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Abstract tems, while providing the designer with additional means

of system development. Our goal is completed by showing
We concentrate on two major aspects of reactive systemrthat the new virtual execution environment also enhances
design: behavior control and modularity. These are stud- the capabilities of our framework, for modular design. Com-
ied from a formal point of view, within the framework of ac- ponents may be picked up from existing libraries and just
tion systems. The traditional interleaving paradigm is eom plugged into the system representation. The traditiocht-te
pleted with a new barrier synchronization mechanism. This niques oftrace refinemen] can be used to ensure that the
is achieved by introducing a new parallel composition oper- implementation is correct with respect to a specificatiat th
ator, applicable to both discrete and hybrid models. While captures the system’s global reaction to all sets of inputs.
offering improvements with respect to control and modu-
larity, the approach uses the correctness preserving mecha 2. Action Systems
nisms provided by the underlying reasoning environment.
Keywords: Reactive systems, Action systems, Modular An action systenfAS, henceforward) is a collection of
design, Concurrency actions(guarded commands). An AS is built according to
the following syntax [2]:

A(z: T) Al begin var = : T, e Init; do A1] ..] An od end 1)

1. Introduction Here, A contains the declaration ddcal variablesz and
global variablesz, followed by aninitialization statement

In this study, we tackle issues regarding the design of re-Init and theactions A, ..., A,. The initialization state-
active systems, be they software or hardware-targeted systhent assigns starting valuesit@ndz. We regard an action
tems, in the formal framework cdction systemswWe ap- 4 as being of the forny; — S;. Thus, an action ien-
proach aspects of design from the perspective of the systemabledand itsbody.S; is executed, when thguard g; evalu-
level integrator that has access to a library of predefinedates to true.
subsystems. His only task is to appropriately connect them AN AS is viewed as part of a more complex structure, the
in order to obtain the system functionality. rest of which communicates with the AS \shared(read

Action systems, introduced by Back and Kurki-Suonio and written) variables. We use the following notations: the
[2] is a state-based formalism, relying on an extended ver-Set of state variables accessed by some actidenoted
sion of Dijkstra’s language ofuarded commandd.0]. It vA, and is composed. of th@ad variable set of actior,
uses an interleaving semantics for handling concurrency.denOted“Aa and thewrite variable set of actionl, denoted
Parallel behavior is modeled by interleaved actions that wA. We have thabA = rA U wA. At the system level we
can be executed in any order. This approach goes togethePave: the access setd, split into the global read / write
with behavioral nondeterminism, as observations of an in- Variables, denoted byr.A/gw.A and the local read / write
terleaved model are sequential, therefore the updatesoof tw Variables, denoted biy.A/lw.A. An actionA of Alis global,
systems executing in parallel may not be consistent over af gwANwA # () orlocal, if wA C lwA.

set of executions [14]. A statementS; is defined by the following grammar:
We provide an additional concurrency mechanismforac- Si = | S’fED (stutte(?ingitévvlzzﬂ)ty stqtemeng
tion systems, nam_el:yynchroni_zationas away to (_Jlescribe | gm_ . S (nggeéfizl fjﬁg;ﬁf:n)
controllable behavior of reactive systems. For this puepos | gm — Sm] -..] gn — Sn (nondeterministic choice)
we define a new parallel composition operator, applicable to |z :=a".Q (nondeterministic assignment)
both discrete and hybrid models. The concepts that we in-Above, S,,., ..., S, are statementsy,,,...,g, andQ are

troduce still rely on the rigurous techniques of action sys- predicates (boolean conditions),a variable or a list of



variables, an@ an expression or a list of expressions. Ac-
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duced to iterations [5]. Therefore, thehile loop is writ-

ten aswhile g do Sod = do g — S od . In this paper, we — P

do not consider nested loops. ) . —
Statements in AS are defined by tiveakest precondi- Figure 1. Simple filter representation.

tion semanticsconsistent with Dijkstra’s original seman-

tics for the language of guarded commands [10]. For state-

ment S and postconditiof, the formulawp(S, @), called From the above informal description of the filter we can
the weakest precondition ¢f with respect taR, gives the identify two submodules of such a device: the storing FIFO-
largest set of initial states from which statem#nis guar- like buffer and the actual implementation of the filter. We

anteed to terminate in a state satisfyi@g Here, we as-  model the signal source by systeémthe buffer by system

sume that all statements acenjunctive predicate trans- B, and the actual filter by systerR (Fig. 1 a)). The com-

formers (functions from predicates to predicates), that is, plete AS description is given &3 i S||B||F (Fig. 2).

