
Modular Design of Reactive Systems

Cristina Cerschi Seceleanu
Åbo Akademi and TUCS, Finland

ccerschi@abo.fi

Tiberiu Seceleanu
University of Turku, Finland

tiberiu.seceleanu@utu.fi

Abstract

We concentrate on two major aspects of reactive system
design: behavior control and modularity. These are stud-
ied from a formal point of view, within the framework of ac-
tion systems. The traditional interleaving paradigm is com-
pleted with a new barrier synchronization mechanism. This
is achieved by introducing a new parallel composition oper-
ator, applicable to both discrete and hybrid models. While
offering improvements with respect to control and modu-
larity, the approach uses the correctness preserving mecha-
nisms provided by the underlying reasoning environment.
Keywords: Reactive systems, Action systems, Modular
design, Concurrency

1. Introduction

In this study, we tackle issues regarding the design of re-
active systems, be they software or hardware-targeted sys-
tems, in the formal framework ofaction systems. We ap-
proach aspects of design from the perspective of the system-
level integrator that has access to a library of predefined
subsystems. His only task is to appropriately connect them
in order to obtain the system functionality.

Action systems, introduced by Back and Kurki-Suonio
[2] is a state-based formalism, relying on an extended ver-
sion of Dijkstra’s language ofguarded commands[10]. It
uses an interleaving semantics for handling concurrency.
Parallel behavior is modeled by interleaved actions that
can be executed in any order. This approach goes together
with behavioral nondeterminism, as observations of an in-
terleaved model are sequential, therefore the updates of two
systems executing in parallel may not be consistent over a
set of executions [14].

We provide an additional concurrency mechanism for ac-
tion systems, namelysynchronization, as a way to describe
controllable behavior of reactive systems. For this purpose,
we define a new parallel composition operator, applicable to
both discrete and hybrid models. The concepts that we in-
troduce still rely on the rigurous techniques of action sys-

tems, while providing the designer with additional means
of system development. Our goal is completed by showing
that the new virtual execution environment also enhances
the capabilities of our framework, for modular design. Com-
ponents may be picked up from existing libraries and just
plugged into the system representation. The traditional tech-
niques oftrace refinement[4] can be used to ensure that the
implementation is correct with respect to a specification that
captures the system’s global reaction to all sets of inputs.

2. Action Systems

An action system(AS, henceforward) is a collection of
actions(guarded commands). An AS is built according to
the following syntax [2]:

A(z : Tz)
∧
= begin var x : Tx •Init; do A1[] ..[] An od end (1)

Here,A contains the declaration oflocal variablesx and
global variablesz, followed by aninitialization statement
Init and theactionsA1, . . . , An. The initialization state-
ment assigns starting values tox andz. We regard an action
Ai as being of the formgi → Si. Thus, an action isen-
abledand itsbodySi is executed, when theguardgi evalu-
ates to true.

An AS is viewed as part of a more complex structure, the
rest of which communicates with the AS viashared(read
and written) variables. We use the following notations: the
set of state variables accessed by some actionA is denoted
vA, and is composed of theread variable set of actionA,
denotedrA, and thewrite variable set of actionA, denoted
wA. We have thatvA = rA ∪ wA. At the system level we
have: the access set,vA, split into the global read / write
variables, denoted bygrA/gwA and the local read / write
variables, denoted bylrA/lwA. An actionA of A is global,
if gwA ∩ wA 6= ∅ or local, if wA ⊆ lwA.

A statementSi is defined by the following grammar:
Si ::= skip (stuttering, empty statement)

| x := e ((multiple) assignment)
| Sm ; . . . ; Sn (sequential composition)
| gm → Sm[] . . . [] gn → Sn (nondeterministic choice)
| x := x′.Q (nondeterministic assignment)

Above,Sm, . . . , Sn are statements,gm, . . . , gn andQ are
predicates (boolean conditions),x a variable or a list of

variables, ande an expression or a list of expressions. Ac-
tions can be much more general, but this simple syntax
suffices for the purpose of this paper. Aloop can be re-
duced to iterations [5]. Therefore, thewhile loop is writ-
ten aswhile g do S od = do g → S od . In this paper, we
do not consider nested loops.

Statements in AS are defined by theweakest precondi-
tion semantics, consistent with Dijkstra’s original seman-
tics for the language of guarded commands [10]. For state-
ment S and postconditionQ, the formulawp(S, Q), called
the weakest precondition ofS with respect toQ, gives the
largest set of initial states from which statementS is guar-
anteed to terminate in a state satisfyingQ. Here, we as-
sume that all statements areconjunctive predicate trans-
formers (functions from predicates to predicates), that is,
∀p, q • wp(S, (p ∧ q)) = wp(S, p) ∧ wp(S, q).

For statementSi, wp(Si, false) represents the set of ini-
tial states for whichSi is guaranteed to establish any post-
condition, that is, behave miraculously. A statement is en-
abled only in those initial states in which it behaves non-
miraculously. Therefore, the guard ofSi is defined asgi

∧
=

¬wp(Si, false).
When at least one action is enabled in a given ASA,

we say thatA is enabled. We obtain information on the en-
abledness of a systemA, given by (1), by evaluating the
predicateggA, ggA =̂

∨n

k=1 gk.

