
Mälardalen University Press Licentiate Theses
No.111

Towards Efficient Component-Based
Software Development of Distributed

Embedded Systems

Séverine Sentilles

2009

School of Innovation, Design and Engineering

Copyright c© Séverine Sentilles, 2009
ISSN 1651-9256
ISBN 978-91-96135-43-0
Printed by Mälardalen University, Västerås,Sweden

Abstract

The traditional ways of developing embedded systems are pushed to their lim-
its, largely due to the rapid increase of software in these systems. Develop-
ers now have difficulties to handle simultaneously all the factors involved in
the development such as increasing complexity, limited andshared resources,
distribution, timing or dependability issues. These limitations make the devel-
opment of embedded systems a rather complex and time consuming task, and
call for new solutions that can efficiently and predictably cope with the new
specifics and requirements of embedded systems to ensure their final quality.

Component-based software engineering is an attractive approach that aims
at building software systems out of independent and well-defined pieces of
software. This approach has already shown advantages in managing software
complexity, and reducing production time while increasingsoftware quality.
However, directly applying component-based software engineering principles
to embedded system development is not straightforward. It requires a con-
siderable adaptation to fit the specifics of the domain, sinceguaranteeing the
extra-functional aspects, such as real-time concerns, safety-criticality and re-
source limitations, is essential for the majority of embedded systems.

Arguing that component-based software engineering is suitable for embed-
ded system development, we introduce a component-based approach adjusted
for embedded system development. This approach is centeredaround a dedi-
cated component model, called ProCom, which through its two-layer structure
addresses the different concerns that exist at different levels of abstraction. Pro-
Com supports the development of loosely coupled subsystemstogether with
small non-distributed functionalities similar to controlloops. To handle the
management of important concerns related to functional andextra-functional
properties of embedded systems, we have extended ProCom with an attribute
framework enabling a smooth integration of existing analysis techniques. We
have also demonstrated the feasibility of the approach through a prototype re-
alisation of an integrated development environment.

i

Résuḿe
— Abstract in French

Affrontant une rapide et massive introduction de logiciels, le monde des sys-
tèmes embarqués est en proie au changement. De ce fait, lesméthodes tra-
ditionnelles de développement de ces systèmes atteignent leurs limites. Elles
ont désormais des difficultés à gérer simultanément tous les paramètres im-
pliqués dans le développement, tel que l’accroissement de la complexité, la
limitation et le partage des ressources, la distribution, ainsi que les contraintes
temporelles et de fiabilité. Ces limitations rendent le développement parti-
culièrement complexe et coûteux, et requièrent de nouvelles solutions pou-
vant efficacement et de manière prévisible répondre aux nouveaux besoins des
systèmes embarqués afin d’assurer leur qualité finale.

L’ingénierie logicielle basée composants est une approche visant à la cons-
truction de systèmes logiciels par l’usage de “briques logicielles” indépendan-
tes et parfaitement caractérisées. Cette approche a déjà démontré des aptitudes
pour appréhender la complexité logicielle tout en réduisant les temps de pro-
duction et maintenant la qualité. Pourtant appliquer directement les principes
de l’ingénierie logicielle basée composants au développement de systèmes em-
barqués n’est pas simple et nécessite une adaptation considérable pour se con-
former aux exigences du domaine, telles que la limitation des resources et les
contraintes temps réel et de criticité.

Convaincus que l’ingénierie logicielle basée composants convient au déve-
loppement des systèmes embarqués, nous introduisons uneapproche basée
composants dediée au développement de systèmes embarqués. Cette approche
s’appuie sur ProCom, un modèle de composants spécifique qui au travers de
sa structuration en deux niveaux concerne les propriétésprésentes à différents
niveaux d’abstractions. ProCom supporte le développement de sous-systèmes

iii

iv

faiblement couplés conjointement avec de petites fonctionnalités non distri-
buées analogues aux boucles rétroactives. Dans le but d’assurer la gestion
des aspects ayant trait aux propriétés fonctionnelles etextra-fonctionnelles,
nous avons étendu ProCom au travers d’un “attribute framework” facilitant
l’intégration de techniques d’analyses préexistantes.La faisabilité de l’appro-
che est également démontrée via la réalisation d’un prototype d’environnement
de développement intégré.

Acknowledgements

Looking back at my past, nothing predestined me to do a thesisand even less
in Sweden, a country that I would have never envisaged to livein (“ it is too
cold up there !!!”). But the course of my life completely changed thanks to
Nicolas Belloir, who put his trust in me and always tried to pushed me forward,
smoothly enough to manage to make me accept a PhD position at Mälardalen
University. I cannot say how much I am thankful to you for this: you are a
great friend!

But this adventure would not have been possible nor been as enjoyable
either without the intervention of many people. To begin with, I would like to
express my gratitude towards two of my supervisors, Ivica Crnkovic and Hans
Hansson. Thank you for believing in me and accepting me as a PhD student
despite my hesitating Frenglish way of speaking. I am alwaysamazed by your
enthusiasm, commitment and above all your inexplicable capacity to work so
much. Many thanks also go to my other supervisor, Jan Carlson, for all the
fruitful discussions, inputs, reviews, help and guidance every time I needed it. I
also want to thank my French supervisors, Frank Barbier and Eric Cariou, who
have given me the opportunity to do a so-called “co-tutelle”with the university
of Pau.

Many thanks also go to the “Mental Department” that many havetried
to enter but few have managed, ProPhs and associated members(Cristina,
Stefan/Bob, Hüs, Tibi, Adnan, Aida, Aneta, Luis, Batu, Farhang, Hongyu,
Pasqualina, Juraj, Mikael, Antonio, Ana, Luka, Leo, Marcelo, Jagadish) for all
the laughters and great moments during the fika, lunches and travels. You are
really great people to work with, and above all great friends. And of course, I
don’t forget all the PROGRESSand/or IDT members, Andreas, Damir, Daniel,
Lars, Jörgen, Mikael̊Akerholm, Radu, Nolte, Markus, Ebbe, Anton, Rikard,
Stig, Frank, Paul, Jukka, Sasi, Malin, Gunnar,Åsa, for making life at work and
abroad so pleasant!

v

vi

I would also like to put a special mention to Harriet Ekwall and Monica
Wasell not only for continuously helping out on an every-daybasis and bring-
ing so much fun in the department but also for all the help theyprovided me
when I arrived in this foreign country and I was totally lost and confused with
the administrative procedures. The atmosphere at the department will defini-
tively not be the same without you.

There are also a lot of friends from childhood and universitythat I really
want to thank for having been present for me when i really needed support and
good friends: Anouk, Flo, Natacha, Aurel, Cristine, Fafou,Eric, Gael, Sophie,
Marie, Pauline, Laure, Aude, Anne-Sophie and Bea. I must saythat I am really
lucky to have you around.

And last but not least, I would like to thank my parents, grand-parents,
cousins (Yan, Aurélie, Cédric, Alex, Lou-Anne), Marie-Françoise, Marie-Paule,
Fredo, Nono, and of course Dag and Liv for bringing so much to my life that I
cannot express this with words.

Séverine Sentilles
Västerås, November 2009

This work has been supported by the Swedish Foundation for Strategic Re-
search (SSF), via the research centrePROGRESS.

List of Publications

Publications Included in the Licentiate Thesis1

Paper A: A Classification Framework for Component Models. Ivica Crnković,
Séverine Sentilles, Aneta Vulgarakis, Michel Chaudron. Accepted to
IEEE Transactions on Software Engineering (in the process of revision).

Paper B: A Component Model Family for Vehicular Embedded Systems.
Tomáš Bureš, Jan Carlson, Séverine Sentilles, Aneta Vulgarakis. In Pro-
ceedings of the 3rd International Conference on Software Engineering
Advances (ICSEA), Sliema, Malta, October 2008.

Paper C: A Component Model for Control-Intensive Distributed Embedded
Systems. Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carl-
son, Ivica Crnković. In Proceedings of the 11th International Sympo-
sium on Component Based Software Engineering (CBSE 2008), Karl-
sruhe, Germany, October, 2008.

Paper D: Integration of Extra-Functional Properties in Component Models.
Séverine Sentilles, PetřStěpán, Jan Carlson and Ivica Crnković. In
Proceedings of the 12th International Symposium on Component Based
Software Engineering (CBSE 2009), LNCS 5582, Springer Berlin, East
Stroudsburg University, Pennsylvania, USA, June, 2009.

Paper E: Save-IDE – A Tool for Design, Analysis and Implementation ofCom-
ponent-Based Embedded Systems. Séverine Sentilles, Anders Petters-
son, Dag Nyström, Thomas Nolte, Paul Pettersson, Ivica Crnković. In
Proceedings of the 31st International Conference on Software Engineer-
ing (ICSE), Vancouver, Canada, May 2009.

1The included articles have been reformatted to comply with the licentiate page setting

vii

viii

Additional Publications, not included in the Thesis

Conferences and workshops:

• Save-IDE — Integrated Development Environment for Building Predicta-
ble Component-Based Embedded Systems. Séverine Sentilles, John
Håkansson, Paul Pettersson, Ivica Crnković. In Proceedings of the 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), L’Aquila, Italy, September 2008.

• Collaboration between Industry and Research for the Introduction of
Model-Driven Software Engineering in a Master Program. Séverine
Sentilles, Florian Noyrit, Ivica Crnković. In Proceedings of the Educator
Symposium of the ACM/IEEE 11th International Conference onModel
Driven Engineering Languages and Systems (MODELS), Toulouse,
France, September 2008.

• Valentine: a Dynamic and Adaptive Operating System for Wireless Sen-
sor Networks. Natacha Hoang, Nicolas Belloir, Cong-Duc Pham,
Séverine Sentilles. In Proceedings of the 1st IEEE International Work-
shop on Component-based design Of Resource-Constrained Systems
(CORCS), Turku, Finland, July 28 - August 1, 2008.

• A Model-Based Framework for Designing Embedded Real-Time Sys-
tems. Séverine Sentilles, Aneta Vulgarakis, Ivica Crnković.In the Pro-
ceedings of the Work-In-Progress (WIP) track of the 19th Euromicro
Conference on Real-Time Systems (ECRTS), Pisa, Italy, July2007.

MRTC reports:

• ProCom – the Progress Component Model Reference Manual, version
1.0. Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, Aneta
Vulgarakis. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-230/
2008-1-SE, Mälardalen Real-Time Research Centre, Mälardalen Univer-
sity, June 2008.

ix

• Towards Component Modelling of Embedded Systems in the Vehicular
Domain. Tomáš Bureš, Jan Carlson, Séverine Sentilles, Aneta Vul-
garakis. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-226/2008-
1-SE, Mälardalen Real-Time Research Centre, MälardalenUniversity,
April 2008.

• Progress Component Model Reference Manual - version 0.5. Tomáš
Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, Aneta Vulgar-
akis. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-225/2008-1-
SE, Mälardalen Real-Time Research Centre, Mälardalen University,
April 2008.

To my grandfather

Contents

I Thesis 1

1 Introduction 3
1.1 Motivation . 3
1.2 Objectives . 5
1.3 Thesis Overview . 6

2 Background 11
2.1 Embedded Systems . 11

2.1.1 Characteristics in Vehicular Domain 13
2.1.2 Characteristics in Automation Domain 14

2.2 Component-Based Software Engineering 15
2.2.1 Extra-Functional Properties 16
2.2.2 The Component-Based Development Process 18
2.2.3 Component-Based Software Engineering for Embed-

ded System Development 19

3 Research Summary 21
3.1 Problem Positioning . 21
3.2 Research Questions . 23
3.3 Research Contribution . 24

3.3.1 A Classification Framework for Component Models . 25
3.3.2 Requirements for a Component-Based Approach . . . 27
3.3.3 The ProCom Component Model 29
3.3.4 Integration of Extra-Functional Properties in Compo-

nent Models . 30
3.3.5 Prototype Implementation 32

3.4 Methodology . 33

xiii

xiv Contents

4 Related Work 37
4.1 Component Models . 37
4.2 Alternative Approaches . 40
4.3 Integrated Development Environment 42

5 Conclusions and Future Work 45
5.1 Discussions . 45
5.2 Future Work . 50

Bibliography 53

II Included Papers 61

6 Paper A:
A Classification Framework for Component Models 63
6.1 Introduction . 65
6.2 The Classification Framework 67

6.2.1 Lifecycle . 68
6.2.2 The Constructs . 71
6.2.3 Extra-Functional Properties 75
6.2.4 Domains . 79
6.2.5 The Classification Overview 80

6.3 Survey of Component Models 82
6.3.1 “Almost” Component Models 82
6.3.2 Component Models 83

6.4 The Comparison Framework 84
6.4.1 Lifecycle Classification 84
6.4.2 Constructs Classification 86
6.4.3 Extra-Functional Properties Classification89
6.4.4 Domains Classification 91

6.5 Related Work . 92
6.6 Conclusion . 93
6.7 Appendix — Survey of Component Models 94
Bibliography . 103

7 Paper B:
A Component Model Family for Vehicular Embedded Systems 109
7.1 Introduction . 111
7.2 Motivating Example . 113

Contents xv

7.3 The PROGRESSApproach 115
7.4 Towards CBD in Vehicular Systems 117

7.4.1 From Abstract to Concrete 117
7.4.2 Component Granularity 120

7.5 Conceptual Component Model Family 120
7.6 Realization of the Proposed Component Model Family122
7.7 Related Work . 124
7.8 Conclusion . 125
Bibliography . 127

8 Paper C:
A Component Model for Control-Intensive Distributed Embedded
Systems 129
8.1 Introduction . 131
8.2 The ProCom Two Layer Component Model 132

8.2.1 ProSys — the Upper Layer 132
8.2.2 ProSave — the Lower Layer 133
8.2.3 Integration of Layers — Combining ProSave and

ProSys . 136
8.3 Example . 137
8.4 Conclusions . 138
Bibliography . 141

9 Paper D:
Integration of Extra-Functional Properties in Component Models 143
9.1 Introduction . 145
9.2 Annotation of Attributes in Component Models 146

9.2.1 Attributes in a Component Model 147
9.2.2 Attribute Definition 147
9.2.3 Attribute Type . 149
9.2.4 Attribute Data . 150
9.2.5 Multiple Attribute Values 151
9.2.6 Attribute Value Metadata 152
9.2.7 Validity Conditions of Attribute Values 152

9.3 Attribute Composition . 154
9.4 Attribute Configuration and Selection 155
9.5 A Prototype for ProCom and the PROGRESSIDE 158
9.6 Related Work . 160
9.7 Discussion . 162

xvi Contents

9.8 Conclusion . 164
Bibliography . 167

10 Paper E:
Save-IDE – A Tool for Design, Analysis and Implementation of
Component-Based Embedded Systems 171
10.1 Introduction . 173
10.2 Software Development Process 174
10.3 Component-Based Design 176
10.4 Analysis . 178
10.5 Synthesis . 179
10.6 Conclusion . 180
Bibliography . 180

I

Thesis

1

Chapter 1

Introduction

Development of embedded software is a complex process significantly influ-
enced by human factors — from the way the software is designedto the errors
introduced during the implementation phase, and some of which remain in the
product after release. Yet, providing the appropriate functionality is not suffi-
cient anymore, the product has also to be produced in an efficient way and be
trustworthy! This is the main concern of this thesis, which investigates meth-
ods and techniques to improve software development by helping guaranteeing
that the delivered products will meet stringent quality requirements like the
ones that are inherent to a lot of embedded systems.

1.1 Motivation

Having a suitable and efficient development is an essential concern when de-
veloping safety-critical systems for a variety of domains such as vehicular, au-
tomation, telecommunication, healthcare, etc. since any malfunction of these
systems may have severe consequences ranging from financiallosses (e.g. costs
for recall of non-conformity products) to more harmful effects (e.g. injuries to
users or in the most extreme cases users’ death). Along with their traditional
mechanical functionalities, e.g. a combustion engine or mechanical brakes in a
car, these products also contain more and more software functionalities, such as
for instance an anti-lock braking system or an electronic-stability control unit
in a car. This means that similarly to what is done for the mechanical elements,
software parts require to be meticulously developed and verified to ensure the

3

4 Chapter 1. Introduction

essential quality of the delivered products: their dependability. That is to say
that their reactions to events are the ones expected in the adequate amount of
time. Their development must hence support thorough analysis and tests, and
push these activities even further compared to what can be found in traditional
software engineering.

Software functionalities in those types of product are provided through
special-purpose built-in computers, called embedded systems, which are tai-
lored to perform a specific task by combination of software and hardware. An-
other fundamental characteristic of those systems is that they often have to
function under severe resource limitations in terms of memory, bandwidth and
energy, and even sometimes under difficult environmental conditions (e.g. heat,
dust, constant vibrations). Even though the introduction of software function-
alities, sometimes as replacement for hardware ones, offers tremendous oppor-
tunities, it also considerably increases the software complexity. For example,
in the vehicular domain, the demand for additional softwareis constantly in-
creasing [1]. Consequently in this particular domain, the traditional solution of
decomposing the required functionalities into subsystemsthat are realised by
dedicated computing units using their own microcontrollerdoes not scale any-
more. Instead, there is a need to put several subsystems on one physical unit,
which implies that resources must be shared between subsystems. Another as-
pect of this increasing complexity is distribution, as systems also often tend to
be designed as distributed systems communicating over a dedicated network
such as a CAN-bus [2] or a LIN-bus [3] in a car. The interdependence of these
concerns together with the need for thorough verification ofthe system make
the development of embedded systems rather difficult and time-demanding.

A promising solution for the development of distributed embedded systems
lies in the adoption of a Component-Based Development (CBD)approach fa-
cilitating the different types of analysis needed. The CBD approach has the
goal to increase efficiency in software development by:

– reusing already existing solution encapsulated in well-defined entities
(components);

– building systems by composition of those entities (both from a functional
and extra-functional point of view); and

– clearly separating component development from system development.

1.2 Objectives 5

Several features proposed in the CBD approach are of high interest in the
development of distributed embedded systems, such as:

– complexity management;

– increased productivity;

– higher quality;

– shorter time-to-market;

– lower maintenance costs; and

– reusability.

However, despite those appealing aspects and its establishment as an acknowl-
edged approach for software development, notably for desktop or business ap-
plications [4], CBD still struggles to really break throughfor embedded system
development. For a better acceptance in this domain, the main challenge is to
deal with both complexity and functional requirements on one hand, and on
the other hand to deal with the specifics related to embedded systems and their
particular development needs — including support for extra-functional require-
ments, strong dependence on hardware, distribution, timing issues and lim-
ited resources. Still, several approaches to use CBD in embedded systems can
be found, such as AUTOSAR [5], BlueArX [6, 7], SaveCCM [8], Rubus [9],
Koala [10] and Pecos [11]. More detailed information about the different com-
ponent models for embedded systems can be found in Chapter 4.However,
even if all these approaches were successful in solving particular aspects of
the development process, an approach that supports the use of components
throughout the whole development process — from early design specification
to system deployment and synthesis — and provides grounds for the various
type of required analysis is still needed. This is the main concern of this thesis.

1.2 Objectives

The main purpose of this licentiate thesis is to propose solutions towards es-
tablishing an efficient software development of distributed embedded systems
that can ensure the quality of the delivered products. Assuming that the prin-
ciples advocated in CBD are also applicable for developing distributed embed-
ded systems, this thesis discusses how to suitably accommodate the specifics

6 Chapter 1. Introduction

of “traditional” embedded system development with component-based devel-
opment and, then how to integrate and manage extra-functional properties in
the development to ensure the quality of the final product. This thesis also fo-
cuses on determining the required engineering practices and tools to efficiently
support the composition theories which have been proposed.

Concretely, in this thesis we propose a component-based approach for dis-
tributed embedded systems supported by the specification ofa dedicated com-
ponent model. This component model is endowed with suitablecharacteristics,
properties, and features to efficiently support the management of the specific
concerns of embedded system domain, in particular the integration and man-
agement of extra-functional properties as means to bridge analysis in the de-
velopment process. The approach is illustrated through therealisation of an
integrated development environment.

1.3 Thesis Overview

This thesis is organized in two distinct parts. The first partgives a summary of
the research; Chapter 2 introduces technical concepts usedthroughout the the-
sis, Chapter 3 describes the research which has been conducted in presenting
the motivation for the research, the research questions, the research contribu-
tions and the research methodology. Chapter 4 introduces the related work,
and Chapter 5 concludes and presents the future work.

The second part consists of a collection of peer-reviewed journal, confer-
ence and workshop papers, presented below, contributing tothe research re-
sults.

Paper A: A Classification Framework for Component Models.
Ivica Crnković, Séverine Sentilles, Aneta Vulgarakis, Michel Chaudron
(Technical University Eindhoven). Accepted to IEEE Transactions on
Software Engineering (in the process of revision).

Summary
Based on the study of a number of component models which have been

developed in the last decades, this paper provides a Component Model Clas-
sification Framework which identifies and discusses the basic principles of
component models. Through the utilization of this classification framework,
this paper also pinpoints differences between component models and identifies
common characteristics shared by some component models developed for a
similar domain, such as embedded systems.

1.3 Thesis Overview 7

My contributions
This paper has been written with an equal contribution of thefirst three

authors concerning the analysis of the selected subset of component models,
the specification of the classification framework and the iterative process to
refine the framework. All the co-authors contributed with discussions, reviews
and suggestions. Personally, I contributed to the paper with the initial idea of
classifying component models and during the work, I was morespecifically in
charge of the work around the constructs dimension of the framework and the
related work. The classification framework was developed inseveral iterations,
including discussions with CBSE experts from both academiaand industry.

Paper B: A Component Model Family for Vehicular Embedded Systems.
Tomáš Bureš, Jan Carlson, Séverine Sentilles, Aneta Vulgarakis. In Pro-
ceedings of the 3rd International Conference on Software Engineering
Advances (ICSEA), Sliema, Malta, October 2008.

Summary
This paper describes the high-level views which have guidedus towards the

elaboration of ProCom (a component model for the design and development of
distributed embedded systems; see Paper C), namely the needs for (i) having
several component concepts corresponding to the differentlevels of abstraction
considered (big components/small components); (ii) the ability to deal simul-
taneously with components in different state such as early-design components
or fully implemented reused component (abstract components/concrete com-
ponents); (iii) managing the strong coupling with the target platforms; and (iv)
having a component model ready to be enhanced with various analysis.

My contributions
This paper is the outcome of an equal contribution of all authors. More

specifically I contributed to this paper by participating inthe discussions con-
cerning the development process, the discussions with the domain experts to
collect information on their needs and by influencing some ofthe decisions
through my parallel work on the realization of an integrateddevelopment envi-
ronment, called Save-IDE, for the SaveCCM component model.The work
summarized in this paper is the result of an iterative process starting with
the knowledge gained from the SaveCCT approach and involving many other
members of the PROGRESSproject, who contributed with valuable discussions
and inputs for the proposed ideas.

8 Chapter 1. Introduction

Paper C: A Component Model for
Control-Intensive Distributed Embedded Systems.
Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson, Ivica
Crnković. In Proceedings of the 11th International Symposium on Com-
ponent Based Software Engineering (CBSE2008), Karlsruhe,Germany,
October, 2008.

Summary
In this paper, we present the Progress component model (ProCom) for the

design and development of control-intensive distributed embedded systems.
The particularity of this component model lays in the existence of two lay-
ers designed to efficiently cope with the different design paradigms which ex-
ists on different abstraction levels in the vehicular domain. Moreover through
the utilization of a component-based development, the aim is to decrease the
complexity in design and provide a ground for analyzing the components and
predict their properties, such as resource consumption andtiming behaviour.

My contributions
This paper is strongly related to Paper B and is also the outcome of an

equal contribution of all authors. More specifically I contributed to this pa-
per in participating in the discussions concerning the development process,
the discussion with the domain expert to collect information on their needs
and influencing some of the decisions through my parallel work on the real-
ization of an integrated development environment, called Save-IDE, for the
SaveCCM component model. Similarly to the work presented inthe previous
paper, the work around the ProCom component model started with an attempt
to refine SaveCCM and has been carried out in several iterations involving
many PROGRESSmembers.

Paper D: Integration of
Extra-Functional Properties in Component Models.
Séverine Sentilles, PetřStěpán, Jan Carlson and Ivica Crnković. In
Proceedings of the 12th International Symposium on Component Based
Software Engineering (CBSE 2009), LNCS 5582, Springer Berlin, East
Stroudsburg University, Pennsylvania, USA, June, 2009.

Summary
This paper looks at the diversity that exists in specifying extra-functional

property (e.g. timing, behaviour or resource properties) and, proposes a way

1.3 Thesis Overview 9

to integrate and systematically manage extra-functional properties within com-
ponent models. This is done with the main objective to provide an efficient
support, possibly automated, for analysing selected properties. In this paper, a
format for attribute specification is proposed, discussed and analyzed and the
approach is exemplified through its integration both in the ProCom component
model and its integrated development environment.

My contributions
I was the main author and driver of this paper and contributedwith the

attribute definition for extra-functional properties, theliterature survey and the
supervision of a master student leading to a prototype implementation based
on preliminary ideas. All the co-authors contributed with valuable discussions,
advices and suggestions all along the work.

Paper E: Save-IDE – A Tool for Design, Analysis and Implementation of
Component-Based Embedded Systems.
Séverine Sentilles, Anders Pettersson, Dag Nyström, Thomas Nolte, Paul
Pettersson, Ivica Crnković. In Proceedings of the 31st International
Conference on Software Engineering (ICSE), Vancouver, Canada, May
2009.

Summary
This demo paper presents an integrated development environment for the

development of predictable component-based embedded systems. Save-IDE
supports efficient development of dependable embedded systems by providing
tools for design of embedded software systems using exclusively the SaveCCM
component model, formal specification and analysis of component and system
behaviours already in early development phases, and a fullyautomated trans-
formation of the system of components into an executable image.

My contributions
I was the main driver of this paper and I have contributed to itin being

involved in the realization of the environment (specification, implementation)
and in the writing of most parts of the paper. More concretelyconcerning the
realization, I was a member of the developing team with a responsibility for
the design part, including the design of the underlying metamodel, and the
development of the design tools.

Chapter 2

Background

This section briefly introduces important technical concepts used throughout
the remainder of this thesis. It provides an introduction toembedded systems
and their characteristics (Section 2.1) and to component-based software engi-
neering (Section 2.2). However, for more information on embedded systems,
we refer to [12] or [13], and for details on component principles and technolo-
gies to [4], [14] or [15].

2.1 Embedded Systems

Embedded systems have managed to spread rapidly over the past few decades
to be virtually in any kind of modern appliances such as digital watches, set-
top boxes, mp3-players, washing-machines, mobile telephones, cars, aircrafts,
forest machines and many more. Because of this, a uniform definition covering
this diversity is difficult to pinpoint and therefore there is currently no unique
definition of what they are. For example, IEEE states that“an embedded com-
puter system is a computer system that is part of a larger system and performs
some of the requirements of that system”. In this thesis, we denote byembed-
ded systema special-purpose computer built into a larger device and tailored
to perform a specific task by combination of software and hardware. In con-
trast to general purpose computers, embedded systems are (i) reactive systems
closely integrated into the environment with which they interact through sen-
sors and actuators, (ii) often strongly resource-constrained in terms of memory,
bandwidth and energy and, for some of them (iii) possibly confronted to harsh
environmental conditions enduring dust, vibrations, heat, etc.

11

12 Chapter 2. Background

The close interconnection of embedded systems with their surrounding en-
vironment and their ability to directly impact on this environment leads to an-
other characteristic shared by many embedded systems: their safety-critical
nature. Accordingly to prevent any malfunction which couldlead to a problem-
atic situation ranging from financial losses (e.g. costs fornon-conformproducts
recall) to more dramatic ones (e.g. device loss, users’ injuries or in the most
extreme cases users’ death), they have to react in well-specified ways and be
highly dependable. As mentioned in Laprie’s definition [16], dependability
of a system is the quality of the delivered service such that auser can justifi-
ably placed reliance on this service. In particular, dependability is expressed
in terms of safety (i.e. the failure of the system must be harmless), maintain-
ability (probability that a failure can be fixed within a predefined amount of
time), reliability (probability that the system will not failed) and availability
(probability that the system is working and accessible) among others.

Also, many embedded systems have to observe real-time constraints, which
means that they must react correctly to events in a given interval in time. When
all the timing requirements must strictly be ensured, embedded systems are
calledhard real-time systemswhereassoft real-time systemsare more flexible
towards the timing bounds and can tolerate to occasionally exceed them. One
popular example to illustrate this strong interdependencebetween real-time
and dependability issue is the one of a car airbag. In case of accident, the
airbag has to inflate suitably at a particular point in time, otherwise it is useless
for saving the driver’s life. One major issue in dealing withsafety-critical real-
time embedded system is therefore to ensure that the system always behaves
correctly.

It is worth noting that the great diversity of devices containing embedded
systems makes the boundaries between what it is considered to be embedded
systems and what is not particularly unclear. Many devices share character-
istics with embedded systems without necessarily been considered as such.
Notebooks, laptop or personal digital assistants are few examples of devices
in the grey zone of the definition of embedded systems: they are resources-
constrained and possibly integrated into the real world through various equip-
ment such as GPS but they are still regarded as “bigger” than archetypical
embedded systems. Conversely although containing desktop-like software and
means to interact with users, others devices such as control-system for robots
are still considered as embedded systems.

Since present in many different devices and forming a heterogeneous class
of applications, complexity and requirements of embedded systems vary from
one application domain to another. The following subsections 2.1.1 and 2.1.2

2.1 Embedded Systems 13

detail the characteristics of embedded systems and the current state of practice
of their development for the domains this thesis is more particularly concerned
with.

2.1.1 Characteristics in Vehicular Domain

Nowadays the added-value in high-end models of cars is generated mainly by
the integration of new electronic features that are intended to optimize the uti-
lization costs of the vehicle (e.g. lower fuel consumption), or to improve the
user’s comfort or safety. According to [17] in 2006, 20% of the value of each
car was due to embedded electronics and this was expected to increase to 36%
in 2009. This involves features such as airbag control system, anti-braking
system, engine control system, electronic stability control system, global posi-
tioning system, door locking system, air-conditioning system and many more.
More generally speaking, these features concern control, infotainment (i.e. in-
formation and entertainment) and diagnosis systems.

To realize these systems, the physical system architectureof a modern vehi-
cle consists of large number of computational nodes called Electronic Control
Units (ECUs) that are distributed all over the car and connected by several dif-
ferent communication networks, principally CAN [2], LIN [3], MOST [18] or
Flex Ray [19] buses. Traditionally in the vehicular domain,one functionality
corresponds to one ECU and its development is characterizedby the extensive
use of sub-contractors. After having received a specification from the car man-
ufacturer, the sub-contractors design both the software and the hardware of the
subsystem to deliver. Consequently, sub-contractors are involved in the addi-
tion of mechanical parts to the system enforcing a strong coupling between the
software and the hardware parts. In this way of developing embedded systems,
the test of the overall system is realized really late in the development process
after the integration of all the subsystems, which is extremely costly.

The rapid introduction of software functionalities in vehicles challenges
significantly the current development practice in the vehicular domain since it
induces to find solutions to elaborate a design as close as possible to an optimal
system design (both with respect to cost and resources usage) that can provide
the desired functionality with a sufficient level of dependability. Whereas car
manufacturers strive for low production costs since each car model is manu-
factured in large quantities, the biggest costs — up to 40% ofthe production
costs [20] — resides in software and electronics costs. Lowering these costs
requires dealing with the tight coupling which exists between the software and
hardware parts, distribute functionality across several ECUs which implies an

14 Chapter 2. Background

increase of the interdependencies and connections betweenECUs (for example
a “simple” interior lightning system can involve up to ten ECUs distributed all
over the car), allocate several functionalities to a same ECU to optimize the
resource utilization, and manage the growing complexity.

2.1.2 Characteristics in Automation Domain

Industrial automation has pushed the mechanization one step further in inten-
sively using embedded systems — in particular programmablelogic controllers
(PLCs), a type of control systems. The motivation behind this is to have bet-
ter control over the production processes and optimize themto provide high-
quality and reliable products by minimizing material, costs, energy waste and
human intervention.

In this particular domain, embedded systems consist of sensors and actua-
tors connected with an open and standardized field bus to, possibly distributed,
control systems. In difference to other embedded system architectures, they
are used conjointly with end-user technologies that serve as interfaces between
human and machine to control and operate the system as for example the tem-
perature in a pipe, the pressure of a valve or the arm of a production robot.

Other similarities exist with embedded systems present in the vehicular
domain. In particular, many applications share the safety-critical, real-time and
resource requirements of the vehicular domain. In both domains, embedded
systems are manufactured in large volume and their development is often based
on control-theory.

Aside from these similarities, principal differences alsoexist. The pres-
ence of a human-machine interface constitutes a major difference. It implies
a need for a seamless integration and higher interoperability of embedded sys-
tems with “more advanced” technologies which are not necessarily real-time
constrained. Also these embedded systems are developed to be present in long-
life products which need to be reconfigured or adapted to switch easily from
manufacturing one product to another without having to completely rebuild the
production lines. This means that embedded systems for automation domain
must be easily portable to a new hardware and cope with legacysystems.

Contrary to the automotive domain, which is relatively new to software en-
gineering methods, the automation domain has a strong tradition in software
engineering. Many embedded systems are developed in following some stan-
dards, such as IEC-61131-3 [21].

2.2 Component-Based Software Engineering 15

2.2 Component-Based Software Engineering

Building products out of well-defined and standardised parts is an old engineer-
ing practice that can be traced back to Henry Ford and the mechanisation era.
Many advantages emerge from this way of developing products: short time-to-
market, lower maintenance time and costs, and reusability of the pieces across
different products. Inspired by the successes engendered in industries and en-
visioning similar benefits, Component-Based Software Engineering (CBSE)
aims at applying this development practice to software development. Follow-
ing this standpoint, the construction (resp. decomposition) of software systems
must be based on independent and well-defined pieces of software, called com-
ponents.