Vp.q e wp(S, (pAq)) =wp(S,p) Awp(S, q).
For statemens;, wp(.S;, falsg represents the set of ini- 8(X:T) B(X,Z[0.N-2]:T)

tial states for whichs; is guaranteed to establish any post- = begin X i=zo; begin X, Z[0.N — 2] := o, 20;

o . . ) doX :=X'.(X'eT)od do Z[0],.., Z[N — 2] := X,.., Z[N — 3] od
condition, that is, behave miraculously. A statement is en-  ¢nq end
abled only in those initial states in which it behaves non- F(X, Z[0.N — 2], : T)
miraculously. Therefore, the guard 8f is defined ag; L £ beginvar h0.N —1]: T o
— S fa|se X,Z[O..N —2|,h[0..N — 1], Y := 0, 20, ho, Yo;
wp(Si, : o ) ) do := SN hlk] x Z[k — 1] + h[0] x X od end
When at least one action is enabled in a given AS B(Y :T)
we say thatA is enabled. We obtain information on the en- 2 beginvar X, Z[0.N — 2|, hO.N — 1] : T »
abledness of a system, given by (1), by evaluating the X, 2[0..N — 2], h[0..N — 1], Y := @o, 20, ho, yo;
dicat ~ \yn do X :=X'.(X'€eT)
predicateyga, 994 = Vj_q Gk- 1 Z(0],.. ZIN — 2] := X, ., Z[N — 3]

1Y := S0 hik] x Z[k — 1]+ hl0] x X
od end

Figure 2. Filter model.

3. The Traditional Model of Parallel Execu-
tion

Parallel execution of AS is modeled by interleaving ac-  Observe first that an interleaved executiorfvould
tions [2]. The execution of an AS assumes that there existsnot ensure that every signal emitted 8yis correspond-

a virtual external entity - thexecution controller (con- ingly received byB and F: several executions af may
troller in short) - which, at any moment, knows which ac- be selected, before any Bfor F. Also, different values can
tions are enabled. After the initialization, the controfien- be assigned td” for the same sample provided 8 de-

deterministically selects for execution any of the enabled pending on the order of selection for execution/find
actions, after which the system moves to a new state. We’F. Both problems may be solved by specifying the order
call this operation amxecution roundAfter this, the con-  in which the submodules @ should be executed. Hence,
troller evaluates the new state, observes the enabledhactio the systems should know about the status of the partners.
and starts another execution round. Termination is norimal i This is achieved by introducing communication variables
no action of the composition is enabled anymore. reqgs,reqr andackg, ackr, and devising a communication
Example. We consider the task of modeling a digifdt protocol, such that the desired order is enforced. The sys-
ter [11]. Briefly, a filter is a module that takes as input a se- temsB and.F (on which we concentrate next) may be re-
quence of samples, performs certain operations on it and demodeled as in Fig. 3, corresponding to Fig. 1 b), where the
livers as output a corresponding sequence of samples. Theommunication variables are shown as dotted lines.
incoming sequence is describedX:|, whereX is the in- Consider that, in the above examplg,is an audio sig-

put signal and: identifies the sample position; a similar no- nal andF; models a low-pass filter. The output 8§ goes
tation applies to the output signl, for which we have the  to the woofer speaker of one’s audio system. We would also
samplesy’[n]. The relation between the input and outputis like to have a high-pass filter, the output of which goes to
given byYn] = fj;ol hlk] x X[n — k], where the vec-  the corresponding speakers of the same audio system. We
tor L[0..N — 1] contains the filtecoefficientsHence, apart ~ want to reuse the previously designed modules and then add
from the incoming current sample of N — 1 previous sam-  one that detects the high frequencies of the input signa&. Th
ples are stored in a buffer, and can be accessed by the filtemew module is modeled by the systewt; - Fig. 4. In or-



