Setup

The standard maintenance schedule, which is used for comparison, is based on
the EOH/EOC calculations described in Eqn. (10.1) in Sect. 10.2.1. For the
gas turbine in question,Cx(t) was on average 0.72, and the other factors were
always 1.0.

The critical components in the gas generator stage (combustion chamber,
burners, compressor turbine guide vanes, and blades) were modeled and eval-
uated in a prognostics tool to determine suitable inspection intervals. How-
ever, at the time of writing, lifetime data was not availablefor the combustion
chamber and burner components. Therefore, the original maintenance dead-
lines were used for these components. For the critical components, the relative
increases obtained from using the prognostics tool, compared to the standard
maintenance schedule, are shown in Tab. 10.1. The approach was validated as
described in Sect. 10.5.3.

In Tab. 10.1, replacements markedn/a were not present in the EOH/EOC
schedule, and are therefore not included in the prognostic schedule. Replace-
ments markedn/nwere not necessary in the prognostic schedule, since the esti-
mated component lifetimes were significantly higher than the standard lifetime
of the turbine.

Maintenance Scenarios

A standard maintenance contract of 15 years was assumed, forwhich main-
tenance should be optimized with regard to both maintenancecosts and costs
due to loss of production. The maintenance deadlines were used as the basis for
computing suitable maintenance packages (and schedules) using PM-opt. The
resulting schedules were analyzed with regard to 1) cost of production losses
and 2) maintenance costs. PM-opt was set to run for 30 secondsat the most,
producing the best maintenance schedule found within this time period.

230 Paper E

Table 10.1: Increases in maintenance intervals obtained from the prognostics
tool.

Prognostics

Component Inspection Replacement

Guide Vanes Stage 1 88 % n/a

Guide Vanes Stage 2 151 % n/n

Combustion Chamber 0 % 0 %

Burners 0 % 0 %

Blades Stage 1 101 % n/n

Blades Stage 2 41 % n/n

Blades Stage 3 245 % n/n

Blades Stage 4 72 % n/n

The evaluation was done on two scenarios. In the first scenario, high costs
for lost production were assumed. The exception was for a three week period
during the summer, where maintenance could be done without any negative
effects on production. Such opportunities for maintenancewith reduced or
negligible negative effects on production are common in practice. In the second
scenario, no such favorable opportunities were made available to the optimizer.
In both scenarios, a low cost was associated with all maintenance stops. This
cost corresponds to shutdown and startup costs. Maintenance was assumed to
be done using one single shift of labor only.

10.5.2 Results

In the evaluation, four different maintenance strategies for two situations in
two different scenarios were compared. The scenarios were set up to simu-
late maintenance planning for a new gas turbine and for a gas turbine with a
non-empty maintenance history, in the cases where a seasonal stop was either
absent or present. The four maintenance strategies were setup to simulate ei-
ther the absence or the presence of advanced prognostics and/or maintenance
optimization respectively.

10.5 Evaluation 231

New Gas Turbine

Table 10.2 shows results for a simulated brand new gas turbine. Since a new
gas turbine should have an empty maintenance history, all component lifetimes
are set to their predicted values. Where lifetimes are obtained from the stan-
dard maintenance schedule for the gas turbine, the necessary maintenance time
points are already synchronized according to the maintenance packages de-
termined for the original maintenance schedule. This makesthe planning of
maintenance packages easier, especially in the beginning of the contract.

In Tab. 10.2, the rows “EOH” and “Progn” give the results for schedules
obtained by planning maintenance activities at the last possible date, given by
the maintenance intervals obtained from standard EOH calculations and the
prognostics tool respectively. This corresponds to the theoretically best possi-
ble case from a direct maintenance perspective (in other words, not considering
the effect on the customer) and is obtained without using anyminimization of
production losses. On the other hand, the rows marked “EOH opt” and “Progn
opt” provide results for schedules obtained by optimizing maintenance with
regard to both maintenance and customer (loss of production) costs. Results
are given for two scenarios; one where there is an already preplanned produc-
tion stop of three weeks during the summer (“With seasonal stop”) and one
where production is assumed to continue throughout the year, without advan-
tageous maintenance opportunities (“Without seasonal stop”). In this second
case, maintenance can be freely placed. However, since maintenance stops
always incur a significant cost, more focus must be placed on grouping main-
tenance activities together in suitable packages.

In Tab. 10.2, results are reported in the form of availability (“Avail”), main-
tenance costs (“Maint index”) and productive days spent doing maintenance
(“DT days”). Availability is computed as the number of productive days when
maintenance isnot done (not including seasonal stops, which are assumed to
be unproductive) divided by the total number of productive days for the main-
tenance contract. Direct maintenance costs include material and work costs.
Maintenance costs are expressed using an index. In it, 100 represents the cost
of doing maintenance according to the maintenance intervals computed using
the EOH/EOC calculations in Eqn. (10.1), the current state of practice. The
highlighted line in Tab. 10.2 is the reference case corresponding to mainte-
nance being done at the latest possible date.

As can be seen in Tab. 10.2, better lifetime estimates had a significant re-
sult on maintenance costs, availability and downtime. Adding the optimization
of maintenance (with regard to both maintenance costs and production losses)

232 Paper E

Table 10.2: Results of maintenance optimization for a new gas turbine.

With seasonal stop Without seasonal stop

Avail Maint DT Avail Maint DT
% index days % index days

EOH 97.60 100 131 97.60 100 131

EOH opt 99.99 109 0.42 98.15 120 101

Progn 98.20 61 98 98.20 61 98

Progn opt 100.0 62 0 98.81 75 65

yields even better results, and increases direct maintenance costs slightly. This
is natural, since production losses in this care are very costly and optimization
is done with regard to both loss of production costs and direct maintenance
costs. Table 10.2 also shows that for a schedule with no advantageous oppor-
tunities, downtime can be reduced by more than 50 % using PM-opt and a
prognostics tool.

Used Gas Turbine

Table 10.3 shows the same scenario as that used in the previous section, but
for a simulated gas turbine that is assumed to already be in use. The scenario
is simulated by randomizing the initial state of the gas turbine components.
The already-used lifetimes of the gas turbine components were approximated
by a random number drawn from a uniform distribution between0 and the
maintenance interval for the component.

As expected, Tab. 10.3 shows in general higher costs and lower availability
than Tab. 10.2 due to a more spread out maintenance need. Using a prognostics
tool and PM-opt in this scenario also yields significant results. Downtime can
be reduced by 65 % for a schedule with no advantageous opportunities, com-
pared to the current state of practice. In the case where seasonal opportunities
are present, downtime can be reduced from 259 to 11.6 days.

10.5.3 Validation

The extended lifetimes shown in Tab. 10.1 are estimates thatneed to be val-
idated in practice. A partial validation has been done in that a reference gas

10.6 Conclusions 233

Table 10.3: Results of maintenance optimization for a gas turbine with ran-
domly chosen history.

With seasonal stop Without seasonal stop

Avail Maint DT Avail Maint DT
% index days % index days

EOH 95.26 121 259 95.26 121 259

EOH opt 99.56 133 24.0 97.49 149 137

Progn 96.03 79 217 96.03 79 217

Progn opt 99.79 82 11.6 98.35 85 90

turbine that had operated under the same conditions used forthe lifetime pre-
dictions was dismantled and thoroughly inspected for the accumulation of typ-
ical damage mechanisms, such as creep and oxidation. The turbine was dis-
mantled after 20 000 EOH, which is the standard maintenance interval for type
SGT-600. The analysis showed that the accumulated damage was significantly
less than predicted using the EOH/EOC calculations in Eqn. (10.1). However,
final validation has to wait until one or more reference gas turbines have been
dismantled after a longer operational period.

The PM-opt software is currently in use for gas turbine maintenance plan-
ning at Siemens Industrial Turbomachinery AB. Calculations show a possible
increase in availability of 0.5 to 1 % in practice. Even when better lifetime
predictions are not available and maintenance intervals are kept at the same
length as before, significant reductions of preventive maintenance downtime
are possible. Reductions of downtime by approximately 12 % due solely to
the improved planning of preventive maintenance activities are expected in the
general case.

