

IT Licentiate thesis
2000-007
MRTC Report 00/24

UPPSALA UNIVERSITY
 Department of Information Technology

Applying Configuration Management
Techniques to Component-Based
Systems

MAGNUS LARSSON

Applying Configuration Management Techniques to
Component-Based Systems

BY
MAGNUS LARSSON

December 2000

DEPARTMENT OF COMPUTER SYSTEMS
INFORMATION TECHNOLOGY

UPPSALA UNIVERSITY
UPPSALA
SWEDEN

Dissertation for the degree of Licentiate of Philosophy in Computer Systems
at Uppsala University 2000

Applying Configuration Management Techniques to Component-Based Systems

Magnus Larsson
Magnus.Larsson@mdh.se

Department of Computer Engineering

Mälardalen University
Box 883

SE-721 23 Västerås
Sweden

http://www.idt.mdh.se/

 Magnus Larsson 2000
ISSN 1404-5117

Printed by University Printers, Uppsala University, Sweden

To
Christina

Emmy, Ida and Jacob

This is a dissertation submitted for the degree of Licentiate of Philosophy in Computer Systems at
Uppsala University, December 2000.

Applying Configuration Management Techniques to Component-Based Systems I

ABSTRACT

Building software from components, rather than writing the code from scratch has several
advantages, including reduced time to market and more efficient resource usage. However,
component based development without consideration of all the risks and limitations
involved may give unpredictable results, such as the failure of a system when a component
is used in an environment for which it was not originally designed.

One of the basic problems when developing component-based systems is that it is difficult
to keep track of components and their interrelationships. This is particularly problematic
when upgrading components. One way to maintain control over upgrades is to use
component identification and dependency analysis. These are well known techniques for
managing system configurations during development, but are rarely applied in managing
run-time dependencies. The main contribution of this thesis is to show how Configuration
Management (CM) principles and methods can be applied to component-based systems.

This thesis presents a method for analysing dependencies between components. The
method predicts the influence of a component update by identifying the components in a
system and constructing a graph describing their dependencies. Knowledge of the possible
influences of an update is important, since it can be used to limit the scope of testing and
be a basis for evaluating the potential damage of the update. The dependency graphs can
also be used to facilitate maintenance by identifying differences between configurations,
e.g., making it possible to recognise any deviations from a functioning reference
configuration.

For evaluation of the method, a prototype tool which explores dependencies and stores
them under version control has been developed. The prototype has been used for partial
analysis of the Windows 2000 platform. Preliminary experiments indicate that most
components have only a few dependencies. The method has thus given an indication that
the analysis of the effects of component updates may not be as difficult as might be
expected.

© Magnus Larsson

Distributed by Department of Computer Engineering, Mälardalen University, Box 883,
S-721 23 Västerås, Sweden, and Department of Computer Systems, Information
Technology, Uppsala University, Box 325, S-751 05 Uppsala, Sweden

II Applying Configuration Management Techniques to Component-Based Systems

Applying Configuration Management Techniques to Component-Based Systems III

ACKNOWLEDGEMENTS

The research presented in this thesis was carried out within the STINA (Standard
Technologies in Industrial Applications) project, which is a cooperation project between
Mälardalen University and ABB Corporation.

I sincerely thank my supervisor Prof. Hans Hansson for great support and feedback in
response to my ideas.

This work could not have been done without the valuable and important encouragement I
have received from my tutor and friend Dr. Ivica Crnkovic. I really appreciate Ivica’s efforts in
motivating me to prepare this thesis.

This work has been financed by ABB Automation Products through Erik Danielsson. I wish
to thank specially Erik Danielsson for giving me this opportunity.

Also thanks to Frank Lüders, Rolf Sundberg and Christina Larsson for criticizing and
reviewing this thesis in a constructive way. Without their valuable input this work may not
have been completed.

I especially thank Victor Miller for helping me with the English language.

Special credit is due to Peter Ekman for assisting me with the layout of the document.

Thanks to Erik Gyllenswärd for being a good example and for his encouragement during
many years as a colleague at ABB.

Magnus Larsson

Västerås November 2000

IV Applying Configuration Management Techniques to Component-Based Systems

Applying Configuration Management Techniques to Component-Based Systems V

LIST OF PUBLISHED ARTICLES

The following articles have been published at international conferences and workshops.

These four articles are included in this thesis:

• Development Experiences of a Component-based System
 In proceedings 7th Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems Edinburgh, Scotland, April 2000. IEEE Computer Society
Authors: Magnus Larsson, Ivica Crnkovic

• Component Configuration Management for Frameworks
In proceeding, Asia-Pacific Software Engineering Conference, Workshop on Software Architecture
and Components Takamatsu, Japan, December 1999.
Authors: Ivica Crnkovic, Magnus Larsson, and Kung-Kiu Lau

• Component Configuration Management
In proceedings ECOOP Conference, Workshop on Component Oriented Programming Nice,
France, June 2000.
Authors: Magnus Larsson, Ivica Crnkovic

• New Challenges for Configuration Management
In proceeding, System Configuration Management, SCM-9, proceedings Toulouse, France,
September 1999. Lecture Notes in Computer Science 1675, Springer Verlag.
Authors: Magnus Larsson, Ivica Crnkovic

Other articles published by Magnus Larsson:

• Software Process Measurements using Software Configuration Management
In proceedings The 11th European Software Control and Metrics Conference Munich, Germany,
May 2000.
Authors: Ivica Crnkovic, Magnus Larsson, and Frank Lüders

• The Different Aspects of Component Based Software Engineering
In proceedings MIPRO (Microprocessor systems, Process control and Information Systems)
Conference Opatija, Croatia, May 2000.
Authors: Ivica Crnkovic, Magnus Larsson, and Frank Lüders

• Object-Oriented Design Frameworks: Formal Specification and Some
Implementation Issues
In proceedings 4th IEEE international Baltic workshop on Databases and Information Systems,
Vilnius, Lithuania, January 2000.
Authors: Ivica Crnkovic, Juliana K. Küster Filipe, Magnus Larsson, and Kung-Kiu Lau

VI Applying Configuration Management Techniques to Component-Based Systems

• A Case Study: Demands on Component-based Development
In Proceedings, 22nd International Conference of Software Engineering Limerick, Ireland,
January 2000. ACM, IEEE, SigSoft
Authors: Ivica Crnkovic, Magnus Larsson

• State of the Practice: Component-based Software Engineering Course
In Proceedings, Workshop ICSE 2000 conference, 3rd International Workshop on CBSE,
January 2000.
Authors: Ivica Crnkovic, Magnus Larsson, and Frank Lüders

• Processing Requirements by Software Configuration Management
In Euromicro 99, proceedings of the 25th EUROMICRO conference Milan, Italy, September
1999. IEEE, Computer society
Authors: Ivica Crnkovic, Peter Funk, and Magnus Larsson

• Managing Standard Components in Large Software Systems
In Proceedings on 2nd workshop on Component Based Software Engineering Los Angeles, USA,
May 1999.
Authors: Ivica Crnkovic, Magnus Larsson

Applying Configuration Management Techniques to Component-Based Systems VII

CONTENTS

THESIS 11

1 Introduction 11
1.1 Method
1.2 Related work
1.3 Contribution
2 Component-Based Software Engineering 16
2.1 Component Definitions
2.2 Component Models
2.3 Patterns
2.4 Interfaces
2.5 Commercial Off-The-Shelf Components
2.6 Component-based Development
2.7 Development Cycle
3 Configuration Management 32
3.1 Version Management
3.2 Change Management
3.3 Build Management
3.4 Release Management
3.5 Workspace Management
3.6 Related Work
4 Dynamic Configurations 36
5 Component Configuration Management 38
5.1 Component Identification
5.2 Configuration Model
5.3 Change Management
5.4 Managing Dependencies
5.5 Dependencies Between Components
5.6 Differences between Configurations
5.7 Managing Multiple Versions of a Component
5.8 Dependency Browser
6 Future Work 51
6.1 A Proposed CM Process with Components
7 Conclusion 52
8 References 53

VIII Applying Configuration Management Techniques to Component-Based Systems

DEVELOPMENT EXPERIENCES FROM A COMPONENT-BASED SYSTEM 57

1 Introduction 57
2 ABB Advant Open Control System 58
2.1 Designing for Reuse
2.2 Designing with Reuse
2.3 Experiences
3 Reusable Components 61
3.1 Components
3.2 Object Management Facility (OMF)
3.3 C++_complib
4 Different Reuse Aspects 63
4.1 Component generality and efficiency
4.2 Evolution of Functional Requirements
4.3 Migration Between Different Platforms
4.4 Compatibility
4.5 Development Environment
5 A New Paradigm -Standard Components 69
5.1 Replacing Internal Component With Standard Components
5.2 Replacing OMF with DCOM
5.3 Replacing C++_complib with STL
6 Conclusion 71
7 References 72

NEW CHALLENGES FOR CONFIGURATION MANAGEMENT 73

1 Introduction 73
2 Using CM in Component-based Product Life Cycles 74
3 Component Compatibility 76
4 Managing Components 77
4.1 Libraries
4.2 Interfaces
5 Proposed CM for Libraries and Components 80
5.1 CM for libraries
5.2 CM for components
6 Conclusion 84
7 References 85

Applying Configuration Management Techniques to Component-Based Systems IX

COMPONENT CONFIGURATION MANAGEMENT 87

1 Introduction 87
2 Component Management and SCM 89
3 Managing Component Dependencies 91
4 Dependency Browser 93
5 Conclusion 94
6 References 95

COMPONENT CONFIGURATION MANAGEMENT FOR FRAMEWORKS 97

1 Introduction 97
2 Frameworks: An Example 98
3 A COM Implementation of Frameworks 99
4 Configuration Management Issues 100
4.1 Sharing objects in several frameworks
4.2 Composing frameworks from objects and frameworks
5 Discussion 103
6 References 104

INDEX 105

X Applying Configuration Management Techniques to Component-Based Systems

Applying Configuration Management Techniques to Component-Based Systems 11

THESIS

1 Introduction
Software systems are becoming increasingly complex and providing more
functionality. To be able to produce such systems cost-effectively, suppliers often use
component-based technologies instead of developing all the parts of the system from
scratch. The motivation behind the use of components was initially to reduce the cost
of development, but it later became more important to reduce the time to market, to
meet rapidly emerging consumer demands. At present, the use of components is more
often motivated by possible reductions in development costs. By using components it
is possible to produce more functionality with the same investment of time and money
[14]. When components are introduced in a system, new issues must be dealt with e.g.
dynamic configurations, variant explosion and scalability. Some of these issues are
addressed with the discipline Component-Based Software Engineering (CBSE). CBSE
provides methods, models and guidelines for the developers of component-based
systems. Component-based development (CBD) denotes the development of systems
making considerable use of components.

Although very promising, CBSE is a new discipline and there are many associated
problems which remain unsolved. Many solutions can be arrived at, by using principles
and methods from other engineering disciplines, such as configuration management.
This thesis describes some of these disciplines, presents proposals and analyses
possibilities of applying different methods in CBSE.

The main topic of this thesis, component management, is discussed in three stages:
configuration management, component-based software engineering and the
application of configuration management to component based systems. This thesis
also discusses experiences from software development collected in several of the
included articles.

An overview of CBSE and its different aspects is presented in section 2. This section
summarise the state of the art including certain parts from our work.

The management of components in a product is an important subject. Configuration
management (CM) is used to manage the development of complex systems. CM covers
version, change, build, release and workplace management. An overview of
configuration management is given in section 3.

Systems which support on-line updating of components are difficult to manage due to
the dynamic nature of the components as described in section 4. This section briefly
summarises the problems which occur in dynamic configurations. More detailed

Thesis

12 Applying Configuration Management Techniques to Component-Based Systems

descriptions can be found in the articles included, and particularly in “New challenges
for Configuration Management”.

When updating a system during run-time, it is very difficult to predict which parts of the
system that will be affected. A system crash due to a component update is in general
unacceptable. Section 5 shows how to manage components, by applying ideas from the
configuration management area.

In section 6 future work is outlined and in section 7 some conclusions are drawn.

Four articles are included as complement to this thesis. The first, “Development
Experiences from a Component-Based System” discusses the different levels of
component reuse and certain experiences gained from analysing the lifecycle of a system
for process control. The second article, “New Challenges for Configuration
Management” analyses management of components and highlights problems related to
configurations of components. The third article, “Component Configuration
Management” presents and discusses a proposal for the treatment of dependencies
between components. Finally “Component Configuration Management for
Frameworks” explains the framework concept using a COM implementation as an
example of how frameworks can be realized.