Bi(reqp, ackp : Bool ; X, Z[0.N — 2] : T)
2 begin e reqp,ackp : false; X =g ; Z[0..N — 2] := z;
do reqr A —ackp — Z[0],.., Z[N — 2] := X, .., Z|[N — 3] ; ackp := true
| —reqr A ackp — ackp = false
od
end
Fi(regs,reqr, ackg, ackp : Bool ; X, Z[0..N —2],Y : T)
L begin var h[0..N — 1] : T e reqs,reqr, acks, ackp := false;
X, Z[0..N — 2], h[0..N — 1], Y := w0, 20, ho, Yo;
do reqs A —(reqr V ackp) — Y := Z;:ll hlk] x Z[k — 1] + h[0] x X
reqr = true
| reqr A ackp — reqr = false; ackg := true
| —regs A acks — acks = false
od end

Figure 3. Communicating models.

information hiding.

4. Synchronized Parallel Environments

We want to build an environment in which the response
of the system is a collection of the individual component re-
actions to the input stimuli. The solution that we propose
requires that the subsystems synchronize when the global
variables of the compound system are updated. Thus, we
extend the execution round to amecution cycledefined
by the activities carried out between two global states it i
a sequence of rounds in which each participating AS up-
dates the local variables, as necessary, followed by a last

der to accommodate the introduction®f,, B; has to wait
for the two filters to read its data, before updatigHence,
we have to change the representatioo{Fig. 4).

round, in which, simultaneouslg|l the global variables are
updated, accordingly.

M (reqs,reqa, acksag, ackyy : Bool ; X, Z[0..N — 2], W : T))
2 begin var h[0.N — 1] : T e reqs,reqar, acksar, ackys = false;
X, Z[0..N —2],h[0..N — 1], W := zq, 20, ho, wo;
do reqs A —(reqar V acky) — W= Z:;l h[k] x Z[k — 1] + h[0] x X;
reqy = true
| reans A ackny — reqar := false; acksay := true
| —reqs A acksy — acksar = false
od end

Ba(reqr, ackp,reqa, ackys = Bool ; X, Z[0.N — 2] : T")

From the controller’s point of view, we can imagine the
following scenario. It selects for execution an enabled ac-
tion from one component AS. If the action updates global
variables, the system is marked as “executed” and no other
action can be selected from that system. However, the other
participants, and the external observers, do not see the
changes yet. Another action is then selected, from an “un-
executed” AS. The process continues until all the compo-

2 begin reqs, acks,reqp, ackp : false; X =z 3 Z[0..N — 2] := zp;
do reqr A reqy A —ackp A —acky — Z[0], .., Z[N — 2] := X,.., Z|[N — 3];
ackp, acky; = true
| —reqr A —requ A ackp A ackyr — ackp, ackyy := false
od end

Figure 4. The systems M and B,.

nents are marked “executed”, signaling the end of a cycle.
Definition 1 Consider the action systesh

A(z: Tz) ébegin varz: TpeInit; dogr, — L] gs — Sodend (2)

We say thatd is aproper action system if:

Discussion.In order to reduce the implicit nondeterminis- 1. gwA C wS—meaning that is a global action ofA.

tic behavior of the interleaving model of execution, one may 2. wL < lw.A—meaning that. is a local action ot4

introduce control channels, for ensuring that data emitted 3. wp(dogr, — Lod,—gr A gs) = true — meaning that the exe-
by one source is not missed by any of the intended tar- cution of L, taken separately, terminates, leavifgenabled.

gets, or that data is processed in a correct manner. Still,Definition 2 Let us considen proper action systems: (=
an observer of the composed syst®m 2 By F1||M; s

(the listener, in the example) has access to both output SexAy(z;) 2 begin var x  Inity ; dogh — Ly | g& — Sy od end,
quencesY (n) andW (n). Depending on the execution or-
der of 71 and M, until the listener observes the new out-
put(Y(n+ 1), W(n+ 1)), it will also observe the interme-
diate state, eithe} (n), W(n + 1)) or (Y (n+ 1), W(n)),
which is also an incorrect aspect of the design. A solution
is provided, again, by the introduction of new communica- 7(z) ,

tion channels, betweef, andM, on one side, and the ob-  ~ e vor o (i) focl i shate Init =
server, on the other. What happens if multiple, different ob

servers become necessary in the design?