3. The Traditional Model of Parallel Execu-
tion

Parallel execution of AS is modeled by interleaving ac-
tions [2]. The execution of an AS assumes that there exists
a virtual external entity - theexecution controller (con-
troller in short) - which, at any moment, knows which ac-
tions are enabled. After the initialization, the controller non-
deterministically selects for execution any of the enabled
actions, after which the system moves to a new state. We
call this operation anexecution round. After this, the con-
troller evaluates the new state, observes the enabled actions
and starts another execution round. Termination is normal if
no action of the composition is enabled anymore.
Example. We consider the task of modeling a digitalfil-
ter [11]. Briefly, a filter is a module that takes as input a se-
quence of samples, performs certain operations on it and de-
livers as output a corresponding sequence of samples. The
incoming sequence is described asX [n], whereX is the in-
put signal andn identifies the sample position; a similar no-
tation applies to the output signalY , for which we have the
samplesY [n]. The relation between the input and output is
given byY [n] =

∑N−1
k=0 h[k] × X [n − k], where the vec-

tor h[0..N − 1] contains the filtercoefficients. Hence, apart
from the incoming current sample ofx, N−1 previous sam-
ples are stored in a buffer, and can be accessed by the filter.

a)

Filter
S X

Z

Y

B

F

b)

Filter

S
1

X

Z

Y

B
1

F
1

req
S
,ack

S

req
F
,ack

F

c)

Filter

S
2

X

Z

Y

B
2

F
1

req
S
,ack

S

req
F
,ack

F M
1

W

req
S
,ack

SM

req
M

,ack
M

Figure 1. Simple filter representation.

From the above informal description of the filter we can
identify two submodules of such a device: the storing FIFO-
like buffer and the actual implementation of the filter. We
model the signal source by systemS, the buffer by system
B, and the actual filter by systemF (Fig. 1 a)). The com-
plete AS description is given asP

∧
= S‖B‖F (Fig. 2).

S(X : T)
∧
= begin • X := x0;

do X := X ′.(X ′ ∈ T) od

end

B(X, Z[0..N − 2] : T)
∧
= begin •X, Z[0..N − 2] := x0, z0;

do Z[0], .., Z[N − 2] := X, .., Z[N − 3] od

end

F(X, Z[0..N − 2], Y : T)
∧
= begin var h[0..N − 1] : T •

X, Z[0..N − 2], h[0..N − 1], Y := x0, z0, h0, y0;

do Y :=
∑N−1

k=1 h[k] × Z[k − 1] + h[0] × X od end

P(Y : T)
∧
= begin var X, Z[0..N − 2], h[0..N − 1] : T •

X, Z[0..N − 2], h[0..N − 1], Y := x0, z0, h0, y0;
do X := X ′.(X ′ ∈ T)

[] Z[0], .., Z[N − 2] := X, .., Z[N − 3]

[] Y :=
∑N−1

k=1 h[k] × Z[k − 1] + h[0] × X

od end

Figure 2. Filter model.

Observe first that an interleaved execution ofP would
not ensure that every signal emitted byS is correspond-
ingly received byB andF : several executions ofS may
be selected, before any ofB orF . Also, different values can
be assigned toY for the same sample provided byS, de-
pending on the order of selection for execution ofB and
F . Both problems may be solved by specifying the order
in which the submodules ofP should be executed. Hence,
the systems should know about the status of the partners.
This is achieved by introducing communication variables
reqS , reqF andackS , ackF , and devising a communication
protocol, such that the desired order is enforced. The sys-
temsB andF (on which we concentrate next) may be re-
modeled as in Fig. 3, corresponding to Fig. 1 b), where the
communication variables are shown as dotted lines.

Consider that, in the above example,X is an audio sig-
nal andF1 models a low-pass filter. The output ofF1 goes
to the woofer speaker of one’s audio system. We would also
like to have a high-pass filter, the output of which goes to
the corresponding speakers of the same audio system. We
want to reuse the previously designed modules and then add
one that detects the high frequencies of the input signal. The
new module is modeled by the systemM1 - Fig. 4. In or-

B1(reqF , ackF : Bool ; X, Z[0..N − 2] : T)
∧
= begin • reqF , ackF : false ; X := x0 ; Z[0..N − 2] := z0;

do reqF ∧ ¬ackF → Z[0], .., Z[N − 2] := X, .., Z[N − 3] ; ackF := true

[] ¬reqF ∧ ackF → ackF := false

od

end

F1(reqS , reqF , ackS , ackF : Bool ; X, Z[0..N − 2], Y : T)
∧
= begin var h[0..N − 1] : T • reqS , reqF , ackS , ackF := false;

X, Z[0..N − 2], h[0..N − 1], Y := x0, z0, h0, y0;

do reqS ∧ ¬(reqF ∨ ackF) → Y :=
∑N−1

k=1 h[k] × Z[k − 1] + h[0] × X;
reqF := true

[] reqF ∧ ackF → reqF := false ; ackS := true

[] ¬reqS ∧ ackS → ackS := false

od end

Figure 3. Communicating models.

der to accommodate the introduction ofM1, B1 has to wait
for the two filters to read its data, before updatingZ. Hence,
we have to change the representation ofB1 (Fig. 4).

