
Object-Oriented Design Frameworks: Formal

Speci�cation and Some Implementation Issues

Ivica Crnkovic

Department of Computer Engineering, M�alardalen University

721 23 V�aster�as, Sweden

E-mail: Ivica.Crnkovic@mdh.se

Juliana K�uster Filipe�

Abt. Informationssysteme, Informatik, Technische Universit�at Braunschweig

Postfach 3329, D-38023 Braunschweig, Germany

E-mail: J.Kuester-Filipe@tu-bs.de

Magnus Larsson

ABB Automation Products AB, LAB

721 59 V�aster�as, Sweden

E-mail: Magnus.Larsson@mdh.se

Kung-Kiu Lau

Department of Computer Science, University of Manchester

Manchester M13 9PL, United Kingdom

E-mail: kung-kiu@cs.man.ac.uk

Abstract

In component-based software development, object-oriented design (OOD) frameworks are

increasingly recognised as better units of reuse than objects. This is because OOD frame-

works are groups of interacting objects, and as such they can better re
ect practical

systems in which objects tend to have more than one role in more than one context. In

this paper, we show how to formally specify OOD frameworks, and brie
y discuss their

implementation and con�guration management.

Keywords: Object-oriented design frameworks, component-based software development.

1. Introduction

Object-Oriented Design (OOD) frameworks are groups of (interacting) objects. For example,

in the CBD (Component-based Software Development) methodology Catalysis [10], a driver

Car Person

Driver
drives

Figure 1. The Driver OOD framework.

may be represented as the OOD framework shown in Figure 1.1 A driver is a person who drives

a car, or in OOD terminology, a driver is a framework composed of a car object and a person

object, linked by a `drives' association (or attribute).

OOD frameworks are increasingly recognised as better units of reuse in software development

than objects (see e.g. [12, 20]). The reason for this is that in practical systems, objects tend

to have more than one role in more than one context, and OOD frameworks can capture this,

whereas existing OOD methods (e.g. Fusion [6] and Syntropy [8]) cannot. The latter use

classes or objects as the basic unit of design or reuse, and are based on the traditional view

of an object, as shown in Figure 2, which regards an object as a closed entity with one �xed

role. On the other hand, OOD frameworks allow objects that play di�erent roles in di�erent

visible

functions

structure

internal

encapsulated

Figure 2. Traditional view of an object.

frameworks to be composed by composing OOD frameworks. In Catalysis, for instance, this is

depicted in Figure 3.

role A

role A role B

Framework 1

Framework 1 + 2
role B

Framework 2

Figure 3. Objects by composing OOD frameworks.

For example, a person can play the roles of a driver and of a guest at a motel simultaneously.

These roles are shown separately in the PersonAsDriver and PersonAsGuest OOD frameworks

in Figure 4. If we compose these two frameworks, then we get the PersonAsDriverGuest OOD

framework as shown in Figure 5. In this OOD framework, a person object plays two roles, and

is a composite object of the kind depicted in Figure 3.

OOD frameworks should play a crucial role in the design and implementation of next-

generation component-based software systems. In this paper, we show how to formally specify

them, and brie
y discuss their implementation (in COM) and con�guration management.

�The second author was supported by the DFG under Eh 75/11-2 and partially by the EU under ESPRIT-IV

WG 22704 ASPIRE.
1Catalysis uses the UML notation, see e.g. [21].

PersonAsDriver PersonAsGuest

MotelCar Person Person
staysdrives

Figure 4. PersonAsDriver and PersonAsGuest OOD frameworks.

PersonAsDriverGuest

MotelCar Person
drives stays

Figure 5. PersonAsDriverGuest OOD framework.

2. Formal Speci�cation of OOD Frameworks

In this section, we describe formal speci�cation of OOD frameworks. First we consider the

static aspects, i.e. without time or state transitions, then we consider the dynamic aspects, i.e.

with time and state transitions.

2.1. Static Aspects

We have considered the static aspects of OOD frameworks in [17, 18]. In this section, we brie
y

outline this semantics.