However, whereas in other engineering disciplines, the concept of compo-
nents is intuitively graspable since it is generally a physical object that can
be manipulated, directly transferring this notion to software engineering is
not straightforward. The fuzziness around the notion of component is put
in evidence by the number of definitions that exists today. In[15], no less
than fifteen definitions are compared to each other. Out of those definitions,
probably the most commonly acknowledged one is from Szyperski [22] which
highlights some fundamental characteristics of a component: communication
through well-specified interfaces only, composability andreusability by third
party. This definition states that:

“A software component is a unit of composition with contractu-
ally specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third party”

As pointed out by this definition, an important characteristic of a compo-
nent specification is its interfaces. An interface is the specification of an access
point to the component’s functionality described as a collection of available
operations. A distinction between two types of interfaces exists. A required
interfaceexpresses the functionality requested by the component to function
correctly whereas conversely, aprovided interfacedescribes the functionality
offered by the component. In that sense, interfaces are usedfor enabling in-
teraction with other components and external environment,and to compose or
“link” components together.

In addition to the concepts of component and interface, a fundamental no-
tion is the one of component model. A component model defines all the char-
acteristics and constraints that the components and the supporting component

16 Chapter 2. Background

framework — i.e. the tools for manipulating the components —must satisfy. A
component model is concerned with providing (i) rules for the specification of
component properties and (ii) rules and mechanisms for component composi-
tion, including the composition rules for properties. In that sense, a component
model provides the cornerstone of standardization for software development.
For instance, Heineman and Councill [14] propose a component definition in
regards to a component model:

“A software component is a software element that conforms to
a component model and can be independently deployed and com-
posed without modification according to a composition standard” .

In applying those concepts, component-based software engineering has al-
ready been proven to be successfully used in domains where nostrong timing-
requirements are needed such as information, service-oriented or desktop sys-
tems [4]. This success is highlighted by the proliferation of component models
which exist today (see Paper A in which twenty-four component models are
compared).

2.2.1 Extra-Functional Properties

For many years, component-based software engineering has essentially fo-
cused on providing methods and techniques to support the development of
software functionalities in an efficient way. Yet, for certain types of applica-
tions such as dependable, real-time or embedded systems, other factors are as
important for a smooth running of the system as the functionality itself. These
factors describe the non behavioural aspects of a system, capturing the proper-
ties and constraints under which that system must operate [23]. For example,
they relate to the capability of the system in terms of reliability, safety, security,
maintainability, accuracy, compliance to a standard, resource consumption, and
timing properties, among many others. These factors can be found under sev-
eral denominations, the most common ones being non-functional properties,
extra-functional properties, quality attributes or simply attributes. In this the-
sis, we refer to these factors through the use any of these terms indifferently.

As a consequence of the little attention to these factors, few component
models actually provide support for specification and management of extra-
functional properties. This is especially true for widespread general-purpose
component models such as COM [24], CCM [25], .NET [26] or EJB [27].
Besides, when this support is available, it takes differentforms — unlike be-
havioural factors for which the well-established solutionof embodying the

2.2 Component-Based Software Engineering 17

functionalities into the interfaces exists. First, this support can be provided
at component-level through additional interfaces, calledintrospective or ana-
lytical interfaces. Used at design-time, these interfacesallow for early analysis
of the component or the system, whereas their utilisation atrun-time enables
mechanism such as monitoring. Another way of supporting extra-functional
properties is to provide annotations through name-value pairs specifications.
The last way is to use a dedicated language or mechanism outside the compo-
nent model itself.

Besides providing means for their specification, dealing with extra-func-
tional properties with respect to the CBSE principles raisechallenges related to
composability or reusability issues. Similarly to the composability challenges
for components, we would also like to be able to reason about their composi-
tion, in that sense that the values of a propertyP of a compound elementA
is the result of the composition of the values of the inner componentsC1 and
C2 :

A = C1 ◦ C2 ⇒ P(A) = P(C1) ◦ P(C2)

However, as described in [28], few properties are directly composable in
following that principle. The value of many extra-functional properties is in-
fluenced by other factors such as the software architecture,other properties, the
usage profiles and/or the current state of the environment.

Dealing with extra-functional properties in the context ofcomponent-based
software engineering also raises the issue of reusability since it is one of the
cornerstone concept around which component-based approach is built. Indeed,
when a component is reused in different applications or contexts, the extra-
functional properties associated to this component must also be reusable, in
that sense that their values are still accurate in the current setting. However,
many property values depend upon information outside the component model
itself. Therefore in order to reuse the extra-functional properties, means to
evaluate the conditions under which the value is correct arerequired. A typical
example is a worst-case execution time, which requires information about the
compiler used to generate the executable code but also aboutthe target platform
specification such as the type of memory, processor or the presence of caches,
among many other factors.

18 Chapter 2. Background

2.2.2 The Component-Based Development Process

The specific aspect of developing software consistent with the CBSE principles
is based on a strict separation betweencomponent developmentandsystem de-
velopment (with components). Both processes can follow the traditional “Re-
quirement, Specification, Implementation, and Verification” phases whether,
for instance, in a waterfall or V-model form. However, due tothe presence of
components characteristic features emerge. Both processes and their interac-
tion are illustrated in Figure 2.1.

System
Requirements

System
Decomposition

Component
Requirements

Implementation

Selection Adaptation
Component

Identification
Component
Evaluation Storage

System Verification

System
Composition

Component
Verification

Requirements

Specific
Requirements

Generic
Requirements

Specification

Implementation

Verification

Release

New Component
Development

System
Development

Component
Development

Component
Assessment

or

Legend:

or

Inquiry for pre-existing components

Next step in the process

Release

Figure 2.1: Component-based development process overview.

Starting normally with an elicitation of system requirements, the system
development takes immediately advantage of the presence ofpreviously devel-
oped components which are stored in a component repository.Based on the
knowledge and identification of a set of component candidates that potentially
fit the requirements, system requirements are broken down into component

2.2 Component-Based Software Engineering 19

requirements and accordingly, a system specification is built with its corre-
sponding component specifications. Whereas the componentsthat do not com-
pletely fit the specifics of the current design are adapted, the requirements and
specification of the non-already implemented components are forwarded to the
component development process to be developed. Once all components have
been implemented and individually tested against their requirements, they are
integrated together to form the final system. This integration is then verified
and validated against the system requirements, both with regards to functional
and extra-functional aspects.

As for the component development process, the steps are generally quite
comparable to the ones found in traditional software development. Based on
requirements and specification coming from system development, components
are implemented and tested against these requirements. When the components
meet their individual requirements, they are then delivered to be integrated
during the system development and/or stored in repository as candidate for
future reuse. However the component development process also aims at build-
ing components satisfying requirements not issued from system development
but extracted to realize more generic components that can beused in many
different contexts. This way of developing component is more difficult since
it requires to envisage all possible contexts in which the component will be
used. This generates components that are bigger than custom-made compo-
nents since they need to fit more usage contexts. This introduces challenges
for embedded system development since it requires efficientcomponents.

2.2.3 Component-Based Software Engineering for Embed-
ded System Development

Contrary to other domains in which component-based software engineering
have proven to be successfully used for common software development (desk-
top, business, internet or entertainment applications), CBSE has still difficulties
to really breakthrough for the development of embedded systems. Indeed, most
of the existing general-purpose component technologies have been developed
with little consideration to factors that are of high important for embedded sys-
tems such as their resource limitations, timing propertiesor safety-criticality.

The mismatch between the requirements for developing traditional PC ap-
plications and the ones for embedded systems hinder a straightforward transfer
of these component-based technologies from one domain to another. In par-
ticular, the widespread component technologies such as EJB[27], .NET [26],
COM [24] or CCM [25] do not sufficiently address these fundamental require-

20 Chapter 2. Background

ments and as a result are not that suitable for embedded systems development.
They present some major drawbacks in being heavyweight, complex and gen-
erating some significant overhead on the target platform. Asa consequence and
as pointed in [29], there is still no widely used component technology standard
really suitable for embedded systems.

However, the principles and promising advantages brought out by CBSE
have drawn a general attention towards fostering the use of component models
for embedded system development. Several recent initiatives to provide stan-
dards based on component-based principles as well as the elaboration in the
recent years of a number of component models dedicated to embedded sys-
tems reflect such a change. Some of these dedicated componentmodels are
KOALA [10], RUBUS [9], BlueArX [6, 7], SaveCCM [8], IEC-61131 [21]
and AUTOSAR [5]. More details about these component models can be found
in Paper A.

Chapter 3

Research Summary

In this chapter, we describe the research performed. We firststate the problem
that this thesis addresses, then formulate the research questions, summarize
the research results which contribute to answering those research questions,
and present the used research methodology.

3.1 Problem Positioning

Facing a growing demand to integrate more and more software functionali-
ties, the traditional development methods for embedded systems are showing
their limits. They have difficulty to efficiently cope with the resulting prob-
lems, namely increasing complexity, distribution, stringent resource limita-
tions, a strong coupling between software and hardware, timing properties,
safety-critical issues, etc. An important challenge is thus to propose develop-
ment methods supporting those new requirements to facilitate embedded soft-
ware development and ensure the quality and the dependability of the delivered
products.

Motivated by the need for solutions, the main challenge thatthis thesis aims
at addressing can be formulated by the following question:

How can distributed embedded systems be developed in a pre-
dictable and efficient way while following the CBSE principles?

Otherwise stated, this means that this thesis aims at clarifying what are the im-
portant characteristics that the development of embedded systems requires and

21

22 Chapter 3. Research Summary

determining how to adapt the prerequisite of CBSE to suitably handle these
characteristics. In particular, this can be seen as developing a suitable com-
ponent technology which aims at providing support to address the embedded
system requirements.

Therefore the main research objective of this thesis is to propose con-
cepts, approaches, and techniques concerned with the elaboration of an effi-
cient component-based software development for distributed embedded sys-
tems, covering the development process stages (from early design to system
deployment and synthesis) as well as enabling reusability and various types
of analysis. It also looks at determining the needed engineering practices and
tools to support the theories which have been proposed. However, this the-
sis is not interested in distribution primarily, and does not aim at providing
new distribution architecture or communication protocols. Distribution is only
considered for the sole purpose that subsystems can be distributed across the
architecture and communicate through dedicated networks,as is the case in the
vehicular domain for instance.

Besides, other factors, outside the scope of this thesis, need also to be inves-
tigated to foster the usage of CBD and improve its efficiency for embedded sys-
tem development. This is the case of development processes,businesses pro-
cesses, or devising suitable analysis theories complying with the component-
based theories.

The problem envisaged in this thesis is quite broad. In orderto reduce its
scope, we have worked under assumptions issued from a previous work done at
MDH on the SaveCCT development approach ([8], [30]). This work has shown
the value of having a restricted component model to help in the analysability of
the system already in the design phase. Accordingly, we haveconsidered the
following research assumptions:

– A specific component model for distributed embedded system, with a
precise semantic is needed;

– Composition theories alone are not enough and require the existence of
technologies which include appropriate tool support;

– Introducing verification of extra-functional propertiesin the early phases
of the development process is necessary.

3.2 Research Questions 23

3.2 Research Questions

In order to reduce the scope of the research and define a direction to provide
answers to it, three research questions, hereafter described, are stated. The
answers to these research questions will unveil important aspects contributing
to answering the main question.

Research question 1

What are the suitable characteristics of a component model to effi-
ciently support software design of distributed embedded systems?

Through this research question, the purpose is (i) to explore and identify
important needs in the development of distributed embeddedsystems, focusing
more specifically on the design phase while keeping in mind that a component-
based approach is intended, and (ii) to adapt an existing (orpropose a new)
component model with suitable characteristics, properties and features to pro-
vide a solution to these needs.

In order to provide an answer to this question, we first study the develop-
ment process of distributed embedded-systems with the aim to identify con-
cerns that need to be addressed by the component model. The second step is
to investigate which kinds of component models exist nowadays, what their
characteristics and their domain of applicability are, andif they can be used
in the context of this research. Finally, based on the previous results and the
work assumptions, the decision of adapting an existing component model or
proposing a new one has to be taken.

Research question 2

How to provide efficient integration support for managementof
functional and extra-functional properties within a component model?

This research question aims mainly at the predictability aspect needed in
the development of distributed embedded systems in order toprovide the nec-
essary quality of the system to be developed. In that respect, this research
question focuses on determining a way to enhance the component model to
provide the necessary grounds to efficiently support the analysis of important
properties. Since various types of information need to be created and used
as a basis for taking decision and/or analysing the system under development,
it is important to have means to identify, specify, and locate these pieces of
information.

24 Chapter 3. Research Summary

To answer this research question, we have (i) identified and described a
set of properties which are suitable in the context of the development of dis-
tributed embedded systems; (ii) identified to what component model entities
(components, interfaces, bindings, etc.) those properties relate; (iii) enhanced
the proposed component model to support the management of those properties.

Research question 3

How to build an integrated development environment encapsulat-
ing suitable models and technologies to efficiently supportcom-
ponent-based development of software for embedded systems?

This research question addresses the practical needs required to efficiently sup-
port the development of embedded systems. With this research question, the
main goal is to develop a prototype and evaluate the feasibility of the approach.

3.3 Research Contribution

The contribution presented in this thesis is the outcome of aset of results con-
tributing in the elaboration of efficient component-based software development
enabling the development of predictable distributed embedded systems. In this
respect, the contributions of this thesis are the following:

– a classification framework for component models;

– requirements for a domain specific component-based approach for em-
bedded systems;

– a component model for distributed embedded systems;

– a method to integrate and manage extra-functional properties within com-
ponent models; and

– a prototype implementation of an integrated development environment
that implements the overall approach.

Figure 3.1 illustrates how these research results fit together to form the
overall contribution of this thesis. Through literature surveys and interviews,
challenges and needs in the current development methods forembedded sys-
tems (Paper B) as well as requirements for merging of CBSE principles with
embedded systems development (Paper A and B) have been explored. Based

3.3 Research Contribution 25

Legend:

Problem Formulation and Surveys
Component Model Classification

(Paper A)
ES Development Needs

(Paper B)

Proposed Methods
EFP Management

(Paper D)
Component Model

(Paper C)
Component-Based Approach

(Paper B)

Implementation
Demonstrator Application

(Paper E)

influences

Figure 3.1: Relations between the contributions.

on the findings, several methods to improve the component-based software de-
velopment for distributed embedded systems have been proposed (Paper B, C
and D). Meanwhile, a prototype implementation (Paper E) based on a SaveCCT
has been developed to demonstrate the feasibility, advantages and drawbacks
of combining CBSE design with various analysis and deployment techniques
to produce embedded systems. The work on this prototype implementation has
also influenced the proposed methods.

Next, a brief overview of these research results is given. More details can
be found in the included papers in the second part of this thesis.

3.3.1 A Classification Framework for Component Models

The idea behind the elaboration of the component model classification frame-
work is to study component-based software engineering state-of-the-art to ex-
tract the key principles of the area and analyse their integration within existing
component models. Through the utilisation of this framework, principal simil-
itudes and differences between component models can be identified as well as
their conformance to the CBSE basic principles.

After a thorough study of CBSE state-of-the-art including many component
model descriptions and existing classifications of component models, architec-

26 Chapter 3. Research Summary

ture description languages and quality attributes, the following four dimensions
have been chosen as main criteria to describe different facets of component
models:

1. Lifecycle, which identifies the support provided (explicitly or implicitly)
by the component models, in certain points of the lifecycle of compo-
nents.

2. Constructs, which identifies (i) the component interface used for the
interaction with other components and external environment, (ii) the
means of component binding and, (iii) the interaction capabilities.

3. Extra-functional properties , which identifies specifications of different
property values, and means for their management and composition.

4. Domains, which shows in which application and business domains the
component models are used or supposed to be used.

Each dimension has then been refined into several aspects andthe framework
has been populated with more than twenty component models from various
domains. The overall classification scheme as well as more details concerning
the classification framework can be found in Paper A.

In addition to allow performing a raw comparison between component
models by identifying their common characteristics and differences, such a
classification framework can also be used for other purposes. In particular, it
can serve as a basis to select a component model according to criteria such
as the presence of a support for a specific extra-functional property, its imple-
mentation language or the support for all the development phases. Ultimately,
it could also help in the convergence towards a standardization of main charac-
teristics of component models.

The use of the classification framework in the context of thisthesis consti-
tutes the first step towards the identification of suitable characteristics of com-
ponent models dedicated to embedded system development anda support to
eventually determine if an already existing component model could be reused.
From the analysis of the classification framework with regards to component
models dedicated to embedded systems development, the following character-
istics can be extracted as suitable for component models forembedded systems
(assuming that the majority is always right).

– communication style: synchronous pipe & filter

– implementation language: C (or C++)

3.3 Research Contribution 27

In comparison to general purpose component models, dedicated component
models are more concerned with dealing with extra-functional properties and
provide support to manage certain type of properties (oftentiming and resource
usage).

3.3.2 Requirements for a Component-Based Approach

Based on an evaluation of embedded system requirements and their develop-
ment needs, the main objective with this work is to (i) establish concepts and
requirements suitable for a component-based approach for distributed embed-
ded systems, and (ii) characterise the component model underlying it.

As pointed out in Section 2, a key characteristic of embeddedsystem devel-
opment is the importance of producing reliable embedded systems in an effi-
cient way. In our view, this requires the provision of a fullyintegrated approach
managing traceability and dependencies between the artefacts generated during
the development process such as source code files, models of entities, analysis
results, design variants, etc. as well as providing means for various analysis
techniques throughout the whole development process. Following this stand-
point, a suitable component-based approach for distributed embedded systems
(see Paper B) should cover the whole development process starting from a
vague specification of the system based on early requirements up to its final
and precise specification and implementation ready to be synthesized and de-
ployed. It should also be centered around a unified notion of components as a
first-class entity gathering requirements, documentation, source code, various
models, predicted and experimentally measured values, etc. and, (iii) improve
the predictability of the developed systems by easily enabling various types of
analysis, storing and managing the artefacts needed and/orproduced by these
analysis throughout the development process.

Merging embedded system requirements with a holistic component-based
approach throughout the whole development raises the need to cope simulta-
neously with:

– the coexistence of different abstraction levels,

– the different concerns at different granularity levels,

– platform dependence,

– the need to integrate various analysis techniques throughout the whole
development, and

– the need to foster reuse.

28 Chapter 3. Research Summary

Our solution to address these different concerns lays in a conceptual com-
ponent model composed of two dimensions. The first dimensionis the ab-
straction level (the abstract-to-concrete scale in Figure3.2), which describes
the successive refinement from a rough sketch of a component to its final re-
alisation consisting of source code, detailed timing and resource models for
instance. The second dimension expresses the granularity level, i.e. the com-
plexity and size of the components to realise, and is represented by the big-
to-small scale in Figure 3.2. For example, an anti-lock braking system (ABS)
that constantly adapts the brake pressure in accordance with the wheel speed to
prevent wheel skidding while braking belongs to the big partof the scale. On
the other hand, a brake force controller which task is only tomonitor and adjust
the pressure in a brake belongs to the small part of the scale.As illustrated in
Figure 3.2, a component can be in different abstraction levels.

�������� ��������	
���

big

�������������������
�����������

Figure 3.2: Proposed conceptual component model.

This work has set the conceptual foundations which guided ustowards the
elaboration of ProCom, the component model for control-intensive distributed
embedded systems described briefly in the next section.

3.3 Research Contribution 29

3.3.3 The ProCom Component Model

With this work, the aim is to specify a component model dedicated to the de-
velopment of control-intensive distributed embedded systems for the vehicular
and automation domains primarily. This component model is intended to pro-
vide the cornerstone of the integrated component-based approach described in
Section 3.3.2 and therefore must address the concerns identified above. Taking
these concerns into account, the ProCom component model hasbeen devel-
oped.

To address the first concern, namely the different abstraction levels, Pro-
Com proposes to specify components as black boxes in the early design stage.
In this particular case, a black box component is a componentwith its internal
content is hidden because it has not been decided yet. Duringthe development,
it can be decided that the component will be a composite component built out
of subcomponents or a primitive component realized throughsource code. This
means that information is gradually associated with the component, including
adding detailed models for specifying its internal structure, its behaviour, its re-
source usage and finally, with the provision of its source code, the component
is transformed from a abstract black box component to a concrete component.
In that sense, components are viewed as units of design, implementation and
reuse. They can be developed independently, stored in repositories and reused
in multiple applications. To that purpose, ProCom is centered around a unified
notion for components which are considered as a collection gathering all the
information needed and/or specified at different points of time of the develop-
ment process.

The different concerns that exist at different levels of granularity is ad-
dressed through a partitioning of ProCom in two distinct layers of hierarchical
component models. In addition to propose different supportto handle these dif-
ferent concerns, the layers differ in terms of architectural styles and associated
semantics for the components.

The upper layer, called ProSys, is intended to design a system as a col-
lection of communicating subsystems executing concurrently and possibly dis-
tributed. In that layer, the subsystems are the components of the model and they
communicate together through asynchronous message passing between typed
message ports. This communication style is suitable at thislevel of granularity,
since it allows transparent communication between subsystems independently
of their location on the same physical node or not.

30 Chapter 3. Research Summary

In comparison, the lower layer, called ProSave, is used for detailed mod-
elling of small parts of control functionality of subsystems allocated to a single
node and interacting with the system environment through sensors and actua-
tors. Building on the approved features for analysability of SaveCCM [30, 31],
the “pipe and filter” paradigm as well as a restrictive semantics have been
adopted for this layer. The only architectural entities arecomponents as main
abstraction for real-time tasks or control functions and connectors for special
operations on the connection between the components.

The two layers are not independent but relate to each other, since ProSys
component may be modelled out of ProSave components. For more detailed
information about ProCom, the reader is referred to Paper C or [32].

3.3.4 Integration of Extra-Functional Properties in Compo-
nent Models

As identified in Section 3.3.2, an important requirement in the development
of embedded systems is the possibility to perform various types of analysis
throughout the whole development starting from early analysis to more de-
tailed analysis and verification later. To efficiently contribute to the develop-
ment, these analysis techniques must be an intrinsic part ofthe approach and
be tightly connected to the component model whenever this ispossible. This
implies that all the artefacts needed and produced by the analysis techniques
should be easily accessible, refer to the appropriate entities of the component
model and be managed in a systematic way to eventually automate the analysis.
Additionally, the analysis results should be reused in a suitable way.

In this respect, this work proposes a way to specify, integrate and manage
information within component models, and more specificallyextra-functional
properties. This work constitutes the second step towards conciliating analysis
with the envisaged component-based approach, after havingspecified a com-
ponent model with a restrictive semantics and limited number of architectural
elements. The main purpose with this works is to provide an appropriate sup-
port allowing a closer integration of analysis with the component model, with
the long-term vision of eventually enabling as many fully automated analysis
and verification steps as possible.

To this end, this work started by looking at the huge diversity of extra-
functional properties that can be defined and accordingly proposes a format
for their specification in order to manage them in a systematic way. The main
intention with this definition is to have an unambiguous and precise semantics
both with respect to the meaning of the extra-functional property and to the

3.3 Research Contribution 31

correct format for specifying value. Thus, through the concept ofAttribute, we
define an extra-functional property as follows:

Attribute =
〈

TypeIdentifier, Value+
〉

Value = 〈Data, Metadata, ValidityCondition∗〉

where:

– TypeIdentifierdefines the extra-functional property in a unique and un-
ambiguous way;

– Datacontains the concrete value for the property;

– Metadataprovides complementary information on data and allows to
distinguish between them; and

– ValidityConditionsdescribe the conditions under which the value is valid.

This definition implies that an attribute, i.e. an extra-functional property, can
have multiple values identified by metadata or the conditions under which the
values have been obtained, such as for instance some assumptions on the target
platform specification. This particularity of our definition has emerged from
the need to cover both the entire development process from early design up
to synthesis and deployment phases and the relation with thetarget platform
specification. More explanations concerning the terms usedin this definition
as well as discussion about multiple values and reusabilityof extra-functional
properties can be found in Paper D.

In addition, techniques outside this definition are provided to ensure a sys-
tematic comprehension and utilisation of the attribute concept within a devel-
opment context:

– Connection, through an extension of the metamodel, to the entities of the
component model that can have attributes.

– Definition of an attribute registry to ensure the uniqueness of the attribute
specification.

– Specification of composition and selection techniques.

32 Chapter 3. Research Summary

3.3.5 Prototype Implementation

The main intention with this work is to evaluate from a practical angle the en-
visaged approach of merging component-based principles and embedded sys-
tem development needs i.e. to establish the advantages, drawbacks and lim-
itations of the approach. This requires an implementation of the complete
development toolchain from design up to synthesis and deployment, includ-
ing some analysis techniques. As the work on establishing the requirements
for the elaboration of ProCom was still in its early phase, noanalysis or syn-
thesis techniques were available at the start of this research work. Instead,
it has been decided to use the concepts, methods and techniques developed
for SaveCCT [33] to develop a first prototype, since SaveCCT shares many
similarities with the work presented in this thesis. In particular, it presents a
simple use-case scenario of the envisaged approach in that sense that the use
of component is restricted to the design only and the analysis is performed on
system-scale.

Analysis
Models

Executable
System

Validation
&

Verification
(timing/safety/
reachability)

Architectural
Model

Synthesis
(automated

transformations)

Component-Based Design Early Formal Analysis

Deployment

Figure 3.3: Overview of the SaveCCT approach.

Based on [8] and with respect to the SaveCCM reference manual[33]
which defines the exchange format to be used between the tools, an integrated
development environment, called Save-IDE, has been specified and developed.
Compared to the majority of existing IDEs which focus mainlyon program-
ming aspects, the Save-IDE integrates the design, analysis, transformation,
verification and synthesis activities as illustrated in Figure 3.3. These activ-
ities are supported by a set of dedicated tools. The completedescription of the
approach and the environment can be found in Paper E.

3.4 Methodology 33

3.4 Methodology

Equally important as the proposed solutions to answer the research questions,
is to adopt an appropriate research methodology helping guarantee the sound-
ness and the reproducibility of the work. In this thesis, we followed a method-
ology adapted from the guidelines proposed by Shaw in [34] toperform good
software engineering research.

This approach starts with the identification of a problem from the real world
(Problem Identification), in our case the limitations of the current development
methods for distributed embedded systems due to the increasing complexity
of new embedded system functionalities. The problem is thentransferred into
a research setting to be investigated with the prospects of findings solutions
to it. However, since real world problems are generally quite complex, the
scope of the problem needs first to be restricted to be manageable within a re-
search context (Problem Setting). This limitation made us focus on a particular
aspect of the real problem by formulating the research problem that will be ad-
dressed within the work (Problem Formulation), and then by statingWorking
AssumptionsandResearch Questions, which together set a frame for the work.
Similarly to passing from a real world problem to a research problem, breaking
down the research problem into a set of research questions narrows down even
further the problem to investigate and helps on focusing on particular aspects
of the research problem. In that sense, the working assumptions provide a start-
ing point to the work whereas the research questions correspond more to the
specification of the angle of attack chosen to investigate the research problem.

Once the problem to address is clearly defined, the research work starts
with the study of related theories, methods, approaches, techniques or solu-
tions that have already been performed on the topic (Background Theories).
With the knowledge of the existing state-of-the-art and thequestions to an-
swer, some solutions can be devised (Solutions). Formulating solutions is not
a straightforward process but an iterative one, in which preliminary ideas are
formulated, worked out, refined or even sometimes left aside. When the ideas
are mature enough, they must be evaluated and validated to check whether they
really answer the research question in a suitable way (Validation). If this step
fails, the proposed solutions need again to be revisited, refined, improved or
thrown away. In that sense, this is an iterative trial and error process, in which
analysing the causes of the erroneous solutions might provide useful inputs to
find new, better or simply working solutions.

After the validation step is satisfied, the applicability ofthe proposed so-
lutions to solve the real-world problem can be evaluated (Evaluation). An

34 Chapter 3. Research Summary

Real-World Context

Problem
Identification

Research Context

Problem Setting

Work
Assumptions

Research
Questions

Problem
Formulation

Research Work
Background

Theories Solutions

ValidationApplicability
Evaluation

Figure 3.4: Overview of the applied research process.

overview of this approach is given in Figure 3.4.
The work presented in this thesis is concerned with the problem identifica-

tion, problem setting and research work steps. The validation and evaluation
steps remains as future work. Each research questions can beanswered in dif-
ferent ways and in applying different approaches, thus we describe below the
methodology that has been used in the research work described in the previous
sections.

The process to answer the first research question started by studying both
the needs in the development process of distributed embedded systems and the
current state-of-the-art of component-based software engineering focusing on
existing component models, in particular SaveCCM [8]. Thisstudy was based
on literature surveys and discussions with domain experts of vehicular and au-
tomation domains. Based on these findings, requirements forthe component
model were extracted and served as foundations in the elaboration of ProCom,
which addresses some of the limitations of SaveCCM.

As for the work concerned which research question 2, it also started with a
literature surveys on extra-functional properties and their management and the
identification of a few properties of interest in the development process. Then

3.4 Methodology 35

we have tried to relate their management to their utilisation within the devel-
opment process. The methodology followed here was iterative and started with
the development of a prototype implementing some preliminary ideas to get a
better understanding of their integrations and contributions in the development
process. This preliminary solutions has then been refined into the attribute
framework presented in Paper D.

The last research question was concerned with the feasibility of combin-
ing a component-based approach with formal early analysis.We proceeded
by construction and realisation of an integrated development environment that
provided us useful lessons learned.

Chapter 4

Related Work

In this chapter, we relate the contributions presented in this thesis, namely a
new component model for distributed embedded systems, a framework to man-
age extra-functional properties and an integrated development environment, to
similar relevant approaches.

4.1 Component Models

A broad range of component models exists nowadays, either general purpose or
dedicated component models, as compiled in various classifications (as in [4]
or [35] for instance). However few component models actually target the de-
velopment of embedded systems and most of them focus on a specific domain
only. Using the component models detailed in Paper A as a basis, this sec-
tion goes back over the component models targeting embeddedsystems and
compares them with the component model proposed in this thesis.

In the automotive domain, the AUTOSAR (AUTomotive Open System AR-
chitecture) consortium [1] is the first large-scaled initiative to gather manu-
facturers, suppliers and tool developers from the automotive field to establish
an open and standardised software architecture for the automotive domain en-
abling component-based software design modelling. Through this common
standard, the vision of AUTOSAR is to facilitate the exchange of solutions
(including software components) between different vehicle platforms and sub-
system manufacturers as well as between vehicle product lines. In that sense,
AUTOSAR targets the upper part of the granularity scale of the proposed

37

38 Chapter 4. Related Work

conceptual component model. Similar to our approach, AUTOSAR relies
upon the use of a component-based software design model. However the two
approaches have principal differences. In particular, AUTOSAR component
model proposes both pipe and filter and client-server paradigms communicat-
ing transparently across the architecture through the use of standardised in-
terfaces. Although targeting development of applicationsfor the automotive
domain, AUTOSAR in its current version lacks support to express and analyse
extra-functional properties in particular timing properties as for instance worst-
case execution time or end-to-end deadline. An upcoming release AUTOSAR
4.0, done in cooperation with the TIMMO project [36] and EAST-ADL [37],
intends to tackle this lack by an extension of the current metamodel. In par-
ticular, the TIMMO project intends to propose a standardised infrastructure
to manage timing properties and enable their analysis at allabstraction levels
from early design to deployment.

A second initiative that shows the growing interest from theautomotive
domain in component-based software development comes fromBosch with
BlueArX [6, 38]. Also based on a design-time component model, BlueArX
differentiates itself from AUTOSAR in supporting timing and other non func-
tional requirements as well as in focusing on complete development process
for single ECUs. To this respect, BlueArX is relatively close to the objectives
and contributions presented in this thesis in particular with regards to the lower
layer of the component model (ProSave). However differences exist. First,
through the ProSys layer of the component model, ProCom intends to support
also the development of embedded software systems distributed across several
ECUs. Another difference lays in the proposed support to integrate analy-
sis. Whereas extra-functional properties can be associated with any entities
of the ProCom component model (components, ports, services, connections or
component instances) through the attribute framework extension, BlueArX on
the other hand endows components with an additional analytical interface to
perform analysis either at system- or component-scale. In arecent work [7],
BlueArX has been extended to support the analysis of timing properties in rela-
tion to operational mode, a feature which is not supported yet within ProCom.

Developed in a close cooperation between Arcticus Systems AB and Mälar-
dalen University, the Rubus Component Technology [9] is another example
of an industrial use of component-based approach in the vehicular domain.
Similarly to ProCom, the RUBUS component model focuses on expressivity
and analysability through a restrictive component model. However, the Rubus
component model allows the specification of timing properties only and is not
primarily concerned with reuse.

4.1 Component Models 39

The contributions found in this thesis are largely inspiredby previous work
done at Mälardalen University on the elaboration of a component model for
vehicular domain. SaveCCM [33] is a design-time component model consist-
ing of a few design entities with a restrictive “Read-Execute-Write” execution
semantics and communicating through a “pipe & filter” paradigm in which the
control- and data-flows are distinctly separated. Having such a restrictive se-
mantics, it enables formal validation and verification of the system already in
early phase of the development process, prior any implementation as well as
automated part of the transformations into an executable system as explained
in [39]. ProCom is built on the knowledge and experiment gained from the de-
velopment of SaveCCM and tries to alleviate some of the restrictions and draw-
backs of SaveCCM in particular in strengthening the conceptof components,
considering distribution and handling functional and extra-functional proper-
ties in a more systematic way. Whereas the ProSave layer is toa large extent
directly inspired from SaveCCM, the upper layer (ProSys) aims at addressing
the distribution of subsystems, which was not addressed within SaveCCM.

In the field of consumer electronics, Philips has developed and successfully
used the Koala component model [10] for the production of various consumer
electronic product families (TV, DVD, etc.). In comparisonto the aforemen-
tioned initiatives, Koala is less oriented towards safety-critical applications
than what exists in the automotive domain for example. However, as Koala
still targets severely constrained embedded systems, it pays a special atten-
tion to static resource usage, such as static memory for instance, but it lacks
support for managing other extra-functional properties. The dependencies be-
tween properties are handled through diversity spreadsheet, which is a mech-
anism outside the component. Koala has served as input in theRobocop [40]
project done in collaboration between Philips and Eindhoven Technical Uni-
versity. Similarly to ProCom, Robocop considers components as a collection
of models covering the different aspects of the developmentprocess. Models
are also used to manage extra-functional properties as for instance the resource
model, which describes the resource consumption of components in terms of
mathematical cost functions, or the behavioural model, which specifies the se-
quence in which the operations of the component must be invoked. Additional
models can be created.