10.6 Conclusions

In this paper, a new condition-based maintenance strategy was described where-
in lifetime predictions and maintenance optimization are combined to safely
decrease the maintenance costs, both direct and indirect, for gas turbines. The
potential of the proposed approach was demonstrated using areal-world sce-
nario, where maintenance planned using conventional methods was compared

234 Bibliography

with plans obtained from the process described in this paper. The approach
was validated through the inspection of a reference gas turbine after a prede-
termined time interval. The results in this paper show that maintenance costs
may be decreased substantially by using better lifetime predictions (based on
customer requirements and the production plan) and by usingmaintenance op-
timization, minimizing maintenance downtime and production losses. In the
simulations, direct maintenance costs were reduced by 25 to38 %, while at
the same time costs associated with downtime were reduced bytypically 50 to
65 %. Finally, calculations regarding the effects of using the approach in this
paper in practice show a possible increase in availability of 0.5 to 1 %, and
expected downtime reductions of approximately 12 % due solely to improved
planning. Both represent significant improvements.

Acknowledgment
This work was funded by the Swedish Institute of Computer Science and Sie-
mens Industrial Turbomachinery AB.

Bibliography
[1] J. M. V. DE CARVALHO , LP Models for Bin Packing and Cutting

Stock Problems, European Journal of Operations Research, 141 (2002),
pp. 253–273.

[2] H. DEPOLD AND J. SIEGEL, Using Diagnostics and Prognostics to Min-
imize the Cost of Ownership of Gas Turbines, in Proceedings of the ASME
Turbo Expo, 2006. Paper no. GT2006-91183.

[3] R. FRIEND, A Probabilistic, Diagnostic and Prognostic System for En-
gine Health and Usage Management, in IEEE Aerospace Conference
Proceedings, vol. 6, March 2000, pp. 185–192.

[4] A. S. FUKUNAGA AND R. E. KORF, Bin-Completion Algorithms for
Multicontainer Packing and Covering Problems, in Proceedings of the
19th International Joint Conference on Artificial Intelligence, L. P. Kael-
bling and A. Saffiotti, eds., Professional Book Center, July2005, pp. 117–
124.

[5] J. A. HARRIS, Engine Component Retirement for Cause. AFWAL-TR-
87-4069, Vol. 1, August 1987.

Bibliography 235

[6] W. D. HARVEY AND M. L. GINSBERG, Limited Discrepancy Search,
in Proceedings of the 14th International Joint Conference on Artificial
Intelligence, 1995, pp. 607–615.

[7] J. J. MCGROARTY AND J. W. SCHARSCHAN, Integration of Condition
Based Maintenance Technologies into U.S. Navy Gas Turbine Engines, in
Proceedings of the ASME Turbo Expo, 2002. Paper no. GT2002-30676.

[8] C. M. PAPADIMITRIOU , Computational Complexity, Addison-Wesley,
Reading, Massachusetts, 1994.

[9] R. POOL, "If It Ain’t Broke, Fix It" . Technology Review, September 2001.

[10] R. RAJAMANI , J. WANG, AND K. Y. JOENG, Condition Based Main-
tenance for Aircraft Engines, in Proceedings of the ASME Turbo Expo,
2004. Paper no. GT2004-54127.

[11] S. RUSSELL AND P. NORVIG, Artificial Intelligence: A Modern Ap-
proach, Prentice Hall, Second ed., 2003.

[12] P. SLOTTNER AND M. WÄRJA, Knowledge Based Prognostics Models
for Gas Turbine Core Components, in Proceedings of the ASME Turbo
Expo, 2008. Paper no. GT2008-51276.

[13] S. VITTAL , P. HAJELA, AND A. JOSHI, Review of Approaches to
Gas Turbine Life Management, in Proceedings of the 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, vol. 2, 2004,
pp. 876–886.

[14] R. E. WILDEMAN , R. DEKKER, AND A. C. J. M. SMIT , A Dynamic
Policy for Grouping Maintenance Activities, European Journal of Opera-
tions Research, 99 (1997), pp. 530–551.

[15] M. WÄRJA, P. SLOTTNER, AND M. BOHLIN, Customer Adapted Main-
tenance Plan (CAMP), a Process for Optimization of Gas Turbine Main-
tenance, in Proceedings of the ASME Turbo Expo, 2008. Paper no.
GT2008-50240.

Chapter 11

Paper F:
Scheduling Gas Turbine
Maintenance Based on
Condition Data

Markus Bohlin, Kivanc Doganay, Per Kreuger, Mathias Wärja
and Rebecca Steinert.

In Proceedings of the 21st Innovative Applications of Artificial In-
telligence Conference.

July 14–16, 2009, Pasadena, California, USA.

237

Abstract

We describe the implementation and deployment of a softwaredecision sup-
port tool for the maintenance planning of gas turbines. The tool is used to
plan the maintenance for turbines manufactured and maintained by Siemens
Industrial Turbomachinery AB (SIT AB) with the goal to reduce the direct
maintenance costs and the often very costly production losses during mainte-
nance downtime. The optimization problem is formally defined, and we argue
that feasibility in it is NP-complete. We outline a heuristic algorithm that can
quickly solve the problem for practical purposes, and validate the approach
on a real-world scenario based on an oil production facility. We also com-
pare the performance of our algorithm with results from using mixed integer
linear programming, and discuss the deployment of the application. The exper-
imental results indicate that downtime reductions up to 65%can be achieved,
compared to traditional preventive maintenance. In addition, using our tool
is expected to improve availability with up to 1% and reduce the number of
planned maintenance days with 12%. Compared to a mixed integer program-
ming approach, our algorithm not optimal, but is orders of magnitude faster
and produces results which are useful in practice. Our test results and SIT
AB’s estimates based on operational use both indicate that significant savings
can be achieved by using our software tool, compared to maintenance plans
with fixed intervals.

11.1 Introduction 239

11.1 Introduction

Preventive maintenance can reduce breakdowns and costs associated with them,
but is also costly when done frequently. That is why considerable effort (e.g.
[3, 10]) has previously been spent on optimizing maintenance so that the ex-
pected total cost due to failures and preventive maintenance is minimized. Most
preventive maintenance approaches use fixed schedules, which are optimized
for minimum cost in advance. However, there are many situations in which
maintenance re-planning is in practice necessary to being able to continue op-
eration and to lower costs. For example, unexpected breakdowns force the
production unit to stop for emergency repair, and it would beunwise not to
consider performing other maintenance tasks at the same time. Other exam-
ples include production stops for other reasons than maintenance, which pro-
vides valuable opportunities for maintenance. The introduction of condition
monitoring has also lead to the replacement of preventive maintenance with
condition-based corrective maintenance, which is by nature less predictable
than a fixed preventive maintenance plan.

In this paper, we present the ideas behind a tool, PMOPT (Preventive Main-
tenance Optimizer), for gas turbine maintenance planning.PMOPT was devel-
oped for Siemens Industrial Turbomachinery AB (SIT AB), oneof the leading
manufacturers of gas turbines of small and medium size. Gas turbines are used
for power-generation in various production facilities that often have high down-
time costs. A typical gas turbine application is offshore oil platforms, where
time spent without power can cause an extremely high loss of revenue. In such
applications, small improvements in terms of overall availability, which is one
expected outcome of implementing CBM, have a substantial positive effect on
the total income for the customer.

Condition-based gas turbine maintenance, where componentlifetime is de-
pendent on factors such as load profile, quality of fuel, ambient temperature,
and particle levels, is becoming more and more common. Although lifetime
predictions can sometimes be performed with high precision, maintenance time
points will still vary depending on the conditions on site, and the actual time
points will therefore also diverge from their original estimates.

The approach presented in this paper aims at providing a toolwhich can
quickly optimize maintenance when unplanned events make the current main-
tenance schedule unsuitable. We use a rolled-out representation of a determin-
istic future maintenance schedule, which makes it possibleto take into account
positive effects of co-allocation, maintenance opportunities, overall availabil-
ity, horizon effects and costs due to both maintenance and loss-of-production.