As we have seen in Section 1., OOD frameworks are composite objects/classes. In our

approach, we de�ne OOD frameworks and objects/classes in terms of a basic entity that we

call a speci�cation framework, or just a framework, for short.2

A framework F = h�; Xi is de�ned in the context of �rst-order logic with identity. It is

composed of a signature � (containing sort symbols, function declarations and relation declara-

tions), and a �nite or recursive set X of �-axioms. The purpose of a framework is to axiomatise

a problem domain and to reason about it. In our approach, a problem domain contains the

ADT's and classes needed to de�ne the objects of the application at hand.

A framework is thus a (�rst-order) theory, and we choose its intended model to be a reachable

isoinitial model, de�ned as follows:3

Let X be a set of �-axioms. A �-structure i is an isoinitial model of X i�, for every other

model m of X, there is one isomorphic embedding i : i! m.

A model i is reachable if its elements can be represented by ground terms.

We distinguish between closed and open frameworks. The relationship between open and

closed frameworks plays a crucial role in our interpretation of objects. Roughly speaking,

in object-oriented programming terminology, open frameworks represent classes, and closed

frameworks represent their instances, i.e. objects.

A framework F = h�; Xi is closed i� there is a reachable isoinitial model i of X.

An open framework F(
) = h�; Xi does not have an isoinitial model, since its axioms leave

open the meaning of some symbols
 of the signature, that we call open symbols. Non-open

symbols are called de�ned symbols.

Open frameworks can be closed, i.e made into closed frameworks, by instantiating its open

symbols. We will use only open frameworks which have reachable isoinitial models for all their

2To avoid confusion with OOD frameworks, in this section we will use `framework' to refer to a speci�cation

framework only, and not to an OOD framework.
3See [18] for a justi�cation of this choice and [3, 16] for a discussion of isoinitial theories.

instances. Such frameworks are called adequate, and they can be constructed incrementally

from small (adequate) closed frameworks (see [17, 18]).

Example 2..1 The Car class in Figures 4 and 5 can be de�ned as the following open framework:

OBJ-Framework CAR(:km; :option);

import: INT ; year96;

decls: :km : []! Int

:option : [year96:opts]

constrs: :km � 0

where INT is a prede�ned ADT of integers, and year96 is an object that contains the sort

year96:opts of the possible options for a car in the year 96. The constraint :km � 0 is an axiom

for the open symbol :km.

We call a framework like this an OBJ-framework, since it is a class of objects. To obtain

objects we instantiate an OBJ-framework, i.e. by closing the OBJ-framework.

The axioms used to close F(
) into an object represent the state of the object, and are

called state axioms. State axioms can be updated, i.e. an object is a dynamic entity.

An object of class CAR is created, for example, by:

new spider : CAR;

close: spider:km by spider:km = 25000;

spider:option by spider:option(x)$ x = Airbag _ x = AirCond:

where spider:km = 25000 and spider:option(x) $ x = Airbag _ x = AirCond are (explicit)

de�nitions that close the constant spider:km and the predicate spider:option(x) respectively.

The state of a spider object can be updated, by rede�ning its state axioms:

update spider : CAR;

spider:km = 27000

spider:option(x)$ x = Airbag _ x = AirCond

As we can see, the constant spider:km has been changed.

An OOD framework is a composite OBJ-framework. It can be viewed as a system of objects,

in which objects can be created (and deleted) and updated dynamically.

Example 2..2 The PersonAsDriver OOD framework in Figure 5 can be formalised as the

following framework:

OOD-Framework DRIVER[PERSON ; CAR];

decls: :drives : [obj];

constrs: `X:drives(c)! PERSON(`X) ^ `X:age � 18 ^ CAR(c);

(9c : obj)(:drives(c));

where obj is a reserved sort symbol that contains the set of names of all existing objects in

the system; `X is a meta-symbol that stands for any object name; and the OBJ-framework

PERSON may be something like:

OBJ-Framework PERSON ;

import : : :;

decls: :name : ! string;

:age : ! int; : : :

constrs: :age � 0

Here the composite object is built via links between its components, which constrain object

creation (and deletion) methods. We cannot create an object n:DRIVER, if n is not a person.

Furthermore, we need at least one car c.

2.2. Dynamic Aspects

In this section, we consider how to introduce time and state changes. We will combine the static

formalisation outlined in the previous section with the logic Mdtl presented in [13]. Mdtl is

an extension of the Troll logic [11] for describing dynamic aspects of large object systems.