Pecos [41] is a joined project between ABB Corporate Research and Bern
University. Its goal is to provide an environment that supports specification,
composition, configuration checking and deployment for a specific type of
reactive embedded systems (field devices) built from software components.
Contrary to ProCom for which the components of each layer have their own

40 Chapter 4. Related Work

execution semantics, i.e. ProSys components are active whereas ProSave com-
ponents are passive, the two types are put together in Pecos.Also, since com-
ponents in Pecos have only data ports, there is a need for an additional type
of component, called event component, which activation is triggered by the ar-
rival of an event. With regards to extra-functional properties, Pecos enables the
specification in a name-value pair format in order to investigate the prediction
of the timing and memory usage of embedded systems. However,this specifi-
cation is limited to name-value pairs in difference to the possibility offered to
specify extra-functional properties in ProCom.

Pin [42], a component model developed at Carnegie Mellon Software En-
gineering Institute (SEI), serves as basis for the prediction-enabled component
technologies (PECTs) which aims at attaining predictability of run-time prop-
erties such as performance, safety and security. Alike our approach, PECT
stresses the importance of providing suitable quality prediction based on anal-
ysis theories. However the methods to integrate analysis differ. Whereas Pro-
Com relies on an external attribute framework as means to handle functional
and extra-functional properties resulting from differentanalysis techniques,
PECT is centered around a reasoning framework consisting ofanalytical inter-
faces used to specify specific properties, and corresponding analysis theories
to enable the prediction of these properties. Also in comparison to ProCom,
Pin is a flat component model which does not support distribution.

4.2 Alternative Approaches

This section correlates our work with other approaches thatare not primarily
concerned with the principles and methods advocated in CBSEbut are still
intended to support the development of distributed embedded systems.

In the automation domain, the standards IEC-61131 [21] and its successor
IEC-61499 [43] proposed by the International Electrotechnical Commission
are well established technologies for the design of Programmable Logic Con-
trollers. Whereas IEC-61131 allows to graphically composesystems out of
function blocks, IEC-61499 has been developed to enforce encapsulation and
provide a support for distribution. From a design perspective, ProCom shares
some similarities with these graphical languages, in particular the encapsulated
entities communicating with a “pipe & filter” paradigm with explicit separa-
tion between data- and control-flow, and the distribution support. However the
semantics associated with the function blocks are weaker compared to the Pro-
Com components, and the standards lack support for specifying and managing

4.2 Alternative Approaches 41

extra-functional properties and their analysis. This holds back the possibil-
ity for formal analysis of the systems under development, which is one of the
major objectives this thesis aims at.

In the automotive domain, alike ProCom, EAST-ADL (Electronic Archi-
tecture and Software Technology – Architecture Description Language) [37]
aims at providing a support for the complete development of distributed embed-
ded systems by taking into consideration the hardware, software and environ-
ment development assets. Although both approaches share similar objectives,
they differ in they way those objectives are approached. Whereas ProCom em-
phases components as assets for capturing development information thus aim-
ing at reusability, EAST-ADL focuses on architecture description to structure
it. In EAST-ADL information is structured into five abstraction levels, which
describe the functionalities from several standpoints. Each entity of a level real-
izes the entities of the higher abstraction levels. ProCom covers three of these
levels (analysis level, design level and implementation level), and leaves out
the electronic feature design (vehicle level) and the support for the deployment
of the final binary (operational level). Similarly to ProCom, EAST-ADL also
supports modelling of non-structural aspects such as behavioural description
but covers in addition validation and verification activities as well as manage-
ment of requirements. EAST-ADL was originally developed asan EAST-EEA
ITEA project involving car manufacturers and suppliers andnow it is refined as
a part of ATESST project to be aligned with the major standardization efforts
existing in the automotive and real-time domains (AUTOSAR,MARTE, and
SysML).

The Architecture and Analysis Description Language (AADL)[44], for-
merly known as Avionics Architecture Description Language, is a standardiza-
tion effort led by the Society of Automotive Engineers (SAE)to provide sup-
port for the development of real-time and safety-critical embedded systems for
aerospace, avionics, robotic and automotive domains. Consequently, AADL
stresses the importance of analysis to meet the particular constraints and re-
quirements of the envisaged target domains. It provides a formal hierarchical
description of the systems including properties to supportthe use of various
formal analysis techniques related to timing, resources, safety and reliability
with the aim of validating, verifying and performing tradeoff analysis of the
system. Properties are defined as a triple (Name, Type, Value) that can be
attached to different entities and can have specific instance values. To this re-
spect, AADL is comparable to ProCom and its attribute framework. However,
in comparison to ProCom, AADL is “only” a description language and does
not provide links to design and implementation technologies. In that sense, it

42 Chapter 4. Related Work

decomposes the system in a top-down manner specifying entities and how they
interact and are integrated together without providing anyimplementation de-
tails. Thus AADL is not primarily concerned with reusability issues. On the
other hand, AADL includes some features that could be interesting to take into
consideration in the further development of ProCom such as the specification
of execution platforms and operational modes.

Other approaches applies Model-Driven Engineering (MDE) techniques
that allow to automate the development process in relying onmodels as primary
development artefacts, hence abstracting away from implementation concerns.
These models are intended to serve as input to automaticallyderive imple-
mentation, documentation, test cases, and much more. Although not limited
to UML-based models, the attractiveness of these approaches has increased
since the introduction of UML 2.0 [45] and various UML-profiles such as
SysML [46] and MARTE [47]. In particular MARTE, the successor of the
scheduling, performance and timing (SPT) profile, defines a set of basic con-
cepts for model-driven development of real-time embedded systems. In that
sense, MARTE is closely related to the work presented in thisthesis, espe-
cially with the specification of extra-functional properties including time and
resources and the intention to support various types of model-based analysis
such as schedulability and performance. In addition, through the General Com-
ponent Model sub-profile, MARTE proposes support for CBSE. However con-
trasting to our work, MARTE does not focus on implementationand reuse.

4.3 Integrated Development Environment
Integrated Development Environments (IDEs) are not new. They traditionally
provide dedicated support for developing applications in various programming
languages such as Pascal, C/C++, Java, PhP among many others. In these
environments, the main focus is oriented towards the implementation phase of
the development process, which means that typically sourcecode editors (with
syntax highlighting, auto-completion, bracket matching,etc.), compiler and/or
interpreters, and debuggers are supplied to the developers. For object-oriented
software development, class browsers, object inspectors,and class hierarchy
diagrams, are also integrated. The most common representatives of these IDEs
include Delphi [48], Eclipse [49], and Microsoft Visual Studio [50].

As for CBSE, the environments are generally tightly centered around a
component model, and focus on specific development phases (implementation)
and domain. Some examples of such environment are Palladio Component
Model tool [51], Koala Development Tools, Netbeans [52] forEJB and Jav-

4.3 Integrated Development Environment 43

aBeans.
However for the development of safety-critical real-time embedded sys-

tems, environments providing more verification and simulation capabilities are
often used instead — either a UML-based environment or a dedicated envi-
ronment. In those environments, code generation is a rathercommon feature,
which allows to automatically derive accurate implementation from models.
In some cases, as for BridgePoint [53], the generated implementation can be
executed directly to simulate the behaviour of the system.

UML-based environments propose to develop a system in starting by its
design following UML or a UML-profile. Typically, those environments cover
design, code generation, execution, tests, and simulation. Despite the recent
initiatives of SPT, SysML and MARTE to incorporate extra-functional proper-
ties into UML, few tools actually support those new standards and when this
support exists, it still lacks formal grounds. As a result noautomatic verifi-
cation is available in those environments. However, through combining UML
class diagrams and UML behaviour diagrams, the Fujaba Tool Suite [54] man-
ages to enable formal system design that can be used to generate Java source
code. Rational Rose Technical Developer [55], Rhapsody [56] and BridgePoint
are some examples of environments belonging to this category.

On the other hand, dedicated integrated development environments are cen-
tered around a dedicated modelling language. Simulink [57], from MathWorks,
is the leader environment to model, simulate, implement andanalyze dynamic
and embedded systems. It is mainly used in control theory anddigital signal
processing for designing the applications together with modelling its environ-
ment. Once the system is designed out of block diagrams (verysimilar to
components), the system can be synthesized into executablecode through a
connection to the Real-Time Workshop tool also developed byMathWorks. A
repository support is provided on the form of building blocklibraries, from
which building blocks are picked and customized to fit the needs of the new
design. Simulink is integrated with Matlab, hence allowingalgorithm devel-
opment, data visualization, data analysis, and numeric computation. Other
major dedicated environment is SCADE [58], which proposes an environment
to produce mission and safety-critical systems mainly for aerospace, defence
and automotive domains. SCADE is endowed with the followingfeatures:
graphical and textual editors, simulator, formal proof (Design Verifier), code
generators, model test coverage and can be connected to Simulink, DOORS,
Altia, UML/SysML, etc.

Save-IDE, described in Paper E, also belongs to this category. In compari-
son to the other environments, Fujaba Tool Suite excepted, Save-IDE provides

44 Chapter 4. Related Work

an environment allowing formal modelling of a system fully compliant with
the SaveCCM semantics, hence enabling formal verification of the behaviour
of the system with respect to time, safety and reachability properties. However,
in order to benefit from the large variety of existing tools for UML, Save-IDE
through its SaveUML extension [59] allows transforming a SaveCCM design
into a UML-profile and vice-versa.

Chapter 5

Conclusions and Future
Work

We have described in this thesis a possible approach to mergecomponent-based
software engineering principles with the specifics of distributed embedded sys-
tems with the aim of providing solutions towards an efficientdevelopment en-
vironment. This approach is based on a dedicated component model tailored
to fit the embedded system development needs. In particular it provides a re-
stricted semantics to facilitate the analysability of the system being designed
and a dedicated (extra-) functional properties framework to ease the integration
and management of analysis techniques and their outputs.

This chapter concludes the thesis by reviewing and discussing its contribu-
tions with regards to the research questions stated in Chapter 3, and by provid-
ing directions for future work.

5.1 Discussions

Clearly, the objective of proposing integrated solutions to develop distributed
embedded systems in a predictable and efficient way while following the CBSE
principles is ambitious. It can be addressed in many different ways and requires
many fragmentary results which need to tightly fit together.This objective is
not attained entirely through the contributions presentedwithin this thesis since
the work is not completed yet. However, we have provided basic foundations
and directions, which hopefully contribute to move closer to its realisation.

45

46 Chapter 5. Conclusions and Future Work

The main piece of remaining work concerns the validation andevaluation
of the proposed methods, in particular with respect to the envisaged component-
based approach and its underlying component model and extra-functional prop-
erty support. Indeed, no validation or evaluation in an industrial context has
been performed yet and this constitutes an important part offuture work that
remains to be done. As a consequence, the answers to the research questions
1 and 2 provided below correspond more to initial findings on the subject than
fully accepted results corroborated through the development of suitable appli-
cations or even industrial case-studies. The remainder of this section provides
answers to the research questions introduced in Section 3.2and discussions on
their relevance.

Research Question 1:

What are the suitable characteristics of a component model to effi-
ciently support software design of distributed embedded systems?

Based on an analysis of the component model classification framework and an
evaluation of the requirements for embedded system development, a number
of characteristics that seem suitable for component-basedembedded system
development and its associated component model have been identified and de-
tailed in Paper B and integrated in ProCom (Paper C). As our answer to the
Research Question 1, yet to be confirmed by experiments or case-studies, a
component model should support:

– Different abstraction levels (i.e. the coexistence of components in an
early design phase and fully realised components).

– The different concerns that exist at different granularity levels (i.e. an
high-level view of loosely coupled complex subsystems together with a
low-level view of small non-distributed functionalities similar to control
loops).

– Platform awareness while still being platform independent.

– Various analysis techniques.

In addition, as identified in [30] for the development of embedded control soft-
ware, the component model semantics should also be limited and restrictive to
support important extra-functional properties such as timing, safety or reliabil-
ity. With regards to efficiency of software development, this implies finding the
appropriate tradeoff between flexibility on one hand and analysability and pre-
dictability on the other hand. We approached this problem byalleviating some

5.1 Discussions 47

of the restrictions present in SaveCCM — in particular for the ProSys level
which requires more flexibility than ProSave since it deals with distributed
active subsystems executing concurrently — while reinforcing the concept of
components as a unified notion throughout the development process. In spite
of this, ProCom provides a semantics precise enough to be formally expressed
through timed finite state machines as demonstrated in [60].Similar to what
has been done in SaveCCM, this should permit an automated integration of
formal analysis tools, improving the development process performance.

The strong coupling between target platform specification and software
implementation is an important challenge which requires tobe addressed in
a suitable way since the correctness of analysis results andvalues of extra-
functional properties strongly depend upon the target platform specification
and the deployment configuration. Postponing the access to this information
to a late development stage could result in incorrect designand implementa-
tion of the system to be executed, leading to an eventual costly redesign and
re-implementation of the erroneous parts of the system. Yet, breaking the hard-
ware abstraction and making the target specification part ofthe component
model is not a suitable solution since this would makes all components plat-
form dependant and hinder their reusability breaking then one fundament of
CBSE. An appropriate solution lays probably in between those two extreme
solutions.

Research Question 2:

How to provide efficient integration support for managementof
functional and extra-functional properties within a component model?

Answering this question corresponds to finding an appropriate way to specify,
integrate and handle functional and extra-functional properties in a component
model in a systematic way. Thus, we addressed this question through the ap-
proach briefly described in Section 3.3.4 and detailed in Paper D.

This approach combines a model for specifying extra-functional proper-
ties with techniques outside this specification, such as a property registry and
property selection, to ensure the correctness of their utilisation in the current
development context. Remarkably, a distinctive feature ofour model lays in
its ability to handle the specification of multiple values for a property, where
each value is identified through the provision of suitable metadata and/or the
context under which the value has been obtained. This approach can also be
used to integrate the specification of functional properties without hampering
the utilisation of interfaces. In this context, functionalproperties do not refer

48 Chapter 5. Conclusions and Future Work

to interface specification of the operations handled by the components, but to
the modelling of the behaviour of the components in a format suitable for anal-
ysis techniques such as timed automata model. By this means,our intention is
to increase the analysability and predictability of component-based embedded
systems, and enabling a seamless and uniform integration ofexisting analysis
and predictions theories into component models.

However this solution introduces complexity in the design process in sev-
eral ways. In addition to the possibility to have multiple values assessed at
different point of time or by different techniques, it also envisions delegating
the declarations of needed properties to, for example, the developers of the
analysis techniques who know best the types of information they need as input
and that they produce as outputs. In the end this could resultin an explosion of
property definitions in the registry. A possible solution would be to rely on a
standardized catalogue of properties similarly to what exists for units (SI), date
and time representation (ISO 8601) or the standard for evaluation of software
quality (ISO 9126).

Our approach to integrate extra-functional properties in component models
reveals a lot of information concerning the details of the implementation of
the components. Although this is not a major issue for in-house development,
it naturally becomes more problematic for its utilisation in the development
of systems or components for which the implementation details must remain
hidden such as COTS components since all the models that haveserved for
analysis are packaged together with the components. A solution could be to
provide mechanisms to identify and automatically remove confidential infor-
mation when components are distributed to third parties.

Research Question 3:

How to build an integrated development environment encapsulat-
ing suitable models and technologies to efficiently supportcom-
ponent-based development of software for embedded systems?

Based on [8] and with respect to the SaveCCM reference manual[33] which
defines the exchange format to be used between the tools, an integrated devel-
opment environment, called Save-IDE, has been specified anddeveloped. This
environment has been used internally by the members involved in its realisa-
tion but also externally by students outside the projects todevelop diverse small
applications. In [61], a comparison between Save-IDE and a professional tool
enhanced with a profile for SaveCCM has been performed. This experiment is
performed on a small group of students concerns only the modelling aspect of

5.1 Discussions 49

the environment. Yet the students’ feedback show some indications that a dedi-
cated design environment is more efficient than a general-purpose environment
customized to fit a particular need. So as a part of the answer to the research
question, a first important feature is the presence of dedicated modelling ed-
itors. The environment has also been used in [62] and in [39],in which an
industrial control system and a simple truck application have been realized re-
spectively. Those two examples show the feasibility of the integrated approach.
In particular, they highlight the possibilities of tightlyinterconnecting design
and formal analysis tools, which enable formal analysis of the on-going design
already in an early design phase.

From the development and internal use of this environment, several con-
clusions have been drawn, leading to some areas of improvement for the envi-
ronment and some of them as served as basis in the on-going work to develop
an integrated development environment supporting the component-based ap-
proach presented in this thesis. These conclusions are other parts of our answer
to this research question.

The first conclusion is that components must be the main unit of develop-
ment, similar to the concept of packages in object-orientedprogramming, and
must be manipulated as such. In that view, a component is the collection of
its data and files such as architectural model, behavioural models, source code,
tests, documentation, etc., which must be kept consistent.This should enable
component versioning, foster bottom-up development with possibly reuse, and
ease the distinction between component types and instances, which was one of
the problem faced in Save-IDE. Indeed in Save-IDE, components are design
entities only, and are created during the design of the system through the archi-
tectural editor. One problem with this approach is that it isdifficult to deter-
mine when the design of the component is completed and must not be changed
any longer. The possibility to copy components in the designadds to the prob-
lem even further since it implies that component types and instances are mixed
together. This means that an instance of the component can bemodified in-
dependently of its component type and consequently, ensuring consistencies
of a component type with its instances and implementation requires numerous
checking.

Another conclusion is that information concerning the platform design must
also be highly interconnected with the software design so that parameters from
the target platform specification that influences the software design are avail-
able as soon as they are specified and vice versa. This could enable the inte-
gration of analysis tools which requires knowledge on the platform to produce
accurate results.

50 Chapter 5. Conclusions and Future Work

Finally, in the current approach supported by Save-IDE, thetransformation
of the design model into an execution model allowing synthesis and optimi-
sation steps is performed at the end of the process only, after the design has
been verified and validated. Yet, the validation and verification are performed
at a high-level of abstraction without connection to the component implemen-
tation used in the synthesis and without any specific information regarding the
target platform. It is assumed that the implementation doesnot break the be-
haviour formally modelled. This can have some negative effects on the effi-
ciency of the approach when the fully implemented system does not meet its
timing requirements or the timing requirements are not feasible. The develop-
ment process might then start over at the design step with there-design and
re-implementations of the erroneous parts. As a consequence, the validation
and verification steps must be carried out again. Furthermore some analysis
techniques, such as schedulability, cannot be performed ona high-level of ab-
straction. Some potential solutions that need to be furtherinvestigated are to
connect implementation with analysis or generating implementation from the
models used by the analysis techniques. Also, synthesis must be viewed as
more complex than a single-step operation performed at the end of the develop-
ment process. It requires many analysis, tests and optimisations that are closely
related to the design, implementation and various extra-functional properties
such as timing or resource usage, and must therefore be also tightly connected
with them.

5.2 Future Work

An important part of the work that currently remains concerns the evaluation
and validation of the proposed methods. To complete this work, we are cur-
rently building the PROGRESSIDE, an integrated development environment
centered around the notion of component as main unit of development and
supporting the requirements of the proposed component-based approach. In
particular, this IDE is intended to support the co-existence of fully imple-
mented components with components in early design phase, and emphasize
reuse. We envisage to use this integrated development environment to conduct
experiments and case-studies addressing the development of embedded sys-
tems, primarily with regards to the vehicular domain. Later, we also plan to
evaluate the applicability of the proposed methods for other domains such as
automation and telecommunication.

5.2 Future Work 51

In addition, since specifying and building an efficient and predictable soft-
ware development framework for embedded systems requires many results
tightly interconnected to each others, the work presented in the thesis can con-
tinue in several directions. Some of them are:

– Investigating target platform specification together with mechanisms to
connect information to the software design when appropriate and recip-
rocally, relate design information to the target platform design, hence
establishing suitable relationships between software andhardware de-
signs.

– Improving the attribute framework by refining the validityconditions
and the automated selection of attributes, and supporting the migration
of information between component instances and types.

– Further elaborating ProCom for handling sensors and actuators, and at
the ProSys level, supporting additional communication paradigms, such
as synchronous communication.

– Integrating analysis techniques and their underlying models and more
specifically REMES, a resource model for embedded systems that can be
used for early analysis of timing and resource usage.

– Considering synthesis as a multi-step activity and investigating its rela-
tionships between software design and target platform design.

Bibliography

[1] H. Fennel et al. Achievements and Exploitation of the AUTOSAR Devel-
opment Partnership. Presented at Convergence 2006, Detroit, MI, USA,
October 2006.
http://www.autosar.org.

[2] Robert Bosch GmbH. CAN Specification, Version 2.0. Technical Report
ISO 11898, 1991.

[3] LIN Consortium. LIN Protocol Specification, Revision 2,September
2003.
http://www.lin-subbus.org/.

[4] Ivica Crnkovic and Magnus Larsson.Building Reliable Component-
Based Software Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[5] AUTOSAR Development Partnership. Technical Overview V2.2.1,
February 2008.
http://www.autosar.org.

[6] Ji Eun Kim, Rahul Kapoor, Martin Herrmann, Jochen Haerdtlein, Franz
Grzeschniok, and Peter Lutz. Software Behavior Description of Real-
Time Embedded Systems in Component Based Software Development.
In ISORC ’08: Proceedings of the 2008 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing, pages 307–311, Washington,
DC, USA, 2008. IEEE Computer Society.

[7] Ji Eun Kim, Oliver Rogalla, Simon Kramer, and Arne Haman.Extract-
ing, Specifying and Predicting Software System Propertiesin Component
Based Real-Time Embedded Software Development. InProceedings of
the 31st International Conference on Software Engineering(ICSE), 2009.

53

54 Bibliography

[8] Mikeal Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
SAVE Approach to Component-Based Development of VehicularSys-
tems.Journal of Systems and Software, 80(5):655–667, May 2007.

[9] Arcticus Systems. Rubus Software Components.
http://www.arcticus-systems.com.

[10] Rob van Ommering, Frank van der Linden, Jeff Kramer, andJeff Magee.
The Koala Component Model for Consumer Electronics Software. Com-
puter, 33(3):78–85, 2000.

[11] Oscar Nierstrasz, Gabriela Arévalo, Stéphane Ducasse, Roel Wuyts, An-
drew P. Black, Peter O. Müller, Christian Zeidler, Thomas Genssler, and
Reinier van den Born. A Component Model for Field Devices. InProc. of
the 1st Int. IFIP/ACM Working Conference on Component Deployment,
pages 200–209. Springer, 2002.

[12] Bruno Bouyssounouse and Joseph Sifakis.Embedded Systems Design:
The ARTIST Roadmap for Research and Development (Lecture Notes in
Computer Science). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2005.

[13] Richard Zurawski.Embedded Systems Handbook Second Edition — Em-
bedded Systems Design and Verification. CRC Press, 2009.

[14] George T. Heineman and William T. Councill.Component-Based Soft-
ware Engineering: Putting the Pieces Together. Addison-Wesley Long-
man Publishing Co., 2001.

[15] Clemens Szyperski.Component Software: Beyond Object-Oriented Pro-
gramming - Second Edition. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[16] Jean-Claude Laprie. Dependable Computing and Fault Tolerance : Con-
cepts and Terminology. InFault-Tolerant Computing, 1995, ’High-
lights from Twenty-Five Years’, Twenty-Fifth International Symposium
on, pages 2+, 1995.

[17] Panagiotis Tsarchopoulos. European Research in Embedded Systems. In
Embedded Computer Systems: Architectures, Modeling, and Simulation,
6th International Workshop, SAMOS 2006, Samos, Greece, July 17-20,
2006, Proceedings, pages 2–4, 2006.

Bibliography 55

[18] MOST Cooperation. MOST Specification, Revision 3.0, 2008.
http://www.mostcooperation.com/.

[19] Flex Ray Consortium.
http://www.flexray.com/.

[20] Manfred Broy. Challenges in Automotive Software Engineering. InICSE
’06: Proceedings of the 28th international conference on Software engi-
neering, pages 33–42, New York, NY, USA, 2006. ACM.

[21] IEC. Application and Implementation of IEC 61131-3. IEC, 1995.

[22] Clemens Szyperski.Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Professional, December 1997.

[23] Annie Antón.Goal Identification and Refinfement in the Specification of
Information Systems. PhD thesis, Georgia Institute of Technology, 1997.

[24] Dale Rogerson.Inside COM. Microsoft Press, 1997.

[25] Fintan Bolton.Pure CORBA. Sams, 2001.

[26] Microsoft Visual Studio Developer Center. .NET Framework.
http://www.microsoft.com/NET/.

[27] EJB 3.0 Expert Group. JSR 220: Enterprise JavaBeansTM,Version 3.0
EJB Core Contracts and Requirements Version 3.0, Final Release, May
2006.

[28] Ivica Crnkovic, Magnus Larsson, and Otto Preiss. Concerning Pre-
dictability in Dependable Component-Based Systems: Classification of
Quality Attributes. InArchitecting Dependable Systems III, volume 3549
of Lecture Notes in Computer Science, pages 257–278. Springer Berlin,
2005.

[29] Ivica Crnkovic. Component-based Software Engineering for Embedded
Systems. InICSE ’05: Proceedings of the 27th international conference
on Software engineering, pages 712–713, New York, NY, USA, 2005.
ACM.

[30] Mikael Åkerholm. Reusability of Software Components in the Vehicular
Domain. PhD thesis, Mälardalen University Press, May 2008.

56 Bibliography

[31] Anders Möller, MikaelÅkerholm, Johan Fredriksson, and Mikael Nolin.
Evaluation of Component Technologies with Respect to Industrial Re-
quirements. InEuromicro Conference, Component-Based Software Engi-
neering Track, August 2004.

[32] Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and
Aneta Vulgarakis. ProCom – the Progress Component Model Refer-
ence Manual, version 1.0. Technical Report MDH-MRTC-230/2008-1-
SE, Mälardalen University, June 2008.

[33] Mikael Åkerholm, Jan Carlson, John Håkansson, Hans Hansson, Mikael
Nolin, Thomas Nolte, and Paul Pettersson. The SaveCCM lan-
guage reference manual. Technical Report MDH-MRTC-207/2007-1-SE,
Mälardalen University, January 2007.

[34] Mary Shaw. Writing Good Software Engineering ResearchPapers. In
Proceedings of the 25th International Conference on Software Engineer-
ing, pages 726–736, 2003.

[35] Kung-Kiu Lau and Zheng Wang. Software Component Models. IEEE
Transactions on Software Engineering, 33(10):709–724, 2007.

[36] M. Jersak et.al. Timing Model and Methodology for AUTOSAR. Elek-
tronik automotive, Special issue AUTOSAR, 2007.

[37] Philippe Cuenot, DeJiu Chen, Sebastien Gerard, HenrikLonn, Mark-
Oliver Reiser, David Servat, Carl-Johan Sjostedt, Ramin Tavakoli Ko-
lagari, Martin Torngren, and Matthias Weber. Managing Complexity of
Automotive Electronics Using the EAST-ADL. InICECCS ’07: Proceed-
ings of the 12th IEEE International Conference on Engineering Complex
Computer Systems, pages 353–358, Washington, DC, USA, 2007. IEEE
Computer Society.

[38] Bernhard F. Weichel and Martin Herrmann. A Backbone in Automo-
tive Software Development Based on Xml and Asam/Msr. SAE World
Congress, 2004.

[39] Séverine Sentilles, Anders Pettersson, Dag Nyström, Thomas Nolte, Paul
Pettersson, and Ivica Crnkovic. Save-IDE — A Tool for Design, Anal-
ysis and Implementation of Component-Based Embedded Systems. In
Proceedings of the 31st International Conference on Software Engineer-
ing (ICSE), May 2009.

Bibliography 57

[40] H. Maaskant. A Robust Component Model for Consumer Electronic
Products. InDynamic and Robust Streaming in and between Connected
Consumer-Electronic Devices, volume 3 ofPhilips Research, pages 167–
192. Springer, 2005.

[41] Michael Winter, Thomas Genler, Alexander Christoph, Oscar Nierstrasz,
Stephane Ducasse, Roel Wuyts, Gabriela Arevalo, Peter Mller, Chris
Stich, and Bastiaan Schönhage. Components for Embedded Software -
The PECOS Approach. InIn Proc. International Conference on Compil-
ers, Architecture, and Synthesis for Embedded Systems (CASES 02. ACM
Press, 2002.

[42] Scott Hissam, James Ivers, Daniel Plakosh, and Kurt C. Wallnau. Pin
Component Technology (V1.0) and Its C Interface. TechnicalNote:
CMU/SEI-2005-TN-001, April 2005.

[43] IEC. IEC 61499 Function Blocks for Embedded and Distributed Control
Systems Design. IEC, 2005.

[44] Peter H. Feiler, Bruce Lewis, and Steve Vestal. The SAE architecture
analysis & design language (AADL) standard: A Basis for Model-Based
Architecture-Driven Embedded Systems Engineering.Proceeding of the
RTAS 2003 Workshop, 2003.

[45] The Object Management Group. UML Superstructure Specification v2.1,
April 2009.
http://www.omg.org/docs/ptc/06-04-02.pdf.

[46] Object Management Group. OMG Systems Modeling Language, V1.0,
2007.

[47] Object Management Group. A UML Profile for MARTE, Beta 1,August
2007. Document number: ptc/07-08-04.

[48] Embarcadero Technologies, Inc. Delphi.
http://www.embarcadero.com/products/delphi.

[49] The Eclipse Foundation. Eclipse.
http://www.eclipse.org/,.

[50] Microsoft. Visual studio.
http://msdn.microsoft.com/en-us/vstudio/.

58 Bibliography

[51] Karlsruhe Institute of Technology and Research Centerfor Information
Technology. Palladio Component Model Tool.
http://sdqweb.ipd.uka.de/wiki/Palladio Component Model.

[52] SUN MICROSYSTEMS, INC. Netbeans.
http://http://www.netbeans.org/.

[53] Mentor Graphics. Bridgepoint.
http://www.mentor.com/products/sm/model development/

bridgepoint/.

[54] Fujaba Tool Suite Developer Team. Fujaba Tool Suite.
http://wwwcs.uni-paderborn.de/cs/fujaba/.

[55] IBM Rational. Rational Rose Technical Developer.
http://www-01.ibm.com/software/awdtools/developer/

technical/support/.

[56] IBM Rational. Rhapsody.
http://www.telelogic.com/products/rhapsody/index.cfm.

[57] Simulink, MathWorks.
www.mathworks.com.

[58] ESTEREL Technologies. SCADE Suite.
http://www.esterel-technologies.com/

products/scade-suite/.

[59] Ana Petricic, Luka Lednicki, and Ivica Crnkovic. UsingUML for
Domain-Specific Component Models. InFourteenth International Work-
shop on Component-Oriented Programming, June 2009.

[60] Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson,Cristina Seceleanu,
and Paul Pettersson. Formal Semantics of the ProCom Real-Time Com-
ponent Model. InProceedings of the 35th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA), August 2009.

[61] Ana Petricic, Luka Lednicki, and Ivica Crnkovic. An Empirical Com-
parison of SaveUML and SaveCCM Technologies. Technical Report,
Mälardalen University, March 2009.

[62] Davor Slutej, John Håkansson, Jagadish Suryadevara,Cristina Sece-
leanu, and Paul Pettersson. Analyzing a Pattern-Based Model of a Real-
Time Turntable System. In6th International Workshop on Formal Engi-
neering approaches to Software Components and Architectures(FESCA),
ETAPS 2009, York, UK. Electronic Notes in Theoretical Computer Sci-
ence (ENTCS), Elsevier, March 2009.

II

Included Papers

61

Chapter 6

Paper A:
A Classification Framework
for Component Models

Ivica Crnkovic, Séverine Sentilles, Aneta Vulgarakis andMichel Chaudron
Accepted to IEEE Transactions on Software Engineering (in the process of
revision)

63

Abstract

The essence of component-basedsoftware engineering is embodied in com-
ponent models. Component models specify the properties of components and
the mechanism of component compositions. In last decade a rapid growth, a
plethora of different component models has been developed,using different
technologies, having different aims, and using different principles. This has
resulted in a number of models and technologies which have many similarities,
but also principal differences, and in a lot cases unclear concepts. Component-
based development has not succeeded in providing standard principles, as for
example object-oriented development. In order to increasethe understanding
of the concepts, and to easier differentiate component models, this paper pro-
vides a Component Model Classification Framework which identifies and dis-
cusses the basic principles of component models. Further the paper classifies a
certain number of component models using this framework.

6.1 Introduction 65

6.1 Introduction

Component-based software engineering (CBSE) is an established area of soft-
ware engineering. The inspiration for “building systems from components” in
CBSE comes from other engineering disciplines, such as mechanical or elec-
trical engineering, software architecture. The techniques and technologies that
form the basis for component models originate mostly from object-oriented
design and Architecture Definition Languages (ADLs). Sincesoftware is in its
nature different from the physical world, the translation of principles from the
classical engineering disciplines into software is not trivial. For example, the
understanding of the term component has never been a problemin the classical
engineering disciplines, since a component can be intuitively understood and
this understanding fits well with fundamental theories and technologies. This
is not the case with software. The notation of a software component is not
clear: its intuitive perception may be quite different fromits model and its im-
plementation. From the beginning, CBSE struggled with a problem to obtain
a common and a sufficiently precise definition of a software component. An
early and probably most commonly used definition coming fromSzyperski [1]
(“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third party”) fo-
cuses on characterization of software component. In spite of its generality
it was shown that this definition is not valid for a wide range of component-
based technologies (for example those which do not support contractually spec-
ified interface or independent deployment). In the definition of Heineman and
Councill [2] (“A software component is a software element that conforms to a
component model and can be independently deployed and composed without
modification according to a composition standard”), the component definition
is more general actually a component is specified through thespecification of
the component model. The component model itself is not specified. This defi-
nition can be even more generalized in respect to the component specification,
but component model can be expressed more precisely [3]:

Definition: A Software Component is a software building block that con-
forms to a component model. A Component Model defines standards for (i)
properties that individual components must satisfy and (ii) methods, and pos-
sibly mechanisms, for composing components.

