
Symbolic Simulation of Hybrid Systems

Ralph-Johan Back, Cristina Cerschi Seceleanu, Jan Westerholm
Turku Centre for Computer Science (TUCS),

Lemmink̈aisenkatu 14, FIN-20520 Turku, Finland
{backrj, ccerschi, jawester}@abo.fi

Abstract

Continuous action systems (CAS) is a formalism in-
tended for modeling hybrid systems (systems that combine
discrete control with continuous behavior), and proving
properties about the model within refinement calculus. In
this paper we use a symbolic manipulation program to build
a tool for simulating CAS models by calculating symboli-
cally the time evolution of the discrete and continuous CAS
model functions, as explicit and exact expressions of a con-
tinuous time variable. We may then study the time behavior
and general properties of the model by plotting these func-
tions with respect to time. For certain models our tool elim-
inates the need for introducing tolerances into the model
structure. The tool is useful for checking that the model be-
haves correctly, and we can sometimes study the behavior
of CAS models with in principle infinite precision.

1. Introduction

Hybrid systemsfall on the borderline between Computer
Science and Control Theory, requiring techniques from both
areas. These systems can be quite hard to build, due to the
many different ways in which the continuous system behav-
ior needs to interact with the discrete controller. Modeling
hybrid systems is therefore of great help, allowing one to
analyze the properties of the system to be built beforehand,
to find out potential trouble spots, and to convince oneself
of the correctness of the controller.

A formal approach to modeling hybrid systems, espe-
cially safety-critical control systems has the advantage of
providing a precise model of the system, on which well-
established formal verification methods may be applied to
prove that any behavior of the system satisfies the proper-
ties that are verified.

Discrete concurrent systems can be modeled asaction
systems[4], where a state (described by a collection of state
variables) is manipulated by a collection of actions.

Continuous Action Systems(CAS) are an extension of

action systems to hybrid systems, being based on a new ap-
proach to describe the state of a system. Essentially, the
state variables will range over functions over time, rather
than just over values. The CAS formalism has been recently
introduced by Back, Petre and Porres [5]. This model al-
lows us to describe both control actions and time advancing
behavior actions with the same simple mechanism. Besides
CAS, there are several other hybrid formalisms developed
to support the description and analysis of hybrid systems.
Among them, the most popular aretimed automata, hy-
brid automataand the more general framework ofhybrid
input/output automata[2, 11, 13].

Proving properties about action systems is done within
the higher-order logic framework of the refinement calculus
developed by Back and von Wright [6]. Because continuous
action systems are special cases of ordinary action systems,
we can use the proof and refinement techniques developed
for ordinary action systems for these as well. This allows
us to verify safety and liveness properties of hybrid systems
(modeled as continuous action systems), as well as to prove
correctness of refinements of hybrid systems [5].

Prior to, or as an alternative to verification, the simula-
tion of a hybrid model brings many benefits to the modeler,
increasing the confidence in an error free abstraction. A lot
of effort has been devoted to developing simulation tools
for hybrid systems, targeting various modeling languages.
Such tools include the Hybrid Chi simulator, Dymola, Shift,
and Simulink [7, 9, 10, 14].

The contribution of this paper is to show how tosim-
ulate the behavior of hybrid systems that are modeled as
continuous action systems. The simulation technique that
we use is symbolic, i.e., given the simulation parameters,
we construct the exact analytic functions that describe the
behavior of the hybrid system over time (rather than just
numeric approximations of the behavior). For this purpose,
we use the computer algebra package,Mathematica[15].
Besides allowing us to get symbolic solutions to the time
varying behavior of the hybrid system, Mathematica also
provides good facilities for visualizing the system evolution
as graphs. The simulation method is based on calculating

symbolically the next time point when at least one action is
enabled, using the minimization capabilities of Mathemat-
ica. This means that our simulation method is not dependent
on choosing a fixed sampling interval, but that the simula-
tion rather proceeds from one interesting time point to the
next. These interesting time points can be very dense in
times when the behavior changes rapidly, and be sparse at
other times.