2.2.1. State Transitions.

In Mdtl, an OBJ or OOD framework has a local logic consisting of a home and a commu-

nication logic. The home logic allows us to express internal state changes, whereas the com-

munication logic describes framework interactions. The home logic of a framework is mainly a

�rst-order temporal logic with (true) concurrency. We do not deal with concurrency explicitly

in this paper, and so we will use axioms that are just �rst-order temporal formulae. Also,

in this paper, we will not use the communication logic, since we do not deal with framework

interactions.

In Mdtl, in addition to attributes, an object also has actions,4 which will a�ect its current

state. Actions may be either enabled or occurring in a particular state. The state of an object

is given by the current values of the attributes, and the current status of its actions. Thus

in Mdtl, a state formula is a conjunction of facts (the current values of the attributes) and

actions (enabled or occurring).

If an action is enabled, then it may occur in the next state. When an action occurs, the

state of the object changes. In the logic, �a is used to denote the occurrence of action a, and

�a that the action a is enabled. If an action occurs, then it must have been enabled in the

previous state: �a) Y � a. In this formula, Y is the temporal operator Yesterday referring

to the previous state. Enabling (�) is useful for expressing preconditions, and occurrence (�)

for expressing postconditions.

In the sequel, we shall also use the temporal operators X (next state), F (sometime in the

future including the present), and P (sometime in the past including the present).

The state of an OOD framework is given by the states of the current objects belonging to

the framework.

We illustrate how to specify state transitions of an OOD framework inMdtl with a simple

example.

Example 2..3 Consider the OOD framework for employees as depicted in Figure 6, in which

a person plays the role of an employee of a company. A person as an employee has an attribute

pocket representing the amount of money he possesses, and two actions receive pay and work.

4More commonly known as methods in object-oriented programming.

Person
pocket: Money

receive_pay(amt: Money)

work(...)

PersonAsEmployee

pre: has worked before
post: pocket increased by amt

Company

pre: pocket<500

worksfor

Figure 6. PersonAsEmployee OOD framework.

In this example, a person as an employee only works if he has less than $500 (precondition for

work). A person only receives a payment if he has worked before (precondition for receive pay).

If a person receives a payment, the money in his pocket increases by the amount received. Here,

we express the pre- and postconditions only informally, and we omit the parameters and the

postcondition of work, as well as the de�nition of the OBJ-framework for Company.

The class Person might be formalised by the following OBJ-framework:

OBJ-Framework PERSON ;

import: MONEY

decls: :pocket : []!Money;

:receive pay : [Money];

:work : [: : :];

axioms: : : :

st-axioms: 8a � :receive pay(a)) P � :work(: : :);

8a;n � :receive pay(a)) Y (:pocket = n)) :pocket = n + a;

�:work(: : :)) :pocket < $500:

where the st-axioms are the state transition axioms.

Pre- and postconditions allow us to de�ne the state transitions of a framework. The state

transition axioms do not a�ect the (static) isoinitial model of the OBJ-framework, and are

relevant only for the behaviour model. The �rst axiom states that if the action receive pay

is enabled, then sometime in the past (temporal operator P) the action work(: : :) must have

occurred. The second axiom says that the occurrence of action receive pay(a) implies that if in

the previous state the value of pocket was n, then its current value is n+ a. Finally, the third

axiom states that if the action work(:::) is enabled (it might occur in the next state) then the

value of pocket must be less than $500.

We can create an object joe of Person class as follows:

new joe : PERSON ;

close: joe:pocket by joe:pocket = $100;

joe:work by �joe:work(: : :);

joe:pay by :� joe:receive pay(a):

When an object is created, its initial state is de�ned. In the initial state of joe, (attribute)

pocket is $100, (action) receive pay(a) is disabled for any a, and (action) work(: : :) enabled.

In Mdtl we can also express general properties of objects. For example,5

joe:pocket < $500) F 9a � joe:receive pay(a)

means `if joe has less than $500 then he will receive a payment sometime'.

2.2.2. Event Structures.

Mdtl is interpreted over labelled prime event structures ([24]). A labelled prime event structure

is thus a model for an OOD framework if it satis�es all the axioms of the framework (both the

static and the state transition axioms).

A labelled prime event structure consists of a prime event structure and a labelling function.