M1(reqS , reqM , ackSM , ackM : Bool ; X, Z[0..N − 2], W : T)
∧
= begin var h[0..N − 1] : T • reqS , reqM , ackSM , ackM := false;

X, Z[0..N − 2], h[0..N − 1], W := x0, z0, h0, w0;

do reqS ∧ ¬(reqM ∨ ackM) → W :=
∑N−1

k=1 h[k] × Z[k − 1] + h[0]× X ;
reqM := true

[] reqM ∧ ackM → reqM := false ; ackSM := true

[] ¬reqS ∧ ackSM → ackSM := false

od end

B2(reqF , ackF , reqM , ackM : Bool ; X, Z[0..N − 2] : T)
∧
= begin • reqS , ackS , reqF , ackF : false ; X := x0 ; Z[0..N − 2] := z0;

do reqF ∧ reqM ∧ ¬ackF ∧ ¬ackM → Z[0], .., Z[N − 2] := X, .., Z[N − 3];
ackF , ackM := true

[] ¬reqF ∧ ¬reqM ∧ ackF ∧ ackM → ackF , ackM := false

od end

Figure 4. The systems M1 and B2.

Discussion.In order to reduce the implicit nondeterminis-
tic behavior of the interleaving model of execution, one may
introduce control channels, for ensuring that data emitted
by one source is not missed by any of the intended tar-
gets, or that data is processed in a correct manner. Still,
an observer of the composed systemP2

∧
= B2‖F1‖M1

(the listener, in the example) has access to both output se-
quences,Y (n) andW (n). Depending on the execution or-
der ofF1 andM1, until the listener observes the new out-
put(Y (n + 1), W (n + 1)), it will also observe the interme-
diate state, either(Y (n), W (n + 1)) or (Y (n + 1), W (n)),
which is also an incorrect aspect of the design. A solution
is provided, again, by the introduction of new communica-
tion channels, betweenF1 andM1, on one side, and the ob-
server, on the other. What happens if multiple, different ob-
servers become necessary in the design?

Any extension / reduction of the design elements re-
quires an internal change of the involved subsystems. This
destroys the idea of a modular design flow and the reuse
of components. We may assign meanings like “data valid”,
“operation finished”, etc., to the signals of the communica-
tion channels, thus the interleaved approaches are suitable
for asynchronous designs. Unfortunately, these signals are
global variables of the system. In hardware, this translates
into “more wires”; in software, this violates the principleof

information hiding.

4. Synchronized Parallel Environments

We want to build an environment in which the response
of the system is a collection of the individual component re-
actions to the input stimuli. The solution that we propose
requires that the subsystems synchronize when the global
variables of the compound system are updated. Thus, we
extend the execution round to anexecution cycle, defined
by the activities carried out between two global states: it is
a sequence of rounds in which each participating AS up-
dates the local variables, as necessary, followed by a last
round, in which, simultaneously,all the global variables are
updated, accordingly.

From the controller’s point of view, we can imagine the
following scenario. It selects for execution an enabled ac-
tion from one component AS. If the action updates global
variables, the system is marked as “executed” and no other
action can be selected from that system. However, the other
participants, and the external observers, do not see the
changes yet. Another action is then selected, from an “un-
executed” AS. The process continues until all the compo-
nents are marked “executed”, signaling the end of a cycle.

Definition 1 Consider the action systemA

A(z : Tz)
∧
= begin var x : Tx•Init; do gL → L [] gS → Sod end (2)

We say thatA is aproper action system if:
1. gwA ⊆ wS – meaning thatS is a global action ofA.

2. wL ⊆ lwA – meaning thatL is a local action ofA

3. wp(do gL → L od,¬gL ∧ gS) ≡ true – meaning that the exe-
cution ofL, taken separately, terminates, leavingS enabled.

Definition 2 Let us considern proper action systems (k =
1 . . . n):

Ak(zk)
∧
= begin var xk • Initk ; do gk

L → Lk [] gk
S → Sk od end,

for which we also have that∀j, k ∈ [1..n], j 6= k.((gwAj ∩
gwAk = ∅) ∧ (

⋂
k xk = ∅)). Their synchronized paral-

lel composition is a new action systemP = A1♯ . . . ♯An,
given by:

P(z)
∧
= begin var x : Tx ; sel[1..n] : Bool ; run : Nat • Init;

do ggP → (run = 0 ∧ ¬sel[1] → sel[1] := true ; run := 1
[] . . .

[] run = 0 ∧ ¬sel[n] → sel[n] := true ; run := n

[] run = 1 ∧ g1
L
→ L1[] run = 1 ∧ ¬g1

L
∧ g1

S
→ wS1c := wS1 ; S′

1 ; run := 0
[] run = 1 ∧ ¬ggA1

→ wS1c := wS1 ; run := 0
[] . . .