This generic definition allows the existence of a wide spectrum of compo-
nent models, which is also happening in reality; on the market and in differ-
ent research communities, there exists many component models with different

66 Paper A

characteristics. However, it makes it more difficult to properly understand the
Component-Based (CB) principles. In particular, this is true since CB princi-
ples are not clearly explained and formally defined. In theirdiversities compo-
nent models are similar to ADLs; there are similar mechanisms and principles
but many variations and different implementations. For this reason there is a
need for having a framework which can provide a classification and compari-
son between different component models in a similar manner as it was done for
ADLs [4, 5]. In addition, a framework can help in the selection of a particular
component model or in the design of a new component model.

In this paper, we propose a classification and comparison framework for
component models. Since component models and their implementations in
component technologies cover a large range of different aspects of the develop-
ment process, we group these aspects in several dimensions and build a multi-
dimensional framework that counts different, yet equalityimportant, aspects of
component models. We have also analyzed a considerable number of compo-
nent models, and compared their characteristics. The results of the comparison
have led to some observations which are discussed in the paper.

Our research methodology was based on several iterations of(i) observa-
tions and analysis, (ii) classification, and (iii) validation; in the first iteration,
based on the literature related to general principles of component- based soft-
ware engineering and existing classification [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], the
classification model was applied to a set of component models, and discussed
with several CBSE and empirical software engineering researchers and experts
from different engineering domains. The resulting analysis and discussions
have led to a refinement of the framework. In the next iterations the refined
framework was applied to new component models and discussedwith new re-
searchers. The process (which lasted more than one year) hasbeen completed
when in the last iteration all new component models compliedwell with the
framework. Another important issue that we learned was related to a decision
what to define as a component model and what not. This is discussed in section
three.

The remainder of this paper is organized as follows. Section6.2 motivates,
explains and defines the different dimensions of the classification framework.
Section 6.3 discusses the criteria for inclusion of different models/technologies
into to component models survey and the classification framework. The com-
parison framework and observations from the comparison arepresented in sec-
tion 6.4. Related work is covered in section 6.5 and section 6.6 concludes the
paper. A very brief overview of the selected component models on which the
classification framework has been mapped is given in appendix 6.7.

6.2 The Classification Framework 67

6.2 The Classification Framework

The main concern of a component model is to (i) provide rules for the spec-
ification of component properties and (ii) provide rules andmechanisms for
component composition, including the composition rules ofcomponent prop-
erties. These main principles hide many complex mechanismsand models,
and have significant differences in approaches, concerns and implementations.
For this reason we cannot simply list all possible characteristics to compare
the component models; rather we want to group particular characteristics that
have similar concerns i.e. that describe the same or relatedaspects of compo-
nent models. Starting from the definition of component models, we distinguish
specification of components from specification of communication. Component
specifications express component functions (typically in aform of signatures),
and extra-functional properties. Most of the component models include only
specification of functions, in form of interfaces. Extra-functional properties, if
specified at all, are defined either in a form of extended interface or as compo-
nent metadata. The functional part of an interface is directly related to interac-
tion between components and realized through constructionmechanisms using
different interaction (architectural) styles. Communication between compo-
nents is usually not explicitly specified, but there are different types of com-
munications that are assumed in component models.

Finally different component models cover different phasesin a component
lifecycle; while some support only the modelling phase, others also provide
mechanisms supporting the implementation and run-time phase.

In this paper we divide the fundamental principles and characteristics of
component models into the following dimensions.

1. Lifecycle. The lifecycle dimension identifies the support provided (ex-
plicitly or implicitly) by the component model, in certain points of a life-
cycle of components or component-based systems. Component-Based
Development (CBD) is characterized by the separation of thedevelop-
ment processes of individual components from the process ofsystem
development. There are some synchronization points in which a com-
ponent is integrated into a system, i.e. in which the component is being
bound. Beyond those points, the notion of components in the system
may disappear, or components can still be recognized as parts of the sys-
tem.

2. Constructs. The constructs dimension identifies (i) the component inter-
face used for the interaction with other components and external envi-

68 Paper A

ronment, and (ii) the means of component binding and communication.
In some component models, the interface comprises the specification of
all component properties, including both functional and extra-functional,
but in most cases, it only includes a specification of functional properties.
Directly correlated to the interface are the components interoperability
mechanisms. All these concepts are parts of the “construction” dimen-
sion of CBD.

3. Extra-Functional Properties. The extra-functional properties dimen-
sion identifies specifications and support that includes theprovision of
property values and means for their composition. In certain domains
(for example real-time embedded systems), the ability to model and ver-
ify particular properties is equally important but more challenging than
the implementation of functional properties.

4. Domains. This dimension shows in which application and business do-
mains component models are used or supposed to be used.It indicates
the specialization, or the generality of component models.

In these four dimensions, we comprise the main characteristics of component
models but, of course, there are also other characteristicsthat can differentiate
them. For example, since in many cases component models are built on a
particular implementation technology, many characteristics come directly from
this supporting implementation technology and are not visible in component
models themselves. Still the intention with the classification and comparison
model is to comprise the main characteristics of component models.

6.2.1 Lifecycle

While CBSE aims at covering the entire lifecycle of component-based sys-
tems, component models provide only partial lifecycle support and usually are
related to the design, implementation and integration phases.

The overall component-based lifecycle is separated into several processes;
building components, building systems from components, and assessing com-
ponents [6]. Some component technologies provide certain support in these
processes (for example maintaining component repositories, exposing inter-
face, component deployment).

The component-based paradigm has extended the integrationactivities up
to the run-time phase; certain component technologies provide extended sup-
port for dynamic and independent deployment of components into running sys-

6.2 The Classification Framework 69

tems. This support is reflected in the design of many component models. In
contrast, in other component models components only exist as separate units
in the development stage and become assimilated into a system when the sys-
tem is built. In this case the system at run-time is monolithic. However not all
component models consider this integration phase. We can clearly distinguish
different component models that focus on one particular or more phases and
such phases can be different for different component models. Some compo-
nent technologies start in the design phase (e.g. Koala which has an explicit
and dedicated design notation of components and other elements of the com-
ponent model), while other component technologies focus onthe implementa-
tion phase (e.g. COM, EJB). For this reason one important dimension of our
component model classification lifecycle support. In our classification, we dis-
tinguish the lifecycle of components from the lifecycle of the component-based
system, which are different [3, 7] and are not necessary temporally related they
are ongoing in parallel and have some synchronization points. We identify the
following stages of the component lifecycle.

1. Modelling stage.The component models provide support for the mod-
elling and the design of component- based systems and components.
Models are used either for the architectural description ofthe systems
and components (e.g. ADLs), or for the specification and the verification
of particular system and component properties (e.g. statecharts, resource
usage models, performance models).

2. Implementation stage.The component model provides support for pro-
duction of code. The implementation may stop with the provision of
the source code, or may continue up to the generation of a binary (exe-
cutable) code. The existence of executable code is a precondition for the
dynamic deployment of components (during run-time).

3. Packaging stage.Because components are the central unit in CBSE,
there is a need for their storage and packaging either in a repository or
for distribution. A component package is a set of metadata and code
(source or executable). Accordingly, the result of this stage can be a file,
an archive, or a repository in which the packaged componentsreside
prior to decisions about how they will be run in the target environment.
For example, in Koala, components are packed into a file system-based
repository, with a folder per component. The folder includes a number
of files: Component Description Language (CDL) file and, a setof C
and header files, test file and different documents. Another example of

70 Paper A

packaging is achieved in the EJB component model. There, packaging
is done through jar archives, called ejb-jar. Each archive contains XML
deployment descriptor, component description, componentimplementa-
tion and interfaces.

4. Deployment stage.At a certain point of time, a component is integrated
into a system. This activity may happen at different phases of the sys-
tems lifecycle. In general, the components can be deployed at:

(a) compilation time, so it is no longer possible to change the way the
components interact with each other. For instance, Koala compo-
nents are deployed at compilation time and they use static binding
by following naming conventions and generated renaming macros.

(b) run timeas separate units by using means such as registers (COM)
or containers (CCM,EJB). For example, CORBA components are
deployed at run time in a container by using information of the de-
ployment descriptor packed with the component implementation.

requirements

modelling

implementation

packaging

deployment

execution

Component lifecycle

Component forms in a component lifecycle

Specification

- interface

- models

- metadata

Code

- source code

- executable code

- executable models

Storage

- repository

- package

- metadata Installed files Executable code

Figure 6.1: Component lifecycle and component forms

Figure 6.1 illustrates different stages in a component lifecycle and the as-
sociated forms of the components. Through the stages some ofthe forms are
transformed into new ones, some remains, while some disappear. In the figure
the requirements and execution phase are denoted with the dashed lines which
indicate that in these stages components do not necessary exist as independent
units. The forms of the components will be different across phases for different
component models.

6.2 The Classification Framework 71

6.2.2 The Constructs

As defined in [12], the verb “construct” means “to form something by putting
different things together”, so in applying this definition to the CBSE domain,
we define by the Constructs dimension, the way components areconnected
together within a component model in order to provide communication means.
But although this communication aspect is of primordial importance, it is not
often expressed explicitly. Instead, it is reflected implicitly by some underlying
mechanisms. This should be distinguished from specifications of functional
and sometimes extra-functional properties in a form of component interfaces.
Consequently, a component interface has a double role: It first specifies the
component properties (functional and possibly extra-functional), and second, it
identifies the connection points through which components are interconnected.

Interface

Interface specification is the characteristic “sine qua non” of a component
model. Interfaces are defined either by using special languages, or elements
of programming languages. Several languages exist that specify components
interfaces and their connections: modelling languages, such as UML or differ-
ent Architecture Description Languages (ADLs), particular specification lan-
guages, such as Interface Definition Languages (IDLs), programming languages
such as Interface in Java, or abstraction class in C++, or some additions built
directly in a programming language, such as pre-defined structs in C. In case of
special languages, the interface specifications are translated to a programming
language. In a few cases (e.g. COM), the interface is also defined in a binary
format in order to have a standard representation at deployment and run-time.
Some mechanisms such as introspection in Java are also used to discover the
interfaces of a component at run-time.

The component models that use programming languages or their extensions
for component specification, also inherit properties of these languages. For ex-
ample the component models that use object-oriented languages utilize the con-
cepts of classes and (interface) inheritance. Typically a component is expressed
as a class in which the interface is defined as a set of operations/functions and
attributes. However there exist other types of interfaces so called port-based
where ports are entries for receiving/sending different data types and events.
Note that this concept is different from the concept in UML 2.0 [13] in which
a port is defined as a set of specifications.

Some component models distinguish also the “provides”-part (i.e. the spec-
ification of the functions that the component offers) from the “requires”-part

72 Paper A

(i.e. the specification of the functions the component requires) of an interface.
In order to ensure that a component will behave as expected according to

its specification and operational mode, and in order to ensure that a compo-
nent is supplied with expected input and environment the notion of contract
has been adjoined to interfaces. According to [8], contracts can be classified
hierarchically in four levels which, if taken together, mayform a global con-
tract. We only adopt the three first levels in our classification since the last level
“contractualizes” only the extra-functional properties and this is not in direct
relation with interoperability

• Syntactic level: describes the syntactic aspect, also called signature, of
an interface. This level ensures the correct utilisation ofa component.
That is to say that the “calling-component” must refer to theproper
types, fields, methods, signals, ports and handles the exceptions raised
by the “responding component”. This is the most common and most easy
agreement to certify as it relies mainly on an, either staticor dynamic,
type checking technique.

• Semantic level: reinforces the previous level of contracts in certifying
that the values of the parameters as well as the persistent state variables
are within the proper range. This can be asserted by pre-conditions, post-
conditions and invariants. A generalization of this level can be assumed
as semantics.

• Behaviour level: dynamic behaviour of services. It expresses either the
composition constraints (e.g. constraints on their temporal ordering) or
the internal behaviour (e.g. dynamic of internal states).

Finally, the constructs dimension refers to the notions of reusability and
evolvability, which are important principles of CBSE. Indeed many component
models are endowed with diverse features for supporting them; one typical
solution is the ability to add new interfaces to a component.This makes it
possible to embody several versions or variants of functions in the component.

Composition of Constructs

While compositions in general consider compositions of component proper-
ties, both functional and extra-functional, compositionsof constructs are re-
lated to components interactions. Constructs compositions are implemented
as connections of interaction channels and the process of this connection is
called binding. The binding mechanism is related to the component lifecycle;

6.2 The Classification Framework 73

it can occur at compilation time (when a compiler provides connections be-
tween components using programming language mechanisms),or at runtime,
in which connection mechanisms are utilised that are provided by the underly-
ing run-time infrastructure. Such a run-time infrastructure may consist of dedi-
cated component middleware, and/or a component framework or of a common
operating system or middleware.

A so-called “docking interface” method is commonly used when binding
occurs at run-time. This docking interface does not offer any application func-
tionality, but serves instead for managing the binding and subsequent interac-
tion between a component and the underlying run-time infrastructure. In many
component models (e.g. CCM, EJB) the composition specification is location-
transparent; the run-time location of components (placed on a local or a remote
node) is specified separately from the binding information.This information
about the location is used in the deployment phase.

Connectors, introduced as distinct elements in ADLs, are not common
among the first class citizens in most component models. Connectors are me-
diators in the connections between components and have a double purpose:
(i) enabling indirect composition (so called exogenous compositions), and (ii)
introducing additional functionality, especially for mediation between compo-
nents. In the exogenous composition information concerning the binding re-
sides outside of the components; the components have no knowledge of who
they are connected to. Exogenous composition enables more seamless evolu-
tion because it separates changes to components from changes to their bind-
ings. In several component technologies, connectors are implemented as spe-
cial types of components, such as adaptors or proxies, either to provide ad-
ditional functional or extra-functional properties, or toextend the means of
intercommunication. In direct (endogenous) type of composition the compo-
nents are connected directly through their interfaces. Information concerning
the binding resides inside components.

The interface specification implicitly defines the type of interaction be-
tween components to comply with particular architectural styles. In most cases,
a particular component models provide a single basic interaction style (for ex-
ample, “request-response” or “pipe & filter”, but others, such as Fractal, Pin
and BIP allow the construction of different architectural styles.

An important question related to the composability of components has con-
cerned the research community [9]: Can the assemblies of components (by
assemblies we assume a set of components mutually connected) be treated as
components themselves, i.e. is the composition hierarchical? There are two
kinds of assemblies supported by existing component technologies. The first is

74 Paper A

the first order assembly which is not treated as a component inthe component
model. This type of assembly is merely a set of components of an arbitrary
form, creating an application or a part of an application. Interms of binding
the component models refer to “horizontal composition” or “horizontal bind-
ing”. The second type of assembly is hierarchical which means that the assem-
bly, created from components, again satisfies the properties that an individual
component should satisfy according to the component model.In that case we
refer to “hierarchical composition” or “hierarchical binding”. The criteria for
vertical composition are related to constructs (interfacespecification and the
interaction), and possibility extra-functional properties. Most of the compo-
nent models support partial vertical composition. For example interfaces can
be composed recursively in modelling phase, but not in the deployment phase
(in particular when deployment is performed during run-time).

Constructs Classifications

Following the observations and reasoning from above we identify the following
classification characteristics for interfaces and connections in the constructs
dimension.

1. Interface specification, in which different characteristics allowing the
specification of interfaces are identified:

(a) The distinction of interface type: operation-based (e.g. methods
invocations) and port-based interface (e.g. data passing).

(b) The distinction between the provides-part and the requires-part of
an interface.

(c) The existence of some distinctive features appearing only in this
component model (such as special type of ports, optional opera-
tions).

(d) The language used to specify the interface.

(e) Interface levels which describe the levels of contractualisation of
the interfaces, namely syntactic, semantic and/or behaviour level.

2. Interactions, which comprise the following characteristics:

(a) Interaction style which describes the main underlying architectural
style used.

(b) Communication type which details mainly if the communication
used are synchronous and/or asynchronous.

6.2 The Classification Framework 75

(c) Binding type describes the way components may be linked together
through the interfaces. It is realized in two subtypes:

i. The exogenous/endogenous sub-category describing whether
the component model includes connectors as architectural el-
ements, and

ii. The hierarchical sub-category expressing the possibility of hav-
ing a hierarchical composition of components (horizontal com-
position is an intrinsic part of all component models, thus it
is implicitly assumed, and not put in the classification frame-
work).

6.2.3 Extra-Functional Properties

Properties are used in the most general sense as defined by standard dictionar-
ies, e.g. “a construct whereby objects and individuals can be distinguished” [9].
There is no unique taxonomy of properties, and consequentlymany property
classification frameworks can exist. One commonly used classification is to
distinguish functional from extra-functional properties. While functional prop-
erties describe functions or services of an object, extra-functional properties
(EFPs) specify the quality, or in general a characteristic of interest, of objects.
In CBSE, there is also a distinction between component properties and system
properties. A property at the system level can result from the composition of
the same properties of constituent components, but also from the composition
of different properties. In latter case such property can exist only on a system
level. Such properties are called emerging properties.

Composition of Extra-Functional Properties

EFPs can be complex and abstract or, they can be tangible and concrete. Exam-
ples of abstract (and complex) properties are dependability or performance and
examples of tangible properties are memory footprint or scalability. Complex
properties are typically the result of the composition of several more tangi-
ble properties. An important concern of CBSE is compositionof properties
expressed in the following way. For an assembly A that is composed of com-
ponent C1 and C2

A = C1 ◦ C2

expresses a property of the assembly as a composition of properties of the
components

P (A) = P (C1) ◦ P (C2)

76 Paper A

Different EFPs have different characteristics and hence are specified in very
different ways. Also computing the compositions of EFPs require different
composition theories for different EFPs. In relation to composability, one of the
challenges of CBSE is predictability. To enable analysis atthe design stage and
to avoid expensive, tedious and non-accurate tests and increase reusability, a lot
of efforts has been made in CBSE research communities to design component
models that enable predictability.

According to [9], the properties can be classified accordingto types of com-
positions in the following basic categories.

• Directly composable properties(example: static memory): A property
of an assembly is a function of, and only of, the same propertyof the
components involved.

P (A) = f (P (C1) , . . . , P (Ci) , . . . , P (Cn))

• Architecture-related properties(example: performance): A property of
an assembly is a function of the same property of the components and of
the software architecture.

P (A) = f (SA, . . . P (Ci) . . .) ,

i = 1 . . . n

SA = softwarearchitecture

• Derived properties(example: response time vs. execution time): A
property of an assembly depends on several different properties of the
components.

P (A) = f (SA, . . . P i (Cj) . . .) ,

i = 1 . . . m

j = 1 . . . n

P i = componentproperties

Cj = components

• Usage-depended properties(example: reliability): A property of an as-

6.2 The Classification Framework 77

sembly is determined by its usage profile.

P (A, U) = f (SA, . . . P i (Cj, U) . . .) ,

i = 1 . . .m

j = 1 . . . n

U = usageprofile

• System environment context properties(example: safety): A property is
determined by other properties and by the state of the systemenviron-
ment.

P (S, U, X) = f (SA, . . . P i (Cj, U, X) . . .) ,

i = 1 . . .m

j = 1 . . . n

S = system

X = systemcontext

This idealised classification indicates the limitations ofthe compositions
of EFPs. Determining the compositions of properties of components becomes
feasible when restrictions are imposed on the design of individual components
(by means of rules/constraints in of the component model) and system archi-
tecture. For example static memory usage of an assembly can be defined as
the sum of static memory usage of involved components, but only using par-
ticular composition policies (e.g. no concurrency). In this way, we can obtain
predictability of the considered property. Other properties are related to us-
age profile and if we cannot predict usage profile we cannot predict the system
properties. Some other properties are not composable at all, and in that case
we cannot predict their composition.

Management of Extra-Functional Properties

Even if EFPs are not composable, they can be manageable, i.e.they can be
obtained by using some solutions encapsulated in componentmodels and stan-
dardized architectural solutions. Different types of EFP management exist ac-
cording to the way the component models handle them. We distinguish two
main dimensions Fig 6.2:

78 Paper A

1. A property is managed by the components (endogenous EFP manage-
ment – approaches A and B), or by the system (exogenous EFP manage-
ment – approaches C and D) or managed.

2. A property is managed on a system-wide scale (approaches Band D), or
the property is managed on a per-collaboration basis (approaches A and
C).

component

EFP management

componentcomponentcomponent

EFP management

Endogenous EFP

 management

Exogenous EFP

 management

EFP management

component

EFP management

component

Component Execution Platform

Component Execution Platform

EFP management

EFP management

component

EFP management

component

Component Execution Platform

EFP management

Component Execution Platform

EFP managed per collaboration EFP managed systemwide

C D

A B

Figure 6.2: Management of extra-functional properties

Approach A(endogenous per collaboration). A component model does not
provide any support for EFP management, but it is expected that a component
developer implements it. This approach makes it possible toinclude EFP man-
agement policies that are optimized towards a specific system, and also can
cater for adopting multiple policies in one system. This heterogeneity may
be particularly useful when COTS components need to be integrated. On the
other hand, the fact that such policies are not standardizedmay be a source of
architectural mismatch between components. This approachcan hardly man-
age emerging properties.

Approach B(endogenous systemwide). In this approach, there is a mecha-
nism in the component execution platform that contains policies for managing

6.2 The Classification Framework 79

EFPs for individual components as well as for EFPs involvingmultiple compo-
nents. The ability to negotiate the manner in which EFPs are handled requires
that the components themselves have some knowledge about how the EFPs
affect their functioning. This is a form of reflection.

Approach C(exogenous per collaboration) and Approach D(exogenous
systemwide). In these approaches the components are designed such thatthey
address only functional aspects and not EFP. Consequently,in the execution
environment, these components are surrounded by a container. This container
contains the knowledge on how to manage EFPs. Containers caneither be
connected to containers of other components (approach C) orcontainers can
interact with a mechanism in the component execution platform that manages
EFPs on a system wide scale (approach D). The container approach is a way
of realizing separation of concerns in which components concentrate on func-
tional aspects and containers concentrate on extra-functional aspects. In this
way, components become more generic because no modificationis required to
integrate them into systems that may employ different policies for EFPs. Since
these components do not address EFPs, another advantage is that they are sim-
pler and hence cheaper to implement. A disadvantage of this approach might
be a degradation of the system performance.

Extra-Functional Properties Classification

For the EFPs we provide a classification in respect to the following questions:

1. Management of EFPs: Which type of management (if any) is provided
by the component model?

2. EFP specification: Does the component model contain means for spec-
ification and management of specific EFPs. If yes, which properties or
which types of properties?

3. Composability of EFPs: Does the component model provide means,
methods and/or techniques for composition of certain extra-functional
properties and/or what type of composition?

6.2.4 Domains

Some component models are aimed at specific application domains as for in-
stance consumer electronics or information systems. In such cases, require-
ments from the application domain penetrate into the component model. The

80 Paper A

benefits of a domain-specific component models are that the component tech-
nology facilitates achieving certain requirements. Such component models are,
as a consequence, limited in generality and will not be so easily usable in do-
mains that are subject to different requirements.

Some component models are of general-purpose. They providebasic mech-
anisms for the specification and the composition of components, but do not
assume any specific architecture beyond general assumptions (like interaction
style, support for distributed systems, compilation or run-time deployment).
A general solution that enables component models to be both generally ap-
plicable but to also cater for specific domains is through theuse of optional
frameworks. A framework is an extension of a component modelthat may
be used, but is not mandatory in general. There is a third typeof component
models, namely generative; they are used for instantiationof particular com-
ponent models. They provide common principles, and some common parts of
technologies (for example modelling), while other parts are specific (for exam-
ple different implementations). According to this, we classify the component
models as

1. General-purpose component models;

2. Specialized component models;

3. Generative component models.

6.2.5 The Classification Overview

Fig. 6.3 summarizes the classification framework in a graph form.

6.2 The Classification Framework 81

 Generative

General -

Purpose

Specialised

Endogenous

Collaborative

Endogenous

 Systemwide

 Exogenous

Collaborative

 Exogenous

 Systemwise

Composition and

Analysis Support

Specification

Management

Domains

Binding Type

Exogenous /

Endogenous

Vertical

Asynchronous

Synchronous

Communication

 Type

Interaction

 Style

Interactions

 Interface

Specification

Interface

 Style

 Distinction of

Provides / Requires

Distinctive

 Features

Interface

 Levels

 Interface

Language

At run-time

At compilation

Deployment

Packaging

Implementation

Modelling

Component

 Model

Lifecycle

Constructors

Extra-Functional

 Properties

Figure 6.3: The hierarchical structure of the classification framework

82 Paper A

6.3 Survey of Component Models

Nowadays a number of component models exist. They vary widely: in usage,
in support provided, in concerns, in complexity, in formal definitions, etc.. In
our classification of component models, the first question iswhether a partic-
ular model (or technology, method, or similar) is a component model or not.
Similar to biology in which viruses cover the border betweenlife and non-life,
there is a wide range of models, from those having many elements of com-
ponent models but still not assumed as component models, viathose that lack
many elements of component models, but still are designatedas component
models, to those which are broadly accepted component models. Therefore,
we identify the minimum criteria required to classify a model, or a notation as
a component model. This minimum is defined by the definition ofcomponent
models given in the introduction: A model that defines rules for the design
and specification of components and their properties and means of their com-
position can be classified as a component model. It should be noted that this
condition is mandatory, but not sufficient. We have identified several models
that fulfil this condition, but still we have not included them in the survey. We
can call them “almost” component models.

6.3.1 “Almost” Component Models

A wide range of modeling languages contains the term “component” and even
(semi)formally specifies components and component compositions. For exam-
ple in the classification of ADLs [5] one of the basic elementsare components
(and connectors as means for construction composition). UML 2.0 is even
closer to component models since it provides a metamodel forcomponents,
interfaces and ports. Still we have deliberately chosen notto select them as
component models, in difference to some other classifications (such as [11]).
One reason is that their purpose is not component-baseddevelopment but rather
the specification of system architectures. ADLs and UML 2.0 are excellent lan-
guage candidates for modeling component-based systems andcomponents in
the design phase, but are missing other characteristics to be declared as com-
ponent models. Certain languages derived from UML, such as xUML [14]
in which the component specification is translated to an executable entity, are
even closer candidates for component models. However xUML and similar
languages do not operate with components as first class citizens (for example
components are not treated as separate development or executable entities), but
components are only architectural elements.

6.3 Survey of Component Models 83

On the other side of the lifecycle line are services. One can argue that
services are special types of components. Services are focused on run-time
retrieval and run-time deployment. Similar to components,services are speci-
fied by an interface, and provide support for constructs compositions [15]. Still
we have not included services in the classifications for similar reasons as for
ADLs their focus is not component-based development. In analogy to ADLs,
services are not component models but rather use component models. Further,
we have not included technologies such as Unix processes and“pipe & filter”
mechanisms, or modeling environments such as Simulink or Ptolemy [16], as
again the components are not the primary concern in these approaches.

Finally we have not included technologies like Eclipse or Photoshop that
enable the integration of plugins from third parties and in this way suit well to
a part of Szyperskis definition of components (“deployed independently and is
subject to composition by third party”). However they do notprovide mecha-
nisms of compositions between components, rather mechanism between com-
ponents and the underlying platform.

For these “almost component models” one can argue that they are compo-
nent models or technologies, and that they could be includedinto the survey.
Our position is that their inclusion will break the spirit ofthe component mod-
els as defined in this paper according to the arguments presented.

6.3.2 Component Models

In our classification framework we have selected a number of component mod-
els that appeared in the research literature and in practice. While some of them
are widely spread and proven, others are used as demonstrators or illustrations
of ideas in research.

The classification framework does not show the success of particular com-
ponent models, or any business model, but it is based on the technical char-
acteristics only. The components models that we have included in the list are
shortly referred to in the appendix 6.7.

It is worth to mention that for some of the component models that we found,
our selection criteria were satisfied, however because of scarcity of available
documentation it was impossible to get the needed detailed information (which
usually is a sign that no activity around the model is going on). In these cases,
we have decided to omit them from our list.

84 Paper A

6.4 The Comparison Framework

The characteristics of the component models are collected in the tables be-
low, following the dimensions in the classification framework, namely life-
cycle (Table 6.1), constructs (Tables 6.2, and 6.3), extra-functional properties
(Table 6.4), and the domains (Table 6.5) lined in the alphabetic order. Follow-
ing each table, a short discussion gathering observations and their rationales is
presented.

6.4.1 Lifecycle Classification

From the observation of Table 6.1, one can notice that there is a group of
component models that do not provide any support for modeling of components
or component-based applications, but cover only implementation part (specifi-
cation and deployment). All these component models belong to the state of the
practice and most of them are widely used. Does that mean thatthe modeling
of components is not supposed to be a part of a component model? Or does
it mean that other tools, for example general-purpose modeling tools, such as
UML or ADLs are used for modeling, while component technologies are used
for the implementation? It is partially true that most of thepractitioners do not
model their systems using formal specification languages, but rather express
their design in a non-formal way for documentation purpose only, or in a semi-
formal way typically using UML. In both cases neither the precise definitions
of components nor their interactions are assumed to be of high priority. This is
also an indicator of differences between state of the art andstate of the practice;
many solutions that include modeling of components or theirproperties from
the state of the art have still not been realized or scaled up in practice.

The second observation from Table 6.1 is the fact that most ofthe compo-
nent models use object-oriented languages for the implementations with dom-
ination of Java. Still there exist component models using other languages, for
example imperative programming languages such as C.

It seems that the packaging and component repositories are not in focus of
component models. In most cases, certain standard archivesare used (such as
DLL or JAR packages). The lack of repositories indicates a low focus of reuse,
in particular of COTS components.

Deployment at compile time and run-time occurs almost equally often. De-
ployment at compile time limits the flexibility at run-time,but on the other hand
enables easier predictability, richer composition features (such as hierarchical
composition), and more efficient reuse (such as deployment of implementation

6.4 The Comparison Framework 85

Table 6.1: Lifecycle Dimension

Component
Models

Modelling Implementation Packaging Deployment

AUTOSAR N/A C
Non-formal

specification of
container

Compilation

BIP
A 3-layered representation:

behavior, interaction, and
priority

BIP Language N/A Compilation

BlueArX N/A C N/A Compilation

CCM N/A Language independent
Deployment
Unit archive

(JARs, DLLs)
Run-time

COMDES II ADL-like language C N/A Compilation

CompoNETS Behavour modeling (Petri Nets) Language independent
Deployment
Unit archive

(JARs, DLLs)
Run-time

EJB N/A Java EJB-Jar files Run-time

Fractal
ADL-like language (Fractal

ADL, Fractal IDL),
Annotations (Fractlet)

Java (in Julia, Aokell)
C/C++ (in Think)

.Net lang. (in FracNet)

File system
based repository

Run-time

KOALA
ADL-like languages (IDL,CDL

and DDL)
C

File system
based repository

Compilation

KobrA UML Profile Language independent N/A N/A

IEC 61131

Function Block Diagram (FBD)
Ladder Diagram (LD)

Sequential Function Chart
(SFC)

Structured Text (ST)
Instruction List (IL)

N/A Compilation

IEC 61499 Function Block Diagram (FBD) Language independent N/A Compilation

JavaBeans N/A Java Jar packages Compilation

MS COM N/A OO languages DLL
Compilation

and
run-time

OpenCOM N/A OO languages DLL Run-time

OSGi N/A Java
Jar-files

(bundles)

Compilation
and

run-time

Palladio UML profile Java N/A Run-time

PECOS ADL-like language (CoCo) C++ and Java
Jar packages or

DLL
Compilation

Pin ADL-like language (CCL) C DLL Compilation

ProCom
ADL-like language, timed

automata
C

File system
based repository

Compilation

ROBOCOP
ADL-like language, resource

management model
C and C++

Structures in zip
files

Compilation
and

run-time

RUBUS Rubus Design Language C File system
based repository

Compilation

SaveCCM
ADL-like (SaveComp), timed

automata
C

File system
based repository

Compilation

SOFA 2.0
Meta-model based specification

language
Java Repository Run-time

86 Paper A

parts that will be used in the application). This might be a reason why this
is the primary deployment style chosen by specialized component models (cf.
Table 6.5).

6.4.2 Constructs Classification

Tables 6.2 and 6.3 show interface and interaction specifications of the se-
lected component models. Although the existence of interface is a “condition
sine qua non” for component models, and all selected component models iden-
tify the interface as an indispensable part of a component, Table 6.2 shows
that interfaces can be of different types. Most interfaces are of operation type,
thus using functions and parameters for defining elements ofservices the com-
ponent provides and requires. Still, many component modelsuse ports as in-
terface elements using them for passing data. Such component models are
typically used in embedded systems and have their grounds from the concept
of hardware components. Some component models do not distinguish between
required and provided interface, but the interface is identified with the provided
interface, similar to the object-oriented approach. In port-based interfaces, in-
put and output interfaces consisting of ports that receive and send data (often
designated as sink and source) are distinguished, which corresponds to pro-
vided and required interface.

Since interfaces are an obligatory part of the component specification, all
component models provide at least the first level, i.e. syntactic specification.
A considerable number of component models also have behavior specifica-
tions, in most cases specified by a particular form of finite state machines
(state charts, timed automata). Rather few of the componentmodels iden-
tify semantic of the interfaces. If semantics are defined, then mostly pre- and
post-conditions are used for this. It is worth to mention that interface semantics
should not be mixed with other types of semantics that some component mod-
els can have (e.g. SaveCCM has execution semantics which defines the process
of the component execution in respect to time).

In line with the type of an interface (operation vs. ports), from the infor-
mation provided in Table 6.3 one can conclude that the dominating interac-
tion styles in the component models are “request response” (typically used in
client/server architectures), and dataflow and pipe & filter. Some component
models have specific additions to interaction styles – event-driven, broadcast
or rendez-vous.