240 Paper F

Proper risk analysis and deterioration model identification can in many
practical cases be difficult to perform from scratch. As a consequence, main-
tenance intervals are often based on analytical models and “best practice”. In-
stead of using failure rate distributions to make tradeoffsbetween costs for
breakdown and preventive maintenance, we therefore assumea safe deadline
for maintenance activities, which simplifies the problem and makes it easy to
adapt already existing maintenance plans for use in PMOPT.

The contributions of this paper include that we 1) preciselydefine the main-
tenance scheduling problem discussed, 2) argue that the planning problem is
NP-complete, 3) outline an algorithm that can quickly solvethe problem for
practical purposes, 4) show results for a real-world scenario, 5) compare the
results of our algorithm to the results from using mixed integer linear program-
ming, and 6) discuss the implementation and deployment of PMOPT.

11.1.1 Related Work

Maintenance optimization is certainly not a new topic. An excellent overview
of the many applications considered can be found in [3]. In [12] dynamic pro-
gramming is used to optimize maintenance planning with respect to acceptable
equipment reliability, demand of generating units and maintenance cost. How-
ever, overall availability as a fraction of the total time isnot considered, and
the crew and resource model used does not consider downtime due to day and
week rest.

Other approaches to maintenance optimization are based on Monte Carlo
simulations combined with genetic algorithms [8]. In a related approach de-
scribed in [10], pre-planned maintenance opportunities are taken into account
similarly to our own method. However, their approach is non-deterministic in
contrast to our optimization method.

In [11], maintenance planning is done for a more restrictivesystem where
certain properties of the cost function must hold, and wherepotential gain of
co-allocating maintenance is constant for all activities.In our model, cost is
a function of component costs and indirect costs, resultingfrom unavailability
of the gas turbine due to maintenance. This makes our model more expressive,
and thus unsolvable using the polynomial solution approachin [11].

11.2 Background
The common practice of gas turbine maintenance planning today is to base the
schedules on Equivalent Operating Hours (EOH) and cycles (i.e., the number

11.2 Background 241

of turbine restarts). The number of operating hours is modified with factors
for load, fuel quality, presence of water injection, and (toa limited extent) sig-
nificant exhaust temperature differences. However, the model is not detailed
enough in how these variables are handled, and factors such as ambient air
temperature and pressure, rotational speeds, and more detailed outlet tempera-
tures are not included. Instead, the EOH calculations have substantial built-in
safety margins to accommodate for variables not explicitlymodeled.

In order to improve overall maintenance efficiency, new calculations for es-
timating the remaining lifetime of gas turbine components based on operation
profile, environmental conditions, and condition data obtained through inspec-
tions and sensors on the gas turbine has been developed by SITAB. A lifetime
prediction tool, producing deterministic lifetime estimates, has also been de-
veloped. The lifetime estimates produced by the tool include relevant safety
margins. Therefore, changes in lifetime should not affect risk levels negatively
as long as the gas turbine is serviced within its predicted lifetime. In fact, risk
levels can in many cases be dramatically reduced, since the lifetime prediction
tool also detects and decreases maintenance intervals for gas turbines operating
under conditions with increased component wear (for example high load, high
humidity or low fuel quality).

11.2.1 Improved Analytical Lifetime Predictions

Gas turbine component lifetime is to a great extent determined by operation
temperatures. However, it is also determined by the extremerotational load and
pressures that some parts are exposed to. The gas turbine cycle is also highly
sensitive to ambient conditions (mainly inlet air pressureand temperature).
The following procedure is employed to calculate the component lifetime for a
specific situation.

1. First, the overall energy balance of the gas turbine is calculated using
heat balance evaluations based on measurements of pressures, tempera-
tures and rotational speeds at various locations in the gas turbine.

2. Based upon the energy balance input, we then calculate theexpected
mass flow, temperature and pressure at locations where sensors cannot
easily be placed or hamper performance (such as within the hot gas pass,
inside the combustion chamber, and inside the rotors). The calculations
are performed using standard methods from combustion kinetics, aero-
dynamics, flow distribution and cooling codes.

242 Paper F

3. Finally, we compute the mechanical response to the thermal, aerodynam-
ical and mechanical loads for component sets that interact mechanically
with each other.

The results of step 2 and 3 are then used to compute an expectedlifetime. Some
of the involved calculations are carried out using the finiteelement method (see
for example [13]). However, the applied fluid and solid models are specifically
adapted to gas turbine conditions and materials.

Calculation time for the process outlined above can range from weeks to
months per iteration. Therefore, a pre-computed approximation is used for
real-life prediction. The approximation is refined by manual correction using
experience from service and risk assessments to be accurateenough and to
provide sufficient safety margins.

11.3 Problem Description

In this section, we first give an informal description of the scheduling problem
that PMOPT is aimed at solving. We then define the duration model adoptedin
this paper, which includes calculations of total work and stop time for an main-
tenance stop. This is followed by a more rigorous definition of the scheduling
problem we want to solve. The section ends with an argument for why fea-
sibility in the maintenance scheduling problem is NP-complete, and why new
solution methods are needed to solve it.

We can informally describe the Maintenance Scheduling withOpportuni-
ties Problem (MSOP) as the problem of allocating maintenance itemsto dates
for k independent components in a single unit and for a time periodof h
weeks, so that constraints on timeliness, work time capacity and total avail-
ability are satisfied. The allocation should minimize direct and indirect main-
tenance costs, including spare parts, labor, and value of production lost due to
maintenance.

Each component has a cyclical schedule of arbitrary length,consisting of
inspectionsandreplacements. The date of a replacement depends only on the
previous replacement, while inspections depend on the previous item regard-
less of type. We assume that the obtained lifetime estimatesused as input to
the optimizer are safe in the sense that if maintenance deadlines are met, risk
levels are negligible. Also, we assume that the given component schedules are
followed and that deviations are taken into account by updating the schedule
data. The problem is therefore deterministic in nature.

11.3 Problem Description 243

11.3.1 Duration Models

To estimate work time at a maintenance stop, each maintenance item has a
duration specification∆i = 〈∆1i,∆2i, . . . ,∆Bi〉 divided into non-negative
work phases∆bi, where at least one phase has to be non-zero. The set of work
phases are denoted byB. All items with activities within a single phase at a
single stop are assumed to be fully independent, and can therefore be executed
in parallel. In contrast, the phases themselves have to be done in an orderly
fashion, and therefore have to be executed serially. The total work timeuj of
a stop can thus be computed as the sum of the maximum work time in each
block.

As an example, consider the two duration specifications〈3, 1, 0, 5〉 and
〈4, 0, 2, 3〉 allocated to the same stop. The working time for the different phases
then becomes〈4, 1, 2, 5〉, and the total work time at the stop is 12.

Given the total work time at a stop, we can now compute thedowntime.
We assume that a working day consists ofA hours, and that all calendar weeks
(consisting of 6 working days) are alike. The downtime of non-empty stops
is computed by adding night-rest time for each day when all work was not
finished, and week-rest time for each week when all work was not finished,
using the following function.

D(W) =W + (24−A)
⌈
W

A
− 1

⌉

+ 24

⌈
W

6A
− 1

⌉

(11.1)

For empty stops,D(W) = 0. In the rest of this paper, we assume thatA = 10.

11.3.2 Optimization Model

We assume thatn maintenance items denoted byi ∈ I have been rolled out
to cover weeks 1 toh (thehorizonof the problem). The decision variablet[i]
represent the date of itemi. The schedule end is modeled by the artificial item
> at dateh+ 1, and the schedule start is modeled by another artificial item⊥
at date 0. The possible allocation dates within the scheduleare modeled by a
finite setO of opportunitiesj with datesδj and work time capacityvj .

Timeliness constraints are expressed as follows. Each itemi has arelease
timeoi and adeadlinedi relative toi’s predecessorpi. Each item also has an
optionalearliestand latest dateof execution (tmin

i andtmax
i). We assume that

each replacement for a component starts a new sequence of inspections, which
makes items from previous sequences redundant. We call rolled-out items that
do not have to be executedobsoleteitems.