Prime event structures can be used to describe distributed computations as event occurrences

together with a causal and a con
ict relations between them. The causal relation implies a

(partial) order among event occurrences, and the con
ict relation denotes a choice. Events in

con
ict cannot belong to the same run or life cycle. The labelling function associates each

event with a state.

Example 2..4 Consider the event structure in Figure 7. It shows a small part of a (sequential)

joe:pocket = $100 ^�joe:work(:::) ^ :8a � receive pay(a)

�joe:work(:::) ^ 8a � receive pay(a) �joe:work(:::) ^ 8a � receive pay(a)

�joe:work(:::) ^ joe:pocket = $120 ^

e3 e4

�joe:receive pay(20) ^ joe:pocket = $120 ^�joe:work(:::) ^ 8a � receive pay(a)

e2

�joe:work(:::) ^ joe:pocket = $100 ^�joe:work(:::) ^ 8a � receive pay(a)

e1

e0

...
...

#
�joe:receive pay(80) ^ joe:pocket = $200 ^

Figure 7. Event structure for joe as an employee.

behaviour model for joe.

In general, in event structures, boxes denote events fe0; e1; : : :g, arrows between boxes rep-

resent event causality, and # denotes event con
ict. The state of the object at a given event is

written inside the box as a state formula.

For the object joe, the events in the event structure are labelled by the formulae of the

state logic of the Person class. Event e0 corresponds to the initial state. The occurrence of e1
depends on the previous occurrence of e0. With the occurrence of action joe:receive pay(20)

at event e2, the current value of attribute pocket changes to $120. Events e3 and e4 are in

con
ict, which means that either one or the other occurs but not both. A con
ict thus denotes

a choice.

There are therefore two life cycles for joe in Figure 7. One consists of events fe0; e1; e2; e3; : : :g

and the other fe0; e1; e2; e4; : : :g. In the former, joe receives two payments after working. In

the latter, joe works, then receives a payment and then works again.

Finally, it is easy to see that this event structure satis�es the state transition axioms of the

OBJ-framework PERSON .

5We are not saying that this property necessarily follows from the ST-axioms of the object joe.

In general, labelled event structures provide models for concurrent computations. Other such

models include transition systems, Petri nets, traces, and synchronisation trees. Petri nets

and transition systems allow an explicit representation of the (possibly repeating) states in

a system, whereas trees, traces and event structures abstract away from such information,

and focus instead on the behaviour in terms of patterns of occurrences of actions over time.

Furthermore, event structures are a \true" concurrency model, as opposed to transition systems

that model systems as non-deterministically interleaved sequential computations. A detailed

survey and comparison of some of these models can be found in [24].

2.2.3. Composing Event Structures.

In order to create objects by composing OOD frameworks with state transitions in the manner

depicted in Figure 3, we need to be able to compose event structures.

Example 2..5 In the previous example, a person plays the role of an employee. This partial

de�nition of person could be combined with another view of a person, e.g., a person as a

consumer. The PersonAsConsumer OOD framework in Figure 8 de�nes this role for a person

post: pocket decreased by price
pre: price<pocket

PersonAsConsumer

Person
pocket: Money

buy(price: Money)

Shopbuysfrom

Figure 8. PersonAsConsumer OOD framework.

object. The class Person here can be de�ned by the same OBJ-framework PERSON in

Example 2..3, but with the action buy(p) instead of the actions receive pay(a) and work(: : :).

We omit the de�nition of the OBJ-framework for Shop.

A consumer has an action buy(p), where p represents the price of the item bought. Pre-

and postconditions for this action are the expected ones. A consumer may only buy something

if he has enough money, and after buying an item the money in his pocket decreases by the

amount of money spent. The state transition axioms for buy(p) are thus:

8p � :buy(p)) :pocket > p

8p;n � :buy(p)) Y (:pocket = n)) :pocket = n� p

Let joe be a person playing now the role of a consumer. In the event structure for joe as a

consumer, a life cycle is a linear sequence of buy events starting from the initial state in which

joe:pocket is initialised. In Figure 9, we show two possible life cycles with distinct initial states.

We may compose the OOD frameworks for PersonAsEmployee and PersonAsConsumer, to

obtain a person with both roles together. A person now has all the actions of both roles,

namely receive pay, work and buy, and the attribute pocket in both roles. The composition is

illustrated by Figure 10.