1.1 Method
The research has been conducted with a survey of different technologies and methods
used in component-based software engineering. The articles presented in this thesis are
based on practical experience from both successful and less successful projects.

From the survey of component technologies, the lack of management of components in
both industrial and academic systems can be seen. This thesis combines the theory of
and experience from the configuration management area with the management of
components.

A prototype has been developed to manage the interaction between components on the
Windows™ platform. This prototype has proven useful for developers at ABB, since it
allows them to keep track of the system behaviour by tracing component dependencies.

1.2 Related work
There is much ongoing research in the areas of configuration management,
components, distributed systems and dynamic reconfiguration. The work which has
most influenced this thesis will be outlined here. Additional related work is presented in
each section and in the enclosed papers where appropriate.

The component management prototype presented in this thesis is inspired by a model
for predictable system updates presented by Cook and Dage [20]. The system chooses

1. Introduction

Applying Configuration Management Techniques to Component-Based Systems 13

the appropriate component to run in relation to the input domain. Cook and Dage’s
model does not consider dependencies between components. Another disadvantage of
their model is that the arbitrator, the instance which decides which component will run
in relation to the input, must be integrated in the execution environment. Cook and
Dage’s model relates to this thesis by means of the usage of multiple versions of
components concurrently.

This thesis presents methods to analyse the dependencies between components.
Traditional graph theory, as presented in [31,53], is used to organise the dependencies
between components. The dependency graphs can be represented with matrices or
adjacency lists. For calculating all direct and indirect dependencies in a system, different
algorithms for transitive closure are used. Examples quoted are three algorithms from
Warshall, Nuutila, and Eve and Kurki-suonio [28,43,59].

Voas [57] discusses the possibility of certifying components to assure the quality of the
system. An important question to be answered before using a component in a system is:
Does the component have a positive impact on the system? To be able to answer this
question certain analyses of the system must be performed. It is important especially to
know the dependencies between components in the system. This thesis presents a
model for performing dependency analyses which can be utilised in implementing the
Voas certification strategy.

1.3 Contribution
The main contribution of this thesis is a method which can be used for managing
component dependencies when updating systems with new components. The problems
of dynamic configurations and the importance of solving them to provide controlled
updates of systems is presented. The prediction of the effects of updating the system is
crucial for all types of computer-based systems and especially for safety-critical systems.

The method for managing interactions between components in a controlled way with
software configuration management is discussed in all chapters, but principally in
sections 4, 5, 6 and in the included articles.

A prototype which explores dependencies and stores them under version control has
been developed to implement the configuration model. The prototype has been used to
analyse the Windows 2000 platform and its components.

Experience from real projects is needed to develop component-based systems. A
gathering of such experience from software development using components is
presented in a number of articles, which point out the existing problems with
component-based software engineering. Four of the published articles have been
selected to be included in this thesis. A short introduction to these articles is presented
below.

Thesis

14 Applying Configuration Management Techniques to Component-Based Systems

▪ Development Experiences from a Component-based System
Presents experiences and background to the problems encountered in developing
component-based systems. Published in Proceedings 7th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems Edinburgh,
Scotland, IEEE Computer Society, April 2000.

▪ New Challenges for Configuration Management
Presents the problems encountered in run-time configuration management and
certain proposals for managing components. Published in System Configuration
Management, SCM-9, proceedings Toulouse, France, Lecture notes in computer science
1675, Springer Verlag, September 1999.

▪ Component Configuration Management
Introduces the idea of configurations placed under configuration control. Published
in Proceedings, Asia-Pacific Software Engineering Conference, Workshop on Software Architecture
and Components Takamatsu, Japan, December 1999.

▪ Component Configuration Management for Frameworks
Shows how object oriented frameworks can be implemented with components using
COM. Published in ECOOP Conference, Workshop on Component Oriented Programming
Nice, France, Springer workshop reader, June 2000.

The different articles are presented below with a short summary of their respective
contribution and presentation of the specific contribution of each author.

1.3.1 Development Experiences from
a Component-based System

Building software systems with reusable components has many advantages. If the reuse
concept is utilized on several levels of a system development, the development becomes
more efficient, the reliability of the products is enhanced, and the maintenance
requirement is significantly reduced. In this paper the different levels of component
reuse, and certain aspects of component development are discussed. As an illustration
of reuse issues, a successful implementation of a component-based system used for
industrial process control is presented. The experience can be summarised in that it is
better to invest more effort in creating an open and extendable architecture than to
focus on the development of only current technologies.

Magnus Larsson contributes to this article with knowledge about the case study and the
background, an analysis of different reuse aspects and the replacement of proprietary
components with standard components. Ivica Crnkovic wrote the sections about
requirements and development environment.

1.3.2 New Challenges for Configuration Management
When moving from monolithic to open and flexible systems a new issue relating to
dynamic upgrades of components is introduced. It is important to have up-to-date

1. Introduction

Applying Configuration Management Techniques to Component-Based Systems 15

information about which components are installed in a system. To know this is a general
problem since it is difficult to obtain configuration information from each component.
Configuration management has been traditionally focused on the development phase; in
particular, on managing source code, but now, when changes are introduced in
component-based systems at run-time, new methods are needed. This paper identifies
these kinds of problems and proposes configuration management routines for libraries
and version interfaces for components.

Magnus Larsson contributes with background information about the problems of
run-time configuration management and the sections about managing components and
proposed CM for libraries and components. Ivica Crnkovic wrote the section about
component compatibility.

1.3.3 Component Configuration Management
The problem of component identification is discussed in this paper. The components
are usually binary units deployed in the system at run-time and the insight into their
characteristics is not as clear as into those of the software units which we manage at
development time. For external components, extensive tests can, to some extent,
compensate for the lack of information. When the information about the components is
gathered, it is possible to keep track of changes introduced in the system and their
impact on the system. The change management process is similar to that for
configuration management. This paper makes proposals for managing dependencies
during run-time using software configuration management principles. The proposal is to
identify component dependencies in a system and to have a tool able to browse these.

Magnus Larsson wrote the sections about component dependencies and the browser.
Ivica Crnkovic presented the introduction and the section about component
management and SCM was a joint production.

1.3.4 Component Configuration Management for Frameworks
Object-oriented design frameworks are increasingly recognized as better components
than objects. Frameworks can be expressed formally and later verified formally. An
object in a framework can have multiple roles which are mapped in component
interfaces. Objects can have multiple roles in different frameworks. This paper shows
how object-oriented design frameworks can be implemented in COM and presents a
discussion about how frameworks can be composed in a controlled way using
configuration management techniques.

Magnus Larsson provided the COM implementation of frameworks and wrote the
section on configuration management issues in collaboration with Ivica Crnkovic.
Kung-Kiu Lau presented the ideas of frameworks and how to formalise them.

Thesis

16 Applying Configuration Management Techniques to Component-Based Systems

2 Component-Based Software Engineering
Component-Based Software Engineering (CBSE) is the discipline of developing
components and developing products with components. Products are no longer
developed from scratch; they are instead an assembly of components developed
independently of the products. This means that components are developed without
complete knowledge of their execution environment. To assembly components,
proprietary code, which glues the components, is usually needed. This code is often
referred to as “glue code” [18] and in certain cases, the glue may take a longer time to
develop than the components concerned.

Object-oriented programming (OOP) had the same approach; objects were reusable
entities that could be assembled as programs. Component-based development can be
seen as an extension of object-orientation, but takes one step further. OOP binds the
implementation to a particular class library and language. Smalltalk is one example in
which the programmer is bound to the Smalltalk language and the classes provided in
the environment. Components, on the other hand, are generally not bound to a
particular language and they communicate through independent interfaces.

One common characteristic of object technologies and component technologies is that
there are as many definitions of objects as there are of components. These definitions
are elaborated upon in this section. Component-based systems are usually implemented
within a particular component model. Different component models such as COM, EJB
and CORBA will be described in section 2.2.

Patterns, as described in section 2.3, can be used to facilitate the understanding of the
architecture of a system built from components. Patterns can also be reused in
subsequent projects since the same architectural solutions often reappear.

This section ends with a description of component interfaces, followed by a discussion
of component-based development.

2.1 Component Definitions
“Components are for composition. Nomen est omen”. [54] This is a quotation with which
most people agree when discussing the nature of components. But to develop a precise
and well-understood definition of a component upon which everybody agrees, is not an
easy task. Many have tried, but the result is a flora of definitions which all differ slightly.
Wallnau [17] presents four main definitions, representative of those emerging in the
software industry.

1. A component is a non-trivial, nearly independent, and replaceable part of a system
which fulfils a clear function in the context of a well-defined architecture. A
component conforms to and provides the physical realization of a set of interfaces.

2. Component-Based Software Engineering

Applying Configuration Management Techniques to Component-Based Systems 17

2. A run-time software component is a dynamically bindable package of one or more
programs managed as a unit and accessed through documented interfaces which can
be detected during run-time.

3. A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by a third party.

4. A business component represents the software implementation of an "autonomous"
business concept or business process. It consists of all the software artefacts
necessary to express, implement and deploy the concept as a reusable element of a
larger business system.

Sametinger [50] defines a reusable component as a component which is a self-contained,
clearly identifiable artefact which describes and/or performs specific functions and has
clear interfaces, appropriate documentation and a defined reuse statement.

There are other ways of classifying components, for example, as internal and external
components. Internal components are developed within an enterprise for use by internal
projects. Usually these components encapsulate the core competence of the company.
External components, on the other hand, are developed by a third party and usually for
the general market. Examples of such components are generic user interface
components and communication protocols. Product line components are a component
category designed to fit into a flexible architecture which can be configured for different
products within the product line [14]. There are also different levels of components as
mentioned in [40], from small library components to large product components.[23]

These different definitions of components are presented to demonstrate that it is not
easy to arrive at a generally acceptable definition. However, before a component-based
system can be designed, a specific definition must be agreed upon to establish the
context for the developers.

Common to all these definitions is that a component shall provide interfaces, conceal
the implementation and be independently deployable.

Szyperski’s definition [54] of a component is used in this thesis. A software component
is a unit of composition with contractually specified interfaces and explicit context
dependencies only. A software component can be deployed independently and is subject
to composition by a third party.

Thesis

18 Applying Configuration Management Techniques to Component-Based Systems

2.2 Component Models
Component models are sometimes called component frameworks but because of the
risk of confusion with other definitions of frameworks, the term model is used in this
thesis. Models give significant support to the user by managing the infrastructure,
making it possible for the user to concentrate on meeting the requirements without
needing to develop the infrastructure. In a sense, the models themselves can be seen as
components since they are used to minimize the development effort. However, they do
not express external dependencies and are designated infrastructure components. Other
examples are databases or operating systems.

Three major component models are used successfully today: COM [4], JavaBeans [7]
and CORBA [6]. All have different levels of service for the application developer. Table.
1 shows the corresponding technologies for each level of service.

 COM Java CORBA

Basic components COM components JavaBeans CORBA objects

Distribution DCOM RMI CORBA IIOP

Enterprise services COM+ EJB/J2EE CORBAServices

Table. 1. The different technologies used at different levels of service

Distribution is by means of a communication protocol added to the basic component
model. COM uses Distributed COM (DCOM), Java has Remote Method Invocation
(RMI) and CORBA uses the Internet Inter-ORB Protocol (IIOP). Support for business
components is available in COM+, EJB and CORBAServices.

There are differences between systems with components tightly coupled together and
those with loose references between the components. Tightly coupled systems are tied
together at build-time or with strong references, e.g. a shared library. With loose
references, the components are connected to their fellow components as required and
not during the build phase. For such systems, it is much more of a challenge to
determine, when starting, the final appearance of the system. To be able to predict the
behaviour we need to know which components will cooperate. All three models
presented in this section are loosely coupled with support for dynamic invocation and
lookup.

The use of component models can be an appropriate way of beginning component
development. If components are developed independently, it is highly unlikely that they
will be able to cooperate usefully [30], because of a probable mismatch in the

2. Component-Based Software Engineering

Applying Configuration Management Techniques to Component-Based Systems 19

requirements. The primary goal of component technology, independent deployment and
assembly of components will not be achieved.

A component model supports components by requiring them to conform to certain
standards and permitting instances of these components to cooperate with other
components conforming to the model.

The key contribution of component models is the partial enforcement of architectural
principles. By forcing component instances to perform certain tasks, the component
model can enforce policies. E.g. a component model might enforce some ordering on
event multicasts and thus prevent entire classes of subtle errors caused by glitches or
races which might otherwise occur.