244 Paper F

Each itemi has aterminatorsi that makesi obsolete ifi is done later or
at the same date assi. For simplicity, we force obsolete items to be allocated
to the same date as their terminator. Formally, we define the predicateobs(i),
with the meaning that activityi is made obsolete by its terminatorsi, as fol-
lows.

obs(i) ≡ t[i] = t[si] (11.2)

Replacements always have> as their terminator, which implies that they are
only made obsolete by being moved over the problem horizonh. The top of
Figure 11.1 illustrates relative timeliness constraints (release times and dead-
lines) between pairs of tasks as well as predecessor and terminator relationships
in a fictional schedule.

The first items in the schedule for each component is called the set ofhead
items, and is denotedE . All head items are assumed to have⊥ as their prede-
cessor. To ensure that the gaps after sequences of items are not too large, we
use special items representing the end of such sequences. Wecall such items
tail items. The set of tail itemsL consists of 1) the last replacement for each
component, and 2) the last item in each inspection sequence.By forcing all tail
items to be obsolete, the normal deadline constraints ensure that end gaps are
smaller than required for all feasible solutions. The concepts are illustrated in
the bottom of Figure 11.1.

Each item also has anitem costci consisting of work and material cost.
The value of production per hour at an opportunityj is denotedlj . In addition,
we use a fixedbasecost (bj) for opening up opportunityj. The base cost is
associated with setup costs for shutting down and restarting the gas turbine,
travel expenses, and other costs that cannot be modeled using material, work
or downtime costs.

Minimum availability is specified by the user via the parameter α (where
0 ≤ α ≤ 1). The total availability is defined as the productive time not spent
on preventive maintenance divided by the total available productive time. The
constraints in the problem can now be stated.

• Each itemi should be allocated to a datet[i] that is less than or equal to
its deadline.

∀i ∈ I : t[i] ≤ t[pi] + di (11.3)

• Each item has to respect its absolute allocation interval.

∀i ∈ I : tmin
i ≤ t[i] ≤ tmax

i (11.4)

1
1

.3
P

ro
b

le
m

D
e

scrip
tio

n
2

4
5

4 8 12 16 20 24 28 32 36 40 44 48 52

Predecessor Relation Terminator Relation Temporal RelationHead Item Item Obsolete Item

⊥

⊥

>

>

R1

R1

R2

R2

R3

R3

R4

R4

I11

I11

I12

I12

I13

I13

I21

I21

I22

I22

I23

I23

I31

I31

I32

I32

I33

I33

Figure 11.1: Dependencies (top) and relative timeliness constraints (bottom) between different maintenance activities
of a component.

246 Paper F

• Each tail item has to be obsolete.

∀i ∈ L : obs(i) (11.5)

• Each non-tail itemi should be either obsolete or allocated to a date larger
than its offset.

∀i ∈ I \ L : obs(i) ∨ t[i] ≥ t[pi] + oi (11.6)

• For each opportunityj, the total work timeuj allocated toj must be
lower than the capacity ofj.

∀j ∈ O : uj =
∑

b∈B

max
i∈I

t[i]=δj∧¬obs(i)

∆bi

∀j ∈ O : uj ≤ vj
(11.7)

• The availability of the plan should be greater than the minimum avail-
ability α.

1

7 · 24
∑

j∈O

∃i∈I:t[i]=δj

D(uj) ≤ h(1− a)
(11.8)

The objective of the optimization problem is to minimize thecost func-
tion f , defined as follows.

f(t) =
∑

i∈I
¬obs(i)

ci +
∑

j∈O

ljD(uj) +
∑

j∈O

∃i∈I:t[i]=δj

bj (11.9)

The first term is the maintenance cost of all items within the horizon, the
second term is the indirect costs for the opportunities, andthe third term is the
base costs.

11.3.3 Complexity

Feasibility in MSOP (or FMSOP for short), that is, the question whether any
feasible solution to MSOP exists, is NP-complete. We argue in this section
that 1) FMSOP is in NP by outlining a polynomial-time verification algorithm

11.3 Problem Description 247

([2]), and 2) that there is a polynomial-time reduction fromthe bin packing
problem (BPP; see for example [4]), to FMSOP.

The objective of BPP is to pack itemsi ∈ {1, . . . , n} of given sizesai into
as few bins (with fixed capacityV) as possible. The used capacity of a bin
is computed as the sum of the weights of the items in the bin. The decision
variant of BPP answers the question whether a packing for anygiven number
of binsB exists.

1. Given a candidate solutionC to FMSOP (i.e. an assignment of dates
to the maintenance items inC), we can verify the constraints on struc-
ture and timeliness by simply testing Equations (11.3), (11.4), (11.5) and
(11.6) for the given dates of the item and its predecessor andterminator.
This can be done in linear time to the number of items. The capacity
constraints in Eqn. (11.7) can easily be verified by investigating the items
allocated to that opportunity in timeO(nm). The availability constraint
in Eqn. (11.8) can be verified in a similar way as for the capacity con-
straints. This together with computations of the downtime function in
Eqn. (11.1) can be done in timeO(nm). The procedure outlined above
is clearly polynomial, and therefore FMSOP is in NP.

2. We can translate a given BPP into a FMSOP by havingB opportunities,
each opportunityj (where1 ≤ j ≤ B) having dateδj = j and capacity
vj = V . Let the horizonh = B+1. Each BPP itemi is translated into a
FMSOP replacement itemi with ⊥ as predecessor,0 as release time,B
as deadline,tmin

i = 0 andtmax
i = h. The duration∆bi = ai if b = i and 0

otherwise, i.e., the duration (weight) of an item is always put in a unique
phase in∆i. All items i have an artificial itemn+ i as terminator, which
in turn have release time 1, deadlineh + 1, tmin

i = 0, tmax
i = h + 1, >

as terminator and arbitrary duration. By definition, the tail items, being
replacements, have to occur at>, which is outside the schedule. Let the
minimum availability requirementα = 0.0.

The transformed problem corresponds directly to BPP, since1) each BPP
item is represented by a FMSOP replacement, 2) each BPP bin isrep-
resented by a FMSOP opportunity with unique date and equal capacity,
and 3) the total duration of an opportunity is computed as thesum of
the item durations at that opportunity, since all durationsare in unique
working phases, which corresponds directly to the sum of theweights of
items in a bin in BPP. All other constructs of FMSOP are disabled and
therefore do not constrain the solution, and therefore, BPPis a special
case of FMSOP.

248 Paper F

If we could find a solution to the transformed FMSOP using a polyno-
mial time algorithm, we could then use that algorithm to solve BPP (which is
NP-complete, see [5]) in polynomial time. This, together with the previous
conclusion that FMSOP is in NP, shows that FMSOP is NP-complete.

Efficient polynomial-time approximations exist for the bin-packing prob-
lem; see for example [4]. However, MSOP differs in objectivefrom BPP,
and has complicating side constraints that are missing in BPP. For example,
in MSOP, each opportunity (date) can have a different capacity, base cost and
downtime cost. In BPP, a bin is defined only by its capacity, which is also uni-
form. Another difference is that items in MSOP can partiallyoverlap within
an opportunity due to the work time model used. This makes bin-packing
approaches inapplicable to MSOP. It is currently an open issue whether poly-
nomial-time approximation schemes exist for MSOP.

11.4 A Tool for Maintenance Scheduling

The optimization software consists of two separate programs that communi-
cate using files; PMOPT-GUI and MAINTOPT. The architecture is shown in
Figure 11.2. MAINTOPT is written in C++, and PMOPT-GUI is written in
the C++/CLI programming language using the .NET platform. PMOPT does
not require any special installation procedure; it simply runs as a stand-alone
application on any computer where the .NET framework is installed.

The schedule and related information are considered to be aproject, and is
stored in aproject file. A typical user would load a previously created project
file directly after starting PMOPT. PMOPT-GUI makes it possible to edit the
project file, and immediately displays the effects of edits,such as costs and
availability. Edits include changing lifetime estimates,adding/deleting compo-
nents and activities and moving/copying activities withinand between compo-
nents.