[] run = n ∧ gn
L
→ Ln[] run = n ∧ ¬gn

L
∧ gn

S
→ wSnc := wSn ; S′

n ; run := 0
[] run = n ∧ ¬ggAn

→ wSnc := wSn ; run := 0)
[] sel ∧ run = 0 → Update ; sel := false

od end

The operator ‘♯’ (‘sharp’) is called thesynchronized
parallel operator. The setz of global variables ofP is, ini-
tially, the union of the global variable sets of all individual
systems,z =

⋃
k zk, without duplicates. It may be possible

that communication between several submodules ofP (the
composing systemsAk) should not be disclosed at the in-
terface ofP . Therefore, the variables modeling such chan-
nels will behidden within the systemP . They will not ap-
pear inz.

Further, the local variablesx of the new action sys-
temP are the union of the local variablesxk, to which
we add the hidden variables. We also add copies (wSkc)
of the original write variables of each action bodySk.
They replace the original variableswSk, therefore we have
S′

k = Sk[wSkc/wSk]. Finally, the listx is completed by
adding the arraysel and the execution indicator,run. We
have thatggP =̂

∨n

1 (gk
L ∨ gk

S).
TheInit statement is a sequential composition of the in-

dividual Initk statements to which we add the initialization
of variableswSkc, sel andrun, and the actionUpdate is a
sequence of simple assignments:

Init
∧
= Init1 ; .. ; Initn ; wS1c, ..,wSnc := wS1, . . . , wSn;

run := 0 ; sel := false

Update
∧
= wS1 := wS1c ; .. ; wSn := wSnc ; sel := false

The definition of the ‘♯’ operator says that, whenever
there is a change in the input, such a composition of AS re-
acts based on the state of all its subcomponents, and the re-
sult is a collection of individual reactions. The system com-
position reacts only if at least one subcomponent is enabled
(∃k ∈ [1..n] • gk

L ∨ gk
S ≡ true). The variablerun iden-

tifies the system that is selected for execution. The vari-
able sel stores the information on which are the execut-
ing, or already executed systems. Whenever all its elements
(sel ≡ sel[1] ∧ .. ∧ sel[n]) becometrue andrun = 0, we
have reached the end of an execution cycle.

Theorem 1 Assume that the proper action systemsA1 and
A2 are of the form given by (2). Then, the synchronized par-
allel compositionA1 ♯A2 satisfies the following properties:

(a) A1 ♯ A2 is a proper action system (properness of♯)
(b) A1 ♯ A2 = A2 ♯A1 (commutativity of♯)

Design Implications. We revisit briefly the example pro-
posed in Section 3. Consider that instead of the parallel
compositionB ‖ F , we write the description of our sys-
tem asB ♯ F . It is easy to check that the componentsB,F
are proper AS. Therefore, we do not have to add communi-
cation channels to any of the respective subsystems, which
remain as described in Fig. 2. Also, then, the multiplicity of
targets stops being an issue for the composition. We can in-
troduce as manyF -like systems as required, without modi-
fying B in order to accommodate their presence. Addition-
ally, an external observer will always observe only the state
(Y (n + 1), W (n + 1)), regardless of the order in which the
systemsF and the correspondingM (M1 without the com-
munication variables) are selected for execution.

5. Design Process

Crucial to a module-based design context is the possi-
bility to separately analyze and, if necessary, improve the
functionality of the subsystems, optimize them for a given
technology, or map them to existent library elements. These
actions may involve certain transformations of the initial
representations, which have to be guaranteed correct, with
respect to behavior. Within the refinement calculus, which
is our reasoning environment, such correct transformations
are ensured by refinement rules [1, 4].
Invariants. A predicateI(vA) – I in short – is aninvari-
ant of the actionA=̂g → S, if it holds prior to and after
the execution ofA. We then say thatI is preservedby A,
that is,g ∧ I ⇒ wp(S, I). At the system level, a predicate
I(vA) is aninvariant of the ASA, given by (1), if it is es-
tablished byInit, that is,true ⇒ wp(Init, I), and also if
it is preserved by each actionAi.
Definition 3 A predicateI is a proper invariant of a
proper ASA, if: ∀z /∈ wS · gS ⇒ (I[w′S/wS, z] ≡ I[w′S/wS]).