We also allow the state variable functions to be described
by differential equations. The differential equation solver
of Mathematica is then very useful, in particular for the lin-
ear case where it is easy to find an exact solution. In cases
where we do not get an analytic solution, we can still get a
numeric approximation of the time functions, and use these
approximations in our simulation. The approximation will
introduce an uncertainty into the simulation, but still allows
us to carry out the simulation independently of a fixed sam-
pling interval.

We have built a tool that allows us to simulate automati-
cally continuous action systems. This tool is essentially an
interpreter with plotting facilities for continuous action sys-
tems, written in the Mathematica programming language.
Our experiences with this tool have been very promising.
It provides a good visualization of the behavior of hybrid
systems, and has been also quite efficient in harnessing the
power of Mathematica.

We have applied our simulation technique to a small col-
lection of hybrid systems. In the paper, we will describe
one application in more detail. It models a heat producing
nuclear reactor with two cooling rods. The simulation tool
has proved to be very useful in this and other cases that we
have tried, sometimes revealing quite surprising behavior,
and confirming the a priori intuition about the system be-
havior in other cases.

The rest of the paper is organized as follows. The contin-
uous action system model is briefly described in section 2.
Section 3 presents the action system model of a temperature
control system (TCS) for a nuclear reactor tank. A particu-
lar application of our tool is to simulate the behavior of the
TCS model, in Mathematica, which is shown in section 4.
The simulation results can be found in section 5. Section
6 offers a general description of the simulator, emphasiz-
ing the advantages and disadvantages of our approach, and
also the simulation algorithm behind it. Conclusions are
presented in section 7.

2. Continuous action systems

A continuous action system[5] consists of a finite set
of attributes that can range over discrete or continuous val-
ued time functions, forming the state of the system, together
with a finite set of actions that act upon the attributes. It is
of the form

C
∧= |(var x : Real+ → T • S0;

do g1 → S1[] . . . [] gm → Sm od)| : y (1)

Herex = x1, . . . , xn are theattributesof the system,
S0 is the initialization statement, whileAi = gi → Si,
i = 1, . . . ,m are theactionsof the system. We callgi the
guardof the actionAi, andSi thebodyof the same action.
The attributesy = y1, . . . , yk are defined in the environ-
ment of the continuous action system (we say that they are
imported). Real+ stands for the non-negative reals, and is
used as the time domain.

Intuitively, executing a continuous action system pro-
ceeds as follows. There is an implicit variablenow, that
shows the present time. Initiallynow = 0. The guards
of the actions may refer the value ofnow, as may also
expressions in the action bodies (but they can not change
now). The initializationS0 assigns initial time functions
to the attributesx1, . . . , xn. These time functions describe
the default future behavior of the attributes. The system
will then start evolving according to these functions, with
time (as measured bynow) moving forward continuously.
However, as soon as one of the conditionsg1, . . . , gm be-
comes true, the system chooses one of theenabledactions,
saygi → Si, for execution. The choice is nondeterminis-
tic if there is more than one such action. The bodySi of
the action is then executed. It will usually change some at-
tributes by changing their future behavior. Attributes that
are not changed will behave as before. After the changes
stipulated bySi have been done, the system will evolve to
the next time instance when one of the actions is enabled,
and the process is repeated. The next time instance when
an action is enabled may well be the same as the previous,
i.e., time needs not to progress between the execution of two
enabled actions. This is usually the case when the system
is doing some (discrete, logical) computation to determine
how to proceed next. Such computation does not take any
time. It is possible that after a certain time instance, none of
the actions will be enabled anymore. This just means that,
after this time instance, the system will continue to evolve
for ever according to the functions last assigned to the at-
tributes.

Note that in our approach actions are selected and ex-
ecuted asynchronously, compared to the hybrid automata
formalism [11] where transitions are fired synchronously.

We writex :− e for an assignment rather thanx := e, to
emphasize that only the future behavior of the attributex is
changed to the functione. The past behavior (beforenow)
remains unchanged.