for which we also have thatj, k € [1..n],j # k.((gwA; N

= 0) A (N xr = 0)). Theirsynchronized paral-
lel compositionis a new action systef® = A1t ... 1A,
given by:

[ run = 0 A =sel[n] — sel[n] := true ; run :=n
[run=1Ag}t — Li] run =1 A ~gt A gk — wSic:=wS1 ;5] ;run =0

Any extension / reduction of the design elements re-
quires an internal change of the involved subsystems. This
destroys the idea of a modular design flow and the reuse
of components. We may assign meanings like “data valid”,
“operation finished”, etc., to the signals of the communica-
tion channels, thus the interleaved approaches are saiitabl

[ run =1A—=gga, — wSic:=wS; ;run:=0
I

[ run =nA g} — Lp| run =n A =g} A gé — wSpe = wSy ; S, s run =0
[ run = n A =gga, — wSpe:=wS, ;run :=0)
| sel Arun =0 — Update ; sel := false

od end

The operator #' (‘sharp’) is called the synchronized

for asynchronous designs. Unfortunately, these signals ar parallel operator. The set of global variables ofP is, ini-
global variables of the system. In hardware, this translate tially, the union of the global variable sets of all indivialu

into “more wires”; in software, this violates the princifgé

systems; = | J, 2, without duplicates. It may be possible



that communication between several submodulé3 (the 5. Design Process

composing systemd,,) should not be disclosed at the in-

terface ofP. Therefore, the variables modeling such chan-  Crucial to a module-based design context is the possi-
nels will behidden within the systen®. They will not ap-  bility to separately analyze and, if necessary, improve the
pearinz. functionality of the subsystems, optimize them for a given

Further, the local variables: of the new action sys- technology, or map them to existent library elements. These
tem P are the union of the local variables;, to which actions may involve certain transformations of the initial

we add the hidden variables. We also add copie§;() representations, which have to be guaranteed correct, with
of the original write variables of each action bod};. respect to behavior. Within the refinement calculus, which
They replace the original variabless,,, therefore we have is our reasoning environment, such correct transformation
Si = SplwSkc/wSy]. Finally, the listz is completed by ~ are ensured by refinement rules [1, 4].

adding the arraysel and the execution indicatorun. We ~ Invariants. A predicate/(vA) — I in short — is aninvari-
have thatygp=\/7 (g% v g%). ant of the actionA=g — §, if it holds prior to and after

the execution ofd. We then say thaf is preservedy A,
that is,g A I = wp(S, I). At the system level, a predicate
I(vA) is aninvariantof the AS.A, given by (1), if it is es-
tablished bylnit, that is,true = wp(Init, I), and also if
it is preserved by each actiofy.

Thelnit statement is a sequential composition of the in-
dividual Init;, statements to which we add the initialization
of variableswSyc, sel andrun, and the actiorUpdate is a
sequence of simple assignments:

Init 2 Inity ;..; Initn ; wSic, .., wSne = WS, . . ., WShn; Definition 3 A predicate] is a proper invariant of a
run = 0; sel := false proper ASA, if: vz ¢ wS - g5 = (I[w'S/wS, 2] = I[w'S/wS)).
Update = wSy = wS1c;..; wSn i= wSnc; sel := false The above definition says that, following the execution