6.4 The Comparison Framework 87

Table 6.2: Constructs – Interface Specification

Component
Models

Interface
type

Distinction
of

Provides
Requires

Distinctive features Interface Language Interface
Levels

AUTOSAR
Operation-

based
Port-based

Yes AUTOSAR Interface C header files Syntactic

BIP Port-based No
Complete interfaces,
Incomplete interfaces

BIP Language
Syntactic
Semantic
Behaviour

BlueArX Port-based Yes N/A C Syntactic

CCM
Operation-

based
Port-based

Yes
Facets and receptacles
Event sinks and event

sources
CORBA IDL, CIDL Syntactic

COMDES II Port-based Yes N/A
C header files State

charts diagrams
Syntactic
Behaviour

CompoNETS
Operation-

based
Port-based

Yes
Facets and receptacles
Event sinks and event

sources

CORBA IDL, CIDL,
Petri nets

Syntactic
Behaviour

EJB
Operation-

based
No N/A Java + Annotations Syntactic

Fractal
Operation-

based
Yes

Component Interface,
Control Interface

IDL, Fractal ADL, or
Java or C,

Behavioural Protocol

Syntactic
Behaviour

KOALA
Operation-

based
Yes

Diversity Interface,
Optional Interface

IDL, CDL Syntactic

KobrA
Operation-

based
N/A N/A UML Syntactic

IEC 61131 Port-based Yes N/A N/A Syntactic

IEC 61499 Port-based Yes
Event input and event
output Data input and

data output
N/A Syntactic

JavaBeans Operation-
based

Yes N/A Java Syntactic

MS COM
Operation-

based
No Ability to extend interface Microsoft IDL Syntactic

OpenCom
Operation-

based
No

Interfaces additional to
COM-interface managing
lifecycle, introspections,

etc.

Microsoft IDL Syntactic

OSGI
Operation-

based
Yes Dynamic Interfaces Java Syntactic

Palladio
Operation-

based
Yes

Possibility to annotate
interface

UML
Syntactic
Behaviour

PECOS Port-based Yes Ability to extend interface
Coco language,

Prolog query, Petri
nets

Syntactic
Semantic
Behaviour

Pin Port-based Yes N/A

Component
Composition

Language (CCL),
UML statechart

Syntactic
Behaviour

ProCom Port-based Yes Data and trigger ports
XML based, Timed

Automata
Syntactic
Behaviour

Robocop Port-based Yes
Ability to extend different

types of
interface/annotations

Robocop IDL
(RIDL), Protocol

specification

Syntactic
Behaviour

RUBUS Port-based Yes Data and trigger ports C header files Syntactic

SaveCCM Port-based Yes
Data, trigger, and
data-trigger ports

SaveComp
(XMLbased),Timed

Automata

Syntactic
Behaviour

Sofa 2.0
Operation-

based
Yes

Utility Interface,
Possibility to annotate
interface and to control

evolution

Java, SPC algebra
Syntactic
Behaviour

88 Paper A

Table 6.3: Constructs – Interface Interaction

TypeComponent
Models Interaction Styles

Communication
Type Exogenous Hierarchical

AUTOSAR
Request response,
Messages passing

Synchronous,
Asynchronous

No Delegation

BIP
Triggering,

Rendez-vous,
Broadcast

Synchronous,
Asynchronous

No Delegation

BlueArX Pipe&filter Synchronous No Delegation

CCM
Request response,

Triggering
Synchronous,
Asynchronous

No No

COMDES II Pipe&filter Synchronous No No

CompoNETS Request response Synchronous,
Asynchronous

No No

EJB Request response
Synchronous,
Asynchronous

No No

Fractal Multiple interaction
styles

Synchronous,
Asynchronous

Yes Delegation,
Aggregation

KOALA Request response Synchronous No
Delegation,
Aggregation

KobrA Request response Synchronous No
Delegation,
Aggregation

IEC 61131 Pipe&filter Synchronous No Delegation

IEC 61499
Event-driven,
Pipe&filter

Synchronous No Delegation

JavaBeans Request response,
Triggering

Synchronous No No

MS COM Request response Synchronous No
Delegation,
Aggregation

OpenCOM Request response Synchronous No Delegation,
Aggregation

OSGi
Request response,

Triggering
Synchronous No No

Palladio Request response Synchronous No No

PECOS Pipe&filter Synchronous No Delegation

Pin
Request response,
Message passing,

Triggering

Synchronous,
Asynchronous

No No

ProCom
Pipe&filter,

Message passing
Synchronous,
Asynchronous

Yes Delegation

Robocop Request response Synchronous,
Asynchronous

No No

Rubus Pipe&filter Synchronous No No

SaveCCM Pipe&filter Synchronous No
Delegation,
Aggregation

SOFA 2.0
Multiple interaction

styles
Synchronous,
Asynchronous

Yes Delegation

6.4 The Comparison Framework 89

Table 6.3 shows that the dominant communication type in component mod-
els is synchronous. Component models that provide support for asynchronous
type of communication also support synchronous communication. This indi-
cates that component models are not concerned about architecture (architec-
tural design), but rather targeting detailed design. This fact is also reflected in
the use of connectors. Quite a few of the component models have connectors as
first class entities, which indicates that components in many component mod-
els are implicitly assumed as fine-grained entities, in contrast to architectural
components.

Finally, one can observe that many component models do not support ver-
tical binding, i.e. the means for hierarchical composition. Composition of ver-
tical binding is implemented either through delegated interfaces (i.e. selected
interfaces from sub-components build up the interface of the composite com-
ponents) or as aggregation in which the composite component(or in this case
just an assembly) include all interfaces of the aggregated components.

6.4.3 Extra-Functional Properties Classification

From Table 6.4 an interesting observation can be found: Manycomponents
provide certain support for management of EFPs, either system-wide or per
container. However a significantly smaller number of component models have
formalisms for EFPs specifications. Even smaller number provides means for
composition of EFPs. This is particularly true for commercial component mod-
els. This is not surprising since many EFPs are either not formally defined, or
are considered too complex.

Some of the component models provide architectural solutions (for exam-
ple redundancy or authentication) which in general improvethe quality of sys-
tems. These solutions have an impact on different properties (for example
reliability and availability). The solutions are usually not part of components
themselves but are built into the underlying platform, and added as additional
service used in some particular domains (for example COM+ used in MS COM
and .NET technologies). While these component models provide support for
increasing quality, they still do not support EFP compositions and by this do
not obtain “predictability by construction”. Clearly, composition of EFPs still
belongs to research challenges. A vast majority of EFPs thatare explicitly
managed (specified and composed) belong to resource usage and timing prop-
erties.

90 Paper A

Table 6.4: Extra-Functional Properties

Component
Models

Management of EFP Properties specification Composition and analysis
support

AUTOSAR Endogenous per collaboration (A) N/A N/A

BIP Endogenous system wide (B) Timing properties Behaviour compositions

BlueArX Endogenous per collaboration (A)
Resource usage, Timing

properties
N/A

CCM Exogenous system wide (D) N/A N/A

COMDES II Endogenous system wide (B) Timing properties N/A

CompoNETSEndogenous per collaboration (A) N/A N/A

EJB Exogenous system wide (D) N/A N/A

Fractal Exogenous per collaboration (C)
Ability to add properties (by
adding property controllers)

N/A

KOALA Endogenous system wide (B) Resource usage
Compile time checks of

resources

KobrA Endogenous per collaboration (A) N/A N/A

IEC 61131 Endogenous per collaboration (A) N/A N/A

IEC 61499 Endogenous per collaboration (A) N/A N/A

JavaBeans Endogenous per collaboration (A) N/A N/A

MS COM Endogenous per collaboration (A) N/A N/A

OpenCOM Endogenous per collaboration (A) N/A N/A

OSGi Endogenous per collaboration (A) N/A N/A

Palladio Endogenous system wide (B)
Performance properties

specification
Performance properties

PECOS Endogenous system wide (B)
Timing properties, generic

specification of other
properties

N/A

Pin Exogenous system wide (D)
Analytic interface, timing

properties
Different EFP composition
theories, example latency

ProCom Endogenous system wide (B) Timing and resources Timing and resources at
design and compile time

ROBOCOP Endogenous system wide (B)

Memory consumption,
Timing properties,

reliability, ability to add
other properties

Memory consumption and
timing properties at

deployment

RUBUS Endogenous system wide (B) Timing
Timing properties at design

time

SaveCCM Endogenous system wide (B)
Timing properties, generic

specification of other
propertie

Timing properties at design
time

SOFA 2.0 Endogenous system wide (B) Behavioural (protocols) Composition at design

6.4 The Comparison Framework 91

6.4.4 Domains Classification

From Table 6.5 we see that the distribution between general-purpose compo-
nent models and specialized component models is equal. We could expect
more specialized; Probably in practice there are more specialized proprietary
and not published component models. We have also observed a migration of
certain component models. For example OSGI was originally designed for em-
bedded systems, but later has been used as general-purpose component model
in different domains. There is also an opposite trend to this. General-purpose
component models have been adapted for particular domains by a combination
of addition of new features and restriction of some functions. Such examples
are CompoNETS and OpenCOM.

Specialized component models belong to two domains: a) embedded sys-
tems, and b) information systems. The component models fromthe embed-
ded systems domain have some common characteristics: the use of the “Pipe
& Filter/Dataflow” architectural style, components are usually deployable at
compilation time, components are resource-aware and oftenthere is support
for management of timing properties. These component models are signif-
icantly different from general-purpose component models.The component
models from the information systems domains are significantly more similar to
general-purpose component models. Typically they have similar characteristics
as general-purpose component models, such as use of “request response” inter-
action, support for run-time run-time deployment, expandable interface, imple-
mentation in object-oriented language but they can be distinguished from gen-
eral purpose component models through specific support for distributed com-
ponents, data transaction support, interoperability withdatabases, and some
architectural solutions such as redundancy or location transparency.

Table 6.5: Domains

Domain A
U

T
O

S
A

R
B

IP
B

lu
eA

rX
C

C
M

C
O

M
D

E
S

II
C

om
po

N
E

T
S

E
JB

3.
0

F
ra

ct
al

K
O

A
LA

K
ob

rA
IE

C
61

13
1

IE
C

61
49

9
Ja

va
B

ea
ns

M
S

C
O

M
O

pe
nC

O
M

O
S

G
i

P
al

la
di

o
P

E
C

O
S

P
in

P
ro

C
om

R
ob

oc
op

R
ub

us
S

av
eC

C
M

S
O

FA
2.

0

General-purpose X X X X X X X X X X X

Specialised X X X X X X X X X X X X X

Generative X X X

92 Paper A

6.5 Related Work

Over the last decade, several attempts to identify key features of software com-
ponents and component models have been proposed: classification or studies
of components and interfaces ([17], [18]), interfaces, extra-functional proper-
ties ([9]), ADLs ([5]), component models ([11]), characteristics of component
models for particular business domains ([10]), among others.

The models presented in [17] and [18] do not consider any component
model but rather focus on practical issues of component utilization and reuti-
lization. In [17], the interface classification is split into two categories: appli-
cation interfaces and platform interfaces. Application interfaces describe the
information about the interaction with other components (messages protocol,
timing issues to requests) whereas the platform aspect is concentrates on the
interaction between components and the executing platform. Similarly in [18]
a model for characterizing components is proposed which reuses the classifi-
cation model of interfaces from [17]. A component is there regarded as the
description of three main items (informal description, externals and internals)
each of them split into several subelements. The informal description is con-
nected with a set of human-related features which can influence on the selection
of a component such as its age, its provenance, its level of reuse, its context,
its intent and if there is any related component solving a similar problem. The
externals are concerned with interaction mechanisms both with other applica-
tion artifacts and with the platform (application interfaces, platform interfaces,
role, integration phase, integration frameworks, technology and non-functional
features). Finally the internals are concerned with elements related to the po-
tential information needed during the development processof a system (nature,
granularity, encapsulation, structural aspects, behavioural aspects, accessibility
to source code).

Similar to our work to some extent, a classification framework to classify
each of the proposed models, frameworks, or standards is proposed in [19],
trying to determine what the core features of a software component are. The
classification approach is different from ours; it includesidentification of a
component by a set of elements/characteristics (unit of composition, reuse,
interface, interoperability, granularity, hierarchy, visibility, composition, state,
extensibility, marketability, and support for OO). The classification includes
only business components and business solutions. One of theproblems with
this classification is the non orthogonality of some of the characterized items.

In [5], in which ADLs are classified, components are defined asbasic ele-
ments of ADLs. The components are distinguished by the following features:

6.6 Conclusion 93

interface, types, semantics, constraints, evolution, andnon-functional proper-
ties.

In [10], a classification model is proposed to structure the CBSE body of
knowledge. All research results are characterized according to several aspects
(concepts, processes, roles, product concerns and business concerns, technol-
ogy, off-the-shelf components and related development paradigms). Here, the
component model is only considered as one of the fifty elements in the CBSE
items. However, in this work, a more precise taxonomy of application do-
mains is proposed. The paper identifies the following application domains in
which component-based approaches are utilized: avionics,command and con-
trol, embedded systems, electronic commerce, finance, healthcare, real-time,
simulation, telecommunications and, utilities.

In [7], several component models (JB, COM, MTS, CCM, .NET andOSGI)
are mainly described according to the following criteria: Interfaces and Assem-
bly using ACME notation, Implementation, and Lifecycle. The models are not
compared or valuated, but rather these characteristics aredescribed for each
component model.

In [11], a study of several component models is presented that considers
the following aspects: syntax, semantics and composition through an ideal-
ized component-based development lifecycle,. A smaller number of com-
ponent models are considered (also UML and ADLs are included). Based
on this study, a taxonomy centered on the composition criterion is proposed,
which clarifies at which steps of the development process of agiven component
model, components can be composed and whether they can be retrieved from
a repository to be composed. Further the different types of bindings (compo-
sitions) of some of the component models are discussed in more details. This
taxonomy does not consider EFPs.

6.6 Conclusion

In this survey, we have presented a framework for the classification and com-
parison of component models, which identifies issues related to component-
based development. This survey indicates that many principles comprised in
the component-based approach are not always included in every component
model. Many of these principles are taken and further developed from other
approaches (OO development, modeling using ADLs) which also contributes
to an unclear understanding of component-based development.

94 Paper A

The intention of this work is to increase the understanding of component-
based approach by identifying the main concerns, common characteristics and
differences of component models. The proposed framework does not include
all the elements of all component models since many of them have specific
solutions some related to models, some related to particular technology solu-
tions. Further we have not characterized the component themselves (like im-
plementation, internal behavior, whether components are active or passive, and
similar). The framework however identifies the minimal criteria for assuming
a model to be a component model and it groups the basic characteristics of the
models.

From the results we can recognize some recurrent patterns, such as: general-
purpose component models utilize the “request response” style, while in the
specialized domains (mostly embedded systems) “pipe & filter/dataflow” is
the predominate style. We can also observe that support for composition of
extra-functional properties is rather scarce. There are many reasons for that: in
practice explicit reasoning and predictability of EFPs is still not widespread,
there are unlimited number of different EFPs, and finally thecompositions of
many EFPs are not only the results of component properties, but also a matter
outside component models for example of system architectures, which makes
EFP an aspect that is difficult to handle at the level of traditional implementa-
tion languages.

In similarity with other technologies we could expect a convergence of the
main characteristics of component models, i.e. becomes more standardized,
using more commonly accepted concepts and terminology, even if the number
of different component models will not necessary decreased. The aim of this
work is to provide a help in this convergence process.

6.7 Appendix — Survey of Component Models

In this appendix, we provide a brief overview of component models taken in the
survey and their main characteristics. The component models are listed in the
alphabetic order. The list should be understood as a provision of some charac-
teristic examples, or examples of widely used component models in Software
Engineering.

Note that when listing the component models we have not provided their
product name with edition number except for cases in which the edition num-
bers are part of the name or indicate significant difference from the previous
version.

6.7 Appendix — Survey of Component Models 95

AUTOSAR (AUTomotive Open System ARchitecture)[20], the new
standard in automotive industry is the result of the partnership between sev-
eral manufacturers and suppliers from the automotive field.The main focus
of AUTOSAR is standardization of architecture, architectural components and
their interoperability, which allows a separation of development of component-
based applications from the underlying platform. AUTOSAR supports both the
client-server and sender-receiver communication types. An AUTOSAR soft-
ware component instance is only assigned to one computer node - Electronic
Control Unit (ECU). The AUTOSAR software components are implemented in
C. The main focus of AUTSOAR is the architecture not the component model
itself.

BIP (Behavior, Interaction, Priority) [21] framework developed at Ver-
imag is used for modelling heterogeneous real-time components. This hetero-
geneity is considered for components having different synchronization mech-
anisms (broadcast/rendez-vous), timed components or non-timed components.
BIP focuses on component behaviour through a model with a three-layer struc-
ture of the components (Behaviour, Interaction and Priority); a component can
be seen as a point in this three-dimensional space constituted by each layer. In
this model, compound components, i.e components created from already ex-
isting ones, and systems are obtained by a sequence of formaltransformations
in each of the dimension. BIP comes up with its own programming language
but targets C/C++ execution. Some connections to the analysis tools of the
IF-toolset [22] and the PROMETHEUS tools [23] are also provided.

BlueArX [24][25] is a component model developed and used by Bosch
for the automotive control domain. BlueArX defines a hierarchical component
model with focus on design-time, which does not require additional run-time or
memory resources on the target hardware. A BlueArX component consists of
specification, documentation and implementation (as object or C source code).
BlueArX components and interfaces are specified using MSRSW(Manufac-
turer Supplier Relationship SoftWare), a standardized XMLformat. Compo-
nents communicate using client-server and sender-receiver interfaces. Besides
name and type the interfaces specification lists additionaldetails (e.g. mapping
between internal and physical representation, value range, and physical unit).
Other interfaces address component configuration (variation points), calibra-
tion data and extra-functional properties, like timing, memory usage or generic
specification of other properties.

COMDES II [26], developed at University of Southern Denmark, defines
various types of components to address both architectural and behavioral prop-
erties of control software systems. It employs a two-level model to specify

96 Paper A

system architecture. At the first (system) level a distributed control application
is conceived as a network of communicating actors and at the second (actor)
level an actor is specified as a software artefact containinga single actor task
and multiple I/O drivers. The functional behavior is specified by a composition
of different function block instances which implement concrete computation
or control algorithms. COMDES II defines four kinds of functional blocks:
basic, composite, modal and state machine. The former two can be used to
model continuous behavior (data flow) and the later two describe the sequen-
tial behavior (control flow). All non-functional information such as physicality,
real-time and concurrency is specified with respect to actors.

CompoNETS [27], developed at Université Toulouse 1, is based on CCM
where additionally the internal behavior of a software component and inter-
component communication are specified by Petri Nets. Accordingly, a map-
ping from the constructs of the component models (e.g. facets, receptacles,
event sources and sinks) to the constructs of Petri-net based behavioral formal-
ism (e.g. places, transitions etc.) is defined. Other characteristics are the same
(or very similar) to CCM.

CCM (CORBA Component Model) [28] evolved from Corba object mod-
el and it was introduced as a basic model of the OMGs componentspecifica-
tion. The CCM specification defines an abstract model, a programming model,
a packaging model, a deployment model, an execution model and a metamodel.
The metamodel defines the concepts and the relationships of the other models.
CORBA components communicate with outside world through ports. CCM
uses a separate language for the component specification: Interface Defini-
tion Language (IDL). CCM provides a Component Implementation Frame-
work (CIF) which relies on Component Implementation Definition Language
(CIDL) and describes how functional and nonfunctional partof a component
should interact with each other. In addition, CCM uses XML descriptors for
specifying information about packaging and deployment. Furthermore, CCM
has an assembly descriptor which contains metadata about how two or more
components can be composed together.

EJB (Entreprise JavaBeans) [29], developed by Sun MicroSystems envi-
sions the construction of object-oriented and distributedbusiness applications.
It provides a set of services, such as transactions, persistence, concurrency,
interoperability. EJB differs three different types of components (The Entity-
Beans the SessionBean and the MessageDrivenBeans). Each ofthese beans
is deployed in an EJB Container which is in charge of their management at
runtime (start, stop, passivation or activation) and EFPs (such as security, relia-
bility, performance). EJB is heavily related to the Java programming language.

6.7 Appendix — Survey of Component Models 97

Fractal [30] is a component model developed by France Telecom R&D
and INRIA. It intends to cover the whole development lifecycle (design, im-
plementation, deployment and maintenance/management)ofcomplex software
systems. It includes several features, such as nesting, sharing of components
and reflexivity in that sense that a component may respectively be created from
other components, be shared between components and can expose its internals
to other components. The main purpose of Fractal is to provide an extensi-
ble, open and general component model that can be tuned to fit alarge variety
of applications and domains. Fractal includes different instantiations and im-
plementations: a C-implementation called Think, which targets especially the
embedded systems and a reference implementation, called Julia and written in
Java.

Koala [31] is a component model developed by Philips for building soft-
ware for consumer electronics. Koala components are units of design, devel-
opment and reuse. Koala has a set of modelling languages: Koala IDL is used
to specify Koala component interfaces, its Component Definition Language
(CDL) is used to define Koala components, and Koala Data Definition Lan-
guage (DDL) is used to specify local data of components. Koala components
communicate with their environment or other components only through ex-
plicit interfaces statically connected at design time. Koala targets C as imple-
mentation language and uses source code components with simple interaction
model. Koala pays special attention to resource usage such as static memory
consumption.

KobrA (KOmponentenBasieRte Anwendungsentwicklung) [32] is a hier-
archical component model that supports a model-driven, UML-based represen-
tation of components. In KobrA components are not physical components like
in the contemporary physical technologies (e.g. CORBA, EJB, .NET) but logi-
cal building blocks of the software system. The components can be constructed
in any UML modelling tool and deposited into a file system. They can be com-
pared to subsystems in UML with additional behavior. KobrA uses UML class
diagrams to specify structure, functional model to describe functionality and
finally the behavioral model describes the component behavior. Composition
of components is done in the design phase by direct method calls.

IEC 61131 [33] is a standard for the design of Programmable Logic Con-
trollers approved by the International Electrotechnical Commission (IEC). In
this standard, the software units are called function blocks and based on incom-
ing events, they execute some algorithms to update the internal variables. This
standard has been further extended to IEC 61499 [34] which provides distribu-
tion in the runtime environment through high-level abstraction of communica-

98 Paper A

tion primitives. IEC 61499 is an open communication standard for distributed
control systems.

JB (Java Beans)[35]developed by Sun Microsystems is based on Java
programming language. In the JavaBeans specification a beanis a reusable
software component that can be visually composed into applets, applications,
servlets, and composite components, using visual application builder tools.
Programming a Java component requires definition of three sets of data: i)
properties (similar to the attributes of a class); ii) methods; and iii) events
which are an alternative to method invocation for sending data. JavaBeans was
primarily designed for the construction of graphical user interface. The model
defines three types of interaction points, referred to as ports: (i) methods, as in
Java, (ii) properties, used to parameterize the component at composition time,
(iii) event sources, and event sinks (called listeners) forevent-based communi-
cation.

COM (Microsoft Component Object Model) [36] is one of the most
commonly used software component models for desktop and server side ap-
plications. A key principle of COM is that interfaces are specified separately
from both the components that implement them and those that use them. COM
defines a dialect of the Interface Definition Language (IDL) that is used to
specify object-oriented interfaces. Interfaces are object-oriented in the sense
that their operations are to be implemented by a class and passed a reference
to a particular instance of that class when invoked. A concept known as in-
terface navigation makes it possible for the user to obtain apointer to every
interface supported by the object. This is based on VTable. Although COM
is primarily used as a general-purpose component model it has been ported for
development of embedded software and extended for distributed information
systems

OpenCOM [37] is a lightweight component model developed at Lancaster
University which aims at exploiting component-based techniques within mid-
dleware platforms. It is built atop a subset of Microsofts COM. These in-
clude the binary level interoperability standard, Microsofts IDL, COMs glob-
ally unique identifiers and the IUnknown interface. The higherlevel features of
COM such as distribution, persistence, transactions and security are not used.
The key concepts of OpenCOM are capsules, components, interfaces, recepta-
cles and connections. Capsules are runtime containers and they host compo-
nents. Each component implements a set of custom receptacles and interfaces.
A receptacle describes a unit of service requirement, an interface expresses a
unit of service provision, and a connection is the binding between an interface
and a receptacle of the same type.

6.7 Appendix — Survey of Component Models 99

OSGi (Open Services Gateway Initiative) [38] is a consortium of numer-
ous industrial partners working together to define a service-oriented framework
with an open specifications for the delivery of multiple services over wide area
networks to local networks and devices. Contrary to most component defini-
tions, OSGI emphasis the distinction between a unit of composition and a unit
of deployment in calling a component respectively service or bundle. It offers
also, at contrary to most component models, a flexible architecture of systems
that can dynamically evolve during execution time. This implies that in the
system, any components can be added, removed or modified at run-time. In
relying on Java, OSGI is platform independent. There existsseveral additions
of OSGi that provides additional characteristics.

Palladio Component Model [39], developed at University of Oldenburg
and University of Karlsruhe, provides a domain specific modelling language
for component-based software architectures, which is tuned to enable early
life-cycle performance predictions. Palladio defines its own metamodel speci-
fied in EMF/Ecore and divided into several domain specific languages for each
developer role (i.e. component developers, software architects, system deploy-
ers and domain experts). All specifications can be combined to derive a full
Palladio component model instance. As a starting point for implementing the
systems business logic, the instance can be converted into Java code skeletons
via Model2Text transformation. Components are specified via provided and re-
quired interfaces which consist of a list of service signatures. In order to allow
accurate performance prediction, a so called resource demanding service effect
specification can be added to each provided service to describe the sequence
of called required services, resource usage, transition probabilities, loop itera-
tion numbers, and parameter dependencies. Components and their roles can be
connected via assembly connectors to build an assembly.

Pecos[40] is a joined project between ABB Corporate Research and Bern
University. Its goal is to provide an environment that supports specification,
composition, configuration checking and deployment for reactive embedded
systems built from software components. There are two typesof components,
leaf components and composite components. The inputs and outputs of a com-
ponent are represented as ports. At design phase composite components are
made by linking their ports with connectors. Pecos targets C++ or Java as im-
plementation language, so the run-time environment in the deployment phase
is the one for Java or C++. Pecos enables specification of EFPssuch as tim-
ing and memory usage in order to investigate in prediction ofthe behaviour of
embedded systems.

100 Paper A

Pin [41] component model developed at Carnegie Mellon SoftwareEngi-
neering Institute (SEI) is used as a basis in prediction-enabled component tech-
nologies (PECTs). By using principles from PECT it aims at achieving pre-
dictability by construction i.e. constraining the design and the implementation
to analyzable patterns. To achieve predictability of a particular property PECT
proposes a building of a reasoning framework that includes acomponent tech-
nology powered by analytical interface used for a specification of a property
of interest and analysis theory used in provision of the system property com-
posed from component properties. Accordingly, in order to perform analysis,
proper analysis theories must be found and implemented in a suitable under-
lying component technology. PECT currently supports threereasoning frame-
works fro Pin Component model:λABA – for predicting average latency in
assemblies with periodic tasks,λss – for predicting average latency in stochas-
tic tasks managed by a sporadic server and ComFoRT – for formal verification
of temporal safety and liveness. Pin Components are defined in an ADL-like
language, in the component and connector style, so called Construction and
Composition Language (CCL). Pin components are fully encapsulated, so the
only communication channels from a component to its environment and back
are sink and source pins. Composition of components is obtained by connect-
ing source and sink pins and the behavior of the interaction,which is specified
as executable state machines.

ProCom [42] is a component model for control-intensive distributed em-
bedded systems being developed at PROGRESS Strategic Research Center at
Mälardalen University, Sweden. ProCom consists of two layers, in order to ad-
dress different concerns that exist at different levels of adistributed embedded
system. The upper layer, ProSys, focuses on modelling of thewhole system
or large subsystems. It considers complex active subsystems as components
and captures the message flow between them. The lower layer, ProSave, serves
for modelling of ProSys components on a detailed level. It explicitly captures
the data transfer and control-flow between the components using a rich set of
connectors which makes a platform for modelling control loops in a way that
allows them to be easily analyzed and synthesized. The analysis is facilitated
by the explicit control-flow and by the abstraction providedby components
(read-execute-write semantics, encapsulation). The model provides support
for different types of analysis by making possible to attachvarious models (be-
haviour, timing, resource utilization, etc.) to differentarchitectural elements
such as components, connections, subsystems, etc. Further, it considers de-
ployment as a specific activity which includes components allocations, trans-
formation of components to the entities complied with the execution model,

6.7 Appendix — Survey of Component Models 101

and synthesis, i.e. creation of a glue code.
Robocop[43] is a component model developed by the consortium of the

Robocop ITEA project, inspired by COM, CORBA and Koala component
models. It aims at covering all the aspects of the component-based develop-
ment process for the high-volume consumer device domain. Robocop com-
ponent is a set of possibly related models and each model provides particular
type of information about the component. The functional model describes the
functionality of the component, whereas the extra-functional models include
modelling of timeliness, reliability, safety, security, and memory consumption.
Robocop components offer functionality through a set of services and each ser-
vice may define several interfaces. Interface definitions are specified in a Robo-
cop Interface Definition Language (RIDL). The components can be composed
of several models, and a composition of components is calledan application.
The Robocop component model is a major source of for ISO standard ISO/IEC
23004-1:2007 Information technology - Multimedia Middleware.

Rubus [44] component was developed as a joint project between Arcticus
Systems AB and Mälardalen University. The Rubus componentmodel runs
on top of the Rubus real-time operating system. It focuses onthe real-time
properties and is intended for small resource constrained embedded systems.
Components are implemented as C functions performed as tasks. A component
specifies a set of input and output ports, persistent states,timing requirements
such as releasetime, deadline. Components can be combined to form a larger
component which is a logical composition of one or more components.

SaveCCM [45], developed within the SAVE project by several Swedish
universities, is a component model specifically designed for embedded control
applications in the automotive domain with the main objective of providing
predictable vehicular systems. SaveCCM is a simple model that constrains the
flexibility of the system in order to improve the analysability of the dependabil-
ity and of the real-time properties. The model takes into consideration the re-
source usage, and provides a lightweight run-time framework. For component
and system specification SaveCCM uses SaveCCM language which is based
on a textual XMLsyntax and on a subset of UML2.0 component diagrams.

SOFA (Software Appliances)[46] is a component model developed at
Charles University in Prague. A SOFA component is specified by its frame
and architecture. The frame can be viewed as a black box and itdefines the
provided and required interfaces and its properties. However a framework can
also be an assembly of components in a composite component. The archi-
tecture is defined a grey-box view of a component, as it describes the struc-
ture of a component until the first level of nesting in the component hierar-

102 Paper A

chy. SOFA components and systems are specified by an ADL-likelanguage,
Component Description Language (CDL). The resulting CDL iscompiled by a
SOFA CDL compiler to their implementation in a programming language C++
or Java. SOFA components can be composed by method calls through connec-
tors. The SOFA 2.0 component model is an extension of the SOFAcomponent
model with several new services: dynamic reconfiguration, control interfaces
and multiple communication styles between the components.

Bibliography

[1] Clemens Szyperski.Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Professional, December 1997.

[2] George T. Heineman and William T. Councill.Component-Based Soft-
ware Engineering: Putting the Pieces Together. Addison-Wesley Long-
man Publishing Co., 2001.

[3] Michel Chaudron and Ivica Crnkovic.Software Engineering: Principles
and Practice, 3rd Edition, chapter 18 in H. van Vliet, Component-Based
Software Engineering. Wiley, 2008.

[4] Nenad Medvidovic, Eric M. Dashofy, and Richard N. Taylor. Moving Ar-
chitectural Description from under the Technology Lamppost. Inf. Softw.
Technol., 49(1):12–31, 2007.

[5] Nenad Medvidovic and Richard N. Taylor. A Classificationand Compar-
ison Framework for Software Architecture Description Languages.IEEE
Trans. Softw. Eng., 26(1):70–93, January 2000.

[6] Ivica Crnkovic, Michel Chaudron, and Stig Larsson. Component-based
Development Process and Component Lifecycle.Journal of Computing
and Information Technology, 13(4):321–327, November 2005.

[7] Ivica Crnkovic and Magnus Larsson.Building Reliable Component-
Based Software Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[8] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien
Watkins. Making Components Contract Aware.Computer, 32(7):38–45,
1999.

103

104 Bibliography

[9] Ivica Crnkovic, Magnus Larsson, and Otto Preiss. Concerning Pre-
dictability in Dependable Component-Based Systems: Classification of
Quality Attributes. pages 257–278. 2005.

[10] Gerald Kotonya, Ian Sommerville, and Steve Hall. Towards A Classifi-
cation Model for Component-Based Software Engineering Research. In
EUROMICRO ’03: Proceedings of the 29th Conference on EUROMI-
CRO, page 43, Washington, DC, USA, 2003. IEEE Computer Society.

[11] Kung-Kiu Lau and Zheng Wang. Software Component Models. IEEE
Transactions on Software Engineering, 33(10):709–724, 2007.

[12] Oxford advanced learners dictionary.

[13] The Object Management Group. UML Superstructure Specification v2.1,
April 2009.
http://www.omg.org/docs/ptc/06-04-02.pdf.

[14] Stephen J. Mellor and Marc Balcer.Executable UML: A Foundation for
Model-Driven Architectures. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002. Foreword By-Jacoboson, Ivar.

[15] Hongyu Pei Breivold and Magnus Larsson. Component-Based and
Service-Oriented Software Engineering: Key Concepts and Principles.
pages 13–20, Aug. 2007.

[16] John Reekie, Stephen Neuendorffer, Christopher Hylands, and Edward A.
Lee. Software Practice in the Ptolemy. Technical Report GSRC-TR-
1999-01, Gigascale Silicon Research Center, April 1999.

[17] Sherif Yacoub, Hany Ammar, and Ali Mili. A Model for Classifying
Component Interfaces. InSecond International Workshop on Component-
Based Software Engineering, in conjunction with the 21 st International
Conference on Software Engineering (ICSE99, pages 17–18, 1999.

[18] Sherif Yacoub, Hany Ammar, and Ali Mili. Characterizing a Software
Component. InIn Proceedings of the 2nd Workshop on Component-
Based Software Engineering, in conjunction with ICSE99, 1999.

[19] Klement J. Fellner and Klaus Turowski. Classification Framework for
Business Components. InHICSS ’00: Proceedings of the 33rd Hawaii In-
ternational Conference on System Sciences-Volume 8, page 8047, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

Bibliography 105

[20] AUTOSAR Development Partnership. Technical OverviewV2.2.1,
February 2008.
http://www.autosar.org.