One of the main advantages of this model for hybrid
computation is that both discrete and continuous behavior
are described in the same way. In particular, if the attributes
are only assigned constant functions, then we obtain a dis-
crete computation.

Let C be the continuous action system described by (1).
We explain the meaning ofC by translating it into an ordi-
nary action system. Its semantics is given by the following
(discrete) action system̄C:

C̄
∧= |[var now : Real+, x : Real+ → T •

now := 0 ; S0 ;N ;
do g1 → S1 ;N [] . . . [] gm → Sm ;N od

]| : y
(2)

Here the attributenow is declared, initialized and up-
dated explicitly. It models the moments of time that are of
interest for the system, i.e. the starting time and the suc-
ceeding moments when some action is enabled. The value
of now is updated by the statementN ,

N
∧= now := next.gg.now

Above, gg = g1 ∨ ... ∨ gm denotes the disjunction of all
guards of the actions andnext is defined by

next.gg.t
∧=





min{t′ ≥ t | gg.t′}, if existst′ ≥ t
such thatgg.t′

t, otherwise

Thus, the functionnext gives a moment of time when at
least one action is enabled. Only at such a moment can the
future behavior of attributes be modified. If no action will
be ever enabled, then the second branch of the definition
will be followed, and the attributenow will denote the mo-
ment of time when the last discrete action was executed. In
this case the system terminates with the last assigned values
for the attributes. This means in the continuous interpre-
tation that the system will evolve forever according to the
functions assigned last. We assume in this paper that the
minimum in the definition ofnext always exists when at
least one guard is enabled in the present or future. Contin-
uous action systems that do not satisfy this requirement are
considered ill-defined.

We define thefuture updatex :− e by

x :− e ∧= x := x/now/e

where

x/t0/e
∧= (λt · if t < t0 then x.t else e.t fi)

Thus, only the future behavior ofx is changed by this as-
signment.

This means that a hybrid action system is essentially
a collection of time functionsx1, . . . , xn over the non-
negative reals, defined in a stepwise manner. The steps form
a sequence of intervalsI0, I1, I2, . . ., where each interval
Ik is either a left closed interval of the form[ti . . . ti+1)
or a closed interval of the form[ti, ti], i.e., a point. The

action system determines a family of functionsx1, . . . , xn
which are stepwise defined over this sequence of intervals
and points. The extremes of these intervals correspond to
the control points of the system where a discrete action is
performed.

The behavior of a hybrid system is often described using
a system of differential equations (DE). CAS allows for this
kind of definitions, by introducing the shorthandẋ :− f(x).
This will assign tox a time function that satisfies the given
differential equation and which is such that the functionx
will evolve continuously.

As an example, iff = (λt • c), wherec is a constant
value, then we have that

ẋ :− c ∧= x :− (λt · x.now + c ∗ (t− now))

We can use clock variables or timers to measure the pas-
sage of time and to correlate the execution of an action with
the time. Aclock variableis a variable that measures the
time elapsed since it was set to zero. Assume thatc is a
time variable of typeReal. We then use the following defi-
nition for resetting the clockc:

reset(c) ∧= c :− (λt · t− now)

This definition is just a convenience for correlating the be-
havior of our system with the passage of time.

Since a clock variable is just a regular variable, we can
define as many clocks as we need and reset them indepen-
dently. It is also possible to do arithmetic operations with
clock variables, e.g., to use time intervals in guards. Hence,
the formalism is also well suited for modeling real-time sys-
tems.