The above definition says that, following the execution
of the global actiongS → S, the computed value of a proper
invariantI depends on the variables inwS, only.
Refinement of actions and AS.An actionA is (algorithmi-
cally) refinedby the actionC, writtenA ≤ C, if, whenever
A establishes a certain postcondition, so doesC [1]. More-
over, letR(a, c, z) (simply written asR) be a booleanab-
stractionrelation, which links the abstract local variablesa
to the concrete local variablesc. Additionally, let I be an
invariant of the actionC. Then, actionA is data refinedby
actionC using the relationR and the invariantI, that is,
A ≤R,I C, if

∀Q • R ∧ I ∧ wp(A, Q) ⇒ wp(C, ∃a • R ∧ I ∧ Q),

whereQ is a predicate on the variablesa, z, and(∃a.R ∧
I ∧ Q) is a predicate ona, c, z.
Lemma 1 Given the proper action systems

A(zA)
∧
= begin var a • a, zA := a0, zA0 ;

do gA
L → LA[] gA

S → SA od end

C(zC)
∧
= begin var c • c, zC := c0, zC0 ;

do gC
L → L′

A[] gC
S → S′

A[] gX → X od end,

let R be an abstraction relation andI a proper invariant of
C. The systemC refines the systemA, A ⊑R,I C, if:
1. Initialization: R(a0, c0, zA0, zC0) ∧ I(c0, zC0) ≡ true

2. Main actions:(gA
L

→ LA ≤R,I gC
L

→ L′
A

) ∧ (gA
S

→ SA ≤R,I

gC
S

→ S′
A

)

3. Auxiliary action:skip ≤R,I gX → X

4. Continuation condition:R ∧ I ∧ (gA
L

∨ gA
S

) ⇒ gC
L

∨ gC
S

∨ gX

5. Properness:R ∧ I ⇒ wp(do gX → X[] gC
L

→ L′
A

od ,¬(gX ∨

gC
L

) ∧ gC
S

)

The first four requirements of the lemma are adaptations
of the original ones, given in [6]. The fifth strengthens the
original request by specifying that the new group of local

actions,gX → X [] gC
L → L′

A must terminate and estab-
lish the necessary conditions for the (possibly) new global
actiongC

S → S′

A to execute.
Refinement Example.Let us consider a hardware imple-
mentation for the filter introduced in section 3. A direct
mapping of the filter functionality on hardware elements is
represented in Fig. 5 a). Characteristic to this implementa-
tion of systemF is the parallel processing and the large area
occupied by the hardware elements. A functionally equiva-
lent implementation (Fig. 5 b)) results from a serial repre-
sentation of the filtering device, requiring a reduced silicon
area. We transform the original systemF intoFS (Fig. 6).

X

Z[0]

Z[N-3]

Z[N-1]

h[0]

h[1]

h[N-2]

h[N-1]

+ Y

*

*

a)

*
+

tempY

*

Step

Computation

step

b)

X

Z[0]

Z[N-3]

Z[N-1]

h[0]

h[1]

h[N-2]

h[N-1]

Figure 5. Implementation of the filter.

In isolation, one may prove that the systemFS is a re-
finement ofF , under the invariantI (R is the identity rela-
tion):

F ⊑I FS , I=̂step ∈ [2..N] ⇒ temp =

step−1∑

k=1

h[k] × Z[k − 1]

From a system level point of view, we should check that
B ‖ F ⊑I B ‖ FS . Unfortunately, asB does notrespectI,
the refinement is not possible (see [7] for details). This fact
has a simple explanation; since the controller may choose
an enabled action from eitherB orFS , let us suppose that it
chooses only actions fromFS, until step = N , after which
it selectsB for execution. Hence, following the update ofZ,
the invariantI is no longer valid (B interfereswith I).

FS(X, Z[0..N − 2], Y : T)
∧
= begin var h[0..N − 1], temp : T ; step : 0..N •

X, Z, h, Y := x0, z0, h0, y0 ; temp := 0 ; step := 0;
do step = 0 → temp := 0 ; step := step + 1

[] step ∈ [1..N − 1] → temp := temp + h[step] × Z[step− 1] ; step := step + 1
[] step = N → Y := temp + X × h[0] ; step := 0

od end

Figure 6. The new system FS.

Theorem 2 Consider the systemP
∧
= A1♯ . . . ♯An, where

each of the component systems preserves the proper in-
variants I1, . . . , In, respectively. We then have thatI

∧
=

I1∧ . . .∧In∧
∧

k∈[1..n](sel[k]∧¬(run = k) ⇒ I ′k), I ′k
∧
=

Ik[wSkc/wSk] is a proper invariant ofP .

The theorem states that in a synchronized environment, the
global properties of the system are obtained from the indi-
vidual properties of the components, asI ⇒ I1 ∧ .. ∧ In.

The additional terms ofI help us make the connection be-
tween the copies of the write variables and the respective
original variables, at the moment when the actionUpdateis
executed.
Corollary 1 Consider the proper action systemsAk as in
Definition 2, and an abstraction relationRj . The systems
Ak preserve the proper invariantsIk, respectively. Then

Ak ⊑Rk,Ik
A′

k
A1♯ . . . ♯Ak♯ . . . ♯An ⊑Rk,Ik

A1♯ . . . ♯A′
k
♯ . . . ♯An

,∀j ∈ [1 . . . n]

The interpretation of Corollary 1 is that each compo-
nent of a synchronized parallel composition may be refined
in isolation, without knowledge about the invariants of the
other components. Moreover, individual properties (as ex-
pressed by eachIk) are preserved through refinement. The
module designer is responsible with improving the perfor-
mance of the modules, and this is transparent for the inte-
grator designer.