[21] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling Heteroge-
neous Real-time Components in BIP. InProc. of the 4th IEEE Interna-
tional Conference on Software Engineering and Formal Methods, pages
3–12. IEEE, 2006.

[22] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph
Sifakis. The IF Toolset. InSFM, pages 237–267, 2004.

[23] Gregor Gössler. Prometheus — A Compositional Modeling Tool for
Real-Time Systems.

[24] Bernhard F. Weichel and Martin Herrmann. A Backbone in Automo-
tive Software Development Based on Xml and Asam/Msr. SAE World
Congress, 2004.

[25] Ji Eun Kim, Rahul Kapoor, Martin Herrmann, Jochen Haerdtlein, Franz
Grzeschniok, and Peter Lutz. Software Behavior Description of Real-
Time Embedded Systems in Component Based Software Development.
In ISORC ’08: Proceedings of the 2008 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing, pages 307–311, Washington,
DC, USA, 2008. IEEE Computer Society.

[26] Xu Ke, Krzysztof Sierszecki, and Christo Angelov. COMDES-II:
A Component-Based Framework for Generative Development ofDis-
tributed Real-Time Control Systems. InProc. of the 13th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, pages 199–208. IEEE, 2007.

[27] Rémi Bastide and Eric Barboni. Component-Based Behavioural Mod-
elling with High-Level Petri Nets . InMOCA ’04 - Third Workshop
on Modelling of Objects, Components and Agents , Aahrus, Denmark ,
11/10/04-13/10/04, pages 37–46. DAIMI, octobre 2004.

[28] OMG CORBA Component Model v4.0. Available at
www.omg.org/docs/formal/06-04-01.pdf.

[29] EJB 3.0 Expert Group. JSR 220: Enterprise JavaBeansTM,Version 3.0
EJB Core Contracts and Requirements Version 3.0, Final Release, May
2006.

106 Bibliography

[30] Eric Bruneton, Thierry Coupaye, and Jean-Bernard Stefani. The Fractal
Component Model Specification.The ObjectWeb Consortium, Tech. Rep.,
February, 2004.

[31] Rob van Ommering, Frank van der Linden, Jeff Kramer, andJeff Magee.
The Koala Component Model for Consumer Electronics Software. Com-
puter, 33(3):78–85, 2000.

[32] Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties, Oliver
Laitenberger, Roland Laqua, Dirk Muthig, Barbara Paech, J¨urgen Wüst,
and Jörg Zettel.Component-Based Product Line Engineering with UML.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[33] IEC. Application and Implementation of IEC 61131-3. IEC, 1995.

[34] IEC. IEC 61499 Function Blocks for Embedded and Distributed Control
Systems Design. IEC, 2005.

[35] Sun Microsystems. JavaBeans Specification, 1997.

[36] Dale Rogerson.Inside COM. Microsoft Press, 1997.

[37] M Clarke, GS Blair, G Coulson, and N Parlavantzas. An efficient Com-
ponent Model for the Construction of Adaptive Middleware.Proceedings
of the IFIP/ACM International Conference on Middleware, 2001.

[38] OSGi Alliance. OSGi Service Plaform Core Specification, V4.1, 2007.

[39] S Becker, H Koziolek, and R Reussner. Model-Based Performance Pre-
diction with the Palladio Component Model.the 6th international work-
shop on Software and performance, 2007.

[40] Oscar Nierstrasz, Gabriela Arévalo, Stéphane Ducasse, Roel Wuyts, An-
drew P. Black, Peter O. Müller, Christian Zeidler, Thomas Genssler, and
Reinier van den Born. A Component Model for Field Devices. InProc. of
the 1st Int. IFIP/ACM Working Conference on Component Deployment,
pages 200–209. Springer, 2002.

[41] Gabriel A. Moreno. Creating Custom Containers with Generative Tech-
niques. InGPCE ’06: Proceedings of the 5th international conference
on Generative programming and component engineering, pages 29–38.
ACM, 2006.

[42] Séverine Sentilles, Aneta Vulgarakis, Tomas Bures, Jan Carlson, and
Ivica Crnkovic. A Component Model for Control-Intensive Distributed
Embedded Systems. In Michel R.V. Chaudron and Clemens Szyperski,
editors, Proceedings of the 11th International Symposium on Compo-
nent Based Software Engineering (CBSE2008), pages 310–317. Springer
Berlin, October 2008.

[43] H. Maaskant. A Robust Component Model for Consumer Electronic
Products. InDynamic and Robust Streaming in and between Connected
Consumer-Electronic Devices, volume 3 ofPhilips Research, pages 167–
192. Springer, 2005.

[44] Arcticus Systems. Rubus Software Components.
http://www.arcticus-systems.com.

[45] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
SAVE Approach to Component-Based Development of VehicularSys-
tems.Journal of Systems and Software, 80(5):655–667, May 2007.

[46] Tomáš Bureš, Petr Hnětynkal, and František Pláˇsil. SOFA 2.0: Balancing
Advanced Features in a Hierarchical Component Model.Proceedings of
SERA, 2006.

Chapter 7

Paper B:
A Component Model Family
for Vehicular Embedded
Systems

Tomáš Bureš, Jan Carlson, Séverine Sentilles and AnetaVulgarakis
In Proceedings of the Third International Conference on Software Engineering
Advances, IEEE, Sliema, Malta, October, 2008.

109

Abstract

In this paper we propose to use components for managing the increasing com-
plexity in modern vehicular systems. Compared to other approaches, the distin-
guishing feature of our work is using and benefiting from components through-
out the development process from early design to development and deploy-
ment, and an explicit separation of concerns at different levels of granularity.
Based on the elaboration of the specifics of vehicular systems (resource con-
straints, real-time requirements, hard demands on reliability), the paper identi-
fies concerns that need to be addressed by a component model for this domain,
and describes a realization of such a component model.

7.1 Introduction 111

7.1 Introduction

Vehicles of various types have become an integral part of theeveryday life. In
addition to cars, which are the most common, they comprise other transporta-
tion vehicles (such as trucks and busses) and special purpose vehicles (e.g.
forestry machines). It is a general trend that the level of computerization in the
vehicles grows every year. For example in the automotive industry, the com-
plexity of the electrical and electronic architecture is growing exponentially
following the demands on the driver’s safety, assistance and comfort [1].

The computerization is present in vehicles in the form ofembedded sys-
tems, which are special-purpose built-in computers tailored toperform a spe-
cific task by combination of software and hardware. In comparison to general
purpose computers, one important characteristic of embedded systems is that
they typically have to function under severe resource limitations in terms of
memory, bandwidth and energy, and often under difficult environmental con-
ditions (e.g. heat, dust, constant vibrations).

As embedded systems are often used in safety-critical applications, there
are typically requirements onreal-time behaviour, meaning that a system must
react correctly to events in a well-specified amount of time (neither too fast nor
too slow) since any infraction of these requirements can lead to a catastrophe.
The criticality of tasks performed by embedded systems alsoimplies that they
have to be thoroughly tested or better still, formally verified for correctness
(both functional and with respect to timing).

The restrictions in available resources (power, CPU and memory), environ-
mental conditions and harsh requirements in terms of safety, reliability, worst-
case response time, etc. make the development of embedded systems rather
difficult and time-demanding. Moreover, what may be feasible when the em-
bedded systems in a vehicle are few and simple gets immenselymore difficult
when they grow in number, get more complex and become mutually dependent
(many systems are designed as distributed systems communicating over some
network) — as is the trend today. Even the typical solution having been applied
so far in the vehicular domain — decomposing the functionality into subsys-
tems that are realised by dedicated nodes with their own CPU and memory —
does not scale any more due to restrictions in physical spaceand communi-
cation bandwidth. Instead there arises a need to collocate several subsystems
on one physical unit which even more adds to complexity as resources have
to be shared. All this introduces a new challenge in softwaredevelopment for
embedded systems in vehicular domain.

112 Paper B

A promising solution lies in the adoption of a Component-Based Devel-
opment (CBD) approach, which allows construction (resp. decomposition) of
software systems out of (resp. in) independent and well-defined pieces of soft-
ware, calledcomponents. CBD has the potential to significantly alleviate the
management of the ever-increasing complexity and give possibility to reuse
already developed elements — thus increasing reliability and shortening the
development time.

CBD has already proved to be successfully used in enterprisesystems,
service-oriented and desktop domains [2]. However, in order to effectively em-
ploy CBD in embedded systems it is necessary to adapt it to support specifics
of the embedded systems from the vehicular domain (i.e. strong dependence
on hardware, distribution, real-timeness, to mention justa few).

There have been several approaches (e.g. [3, 4, 5, 6, 7]) to use CBD in
embedded systems. Although these approaches were successful in solving
particular pieces of the puzzle, an approach that supports the use of compo-
nents throughout all stages of the embedded system development process is
still missing.

Striving for a CBD process in vehicular embedded systems, wehave taken
a step back and re-evaluated the requirements of embedded systems in the ve-
hicular domain with the goal of setting up CBD and underlyingcomponent
models that would allow using components throughout the development pro-
cess from early design to deployment.

The goal of this paper is to establish concepts and requirements for a CBD
process for vehicular embedded systems and to characterizethe component
models underlying it — with the main objectives of (a) aligning the CBD with
specifics of vehicular embedded systems, (b) reducing system complexity, (c)
increasing dependability by allowing various kind of analyses (functional be-
haviour, timing behaviour, reliability), and (d) reducingdevelopment time by
supporting reuse. An emphasis also lies in supporting components in all stages
of the development process.

The remainder of this paper is organized as follows: Section2 introduces
a concrete example of an embedded system in the vehicular domain and Sec-
tion 3 describes the background of this work. Section 4 identifies key concerns
to be addressed when applying CBD to the vehicular domain. Section 5 out-
lines a suitable component model family, and Section 6 discusses a realization
of this component model family. Related work is described inSection 7, and
Section 8 concludes the paper.

7.2 Motivating Example 113

7.2 Motivating Example

As an example demonstrating the specific concerns of the vehicular domain,
we consider the electronic systems of a modern car, focusingon an anti-lock
braking system (ABS) in particular.

The physical system architecture of a modern car consists ofa fairly large
number of computational nodes (ECUs), connected by a numberof different
networks. For example, a Volvo XC90, depicted in Figure 7.1,has around 40
ECUs, two CAN busses of different speed, several LIN busses,and a MOST
bus for the infotainment systems.

Figure 7.1: The electronic system architecture of Volvo XC90.

In the automotive domain, low production cost is a very important concern,
since each car model is manufactured in large quantities. Atthe same time,
many of the electronic systems are highly safety-critical,and some are subject
to hard real-time constraints. Thus, a key design challengeis finding a minimal
system design (with respect to cost, but this typically means minimal in terms
of resources, as well) that can provide the desired functionality with a sufficient
level of dependability.

114 Paper B

Looking specifically at the ABS, its role is to improve the braking perfor-
mance by preventing the wheels from locking. When a wheel is about to lock
— a situation characterised by the speed of that wheel being significantly lower
than that of the other wheels — the brake force should be decreased until the
wheel starts to move faster again.

In addition to the main functionality, the ABS is responsible for monitor-
ing hardware or software faults, including faults in the associated sensors and
actuators. Transient faults should be handled locally, andin case of persistent
problems, the system should be deactivated in a safe way and the driver should
be informed.

Figure 7.2 shows the ABS subsystem architecture. In its simple form the
ABS includes rotation sensors physically placed on or closeto the wheels, a
brake valve actuator, and an ECU that includes control software. Typically the
ECU includes a set of software components that together provide the service.
It is clear that different types of communication would be required between
components within the ECU and between components, sensors and actuators.

Figure 7.2: The ABS subsystem architecture.

Functionally, the ABS is fairly independent from other subsystems, al-
though it shares some information about the state of the vehicle with other
subsystems. For example, if the ABS is deactivated, other subsystems might
want to change the way they operate. Also, the ABS could sharewheel speed
sensors and brake actuators with, e.g. a traction control system (TCS).

At a more fine-grained level of detail, there are many design decisions to
be made in order to achieve an optimal performance: what wheel speed differ-
ence should be tolerated without the system considering it alocking situation,
exactly how much and for how long should the braking force be adjusted, etc.

7.3 The PROGRESSApproach 115

These concerns are tightly connected to the behavior of the actual car interact-
ing with its environment, and might require significant testing and fine-tuning.
For many of them, control theory provides well established parameterised so-
lutions that can be adjusted by simulations and tests.

The correctness and quality of the ABS system strongly depends on its
real-time behaviour, e.g. how often the wheel speed is sampled and the time
delay between sampling and actuating. This adds to the complexity, since these
temporal aspects depend on many factors outside the ABS, such as other sub-
systems using the same communication bus. The current trendin automotive
systems is towards running multiple subsystems on the same physical node,
which introduces additional temporal dependencies due to scheduling.

It is common that subsystems are developed relatively independently by a
few large manufacturers, who sell them to car manufacturersto be used (with
some modifications) in several car brands. This brings the necessity to be able
to reuse the overall design of the ABS at a level which abstracts from the in-
terference from other subsystems in the car. Although the overall functionality
remains unchanged when the ABS subsystem is reused in a different car model,
it is typically necessary to adjust details, e.g. how much the brake force should
be decreased in a locking situation, depending on the characteristics of the
car. Thus, it is not enough to reuse the ABS subsystem just as a“black box”.
Instead, it is necessary to be able to access the internal structure to make ad-
justments on the appropriate level of detail. This also calls for a separation of
software- and hardware design, yet many properties of the ABS will depend on
both software and hardware characteristics.

7.3 The PROGRESSApproach

Our work on development of vehicular software is conducted as a part of the
larger research vision of PROGRESS, which is a Swedish national research cen-
tre for predictable development of embedded systems. In this section we pro-
vide a brief overview of the PROGRESSvision as it provides background and
motivation for our work.

The goal of PROGRESSis to provide theories, methods and tools to increase
quality and reduce costs in the development of systems for vehicular, automa-
tion and telecommunication domains. Together they are to cover the whole
development process, supporting the consideration of predictability and safety
througout the development. To support this idea and proposea basis for work,
PROGRESSrelies on a holistic approach using CBD throughout all the stages

116 Paper B

of the embedded system development process together with aninterlacing of
various kind of analysis and an emphasis on reusability issues.

To be able to apply a CBD approach across the whole development process
(starting from a vague specification of the system based on early requirements
up to its final and precise specification and implementation ready to be de-
ployed), PROGRESSadopts a particular notion for component. Similarly to
SaveCCM [3] and Robocop [6], a component is considered as “a whole”, i.e.
a collection gathering all the information needed and/or specified at different
points of time of the development process. That means a component comprises
requirements, documentation, source code, various models(e.g.̃behavioural
and timing), predicted and experimentally measured values(e.g. performance
and memory consumption), etc., thus making a component a unifying concept
throughout the development process.

In addition to modelling with components (which is the topicof this paper),
PROGRESSputs a strong emphasis on analysis and deployment.

The analysis parts of PROGRESSaim at providing estimations and guaran-
tees of different important properties. The analysis is present throughout the
whole development process and gives results depending on the completeness
and accuracy of the components’ models and description. This means that
an early (and rather inaccurate) analysis may be performed during design to
guide design decisions and provide early estimates. Once the development is
completed the analysis may be used to validate that the created components
and their composition meet the original requirements. The different analyses
planned for PROGRESSinclude reliability predictions, analysis of functional
compliance (e.g. ensuring compatibility of interconnected interfaces), timing
analysis (analysis of high-level timing as well as low-level worst-case execu-
tion time analysis) and resource usage analysis (e.g. memory, communication
bandwidth).

Deployment in PROGRESSis strongly conforming to specifics of embed-
ded real-time systems. The design and development of components is sup-
plemented by deployment activities consisting of two parts: (1) allocation of
components to physical nodes and (2) code synthesis. In codesynthesis, the
codes of components are merged, optimized and mapped to artifacts of an un-
derlying real-time operating system. This step also includes creating real-time
schedules. The binary images resulting from code synthesisare ready to be
executed at the target physical nodes.

7.4 Towards CBD in Vehicular Systems 117

7.4 Towards CBD in Vehicular Systems

This paper concerns the component modelling aspects of PROGRESS, and thus
we analyze in this section the main modelling concers with respect to early
design and high level of predictability.

In a broad sense the development of an embedded system or a subsystem
means going from an abstract specification to a concrete product. Starting with
vague or incomplete descriptions, information regarding the software struc-
ture, timing, the physical platform, etc., is gradually introduced in order to
approach a finished system. As discussed earlier, this wholeprocess should be
supported by analysis to support early detection of problems, and to achieve a
high quality in the final product. When a system is developed by reusing exist-
ing components, which is a key idea in CBD, this progression from abstract to
concrete becomes more complex, since concrete reused components are mixed
with early (i.e. abstract) versions of components to be developed from scratch.

Another important concern — conceptually separate from theprogression
from abstract to concrete — relates to component granularity. In a system as
complex as those found in the vehicular domain, it is clear that components
representing big parts of the whole system are different from those responsible
for a small part of some control functionality.

These two concerns, the scale from abstract to concrete and component
granularity, are discussed further in the remainder of thissection.

7.4.1 From Abstract to Concrete

The development of an embedded system or a subsystem typically starts with
use-cases, domain diagrams and basic sketches of the system. These abstract
models are then gradually detailed and refined to eventuallyend up with an
implementation.

Some properties of the system may be specified in a very concrete and
detailed manner already in early stages of development (e.g. real-time require-
ments, messages used for interaction with existing systems, etc.), however, it
is the fact that the overall system is far from a concrete implementation that
makes it abstract at this stage.

With regard to CBD, the transition from abstract to concretetypically means
that a system is first modelled by a set of components, which however have
only vague boundaries and only some properties and requirements specified.
Also the communication among the components is perhaps onlyrepresented
by lines representing arbitrary exchange of some data. Gradually during the

118 Paper B

Abstract, semiformal
specification

Mix of abstract and
concrete specification

Concrete, formal
specification

Informal documentation
(requirements, specification)

Figure 7.3: Development process.

development this abstract view is made more concrete, meaning that compo-
nents are assigned behaviour, communication is detailed, concrete interfaces
are identified and components are implemented.

A closer inspection reveals that this process from abstractto concrete is
far from a straightforward linear progression in a series ofwell-defined system
wide steps (see Figure 7.3). In particular, the following issues must be taken
into consideration:

• It is often necessary to move back and forth between the abstraction
levels in order to explore and reject different design alternatives.

• At a particular point in time, different parts of the system will be mod-
elled at different levels of abstraction — for example, whenreusing an
existing (concrete) component in a system which is not yet somature
otherwise, or when the development of different parts is notperformed
concurrently and at the same pace (which is the typical case).

• Some analysis techniques require a certain level of abstraction, either
because the required information is not present at higher abstractions,
or because the complexity of a more concrete level makes the method
prohibitively expensive.

This requires the underlying component model to provide support for ini-
tial and abstract design as well as detailed and concrete design. An important
requirement is also to provide traceability between abstract and concrete (as op-
posed to just having multiple descriptions without any direct correspondence
between them). Moreover a component should contain the information from
all levels of abstraction through which it has progressed, so that even a reused
concrete component may be used in the abstract design together with other
abstract components.

7.4 Towards CBD in Vehicular Systems 119

Two particular aspects of the abstract-to-concrete scale are discussed fur-
ther: structural decompositionandtarget platform. Other important concerns,
which are not elaborated here, includedata, timingandresource consumption.

Structural Decomposition

In an abstract form, a component can be modelled as a black box, not because
the internal structure must remain hidden but because it hasnot been decided
yet. The functionality of the component, as well as aspects related to timing,
resource consumption, communication, etc., can be modelled with respect to
the externally visible interface of the component, which allows the information
to be taken into account in the analysis.

As one important part of the progression to a concrete system, the internal
structure of the component should be elaborated. This includes, for example,
deciding whether to realise the component by means of composed subcompo-
nents (reusing existing or developing new), or to implementit as an atomic
unit.

Target Platform

The coupling between the software and the target platform istypically quite
high in an embedded system. One reason is to achieve the required functional-
ity with the least manufacturing costs, especially when producing a system in
large quantities. As the result, the hardware is typically quite restricted and the
software is tailored and optimized specifically for that particular hardware and
real-time operating system.

The target platform is often predetermined to some extent already by the
initial requirements on the system, and additional knowledge comes from ex-
perience with previous versions of the system, or similar products. However
it is not always fully known in all details. A lot of details are refined as the
actual system is being developed and assumptions of individual components
on the target platform are being clarified. Thus the development of a system
influences and in turn is influenced by the target platform specification.

In our example, it is known a priori that the ABS will be distributed over at
least five physical nodes, dictated by the physical locationof the wheel speed
sensors and the actuators. We would also typically be able tomake some
assumptions about the nature of these nodes and the network between them,
based on experience from other systems. However, the final choice of hardware
might be made later, as well as the decision whether the main functionality of

120 Paper B

the ABS will be allocated to a dedicated node or if it will share a node with
other subsystems.

This reality of system development being interwoven with target platform
specification is however in contrast to the main goals of CBD —component
reusability. This poses a challenge for the component modeland the associated
CBD process, which must be able to take into account the target platform while
not sacrificing the reusability of components.

7.4.2 Component Granularity

In a distributed embedded system, components constitutingbig parts of the
system are different from those responsible for a small partof some low-level
control task. Components at different granularity have different needs in terms
of execution model, communication style, synchronisation, etc., but also with
respect to the kind of information that should be associatedwith the component
and the type of analysis that is appropriate.

In general, the big components encapsulate complex functionality but they
are relatively independent. In current systems it is often the case that each of
those big components is allocated to one or several dedicated ECUs. Thus,
the communication between big components often manifests as messages sent
over a bus in order to share data (e.g. the current vehicle speed used by several
subsystems) or to notify other components of important events. The small com-
ponents (e.g. control loops, tasks), on the other hand, tendto have dedicated,
restricted functionality, simple communication and stronger synchronisation.
The semantics of small components is also tailored for some specific purpose
(e.g. control logic).

With respect to the component model this means having different kinds of
components with different semantics depending on at which level of granular-
ity the component lies and what it is meant for. Having these multiple levels
of components it is vital to establish the relation between them, for example
allowing a big component to be modelled out of several small components.

7.5 Conceptual Component Model Family

Next, we present a conceptual component model family that addresses the re-
quirements identified in the previous section. Ideally, thewhole range from
abstract to concrete but also from big to small components should be addressed
by a single unified component model. However, since the demands differ sig-

7.5 Conceptual Component Model Family 121

Figure 7.4: Proposed component model family.

nificantly between the end points of the two scales, this is not an easy task.
Instead, we split the abstract to concrete scale into two distinct levels of ab-
straction. Similarly, in order to address the differences related to component
size, the concrete half is further split into two levels of granularity. This par-
titioning into three distinct segments is depicted in Figure 7.4. The benefit of
this separation is that a different formalism can be used foreach segment, with
semantics matching the concerns of that particular level.

Regarding the abstract to concrete scale, the abstract halfrepresents the
formalisms used to capture overall requirements, scenarios, etc. It also in-
cludes abstract models of resource usage, functional behaviour, dependability
and timing.

The component models used for the concrete segments are concrete in the
sense that they allow modelling of concrete concerns (e.g. communication
ports and concrete resource usage) and eventually end up having code imple-
mentation for all primitive components. It is however important to note that
they target a rather large interval of the abstract-to-concrete scale, and not just
the most abstract point, since the concrete component models support compo-
nents also in relatively abstract forms, i.e. where the internal structure, alloca-
tion to physical nodes, etc. is yet to be determined. It is possible to manipulate
such “unfinished” components in the same way as the concretized ones (i.e.
storing them in a repository, composing them with other components, include
them in analysis, etc.). Gradually, as a component is filled with information,
including realisation in terms of source code or an internalstructure of sub-
components, it is available to more analyses and eventuallyto synthesis.

In order to address the coupling between components and the target plat-
form, we allow components to express their partial assumptions about the plat-
form (e.g. the minimum available memory, required operating system function-

122 Paper B

ality). The detailed specification of the hardware and the platform, as well as
the allocation of components to physical nodes, are given byseparate models
connected with deployment — i.e. they are not part of the component specifi-
cation.

In the component model targeting the upper level of granularity, compo-
nents represent the concept of subsystems in the vehicular domain. These sub-
system components are quite large, relatively independentand they are units
of distribution and binary packaging. Furthermore, they can have their own
threads of activity and the communication between them is realized by asyn-
chronous message exchange, following the typical way in which subsystems
are built in industry today.

A subsystem can in turn be composed out of smaller subsystems, thus form-
ing a hierarchical component model. On the top-level a composition of subsys-
tems forms a system, which in our case corresponds to all the software running
in a vehicle.

The decomposition into smaller subsystems stops at primitive subsystem
components. These can, however, be further modelled in the component model
for the lower level of granularity. At that level, components serve for modelling
the control logic, such as reading data from sensors, controlling actuators, etc.
In this respect they provide an abstraction of the tasks and control loops typi-
cally found in control systems.

Contrasting the subsystem components, the small components are passive
and do not have their own threads of activity (i.e. once invoked they run
to completion). Components are composed into more complex structures by
means of connections specifying the data- and control flow. This computa-
tional model, with passive components connected in a pipes-and-filters fash-
ion, is suitable for low level modelling of embedded vehicular systems [8].
During deployment, the small components are synthesised together to make up
the code of the primitive subsystem.

7.6 Realization of the Proposed Component Model
Family

Our research so far has been primarily focused on realizing the concrete part
of the proposed component family. The two models that we havedeveloped
serve here as the proof-of-concept: SaveCCM [3] and ProCom [9]. SaveCCM
was sucessful in providing a solid, concrete model for low-level modelling of
control logic. In particular, SaveCCM allows for timing analysis using timed

7.6 Realization of the Proposed Component Model Family 123

automata, schedulability analysis and transformation of components to exe-
cutable code.

The experience with SaveCCM has proved its applicability for small and
low-level systems. However, high-level design of large distributed systems is
relatively complicated — mainly due to different concerns at the higher level
of granularity. That led to the development of ProCom, whichfollows the idea
of two distinct levels of granularity.

At the lower level of granularity ProCom uses the ProSave model, which
originates from SaveCCM. Among other improvements it strengthens the con-
cept of components as reusable well-defined encapsulated units. A component
in ProSave loosely corresponds to a task (in the operating systems sense) and
in its simplest form it is realized by a single C function. Thefairly restricted
semantics of a component and the fact that the data- and control-flow is explic-
itly captured by connectors helps significantly in analysisand in deployment,
which involves transformation of components to tasks and synthesising them
to executable code.

At the higher level of granularity, ProCom relies on a newly developed
model called ProSys. ProSys components are active and communicate by mes-
sage passing via explicit message channels. The use of explicit message chan-
nels allows the definition of the data being exchanged together with contracts
and QoS properties (e.g. stating a maximum frequency of a message, accuracy
of measured data, etc.).

The two models (ProSys and ProSave) are inter-related in theway that a
primitive ProSys component may be implemented by an assembly of ProSave
components, thus following the two levels of granularity. However, a primitive
ProSys component can also be realized by legacy code, which simplifies the
transition of existing legacy systems to a component-basedarchitecture.

With regard to the abstract part of the proposed component family, we see
UML [10] and related languages (e.g. SysML [11]) as suitablecandidates. A
strong advantage of UML is its extensibility via profiles anda small number of
restrictions in modelling. The price of using UML, which typically comes in
terms of relatively informal and sligthly loose design, is more than acceptable
for the abstract part. Connections to the concrete models can be established
using MDD and model-to-model transformations.

124 Paper B

7.7 Related Work

To our knowledge, there is no approach specializing on concerns in the vehicu-
lar domain and promoting the use of components throughout the development
phase. However, concentrating on individual parts of our conceptual family, it
is possible to find related approaches. Some of them are reused in our solution,
either explicitly or by adopting a similar strategy.

The abstract part of the abstract-to-concrete scale is connected to general
purpose modeling languages such as UML [10], in particular when targeting
the whole system or big components. Use-case, interaction and deployment
diagrams are suitable for capturing vague information about early requirements
and modelling, but have no clear mapping to code. Issues related to timing and
resource usage are addressed by specialized profiles, e.g. MARTE [12] for
modelling real-time and embedded systems.

Detailed control functionality can also be modelled in someformalism that
abstracts from the concrete system structure. As an example, Simulink [13]
from MathWorks is a tool for modelling dynamic systems in either continu-
ous or sampled time. These models can be simulated and analyzed, and there
is support for synthesising executable code. There is however no support for
adding concrete information about allocation on nodes, structural decomposi-
tion or resources.

On the concrete side of the scale, an interesting approach focusing on “big”
components is the Automotive Open System Architecture (AUTOSAR) initia-
tive from the automotive domain [14]. AUTOSAR aims at defining a stan-
dardized platform for automotive systems, allowing subsystems to be more
independent of the underlying platform and of the way functionality is dis-
tributed over the ECUs. AUTOSAR components communicate transparently
regardless whether they are located on the same or differentECUs. The sup-
ported communication styles are based on the client-serverand sender-receiver
paradigms.

With regard to the granularity, most contemporary component models —
including COM [15], CORBA [16] and OSGi [17] — fall into the segment
of “big” concrete components. However, these models consider components
only as concrete binary units, thus addressing only the mostconcrete point at
the end of the abstract-to-concrete scale. Also, inadequate timing predictability
and the additional computing and memory resources consumedby the run-time
component framework make them less suitable for development of embedded
real-time systems. Recently, approaches to extend and adapt these component
models to better suit this domain have been proposed [5, 18].

7.8 Conclusion 125

Most component models that specifically target embedded systems focus
primarily on “small” granularity components. Examples include Philips’ Koala
component model for consumer electronics [7], Robocop [6],the Rubus com-
ponent model [19] for distributed embedded control systemswith mixed real-
time and non-real-time functions, the component model for industrial field de-
vices developed in the PECOS project [20] and SaveCCM [3] forembedded
control applications in the automotive domain.

Compared to many general purpose component models, these are still ab-
stract in the sense that components are design time entitiesrather than exe-
cutable units, and a dedicated synthesis step is assumed in which the com-
ponent based design is transformed into an executable system. However, com-
pared to pure abstract modeling of functionality, the components here represent
concrete units that are realized by individual pieces of source code and usually
provide some concrete information about resource usage andtiming.

Interesting is also the approach of COMDES II [4], where a two-level
model is employed to address the varying concerns at different levels of gran-
ularity. At the system level, a distributed system is modeled as a network of
communicating actors, and at the lower level the functionality of individual
actors is further specified by interconnected function blocks.

7.8 Conclusion

In this paper we have aimed at establishing concepts, requirements and a com-
ponent model family for a CBD process in vehicular embedded systems. Com-
pared to existing approaches, we have put emphasis on supporting components
throughout the development phase from early design to deployment. We have
demonstrated specifics of vehicular embedded systems on theABS example,
we have discussed the requirements on the CBD and outlined the family of
component models supporting this CBD. We have also shown howwe real-
ize the proposed component model family. The experience we have gained so
far from concretely realizing the family shows that the conceptual division of
the model family significanly simplifies the use of a components throughout
the development phase. Mainly because it allows using a fitting component
semantics that exactly addresses the concerns in a particular stage of develop-
ment.

As what regards to the on-going work, we focus on implementing IDE
support for the concrete part of the component family and on using model-to-
model transformations to interface with abstract modelling in UML.

Bibliography

[1] H. Fennel et al. Achievements and Exploitation of the AUTOSAR Devel-
opment Partnership. Presented at Convergence 2006, Detroit, MI, USA,
October 2006.
http://www.autosar.org.

[2] Ivica Crnkovic and Magnus Larsson.Building Reliable Component-
Based Software Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[3] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
SAVE Approach to Component-Based Development of VehicularSys-
tems.Journal of Systems and Software, 80(5):655–667, May 2007.

[4] Xu Ke, Krzysztof Sierszecki, and Christo Angelov. COMDES-II:
A Component-Based Framework for Generative Development ofDis-
tributed Real-Time Control Systems. InProc. of the 13th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, pages 199–208. IEEE, 2007.

[5] Frank Lüders. An Evolutionary Approach to Software Components in
Embedded Real-Time Systems. PhD thesis, Mälardalen University, De-
cember 2006.

[6] H. Maaskant. A Robust Component Model for Consumer Electronic
Products. InDynamic and Robust Streaming in and between Connected
Consumer-Electronic Devices, volume 3 ofPhilips Research, pages 167–
192. Springer, 2005.

[7] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee.
The Koala Component Model for Consumer Electronics Software. Com-
puter, 33(3):78–85, 2000.

127

[8] Anders Möller, MikaelÅkerholm, Johan Fredriksson, and Mikael Nolin.
Evaluation of Component Technologies with Respect to Industrial Re-
quirements. InEuromicro Conference, Component-Based Software Engi-
neering Track, August 2004.

[9] Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and
Aneta Vulgarakis. ProCom – the Progress Component Model Refer-
ence Manual, version 1.0. Technical Report MDH-MRTC-230/2008-1-
SE, Mälardalen University, June 2008.

[10] Object Management Group. UML 2.0 Superstructure Specification, The
OMG Final Adopted Specification, 2003.

[11] Object Management Group. OMG Systems Modeling Language, V1.0,
2007.

[12] Object Management Group. A UML Profile for MARTE, Beta 1,August
2007. Document number: ptc/07-08-04.

[13] Simulink, MathWorks.
www.mathworks.com.

[14] AUTOSAR Development Partnership. Technical OverviewV2.2.1,
February 2008.
http://www.autosar.org.

[15] Dale Rogerson.Inside COM. Microsoft Press, 1997.

[16] Fintan Bolton.Pure CORBA. Sams, 2001.

[17] OSGi Alliance. OSGi Service Plaform Core Specification, V4.1, 2007.

[18] Douglas C. Schmidt and Fred Kuhns. An Overview of the Real-Time
CORBA Specification.Computer, 33(6):56–63, 2000.

[19] Arcticus Systems. Rubus Software Components.
http://www.arcticus-systems.com.