3. Example: the temperature control system

We exemplify our approach on a case taken from [1].
The hybrid system is a temperature control system (TCS)
for a heat producing reactor, described by the temperature
as a function of timeθ(t). The reactor starts from the initial
temperatureθ0 and heats up at a given ratevr. Whenever
it reaches the critical temperatureθM , it is designed to be
cooled down by inserting into the core either of two rods,
modeled by the variablesx1(t) andx2(t), which are in fact
clocks measuring the time elapsed between two consecu-
tive insertions of the same rod, respectively. The cooling
proceeds at the ratev1 or v2 depending on which rod is be-
ing used, and the cooling stops when the reactor reaches a
given minimum temperatureθm, by releasing the respective
inserted rod. The rod used for cooling is then unavailable
for a prescribed timeT , after which it is again available for
cooling. The object of the modeling is to ascertain that the
reactor never reaches the critical temperatureθM without at

least one of the rods available, otherwise a shutdown will be
initiated.

The translated action system model (where time is ex-
plicitly advanced) for the TCS consists of a set of initial-
izing statements and a collection of guards and their cor-
responding action bodies (see Figure 2). We use the con-
vention that an assignmentx :− c (wherec is a constant)
stands forx :− (λt · c) (i.e., the pointwise extended con-
stant function, rather than the constant itself is assigned to
x). Observe in Figure 2 that the model contains the analytic
solutions of the linear DE that characterize the time evo-
lution of the continuous variables (e.g., instate0, the DE
expressing the dynamics of the increasing temperature in-
side the reactor core iṡθ = vr, and its analytic solution is
θ(t) = θm + vr ∗ t, as it starts increasing from the minimal
temperatureθm).

The last action (action 5) hasabort as its body, therefore
expressing that the shutdown state is not desired. For a more
detailed description of the model, the reader is referred to
[3].

Let ∆θ = θM −θm. Obviously, the time that the coolant
needs to increase its temperature fromθm to θM is τr =
∆θ/vr, and the refrigeration times usingrod1 androd2 are
τ1 = ∆θ/v1 andτ2 = ∆θ/v2, respectively.

The sequence of heating and refrigeration times is shown
in Figure 1.

θ

θM

θm

τ1 τ1 τ2 τr τr

t

Figure 1. The heating and refrigeration times

Clearly, if τr ≥ T (the temperature rises at a rate slower
than the time of recovery of the rods), then theshutdown
state is not reachable. However, this can be a too strong
condition for not running into the undesired state. Inspect-
ing Figure 1 we find a weaker condition:

2τr + τ1 ≥ T ∧ 2τr + τ2 ≥ T (3)

i.e., if the time between two insertions of the same rod is
greater than or equal to the time needed for the rod to re-
cover, the shutdown state will never be reached.

TCS =
|(var x1, x2, c : Real+ → Real+;

θ : Real+ → Real;
state : Real+ → {0, 1, 2, 3};
start, now : Real+ •

now : = 0;
state :− (λt · 0) ; c :− (λt · t− now);
x1 :− (λt · T1 + c.t) ; x2 :− (λt · T2 + c.t);
θ :− (λt · θ0 + vr ∗ c.t);
start : = now;
now : = min{t′ ≥ now | gg.t′}

do {action1 : cool with rod1}
state.now = 0 ∧ θ.now = θM ∧ x1.now ≥ T →

c :− (λt · t− now);
θ :− (λt · θM − v1 ∗ (t− now));
state :− (λt · 1);
start : = now;
now : = min{t′ ≥ now | gg.t′}

[] {action2 : release rod1}
state.now = 1 ∧ θ.now = θm →

c :− (λt · t− now);
x1 :− (λt · t− now);
θ :− (λt · θm + vr ∗ (t− now));
state :− (λt · 0);
start : = now;
now : = min{t′ ≥ now | gg.t′}

[] {action3 : cool with rod2}
state.now = 0 ∧ θ.now = θM ∧ x1.now ≥ T →

c :− (λt · t− now);
θ :− (λt · θM − v2 ∗ (t− now));
state :− (λt · 2);
start : = now;
now : = min{t′ ≥ now | gg.t′}

[] {action4 : release rod2}
state.now = 2 ∧ θ.now = θm →

c :− (λt · t− now);
x2 :− (λt · t− now);
θ :− (λt · θm + vr ∗ (t− now));
state :− (λt · 0);
start : = now;
now : = min{t′ ≥ now | gg.t′}