A conclusion similar to ours is reached in [7] for the par-
allel composition of AS. However, this is achieved provided
that the invariants of all the subsystems are known, and a
noninterference relation between them proves to hold.
Refinement Example.If we checkF ⊑I FS in the con-
text of Lemma 1, (we consider a synchronized perspec-
tive on the system composition), we will immediately ob-
tain thatS ♯ B ♯ F ⊑I S ♯ B ♯ FS (notice thatFS is
a proper AS). Besides this, a previous addition of module
M would not change the refinement, and we could have
S ♯ B ♯ F ♯ M ⊑I S ♯ B ♯ FS ♯ M.

6. Continuous Action Systems

A continuous action system(CAS) [3] is of the form

C(z)
∧
= begin var x : Real+ → T • Init;

do g1 → S1[] . . . [] gm → Sm od end

Here,Real+ stands for the non-negative reals, and models
the time domain.

The execution of a CAS uses an implicit variablenow,
showing the present time. The actions may refer the value
of now, but they can not change it. After the initializa-
tion, the system will start evolving, with time (measured by
now) moving forward continuously. The execution resem-
bles closely that of an ordinary AS, with the difference that,
after the changes stipulated bySi have been done, the sys-
tem evolves to the next time instance when one of the ac-
tions is enabled. We writex :− e rather thanx := e, to em-
phasize that only the future behavior of the variablesx is
changed. We explain the meaning ofC by translating it into
an ordinary (discrete) AS,̄C:

C̄(z)
∧
= begin var x : Real+ → T • now := 0; Init; N ;

do g1.now → S1; N [] . . . [] gm.now → Sm; N odend

N
∧
= now := next.ggC .now,

next.ggC .t
∧
=

{
min{t′ ≥ t | ggC .t′}, if ∃ t′ ≥ t • ggC .t′,
t, otherwise

In C̄, the variablenow is declared, initialized and up-
dated explicitly. It models the starting time and the succeed-
ing moments when some action is enabled. The value of a
variablev or of an expressione at a given moment of time
t is identified byv.t or e.t, respectively. Their values at
the current moment are consequently given byv.now and
e.now. The value ofnow is updated by the statementN .
The functionnext gives a moment of time when at least one
action is enabled. If no action will ever be enabled, then the
second branch of the definition will be followed, andnow
will denote the moment of time when the last discrete ac-
tion was executed, the system terminating with the last as-
signed values for the variables.

The parallel composition of several CAS is defined using
the same method as for composing ordinary AS. One needs
to combine the component CAS before translating them into
the corresponding discrete AS, to ensure that the composed
system uses a unique variablenow.
Synchronized Parallel CAS. The synchronized parallel
composition of CAS resembles the corresponding discrete
case introduced in section 4. The semantics of a proper CAS
A(z) is given by the discrete translation:

Ā(z)
∧
= begin var now : Real+, x : Real+ → T • now := 0; Init; N;

do gL.now → L[] gS .now → S ; N od end

Further, considern proper CAS as being (k = 1 . . . n):

Ak(zk)
∧
= begin var xk : Real+ → T • Initk;

do gk
L
→ Lk [] gk

S
→ Sk od end

Their synchronized parallel composition is a new
CAS,P = A1 ♯ . . . ♯An. Its semantics is given following
the lines of Definition 2, as illustrated in Fig. 7. The vari-
ables ofP̄ are functions fromReal+ to some typeT , and
the variablessel[1..n] and run are also written as func-
tions from time to typesBool andNat, respectively. The ac-
tion guards of the component systems are evaluated at time
point now. The time is not advanced before all CAS com-
ponents have updated their global variables, indicated by
sel ∧ run = 0 ≡ true. Also observe that, if no compo-
nent system is supposed to react to a specific input situation,
the composition is disabled (ggP ≡ false). The theoreti-
cal results obtained for discrete synchronized AS apply to
synchronized CAS, also, due to the discrete AS representa-
tion of the latter.
Example - Hybrid system analysis.Let us consider an
abstract model of a simple heating-cooling hybrid control
system, which keeps the temperature inside a place where
some thermic processes happen, between a minimum and
a maximum value. The system is equipped with a con-
troller that either increases the temperature (modeled byθ)
until it reaches the maximum allowed value (θM), or de-
creasesθ, until it reaches a minimum value (θm). These pro-
cesses develop at speedsvh, for heating, andvc, for cool-
ing. There also exists a counter (variablecounter in the

model) that records the number of times whenθ = θM .
Whencounter = 9, the system sets the boolean function
beep to true, and then it stops. Even if the system is sim-
ple enough to be designed as a monolith, we would rather
design it modularly, to create the premises for further exten-
sions, which may require the addition of other modules. We
use the subsystemsS1 (the heating-cooling system) andS2

(the counter) (Fig. 8).

P̄(z)
∧
= begin var x : Real+ → T ; sel[1..n] : Real+ → Bool;

run : Real+ → Nat ; now : Real+ • now := 0 ; Init ; N ;
do

ggP .now → (run.now = 0 ∧ ¬sel[1].now → sel[1] :− (λt · true) ; run :− (λt · 1)
[] . . .