Whenever the user requests an optimization of the current maintenance
plan, PMOPT-GUI produces a rolled-out representation of the specification,
which is passed on to the optimizer. Time is translated into integer values, so
that MAINTOPT does not need to be aware of the time scale. As soon as MAIN -
TOPT finishes, the solution file is read back into PMOPT-GUI and shown to
the user.

11.5 Development and Deployment 249

Pro jec t f i l e

L o a d / s a v e
p r o j e c t

- O p t i m i z e r p a r a m e t e r s
- I n i t i a l Schedu le
- C o n s t r a i n t s

O p t i m i z e d s c h e d u l e

U s e r

M a i n t O p tP M O p t - G U I

Figure 11.2: System architecture.

11.4.1 MAINTOPT and the Optimization Algorithm

The optimization algorithm should be able to produce maintenance schedules
within a limited time in order to be used interactively. The optimization al-
gorithm in MAINTOPT is based on Limited Discrepancy Search (LDS) [6].
Maintenance items are assigned in order of increasing deadline, and the value-
selection heuristic picks opportunities in increasing cost order, with a bias for
late opportunities. Only consistent assignments are considered; variable do-
mains are pruned using interval propagation [7]. In our experiments, we have
found that iteratively increasing the LDS widthk from 0 to 2, resolving the
problem for eachk, gives overall good performance. The default optimization
time is set to 30 seconds, which is more than enough for normalinstances.

11.5 Development and Deployment
Manual planning is the norm in the gas turbine field, and before PMOPT and
the lifetime prediction tool, SIT AB did not have any manual or automatic
procedures for improving maintenance schedules. A standard schedule was
used, which is equal to 20 000 operating hours and assumes a constant level of
degradation at a standard pace for all components of the gas turbine. When the
lifetime prediction techniques outlined in this paper had been developed, the
need for maintenance planning in order to take advantage of possible lifetime
extensions soon became apparent.

The Swedish Institute of Computer Science (SICS) was first approached by
SIT AB regarding maintenance scheduling optimization during the summer of
2006 at an international conference related to condition monitoring. This first
contact resulted in a sequence of meetings during the autumnwith the purpose
of evaluating the feasibility of the project idea. At this time point, the core

250 Paper F

maintenance optimization engine (MAINTOPT) had already been developed
for use in a different project in the railway domain. However, MAINTOPT

was in its infancy, and it became obvious during our collaboration with SIT
AB that we had to extend it with side constraints and objective function terms
previously not considered. One example is the availabilityconstraints and the
focus on downtime as a critical parameter, which was not present in MAIN -
TOPT at that time. However, being able to demonstrate the early version of
the planning software together with demonstrator applications from previous
projects helped a lot during these initial meetings.

Before starting the PMOPT development process, a commercial product
for maintenance optimization had been evaluated at SIT AB. One of the main
problems with the product was that it was not able to model important proper-
ties of the gas turbine planning problem, such as seasonal variations and usage
profiles for different parameters like load, particle levels, and environmental
factors. More importantly, generic tools often use costs based on statistics. In
reality, it is not uncommon that one prefers not to use the statistically optimal
point of lowest cost due to the need for safety margins. The consequences of
some types of failures are also too severe to be estimated using statistical ap-
proaches. In addition, for a complex machine such as a gas turbine, it can be
impractical to identify all possible failures, the corresponding statistical distri-
butions, and all consequences and associated costs for eachfailure. Instead of
having too many estimates, it was decided that a safe deadline for each main-
tenance activity was a better alternative.

SIT AB were heavily involved in the specification and development through-
out the project, and this was a main factor behind the successful outcome.
Without close collaboration with SIT AB, many details regarding the applica-
tion area would have been missed due to lack of knowledge in that area. It
would also have been difficult to motivate necessary design changes without
support from our main contacts.

Throughout the project, five people from SICS were directly involved. We
had two main contact persons at SIT AB, and several site managers were di-
rectly involved.

11.5.1 First Versions

In November 2006, SICS received a spreadsheet containing anearly draft spec-
ification of the problem to be solved. The spreadsheet showedsome ideas
regarding calculations on downtime and maintenance activity packaging, and
it was decided that a prototype should be developed from the draft specifica-

11.5 Development and Deployment 251

tion. The prototype was nothing more than a simple graphicalfront-end to
MAINTOPT without any interaction. Nonetheless, it served the purpose of
showing the feasibility of the project proposal well. Afterthis pre-study and
basic demonstration, we began discussions regarding the project economy and
deliverables in early 2007. Soon after that the contracts were signed and devel-
opment started. We finished the first release (version 0.9) inmid-April 2007.
Due to time pressure, the first version ended up being more of aprototype than
mature software. With many test releases in between, version 1.0 was finally
shipped in June 2007.

From experience with the first releases, we soon realized that changes in the
optimization engine were rather straightforward to implement. However, main-
tenance and extensions that primarily affected the management of the problem
model proved to be much more time consuming. One of the biggest problems
was to keep the model consistent and to handle the entire set of user actions and
model parameters. For example, changes in the maintenance schedule made af-
ter running the gas turbine for some time needed to be synchronized with the
already laid-out maintenance schedule up to the current time point. We soon re-
alized that we had severely underestimated the work involved in managing the
maintenance schedule. Other areas that needed more attention than expected
were models of work time, application security, licensing,management of gas
turbine maintenance projects, and user accounts and rightsmanagement.

11.5.2 Second Version

We made several changes to the basic design of PMOPT in the second phase of
the project to simplify the maintenance of the application and facilitate future
extensions. Rewriting the core of the application from scratch was perhaps the
largest one, but significant changes were also made in the search algorithm. In
the beginning, MAINTOPT was a pure branch-and-bound algorithm based on
A* search [9]. However, after extensive experimentation with sample main-
tenance projects it became apparent that A* search, being based on breadth-
first search, was spending too much time exploring high-level decisions in the
search tree, and failed in finding feasible solutions quickly. Since responsive-
ness of the application was one of the main criteria of PMOPT, we resorted
to experimentation with heuristics, and after a while, the LDS procedure was
added as a first stage of the algorithm. Lately, the second stage A* search has
been completely removed from MAINTOPT, since it does not really help in
solving typical problem instances. In our experience, system responsiveness
and producing a reasonably good solution fast was more important than pro-

252 Paper F

ducing the absolute optimum. Tuning heuristics turned out to be an important
task, as the standard A* and LDS algorithms were of limited value without
guidance using the specific problem characteristics.

With major changes to the GUI and improved heuristics, a second major
version (version 2.0) was released in March 2008. This version was delivered
two months in advance of its deadline due to the much improvedcore design,
which helped speed up the implementation of new features. Since then, more
improvements have been made, with a new release in August thesame year.
The latest release (version 2.4) was shipped in November 2008.

11.5.3 Deployment at SIT AB

During the development of PMOPT, it became increasingly clear that a plan-
ning tool of this type is not easily deployed. First of all, key personnel need to
be educated in the theories behind condition-based maintenance planning, and
in how an automated tool can help in adjusting a schedule to customer-specific
conditions. In addition, it was necessary to gain adequate insight into main-
tenance planning practices in order to increase the usability of the PMOPT

tool. During the development of the first version, suggestions and ideas for the
usability enhancement of the software were continuously discussed. Before
deployment could begin, suitable business models also had to be developed,
evaluations of current technology needed to be completed, personnel had to be
trained in using the tool, and data acquisition routines, working processes and
suitable information flows needed to be established. Therefore, PMOPT was
not deployed in operational use until early 2008 after the release of version 2.0.

Currently, PMOPT is used by two people, mainly for planning of mainte-
nance after deviations have occurred. PMOPT has been running operatively for
verification/validation of the global CBM strategy for five months. It is used
within two maintenance contracts; in the first, PMOPT is fully operational,
while it is used for validation and testing purposes in the second one. Testing
is done mainly for gaining feedback from practical experience, monitoring of
environmental variables (e.g. temperatures), and time increments. In a couple
of years, four or five people working within maintenance planning are expected
to use the tools for 10–15 different operational contracts.