o of the global actioys — S, the computed value of a proper
The definition of the {' operator says that, whenever yariant’ depends on the variablesins, only.
there is a change in the input, such a composition of AS re-gefinement of actions and ASAn actionA is (algorithmi-
acts based on the state of all its subcomponents, and the regyly) refinedby the actiorC, written A < C, if, whenever
sultis a collection of individual reactions. The system eom 4 astaplishes a certain postcondition “so dods]. More-
position reacts only if at least one subcomponentis enabled,, o, letR(a, c, z) (simply written asR) be a booleamb-
k} k _ . . L . ) X ) N 4 A
Gk € [1.n] e gf Vgg = true). The variablerun iden- gactionrelation, which links the abstract local variables
tifies the system that is selected for execution. The vari- 5 the concrete local variables Additionally, let I be an
able sel stores the information on which are the execut- jnyvariant of the actiorC. Then. actiond is data refinecby
ing, or already executed systems. Whenever all its elements, +tjon ¢ using the relation? and the invariant, that is,
(sel = sel[l] A .. A sel[n]) becomerue andrun = 0, we A<p; C,if
have reached the end of an execution cycle. o
VQ e RAI Awp(A,Q) = wp(C,3a e RAIANQ),
Theorem 1 Assume that the proper action systesisand ~ Where(Q is a predicate on the variablesz, and(3a.R A
A, are of the form given by (2). Then, the synchronized par- L A Q) is @ p_redlcate om,c,z.
allel compositiond; # A, satisfies the following properties: Lemma 1 Given the proper action systems

A .
A(z4) =  beginvar a e a,z4 :=ao,240;

(a) Aif.Agis aproper action system (propernesstpf A A
(0) A1 A= A2 fA (commutativity off) do g, — Lalgg — Saod end
) o o ] C(zc) A begin var ¢ e c¢,z¢ 1= co,2¢0 ;
Design Implications. We revisit briefly the example pro- do ¢¢ — L'4] ¢§ — S4lgx — X od end,

posed in Section 3. Consider that instead of the parallel
compositions || F, we write the description of our sys-
tem asB f F. It is easy to check that the componefBtsF e

are proper AS. Therefore, we do not have to add communi- ' "t@/ization: f(ao, co, Z40, zco) /\CI(CO’ 2co) = true

cation channels to any of the respective subsystems, whichz'cMaun ?Ct'ons'(gL = Lasrigp = LA gs = Sa Sri
remain as described in Fig. 2. Also, then, the multiplicity o 75 H_SA) ) ]
targets stops being an issue for the composition. We can in-> AuXiiary action:skip <r.r gx — X

troduce as mang-like systems as required, without modi- Com'nuat'or_] condition A I'A (97 V 95 ) 9L V95 Vax
fying B in order to accommodate their presence. Addition- BbPrOpeCmeSSR A= wp(dogx — X1gp — Ly od, ~(9x v
ally, an external observer will always observe only theestat 9L) N 9s)

(Y(n+1),W(n+ 1)), regardless of the order in which the The first four requirements of the lemma are adaptations
systemsF and the correspondiniyt (M withoutthe com-  of the original ones, given in [6]. The fifth strengthens the

munication variables) are selected for execution. original request by specifying that the new group of local

let R be an abstraction relation anéla proper invariant of
C. The systerg refines the systetd, A Cr ; C, if:



actions,gx — X[ ¢¢ — L/, must terminate and estab-
lish the necessary conditions for the (possibly) new global
actiong§ — S, to execute.

Refinement Example.Let us consider a hardware imple-
mentation for the filter introduced in section 3. A direct
mapping of the filter functionality on hardware elements is
represented in Fig. 5 a). Characteristic to this implementa
tion of systemF is the parallel processing and the large area
occupied by the hardware elements. A functionally equiva-
lent implementation (Fig. 5 b)) results from a serial repre-
sentation of the filtering device, requiring a reduced silic
area. We transform the original systefinto Fs (Fig. 6).
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Figure 5. Implementation of the filter.

In isolation, one may prove that the systefy is a re-
finement of 7, under the invarianf (R is the identity rela-

tion): step1

FEr Fs, I=step € [2..N] = temp = Z hlk] x Z|k — 1]
k=1
From a system level point of view, we should check that
B || FCr B | Fs. Unfortunately, as3 does notespect/,
the refinement is not possible (see [7] for details). This fac

has a simple explanation; since the controller may choose

an enabled action from eith@ror Fg, let us suppose that it
chooses only actions frotfig, until step = N, after which
it selects3 for execution. Hence, following the updatef
the invariant/ is no longer valid B interfereswith 7).

Fs(X,Z[0.N —2],Y :T)
begin var h[0..N — 1], temp : T ; step : 0.N
X, Z,h,Y := g, 20, ho, yo ; temp := 0 ; step := 0;
do step = 0 — temp := 0; step := step+ 1
[ step € [1..N — 1] — temp := temp + h[step] x Z[step — 1] ; step := step + 1
| step=N =Y :=temp+ X x h[0] ; step := 0
od end

Figure 6. The new system Fg.