[] run.now = 0 ∧ ¬sel[n].now → sel[n] :− (λt · true) ; run :− (λt · n)
[] run.now = 1 ∧ g1

L
.now → L1

[] run.now = 1 ∧ ¬g1
L
.now ∧ g1

S
.now → wS1c :− wS1 ; S′

1 ; run :− (λt · 0)
[] run.now = 1 ∧ ¬ggA1

→ wS1c :− wS1 ; run :− (λt · 0)
[] . . .

[] run.now = n ∧ gn
L
.now → Ln

[] run.now = n ∧ ¬gn
L
.now ∧ gn

S
.now → wSnc :− wSn ; S′

n ; run :− (λt · 0)
[] run.now = n ∧ ¬ggAn

→ wSnc :− wSn ; run :− (λt · 0))
[] sel.now ∧ run.now = 0 → Update;

sel :− (λt · false) ; now := min{t′ ≥ now | gg.t′}
od end

Figure 7. The system P̄.

S1(θ : Real+ → Real+ ; beep : Real+ → {false, true})
∧
= begin beep :− (λt · false) ; θ :− (λt · vh ∗ (t − now));

do ¬beep.now ∧ θ.now = θM → θ :− (λt · θM − vc ∗ (t − now))
[] ¬beep.now ∧ θ.now = θm → θ :− (λt · θm + vh ∗ (t − now))

od end

S2(θ : Real+ → Real+ ; beep : Real+ → {false, true})
∧
= begin var counter : Real+ → Nat •

counter :− (λt · 0) ; beep :− (λt · false) ; θ :− (λt · vh ∗ (t − now));
do ¬beep.now ∧ counter.now < 9 ∧ θ.now = θM →

counter :− (λt · counter.now + 1)
[] ¬beep.now ∧ counter.now = 9 ∧ θ = θM → beep :− (λt · true)

od end

Figure 8. The systems S1 and S2.

Interleaved model. The parallel composition of the CAS
S1 andS2 gives a new CAS,S = S1||S2, with an implicit,
unique variablenow. Following the interleaved execution
model, at some moment, both first actions ofS1 andS2 will
be simultaneously enabled (whenθ = θM). However, only
one of them is selected by the controller. If the chosen ac-
tion is the one ofS1, the action with the same guard inS2

becomes disabled, since the temperature is decreased. Thus,
the counter misses to record the respective event ofθ = θM ,
therefore presenting a wrong output.
Synchronized model.We now composeS1 andS2 by using
our newly defined operator ‘♯’ (the components are proper
CAS). As a result, we get the CASSnew = S1 ♯ S2. Then,
we translateSnew into an ordinary AS,S̄new (Fig. 9), with
explicit time, by applying the definition given in Fig. 7.

If we repeat the scenario described above, whenθ = θM ,
the semantics of̄Snew does not let time progress unless all
the global variables are updated. Therefore, both enabled
actions are executed at the same moment of time, and, in

S̄new(θ : Real+ → Real+)
∧
= begin var θc : Real+ → Real+ ; beep, beepc, sel[1..2] : Real+ → Bool;

counter, run : Real+ → Nat ; now : Real+ •
now : = 0 ; counter, run :− (λt · 0) ; beep, beepc, sel :− (λt · false);
θ, θc :− (λt · vh ∗ (t − now)) ; now : = min{t′ ≥ now | gg.t′};

do ggS → (¬sel[1].now ∧ run.now = 0 → sel[1] :− (λt · true) ; run :− (λt · 1)
[] ¬sel[2].now ∧ run.now = 0 → sel[2] :− (λt · true) ; run :− (λt · 2)

[] run.now = 1 → (¬beep.now ∧ θ.now = θM → θc :− (λt · θM − vc ∗ (t − now))
[] (¬beep.now ∧ θ.now = θm → θc :− (λt · θm + vh ∗ (t − now))
[] ¬ggS1

→ θc :− θ) ; run :− (λt · 0))
[] run.now = 2 → (¬beep.now ∧ counter.now < 9 ∧ θ.now = θM →

counter :− (λt · counter.now + 1)
[] (¬beep.now ∧ counter.now = 9 ∧ θ = θM → beepc :− (λt · true)
[] ¬ggS2

→ beepc :− beep) ; run :− (λt · 0)))
[] sel.now ∧ run.now = 0 → θ :− θc ; beep :− beepc;

sel :− (λt · false) ; now : = min{t′ ≥ now | gg.t′}
od end

ggS = ¬beep.now, ggS1
= ¬beep.now ∧ (θ.now = θM ∨ θ.now = θm)

ggS2
= ¬beep.now ∧ counter ≤ 9 ∧ θ = θM

Figure 9. The system S̄new.

consequence, the counter records all times whenθ reaches
θM , correctly. Additionally, in case we need to add simi-
lar modules to the composed system, the synchronized par-
allel composition lets us reuse the already existing compo-
nents, at the same time ensuring correct outputs to all in-
puts.