11.5.4 Application Maintenance and support

Maintenance of PMOPT were performed by SICS on demand when bug reports
were filed, which happened mostly from our main contact people at SIT AB

11.6 Estimated and Measured Benefits 253

after new releases had been shipped. Naturally, most bugs were reported just
after the delivery of version 1.0.

Overall, larger improvements were mostly related to the GUIand the us-
ability of the system. Current users have direct contact with us and are able to
ask questions as well as request changes. During the development, our under-
standing of the domain improved and matured, and several improvements of
the problem models were gradually implemented. Some changes were explic-
itly requested by SIT AB, while others were necessary to makethe code base
easy to maintain. As an example, the specification of the optimization model
was changed several times, and the work time model, by request from SIT AB,
was updated to more accurately capture the real duration, downtime and cost of
a maintenance opportunity. Another change was proposed by the development
team regarding the model of dependencies between maintenance items and the
handling of obsolete items. The first model proposed was too simplistic in that
there was no difference between inspections and replacements.

11.6 Estimated and Measured Benefits
In this section, PMOPT is evaluated on a real world scenario in the oil and gas
business. The turbine under consideration has 17 components with individual
schedules. A standard maintenance schedule for the site wasused as a compar-
ison. The critical components in the gas generator stage forwhich lifetime data
was available (compressor turbine guide vanes and blades) were modeled and
evaluated in a prognostics tool to determine suitable inspection intervals. The
average increase in inspection time was 116 %, and replacements for the crit-
ical components were not necessary, since their predicted lifetime were much
longer than the standard maintenance contract length of 15 years. The scenario
is described in more detail in [1].

A partial validation of the obtained lifetimes has been donein that a ref-
erence gas turbine having operated under the same conditions was dismantled
after a standard maintenance interval of 20 000 operating hours and thoroughly
inspected. The analysis showed that the accumulated damagewas significantly
less than predicted using the standard EOH calculations. However, final valida-
tion has to wait until one or more reference gas turbines havebeen dismantled
after a longer operational period.

The evaluation was done on two scenarios. The first scenario had a three
week seasonal stop during the summer, where maintenance could be done with-
out any negative effects on production. Such opportunitiesfor maintenance are
common in practice. In the second scenario, no such favorable opportunities

254 Paper F

With seasonal stop Without seasonal stop
Avail Maint DT Avail Maint DT

% index days % index days
EOH 97.60 100 131 97.60 100 131
EOH opt 99.99 109 0.42 98.15 120 101
Progn 98.20 61 98 98.20 61 98
Progn opt 100.0 62 0 98.81 75 65

Table 11.1: Results of maintenance optimization for a new gas turbine.

existed. In both scenarios, a low base cost was associated with all maintenance
stops, and high costs were associated with loss of production. The schedules
resulting from running PMOPT were analyzed with regard to 1) cost of pro-
duction losses and 2) maintenance costs. PMOPT was set to run for at most 30
seconds.

11.6.1 Results

Table 11.1 shows results for a simulated brand new gas turbine. The rows
“EOH” and “Progn” correspond to planning maintenance at thelast possible
date, as specified using standard EOH calculations and the prognostics tool
respectively. This approach minimizes direct maintenancecosts while ignor-
ing other costs. The rows marked “EOH opt” and “Progn opt” correspond to
optimizing maintenance using PMOPT.

Results are reported in the form of availability (“Avail”),maintenance costs
(“Maint index”) and productive days spent doing maintenance (“DT days”).
Maintenance costs are expressed using an index. In it, 100 represents the cost
of doing maintenance according to the maintenance intervals computed using
the standard schedule. In Tab. 11.1, this corresponds to therow typeset in
boldface.

As can be seen in Tab. 11.1, better lifetime estimates had a significant result
on maintenance costs, availability and downtime. Adding the optimization
of maintenance using PMOPT yields even better results, and increases direct
maintenance costs slightly. This is natural, since production losses in this case
are very costly and optimization is done with regard to both loss of production
costs and direct maintenance costs. Table 11.1 also shows that for a schedule
with no advantageous opportunities, downtime can be reduced by more than
50 % using PMOPT and a prognostics tool.

11.6 Estimated and Measured Benefits 255

With seasonal stop Without seasonal stop
Avail Maint DT Avail Maint DT

% index days % index days
EOH 95.26 121 259 95.26 121 259
EOH opt 99.56 133 24.0 97.49 149 137
Progn 96.03 79 217 96.03 79 217
Progn opt 99.79 82 11.6 98.35 85 90

Table 11.2: Results of maintenance optimization for a gas turbine with ran-
domly chosen history.

With seasonal stop Without seasonal stop
Diff. Gap Time Diff. Gap Time

New turbine % % % %
EOH opt −6.1 0 40m – ∞ 8h
Progn opt −1.1 0 27m +93 75.6 8h

Used turbine
EOH opt −23.6 1.79 8h – ∞ 8h
Progn opt −0.6 0.95 8h – ∞ 8h

Table 11.3: Comparison of results between CPLEX 9.0 and PMOPT.

Used Gas Turbine

Table 11.2 shows the same scenario but for a simulated gas turbine already in
use. The scenario is simulated by setting the already-used lifetimes of the gas
turbine components to a random number drawn from a uniform distribution
between zero and the maintenance interval for the component. As expected,
Tab. 11.2 shows higher costs and lower availability than Tab. 11.1 due to a more
spread out maintenance need. Using a prognostics tool and PMOPT in this
scenario also yields significant results. Downtime can be reduced by 65 % for
a schedule with no advantageous opportunities, compared tothe current state
of practice. In the case where seasonal opportunities are present, downtime can
be reduced from 259 to 11.6 days.

11.6.2 Comparison with CPLEX

In order to investigate how far away from the optimum the results from PMOPT

are, we formulated MSOP as a mixed integer linear programming problem. We

256 Paper F

used ILOG CPLEX 9.0 on a mainframe computer with a 2.2 GHz DualCore
AMD Opteron CPU and 8 GB of RAM to solve the problem. The total runtime
for each case was limited to 8 hours. Although running an algorithm for such
a long time is not suitable for our needs, the comparison still gives us valuable
insight in where PMOPT can be improved. In contrast, PMOPT was run on a
laptop with a 1.6 GHz Intel CPU for 30 seconds in each case.

Results for the eight different cases (described previously) are compared
in Tab. 11.3. Diff gives the relative difference between the best found cost
for PMOPT and CPLEX, with negative values indicating that CPLEX founda
better solution than PMOPT. TheGapcolumn gives the relative optimality gap
(distance to the relaxed optimum) as returned by CPLEX, withhigher values
indicating that the gap is larger. The gap is infinite if no feasible solution
was found within 8 hours. TheTimecolumn report CPU runtime for proving
optimality, with a cutoff at 8 hours.

For the two cases with a new turbine and seasonal stops, CPLEXwas able
to find the exact optimal solution (indicated by a gap value of0). For the
two cases with a used turbine and seasonal stops, CPLEX had found better
solutions than PMOPT when 8 hours had passed, with a quite small optimality
gap. While CPLEX produces slightly better results for cases with lifetimes
from the prognostics tool (Progn), the instances with standard EOH lifetimes
appears to benefit more significantly. It is notable that CPLEX reports a result
which is more than 23% better than PMOPT in the case with EOH lifetimes
and seasonal stops. However, when there are no seasonal stops, CPLEX cannot
find a solution even close to the result from PMOPT within 8 hours.

11.7 Conclusions and Future Work
We described the development and deployment of an opportunity-based main-
tenance planning tool, PMOPT, specifically designed to fit the purpose of im-
proving the maintenance schedules for gas turbines from SITAB. The goal was
to reduce both direct maintenance costs and production losses. Thanks to close
collaboration with key personnel at SIT AB, we gained important insights into
industrial maintenance planning, which allowed us to design and implement
the maintenance planning tool. We believe that this has contributed greatly to
the success of PMOPT.