[20] Oscar Nierstrasz, Gabriela Arévalo, Stéphane Ducasse, Roel Wuyts, An-
drew P. Black, Peter O. Müller, Christian Zeidler, Thomas Genssler, and
Reinier van den Born. A Component Model for Field Devices. InProc. of
the 1st Int. IFIP/ACM Working Conference on Component Deployment,
pages 200–209. Springer, 2002.

Chapter 8

Paper C:
A Component Model for
Control-Intensive
Distributed Embedded
Systems

Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson, Ivica Crnković
In Proceedings of the 11th International Symposium on Component Based
Software Engineering (CBSE2008), Karlsruhe, Germany, October, 2008.

129

Abstract

In this paper we focus on design of a class of distributed embedded systems that
primarily perform real-time controlling tasks. We proposea two-layer compo-
nent model for design and development of such embedded systems with the
aim of using component-based development for decreasing the complexity in
design and providing a ground for analyzing them and predicttheir properties,
such as resource consumption and timing behavior. The two-layer model is
used to efficiently cope with different design paradigms on different abstrac-
tion levels. The model is illustrated by an example from the vehicular domain.

8.1 Introduction 131

8.1 Introduction

A special class of embedded systems are control-intensive distributed systems
which can be found in many products, such as vehicles, automation systems, or
distributed wireless networks. In this category of systemsas in most embedded
systems, resources limitations in terms of memory, bandwidth and energy com-
bined with the existence of dependability and real-time concerns are obviously
issues to take into consideration.

Another problem when developing such systems is to deal withthe rapidly
increasing complexity. For example in the automotive industry, the complexity
of the electronic architecture is growing exponentially, directed by the demands
on the driver’s safety, assistance and comfort [1]. In this class of systems, dis-
tribution is also an important aspect. The architecture of the electronic systems
is distributed all over the corresponding product (car, production cell, etc.),
following its physical architecture, to bring the embeddedsystem closer to the
sensed or controlled elements.

In this paper, we propose a new component model called ProComwith
the following main objectives: (i) to have an ability of handling the different
needs which exist at different granularity levels (providesuitable semantics at
different levels of the system design); (ii) to provide coverage of the whole
development process; (iii) to provide support to facilitate analysis, verification,
validation and testing; and (iv) to support the deployment of components and
the generation of an optimized and schedulable image of the systems. The
focus of this paper is on the component model itself, described as means for
designing and modelling system functionality and as a framework that enables
integration of different types of models for resource and timing analysis.

The component model is a part of the PROGRESSapproach [2] that distin-
guishes three key activities in the development: design, analysis and deploy-
ment. Thedesignactivity provides the architectural description of the system
compliant with the semantic rules of the component model presented in this
paper and enables the integration analysis and deployment capabilities.Anal-
ysisis carried out to ensure that the developed embedded system meets its de-
pendability requirements and constraints in terms of resource limitations. The
proposed component model provides means to handle and reusethe different
information generated during the analysis activity. Thedeploymentactivity is
specific for control-intensive embedded systems; due to timing requirements
and resource constraints, the execution models can be very different from the
design models. Typically, execution units are processes and threads of tasks.

132 Paper C

The main focus of this paper is oriented towards system design. The two
supplementary activities (analysis and deployment) are outside the scope of the
paper. A component model that enables a reusable design, takes into considera-
tion the requirements’ characteristics for control-intensive embedded systems,
and is used as an integration frame for analysis and deployment, is elaborated
in the subsequent sections.

The ideas underlying ProCom emanate partly from the previous work on
the SaveComp Component Model (SaveCCM) [3] within the SAVE project,
such as the emphasis on reusability, a possibility to analyse components for
timing behavior and safety properties. Several other concepts and component
models have inspired the ProCom Design. Some of them are the Rubus compo-
nent model [4], Prediction-Enabled Component Technology (PECT) [5], AU-
TOSAR [1], Koala [6], the Robocop project [7], and BIP [8].

8.2 The ProCom Two Layer Component Model

In designing our component model, we have aimed at addressing the key con-
cerns which exist in the development of control-intensive distributed embedded
systems. We have analyzed these concerns in our previous work [9], with the
conclusion that in order to cover the whole development process of the systems,
i.e. both the design of a complete system and of the low-levelcontrol-based
functionalities, two distinct levels of granularity are necessary.

Taking into consideration the difference between those levels, we propose
a two-layer component model, calledProCom. It distinguishes a component
model used for modelling independent distributed components with complex
functionality (calledProSys) and a component model used for modelling small
parts of control functionality (calledProSave). ProCom further establishes how
a ProSys component may be modelled out of ProSave components. The fol-
lowing subsections describe both of the layers and their relation. The complete
specification of ProCom is available in [10].

8.2.1 ProSys — the Upper Layer

In ProSys, a system is modeled as a collection of concurrent,communicat-
ing subsystems, possibly developed independently. Some of those subsystems,
calledcomposite subsystems, can in turn be built out of other subsystems, thus
making ProSys a hierarchical component model. This hierarchy ends with the
so-calledprimitive subsystems, which are either subsystems coming from the

8.2 The ProCom Two Layer Component Model 133

ProSave layer or non-decomposable units of implementation(such as COTS
or legacy subsystems) with wrappers to enable compositionswith other sub-
systems. From a CBSE perspective, subsystems are the “components” of the
ProSys layer, i.e. design or implementation units that can be developed inde-
pendently, stored in a repository and reused in multiple applications.

The communication between subsystems is based on the asynchronous
message passing paradigm which allows transparent communication (both lo-
cally or distributed over a bus). A subsystem is specified by typed input and
output message ports, expressing what type of messages the subsystem re-
ceives and sends. The specification also includes attributes and models related
to functionality, reliability, timing and resource usage,to be used in analysis
and verification throughout the development process. The list of models and
attributes used is not fixed and can be extended.

Message ports are connected viamessage channels— explicit design enti-
ties representing a piece of information that is of interestto several subsystems
— as exemplified in Fig. 8.1. The message channels make it possible to express
that a particular piece of shared data will be required in thesystem, before any
producer or receiver of this data has been defined. Also, information about
shared data such as precision, format, etc. can be associated with the message
channel instead of with the message port where it is producedor consumed.
That way, it can remain in the design even if, for example, theproducer is
replaced by another subsystem.

Figure 8.1: Three subsystems communicating via a message channel.

8.2.2 ProSave — the Lower Layer

The ProSave layer serves for the design of single subsystemstypically inter-
acting with the system environment by reading sensor data and controlling ac-
tuators accordingly. On this level, components provide an abstraction of tasks
and control loops found in control systems.

134 Paper C

S1

S2

Figure 8.2: A ProSave component with two services; S1 has two output groups
and S2 has a single output group. Triangles and boxes denote trigger- and data
ports, respectively.

A subsystem is constructed by hierarchically structured and interconnected
ProSavecomponents. These components are encapsulated and reusable design-
time units of functionality, with clearly defined interfaces to the environment.
As they are designed mainly to model simple control loops andare usually not
distributed, this component model is based on the pipes-and-filters architectural
style with an explicit separation between data and control flow. The former is
captured bydata portswhere data of a given type can be written or read, and
the latter bytrigger portsthat control the activation of components.

A ProSave component is of a collection of services, each providing a par-
ticular functionality. A service consists of aninput port groupcontaining the
activation trigger and the data required to perform the service, and a set of
output port groupswhere the data produced by the service will be available.
Fig. 8.2 illustrates these concepts. The data of an output group are produced at
the same time, at which the trigger port of that group is also activated. Having
multiple output groups allows the service to produce time critical parts of the
output early.

ProSave components arepassive, i.e. they do not contain their own execu-
tion threads and cannot initiate activities on their own. Soeach service remains
in a passive state until its input trigger port has been activated. Once activated,
the data input ports are read in one atomic operation and the service switches
into an active state where it performs internal computations and produces data
on its output ports. Before the service returns to the inactive state again, each
of its output groups should be written exactly once.

Input data ports can receive data while the service is active, but it would
only be available the next time the service is activated. This simplifies analysis
by ensuring that once a service has been activated it is functionally (although
not temporally) independent from other components executing concurrently.

8.2 The ProCom Two Layer Component Model 135

typedef struct {
int *speed;
float *dist;

} in_S1;

typedef struct {
int *control;

} out_S1;

void init();
void entry_S1(in_S1 *in, out_S1 *out);

Figure 8.3: A primitive component and the corresponding header file.

A component also includes a collection of structuredattributeswhich de-
fine simple or complex types of component properties such as behavioural
models, resource models, certain dependability measures,and documentation.
These attributes can be explicitly associated with a specific port, group or ser-
vice (e.g. the worst case execution time of a service, or the value range of a
data port), or related to the component as a whole, for example a specification
of the total memory footprint. New attribute types can also be added to the
model.

The functionality of a component can either be realized by code (prim-
itive component), or by interconnected sub-components (composite compo-
nent). For primitive components, in addition to a function called at system
startup to initialise the internal state, each service is implemented as a single
non-suspending C function. Fig. 8.3 shows an example of the header file of a
primitive component.

Composite components internally consist ofsub-components, connections
and connectors. A connectionis a directed edge which connects two ports
(output data port to input data port of compatible types and output trigger port
to input trigger port) whereasconnectorsare constructs that provide detailed
control over the data- and control-flow. The existence of different types of con-
nectors and the simple structure of components makes it possible to explicitly
specify and then analyse the control flow, timing propertiesand system perfor-
mance.

The set of connectors in ProSave, selected to support typical collaboration
patterns, is extensible and will grow over time as additional data- and control-
flow constructs prove to be needed. The initial set includes connectors for
forkingandjoining data or trigger connections, orselectingdynamically a path
of the control flow depending on a condition. Fig. 8.4 shows a typical usage of
the selection connector together withor connectors.

136 Paper C

A

B

C D

Selection

Data

or

Control

or

Figure 8.4: A typical usage ofselectionandor connectors. When component
A is finished, either B or C is executed, depending on the valueat the selection
data port. In either case, component D is executed afterwards, with the data
produced by B or C as input.

ProSave follows the push-model for data transfers and the triggered service
always uses the latest value written to each input data port.Since communica-
tion may eventually be realised over a physical connection,the transfer of data
and triggering is not an atomic operation. For triggering and data appearing
together at an output group, however, the semantics specifythat all data should
be delivered to their destinations before the triggering istransferred, to avoid
components being triggered before the data arrives.

8.2.3 Integration of Layers — Combining ProSave and
ProSys

ProCom provides a mechanism for integrating the low-level design of a sub-
system described by ProSave into the high-level design described by ProSys.
A ProSys primitive subsystem can be further specified using ProSave (as ex-
emplified in Fig. 8.6). Concretely, in addition to ProSave components, con-
nections and ProSave connectors, additional connector types are introduced to
(a) map the architectural style (message passing used in ProSysto pipes-and-
filters used in ProSave, and vice versa), and(b) specify periodic activation of
ProSave components.

Periodic activation is provided by the clock connector, with a single out-
put trigger port which is repeatedly activated at a given rate. To achieve the
mapping from message passing to trigger and data, and vice versa, the mes-
sage ports of the enclosing primitive subsystem are treatedas connectors with
one trigger port and one data port when appearing on the ProSave level. An
input message port corresponds to a connector with output ports. Whenever a
message is received by the message port, it writes the message data to the out-

8.3 Example 137

put data port and activates the output trigger. Oppositely,output message ports
correspond to a connector with an input trigger and input data ports. When
triggered, the current value of the data port is sent as a message.

These composition mechanisms do not only allow a consistentdesign of
the entire system by integrated pre-existing subsystems but also provide mech-
anisms for analysis of particular attributes such as timingproperties or per-
formance of the entire system using specifications or analysis results of the
subsystems.

8.3 Example

To illustrate the ProCom component model we use as an examplean electronic
stability control (ESC) system from the vehicular domain. In addition to anti-
lock braking (ABS) and traction control (TCS), which aim at preventing the
wheels from locking or spinning when braking or accelerating, respectively,
the ESC also handles sliding caused by under- or oversteering.

Figure 8.5: The ESC is a composite subsystem, internally modelled in ProSys.

The ESC can be modeled as a ProSys subsystem, as shown in Fig. 8.5. In-
side, we find subsystems for the sensors and actuators that are local to the ESC.
There are also subsystems corresponding to specific parts ofthe ESC function-
ality (SCS, TCS and ABS). In the envisioned scenario, the TCSand ABS sub-

138 Paper C

systems are reused from previous versions of the car, while SCS corresponds
to the added functionality for handling under- and oversteering. Finally, the
“Combiner” subsystem is responsible for combining the output of the three.

The internal structure of a SCS primitive subsystem is modeled in ProSave
(see Fig. 8.6). The SCS contains a single periodic activity performed at a fre-
quency of 50 Hz, expressed by a clock connector. The clock first activates the
two components responsible for computing the actual and desired direction,
respectively. When both components have finished their respective tasks, the
“Slide detection” component compares the results (i.e., the actual and desired
directions) and decides whether or not stability control isrequired. The fourth
component computes the actual response, i.e. the adjustment of brakeage and
acceleration.

Figure 8.6: The SCS subsystem, modelled in ProSave.

8.4 Conclusions

We have presented ProCom, a component model for control-intensive dis-
tributed embedded systems. The model takes into account themost important
characteristics of these systems and consistently uses theconcept of reusable
components throughout the development process, from earlydesign to deploy-
ment. A characteristic feature of the domain we consider is that the model of
a system must be able to provide both a high-level view of loosely coupled
subsystems and a low-level view of control loops controlling a particular piece
of hardware. To address this, ProCom is structured in two layers (ProSys and
ProSave). At the upper layer, ProSys, components correspond to complex ac-
tive subsystems communicating via asynchronous message passing. The lower

8.4 Conclusions 139

layer, ProSave, serves for modelling of primitive ProSys components. It is
based on primitive components implemented by C functions, and explicitly
captures the data transfer and control flow between components using a rich
set of connectors.

The future work on ProCom includes elaborating on advanced features of
the component model (e.g. static configuration, mode shifting, error-handling,
etc.), building an integrated development environment andevaluating the pro-
posed approach in real industrial case-studies.

Bibliography

[1] AUTOSAR Development Partnership. Technical Overview V2.2.1,
February 2008.
http://www.autosar.org.

[2] Hans Hansson, Mikael Nolin, and Thomas Nolte. Beating the Automotive
Code Complexity Challenge. InNational Workshop on High-Confidence
Automotive Cyber-Physical Systems, Troy, Michigan, USA, April 2008.

[3] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
SAVE Approach to Component-Based Development of VehicularSys-
tems.Journal of Systems and Software, 80(5):655–667, May 2007.

[4] Arcticus Systems. Rubus Software Components.
http://www.arcticus-systems.com.

[5] Kurt C. Wallnau. Volume III: A Technology for Predictable Assembly
from Certifiable Components (PACC). Technical Report CMU/SEI-2003-
TR-009, Carnegie Mellon, 2003.

[6] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee.
The Koala Component Model for Consumer Electronics Software. Com-
puter, 33(3):78–85, 2000.

[7] Robocop project page.
www.extra.research.philips.com/euprojects/robocop.

[8] Ananda Basu, Marius Bozga, and Joseph Sifakis. ModelingHeteroge-
neous Real-time Components in BIP. InProc. of the 4th IEEE Interna-
tional Conference on Software Engineering and Formal Methods, pages
3–12. IEEE, 2006.

141

[9] Tomáš Bureš, Jan Carlson, Séverine Sentilles, and Aneta Vulgarakis.
A Component Model Family for Vehicular Embedded Systems. In
The Third International Conference on Software Engineering Advances.
IEEE, October 2008.

[10] Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and
Aneta Vulgarakis. ProCom – the Progress Component Model Refer-
ence Manual, version 1.0. Technical Report MDH-MRTC-230/2008-1-
SE, Mälardalen University, June 2008.

Chapter 9

Paper D:
Integration of
Extra-Functional Properties
in Component Models

Séverine Sentilles, PetrŠtěpán, Jan Carlson and Ivica Crnković
In Proceedings of the12th International Symposium on Component Based
Software Engineering (CBSE 2009), LNCS 5582, Springer Berlin, East Strouds-
burg University, Pennsylvania, USA, June, 2009

143

Abstract

Management of extra-functional properties in component models is one of
the main challenges in the component-based software engineering community.
Still, the starting point in their management, namely theirspecification in a
context of component models is not addressed in a systematicway. Extra-
functional properties can be expressed as attributes (or combinations of them)
of components, or of a system, but also as attributes of otherelements, such as
interfaces and connectors. Attributes can be defined as estimations, or can be
measured, or modelled; this means that an attribute can be expressed through
multiple values valid under different conditions. This paper addresses how this
diversity in attribute specifications and their relations to component model can
be expressed, by proposing a model for attribute specifications and their inte-
grations in component models. A format for attribute specification is proposed,
discussed and analyzed, and the approach is exemplified through its integration
both in the ProCom component model and its integrated development environ-
ment.

9.1 Introduction 145

9.1 Introduction

One of the core challenges still remaining in component-based software en-
gineering (CBSE) is the management of extra-functional properties, often ex-
pressed in terms of attributes of components or of systems asa whole. In
CBSE, one desired feature is the integration of components in an automatic
and efficient way. The integration process is achieved by “wiring” components
through their interfaces. The second aspect of the integration is the composi-
tion of extra-functional properties and this part is significantly more complex.
The problem already appears in the specifications of attributes. While compo-
nent models precisely define interfaces as a means of functional specification,
specifications of attributes in relation to component specification is either not
defined, or unclear. Is an attribute a property of a componentor the result of
interaction between components, or maybe the result of performing a function
that is part of the component interface, or the result of combining a compo-
nent and its environment? So far these questions have not been addressed in a
systematic way.

This paper addresses the question of attribute specification in component
models. The specification of attributes has several aspectsthat we discuss and
demonstrate on a component model.

First, we address the question of the form of attribute specifications. Our
starting points are related to Shaw’s specification which identifies the specifi-
cation of attributes as a triple containing attribute name,value and credibility
information [1]. We refine this definition in extension of values and credibility.

The second aspect of attribute specification that we addressis related to
the component and system lifecycle. During the lifecycle ofa component an
attribute changes with respect to how the value is obtained and the accuracy
(credibility) of its value. In early phases of the componentlifecycle a com-
ponent is being modelled and then the attribute value can be an estimation or
even a requirement. The accuracy of the estimation during the development
process can be changed, as a result of an increasing amount ofinformation or
a change in the way the value is obtained. In the run-time phase (or even in the
development phase in some cases), the attribute value can bemeasured.

The third aspect of the attribute specifications concerns the variations of the
values — not only as a result of different ways of obtaining the value, but also
different values depending on the external context. Some attributes are directly
related to the system context — for example, the execution time of a component
does not only depend on the component behaviour and input parameters, but
also on the platform characteristics. For such cases it is obvious that we need

146 Paper D

to be able to specify these different values and the conditions under which the
attribute value is valid.

There are also other aspects of integration of component models and their
attributes. By nature the attributes are parts of (i.e. theycharacterize) compo-
nents, but they also can be related to a particular element ofa component or
a system. For example, an attribute can be annotated to a component directly,
or to a port in the interface of a component, or to a connector.In general, a
component model that supports the management of attributesshould have the
possibility to relate attributes to different architectural elements of the compo-
nent model.

The aim of this paper is to analyze the different aspects of attribute spec-
ifications to formalize their form and their integration with component mod-
els. A formal specification of an attribute format makes it easier to manage
component and system properties. It also catalyzes the process of integrating
extra-functional properties into component models.

Since attributes are very different, the concrete results can be shown on
particular classes of attributes integrated with particular component models.
To illustrate the attribute specifications in a component model, we use Pro-
Com [2, 3], and annotations of attributes as an immanent partof the model.
We also provide implementation examples.

The rest of the paper is organized as follows. Section 9.2 defines the at-
tribute specifications. Section 9.3 discuses the attributespecifications of com-
posite components in relation to the attributes of composable components.
Since an attribute can include different values, i.e. different versions of an
attribute can exist, in a system analysis or verification process it is important
to select a particular version of an attribute. The selection principles and a
possible support is discussed in Section 9.4. The principles of attribute specifi-
cations are exemplified in the ProCom component model, and a prototype tool
that manages attributes is demonstrated in Section 9.5. Section 9.6 surveys
related work, followed by a short discussion in Section 9.7,before the paper
concludes with a summary and future work.

9.2 Annotation of Attributes in Component Mod-
els

The purpose of attributes is to provide additional information about the compo-
nents, complementing the structural information that is provided by the com-
ponent model.

9.2 Annotation of Attributes in Component Models 147

This additional information is intended to give a better insight in the be-
haviour and capability of the component in terms of reliability, safety, security,
maintainability, accuracy, compliance to a standard, resource consumption, and
timing capabilities, among many others. In that sense, attributes bridge the gap
between the knowledge of what a component does and its actually capabilities.

9.2.1 Attributes in a Component Model

As mentioned in [4], the additional information provided byattributes does not
necessarily concern the component as a whole, but in fact often points more
precisely to some parts of a component such as an interface oran operation of
an interface. In our view, this relation should not be limited to components,
interfaces and operations, but be extended so that attributes can be associated
with other elements of a component model, including for example ports, con-
nectors or more notably component instances. For instance,having an extra-
functional property on connectors to capture communication latency, makes it
possible to reason about the response time of complex operations that involve
communication between components.

Following this standpoint, we define asattributablean element of a com-
ponent model (component, interface, component instance, connector, etc.) to
which extra-functional properties (attributes) can be attached. By this means,
all attributable entities are treated in similar way with regards to the definition
and usage of attributes. Fig. 9.1 depicts these relations.

-id:String

AttributeAttributable

Component Interface

1 *

1 0..*

ConnectorOperation

1 *

ComponentInstance

* 1

Figure 9.1: The relation between attributes and the elements of a component
model.

9.2.2 Attribute Definition

The exhaustive list of possible attributes to consider is endless and, as stated
in [5], there is no a priori, logical or conceptual method to determine which
properties exist in a system or in components. Furthermore,a single property

148 Paper D

can have a multitude of possible representations. This problem inheres in one
of the fundamental characteristics of extra-functional properties and properties
in general: they are issued by humans. Therefore, differentusers will consider
different types of information important for the development of the software
system, and for the same property they might associate a different meaning
and representation.

Consequently, the definition of a suitable format specification for extra-
functional properties able to deal with the great variety ofproperties possibly
of interest remains a challenge. This definition should be generic and flexible
enough to handle the heterogeneity of properties while being extensible to sup-
port the emergence of new ones. This means that the specification format must
be able to cope with different formats and different levels of formalism.

An informal way to specify these properties is to use annotations. However,
it gives too much freedom concerning the definition and this brings problems
to manage extra-functional properties at a large scale or inautomated processes
such as composition or analysis.

In order to move towards a precise formalisation of extra-functional prop-
erties, which allows an unambiguous understanding and a precise semantics
both with respect to meaning and valid specification format of the value, we
define the concept ofAttributeas:

Attribute =
〈

TypeIdentifier, Value+
〉

Value = 〈Data, Metadata, ValidityCondition∗〉

where:

• TypeIdentifierdefines the extra-functional property (i.e. the identifier
property in Fig. 9.1);

• Datacontains the concrete value for the property;

• Metadataprovides complementary information on data and allows to
distinguish between them; and

• ValidityConditionsdescribe the conditions under which the value is valid.

The remaining of this section details these concepts, basedon diagrams issued
from the meta-model of our attribute framework (the full meta-model is given
in Appendix 9.8). However, an important aspect of this definition, which is
worth noting already at this point, is the possibility for anattribute to have a
several values. This is further explained in Section 9.2.5.

9.2 Annotation of Attributes in Component Models 149

9.2.3 Attribute Type

Similarly to the concept of “class” in object oriented programming, anattribute
typedesignates a class of attributes. In this respect, an attribute is then compa-
rable to a class instance, and must comply with the specific structure imposed
by the attribute type. An attribute type specifies thus anidentifier which is a
condensed significative name describing the principal characteristics of the at-
tributes (e.g. “Worst Case Execution Time”, “Static MemoryUsage”, etc.), a
list of attributableelements to which the property can be attached, and a spec-
ification of thedata formatthat the attribute instances must conform to. As
illustrated in Fig. 9.1, the identifier of the attribute typeis shared by all the at-
tributes of the same attribute type, and an attribute belongs to a single attribute
type only.

Consequently, the uniqueness of the attribute types must beensured so that
it is not possible to have two attributes with the same identifier but different
value formats. This requires techniques outside the definition of the attribute
concept itself. A simple technique is to keep aregistry of attribute types,
where all the declaration of attribute types are stored to ensure their unique-
ness. Fig. 9.2 illustrates an attribute type registry containing several attribute
types.

Attribute Type Registry

Type Identifier : Power Consumption
Attributable(s): Component
Data Format : Reference to external model
Documentation: …

...

Type Identifier : Worst-Case Execution Time
Attributable(s): Component , Interface, Operation
Data Format : Integer
Documentation: ...

Type Identifier : Value Range
Attributable(s): Port
Data Format : [Float; Float]
Documentation: ...

Type Identifier : Static Memory Usage
Attributable(s): Component
Data Format : Float
Documentation: ...

Figure 9.2: Attribute type registry.

Although this way of specifying attributes types (or attributes, in a broader
sense) provides the great advantages of being open and extensible so that it

150 Paper D

can fit the multitude of extra-functional properties which need to be defined,
it still requires users to have an intuitive and common understanding of what
the meaning and intended usage of the attributes were when they were cre-
ated. Therefore it is important to provide proper attributetypedocumentation.
This documentation is stored in the attribute type registryand consists of an
informal text written in natural language. Nevertheless, it must supply enough
information to primarily clarify the meaning of the attribute type as well as its
intended usage.

It is reasonable to assume that hundreds of attribute types or more will be
introduced. Several classification schemes (e.g. [6] and [7]) have been pro-
posed which can be used as basis to identify groups of attribute types such
as “resource usage”, “reliability”, “timing”, etc. These categories could al-
low navigation across attributes more easily and possibly hide the whole set
of attribute types that are uninteresting for a particular project. A remaining
challenge is in this case to determine appropriate categories, as the proposed
classifications are distinct and often non-orthogonal as mentioned in [5]. How-
ever, this is not within the scope of this paper.

9.2.4 Attribute Data

To elicit information on the element of the component model they are associ-
ated with, the part of attributes concerned with expressingdata must be repre-
sented in an unambiguous and well-tailored format. This implies that in addi-
tion to supporting primitive types such as integers, floats,etc., and structured
types such as arrays, complex types must also be covered. These complex types
include representation of value distributions, various external models, images,
etc.

AttributeValue Data

1

-data

1

-value: Integer

IntegerData

-value: String

StringData

-value: Object

RefData

Figure 9.3: Attribute data.

9.2 Annotation of Attributes in Component Models 151

For this, we define a generic data structure, calleddata, which is specialized
into a number of simple data types and a reference to any complex object, as
illustrated in Fig. 9.3. This structure can be extended to build more complex
data structure such as records or tuples.

9.2.5 Multiple Attribute Values

Attributes emerge during the software development processas additional in-
formation needs to be easily available either to guide the development, to make
decisions on the next step to follow, to provide appropriate(early) analysis
and tests of the components, or to give feedbacks on the current status. This
need for information starts already in early phases of the development, in which
extra-functional properties are considered as constraints to be met and expected
to be satisfied later on, thus becoming an intrinsic part of the component or sys-
tem description.

This implies that through the development process, (i) the meaning of an
attribute typically changes from a required property to a provided/exhibited
property, and (ii) its value changes too as the knowledge andthe amount of
information about the system increases. Thus the actual data as well as the
appropriate metadata needs to be successively refined to be replaced by the
latest and most accurate value. For example, an attribute, estimated in a de-
sign phase, is replaced with a new value coming from a measurement after
the implementation phase is completed, or with more information available the
analysis become more efficient and reliable and therefore the confidence in the
property, expressed by the accuracy metadata, increases.

However, the gradual refinement of an attribute towards its most accurate
value is not always the expected way to deal with extra-functional properties.
Often, values which are equally valid in the current development phase, need
to exist simultaneously. In other words, this means that thelatest value must
not replace the previous one. This requires an ability for anattribute to have
multiple values to cope with information coming from various context of uti-
lization, to keep different values obtained through different methods, to keep
the required value and a provided value for verifying the conformity to the ini-
tial requirement, or to compare a range of possible values tomake a decision.
This ability of an attribute to have multiple values is depicted in Fig. 9.4.

152 Paper D

AttributeValue

-id:String

Attribute

1

-values

1..*

Figure 9.4: Multiple attribute values.

9.2.6 Attribute Value Metadata

Introducing the possibility to have multiple values for attributes also requires
the ability to distinguish between them. Furthermore, it isimportant to docu-
ment the way an attribute value has been obtained to ensure that information
about a component (or another element of a component model) is correct and
up-to-date. These two functions are provided by theattribute value metadata,
or simply metadata, which role is to capture the context in which the corre-
sponding attribute value has been obtained: when, how and possibly by whom.
However, the question of determining the complete list of elements that meta-
data should cover remains.

We define a partial list of metadata that we consider indispensable to pro-
vide a basic support for the concepts around the attribute definition (see Fig. 9.5).
The list consists of the version of the current attribute value, the timestamp in-
dicating when the attribute value was created or updated, the source of the
value (“requirement”, “estimation”, “measurement”, “formal analysis with the
tool X”, “simulation”, “generated from model”, “generatedfrom implementa-
tion”, etc.). Other metadata are optional; for example the accuracy of the value
or some informal comments about the attribute value.

AttributeValue
-version:String
-timestamp:Date
-source:String
-accuracy:Float
-comment:Sting
-...

Metadata

1

-metadata

1

Figure 9.5: Attribute value metadata.

9.2.7 Validity Conditions of Attribute Values

Reusability is a desired feature of component-based software engineering, which
implies that a component is assumed to be (re-)useable in many different con-

9.2 Annotation of Attributes in Component Models 153

texts. As an intrinsic part of components, revealing what the component is
capable of, attributes are intended to be reusable too. Thismeans that the va-
lidity of their information must still be accurate in the newcontext in which the
component is reused. Hence, to keep consistent all the information concern-
ing the component, both its expected behaviour and capabilities, and the actual
ones, it is necessary to specify in what type of contexts an attribute value is
valid, i.e. fully or partially reusable.

We refer to these specifications of context restrictions asvalidity condi-
tions. The validity conditions explicitly describe the particular contexts in
which an attribute value can be trusted. Different types of contexts exist and,
as with attribute types, an attempt to identify them all is bound to fail. They
include, at least, constraints on the underlying platform,specification of usage
profile, and dependencies towards other attributes, as illustrated in Fig. 9.6.

With the intentions of developing an automated process to select only valid
values for the current context, the validity conditions must be defined in a strict
manner and it is important that they are publicly exposed. However, strictly
ensuring the respect of all the validity conditions is a too restrictive approach
since in this case, only the attribute values for which the validity conditions are
fully satisfied would be reusable. For instance, a componentmight be reused
even though some of its attribute values are not trustworthyfor the current de-
sign. This reuse might require a manual intervention to lower the confidence
in the provided values. We envision that, as a conscious decision, some at-
tribute values could be reused regardless of their validityconditions not being
satisfied, but it would typically affect the values. For example, the value might
be reused with a lower accuracy, or with the data modified to add some safety
margins.

AttributeValue ValidityConditions

1

-validityconditions

0..*

Platform UsageProfile AttributeDependency

Figure 9.6: Validity conditions of attribute values.

154 Paper D

9.3 Attribute Composition

So far, the attributes has been in focus, and the attributable elements have sim-
ply been viewed as black-box units of design or implementation, to which at-
tributes can be attached. However, the existence of hierarchical component
models that also include composite components — componentsbuilt out of
other components — influences the ways in which the values of attributes can
be established.

Ideally, all attributes of a composite component should be directly deriv-
able from the attributes of its sub-components. While this is easily achievable
for some attribute types, e.g. static memory usage, others depend on a com-
bination of many attributes of the sub-components, or on software architecture
details [5].

Even for composable attributes, we argue that it is beneficial to allow them
to also be stated explicitly for the composite component as such. In particular,
this allows analysis of the system also at an early stage of the development
when the internals of a composite component under construction are not fully
known, or not fully analyzed with respect to all attributes required to derive the
attributes of the composite component.

The ability of the proposed attribute framework to store multiple values for
a single attribute permits explicitly assigned information to co-exist with infor-
mation generated by composition. To distinguish between them, the metadata
field sourcecan be given the valuecompositionto indicate that the value was
derived from the sub-components.

Specification of attributes of a composite is illustrated inFig. 9.7. The
composite component has been explicitly given an estimatedvalue for the at-
tribute representing static memory usage, and another value is provided by
composition, which for this attribute simply means a summation over the sub-
components.

Attribute composition can be viewed as the responsibility of the develop-
ment process, i.e. it should specify when and how attribute values should be
derived for composite components, possibly supported by automated functions
in the development tools. An interesting alternative, in particular for easily
composable attributes such as static memory usage, is to include the specifica-
tion of a composition operator in the attribute type registry.

9.4 Attribute Configuration and Selection 155

Component A

Component B Component C

• value: 15, ko
• source: estimation
• ...

• value: 25, ko
• source: composition
• ...

Static
Memory
Usage

• value: 15, ko
• source: measurement
• ...

Static
Memory
Usage

• value: 10, ko
• source: measurement
• ...

Static
Memory
Usage

+

Figure 9.7: A composite component with co-existing explicit and derived at-
tribute values.

9.4 Attribute Configuration and Selection

From the previous sections we realize that an attribute can have many values.
The question is which value of an attribute is of interest fora particular anal-
ysis, and what is the criteria to select it? The second question, related to the
consistency of definition when using several attributes, reads: Which values of
different attributes belong together?

This problem is addressed in version- and configuration management, and
we apply the principles from Software Configuration Management (SCM).
SCM distinguishes two types of versioning: (i)versions(also called revisions)
that identify evolution of an item in time. Usually the latest version of an item
is selected by default, but also an old version can be selected, for example us-
ing a time stamp (select the latest version created before a specific time); and
(ii) variantswhich allow existence of different versions of the same itemat
the same time. The versions and variants can be selected according to certain
selection principles, such as:state(select the latest version with the specified
state),version name, also called label or tag (select a version designed by a
particular name). The latter is explicit since version names are unique, while
states are not.