2.2.1 Component Object Model (COM)
The Component Object Model [4], from the Microsoft Corporation, provides a model
for designing components with multiple interfaces with dynamic binding to other
components. COM is also a run-time environment, unlike CORBA, which is only a
specification. COM is an open standard which has been implemented on many different
platforms, but it has mainly been used on Microsoft Windows for which it was first
developed. Components expose themselves through interfaces only. The interfaces are
binary which makes it possible to implement the component in a variety of
programming languages such as C++, Visual Basic and Java. A COM component can
implement and expose multiple interfaces. Figure 1 shows how a client uses COM to
locate the server components and then to request the required interfaces using the
QueryInterface method.

Figure 1. COM establishes the connection between client and server and the client
communicates directly with the server.

DCOM is the protocol used to make COM location transparent. The client talks to a
proxy, representing the server and manages the real communication with the server.

Client

Server
Application

Object

COM
Runtime

Thesis

20 Applying Configuration Management Techniques to Component-Based Systems

COM
Applications

COM+

IIS

Windows NT/2000

DBMS

DBMS

DBMS

ASP
Applications

Browser
Client

Rich
Client

HTTP

DCOM
ADO

ADO

Figure 2. The principle of the use of COM+ in a three-tier architecture.

COM+ [4] is an extension of COM which includes support for transactions, directory
service, load balancing and message queuing. Figure 2 shows how clients can connect,
through an Internet Information Server (IIS) or DCOM, to the business logic, which is
implemented with COM+. The business logic uses ActiveX Data Objects (ADO) to
access the data in the databases. Compare this picture with the EJB technologies
illustrated in Figure 3 to see the similarities.

2.2.2 Enterprise Java Beans (EJB)
Enterprise Java Beans [7], from Sun Microsystems, is a component-architecture for
server-side components used to build distributed systems with multiple clients and
servers. A Java Bean is a reusable component which supports persistency and can
interact across all platforms supported by Java. EJB uses Java Beans but is much more
than a component model. EJB provides support for transactions and security over a
neutral object communication protocol, which gives the user the opportunity to
implement the application on top of a protocol of choice. EJB is part of the Java 2
Platform Enterprise Edition (J2EE) [49] which includes many other technologies such
as remote method invocation (RMI), naming and directory interface (JNDI), database
connectivity (JDBC), server pages (JSP) and messaging services (JMS).

2. Component-Based Software Engineering

Applying Configuration Management Techniques to Component-Based Systems 21

EJB
Applications

EJB

HTTP
Listener

DBMS

DBMS

DBMS

JSP
Applications

Browser
Client

Rich
Client

HTTP

RMI/IIOP

Servlets

JDBC

JDBC

JDBC

Figure 3. The principle of the use of EJB in a three-tier architecture.

Figure 3 shows the architecture of a three-tier application using EJB. The clients
connect to the server components through either a web server or directly, using remote
method invocation (RMI). The server components which implement the business logic
reside within an EJB container with support for transactions and security. The data is
stored in databases which are managed by a database management service (DBMS) and
are accessed through the data base connectivity component (JDBC). Java server pages
(JSP) or servlets are used when thin web clients access the system through the Internet.
Compare Figure 3 with Figure 2 to see the similarity of the technologies used in the
COM+ environment.

A JavaBean is a special case of an ordinary Java class. To make a JavaBean an Enterprise
bean the JavaBean must conform to the specification of EJB by implementing and
exposing a few required methods. These methods enable the EJB container to manage
beans in a uniform way for creation, transactions etc. The clients of an enterprise bean
can vary widely, for examples a servlet, an applet or another enterprise bean. Since
enterprise beans may call each other, a complex bean task might then be divided into
smaller tasks and handled by an hierarchy of beans. This “divide and conquer”
procedure is very efficient.

There are two different kinds of enterprise beans: session and entity beans. Session
beans live as long as the client code which calls it. They represent the business process
and are used to implement business logic, business rules and workflow. Entity beans
model data and are often used by session beans to represent the data they use.

EJB is designed to interact with CORBA implementations and access CORBA objects
transparently. There is also a bridge between COM and EJB which can be used to make
systems even more open. The adapter pattern [29] can normally be used to implement
various bridges between object models.

Thesis

22 Applying Configuration Management Techniques to Component-Based Systems

2.2.3 Common Object Request Broker Architecture (CORBA)
The Common Object Request Broker Architecture (CORBA) [6] is a standard
developed by the Object Management Group (OMG) at the beginning of the nineties.
The OMG supplies industry guidelines and object management specifications to provide
a common framework for integrating application development. Primary requirements
for these specifications are reusability, portability and interoperability of object-based
software components in a distributed environment. Figure 4 shows how CORBA is part
of the Object Management Architecture (OMA), which covers object services, common
facilities and definitions of terms.

Figure 4. The parts of the Object Management Architecture.

Object services include naming, persistency, events, transactions and relationships.
These can be used when implementing applications. Common facilities provide general-
purpose services such as information, task and system management. All services and
facilities are specified in IDL. An object request broker (ORB) provides the basic
mechanism for transparently making requests and receiving responses from local or
remote objects. Requests can be made through the ORB irrespective of the service
location or implementation. Objects expose their interfaces using the Interface
Definition Language (IDL) as defined in the CORBA specification.

Object Request Broker

Object Services

Application
Objects

Common
Facilities

2. Component-Based Software Engineering

Applying Configuration Management Techniques to Component-Based Systems 23

Figure 5. Clients communicate transparently with the server with Remote Procedure
Calls (RPC).

Objects are stored in an interface repository where they can be found and activated on
demand from the clients. Figure 5 shows how the client communicates with the server
through remote procedure calls (RPC). RPC is a location-transparent way to
communicate; the real communication is by means of proxies and stubs. The stubs and
proxies are generated from the IDL specification which each object provides for its
interfaces.

2.2.4 Comparison of COM, EJB and CORBA
To be able to compare the different technologies it is important to compare them at the
same level of service. Since the basic level of EJB is JavaBeans, JavaBeans is to be
compared with COM and CORBA. Many features of the component models presented
are similar but there are also differences. To explain the differences, a short comparison
of the three models is presented in Table. 2.

Feature COM JavaBeans CORBA

Instantiation Dynamic Dynamic Dynamic

Distribution DCOM RMI/IIOP IIOP

Interfaces Multiple Single Single

Interface
Inheritance

Single Multiple Multiple

Basic rule of
implementation

Every object
implements
IUnknown

Every object
implements
Java.rmi.remote

Every interface inherits
from CORBA.Object

Application
Object Client

Proxy Stub

RPC

Thesis

24 Applying Configuration Management Techniques to Component-Based Systems

Feature COM JavaBeans CORBA

Dynamic
invocations

Dispatch interfaces Dynamic wiring
with reflection and
introspection

Dynamic Skeleton
Interface (DSI) and
Dynamic Invocation
Interface (DIII)

Type information Type libraries and
ITypeInfo interface

Introspection Interface Repository

Mapping of
object name to
implementation

Handled by the
Registry

Handled by the
RMIRegistry

Handled by the
Implementation
Repository

Event model Advice sink model Components declare
outgoing events and
registers for
incoming events.

Event Interfaces

Platforms Primarily Microsoft
but also available
on all major
platforms.

Independent, Needs
Java environment

Each vendor of
CORBA
implementations
provides products for
different platforms.

Security User authentication
and authorization,
data encryption and
integrity checking.

User authentication
and authorization.

Secure domains, data
encryption and integrity
checking.

Table. 2. A comparison of concepts in COM, EJB and CORBA

The different models have advantages and disadvantages and it is therefore difficult to
determine which is the “best”. When a system is designed a range of models must be
considered, depending on what us required of the product. Often when the platform is
chosen, the selection of component model is not so difficult. For instance if the target
environment is C++ on top of a mix of UNIX and Windows platforms, CORBA is
probably the best choice. In the same way EJB is more suitable for a heterogeneous Java
language environment. A third example is the choice of COM when the target is
Windows based PC machines.

2. Component-Based Software Engineering

Applying Configuration Management Techniques to Component-Based Systems 25

2.3 Patterns
Design patterns were introduced to permit the reuse of successful designs [29]. Each
pattern describes a problem, which occurs repeatedly in the environment, and then
describes the core of the solution to that problem. By means of design patterns,
knowledge of good software design can be documented and the experience gained
within software projects becomes widely applicable. With design patterns, a common
design vocabulary is introduced, simplifying communication between engineers. Design
patterns may be components themselves but according to several definitions a
component shall be executable and patterns cannot be executed. Rege [47] introduced
four useful patterns for component-based development. These patterns are described
below and can be used for designing with components.

The Dynamic Factory pattern provides a definition of an interface with operations for the
creation of components. Components are bound at a late stage, i.e. the concrete
implementation is determined at runtime. They can thus be created by different vendors
and composed dynamically to give a specific machine.

The Aggregation pattern aggregates components into larger entities. Components can be
loaded as separate entities and be configured dynamically. Other aggregates which
extend the functionality can be associated with those already existing. Components are
tied together into aggregates.

The Embedding pattern provides a definition of a uniform interface to one or more
components. This makes it possible to adjust the interface and the components
implementation to the specified requirements. A component may not be reusable
because its interface or part of its implementation does not match the specified
requirements of the application. The embedding pattern can then be used to wrap the
component to fulfil the requirements. An example of how components can be wrapped
to modify the requirements is given in [57].

The Propagator pattern defines a network of coupled components such that if the state of
one component changes, the dependent components are notified and may be adjusted.
In a system, there is a logical interdependence between the states of the components. If
one component changes its state, it is necessary to notify all dependent components,
since these may need to adjust their states accordingly.

Patterns can be used to understand and design a complex configuration of components.
Understanding the architecture is crucial when implementing a system. Design patterns
are related to architectural styles as presented by Bass et al [13] and can be used as
metaphors communicating the architecture and design of component-based systems.

Thesis

26 Applying Configuration Management Techniques to Component-Based Systems

2.4 Interfaces
Components communicate through interfaces which the user accesses when interacting
with the components. The actual interaction with the component is performed using
connectors, i.e. Connectors mediate interactions between components [52]. If an
interface is changed the user needs to know that it has changed and how to use its new
version. When the interface is changed, the user frequently becomes aware of the
change too late, when, for example, attempting to access or link with the component.
The component providers must therefore announce the change before implementing it.

Functions exposed to the user are usually designated Application Programmable
Interfaces (API). If there is a change in the API, the user must also recompile his code.
This is the case with compiled languages such as C/C++ but not interpretative
languages such as Smalltalk or Java.

In the object-oriented programming world, an interface is a set of public methods
defined for an object. The object can usually be manipulated only through its interface.
In C++ the user need only recompile the code when an interface, referred to from the
code, is changed. There is also the additional drawback that the user of the class must
use the same programming language throughout the whole development.

Separating the interface from the implementation is one way of avoiding this tight
coupling. This kind of separation is performed with binary interfaces in CORBA [6] and
COM [4]. Binary interfaces are defined in an interface definition language (IDL) [6,15]
and an IDL compiler, which generates stubs and proxies, making the applications
location-transparent.

By defining interfaces as unchangeable units, COM solves the interface versioning
problem. Each time a new version of the interface is created, a new interface will be
added instead of changing the older version. A basic COM rule is that an interface
cannot be changed once it has been released. This makes couplings between COM
components very loose and makes it easy to upgrade parts of the system independently.

Even if an interface has not been changed, its implementation can be changed. This
increases the flexibility of possible updates, but also introduces the possibility of
uncontrolled effects. For this reason, it is of interest to know if the implementation has
been changed.

2. Component-Based Software Engineering

Applying Configuration Management Techniques to Component-Based Systems 27

2.5 Commercial Off-The-Shelf Components
Buying commercial off-the-shelf (COTS) software is a common way to gain
functionality without needing to develop everything from scratch. Components are
sometimes wrongly referred to as COTS software. Certainly, components may be COTS
but this does not mean that COTS must be components. A vendor sells COTS products
as unmodified units which can be used in developments. For example, a class library
linked to a source code is not a component but it is COTS software. Components,
however, are often distributed as COTS software, which means that the issues with
COTS apply to component-based development as well as to other developments.
Development with COTS components has many advantages [58]:

▪ Functionality is instantly accessible to the developer.
▪ Components may be less costly than those developed in-house.
▪ The component vendor may be an expert in the particular area of the component

functionality.