Theorem 2 Consider the syste £ A;#...#A,, where
each of the component systems preserves the proper in

variants I, . . ., I,, respectively. We then have that £
LN NI A N ey (seLE] A (run = k) = 1), I,
I [wSkc/wSy] is a proper invariant ofP.

A

The theorem states that in a synchronized environment, the ;A

global properties of the system are obtained from the indi-
vidual properties of the components,&s> I) A .. A I,,.

The additional terms of help us make the connection be-
tween the copies of the write variables and the respective
original variables, at the moment when the actlifpdateis
executed.
Corollary 1 Consider the proper action systends as in
Definition 2, and an abstraction relatioR;. The systems
Ay preserve the proper invariants, respectively. Then
Ap C A, ,

A A A, G AT BALE A €]

The interpretation of Corollary 1 is that each compo-
nent of a synchronized parallel composition may be refined
in isolation, without knowledge about the invariants of the
other components. Moreover, individual properties (as ex-
pressed by each,) are preserved through refinement. The
module designer is responsible with improving the perfor-
mance of the modules, and this is transparent for the inte-
grator designer.

A conclusion similar to ours is reached in [7] for the par-
allel composition of AS. However, this is achieved provided
that the invariants of all the subsystems are known, and a
noninterference relation between them proves to hold.
Refinement Example.If we check 7 C; Fs in the con-
text of Lemma 1, (we consider a synchronized perspec-
tive on the system composition), we will immediately ob-
tainthatS § B¢ F C; S # B f Fs (notice thatFg is
a proper AS). Besides this, a previous addition of module
M would not change the refinement, and we could have
SEBIFHIMC StBYEFs g M.

6. Continuous Action Systems

A continuous action syste(@AS) [3] is of the form
C(z)

begin var z : Real — T e Init;
dogi — Si] -..] gm — Sm od end

Here,Real stands for the non-negative reals, and models
the time domain.

The execution of a CAS uses an implicit variahlew,
showing the present time. The actions may refer the value
of now, but they can not change it. After the initializa-
tion, the system will start evolving, with time (measured by
now) moving forward continuously. The execution resem-
bles closely that of an ordinary AS, with the difference that
after the changes stipulated 5y have been done, the sys-
tem evolves to the next time instance when one of the ac-
tions is enabled. We write : — e rather thanc := e, to em-
phasize that only the future behavior of the variabiteis
changed. We explain the meaningbby translating it into
an ordinary (discrete) AS:

C(z)

begin varz : RealL — T e now := 0; Init; N;
do g1.now — S1; N| ...[] gm.now — Sm; N odend

now := next.ggc.now,

min{t' >t | ggc.t'}, f 3¢ >te ggo.t/,

A
next.ggc.t = { ¢, otherwise



In C, the variablenow is declared, initialized and up- model) that records the number of times when= 6,,.
dated explicitly. It models the starting time and the sudeee  Whencounter = 9, the system sets the boolean function
ing moments when some action is enabled. The value of abeep to true, and then it stops. Even if the system is sim-
variablev or of an expression at a given moment of time  ple enough to be designed as a monolith, we would rather
t is identified byv.t or e.t, respectively. Their values at design it modularly, to create the premises for furthermxte
the current moment are consequently givernvbyow and sions, which may require the addition of other modules. We
e.now. The value ofnow is updated by the statement. use the subsystendt (the heating-cooling system) asd
The functiomext gives a moment of time when at least one (the counter) (Fig. 8).
action is enabled. If no action will ever be enabled, then the
second branch of the definition will be followed, andw A e i - Resls  Boat
will denote the moment of time when the last discrete ac-  ,u, - Real,  Nat ;Zoilséeg;n].'n:ﬁi-,ffié;w;
tion was executed, the system terminating with the last as- %

ggp.now — (run.now = 0 A =sel[l].now — sel[1] :— (At - true) ; run :— (At - 1)