The composite PersonAsEmployeeConsumer framework contains the union of the state tran-

sition axioms of its component OOD frameworks. An event structure, i.e. a model, for a person

as an employee and consumer is obtained by composing a model for person as an employee with

one for person as a consumer in a special manner. Several constructions for sequential and par-

allel composition of event structures have been de�ned in the literature, e.g. [23, 19]. What we

�joe:buy(20) ^ joe:pocket = $100 ^ 8p�100� joe:buy(p)

joe:pocket = $120 ^ 8p�120 � joe:buy(p) #

...

�joe:buy(50) ^ joe:pocket = $150 ^ 8p�150� buy(p)

joe:pocket = $200 ^ 8p�200 � buy(p)

...

f2

f4

f1

f3

Figure 9. Event structure for joe as a consumer.

Shop

PersonAsEmployeeConsumer

Company

receive_pay(amt:Money)
work(...)
buy(price:Money)

pocket: Money

Personworksfor buysfrom

Figure 10. PersonAsEmployeeConsumer OOD framework.

need for composing roles is in fact a combination of interleaving of the models and synchroni-

sation. Interleaving (sequential composition), because we are combining models for the same

object in di�erent roles (and objects are considered to behave sequentially), and therefore the

composed model must be sequential. Synchronisation, because some attributes and/or actions

for distinct roles may be identi�ed as the same (e.g. pocket).

Figure 11 shows the composed model for joe as an employee and consumer based on the

models of Figures 7 and 9 for joe as an employee and joe as a consumer respectively. In this

joe:pocket = $100

##joe:pocket = $100 joe:pocket = $200

...

#

e42

f1

f33

joe:pocket = $120

joe:pocket = $120

joe:pocket = $100joe:pocket = $150

joe:pocket = $100

e1

e0

joe:pocket = $120 #

joe:pocket = $120

e31f31

f41

(e3; f2)

...
...

...

...

(e2; f1)

joe:pocket = $120

e2

f32

...

joe:pocket = $120joe:pocket = $200

joe:pocket = $100joe:pocket = $150

(e4; f1)

joe:pocket = $200

...

f2

f42

joe:pocket = $200

e32e41

Figure 11. Event structure for joe as an employee and a consumer.

case, event synchronisation is done over the value of the common attribute pocket. That is,

only those events of both models that have the same value for pocket may be synchronised, e.g.,

events e2 and f1, e3 and f2, and e4 and f1. Synchronisation is indicated by the pairs (e2; f1),

etc.

Normally, synchronisation is done over actions, but we have a new situation here by com-

bining roles, namely that the attribute pocket of a person as an employee is to be identi�ed

with the attribute pocket of a person as a consumer, whereas the actions receive pay, work

and buy are all distinct. Synchronisation is not always necessary, and some of the life cycles in

Figure 11 show just interleaving.

The construction of composite event structures sometimes leads to the duplication of events,

e.g., event e3 has been duplicated and corresponds to events e31 and e32. The labels of these

events are the same as e3. In Figure 11, the states are just indicated by the value of the attribute

pocket for simplicity. The label of event (e2; f1) is given by the conjunction of the labels e2 and

f1, i.e., it corresponds to the formula

joe:pocket =$120 ^ �receive pay(20) ^�joe:work ^ 8areceive pay(a)^

8p�120 � buy(p)

Parallel composition of event structures with synchronisation is useful for modelling interacting

frameworks (e.g., [15]), whereas without synchronisation it models non-interacting frameworks.

3. Some Implementation Issues

Having shown how to formally specify OOD frameworks, we now turn to practical concerns. In

particular, we will discuss how we might construct such frameworks in practice using currently

available technology, and the issues involved in such constructions.

Of the current technologies for developing component-based software systems, COM [5]

seems to lend itself most readily to the implementation of OOD frameworks. Therefore, we will

brie
y show how to implement OOD frameworks in COM.

The fact that OOD frameworks are composite objects/classes means that constructing these

frameworks creates problems for con�guration management. Therefore, we will consider some

of these problems, in the case of COM implementations.

3.1. Implementing OOD Frameworks in COM

In this section, we show how to use COM to implement the OOD frameworks in Figures 6, 8

and 10. COM suits multiple roles because it can use multiple interfaces for each role. We will

use the aggregation mechanism in COM to compose OOD frameworks. First, we implement

the Person object, which corresponds to the encapsulated internal structure in Figure 2. The

Person object is constructed so it supports aggregation of role objects and it has one IPerson

interface (see Figure 12).