We formally described and characterized the scheduling problem as NP-
complete, and discussed a heuristic algorithm for solving it. Our experiments
on a real-world example showed significantly reduced downtime (with up to
65%) and costs. Experiments with CPLEX gave even greater gains, but at the

Bibliography 257

cost of much longer solution times. Expected effects in practical use include
large availability improvements, and preventive maintenance reductions with
up to 12 %. Future plans include fleet level planning and laborresource opti-
mization and scheduling, and application to other domains.We are also con-
sidering investigating solution sensitivity with regard to parameter changes.

Acknowledgment
We are thankful to Pontus Slottner and Per Almroth at SiemensIndustrial Tur-
bomachinery AB for providing expert knowledge regarding gas turbine lifetime
predictions.

Bibliography
[1] M. B OHLIN , M. WÄRJA, A. HOLST, P. SLOTTNER, AND K. DOGANAY,

Optimization of Condition-Based Maintenance for Industrial Gas Tur-
bines: Requirements and Results, in Proceedings of the ASME Turbo
Expo, 2009.

[2] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, In-
troduction to Algorithms, MIT Press, Cambridge, MA, USA, second ed.,
2001.

[3] R. DEKKER, Applications of Maintenance Optimization Models: A Re-
view and Analysis, Reliability Engineering & System Safety, 51 (1996),
pp. 229–240.

[4] J. E. G. COFFMAN, M. R. GAREY, AND D. S. JOHNSON, Approxima-
tion Algorithms for Bin Packing: A Survey, PWS Publishing Co., Boston,
USA, 1997, ch. 2, pp. 46–93.

[5] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman, January 1979.

[6] W. D. HARVEY AND M. L. GINSBERG, Limited Discrepancy Search,
in Proceedings of the 14th International Joint Conference on Artificial
Intelligence, 1995, pp. 607–615.

[7] O. LHOMME, Consistency Techniques for Numeric CSPs, in Proceedings
of the 13th International Joint Conference on Artificial Intelligence, 1993,
pp. 232–238.

258 Bibliography

[8] M. M ARSEGUERRA, E. ZIO, AND L. PODOFILLINI , Condition-Based
Maintenance Optimization by Means of Genetic Algorithms and Monte
Carlo Simulation, Reliability Engineering & System Safety, 77 (2002),
pp. 151–165.

[9] S. RUSSELL AND P. NORVIG, Artificial Intelligence: A Modern Ap-
proach, Prentice Hall, Second ed., 2003.

[10] J. S. TAN AND M. A. K RAMER, A General Framework for Preventive
Maintenance Optimization in Chemical Process Operations, Computers
& Chemical Engineering, 21 (1997), pp. 1451–1469.

[11] R. E. WILDEMAN , R. DEKKER, AND A. C. J. M. SMIT , A Dynamic
Policy for Grouping Maintenance Activities, European Journal of Opera-
tions Research, 99 (1997), pp. 530–551.

[12] Z. YAMAYEE , K. SIDENBLAD , AND M. YOSHIMURA, A Computation-
ally Efficient Optimal Maintenance Scheduling Method, IEEE Transac-
tions on Power Apparatus and Systems, PAS-102 (1983), pp. 330–338.

[13] O. C. ZIENKIEWICZ , R. TAYLOR , AND J. Z. ZHU, The Finite Element
Method, Butterworth-Heinemann, sixth ed., 2005.

Glossary

A

A* search (A*) Best-first search procedure which uses an admissible heuris-
tic estimate plus the path cost so far to decide which node to
expand. p. 29

aperiodic task A task which is not released periodically. p. 40

availability The fraction of time a system is in an operational state.p. 54

B

best-case execution time (BCET)The lowest possible execution time of a
task. p. 48

best-effort worst-case response-timeThe highest found response time for a
task in a set of simulated or real measurements. p. 13

best-first search Search procedure in which the most promising node, as mea-
sured by a heuristic, is chosen for expansion. p. 29

blocking The prevention of a task to execute due to a shared resource be-
ing locked by another task. p. 42

branch and bound An algorithm for combinatorial optimization problems,
where the candidates are systematically constructed. A hope-
fully large number of solution candidates are discarded by prov-
ing that all completions of a partial solution are non-optimal.
This is done using upper and lower bounds on the objective func-
tion. p. 26

259

260 Glossary

breadth-first search (BFS) Search procedure in which all branches of the
current node are expanded before continuing with the next node,
thus exploring the tree in a breadth-first manner. p. 23

C

chord An edge between non-consecutive vertices in a path. p. 22

chordal A graph ischordal if it contains no chordless cycles of length
greater than three. p. 22

clique A complete subgraph. p. 22

combinatorial optimization problem A combinatorial optimization problem
is an optimization problem where the set of feasible solutions is
discrete. p. 9

condition-based maintenance (CBM)Maintenance which is based on more
or less real-time condition data. p. 51

condition monitoring Continuous or non-continuous monitoring of an asset
in order to determine its condition and operational status.p. 55

constraint A formal description of a requirement which must hold for all
acceptable solutions to a problem. p. 25

constraint programming (CP) "A programming paradigm where relations be-
tween variables are stated in the form of constraints. Constraints
differ from the common primitives of imperative programming
languages in that they do not specify a step or sequence of steps
to execute, but rather the properties of a solution to be found".
From Wikipedia. p. 27

constraint satisfaction problem (CSP)The problem of whether a conjuction
of constraints have a satisfying truth assignment. p. 27

controller-area network (CAN) A vehicle bus standard designed to allow micro-
controllers and devices to communicate with each other within
a vehicle without a host computer. Communication is priority-
based. See [64,122,176–180,252]. p. 39

corrective maintenance (CM) Maintenance which is done in order to restore
an asset to operational status after a breakdown. p. 51

Glossary 261

D

deadline (DL) The latest time point a task should have finished its execution.
p. 40

deadline monotonic (DM) A scheduling algorithm where tasks are priori-
tized according to increasing deadline. p. 41

depth-first search (DFS) Search procedure in which one branch of the cur-
rent node is recursively expanded until a leaf is reached, thus
exploring the tree in a depth-first manner. p. 5

directed acyclic graph (DAG) A directed graph which does not contain any
cycles. p. 1

domain The set of possible values for a variable. p. 27

domain propagation The removal of all inconsistent values in a domain.
. p. 27

E

earliest deadline first (EDF) A dynamic scheduling algorithm which always
executes the active task with earliest deadline. p. 41

embedded systemA computer system that is part of larger system, perform-
ing some of the functions of that system [120]. p. 37

Equivalent Operational Cycles (EOC) The total number of start-stop cycles
of an industrial gas turbine. p. 52

Equivalent Operational Hours (EOH) A time unit used for industrial gas-
turbine maintenance planning, based on the number of cycles,
load, fuel quality, the presence of water injection, and thepres-
ence of significant exhaust temperature differences. p. 52

evolutionary algorithm A population-based metaheuristic optimization al-
gorithm inspired by biological evolution. p. 70

execution stack Statically allocated memory, which is used during run-time
to store return adresses, parameters in function calls and local
variables. p. 43

execution time (ET) The time a task instance spends actively computing its
result. p. 39

262 Glossary

F

failure mode and effects analysis (FMEA) Analysis done to identify the dif-
ferent ways in which a machine can fail and the effects of such
failure. p. 262

failure mode, effects and criticality analysis (FMECA) Extension of FMEA
with a criticality analysis used to chart failure mode probabilities
against the severity of their consequences. p. 56

first in, first out (FIFO) Processing of events according to a first-come first-
served basis. p. 45

fixed priority pre-emptive scheduling (FPS)A scheduling algorithm where
the active task with highest priority is always executed.p. 41

functional failure "The inability of an item to perform a specific function
within specified limits", (from [171]). p. 56

G

genetic algorithm A specific type of evolutionary algorithm where individu-
als in the population are described by strings of data, and where
individuals are reproduced using either combination of individ-
uals, or mutation of single individuals. p. 74

H

hill-climbing algorithm An algorithm which explores a neighborhood of can-
didate solutions, selecting an improving candidate as the next
step. The algorithm normally terminates when no improving
neighbors can be found. p. 32