signed values for the variables. |

The parallel composition of several CAS is defined using " W! ;ZZ'TTA:(]? An ;jﬂnkvlmw — sel[n] :— (At - true) ;run :— (At - n)
) & now =1 A g}.now
the same method as for composing ordinary AS. One needs | run.now = 1 A g} now A gh.now — wSic:= wSy ; S ;run:— (A - 0)
. . . ‘un.now = 1A = — wSic:— wSy ;run i — (At -
to combine the component CAS before translating them into | | Jrumnow =11 2gga, = wShe:=wS irun:= (M -0)
the corresponding discrete AS, to ensure that the composed I rwi-"v’w =nAgpnow — L"A s o . 0.0
. . run.now = n A ~g}.now gi',.nmu — wSyc:—wSy, ; fL srunci— (M-
system uses a unique variablew. [ runmow = n A —gga, — wShei— wSy s run:— (M - 0))
Synchronized Parallel CAS. The synchronized parallel [ selnow A run.now =0 = Update; ,
. 3 i sel :— (Mt - false) ; now := min{t' > now| gg.t'}
composition of CAS resembles the corresponding discrete  od end
case introduced in section 4. The semantics of a proper CAS Figure 7. The system P.
A(z) is given by the discrete translation:
A(z) 2 begin var now : Realy, z : Real; — T e now := 0; Init; N 81(0 : Realy — Realy ; beep : Realy — { false,true})
do gr.now — LI] gs-now — §; N od end FAY begin beep :— (At - false) ; 6 :— (At - vp, * (t — now));
. . . do —beep.now A G.now = Oy — 0 :— (Mt - Oy — v * (t — now))
FUrther, considen proper CAS as belngf(: 1... n) [ =beep.now A 8.now = 0, — 0 :— (At - O, + vp, * (t — now))
od end
A (zx) a begin var =y : Realy — T e Inity;
do g’Z — L | glg, — SE od end 82(0 : Realy — Realy ; beep : Realy — { false, true})
. . . . 2 begin var counter : Real; — Nat e
Their synchronized parallel compositionis a new counter -— (At~ 0) 3 beep:— (M- false); 0:— (M - vy  (f — now));
CAS,P = A; # ... #A,. Its semantics is given following do —beep.now A counter.now < 9 A 0.now = "E:\f - :
. .. . . . . counter :— (At - counter.now + 1
the lines of Def|n|t|qn 2, as illustrated in Fig. 7. The vari- [ ~beep.now A counternow — 9 A0 — Oy — beepi— (M - true)
ables ofP are functions fronReal, to some typel’, and od end
the variablessel[1..n] and run are also written as func- Figure 8. The systems S; and S..

tions from time to type8ool andNat, respectively. The ac-
tion guards of the component systems are evaluated at timénterleaved model. The parallel composition of the CAS
point now. The time is not advanced before all CAS com- S; andS; gives a new CASS = S,|Sz, with an implicit,
ponents have updated their global variables, indicated byunique variablerow. Following the interleaved execution

sel A run = 0 = true. Also observe that, if no compo- model, at some moment, both first actionsSpfandsS; will

nent system is supposed to react to a specific input sityationbe simultaneously enabled (whénr= 6,,). However, only

the composition is disabledi{p = false). The theoreti-  one of them is selected by the controller. If the chosen ac-
cal results obtained for discrete synchronized AS apply totion is the one ofS;, the action with the same guarddf
synchronized CAS, also, due to the discrete AS representabecomes disabled, since the temperature is decreased. Thus
tion of the latter. the counter misses to record the respective evehtoet),,,
Example - Hybrid system analysis.Let us consider an  therefore presenting a wrong output.

abstract model of a simple heating-cooling hybrid control Synchronized modelWe now composé; andS; by using
system, which keeps the temperature inside a place whereur newly defined operatoff”(the components are proper
some thermic processes happen, between a minimum an€AS). As a result, we get the CAS,.., = S1 £ S2. Then,

a maximum value. The system is equipped with a con- we translates,,.,, into an ordinary ASS,..., (Fig. 9), with
troller that either increases the temperature (modele@) by explicit time, by applying the definition given in Fig. 7.