[] {action5 : shutdown}
state.now = 0 ∧ θ.now = θM∧
x1.now < T ∧ x2.now < T →

abort
od
)| : θ0, θm, θM , vr, v1, v2, T1, T2, T

Figure 2. The TCS action system model

To get a first assurance that condition (3) is indeed suf-
ficient, we proceed with the simulation of the TCS model
for two sets of parameters: the first set chosen to satisfy
condition (3), the second set chosen not to satisfy the same
condition. The simulation results should either confirm or
deny our assertion. In the second case, at some point in
time, the simulation should run intoabort by executing the
action 5 in the TCS action system model.

4. Simulating the behavior of the TCS in Math-
ematica

The starting point for the formulation of the simulation
is to take the initializing expressions and the expressions for
the guards and the action bodies from the TCS action sys-
tem model as such, with as few numerical or logical manip-
ulations as possible. This confirms with our basic strategy
of simulating the model as given, thus exposing any possi-
ble modeling errors like in the spelling of the model or in
the logic of the guarded actions. In the case of TCS the
initializing expressions in the language of the symbolic ma-
nipulation program are given by

now = 0
c [t−] = t− now
x1 [t−] = T1 + c [t]
x2 [t−] = T2 + c [t]
θ [t−] = θ0 + νr ∗ c [t]
state [t−] = 0

In Mathematica,t− signifies thatt is the variable in the
function that is being defined. We assume that we start in
state0, with the rods 1 and 2 both available for cooling,
hence the clocksx1 andx2 are initialized to the (constant)
valuesT1 andT2 (time units), respectively.

The guards are typically boolean conditions which we
test for the value of true. In the TCS model, the first guard
has the form

guard1solution = InequalitySolve[
state [t] == 0 &&
θ [t] == θM &&
x1 [t] >= T &&
t >= now, t
]

Here we are using the Mathematica built-in function
InequalitySolve to determine the next moment or mo-
ments in time at or afternow, when all the conditions of
guard 1 become true, that is, the system is in state 0, it
has reached the critical temperature and rod1 is available.
As a result of solving the simultaneous inequalities we ob-
tain a list calledguard1solution, which contains the empty
set, or a collection of discrete times and/or finite or infinite

ranges of times for which the conditions are true. This list
is passed to a subroutine which picks out the earliest time at
which guard 1 becomes true.

Similarly, the body of the action 1, should we decide to
take that action, is given by the following expressions:

c [t−] = t− now
θ [t−] = θM − ν1 ∗ c [t]
state [t−] = 1
start = now

The main task of the simulation is to go through the
guards one by one and determine whether they will become
true at some point in time in the future. In case there are sev-
eral solutions to a guard, the minimum of these times is se-
lected, be it a discrete value or the starting value for a closed
range. After this, the minimum times for all guards are
compared, and the smallest of these with the correspond-
ing action (or actions) body is chosen. In case the next ac-
tion is one particular action, we will take that action, update
the value ofnow and solve the guards over again. In case
several guards become true at the next instance of time, all
corresponding action bodies are of course possible, and the
user is asked to supply the choice of action to be taken. In
addition, a random mode was programmed, in which case
a choice between multiple possible actions is made by the
simulator.

5. Simulation results

The essential information gained by the above procedure
is a list of time moments at which some action has been
taken in the model, a corresponding list of actions, and lists
with symbolic values for the discrete and continuous func-
tions of the TCS hybrid model: the system state, the tem-
perature of the reactorθ(t) as a continuous piecewise lin-
ear function, and similar functions for the clocksx1(t) and
x2(t). An artificial upper time limittmax = 100 was sup-
plied in case the simulation would go on forever.