IUnknown IUnknown

Person
IPerson

IPerson IConsumer Consumer

Figure 12. A COM object for the person object and the consumer role.

Secondly, the consumer and employee roles are implemented so they support being aggre-

gated into a person object. Figure 12 shows the consumer role with one IConsumer interface.

The consumer object also needs a reference to the person object to be able to work on the pocket

variable. The person reference is set up when the consumer is aggregated into the person object

(see Figure 13). In a similar way the employee role is implemented. Using aggregation we can

reuse the di�erent components that we have created. Figure 13 shows how Person aggregates

the two already de�ned COM objects. Frameworks are created at run-time by adding roles to

an object.

IUnknown

IPerson

IUnknown

IPerson

IUnknown

Person

Employee

IPerson

IEmployee

IConsumer Consumer

Figure 13. The Consumer and Employee roles are aggregated into the Person object.

The COM implementation of the framework concept has some limitations. The COM model

de�nes frameworks as aggregates of the completed objects created at run-time, while a general

framework model allows us to use incomplete objects (at run-time) or classes (at build-time).

3.2. Con�guration Management

Using OOD frameworks instead of traditional objects yields several advantages, but it also

introduces an additional level of complexity when building these frameworks. Frameworks are

composite types of entities { they have an internal structure which is built from objects, or from

parts of them. A framework entity also has relations to other frameworks, and can be composed

from other (sub)frameworks. The de�nition and creation of such a composite entity introduces

con�guration problems. Some of them will be illustrated here for a COM implementation.

Let us consider the following cases:

� Sharing objects in several frameworks;

� Composing frameworks from objects and frameworks.

3.2.1. Sharing Objects in Several Frameworks.

Suppose framework F1 includes objects O1 and O2 with a relation R12 between them, and

framework F2 contains objects O1 and O3 with a relation R13. The object O1 is shared by two

frameworks:

F1 = fO1 O2 ; R12g; F2 = fO1 O3 ; R13g (1)

Suppose we now add a new property to the object O1, a property that is required in (an

improved version of) framework F2. This creates a new version of the object O1;v2, (v2 denotes

the new version) which is included into the framework F2:

F2 = fO1;v2 O3 ; R13g

However, if we do not take versioning into consideration, then the framework speci�cations will

remain the same. In this case, we can be aware of the change of the object O1 in the context

of framework F2, but not necessarily in that of F1. Our speci�cation of F1 is de�ned by (1),

but in reality we have

F1 = fO1;v2 O2 ; R12g

If the role of the object O1;v2 used in F1 is changed, then the behaviour of F1 will be changed

unpredictably, and a system using F1 can fail. To avoid these unpredictable situations we can

introduce basic con�guration management methods { a version management of objects and

con�guration of frameworks [7]:

� An object is identi�ed by its name and version.

� A framework is identi�ed by a name and a version. A new framework version is derived

from object versions included in the framework.

These rules imply that new versions of frameworks will be con�gured when a new object version

is created, as shown in our example:

F1;vi = fO1;vm O2;vn ; R12g; F2;vk = fO1;vm O3;vk ; R13g

F1;vi+1 = fO1;vm+1 O2;vn ; R12g; F2;vk+1 = fO1;vm+1 O3;vk ; R13g

As several frameworks can share one object, and a framework can contain several objects,

the number of generated frameworks can grow explosively. It is, however, possible to limit the

number of interesting con�gurations. Typically, in a development process, we would implement

the changes on all the objects we want, collect the versions of objects we want in a baseline

and derive the frameworks from the baselined object versions. In such a case, experience for

similar cases [2] shows that the number of derived entities does not necessarily grow rapidly.

A shared object is not necessarily completely shared, but di�erent parts of the object,

de�ned by the object's roles, are used in the frameworks. In the COM implementation a

complete object will be included, but a part of it will be used. In a general framework model,

a class (or an object at run-time) includes only those parts which are speci�ed in the object's

role. When we de�ne a new role for an object in a framework or re-de�ne the existing one, we

need to change a speci�c part of the object class. We call this speci�c part an object aspect.