until it reaches the maximum allowed valug,(), or de- Ifwe repeatth_e scenario described above, whend,,,
crease$, until it reaches a minimum valué,(,). These pro-  the semantics of,,.,, does not let time progress unless all
cesses develop at speegs for heating, and, for cool- the global variables are updated. Therefore, both enabled

ing. There also exists a counter (variablemnter in the actions are executed at the same moment of time, and, in



Spew(f : Real — Realy)
begin var 6. : Real; — Real; ; beep, beep,, sel[1..2] : Real; — Bool;
counter,run : Realy — Nat; now : Real; e
now : =0 ; counter,run :— (At - 0) ; beep, beepe, sel :— (Mt - false);
0,0, :— (At - vy * (t — now)) ; now : =min{t’ > now | gg.t'};
do ggs — (msel[l].now A run.now = 0 — sel[1] :— (Xt - true) ; run :— (At - 1)
[ =sel2].now A run.now = 0 — sel[2] :— (At - true) ; run :— (Nt - 2)
[ run.now = 1 — (=beep.now A 0.now = Opr — 0. :— (At - Opr — ve * (£ — now))
[ (=beep.now A O.now = 0y, — . :— (At - O, + v * (t — now))
| ~99s, = 0c:=0)srun:— (X -0))
|| run.now = 2 — (—beep.now A counter.now < 9 A f.now = 0 —

1>

counter :— (At - counter.now + 1)
[ (mbeep.now A counter.now = 9 A0 = 0y — beepe :— (Mt - true)
| —9g9s, — beep. : — beep) ; run :— (At - 0)))

[ sel.now A run.now = 0 — 60 :— 0. ; beep : — beep;
sel :— (At - false) ; now : =min{t’ > now | gg.t'}
od end
99s = —beep.now, ggs, = —beep.now A (0.now = O V 6.now = 0,,)
99s, = ~beep.now A counter < 9N O =0y

Figure 9. The system  S,.c.,.

consequence, the counter records all times whezaches
0, correctly. Additionally, in case we need to add simi-
lar modules to the composed system, the synchronized par
allel composition lets us reuse the already existing compo-
nents, at the same time ensuring correct outputs to all in-
puts.

7. Conclusions and Related Work

The motivation behind the product operator of Milner’s

SCCS [13]is the same as ours: the system response to stim-

uli is the composition of the individual reactions of the in-
cluded subsystems. However, while we synchronize on the
updates of a group of variables, the SCCS approachis base
on simultaneous execution of actions, which we only get in
the last execution round of a synchronized composition.

In [7], Back and von Wright established conditions that
enable the designer to perform individual refinements of the
components in a parallel composition of AS, by checking
noninterference conditions. Still, this does not allow admo
ule designer to independently modify his work, as he needs
information about the behavior of the other components.

Bellegarde et al. introduced a similar idea of synchro-
nized parallel composition for event-B systems [8]. In op-
position to our model, which increases teeternaldeter-
minacy, while preserving thimternal nondeterminism, the

event-B solution preserves also the external nondetermin-

ism. A gluing invariantis also necessary when synchro-

nized modules are refined, as the synchronization is per-

formed only with regard to selected events, collected in
a synchronization specification. Therefore, the supplfer o
modules should also deliver to the system integrator, be-

sides the modules themselves, the synchronization specifi-

cation. Thus, the approach is similar to the one adopted in
[7], except for the synchronization idea.

Parallel composition of hybrid system models has also
been studied extensively. In the temporal logic of actidns o

Lamport [12], synchronization is specified as a way of ap-
plying non-interleavingto system design. This is reached

by employingjoint actions a concept non-existent in our
framework. The conclusion, however, supports our point of
view: interleaving “blurs” the distinction among the com-
ponents. Bornot and Sifakis [9] analyze compositions of
timed systems expressed as communicating processes. The
authors strive fomaximal progressensured in our case by

the synchronized semantics.

By providing the new virtual execution environment, we
have tackled two important problems of reactive system de-
sign: behavior control and modularity. The essential tesul
of the study is mentioned by Corollary 1. Based on this,
we can say that the system level integrator and the mod-
ule designers gain an increased independency with respect
to each other during the design process. We believe that our
achievement of using maximal synchronization to increase
the modular design capabilities of the AS framework is a
contribution that could be easily adapted to other similar
formal environments.
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