Given the parameter valuesT1 = 6, T2 = 2, T =
6, v1 = 4, v2 = 3, vr = 6, θ0 = 0, θm = 3 andθM = 15,
which satisfy condition (3), two of the lists mentioned above
are the following:

now = {0, 5/2, 11/2, 15/2, 23/2, 27/2, 33/2, 37/2,
45/2, 49/2, 55/2, 59/2, 67/2, 71/2, 77/2,
81/2, 89/2, 93/2, 99/2, 103/2, 111/2, 115/2,
121/2, 125/2, 133/2, 137/2, 143/2, 147/2,
155/2, 159/2, 165/2, 169/2, 177/2, 181/2,
187/2, 191/2, 199/2}

20 40 60 80 100
t

2

4

6

8

10

12

14

theta

Figure 3. The temperature behavior in time
(parameter set 1)

20 40 60 80 100
t

1

2

3

4

action

Figure 4. The actions taken at transition time
moments (parameter set 1)

20 40 60 80 100
t

2

4

6

8

10

x1

Figure 5. The clock x1 as a function of time
(parameter set 1)

20 40 60 80 100
t

2

4

6

8

10

12

x2

Figure 6. The clock x2 as a function of time
(parameter set 1)

20 40 60 80 100
t

0.5

1

1.5

2

state

Figure 7. The state as a function of time (pa-
rameter set 1)

theta(t) : {6t, 25− 4t,−30 + 6t, 75/2− 3t,−66 + 6t,
69− 4t,−96 + 6t, 141/2− 3t,−132 + 6t,
113− 4t,−162 + 6t, 207/2− 3t,−198 + 6t,
157− 4t,−228 + 6t, 273/2− 3t,−264 + 6t,
201− 4t,−294 + 6t, 339/2− 3t,−330 + 6t,
245− 4t,−360 + 6t, 405/2− 3t,−396 + 6t,
289− 4t,−426 + 6t, 471/2− 3t,−462 + 6t,
333− 4t,−492 + 6t, 537/2− 3t,−528 + 6t,
377− 4t,−558 + 6t, 603/2− 3t,−594 + 6t}

Using the first parameter set, the graphical results of the
simulation are the plots in Figures 3 to 7. The vertical lines
in the graphsaction(t) andstate(t) are purposely drawn to
guide the reader’s eye.

In this first case, the simulation did not reveal any unex-
pected behavior, instead it showed a regular time behavior
of the state variables.

For a different set of values that violate the condition
(3), e.g. the same set as above exceptT = 8, the simulation
shows that the reactor will reach the shutdown state, i.e.,
action 5 is enabled, since neither of the rods is available
at timet = 37/2 (see Figure 9). Similar to the first case,
here we also get the graphical representation with respect to
time, of all the model variables, as seen in Figures 8 to 12.

In consequence, the TCS simulation confirmed our guess
for the particular values chosen, that in case the parameters
do not satisfy condition (3), the system will eventually reach
the undesired shutdown state.

6. The generic simulator

In this section we try to describe the simulator in a more
generic setting, independent of the programming language
used, of course with its usability certainly benefitting from
having as powerful language as possible.

The symbolic simulation of a CAS given by (2) consists
of three major steps, as follows:

2.5 5 7.5 10 12.5 15 17.5
t

2

4

6

8

10

12

14

theta

Figure 8. The temperature behavior in time
(parameter set 2)

5 10 15
t

1

2

3

4

5

action

Figure 9. The actions taken at transition time
moments (parameter set 2)

2.5 5 7.5 10 12.5 15 17.5
t

2

4

6

8

10

x1

Figure 10. The clock x1 as a function of time
(parameter set 2)

2.5 5 7.5 10 12.5 15 17.5
t

2

4

6

8

10

12

x2

Figure 11. The clock x2 as a function of time
(parameter set 2)

2.5 5 7.5 10 12.5 15 17.5
t

0.5

1

1.5

2

state

Figure 12. The state as a function of time (pa-
rameter set 2)

• The first step is to solve each guard separately and find
a list of times in the future when the guard will evaluate to
true.

• The second task is to extract the least of the times in
the list for each guard.