Despite all the advantages, there are several disadvantages [36]:

▪ Often, only a brief description of its functionality is provided with a COTS
component.

▪ The component carries no guarantee of adequate testing.
▪ There is no, or only a limited description of the quality of the component.
▪ The developer does not have access to the source code of the component.

To make the decision to buy or to build is not easy, knowing all the disadvantages.
COTS components are typically “black boxes” without their source code or other
means of introspection available. Developers must identify certain properties of COTS
components to integrate them properly with a system under development. Examples of
relevant properties are functionality, limitations, correctness, preconditions robustness
and performance. To determine its properties, extensive testing of the component is
necessary. There are various approaches to this kind of testing, e.g. random, “black-
box” and “white-box” test generators.

Thane [56] presents a model for determining the reliability of components. To acquire
confidence in a component it must be supplied with a contract and be tested with a
certain input. A contract specifies the functionality and the run-time conditions for
which the component has been designed, i.e. assumptions about inputs, outputs and
environment. If the component supplier provides such a contract, it can be used to
calculate the probabilities of the occurrence of errors. Evidence based on the
component’s contracts and the experience accumulated must be obtained. The
environment must be considered when components are integrated in new systems; the
input domain may differ considerably from the input domain for which it was tested.
Confidence in a component’s reliability is only warranted when the component is used
in the environment for which it is intended.

Thesis

28 Applying Configuration Management Techniques to Component-Based Systems

COTS components with same functionality can be categorized in groups even if their
implementations are different. Components in the same category can be exchanged
transparently if their interfaces are the same. If the interfaces differ, wrappers can be
used to provide the same interface towards the user. When more than one vendor
provides components with the same functionality, it is advantageous to design the
system for component exchangeability. An architecture which supports the exchange of
components is more stable, e.g. if the support for a component selected is discontinued
a new component can replace the obsolete.

2.6 Component-based Development
This section describes the differences between developing components and developing
with components. It is important to make this distinction to make it clear how to use
different methods. The developer of a component must think about how to make the
component open to integration with other components and less about how to integrate
other components.

Recommendations to developers and users of components are given in this section. As
a result of studying different aspects of component-based systems, we provide a list of
recommendations for this area. The section is divided into two parts, one for the
component developer and one for the component integrator (the user who develops
systems incorporating components).

2.6.1 Developing Components
There are many known difficulties to be encountered when developing components. It
is generally difficult to design and develop a component intended for unknown
products. Developing internal components to fit into a product line is therefore
easier [14]. Satisfying all the requirements demanded of a component by customers is
not easy, as the requirements are often conflicting and impossible to fulfil. To determine
the “right” requirement is an important issue for the component developer. To develop
a generic component takes more time. Lampson [37] states that it takes around three
times more effort. If the time required is too long, the time to market may be prolonged
and the market window might be too small to make a profit for the component.

When developing and designing components, the following is recommended:

▪ Always document all the features of the component. Do not restrict the
documentation to functionality, but document all other properties such as
performance, resource consumption, limitations and robustness.

▪ Provide test-suites with the component so that the customer can test the
component in their own environment. It is extremely important to test an imported
component in the environment in which it is to operate. Remember the Ariane 5
rocket explosion [41] which was due to a change in the environment requirements
and not in the software design.

2. Component-Based Software Engineering

Applying Configuration Management Techniques to Component-Based Systems 29

▪ Provide source code to help the application developer understand the semantics of
the component.

▪ Design the components so that they can be integrated into existing component
models. Describe models in which the component works and describe how to make
it work with other models.

▪ Carefully generalize the components to permit reuse in a variety of future contexts.
Note, however, that solving a general rather than a specific problem requires more
work.

▪ Make sure that the application developers can adapt the component to their
requirements. This can be done with sink interfaces to which the user adds an
interface to the component so that the component can utilize that interface to
communicate with the user.

2.6.2 Developing with Components
Development with components is a complex process as there is always a trade-off
between buying and developing the components concerned. It is generally better to buy
general-purpose components, e.g. operating systems, databases and user interface
components. Many different aspects must be considered before choosing an existing
component over an internal. The development of proprietary components takes
resources, requires maintenance and support. Before making decisions when building
applications with components, the following questions and thoughts should be
considered:

▪ The market for a product is limited in time and it is therefore important to deliver
a.s.a.p. There is a risk that a component vendor may discontinue support, and if the
support is discontinued, there may be a loss of time and a postponed release. The
risk is considerably lower with a well-established vendor.

▪ The functionality provided by the component may not remain the same over time,
forcing the integrator to create wrappers, which provide or prevent functionality,
around the components. If the support from the component vendor is inadequate,
this could be a serious issue.

▪ The functionality of the component may be more than actually needed, requiring
restrictive wrappers to be written. In this case unwanted functionality is paid for
unnecessarily. The use of unintended functionality may cause problems.

▪ If the source code is in fact available from the component vendor, is it really
maintainable if something goes wrong?

▪ A malfunction in the component may cause an error in the product. The end user
wants the product to function without needing to think about the internal design.
The product vendor must solve problems arising even if the error is in the third-
party component.

▪ If an external component is customized for a product, it makes the product strongly
dependent on the component vendor. The vendor can then set his own price for
continued support of the component.

Thesis

30 Applying Configuration Management Techniques to Component-Based Systems

There are many more issues surrounding CBSE to be addressed before making
decisions on how to design a system with components. Takeshita [55] lists several
questions concerning metrics and risks. The subtopics discussed are: metrics for
components, difficulty in acquiring proper components, metrics for completed
applications, insufficient analysis/design and architecture mismatching, insufficient
technical support, use of low-quality components, cost-related risks and difficulty in
managing computing in enterprises.

Josefsson [35] presents the following recommendations to the component integrator:

▪ Make a thorough evaluation of the component suppliers. Are they suitable as
suppliers? Do they have good quality products and support? Check their financial
position for economic stability.

▪ Ensure that the legal agreement with the supplier is comprehensive. This may save
time and efforts if the supplier goes out of business or if they refuse support of their
component.

▪ Create good and long term relations with the supplier for better cooperation.
▪ Limit the number of partners and suppliers. Too many will increase the costs and

the dependencies.
▪ Buy “big” components where the profit is greatest. The management of too many

small components can consume the profit.
▪ Adjust the development process to a component-based process.
▪ Have key persons assigned to supervise the component market, monitoring new

components and trends.
▪ Try to gain access to the source code. Through special agreements with the vendors

etc.
▪ Test the components in the target environment.
These recommendations do not provide a complete solution to all the problems which
may occur, but they indicate that developing for and with components must be
performed carefully.

2.7 Development Cycle
The development cycle of a component-based system is different from those of the
traditional models, such as the waterfall, iterative, spiral and prototype models.

Development with components differs from traditional development. There is, for
example, a new component development process for CBSE [16] which differs from the
traditional waterfall model. A similar process for development of COTS components
which emphasizes requirements, design, coding and integration is described by
Morisio et al [42]. Figure 6 shows a comparison between two different development
processes. Determining requirements and designing in the waterfall process correspond

2. Component-Based Software Engineering

Applying Configuration Management Techniques to Component-Based Systems 31

with the finding and selection of components. Implementation, test and release
correspond to create, adapt, deploy and replace.

Figure 6. An example of a development cycle with components compared with the
waterfall model.

The different steps in the development with components process are:

1. Identifying components which could be used in the product. All possible components
are listed here for further investigation.

2. Selecting the components compatible with the requirements of the target product.
3. Creating proprietary components to be used in the product. These components need

not be found since they are developed inside the enterprise.
4. Adapting the selected components to suit the existing component model or

requirement specification. Some components need more wrapping than others.
5. Composing or deploying the product. This is done with a framework or infrastructure

for components.
6. Replacing old versions of components with new, i.e. maintaining the product. There

may be bugs to be eliminated or new functionality to be added.
In Figure 6, the find phase appears to replace the determination of requirements. The
figure should be interpreted however, as showing that finding and requirement
determination are performed in the same phase of development. There is a need for
requirement determination by means of analysis, design and testing when performing
component-based development.

Different technologies are available to support developers at each step. There are tools
such as Agora [51] and Jcentral [8] to find components while Cool: Spex [1] from
Sterling software can help with the selection process. There is also COMCAD [46],
which supports the deployment of COM components.

1 Find 2 Select 4 Adapt

3 Create

5 Deploy 6 Replace

Requirements Design Implementation Test Release

Thesis

32 Applying Configuration Management Techniques to Component-Based Systems

3 Configuration Management
Configuration management (CM) is the control of the development and evolution of
complex systems [19,27]. A complex system is characterized by a large number of
components developed by many persons with usually rigid time constraints and quality
requirements. These kinds of systems are often developed concurrently and are intended
to last for longer periods of time, between ten and twenty years. Version control is
usually used in all types of projects. When it comes to more complex and sophisticated
projects, a systematic use of configuration management methods is needed. Change,
build, release and workspace management are other disciplines covered by CM. This
section gives a brief introduction to all of these disciplines.

3.1 Version Management
An element of software or hardware placed under version control is designated a
configuration item. The most common example of a configuration item is a source code file
but executables and documents might also be considered to be configuration items.
Version control covers the management of different versions of items, usually
represented by a tree structure [12]. Version management supports concurrent
development in which the concurrent versions are usually implemented as branches.
Selected versions of configuration items together form a baseline. Tags are used as marks
or labels to identify a specific version of an item. It is possible to tag all the different
configuration items included in one release of a system, for later retrieval of the very
same configuration. This may be needed e.g. when bugs must be eliminated. The same
version of a configuration item can be included in many baselines by attaching multiple
tags to it.

Figure 7. Variants are branches which do not merge back into the main stream.

Items are checked out and in from the version database when needed. There are
different models for concurrent work but the most common is to use locks on the
configuration items. When a version of a file is to be modified, the locking mechanism
which prevents concurrent work is used. After the file is locked the developer can be

Main branch

Temporary branch

Variant

1

2.1

2 4 5

1.1 1.2 1.3

3

Release 1 Release 2

3. Configuration Management

Applying Configuration Management Techniques to Component-Based Systems 33

sure that no other person is modifying the same file. When the developer is ready, the
file is checked in to the version repository and the lock can be is released. If a developer
intends to develop a locked file it is possible to create a temporary branch to permit this.
Another model is to permit concurrent development with an optimistic approach. In
this model the files are not locked but the file is checked when returned to the database.
If the file has been changed in the meantime, a merge will take place with the developer
responsible.

Branches are used to permit work in parallel or to create multiple variants of a release as
shown in Figure 7. A branch can span over many different versions and is thereafter
usually merged back into the main branch. An example of this is when a developer has
created a branch 2.1 because the original version 2 was locked by another developer.
After both developers have finished their assignments, branch 2.1 can be merged with
the main branch as version 4. Version 4 in the main branch will now contain the
changes made in both versions 3 and 2.1. Another example of the use of a branch is
when there is a need for extra functionality to be added to subsequent releases but not
to the current release. To accomplish this, the new functionality is inserted in the branch
until the subsequent release and the functionality is then merged. If the functionality is
not merged back into the main branch, the branch is designated a variant.

With version management, it is possible to control configuration items included in a
release of a complete system and it is also possible to recreate the very same
configuration on demand with the help of baselines.

3.2 Change Management
The reasons for changes are multiple and complex. Changes can originate from many
different sources. Change management handles all changes in a system. The reason for a
change can be an error, improvement of the component or added functionality. Change
management includes tools and processes which support the organization and track the
changes from the origin to the actual source code [22]. Examples of Change
Management tools are PVCS tracker [9], Visual Intercept [10] and Clear Quest [3].

Figure 8. An example of a change process in which the customer files requests to the
support organization.

When a change is initiated, change requests are created to track the change until it is
resolved and closed. Figure 8 shows how a customer requests a change to correct an
error in the system. The support organisation receives the change request, taking direct
action and solving the problem if possible. If they cannot address the issue, the request
is passed to the next instance. The configuration control board (CCB) analyses the

Support CCB

Develop

Test
Customer

Thesis

34 Applying Configuration Management Techniques to Component-Based Systems

change request and decides which action is to be taken. If the change is approved, the
change request is filed to the developer responsible for implementing the change. When
the developer has performed the change its status becomes “implemented” and a test is
performed. When the subsequent new release is to be built, the CCB decides which
changes are to be included. The customer receives a patch with the new release
including documentation of the changes made in the new release.

Various tools are used to collect data during the process of tracking a change request.
Change management data can be used to provide valuable metrics about the progress of
project execution [24]. From this data it can be seen how many changes have been
introduced between two releases. It is also possible to check the response time between
the initiation of the change request and its implementation and acceptance.