We adopt these principles in management of attributes. Since an attribute
can have many values, each value is treated as an attribute version. A developer
has two possibilities of managing attribute versions.

Attribute navigation The possibility to navigate through different versions

156 Paper D

of an attribute (i.e. through different values), and updatethe selected
value (changing data, or metadata information, or modifying the validity
conditions).

Configuration Values are selected, for one or several attributes, according to
a given selection principle (e.g. based on version name or timestamp).

Theconfiguration filteris important as it can be applied to the entire sys-
tem, or to a set of components, and then all architectural elements expose par-
ticular versions of the attributes that match the filter. This is important when
some system properties are analyzed using consistent versions of several at-
tributes (for example in an analysis of a response time of a scenario performed
on a particular platform).

The configuration filter is defined as a combination of attribute metadata
and validity conditions, and the use of the following keywords:

Latest The latest version.

Timestamp The latest version created before the specified date.

Versionname A particular version designated by a name.

Metadata and validity conditions are equivalent from the selection point of
view. In the selection process the filter defines constraintsover metadata or
validity conditions in the same way. The difference is however in understand-
ing the filtering mechanism and in helping the developer in recording possible
problems if the validity conditions that are filtered are contradictory (for exam-
ple if the developer specifies to use attribute values valid for “platform X” and
“platform Y”).

The configuration filter is defined as a sequence of matching conditions
combined with AND or OR operators. The conditions are testedin order, and
if a condition is not fulfilled the next one is examined. The configuration filter
is specified in the following format:

Condition1 [AND Condition2 . . .] OR

Condition3 [AND Condition4 . . .] OR

...

The conditions within a line are combined by AND operator, while lines are
combined with the OR operator. A concrete example of the configuration filter

9.4 Attribute Configuration and Selection 157

is the following:

(Platform: X) AND (Source: Measurement) OR

(Release 2.0) OR

Latest

In this example the configuration filter will select first all values with validity
conditions matching “Platform: X” and with “Source: Measurement” in the
metadata. If such values exist, the latest one is selected; if not, the filter will
select the latest version labeled with “Release 2.0”. If no such version was
found, simply the latest version of the attribute will be selected. The selected
attributes values are shown as gray boxes in Fig. 9.8.

• value: 10, kB
• version: 1
• timestamp: 080120#17:44
• source: estimation

• value: 15, kB
• version: 2
• timestamp: 080220#10:00
• source: measurement
• platform: X

• value: 30, clock cycle
• version: 2
• timestamp: 090105#15:00
• source: estimation

• value: 25, clock cycle
• version: 1
• timestamp: 090128#11:00
• source: analysis
• platform: X

Static
Memory
Usage

Worst
Case

Execution
Time

Static
Memory
Usage

• value: 15, kB
• version: 2
• timestamp: 080220#10:00
• source: measurement
• platform: X

Worst
Case

Execution
Time

• value: 30, clock cycle
• version: 1
• timestamp: 090128#13:00
• source: measurement
• platform: X

Component 2

Component 1

Figure 9.8: Attribute value selection.

158 Paper D

9.5 A Prototype for ProCom and the PROGRESS

IDE
This section concretizes and exemplifies the proposed attribute framework in
the context ofProCom, a component model for distributed embedded sys-
tems [2, 3]. The characteristics of this domain make component-based de-
velopment particularly challenging. For example, the tight coupling between
hardware and platform, and high demands on resource efficiency, are to some
extent conflicting with the notion of general-purpose reusable components.

ProCom applies the component-based approach also in early phases of
development, when components are not necessarily fully implemented. Al-
ready at this point, however, it is beneficial that the components are treated as
reusable entities to which properties, models and analysisresults can be asso-
ciated. Safety and real-time demands are addressed by a variety of analysis
techniques, in early stages based on models and estimates, and later based on
measurements, source code and structural information. Efficiency is achieved
by a deployment process in which the component-based systemdesign is trans-
formed into executables that require only a lightweight component framework
at runtime.

This extensive analysis support throughout the design and deployment pro-
cess requires a large amount of information to be associatedwith various en-
tities at different stages of the development. Informationthat is of interest
to more than one type of analysis, or which should be reused together with
the entity, is captured by attributes. Concretely, ProCom is based around two
main structural entities — components and subsystems — bothof which areat-
tributable(as defined in Section 9.2.1). The attributable elements also include
component services, message ports, and communication channels, among oth-
ers.

The initial set of attribute types is influenced by the envisioned analysis of
timing and resource consumption, and includes informationabout execution
times, static and dynamic memory usage, and complex behavioral models han-
dled by external model checking tools. Table 9.1 lists some of the attribute
types used in ProCom.

To ease the development in ProCom, an integrated development environ-
ment called PROGRESSIDE is being developed. It is a stand-alone application
built on top of the Eclipse Rich Client Platform, and includes a component
repository, architectural editors to independently design components and sys-
tems, a C development environment, and editors to specify behaviour and re-
source utilization.

9.5 A Prototype for ProCom and the PROGRESS IDE 159

Table 9.1: Examples of attributes in ProCom.

Identifier Attributable(s) Data format Documentation (short)

Static memory
Component,
Subsystem

Int

The amount of memory
(in kB) statically allocated
by the component or sub-
system.

WCET Service Int

The maximum number of
clock cycles the service
can consume before ter-
minating.

Value range Port [Int;Int]
Upper and lower bounds
on the values appearing
on the port.

Resource model Subsystem External file
A REMES model speci-
fying resource consump-
tion.

A variant of the proposed attribute framework is included inthe PROGRESS

IDE, in the form of two plugins: one for the core concepts thatare required
e.g. by analysis tools interested in, or producing, attribute values; and one
for the graphical user interface through which the developer can view and edit
attributes. In its current version, the prototype does not support validity con-
ditions, nor is the selection mechanism fully implemented.For a detailed pre-
sentation of the attribute framework prototype, see [8].

The graphical part of the framework consists of an additional tab in the
property view, where the attributes of the currently selected entity are pre-
sented. In Fig. 9.9, a component is selected in the top editor, and its attributes
(Resource modelandWCET) are shown in the property view below. In the
depicted scenario, each attribute has two values, distinguished by the metadata
timestamp.

The attribute type registry is realized by an extension point that allows other
plugins to contribute new attribute types. In addition to the information spec-
ified in Section 9.2.3 (e.g. data format and documentation),the extension can
also define how the new attribute type is handled by the graphical interface, by
defining classes for viewing, editing and validating its data.

160 Paper D

Figure 9.9: The attribute framework integrated in the PROGRESSIDE.

9.6 Related Work

Although a lot of work has been done studying extra-functional properties
in general, few component models actually integrate support for specifying
and managing extra-functional properties. When this support exists, it con-
cerns specific types of extra-functional properties such astemporal properties
or resource-related properties and is intended for reasoning and predictability
purposes.

The relation between extra-functional properties and functional specifica-
tions of component models was first explicitly addressed in the Prediction-
Enabled Component Technology project (PECT) [9]. In PECT, extra-functional
properties are handled through “analytical interfaces” conjointly with analyt-
ical models to both describes what are the properties that a component must
have and the theory that should support the property analysis.

In Robocop [10] the management of extra-functionality is done through the
creation of models: a resource model describes the resourceconsumption of
components in terms of mathematical cost functions and a behavioural model
specifies the sequence in which their operations must be invoked. Additional
models can be created.

9.6 Related Work 161

The support for extra-functional property proposed by Koala [11] handles
only static memory usage of components. The information about this prop-
erty is provided through an additional analytic interface which must be created
and filled for every components existing in the design. It is not possible to
add information about this property to already existing components. More-
over, through diversity spreadsheets, Koala proposes a mechanism outside the
analytical interface to deal with dependencies between attributes.

Contrary to our approach, which allows various elements of acomponent
model to have attributes, these components models manage extra-functional
properties on component- or system-scale only.

The closest approaches to our concept of attributes are those which de-
fine extra-functional properties as a series of name-value pairs; for example
Palladio [12] and SaveCCM [13]. Palladio uses annotations and contracts
to specify extra-functional properties concerned with performance prediction
of the system under design. SaveCCM follows the concept of credentials
proposed by Shaw [1], where extra-functional properties are represented as
triples 〈Attribute, Value, Credibility〉 where Attribute describes the com-
ponent property, Value the corresponding data, and Credibility specifies the
source of the value. Similarly to our registry of attribute types, these creden-
tials should be used conjointly with techniques to manage the creation of new
credentials.

Other approaches not related to a particular component model have also
been proposed. Zschaler [14] proposes a formal specification for extra-function-
al properties with the aim to investigate architectural elements and low-level
mechanisms such as tasks and scheduling policies that influence particular
extra-functional properties. In this specification, extra-functional properties
are split between intrinsic properties which are inheritedfrom the implementa-
tion and are fixed, and extrinsic properties which are properties which depend
on the context. In [15], a specification language for specifying the quality
of service of component-based systems is proposed. The language supports
specification of derived attributes for composites, and links between attribute
specification and measurement.

Comparing with what exists for UML, our approach relates to the MARTE
sub-profile for non-functional properties [16] which extends UML with vari-
ous constructs to annotate selected UML elements. Similarly, extra-functional
properties are defined in a “library” as types with qualifiersand used in the
models. Attribute values can be specified through a Value Specification Lan-
guage, which also defines value dependencies between attributes through sym-
bolic variables and complex expressions. Dependencies involving more than

162 Paper D

one element are expressed through constraints. MARTE also acknowledges
the need for co-existing values from different sources, butthe associated infor-
mation is not as rich as our metadata concept, and the selection mechanism is
not elaborated. However, MARTE does not support component-based develop-
ment and design space exploration, nor provide means to manage refinement
of non-functional properties. Our work could gain in integrating the generic
data type system and also in integrating the value specification language for
supporting the specification of the attribute values, whichare now left to the
creator of the attributes.

Our approach also relates to work on service level agreements (SLA) in
service-oriented systems [17], although our motivation for capturing non-func-
tional properties comes mainly from the need to perform analysis, rather than
as the basis for negotiation of quality of service between a service provider
and consumer. In the context of SLA, non-functional properties are used in
the formal specification of services, defining, e.g., the availability of a service
or the maximum response time, while we associate non-functional properties
with architectural entities to facilitate predictable reuse.

In summary, our approach differs from previous in focusing on reuse of at-
tribute values, proposing an attribute concept allowing tohave multiple values
and a mechanism to select among them, and encompassing context dependen-
cies that must be satisfied for a value to be valid in a new context.

9.7 Discussion

Our purpose with this attribute model is to provide a structure for managing
extra-functional properties closely interconnected to the component model el-
ements with the long-term vision of supporting a seamless integration and as-
sessment of extra-functional properties in an automatizedand efficient way.
This structure is intended to be used throughout a component-based develop-
ment process from early modelling to deployment steps (for an overview of this
development process, see [18]). In particular, it should bepossible for reused
components with extensive, detailed information to co-exist with components
in an early stage of development, and for analysis to treat the two transparently.

With regards to other models, our proposition is characterized by the sup-
port for multiple attribute values. Although for some simple attributes such as
number of lines of code, one and only one value is correct at a given point in
time, for other attributes the value vary according to the methods or techniques
used to obtain it, and it is not always possible to say that onevalue is more

9.7 Discussion 163

correct than another. An example of such attributes is theworst-case execu-
tion time for which different analysis techniques give different values, all of
which can be considered equally true in the characterization of the attribute.
For instance, a “safe” static analysis technique gives a higher number than a
probabilistic method but the confidence in the fact that the value cannot be
exceeded is higher. For components in an early stage of development, even a
simple attribute such aslines of codecould be estimated by several approaches,
and thus have multiple values that are equally correct at thetime.

One possible way to manage multiple property sources would be to create
a separate attribute type for each variant of the property, treating e.g.,estimated
worst case execution timeandmeasured worst case execution timeas two sep-
arate attribute types. However, viewing them as a single attribute with multiple
values facilitates analysis that use attributes as input. For example, analysis
that derives the response time of an operation can be based onthe execution
time attribute without having to deal with the different possible sources of this
information. Thus, the same response time analysis can be performed based on
early execution time estimates, safe values from static code analysis, or mea-
surements. Multiple values also significantly reduces the amount of properties
types which can be defined (in the case in which the methods provide results
for the same property) while preserving the source of information through the
metadata and the usage context through the ValidityConditions.

Another noticeable characteristic of our model is the specification of valid-
ity conditions for individual attribute values. Many attributes depend on fac-
tors external to the entity, such as underlying middleware or hardware. When
a component is reused in the same, or similar, context, the attribute value can
also be reused without restrictions. If, on the other hand, the component is
reused in a context that does not match the validity condition, the value will
not be used (e.g. in analysis) unless proceeded by a conscious decision by the
developer. For example, the value can be used with lower confidence as an
early estimate, or fully reused if the developer believe that it still applies in the
new context.

The approach presented in the papers aims for increasing analysability and
predictability of component-based systems. It however introduces a complex-
ity in the design process. By having many attribute types anddifferent versions
of attributes, there is a need for a selection of a “proper” attribute version.
There is also a need for ensuring consistency between attributes of different
types. We propose that this is handled outside the attributable entity, by a
configuration management-like mechanism in the development environment.
This allows the developer to specify which attribute version, from a number of

164 Paper D

currently “correct” ones, that should be used in the analysis performed at this
point. The attribute version can be determined by differentparameters, such as
specification of the context (identified by ValidityConditions).

The defined infrastructure for attributes facilitates a complete analysis that
includes analysis of different properties and relations between them, including
a trade-off analysis. For example, by simple changes of the configuration fil-
ters, the process of the analysis and presentation of the results for all attributes
is simpler, and consistent.

9.8 Conclusion

Providing a systematic way of attribute specifications and their integration into
a component model is important for an efficient development process; it en-
ables building tools for attribute management, such as specification, analysis,
verification, and first of all efficient management of different attributes, or the
same attributes attached to different components. It also facilitates integration
of different analysis tools. This paper proposes a model forattribute specifica-
tion which is expandable in the sense of allowing specification of new attribute
types or new formats of attribute presentations. The model distinguishes at-
tribute types (defined by a name and a data type), attribute values which in-
clude metadata and specification of the conditions under which the attribute
value is valid. The main challenge in the attribute specification formalization
is to provide a flexible mechanism to cover a large variety of attribute types and
their values, and keeping them manageable. This is the reason why the model
is extensible.

The proposed model has been integrated into ProCom, a component model
aimed for development of component-based embedded systemsfor which the
modeling, estimation and prediction of extra-functional properties are of cru-
cial importance. The prototype, developed and integrated in the PROGRESS

IDE, covers both introduction of new attribute types and specification of at-
tributes for components and other modeling entities, with data formats ranging
from primitive types to complex models handled by external tools.

Our plan is to further develop the model and the tool. The validity condi-
tions can be further formalized to enable automatic selection of attribute values
depending on the context in the development process. The same is true for the
filter selection mechanism that should enable the developers an easy selection
process. Further, we plan to develop an attribute navigation tool that will be
able to show differences between different attribute values and validity condi-

9.8 Conclusion 165

tions. Finally, a set of predefined attributes will be specified for the ProCom
component model, which will improve the efficiency and simplicity of attribute
management.

Appendix A: Attribute Framework Meta-model

Below, the full attribute framework meta-model is presented.

AttributeValue
Data

1

-data

1

-id:String

Attribute

1

-values 1..*

-value: Integer

IntegerData

-value: String

StringData

-value: Object

RefData

Attributable

Component Interface

1 *

ConnectorOperation

1 *

ComponentInstance

* 1

-version:String
-timestamp:Date
-source:String
-accuracy:Float
-comment:Sting
-...

Metadata 1

-metadata

1

ValidityConditions

1

-validityconditions

0..*

Platform UsageProfile AttributeDependency

1

0..*

Bibliography

[1] Mary Shaw. Truth vs Knowledge: The Difference Between What a Com-
ponent Does and What We Know It Does.International Workshop on
Software Specification and Design, page 181, 1996.

[2] Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson, and
Ivica Crnković. A Component Model for Control-Intensive Distributed
Embedded Systems. In Michel R.V. Chaudron and Clemens Szyperski,
editors, Proceedings of the 11th International Symposium on Compo-
nent Based Software Engineering (CBSE2008), pages 310–317. Springer
Berlin, October 2008.

[3] Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and
Aneta Vulgarakis. ProCom – the Progress Component Model Refer-
ence Manual, version 1.0. Technical Report MDH-MRTC-230/2008-1-
SE, Mälardalen University, June 2008.

[4] Ivica Crnkovic and Magnus Larsson.Building Reliable Component-
Based Software Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[5] Ivica Crnkovic, Magnus Larsson, and Otto Preiss. Concerning Pre-
dictability in Dependable Component-Based Systems: Classification of
Quality Attributes. InArchitecting Dependable Systems III, volume 3549
of Lecture Notes in Computer Science, pages 257–278. Springer Berlin,
2005.

[6] ISO/IEC. Information Technology - Software product quality - Part 1:
Quality model. Report: ISO/IEC FDIS 9126-1:2000, 2000.

[7] Manuel F. Bertoa and Antonio Vallecillo. Quality attributes for COTS
components. In6th International Workshop on Quantitative Approaches
in Object-Oriented Software Engineering (QAOOSE’2002, 2002.

167

168 Bibliography

[8] Petr Štěpán. An Extensible Attribute Framework for ProCom. Master’s
thesis, Mälardalen University, Sweden, 2009.

[9] Scott Hissam, Gabriel Moreno, Judith Stafford, and KurtWallnau. Pack-
aging predictable assembly with prediction-enabled component technol-
ogy. Technical Report: CMU/SEI-2001-TR-024, 2001.

[10] H. Maaskant. A Robust Component Model for Consumer Electronic
Products. InDynamic and Robust Streaming in and between Connected
Consumer-Electronic Devices, volume 3 ofPhilips Research, pages 167–
192. Springer, 2005.

[11] Rob van Ommering, Frank van der Linden, Jeff Kramer, andJeff Magee.
The Koala Component Model for Consumer Electronics Software. Com-
puter, 33(3):78–85, 2000.

[12] Heiko Koziolek. Parameter Dependencies for Reusable Performance
Specifications of Software Components. PhD thesis, Oldenburg, Univer-
sity, 2008.

[13] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
SAVE Approach to Component-Based Development of VehicularSys-
tems.Journal of Systems and Software, 80(5):655–667, May 2007.

[14] Steffen Zschaler. Formal Specification of Non-Functional Properties of
Component-Based Software. InIn: Proc. Workshop on Models for Non-
functional Aspects of Component-Based Systems, 2004.

[15] Jan Øyvind Aagedal.Quality of Service Support in Development of Dis-
tributed Systems. PhD thesis, Faculty of Mathematics and Natural Sci-
ences, University of Oslo, 2001.

[16] Huáscar Espinoza, Hubert Dubois, Sébastien Gérard, Julio L. Medina
Pasaje, Dorina C. Petriu, and C. Murray Woodside. Annotating UML
Models with Non-functional Properties for Quantitative Analysis. In
Jean-Michel Bruel, editor,MoDELS Satellite Events, volume 3844 of
LNCS, pages 79–90. Springer, 2005.

[17] Philip Bianco, Grace A. Lewis, and Paulo Merson. Service Level Agree-
ments in Service-Oriented Architecture Environments. Technical Report
CMU/SEI-2008-TN-021, Carnegie Mellon, 2008.

[18] Rikard Land, Jan Carlson, Stig Larsson, and Ivica Crnković. Towards
Guidelines for a Development Process for Component-Based Embedded
Systems. InWorkshop on Software Engineering Processes and Applica-
tions (SEPA) in conjunction with the International Conference on Com-
putational Science and Applications (ICCSA). Springer, June 2009.

Chapter 10

Paper E:
Save-IDE – A Tool for
Design, Analysis and
Implementation of
Component-Based
Embedded Systems

Séverine Sentilles, Anders Pettersson, Dag Nyström,
Thomas Nolte, Paul Pettersson, Ivica Crnković
In Proceedings of the31st International Conference on Software Engineering
(ICSE), Vancouver, Canada, May 2009.

171

Abstract

The paper presents Save-IDE, an Integrated Development Environment for the
development of component-based embedded systems. Save-IDE supports ef-
ficient development of dependable embedded systems by providing tools for
design of embedded software systems using a dedicated component model,
formal specification and analysis of component and system behaviors already
in early development phases, and a fully automated transformation of the sys-
tem of components into an executable image.

10.1 Introduction 173

10.1 Introduction

Certain domains such as dependable embedded systems require having a high-
confidence in the quality of products being developed. For this, a fundamental
desiderata is to have the ability to deal with requirements such as dependabil-
ity (e.g. reliability, availability, safety), timing (such as release and response
time, execution time, deadline), and resource utilization(including memory,
CPU, message channels, power consumption). This demands a strong empha-
sis on the analyzability and automation of the development process to ensure
the necessary quality of the final products with respect to these requirements.

At the same time the growing complexity of embedded systems requires
methods that increase the abstraction level, improve reusability, and enable
concurrency in the development process. An approach to achieve this is Com-
ponent-Based Software Engineering (CBSE). Both types of requirements (de-
velopment efficiency, and dependability) can be achieved using the component-
based development approach based upon formally analyzablecomponent mod-
els and complemented with adequate analysis tools. However, most component-
based technologies today lack the formal analysis tools needed to ensure de-
pendability.

In this paper we present theSave Integrated Development Environment
(Save-IDE) which gathers tools and techniques needed in thedevelopment pro-
cess of dependable embedded systems and integrates them with component-
based development. It includes development support based on a component
model SaveCCM [1] that is designed to enable efficient designof embedded
systems and behavioral, temporal analysis of the model. Compared to the ma-
jority of existing IDEs which focus mainly on the programming aspect, the
Save-IDE applies a novel approach which integrates the following activities:
(i) design, (ii) analysis, (iii) transformations, (iv) verification and (v) synthesis.
The paper briefly describes these development phases and thetools integrated
into Save-IDE.

The rest of the paper is organized as follows. Section 10.2 gives an overview
of the development process and Save-IDE. Sections 10.3, 10.4 and 10.5 de-
scribe the particular development phases and the supporting tool, namely com-
ponent-based design, component and system analysis, and synthesis. Sec-
tion 10.6 concludes the paper.

174 Paper E

10.2 Software Development Process

The development process (designated SaveCCT - SaveComp Component tech-
nology) is designed as a top-down approach with an emphasis on reusability. It
includes three mayor phases: Design, Analysis and Realization, as illustrated
on Figure 10.1.

The process begins with thesystem designphase in which the system is
broken down into subsystems and components compliant with the SaveCCM
Component Model [2]. If components (partially) matching the requirements
already exist, theselect and adaptactivity is taken. Otherwise, new com-
ponent(s) need to be developed (i.e. thecomponent developmentactivity is
taken). Correspondingly, the components are first analyzedand verified indi-
vidually towards the requirements (formal component verification). In a fol-
lowing phase, after having reconstructed the system (or parts of the system)
out of individual components and their assemblies (system composition), the
obtained compositions also need to be analyzed and verified (formal system
verification). The system and component design and verification procedure is
being repeated until the results are acceptable from the analysis point of view.
The phase that follows, therealizationphase, consists ofsynthesisandexecu-
tion or simulationactivities. The system is synthesized automatically basedon
the input from the system design, on the implementations of the components
and, on static algorithms for the resource usage and timing constraints. All the
necessary glue code for the run-time system is produced. Theresulted image
can then be tested on a simulator or downloaded into the target platform.

The development process is semi-automatic, with several automated activ-
ities. A first automated activity is the production of the skeleton of the imple-
mentation files (C files and their corresponding header files)based on the spec-
ification of the component. Another one is the generation of the interchange
file used as communication medium between tools [2]. The third one occurs
during the synthesis which includes transformation of components into the ex-
ecutable real-time units, tasks, glue code generation, inclusion of a particular
scheduling algorithm, compilation and linking all elements in the executable
image.

This process is supported by a set of tools integrated into anIntegrated
Development Environment, Save-IDE1. The Save-IDE is designed as a plat-
form with an extensible set of tools providing integrated support to achieve
the SaveCCT approach as presented in [1, 3]. Save-IDE is developed as a set

1The Save-IDE is available for download from the web page
http://sourceforge.net/projects/save-ide/

10.2 Software Development Process 175

Software
System Design

ExecutionSimulation

Synthesis

Formal System
Verification

System
Composition

Formal
Component
Verification

Software
Component

Development

Select
and

Adapt

ok

ok

D
es

ig
n

A
n

al
ys

is
R

ea
liz

at
io

n

Processes done in
several iterations

Workflow

not ok

Start

not ok

Figure 10.1: The SaveCCT development process
of plugins for the Eclipse framework and it comprises three key activities in
the development process: (i) system and component development that includes
modeling and design of the components, the architectural design of the system
and specification and implementation of components, (ii) time analysis of the
system and the components, and (iii) the synthesis that includes transforma-
tion from components to tasks, setup of execution parameters like priorities
and periodicity of execution, glue code generation and compilation. Save-IDE
enables interactive and automatic use of these tools and combines the entire
development chain into a common environment.

In Figure 10.2, the organization of the Save-IDE tool-chainis shown. The
development part consists of anArchitecture Editorwhere system and com-
ponent models can be created. Individual components can be implemented
from generated c-template files in the C environment tool (CDT Eclipse plu-
gin). In addition to the specification of functional interface, the Architecture
Editor makes it possible to assign different attributes to the components, such
as execution time, or behavioral model; for the latter the UPPAAL tool [4] and
its front-end tool UPPAAL PORT2 is used. Finally, systems can be synthesized
using the synthesis tool. This process is done automatically. Synthesis is per-
formed towards the SaveOS (Save Operating System), which isan abstraction
layer that allows Save-based systems to be easily ported to different operating

2UPPAAL PORT is available for download from the web page http://www.uppaal.org/port

176 Paper E

Save-IDE

Synthesis

Component-Based
Design Analysis

.save .TA

Component
Development

Editor

Behaviour
Model Merger

Synthesis
Tool

UPPAAL-Port
Simulator

Timed Automata
Editor

Architecture
Editor

.C

.save

Compiler

SaveOS
Task
Set

Glue

Tem-
plate

Figure 10.2: Overview of the Save-IDE tool-chain

systems and hardware platforms. The final step in the chain isto compile and
download the application to the target. Furthermore, usingan external tool,
CC-Simtech [5], systems can be simulated on a standard desktop computer.

10.3 Component-Based Design
As depicted in Figure 10.1, the design of a system in SaveCCT distinguishes
between two independent activities:software system designandsoftware com-
ponent development. Software system design consists of designing a system
out of independent and possibly already implemented components, i.e. compo-
nents being produced through the component development activity.

TheArchitecture Editorenables designing a system following the seman-
tics prescribed by the SaveCCM component model. To achieve tractable anal-
ysis of the system being developed (Section 10.4), the specification capabil-
ity of this component model has been restricted. It consistsof a minimum

10.3 Component-Based Design 177

Figure 10.3: Architecture Editor

set of architectural elements (component, assembly, composite, clock, delay
and switch) connected through “pipe-and-filter” ports distinguishing between
control- and data-flows. Also the execution semantics of thecomponents and
composites (compound components) have been restricted to “read-execute-
write” sequences performing computation (i.e. being active) when they are
triggered by control ports. Otherwise, the components are in a passive state.
More details about the component model can be found in [1] and[2].

For each composite architectural element two views coexistin the Archi-
tecture Editor (see Figure 10.3): theexternal viewand theinternal view. The
external view describes the name and type of the element, theports, and the
models annotated to the element (such as time behavior represent by a timed
automata), whereas the internal view handles the inner elements and their con-
nections. This view can be hierarchical since SaveCCM allows hierarchical
compositions of components and assemblies. The internal view presents the
component implementation using the Component DevelopmentEditor pro-
vided by the Eclipse C/C++ Development Tooling (CDT). Skeletons for the
C and header files containing mapping from ports to variables, function head-
ers are generated by the Architecture Editor.

178 Paper E

10.4 Analysis

The Analysis part in the Save-IDE consists of a Timed Automata Editor (TAE),
a simulator, and a model-checker. The TAE provides the developer with a
graphical user interface for creating a formal model of the internal behavior
of a SaveCCM element. The behavior is described as a timed automaton [6]
but with a distinct end location. The model of timed automata(TA) and its cost
extended version priced timed automata is suitable for modeling functional and
timing properties, and well as extra functional propertiessuch as e.g. resource
consumption.

Informally, the TA is assumed to start in its initial location when the el-
ement is triggered. The element then behaves as specified by the TA until it
reaches its end location. At this point values are written tothe output ports
and the output trigger of the element is activated. Using a semiautomatic map-
ping process the user associates the external ports of a SaveCCM element with
variables of the internal TA. In this way, it becomes possible to create formal
models of individual elements composed into composite components or whole
architectural descriptions.

The output of the TAE and the associated mapping can be compiled (by
Save-IDE) into an XML-format accepted by the tool UPPAAL PORT which
features a graphical simulator and a formal verifier. Using the simulator —
which is graphically fully integrated into the Save-IDE — itis possible explore
the dynamic behavior of a complete SaveCCM design in the early development
phases of a project, prior to implementation. In this way, the designer can
validate the design and gain increased confidence in the design. Using the
verification interface, it is possible to establish by model-checking whether
a SaveCCM model satisfies formal requirements specified as formulas in a
subset of the logic Timed CTL. In this way, it is possible to achieve further
increased confidence in the component-based design, w.r.t., e.g. functionality
and timing.

The tool UPPAAL PORT is based on the timed automata model-checker
UPPAAL [4], but extended with partial order reduction techniques which ex-
ploits the structure and semantics of SaveCCM model to improve the model-
checking performance [7]. The technique and tool have been proven efficient
for benchmark examples [7] and for an industrial control system [8].

10.5 Synthesis 179

Figure 10.4: Behavioral Editor

10.5 Synthesis
As part of the Save-IDE tool chain, the synthesis includes a set of automated
generation tools which transform and compile a SaveCCM-model allowing the
developer to follow the SaveCCT work-flow in a more intuitiveway. Via the
graphical user interface the developer can invoke the tool chain by a simple
mouse-click which invokes a sequence of tools.

There are three steps in the automated generation tool chain: generation,
synthesisandrun-time environment compilation.

The first step, generation, is a transformation of the model into auxiliary
files in XML-format conforming to the SaveCMM-Language [2].During the
generation step the user creates template source files for each component in
which the behavior of the component can be implemented.

The second step in the automated generation tool chain is thesynthesis
part, where the application is transformed from the component model into the
execution model. The synthesis takes the SaveCCM model and constructs a
set of trees based on the applications triggers. These treesare then used to
generate the software code realized into the tasks, i.e. thefunction calls to the
software components as well as glue code needed for passing data between the
components. Each tree is mapped to one real-time task, and the configuration
of the task is done with respect to the parameters of the trigger, e.g. setting of

180 Paper E

periods and priorities.
Finally, once the synthesis is performed, the run-time environment compi-

lation and linking can be performed, and finally the executable can be down-
loaded on the hardware target or executed by a simulator.

The synthesis is independent of the run-time environment bythe use of
SaveOS, an abstraction layer between the actual run-time environment and the
application. The applications do not call any native operating system services
directly, but indirectly calling services using SaveOS application programming
interface. SaveOS is designed and implemented in a way that it requires min-
imal computing and memory resources and provides a neglecting overhead.
By using the SaveOS the configuration of the run-time environment can be
changed without having to change the model or the implemented behavior of
the components.

10.6 Conclusion
We have presented the Save-IDE, an integrated development environment that
provides support in the development of predictable component-based embed-
ded systems following the approach which emphasizes on formal behavior
modeling and automated generation of the executable. As future work we plan
to extend the modeling language to a richer component model,called Pro-
Com [9], and a new language, called REMES [10], for modeling of internal
and external component behaviors and embedded resources.

Bibliography

[1] Mikeal Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
SAVE Approach to Component-Based Development of VehicularSys-
tems.Journal of Systems and Software, 80(5):655–667, May 2007.

[2] Mikael Åkerholm, Jan Carlson, John Håkansson, Hans Hansson, Mikael
Nolin, Thomas Nolte, and Paul Pettersson. The SaveCCM Language Ref-
erence Manual. Technical Report ISSN 1404-3041 ISRN MDH-MRTC-
207/2007-1-SE, Mälardalen University, January 2007.

[3] Séverine Sentilles, John Håkansson, Paul Pettersson, and Ivica Crnkovic.
Save-IDE – An Integrated Development Environment for Building Pre-
dictable Component-Based Embedded Systems. InProceedings of the
23rd IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2008), September 2008.

[4] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell.Int.
Journal on Software Tools for Technology Transfer, 1:134–152, 1997.

[5] CC Systems AB. CCSimTech. http://www.cc-systems.com/.

[6] Rajeev Alur and David L. Dill. A Theory of Timed Automata.Theoretical
Computer Science, 126:183–235, 1994.

[7] John Håkansson and Paul Pettersson. Partial Order Reduction for Verifi-
cation of Real-Time Components. In Jean-Franois Raskin andP.S. Thia-
garajan, editors,Proceedings of the 5th International Conference on For-
mal Modelling and Analysis of Timed Systems, Lecture Notes in Computer
Science 4763, pages 211–226. Springer Verlag, October 2007.

181

[8] Davor Slutej, John Håkansson, Jagadish Suryadevara, Cristina Sece-
leanu, and Paul Pettersson. Analyzing a Pattern-Based Model of a Real-
Time Turntable System. In6th International Workshop on Formal Engi-
neering approaches to Software Components and Architectures(FESCA),
ETAPS 2009, York, UK. Electronic Notes in Theoretical Computer Sci-
ence (ENTCS), Elsevier, March 2009.

[9] Séverine Sentilles, Aneta Vulgarakis, Tomas Bures, Jan Carlson, and
Ivica Crnkovic. A Component Model for Control-Intensive Distributed
Embedded Systems. In Michel R.V. Chaudron and Clemens Szyperski,
editors, Proceedings of the 11th International Symposium on Compo-
nent Based Software Engineering (CBSE2008), pages 310–317. Springer
Berlin, October 2008.

[10] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. REMES: A
Resource Model for Embedded Systems. Technical Report ISSN1404-
3041 ISRN MDH-MRTC-232/2008-1-SE, Mälardalen University, Octo-
ber 2008.