• The third step is to collect the results from step one
and two, from all guards, and determine a globally minimal
next time. Having found it, we have simultaneously deter-
mined whether we have one or several guards satisfied at
the respective time moment. If only one guard is satisfied,
the corresponding action body is executed, thus changing
some of the program attributes. If there are several guards
simultaneously evaluating to true, then the user is asked to
supply the choice of action to be taken. It is also possible
that the simulator makes a random choice between the
possible actions.

In the first step, obviously the determination of the solu-
tion list for the guards can be made arbitrarily complicated
depending on the structure of the guards. The guard may
involve the solution of higher order algebraic equations or
nonlinear differential equations or both, in which case ana-
lytic solutions to the guards are probably impossible to ob-
tain. In this case we have to resort to a numerical solution
of the guards, e.g. integrate differential equations forward
in time using some appropriate numerical scheme. Here we
can still obtain an approximated continuous solution by in-
terpolating the numerical solution with linear functions be-
tween the numerically obtained values.

In case the list of minimum values for the guard from
step one is a collection of finite analytic expressions, we
will be able to proceed to step two without loss of accuracy.
The identification of the minimum value in step two, that
is, sorting the list of solutions to a guard, may be numer-
ically cumbersome. The expressions in the list can easily
have the tendency of becoming increasingly complicated as
time goes on, and in the end we have to resort to evaluating

the minimum values numerically. This immediately makes
the comparison of values very close to each other prone to
mistakes. The third step is in principle as hard as step two,
only now we are comparing the minimum values from each
guard with each other.

The usability of the symbolic simulator is thus largely
dependent on whether we are able to pass through step one
to three using symbolic expressions.

An advantage of the symbolic approach is that as far
as possible we tried not to apply any transformations to
the guards or the action bodies, when translating them into
Mathematica. Instead we have expressed them almost in the
same way as they are in the CAS model. This guarantees
that the simulated model is indeed as consistent and reliable
as the original model. The number of guards and respec-
tive action bodies is given as a parameter, hence one can
simulate large models that consist of many guarded actions.

However, what we consider to be the most valuable con-
tribution made by this tool for simulating CAS models is
the integration of the modeling, simulation and verification
of hybrid systems, into the same framework that uses CAS
as the modeling language and the refinement calculus as
the reasoning environment. This calculus has been already
implemented in several theorem provers [8, 12]. The ad-
vantage of having a unified design environment might turn
continuous action systems into a more attractive modeling
language for hybrid systems.

7. Conclusions

In this paper we have presented a simulation tool for hy-
brid systems modeled as continuous action systems. We
have built the tool using Mathematica, a commercial sym-
bolic manipulation program [15]. The tool takes a descrip-
tion of any CAS as input, and provides automatically a sym-
bolic simulation of the system, up to a given maximum time.
The restrictions on the simulation are essentially those of
Mathematica.

Our approach relies on the fact that symbolic manipu-
lation is an efficient way of simulating a model execution.
Plotting the discrete and also continuous model variables as
functions of time, with infinite precision, makes the simula-
tion available even without knowing the sampling period to
be used for the actual implementation, thus in many cases
our tool eliminates the need of introducing tolerances in the
model. This is true especially when the physical phenomena
of the hybrid system is described by linear differential equa-
tions. In case the hybrid model is non-linear, Mathematica
solves the respective non-linear DE either symbolically or
numerically. It then follows that, in case we get a numerical
solution, we need to introduce tolerances in our action sys-
tem model and rely on an approximation of the behavior of
the variables.

The experiences with this tool have been very promis-
ing. It provides a good visualization of the behavior of hy-
brid systems, and has been also quite efficient in harnessing
the power of Mathematica. We have applied our simulation
technique to a small collection of hybrid systems. Here, we
have exemplified the tool on the temperature control system
inside a nuclear reactor core, which uses two independent
rods for cooling. Given a certain set of parameters, the ob-
jective of the simulation was to make sure that the reactor
never reaches a critical temperature without at least one of
the cooling rods being available, to avoid a shutdown of
the reactor. The simulation results helped in correlating the
model with the actual system behavior.