3.3 Build Management
Build management supports the user by collecting source code for a particular release and
then using build tools, such as Make to create configurations. Make describes the
dependencies between source code files at build-time and ensures that the dependent
source code is built in the correct order. Ongoing research for automatic assembling of
components, shows that it is very difficult to apply build management to component-
based systems. Zeller [61] proposes the use of description logic to assemble components
in design time. This does not solve however, the problem with dynamic configurations
in run-time.

Daily builds can be performed when build management is supported. If the system is
built every day the integration time is reduced, since broken dependencies and faults are
discovered early. The daily build process also permits rapid development and early
testing of the system. Support for parallel development with version control which
resolves inconsistencies is required for daily build [44].

3.4 Release Management
The identification and organisation of all documents and supplements incorporated in a
release is designated release management. It is possible with appropriate release
management to create installation kits automatically to ease the task of the build
manager. The build manager is responsible for providing the finished product with the
correct configuration and features. Products such as Windows installer and Install shield
[11] can be used to create installation kits. Hoek et al [33] describe a prototype,
designated Software Release Manager (SRM), which supports both developers and users
in the software release management process. SRM incorporates the concept of
components and helps in assembling them into systems. Dependencies are explicitly
recorded so that users can investigate and understand them.

3. Configuration Management

Applying Configuration Management Techniques to Component-Based Systems 35

3.5 Workspace Management
Introducing CM in an organization is cumbersome without effective support from tools.
Changing an existing culture requires massive education, support and not least
motivation. To motivate developers to use all the tools and methods available with CM,
support for integrated tools in the development environment is needed. Developers
want to work independently of the configuration management, this alternative being
denoted workspace management. Developers usually focus on solving particular
problems and have less interest in administrative tasks. An example of integrated
features is when the developer “logs-in” to a project environment in which project
structures and data repositories are already prepared for the developer. The developer
then enters a transparent environment in which the development with configuration
management is handled behind the scenes. This approach is adopted in such major
configuration management tools available on the market today as Clear Case and
Continuus [2,5].

3.6 Related Work
Distributed and parallel development is related to component-based development since
the sub-systems delivered are often treated as separate entities. In distributed
development, a distributed database for all configuration items is needed. This model
does not suit the component-based approach since most components are developed
independently using a variety of tool sets. External components can be treated as
outsourced parts of a project with more restrictions on source code. A model for
outsourced software development is presented in [12]. The outsource model gives more
control to the integrator since he is a direct customer to the component provider and
can require desired functionality for a specific target environment.

When a CM process is to be defined, different issues for users of the CM system must
be considered [25] and the user’s roles must be defined. The CM system must have
integration capability with existing development tools for transparent workplace
management. To obtain support for build and release tasks, the degree of automation
must be defined and the desired level of automation achievable by using the existing
tools must be known. These issues must be considered when a configuration
management process for component-based development is defined.

Thesis

36 Applying Configuration Management Techniques to Component-Based Systems

4 Dynamic Configurations
Dynamic configurations are needed to permit architectures to evolve during the life-
time of a system. This occurs in practice when components create instances of other
components during the system execution. Architectural Description Languages (ADL)
can be used to express such architectures [52]. A system with a configuration of
components in which the components may be replaced with new components is
designated a subject of change, i.e. its contents change during its lifetime. Figure 9
shows an example in which components are replaced. Such a configuration is dynamic,
since its components can be updated after the configuration is first deployed. A static
configuration has the same set of components over its lifetime and nothing changes
after the system is launched. For example, a simple program in which all its elements are
statically linked together into one monolithic program.

Figure 9. Component C1 is replaced dynamically with component C2.

One example of a dynamic configuration is a PC running with executables and shared
libraries which might be upgraded during runtime, another is a control system in which
the control algorithm component is detached from the memory and a new component
is inserted. Configuration management typically addresses this type of problem with
identification, versions and dependencies but has not been applied to the particular issue
of dynamic configurations. These issues have been explored in [38,39].

A configuration consists of a number of components which interact to perform the task
of the system. Traditional CM can very well be applied to the development of the
component but it cannot handle systems in which the configuration might change
during run-time. Examples of systems in which the configuration might change are: web
applications, systems built on component models with dynamic linking and real-time
systems in which tasks might be changed on the fly. Applications are also written today
which upgrade themselves when needed, Real player for example which checks with the
home server for newer versions each time it is invoked. The management of systems in
which components or applications upgrade themselves without notification is a
challenge. Imagine components using an other component which suddenly upgrades
itself. How is deterministic behaviour possible in such a system?

A1 B1

C1 C2

D1

4. Dynamic Configurations

Applying Configuration Management Techniques to Component-Based Systems 37

Another example of a system which configures itself dynamically in different
environments could be a personal device connected permanently to the internet. When
the device is used on the owner’s premises, high-speed communication without security
might be acceptable. But when the device is used outside the company building, a more
secure, slower connection must be used. This kind of systems must be reconfigured
dynamically. How can the function be guaranteed if it is not know before what
components are to work together?

Run-time reconfiguration is possible by altering interface bindings [45]. It is possible to
change to a new component since the interfaces of a component arbitrate all
communication to and from the component through proxies. If the components are
state-less, the component can be removed and replaced with another which provides an
equal or greater interface. In the case of a component with state, the state must be
stored by the old component and reloaded to the new component. This requirement
means that new versions of a component must be able to load and interpret the storage
format from all older versions. The persistent data must be tagged with protocol version
to permit the use of multi-versions of data.

Related to dynamically configurable component-based systems are web systems, which
have highly dynamic contents and are easy to upgrade by changing the contents behind
the dynamic links. Susan Dart [26] has identified the problems with dynamic
configurations for web systems and she claims that all CM knowledge can be applied to
solve these problems. However, the challenges span technical, process and company-
political issues and are not easy to address. Dynamic content, variant explosion,
performance, scalability and corporate politics are examples of such challenges.

Traditional graph theory, as presented in [31,53], can be used to monitor the
dependencies between components. It is also useful to represent a graph with a matrix
or adjacency lists to be able to determine if components are dependent or not.

Thesis

38 Applying Configuration Management Techniques to Component-Based Systems

5 Component Configuration Management
As shown in [20,38,39] it is difficult to manage components during the life-time of a
system. A system of components is usually configured once only during the build-time
when known and tested versions of components are used. Later, when the system
evolves with new versions of components, the system itself has no mechanism to detect
if new components have been installed. There might be a check that the version of
replacement component is at least the same as or newer than the original version. This
approach prevents the system from using old components, but it does not guarantee its
functionality when new components are installed. To apply ideas from configuration
management, such as version and change management in managing components is an
approach which can be used to solve some of the problems.

This section describes the application of configuration management to systems built
with components, and presents a model for checking dependencies between
components. Some level of configuration control will be achieved if it is possible to
identify components with their version and dependencies to other components.
Information about a system can be placed under version control for later retrieval. This
makes it possible to compare different baselines of a system configuration. To manage
dependencies, a graphic representation of the configuration is introduced. The graphs
are then placed under version control. This information can be used to predict which
components will be affected by a replacement or installation of a new component.
Workspace management can be achieved with an environment which provides the user
with information about the current configuration.

Change management of components is the same as that of ordinary software.
Traditional change management can also be applied to third party components to track
of detected errors until the component provider resolves them.

Using component configuration management, it is possible to answer questions, such as:

▪ Which components have been added/removed after a reconfiguration?
▪ Which dependencies have been added, removed or affected by a reconfiguration?
▪ If a component is updated, which other components in the system are affected?
▪ What is the effect on a system if a new system of component is installed?
▪ What is the difference between two configurations?

These are some of the difficult questions which, when answered correctly give a better
understanding of a system and permit a certain level of predictability when upgrading
systems.

It is generally difficult to identify components during run-time and to obtain their
version information. A short outline of this issue is given in the next section. When the
components are identified it is possible to build graphs of dependencies, which can be

5. Component Configuration Management

Applying Configuration Management Techniques to Component-Based Systems 39

represented in various ways and placed under configuration control. A prototype
developed for detecting components on the Microsoft platform is described in section
5.8.

5.1 Component Identification
There is a current lack of information for us in identifying components in systems. No
information about version, change history or creation is available. There is no standard
interface which can be used to gather sufficient information about the component to
permit the creation of a dependency graph. Such a dependency graph is necessary to
predict the effects of updating the system with new components.

To identify a component, name, creation time, size and a magic number (a unique
number set by the compiler) are used. If a version identifier is provided for a particular
component, this is also used. The identification data is used to calculate a unique key to
be used to compare components. The key is divided into two parts, one for
identification, the other for version.

If no version information can be obtained from the component itself, it can be added
manually using the embedding pattern described in section 2.3 to wrap components with a
version information interface.

Hoek [32] presents ideas about how product line architecture components can be
identified. The properties he defines are: name, revision, interface, connection,
behaviour, constraints, representation and origins. These are properties to be considered
and placed under a version interface as proposed in [38]. A version interface can be used
to build the dependency graph presented in Definition 5.

5.2 Configuration Model
A configuration model defines how components are treated and put under version
control. The set of components installed in a system is called a system of components as
defined in [39].

Definition 1. System of components.
A system of components S is a set of installed components in a system,
S = {c | c ∈ Components installed in the system}

A system of components S can also be treated as a baseline and be placed under version
control. The components themselves are not under version management but the unique
key, which identifies them, is used as a representative. This means that S is a set of keys.
For improved performance S is to be sorted to permit the easy location of components.
This is also a prerequisite for comparing configurations by means of deductions from
the dependency graph.

Thesis

40 Applying Configuration Management Techniques to Component-Based Systems

Grouping many different components providing the same functionality extends the
model. This makes it possible for example, to change components if one component is
no longer available.

5.3 Change Management
Change management can be applied to both internal and external components. In the
case of internal components, it is possible to use the same tools for change management
as for the development of the component itself. External components can be placed
under change management to permit the monitoring of changes and bugs which occur.
Instead of attaching source code files to change requests, the name of the component
can be used to track changes. When, for example, the problem report is analysed, the
outcome can be a change request for each component involved. Each such change
request contains a list of all the changed source files or a description of the patches if
the component is external. Patches from the component vendor must be stored to
permit recreation of the same configuration later. The change requests serve as a
container for information of that kind.

5.4 Managing Dependencies
Dependencies between components are to be tracked and stored for further
management. The benefits of this are multiple. It is possible to analyse what has been
affected in the system and to create determinism when updating the system with new
components. Dependencies between components can be represented with a directed
graph, as defined in [31]. The definition is shown below.

Definition 2. Directed Graph.
 Let V be a finite nonempty set, and let E ⊆ V×V. The pair (V, E) is then called a
directed graph, in which V is the set of vertices, or nodes and E is a set of directed
edges or arcs represented by ordered pairs.
Such a directed graph is denoted G = (V, E). The notation a → b denotes (a, b) ∈ E

Figure 10. An example of a graph G with the nodes a, b, c, d and e.

Figure 10 shows an example of a graph G = (V, E), in which V={a, b, c, d, e} and
E={(a, b), (b, a), (b, d), (c, a), (c, b), (e, b), (e, d)}. Placing an arrow on the edge
indicates the direction of the edge.

a b

c d e

5. Component Configuration Management

Applying Configuration Management Techniques to Component-Based Systems 41

Definition 3. Path.
Given a graph G = (V, E) a non-empty sequence of vertices <v1, v2, …, vn> in which
(vi, vi+1) ∈ E for 1 ≤ i < n is called a path from v1 to vn in G.

Paths are introduced to be able to define dependencies between components. An
example of a path from a to d in Figure 10 is <a, b, d> since each pair (a, b) and (b, d)
is a part of the set of edges E. Knowing that there is a path from a to d indicates that a
is dependent on d, since a is affected if d changes. Definition 4 gives a formal definition
of transitive closure.

Definition 4. Transitive closure. The transitive closure of a graph G = (V, E) is a
new graph G* = (V, E*) where E* = {(a, b) | there is a path from a to b in G}.
The notation a →* b will be used to denote (a, b) ∈ E*. □

In Figure 10 there are examples of dependencies such as a → b, c →* d and e →* a.

There are different ways to represent a directed graph [53]; examples are matrices, lists
and nodes with pointers to their children and parents. The transitive closure can be
calculated to gather all the possible edges of a graph, see Figure 11. It is possible to
gather all the dependencies for each of the different representations, but some
representations are more efficient than others.