The change of an object aspect will a�ect only those frameworks where the aspect is included.

Other frameworks, though containing the object (or part of it), are not a�ected by the change.

In this case, it is better to keep version control on the aspect level, and relate a framework

con�guration to the object aspects.

If we declare an aspect as a subset of an object Ai(Ok) � Ok, then an object version is

de�ned as a set of aspect versions:

Oi;vk = fAj;vlg

and a framework version is de�ned as a set of aspect versions with relations between the aspects:

Fvk = ffAj;vl(Oi;vk)g ; Rjlg

Having control over changes on the aspect level, we can gain control over the changes on the

framework level. Now we can more precisely identify the frameworks being a�ected by changes

in object roles.

3.2.2. Composing Frameworks from Objects and Frameworks.

In the framework model it is possible to compose new frameworks from existing frameworks.

A new framework is a superset of the classes and relations from the frameworks involved. If

a new framework is created at run-time, as in a COM implementation, then the objects from

the selected frameworks comprise the new framework. The following example illustrates the

merging process of two frameworks F1 and F2 into F3:

F1 = fO1 O2 ; R12g; F2 = fO1 O3 ; R13g; F3 = fO1 O2 O3 ; R12; R13; R23g

The composition works �ne as long as we do not need to consider the changes of objects

within one framework.

Suppose we create a new object version (or a new object aspect version) in F2 and keep the

old version of the same object in F1:

F1;vi = fO1;v1 O2;vk ; R12g; F2;vj = fO1;v1+1 O3;vl ; R13g

In the merging process we have to recognise if di�erent versions of the same objects are

included in the frameworks being merged. If that is the case, we have two possible solutions:

� Selecting one speci�c version of the object (for example the latest):

F3;v1 = fO1;v1+1 O2;vk O3;v1 ; R12; R13; R23g

� Selecting both versions and enable their consistence in the new framework:

F3;v1 = fO1;v1 O1;v1+1 O2; vk O3;v1 ; R12; R13; R23g

For the second case there must be support for identifying object versions. This support can be

provided by introducing an identi�cation interface [14] as the standard interface of an object.

There must also be support for managing di�erent versions of the same object in the running

system.

4. Conclusion

In this paper we have shown how to formally specify OOD frameworks using Mdtl and event

structures. In particular, we have shown a semantics for composing OOD frameworks with

state transitions in the manner depicted in Figure 3.

Our work here is closely related to Troll [11], which is used for specifying large dis-

tributed/concurrent object systems, and to [4], which formalises an algebraic semantics for

object model diagrams in OMT [22]. The main di�erence is that they take the traditional view

of objects (Figure 2), whereas we adopt the multiple-role, more reusable approach (Figure 3).

Their semantics is based on initial theories, as opposed to isoinitial theories that we use.

Overall, our approach to speci�cation is model-theoretic, whereas other approaches are

mostly proof- or type-theoretic. For example, our model-theoretic characterisation of states

and objects stands in contrast to the type-theoretic approach, e.g., [1]. Our model-theoretic

approach also enables us to de�ne a notion of correctness that is preserved through inheritance

hierarchies, which is particularly suitable for component-based software development.

We have also presented a possible implementation of OOD frameworks using the COM

technology. This implementation has some limitations, and we need to do further work to

investigate how to improve this implementation.

Finally we have discussed con�guration management for frameworks. We emphasise a need

for using con�guration management methods for managing frameworks as composite objects.

The con�guration management issues are complicated and need further investigation: Questions

of managing relations, concurrent versions of frameworks, inclusion of change management [9],

etc., must be addressed. Since aspects and objects are not entities recognised by standard

con�guration management tools (which recognise entities such as �les, directories, etc.), new,

semantic-based rules must be incorporated into such tools. For di�erent object-oriented and

component technologies, di�erent tools have to be made. How di�erent do they need to be,

and are there possibilities to de�ne common rules and implementation? These are questions

for future investigation.

Acknowledgements

We would like to thank the referee who pointed out some minor mistakes.

References

[1] M. Abadi and L. Cardelli (1996). A Theory of Objects. Springer-Verlag.

[2] U. Asklund, L. Bendix, H.B. Cristensen, and B. Magnusson (1999). The uni�ed extensional

versioning model. In J. Estublier, editor, Proc. System Con�guration Managemnt SCM-9,

pages 17{33, Springer.