Hill-Climbing with Random Restarts (HCRR) An algorithm for provoking
high response-times for a specific task in a real-time system.
The algorithm is based on hill climbing and employing random
restarts, for iteratively producing input to a real-time system.
The generated consists of jitter, execution times, and external
stimulus. p. 1

Glossary 263

I

immediate inheritance protocol (IIP) A simplification of PCP where the pri-
ority of the locking task is immediately raised, even beforeother
tasks are blocked on the same resource. p. 42

instance A specific task invocation. p. 39

interval graph A graph where the vertices can be represented by 1-dimension-
al intervals, and the edges correspond to interval intersection.
p. 23

interval propagation The removal of values at the endpoints of the domain
of a variable. p. 27

iterative improvement A search algorithm which iteratively applies improv-
ing transformations to a candidate solution. p. 31

J

jitter Time variation in a periodic event, such as the activation event
of a task in a real-time system. p. 46

L

limited discrepancy search (LDS) Search method based on restricting search
to paths which make at most a limited number of choices which
do not agree with a given heuristic. LDS was introduced by
Harvey and Ginsberg in [115]. p. 29

linear programming (LP) An optimization methodology in which the objec-
tive is a linear function, the constraints are linear inequalities,
and variables are real-valued. p. 25

local search A search algorithm which only searcheslocally for improving
solutions. p. 31

M

MABERA (MAB) An evolutionary algorithm for provoking high response-
times for a specific task in a real-time system. The algorithm
is based on mutation of chromosomes consisting of a random

264 Glossary

number generator seed schedule, which in turn control the input
generated to a program. See [141]. p. 171

maintenance policy A set of rules for when maintenance should be performed.
p. 53

maximal clique (maxclique) A clique which is not a subgraph of a larger
clique in the same graph. In other words, a clique is a maxclique
if it cannot be extended with any node.

mixed integer programming (MIP) An optimization methodology in which
the objective is to minimize (or maximize) a linear objective
function, subject to a set of constraints expressed using linear
inequalities, and where a subset of the variables are restricted to
take integer values only. p. 25

multi-unit maintenance Maintenance where a system consists of multiple
units or subsystems, and where the units interact in some way.
p. 64

N

neighborhood A set of candidate solutions obtained from the current solution
by local transformations in local search. p. 32

O

objective function A function which specifies what is to be optimized. Typ-
ical examples include utility or value (for maximization prob-
lems) and cost (for minimization problems). p. 9

offline scheduling A scheduling algorithm which follows a predetermined
execution schedule. p. 40

offset The release time point of a task relative to the transaction activa-
tion time point. p. 46

online scheduling A scheduling algorithm which makes scheduling decisions
during system execution based on the currently active set oftasks.
p. 40

Glossary 265

Opportunistic Maintenance (OM) Maintenance policy in which certain ac-
tivities are performed prior to their optimal time point if this low-
ers the total cost of maintenance. p. 65

optimization Activity which aims at minimizing or maximizing an objective
function. p. 9

P

Path Upper-Bound (PUB) An algorithm for computing the maximum stack
usage in a transaction-based stack-sharing system, based on form-
ing a preemption graph of possible preemptions and tasks, and,
by using a longest-path algorithm, computing an upper boundon
the maximal PPC. p. 154

perfect elimination order (PEO) An ordering of the vertices in a graph, such
that each vertex forms a clique together with all adjacent vertices
which occur later in the ordering. p. 23

periodic task A task which is periodically released for scheduling. p. 40

possible preemption chain (PPC)A sequence of task instances in increasing
priority order, where each instance have the possibility ofbeing
preempted by all following instances. p. 128

Possible Preemption-Chain, Branch-and-Bound (PPCBB)An algorithm for
computing the maximum stack usage in a transaction-based stack-
sharing system, based on forming a preemption graph of possible
preemptions and tasks, and, by using branch-and-bound, com-
puting a maximal PPC. The bounding procedure used is PUB.
p. 155

potential failure "A definable and detectable condition that indicates that a
functional failure will occur", (from [171]). p. 56

precedence A relation between two tasks stating in which order they should
execute. p. 47

predictive maintenance (PdM) Techniques and methods for predicting fu-
ture breakdowns, so that preventive activities can be planned
and performed in a timely fashion, thereby preventing the break-
down. p. 55

266 Glossary

preemption chain A sequence of task instancesυ1, υ2, υ3, . . . whereυ1 is
preempted byυ2, which is preempted byυ3, and so on. p. 125

preemption threshold (PT) A priority threshold defined for each task, used
to enforce that only tasks with a higher priority than the threshold
are allowed to preempt the former task. p. 71

preventive maintenance (PM) Maintenance consisting of inspection, servic-
ing and replacement tasks which are done in order to catch and
prevent breakdowns from occurring. p. 52

Preventive Maintenance Optimizer (PM-opt)A software tool for planning
maintenance, developed in Papers D–F. p. 214

priority ceiling protocol (PCP) A resource access protocol in which the pri-
ority of a task holding a resource is raised to apriority ceiling
whenever another task is blocked on the same resource.p. 42

priority inheritance protocol (PIP) A resource access protocol in which the
priority of a task holding a shared resource is raised to the same
level as a higher-prioritized task trying to access the samere-
source. p. 42

prognostics and health management (PHM)Protective and diagnostic or
prognostic devices and systems. Sometimes referred to as
condition-based maintenance (CBM). p. 59

propositional satisfiability problem (SAT) The problem of whether a set of
Boolean clauses on disjunctive normal form has a satisfyingtruth
assignment. p. 27

R

random access memory (RAM)A type of volatile memory used for tempo-
rary storage during program execution. p. 12

rate monotonic (RM) A scheduling algorithm where tasks are prioritized ac-
cording to increasing period time. p. 41

real-time operating system (RTOS)An operating system specifically engi-
neered for real-time applications. p. 39

Glossary 267

real-time system (RTS) A system in which timeliness is equally important
for the system to work properly as is functional correctness.
p. 38

release time The time instant that a task instance is released for scheduling.
p. 40

reliability The fraction of time a system is either under preventive mainte-
nance or in an operational state. p. 54

reliability-centered maintenance (RCM) Maintenance methodology and
process in which a maintenance scheme based on the reliability
of the system components is developed. p. 56

response time (RT) The time between the invocation of a task instance and
the time point the instance finishes its execution. p. 46

response-time analysis (RTA)Family of techniques used to compute the re-
sponse time of the tasks in a system under different scheduling
policies. p. 13

RTSSim A real-time operating system simulator where tasks executein
a “sandbox” environment. The scheduling policy is preemptive
priority-based scheduling. p. 173

S

schedulability analysis Design-time analysis aimed at determining whether
a proposed real-time system is schedulable or not. p. 41

sporadic task A task whose releases have a specified minimum inter-arrival
time. p. 40

Stack per Transaction Level Analysis (STLA)A method for computing an
upper bound on the stack usage of a transaction-based stack-
sharing system, in which the sum of the stack usage of each
individual transaction, as computed by the PUB algorithm, is
used. p. 156

stack resource policy (SRP)A mechanism for resource allocation which can
eliminate deadlocks and unbounded priority inversion, invented
by Baker in [24]. SRP will only allow jobs to enter the ready

268 Glossary

queue when all of the resources they need are available. Also,
in SRP a running task will inherit the priority of higher priority
tasks blocked on any locked resource. p. 44

stack resource policy with preemption thresholds (SRPT)An algorithm for
sharing resources in multiprocessor systems, together with a pro-
cedure for assigning preemption thresholds to tasks [93].p. 71

Stack Upper Bound algorithm (PUB) An algorithm for computing an upper
bound on the stack usage in a hybrid stack-sharing system, where
the offsets and response times of tasks are used to compute a
maximal PPC. p. 129

T

time-triggered protocol (TTP) An control system platform technology that
supports the design of embedded systems. Communication is
time-triggered. See [137] for more information. p. 39

transaction A group of tasks, each having an offset which is relative to a
shared activation event. p. 46

transactional task model A task model in which tasks may have dependen-
cies in their release times. p. 46

W

worst-case execution time (WCET)The highest possible execution time of a
task. p. 40

worst-case response time (WCRT)The highest possible response time for a
task. p. 13