Figure 11. The graph in Figure 10 with the transitive closure calculated. The dashed
lines are edges which have been inserted in the graph.

Different algorithms can be used to calculate the transitive closure to obtain all paths in
a graph. Examples are three algorithms from Warshall, Nuutila, and Eve and Kurki-
suonio [28,43,59]. Warshall’s is a simple well-known algorithm which works on matrices.
It is described in the next section.

5.5 Dependencies Between Components
Components are the nodes in a graph and the dependencies the edges. Now that
dependencies are defined and described it is possible to define the set of all
dependencies as a set of dependency pairs.

a b

c d e

Thesis

42 Applying Configuration Management Techniques to Component-Based Systems

Definition 5. Dependencies.
Let S be a non-empty set of installed components in a system. Then the dependencies
D is defined as D = {(ci, cj) | ci, cj ∈ S ∧ ci → cj}

When the dependencies have been calculated, it is possible to create a system structure,
as defined in [21], with different levels of components. On the lowest level of
components are components without dependencies to other component. This system
structure is used as a model to calculate quality properties such as complexity and
localization factors. The complexity is proportional to the number of dependencies
between the components. The localization factor denotes the number of levels between
components. There are, for example, three levels in the path <c, b, d> from component
c to d in Figure 11.

A configuration is a set of components and their dependencies to other components.
The configuration is a baseline since it represents a version of a system at a particular
time. Configurations are defined in Definition 6.

Definition 6. Configuration.
Let S be a non-empty set of installed components in a system. Let D be the
dependencies for the components in S. Then a configuration C is defined as a graph
C = (S, D).

Configurations are stored under version control for later retrieval. New installed
components can be compared with a configuration to permit recognition of the affected
components in the system. When new components are installed, new nodes in the
dependency graph are added. In the same way, nodes are removed if components are
removed.

Broken dependencies are detected when the old configuration is compared with the
new. New versions of an existing component are identified by the version part of the
unique key which identifies all components. New versions simply replace the older in
the graph. When comparing graphs, new versions are detected since the keys will be
different. Proper dependency analysis requires that a component and its version can be
identified.

It is important to have the possibility of marking selected components as critical to
indicate that they must not be affected by a component update. A critical component
must not be upgraded or affected by an upgrade of another component, whether critical
or not. Critical paths are therefore introduced. The critical components are a subset of
the components.

Definition 7. Critical path.
A critical path is a path from a critical component to any other component. The set
of all critical paths is a subset of all the paths in a configuration.

5. Component Configuration Management

Applying Configuration Management Techniques to Component-Based Systems 43

No component in a critical path may be upgraded without making an active decision to
accept the change. Hence more than only the critical components are placed under
supervision. On the other hand, components which depend on critical components
need no special treatment and can be upgraded without notice. The algorithms
presented in this thesis make it possible to keep track of the components which have
been affected after the upgrade has taken place.

5.5.1 Matrix Representation
Configurations and dependencies can be stored in a matrix format. This format is
appealing since it is easy to understand and existing mathematical methods can be
applied to it. Each component is represented by a column and a row in the matrix. If a
component vi is dependent on another component vj a 1 is set at the position where the
two components meet in the matrix.

Or more formally the position in the matrix


 →

=
othervise 0

 if 1 ji
ij

vv
D

The dependencies can be represented in this matrix and the transitive closure can be
easily calculated to gather all indirect dependencies in the system. If the graph is
represented by a matrix, the transitive closure can be calculated, using Warshall’s
algorithm as described in Figure 12. The algorithm takes a given boolean matrix m[i, j]
of size n × n representing the graph and calculates the transitive closure.

For 1 ≤ i ≤ n do
for 1 ≤ r ≤ n do

if m[r,i] then for 1 ≤ k ≤ n do
m[r,k] := m[r,k] or m[i,k]

Figure 12. Pseudo code for Warshall’s algorithm to calculate the transitive closure.

If position m[i, j] in the matrix is true then there is an edge from i to j. After the
calculation each position denotes that there is a path from a vertex to another vertex.

A =























01010
00000
00011
01001
00010

T(A)=























01011
00000
01011
01011
01011

Figure 13. A graph represented with an adjacency matrix A and the transitive closure
T(A).

a b

c d e

Thesis

44 Applying Configuration Management Techniques to Component-Based Systems

Figure 13 shows how the matrix representation might appear when Warshall’s algorithm
has been applied to calculate all the paths in the graph. Figure 11 shows all the
calculated paths as dashed arrows. This matrix representation is quite memory-
consuming since a configuration with N components will use N*N bits of memory
assuming that one bit is used for each edge.

As a configuration is defined as the system of both components S and the dependencies
D, the rows of dependency matrix are to be sorted in the same way as S is sorted. They
are sorted with a key which uniquely identifies a component and its version.

Since the number of relations is usually sparse, more efficient ways of representing
graphs, such as list representation can be used.

5.5.2 List Representation

Another way to represent a graph is with linked lists. Each component has its list of
adjacent components. This representation reduces the resource consumption, if there
are sparse relations between components, and can be used for calculating the transitive
closure.

Figure 14. A graph represented with linked adjacency lists.

In Figure 14, the system of components S is represented with a list of lists. Each list
represents all components on which a component in S is dependent. Logically, the lists
are sets but they are implemented as lists, i.e. each component has a set of components
on which it is dependent. To better reflect this representation, Definition 5 can be
revised to define the dependencies to D = {(c, {ci | c → ci}) | c ∈ S}. The length of a
dependency list can be used as a measurement of dependency complexity. The higher
the number, the more complex is the relation with other components. Using this
representation reduces the memory consumption to one list node per component with
an additional list node per edge in the graph. This representation can also be extended
to include an additional list of in-edges instead of only out-edges. Using this extension is
more resource consuming but permits faster searches for all components dependent on
a component.

a b

c d e

b

a d

a b

b d

a

b

c

d

e

S

5. Component Configuration Management

Applying Configuration Management Techniques to Component-Based Systems 45

5.6 Differences between Configurations
This section describes how differences between configurations can be computed and
used to obtain a deeper understanding of what has been changed in the system.

The dependency graph, which is represented by a matrix, can easily be used to
determine what has been affected when a new version of a component has been
installed. If the matrix is transposed, all the directed edges in the graph are reversed. It is
possible to obtain version history from different configurations by simply comparing
different versions of the dependency graph.

To compare two configurations, C1 = {S1, D1} and C2 = {S2, D2} where the second is
more recent, there are two steps to be taken to determine the changed components and
edges. Firstly, to determine which components have been added, use set difference to
subtract S1 from S2, i.e. Added components Snew = S2 – S1. Using the same method, the
removed components are SRemoved = S1 – S2. Secondly, D1 and D2 must be compared to
calculate which edges have been removed or inserted. To determine what is affected
when a new version of the same component is installed, take S2 – S1 to obtain the added
components. Since new versions have different keys, in the sense of version, the
difference will indicate the new versions installed. The dependencies D1 can now be
used to analyse what has been affected.

If new components have been added or old components removed, the matrices are of
different logical size (as shown in Figure 15). In this case the matrices must be extended
to the same size. Take the union of the two sets S1 and S2 to get all components in the
two configurations. Create two new matrices which describe the dependencies of all
components including removed and added components. These unchanged components
must be inserted without dependencies, i.e. add a new row and column with zeros for
each component remaining unchanged. The two new matrices S1p and S2p will now be of
the same size and have the same order of rows and columns. It is now an easy task to
make the subtraction to determine which edges have been changed between the two
configurations. If the value is negative it shows that a path has been removed and if it is
positive, a path has been added.

c1 =
















000
100
010

 c2 =
















011
000
010

Figure 15. c1 and c2 represents two different dependency graphs with different
components.

b d

a

c

b

c

Thesis

46 Applying Configuration Management Techniques to Component-Based Systems

The configurations in Figure 15 are used in the following example. In c1 the rows
represent a, b and c but in c2 they represent b, c and d. To be able to compare these
configurations c1 and c2 must be modified to have the same size and order. Two new
matrices are created in which the changed components are inserted without
dependencies to any other component. A row for c1 and a column for d are added. In
the case of c2 a row and column for component a are added.

To add empty columns into a matrix, multiply with the modified unity matrices E1 and
E2 where zeroed rows and columns have been added. If the new size is to be m × m and
the original matrix is of size n × n then E1 is m × n and E2 is n × m. Take the
configurations in Figure 15 and increase the size to a 4 × 4 matrix designated c1´.

c1´ =(E1c1)E2 =






































































0100
0010
0001

000
100
010

000
100
010
001

=



















0000
0000
0100
0010

c1´ =



















0000
0000
0100
0010

 c2´=



















0110
0000
0100
0000

 c2´- c1´=

















 −

0110
0000
0000
0010

It is now possible to subtract the two matrices to calculate which edges have been
inserted or removed in the system between different configurations. If components
have been removed, the result will be negative and if components have been added, the
result will be positive. In the example in Figure 15 the edges from d to b and d to c have
been inserted while the edge from a to b has been removed.

If the dependencies are represented by lists, it is easier to calculate the difference
between configurations. There is no need to expand the lists to the same size since a set
subtraction will automatically exclude the components removed and only focus on the
new. The components which have been added or removed can be calculated in the same
way as for matrix representation. For each component in S2 take the corresponding set
of dependent component in D2 and subtract the corresponding set of dependent
components from D1. This gives the added edges for each component. The removed
edges are calculated in the same way. A short pseudo C++ code with STL (Standard
Template Library) presents the algorithm in Figure 16.

5. Component Configuration Management

Applying Configuration Management Techniques to Component-Based Systems 47

typedef map<Component, set<Component>> Dependencies;
typedef set<Component> System;
typedef pair<System, set<Dependencies>> Configuration;

Dependencies dep1, dep2;
System system1, system2;
Configuration config1, config2;

for each comp in system2 do
addedEdges[comp] = dep2[comp] – dep1[comp];

for each comp in system1 do
removedEdges[comp] = dep1[comp] – dep2[comp];

Figure 16. Pseudo C++ algorithm which calculates added respectively removed edges.

The example in Figure 15 is used as an example. The configurations can be represented
as C1 = ({a, b, c}, {(a, {b}), (b, {c}), (c, {})} and C2 = ({b, c, d}, {(b, {c}), (c, {}),
(d, {b, c})}. The component a is removed and d is added. This is easily calculated by
subtracting S1 from S2 and vice versa. Applying the algorithm in Figure 16 gives that the
edges added are (d, {b, c}) and the edges removed are (a, {b}). The components
without edges represented with the empty set have been removed in this example.

5.7 Managing Multiple Versions of a Component
The presence of multiple versions of a component installed in a system at the same time
is a common situation to be handled. Three different approaches to this are presented
below.

Cook [20] presents a model for configuring components with respect to the problem
domain. Each component has an explicitly described input domain and a version
identifier. The execution environment then determines which version to use at run-time.
If a newer component with the same input domain exists, this is used. With this model,
many versions of a component are available at the same time in the system until older
versions are removed from the system. Since the components to run are selected from
the input domain, newer versions will replace the old without further action. The
disadvantage of this model is that the arbiter must be integrated in the environment to
be able to schedule the correct component for a given input. It is not possible to apply
this technology in existing component models such as COM or CORBA
implementations.

Isovic et al [34] present a way to upgrade a reliable system with components. When a
new component is installed, the previous version is retained as a backup if the new
version provides unacceptable output. If the output is within a valid range, it is assumed
that it is correct, but if the output is not within a valid range, the previous version is
requested to perform the task instead. A supervisor is used to monitor the outputs from
each component before they are passed on to another component. This approach can
be used in combination with dependency analysis as a backup if critical components are
affected by an update.

Thesis

48 Applying Configuration Management Techniques to Component-Based Systems

COM [48] handles multiple versions in an awkward way. It does not accept new
versions of components and states that all new versions must be treated as new
components with unique identifiers. This prevents new versions from interrupting the
configuration in an unpredictable way. However, this is not always reliable since the
component vendors do not always adhere to recommendations. They can provide new
versions with the same identifier without being required to create a new component.
This is often the case if a component has been maintained and the interfaces are the
same. The next generation of windows services (NGWS) [60], is the new runtime
environment which supports C#, handles multiple components by introducing unique
identifiers for each component. Private and shared components are two means of
classifying components in NGWS. If a component is private, it is not possible for other
components to use it and this avoids the versioning problem since no other component
can use it and the number of dependencies is one. If a component is declared as shared,
many different applications can use it but with the risk of breaking dependencies when
updating the system.