[3] A. Bertoni, G. Mauri, and P. Miglioli (1983). On the power of model theory in specify-

ing abstract data types and in capturing their recursiveness. Fundamenta Informaticae

VI(2):127{170.

[4] R.H. Bourdeau and B.H.C. Cheng (1995). A formal semantics for object model diagrams.

IEEE Trans. Soft. Eng., 21(10):799-821.

[5] D. Box (1998). Essential COM. Addison-Wesely.

[6] D. Coleman, P. Arnold, S. Bodo�, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes

(1994). Object-Oriented Development: The Fusion Method . Prentice-Hall.

[7] R. Conradi and B. Westfechtel (1998). Version models for software con�guration manage-

ment. ACM Computing Surveys, 30(2):232{282.

[8] S. Cook and J. Daniels (1994). Designing Object Systems. Prentice-Hall.

[9] I. Crnkovic (1997). Experience with change oriented SCM Tools. In R. Conradi, editor,

Proc. Software Con�guration Management SCM-7, pages 222{234, Springer.

[10] D.F. D'Souza and A.C. Wills (1998). Objects, Components, and Frameworks with UML:

The Catalysis Approach. Addison-Wesley.

[11] A. Grau, J. K�uster Filipe, M. Kowsari, S. Eckstein, R. Pinger and H.-D. Ehrich (1998).

The TROLL approach to conceptual modelling: syntax, semantics and tools. In T.W. Ling,

S. Ram and M.L. Leebook, editors, Proc. 17th Int. Conference on Conceptual Modeling,

LNCS 1507:277-290, Springer.

[12] R. Helm, I.M. Holland, and D. Gangopadhay (1990). Contracts | Specifying behavioural

compositions in OO systems. Sigplan Notices 25(10) (Proc. ECOOP/OOPSLA 90).

[13] J. K�uster Filipe (2000). Fundamentals of a module logic for distributed object systems. J.

Functional and Logic Programming 2000(3).

[14] M. Larsson and I. Crnkovic (1999). New challenges for con�guration management. In J. Es-

tublier, editor, Proc. System Con�guration Management SCM-9, pages 232{243, Springer.

[15] K.-K. Lau, S. Liu, M. Ornaghi, and A. Wills (1998). Interacting frameworks in Catalysis.

In J. Staples, M. Hinchey and S. Liu, editors, Proc. Second IEEE Int. Conf. on Formal

Engineering Methods, pages 110-119, IEEE Computer Society Press.

[16] K.-K. Lau and M. Ornaghi (1998). Isoinitial models for logic programs: A preliminary

study. In J.L. Freire-Nistal, M. Falaschi, and M. Vilares-Ferro, editors, Proceedings of the

1998 Joint Conference on Declarative Programming, pages 443-455, A Coru~na, Spain.

[17] K.-K. Lau and M. Ornaghi (1998). On speci�cation and correctness of OOD frameworks

in computational logic. In A. Brogi and P. Hill, editors, Proc. 1st Int. Workshop on

Component-based Software Development in Computational Logic, pages 59-75, September

1998, Pisa, Italy.

[18] K.-K. Lau and M. Ornaghi (1998). OOD frameworks in component-based software develop-

ment in computational logic. In P. Flener, editor, Proc. LOPSTR'98, LNCS 1559:101-123,

Springer-Verlag.

[19] R. Loogen and U. Goltz (1991). Modelling nondeterministic concurrent processes with

event structures. Fundamenta Informaticae XIV(1):39{73.

[20] R. Mauth (1996). A better foundation: development frameworks let you build an applica-

tion with reusable objects. BYTE 21(9):40IS 10-13.

[21] R. Pooley and P. Stevens (1999). Using UML: Software Engineering with Objects and

Components. Addison-Wesley.

[22] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Sorenson (1991). Object-

Oriented Modeling and Design. Prentice-Hall.

[23] F.W. Vaandrager (1989). A simple de�nition for parallel composition of prime event

structures. Technical Report CS-R8903, Centre for Mathematics and Computer Science,

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands.

[24] G. Winskel and M. Nielsen (1995). Models for concurrency. In S. Abramsky, D.M. Gabbay,

and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, Vol. 4, Semantic

Modelling, pages 1{148. Oxford Science Publications.