7. Conclusions and Related Work

The motivation behind the product operator of Milner’s
SCCS [13] is the same as ours: the system response to stim-
uli is the composition of the individual reactions of the in-
cluded subsystems. However, while we synchronize on the
updates of a group of variables, the SCCS approach is based
on simultaneous execution of actions, which we only get in
the last execution round of a synchronized composition.

In [7], Back and von Wright established conditions that
enable the designer to perform individual refinements of the
components in a parallel composition of AS, by checking
noninterference conditions. Still, this does not allow a mod-
ule designer to independently modify his work, as he needs
information about the behavior of the other components.

Bellegarde et al. introduced a similar idea of synchro-
nized parallel composition for event-B systems [8]. In op-
position to our model, which increases theexternaldeter-
minacy, while preserving theinternal nondeterminism, the
event-B solution preserves also the external nondetermin-
ism. A gluing invariant is also necessary when synchro-
nized modules are refined, as the synchronization is per-
formed only with regard to selected events, collected in
a synchronization specification. Therefore, the supplier of
modules should also deliver to the system integrator, be-
sides the modules themselves, the synchronization specifi-
cation. Thus, the approach is similar to the one adopted in
[7], except for the synchronization idea.

Parallel composition of hybrid system models has also
been studied extensively. In the temporal logic of actions of

Lamport [12], synchronization is specified as a way of ap-
plying non-interleavingto system design. This is reached
by employingjoint actions, a concept non-existent in our
framework. The conclusion, however, supports our point of
view: interleaving “blurs” the distinction among the com-
ponents. Bornot and Sifakis [9] analyze compositions of
timed systems expressed as communicating processes. The
authors strive formaximal progress, ensured in our case by
the synchronized semantics.

By providing the new virtual execution environment, we
have tackled two important problems of reactive system de-
sign: behavior control and modularity. The essential result
of the study is mentioned by Corollary 1. Based on this,
we can say that the system level integrator and the mod-
ule designers gain an increased independency with respect
to each other during the design process. We believe that our
achievement of using maximal synchronization to increase
the modular design capabilities of the AS framework is a
contribution that could be easily adapted to other similar
formal environments.

References

[1] R. J. R. Back. “Refinement Calculus, part II: Parallel andreactive
programs”. J. W. de Bakker, W.-P. de Roever, and G. Rozenberg.
Stepwise Refinement of Distributed Systems: Models, Formalisms,
Correctness. LNCS vol. 430. Springer-Verlag, pp. 67-93, 1990.

[2] R. J. R. Back, R. Kurki-Suonio. “Distributed Cooperation with Ac-
tion Systems”.ACM Transactions on Programming Languages and
Systems, Vol. 10, No. 4.1988, pp. 513-554.

[3] R. J. Back, L. Petre, I. Porres-Paltor. “Continuous Action Systems
as a Model for Hybrid Systems”.Nordic Journal of Computing, vol.
8, pp. 2-21, 2001.

[4] R. J. R. Back, J. von Wright. “Trace refinement of action systems”.
Proceedings of CONCUR-94, Springer–Verlag, 1994.

[5] R. J. R. Back, J. von Wright.Refinement Calculus: A Systematic In-
troduction. Springer–Verlag, 1998.

[6] R.J.R. Back, K. Sere. “Action Systems with Synchronous Commu-
nication”. Programming Concepts, Methods and Calculi. In E.-R.
Olderog. IFIP Trans. A-56, pp. 107-126, 1994.

[7] R. J. R. Back and J. von Wright. “Compositional Action System Re-
finement”. Formal Aspects of Computing, Vol. 15, No. 2 pp. 103-
117, 2003.

[8] F.Bellegarde, J.Julliand, O.Kouchnarenko. “Synchronized Parallel
Composition of Event Systems in B”. D. Bert et al.: ZB 2002,
Springer-Verlag LNCS 2272, pp. 436-457, 2002.

[9] S. Bornot and J. Sifakis. “On the composition of hybrid systems”.
In First International Workshop Hybrid Systems : Computation and
Control (HSCC’98), Springer-Verlag, LNCS 1386, pp. 49-63,1998.

[10] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall Inter-
national, 1976.

[11] E.C.Ifeachor, B.W.JervisDigital Signal Processing Practical Ap-
proach. Addison Wesley Publishing Company, 1997.

[12] L. Lamport. Specifying Systems - The TLA+ Language and Tools
for Hardware and Software Engineers. Addison Wesley Publishing
Company, 2002.

[13] R. Milner. “Calculi for synchrony and asynchrony”.Theoretical
Computer Science, Vol. 25, Issue 3, pp. 267-310, 1983.

[14] U. Montanari, F. Rossi. “Concurrency and Concurrent Constraint
Programming”. In A. Podelski ed., Constraint Programming:Ba-
sics and Trends, Springer-Verlag, LNCS 910, pp. 171-193, 1995.

[15] C. Seceleanu, T. Seceleanu. “On Designing for Modularity”. TUCS
Technical Report 534, June 2003. http://www.tucs.fi