5.8 Dependency Browser
A tool, designated the dependency browser has been developed for the evaluation of the
presented configuration model. The main requirement for the prototype was to be able
to parse a Windows 2000 system for its components and dependencies. An iterative
development model was used to be able to show results more quickly with a working
prototype. The prototype is able to browse the dependencies in a system and to store
them under version control. The prototype incorporates ideas from [38,39]. It is also
used to gather information about changes made between two configurations. Certain
measurements such as complexity analysis are also provided.

There are different levels of dependency between components in a system; in a
Windows system there are dependencies between shared libraries, as well as between
static and dynamic COM components. Applications such as Word, Excel or Explorer,
are treated as executables with their dependencies obtainable from the executable file
itself. Since all Windows executable files comply with the portable executable format it
is fairly easy to track the shared libraries but not so easy in the case of COM
components. Scanning all shared libraries and executables in a system creates a basic
dependency graph. Various features of the tool then extend this graph. The windows
registry has been used to gather information about each component, which is then
added to the dependency graph. Step by step, a configuration graph is built up for use in
configuration management. Processes can be supervised and when new components are
dynamically loaded into the memory, the graph is extended with dynamic dependencies.
However, the creation of a complete dependency graph at the Windows platform has
been a tedious task as there are too many dynamic dependencies difficult to detect
because they have not been activated during periods of time when the system is
supervised.

5. Component Configuration Management

Applying Configuration Management Techniques to Component-Based Systems 49

The number of components with dependencies

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of dependencies

N
um

be
r o

f c
om

po
ne

nt
s

Figure 17. Analysis of number of dependencies from each component on Windows
2000. A system with a decreasing trend, shown with a solid line, is less
complex than a system having an increasing trend, shown with a dashed line.

Experiments have shown 1993 components and 8936 edges in a Windows 2000
workstation configured for software development. It took 2 minutes and 4 second to
compute all the dependencies on an Intel Celeron 300 Mhz cpu. The number of
components and edges differ slightly between systems as a result of small differences in
the installations. Not all the workstations in the department were configured in the same
way since all the developers have their own tools installed.

Figure 17 shows the number of library dependencies for each component in the
Windows 2000 system. In the graph it is shown that most of the components have less
then five dependencies, this figure shows that such a system is less complex than a
graph where the majority of the components have more than five components. The
general complexity can be derived from the graph since a low number of dependencies
results in a less complex system. The number of components with zero dependencies
can be treated as basic components with low complexity and the component that
depends on 22 other components has a high complexity. In this example, only direct
dependencies have been measured before the transitive closure has been calculated. If
the trend is decreasing as show with the solid line in Figure 17 it is a measurement that
the system is less complex compared with a system having an increasing trend of
dependencies between components.

A graph similar to that shown in Figure 17 can be created to express the reverse
dependencies. Such a graph shows the components on which most other components
depend. If there are few components on which many other component depend, these
few components should be changed with discretion. On the other hand, all components

Thesis

50 Applying Configuration Management Techniques to Component-Based Systems

without dependents can be exchanged without risking the function of the system. All
the dependencies must be reversed before performing this kind of analysis. A
measurement such as this describes how many dependencies there are to a particular
component.

Preliminary results show that it is difficult to identify all the components and their
dependencies on the Windows 2000 platform. The configuration theory can be applied
when the dependencies are discovered. More effort is needed to gather dynamic
dependencies.

6. Future Work

Applying Configuration Management Techniques to Component-Based Systems 51

6 Future Work
The most obvious future work is to enhance the dependency browser prototype.
Configurations which express dependencies can be used to predict which components
will be affected by an update. The prototype developed does not implement this
functionality, but it can certainly be implemented by saving a configuration for later
comparison. The introduction of critical components is also a subject of improvement.
Updating a component in a critical path must not take place before it is approved by the
configuration control board. Additional future work is to investigate how introspection
into Java beans can be used to determinate dependencies between components. The
methods presented here will be explored more in detail and the results will be presented
in a future article.

Preliminary results show that it is possible to obtain different metrics from the
dependency graph, more research into the production and use of these metrics are
planned for the future.

The performance of a case study of a component-based information organiser is
planned. The method presented in this thesis will be used to analyse the dependencies.
The information organiser is an assembly of standard components with very little added
proprietary code, and an appropriate subject for a case study.

The development process used at ABB will also be the subject of an investigation. An
analysis of this process is required, applying CBSE methods where appropriate. The
results from this investigation will also be presented in an article.

6.1 A Proposed CM Process with Components
A process for managing components is to be developed. Preliminary ideas are the use of
traditional CM for developing components, but incorporating a version interface as
proposed in [38]. This interface will be used to gather dependencies and version
information from the component when it is deployed. It is of great importance that the
components can be identified when the system is assembled; if it is not possible to
identify a component, it is not possible to predict what that component will affect
during updates.

When external components are used, a dependency tool will identify the component
dependencies and provide version information for each component. It is also possible
to use the embedding pattern (se section 2.3) to wrap components to make them provide
version information.

After a system has been assembled the configuration graph will be stored separately
under version control. A baseline can be created to manage the components of a
particular configuration.

Thesis

52 Applying Configuration Management Techniques to Component-Based Systems

7 Conclusion
Building software systems with reusable components has many advantages. The
development becomes more efficient, the reliability of the products is enhanced, and the
maintenance requirement is significantly reduced. However, it is shown in this thesis
that there are still many problems with component-based systems. It is, for example,
difficult to analyse the dependencies in a system.

A model for analysing and managing dependencies is presented in this thesis. By
applying configuration management techniques to component-based systems together
with dependency analysis it is possible to predict the effects of a component update.

It was shown that many basic principles from CM, such as identification, version
management and change management could be applied in CBSE. The implementation
of these principles is however not easy because there is no precise definition of a
component, but rather many definitions which only describe the qualities a component
should exhibit.

This research has been accomplished by performing a survey of the use of different
technologies in various industrial projects. During the survey many problems with
dynamic upgrades have been identified and served as a source for the research of
analysing dependencies. The theory presented has been implemented in a dependency
browser prototype.

The main challenge is to find all the dependencies when implementing the configuration
model on a concrete platform. Here Windows 2000 was used as a target and it has
proven very difficult to extract all the dynamic dependencies. However, the model
presented in this thesis is applicable also for the development of new systems able to
predict the effects of dynamic configurations. If systems are developed with support for
dependency analysis it is possible to obtain complete dependency information. This
information could later be used to support dynamic configurations.

Matrix and list representations have been experimented with as different
implementations of dependencies between components. The matrix approach requires
much memory especially when the dependency graph is sparse, but it has advantages
such as easy understanding and fast calculation of transpose and transitive closure. On
the other hand the list representation is less memory consuming but makes use of more
complex algorithms for the calculations.

To mature software development, engineering methods, such as configuration
management architectures and development models related to the component
development paradigm, must be introduced. There are no “silver bullets”, instead the
combination of many different techniques is needed.

8. References

Applying Configuration Management Techniques to Component-Based Systems 53

8 References
 [1] Sterling, Cool:Spex, http://www.cool.sterling.com/products/Spex/index.htm.

 [2] Rational, Clear Case, http://www.rational.com/products/clearcase.

 [3] Rational, Clear Quest, http://www.rational.com/products/clearquest.

 [4] Microsoft, COM, http://www.microsoft.com/com .

 [5] Continuus Software Corporation, Continuus, http://www.continuus.com/.

 [6] OMG, CORBA, http://www.omg.org/corba.

 [7] Sun Microsystems, JAVA, http://java.sun.com.

 [8] IBM, JCentral, http://www.ibm.com/java/jcentral/basic-search.html.

 [9] Merant, PVCS Tracker, http://www.merant.com/products/pvcs/tracker/.

 [10] Elsitech, Visual Intercept, http://www.elsitech.com/.

 [11] Microsoft, Windows Installer, http://www.microsoft.com/.

 [12] Asklund, U., Configuration Management for Distributed Development - Practice and Needs,
Dissertion 10, Department of Computer Science Lund University, 1999.

 [13] Bass L., Clements P., and Kazman R., Software Architecture in Practice, Addison-
Wesley, 1998.

 [14] Bosch J., Design & Use of Software Architectures, Addison-Wesley, 2000.

 [15] Box D., Essential COM, Addison-Wesley, 1998.

 [16] Brown A. W. and Wallnau K. C., "Engineering of Component-based Systems",
In Proceedings of 2nd international conference on Engineering of Complex Computer Systems,
IEEE Computer Society, 1996.

 [17] Brown A.W. and Wallnau K. C., The Current State of CBSE, IEEE Software,
volume 15, issue 5, 1998.

 [18] Cherinka R., Overstreet C. M., and Ricci J., "Maintaining a COTS integrated
solution-are traditional static analysis techniques sufficient for this new
programming methodology?", In Proceedings of international conference on Software
maintenance, IEEE Computer Society, 1998.

Thesis

54 Applying Configuration Management Techniques to Component-Based Systems

 [19] Conradi R. and Westfechtel B., Version Models for Software Configuration
Management, ACM Computing Surveys, volume 30 ,issue 2, 1998.

 [20] Cook J. E. and Dage J. A., "Highly Reliable Upgrading of Components", In
Proceedings of 21st International Conference on Software Engineering, ACM Press, 1999.

 [21] Crnkovic, I., Large Scale Software System Management, Ph.D. Thesis, Departmnet of
Electrical Engineering, University of Zagreb, 1991.

 [22] Crnkovic I., "Experience with Change-oriented SCM Tools", In Proceedings of 7th
Symposium on Software Configuration Management, Lecture notes in Computer
Science, nr 1235, Springer Verlag, 1997.

 [23] Crnkovic I. and Larsson M., "A Case Study: Demands on Component-based
Development", In Proceedings of 22nd International Conference on Software Engineering,
ACM Press, 2000.

 [24] Crnkovic I., Larsson M., and Lüders F., "Software Process Measurements using
Software Configuration Management", In Proceedings of 11th European Software
Control and Metrics Conference, IEEE Computer Society, 2000.

 [25] Dart S., "Concepts in Configuration Management Systems", In Proceedings of 3rd
International workshop on Software Configuration Management, ACM Press, 1991.

 [26] Dart S., "Content Change Management: Problems for Web Systems", In
Proceedings of 9th Symposium on System Configuration Management, Lecture Notes in
Computer Science, nr 1675, Springer Verlag, 1999.

 [27] Estublier J., "Software Configuration Management: A Roadmap", In Proceedings of
22nd International Conference on Software Engineering, The Future of Software Engineering,
ACM Press, 2000.

 [28] Eve J. and Kurki-Suonio R., On computing the transitive closure of a relation,
Acta-Informatica, volume 8, issue 4, 1977.

 [29] Gamma E., Helm R., Johnson R., and Vlissidies J., Design Patterns, Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

 [30] Garlan D., Allen R., and Ockerbloom J., Architectural Mismatch: Why Reuse is
so Hard, IEEE Software, volume 12, issue 6, 1995.

 [31] Grimaldi R. P., Discrete and Combinatorial Mathematics, Adison-Wesley, 1999.

 [32] Hoek A. v. d., "Capturing Product Line Architectures", In Proceedings of 4th
International Software Architecture Workshop, ACM Press, 2000.

8. References

Applying Configuration Management Techniques to Component-Based Systems 55

 [33] Hoek A. v. d., Hall R. S., Heimbigner D., and Wolf A. L., "Software Release
Management", In Proceedings of 6th European Software Engineering Conference, Lecture
Notes on Computer Science, nr 1301, Springer, 1997.

 [34] Isovic D., Lindgren M., and Crnkovic I., "System Development with Real-Time
Components", In Proceedings of 1st workshop on Pervasive Components, 2000.

 [35] Josefsson, Margareta, Programvarukomponenter i praktiken -att köpa tid och
prestera mer, report V040078, Sveriges Verkstadsindustrier, 1999.

 [36] Korel B., "Black-Box Understanding of COTS Components", In Proceedings of 7th
international workshop on program comprehension, 1999.

 [37] Lampson B., "How Software Components Grew Up and Conquered the
World", In Proceedings of 21st International Conference on Software Engineering, ACM
Press, 1999.

 [38] Larsson M. and Crnkovic I., "New Challenges for Configuration Management",
In Proceedings of 9th Symposium on System Configuration Management, Lecture Notes in
Computer Science, nr 1675, Springer Verlag, 1999.

 [39] Larsson M. and Crnkovic I., "Component Configuration Management", In
Proceedings of 5th Workshop on Component Oriented Programming, 2000.