One of the main advantages of using continuous action
systems for modeling hybrid systems is that we now have
both a solid proof technique for proving properties of the
systems, as well as a powerful simulation technique that we
can use to analyze and explore the systems. Simulation can
either be used as a precursor to more comprehensive proofs,
to iron out bugs in the model, or as an alternative to a com-
plete correctness proof.

Future work includes simulating more complex hybrid
systems, e.g. non-linear, modeled as continuous action sys-
tems, and also the design of some graphical user interface
to the simulator.

References

[1] R. Alur, C. Courcourbetis, N. Halbwachs, T.A. Hen-
zinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
S. Yovine, “The Algorithmic Analysis of Hybrid Sys-
tems”,Theoretical Computer Science, 1995, vol. 138,
pp. 3-34.

[2] R. Alur, D.L. Dill, “A Theory of Timed Automata”,
Theoretical Computer Science, April 1994, vol.
126(2), pp. 183-235.

[3] R.J.R. Back, C. Cerschi, “Modeling and Verifying a
Temperature Control System using Continuous Ac-
tion Systems”, In proceedings of the 5th International
ERCIM Workshop on Formal Methods for Industrial
Critical Systems (FMICS’2000), GMD Report 91,
ERCIM and GMD, April 2000, pp. 265-286.

[4] R.J.R. Back and R. Kurki-Suonio, “Decentralization
of Process Nets with Centralized Control”, In the 2nd
Symposium on Principles of Distributed Computing,
Lecture Notes in Computer Science, vol. 873,ACM
SIGACT-SIGOPS, 1983, pp. 131-142.

[5] R.J. Back, L. Petre, and I. Porres-Paltor, “Continu-
ous Action Systems as a Model for Hybrid Systems”,
Nordic Journal of Computing, 2001, vol. 8, pp. 2-21.

[6] Back R.J.R. and J. von Wright,Refinement Calculus,
A Systematic Introduction, Springer Verlag, 1998.

[7] D.A. van Beek, J.E. Rooda, “Languages and Applica-
tions in Hybrid Modelling and Simulation: Position-
ing of Chi”, Control Engineering Practice, 2000, vol.
8, nr. 1, pp. 81-91.

[8] M.J. Butler, J. Grundy, T. L̊angbacka, R. Ruǩsenas,
and J. von Wright, “The refinement calculator: Proof
support for program refinement”, In Proceedings
FMP’97 - Formal Methods Pacific, Discrete Mathe-
matics and Theoretical Computer Science, Welling-
ton, New Zealand,Springer-Verlag, July 1997.

[9] H. Elmqvist, “Object-Oriented Modeling and Auto-
matic Formula Manipulation in Dymola”, SIMS’93,
Scandinavian Simulation Society, 1993.

[10] A. Göllü, M. Kourjanski, P. Varaiya, “The SHIFT
Simulation Framework: Language, Model and Im-
plementation (Extended Abstract)”, In proceedings of
the 5th International Hybrid Systems Workshop, Notre
Dame, Indiana, Sept. 1997.

[11] T.A. Henzinger, “The Theory of Hybrid Automata”, In
proceedings of the 11th Annual Symposium on Logic
in Computer Science (LICS), IEEE Computer Society
Press, 1996, pp. 278-292.

[12] J. Knappmann, “A PVS based Tool
for Developing Programs in the Refine-
ment Calculus”, http://www.informatik.uni-
kiel.de/inf/deRoever/DiplJKm.html, October 1996.

[13] N. Lynch, R. Segala, F. Vaandrager, “Hybrid I/O
Automata Revisited”, In proceedings of the 4th Hy-
brid Systems Computation and Control (HSCC 2001),
Rome, Italy, Lecture Notes in Computer Science, vol.
2034, pp. 403-417.

[14] “The MathWorks: Developers of MATLAB
and Simulink for Technical Computing”,
http://www.mathworks.com/.

[15] Wolfram S.,The Mathematica Book, Fourth Edition,
Wolfram Media/Cambridge University Press, 1999.