 [40] Larsson M. and Crnkovic I., "Development Experiences from a Component
Based System", In Proceedings of 7th Engineering Conference on Computer Based Systems,
IEEE Computer Society, 2000.

 [41] Le Lann G., "An analysis of the Ariane 5 flight 501 failure - a system engineering
perspective", In Proceedings of 4th international conference of engineering of computer based
systems, IEEE Computer Society, 1997.

 [42] Morisio M., Seaman C. B., Parra A. T., Basil V. R., Kraft S. E., and Condon S.
E., "Investigating and Improving a COTS-Based Software Development
Process", In Proceedings of 22nd International Conference on Software Engineering, ACM
Press, 2000.

 [43] Nuutila, E., Efficient Transitive Closure Computation in Large Digraphs, Ph.D. Thesis,
Department of Mathematics and Computing in Engineering, Helsinki University
of Technology, Finland, 1995.

 [44] Olsson, Kent and Karlsson, Even-André, Daily Build - The Best of Both
Worlds Rapid Development and Control, report V040083, Sveriges
Verkstadsindustrier, 1999.

Thesis

56 Applying Configuration Management Techniques to Component-Based Systems

 [45] Oreizy P., Medividovic N., and Taylor R. N., "Architecture-Based Runtime
Evolution", In Proceedings of 20th international conference on software engineering, ACM
Press, 1998.

 [46] Peltz C., "A Hierarchical Technique for Composing COM based Components",
In Proceedings of 2nd international workshop on CBSE, SEI, 1999.

 [47] Rege K., "Design Patterns for Component-Oriented Development", In
Proceedings of 25th EUROMICRO in the workshop on Software Process and Product
Improvment, IEEE Computer Society, 1999.

 [48] Rogerson D., Inside COM, Microsoft Press, 1996.

 [49] Roman E., Mastering Enterprise JavaBeans and the Java 2 Platform, Enterprise Edition,
Wiley, 1999.

 [50] Sametinger J., Software Engineering with Reusable Components, Springer, 1997.

 [51] Seacord R.C., Hissam S. A., and Wallnau K. C., AGORA: a search engine for
software components, IEEE Internet Computing, volume 2, issue 6, 1998.

 [52] Shaw M. and Garlan D., Software Architecture: Perspectivs on an Emerging Discipline,
Prentice-Hall, 1996.

 [53] Standish T. A., Data Structures, Algorithms & Software Principles in C, Addison-
Wesley, 1995.

 [54] Szyperski C., Component Software Beyond Object-Oriented Programming, Addison-
Wesley, 1998.

 [55] Takeshita T., "Metrics and risks of CBSE", In Proceedings of 5th international
symposium on software tools and technologies, IEEE Computer Society, 1997.

 [56] Thane, H., Monitoring, Testing and Debugging of Distributed Real-Time Systems, Ph.D
Thesis, Royal Institute of Technology, KTH, Mechatronics Laboratory, TRITA-
MMK 2000:16, Sweden, 2000.

 [57] Voas J., Cerifying Off-the-Shelf Software Components, IEEE Computer, volume
31, issue 6, 1998.

 [58] Voas J., COTS Software: the Economical Choice?, IEEE Software, volume 15,
issue 2, 1998.

 [59] Warshall S., A Theorem on Boolean Matrices, Journal of the ACM, volume 9,
issue 1, 1962.

 [60] Wille C., Presenting C#, SAMS Publishing, 2000.

 [61] Zeller A., "Versioning System Models Through Description Logic", In Proceedings
of 8th Symposium on System Configuration Management, Lecture Notes in Computer
Science, nr 1439, Springer Verlag, 1998.

Applying Configuration Management Techniques to Component-Based Systems 57

DEVELOPMENT EXPERIENCES FROM A
COMPONENT-BASED SYSTEM

Magnus Larsson & Ivica Crnkovic

Abstract:

Building software systems with reusable components brings many advantages.
If the reuse concept is utilized on several levels of a system development, the
development becomes more efficient, the reliability of the products is
enhanced, and the maintenance requirement is significantly reduced. The
levels of reuse are spread out from the reuse of source code and common
libraries, through the reuse of large business components, up to the reuse of
the standard products in the configuration of large systems. Designing,
developing and maintaining components for reuse is, however, a very complex
process which places high requirements not only for the component
functionality and flexibility, but also for the development organization. In this
paper, we discuss the different levels of component reuse, and certain aspects
of component development. As an illustration of reuse issues, we present a
successful implementation of a component-based system, which is widely used
for industrial process control.

1 Introduction
Reuse and an open component-based architecture are the keys to the success of systems
with a long lifecycles. Designing a system that supports this approach, requires more
effort in the design phase and the time to market might be longer, but in the long run,
the reusable architecture will prove profitable. The reuse concept can be used on
different levels: On a low level it is a reuse of source-code, and small-size components.
More reuse is obtained with larger components encapsulating business functions.
Finally, the integration of complete products in complex systems can be seen as the
highest level of reuse. On each level of reuse there are specific demands on the reusable
components, on the component management and on the integration process.

This paper describes important issues related to the development and maintenance of
reusable components and as an example uses the ABB Advant industrial process control
system. In chapter 2 we give an overview of the Advant system design and in chapter 3
the main characteristics of Advant reusable components. Chapter 4 outlines all the
development and maintenance aspects of a component based system, which must
comply with customer requirements. During evolution of the system new technologies

Development Experiences from a Component-based system

58 Applying Configuration Management Techniques to Component-Based Systems

Business System

Process
Controller

Process
Controller

Process
Controller

Information
Management Station Operator Station

were developed which resulted in the appearance on the market of many components
with the same functionality as the proprietary ones. The fact that new components must
be incorporated into the existing systems introduces new demands on the system
development process. These new issues are discussed in chapter 5.

2 ABB Advant Open Control System
ABB is a global electrical engineering and technology company, serving customers in
power generation, transmission and distribution, in industrial automation products, etc.
The ABB group is divided into companies, one of which, ABB Automation Products
AB, is responsible for development of industrial automation products. The automation
products encompass several families of industrial process-control systems including
both software and hardware.

The main characteristics of these products are reliability, high quality and compatibility.
These features are results of responses to the main customers requirements: The
customers require stable products, running around the clock, year after year, which can
be easily upgraded without impact on the existing process. To achieve this, ABB uses a
component-based system approach designing the extendable and flexible systems.

The Advant Open Control System (OCS) [1] is component-based to suit different
industrial applications. The range includes systems for Power Utilities, Power Plants and
Infrastructure, Pulp and Paper, Metals and Minerals, Petroleum, Chemical and
Consumer Industries, Transportation systems, etc. An overview of the Advant system is
shown in Figure 1.

Figure 1. An overview of the conceptual architecture of the Advant open control
system.

Advant OCS performs process control and provides business information by
assembling a system of different families of Advant products. Process information is
managed at the level of process controllers. The process controllers are based on a real-
time operating system and execute the control loops. The Operator Station (OS) and
Information Management Station (IMS) gather and supervise product information,
while the business system analysis information for optimization of the entire processes.

2. ABB Advant Open Control System

Applying Configuration Management Techniques to Component-Based Systems 59

Advant products use standard and proprietary communication protocols to satisfy real-
time requirements.

2.1 Designing for Reuse
The Advant system architecture is designed for reuse. Different products such as
Operator and Information Management Stations are used as system components in
assembling complete systems. Examples of the products are. The two operator station
versions, Master OS and MOD OS are used in building different types of operator
applications.

Having up-to-date information at the right time and in the right place is critical to the
success of any industrial operation and Advant OCS therefore includes information
management functions with real-time insight into all aspects of the process controlled.
Advant Information Management has an SQL-based relational database accessible to
resident software and all surrounding computers. Historical data acquisition reports,
versatile calculation packages and an application programming interface (API) for
proprietary and third party applications are examples of the functionality provided.
Advant components have access to process, production and quality data from any
Process Control unit in a plant or in an Intranet domain.

2.1.1 Scalability.
Advant OCS can be configured in a multitude of ways, depending on the size and
complexity of the process. The initial investment can consist of stand-alone process
controllers and, optionally, local operator stations for control and supervision of
separate machines and process sections. Subsequently, several process controllers can be
interconnected and, together with central operator and information management
stations build up a control network. Several control networks can be interconnected to
give a complete plant network which can share centrally located operator, information
and engineering workplaces.

2.1.2 Openness.
The system is further strengthened by the flexibility to add special hardware and
software for specific applications such as weighing, fixed- and variable-speed motor
drives, safety systems and product quality measurements and control in for example the
paper industry. Second- and third party administrative, information, and control can also
be easily incorporated

2.1.3 Cost-effectiveness.
 The step-by-step expansion capability of Advant OCS allows users to add new
functionality without making existing equipment obsolete. The system’s self-

Development Experiences from a Component-based system

60 Applying Configuration Management Techniques to Component-Based Systems

Safety
System

Input
Devices

Information
Management

Station

Satellite
Communication

Well
Supervision

Offshore
oil

production

configuration capability eliminates the need for engineers to enter or edit topology
descriptions when new stations are physically installed. New units can be added while
the system is in full operation. With Advant OCS, system expansion is therefore easy
and cost-effective.

2.2 Designing with Reuse
Designing with reuse of existing components has many advantages [2]. The software
development time can be reduced and the reliability of the products increased. These
were important prerequisites for the Advant OCS development.

Advant OCS products can be assembled in many different configurations for use in
various branches of industry. Specific systems are designed with the reuse of Advant
OCS products and other external products. This means which customers get a tailor-
made system that meets their needs. External products and components can be used
together with the Advant OCS due to the openness of the system. For example a
satellite communication component, which is used to transmit data from the offshore
station to the supervision system inland, can be integrated with the Advant OCS (Figure
2).

Figure 2. Solution for an offshore oil production platform.

The offshore system in Figure 2 uses the Information Management Station to gather all
relevant data from the oil producing process and this is then transmitted to the
headquarters on shore via the external satellite component. A safety component is used
to provide a more secure system. Another component is the well supervision unit which
monitors the oil wells.

Component-based systems for different types of applications can be easily designed and
produced because of the open and scalable architecture of Advant OCS.

2.3 Experiences
The Advant system is a successful system that can be used to build different types of
process automation systems. It has effective build and integration procedures. The main

3. Reusable Components

Applying Configuration Management Techniques to Component-Based Systems 61

Object Management

Operator Station

User Interface (UIS)

Standard Operating System Real-time Operating System

C++ Component Library

Functional Components Functional Components Functional Components

OS-Base functions

reason for the success is - component-based architecture and the component features
(flexibility, robustness, stability and compatibility).

However, the cost to achieve these features has been high. To be able to suit the
requirements of an open system, new ABB products had always to be backward
compatible. It would have been easier to develop a new system that did not have to be
compatible with the previous systems. To guaranty that the system is backward
compatible works as a warranty that the current system will integrate with new products
and this makes the system trustworthy. The system is carefully designed and a lot of
effort has been put in test and maintenance.

Development with big components that are easy to reuse increase the efficiency
significantly compared to reusing a smaller component that could have been developed
in-house to the same cost as buying it. The Advant OCS products are examples of big
components that have been used to assembly process automation systems.

3 Reusable Components

3.1 Components
The Advant OCS products are component based to minimize the maintenance and
development cost. Figure 3 shows the component architecture of the operator station.

Figure 3. The operator workstation is assembled from components.

The operator station consists of a specific number of functional components and of a
set of standard Advant components. These components use the User Interface System
(UIS) component. Object Management Facility (OMF) is a component which handles
the infrastructure and data management. OMF is similar to CORBA [3] in that it
provides a distributed object model with data, operation and event services. The UxBase
component provides drivers and other specific operating system functions. Helper

Development Experiences from a Component-based system

62 Applying Configuration Management Techniques to Component-Based Systems

Desktop system

OMF

OMF-COM aware
COM application

Advant OS

OMF

Advant
Components

Process
controller

Process
controller

classes for strings, lists, pointers, maps and other general-purpose classes are available in
the C++_complib component. The components are built upon operating systems, one,
a standard system(such as Unix or Windows), and the other a proprietary real-time
system.

To illustrate different aspects of component-based development and maintenance, we
shall further look at two components:

▪ Object Management Facility (OMF), a business type of component with a high-level
of functionality and a complex internal structure;

▪ C++_complib is a basic and a very general component.

3.2 Object Management Facility (OMF)
OMF is object-oriented middle-ware for industrial process automation. It encapsulates
real-time process control entities of almost every conceivable description into objects
that can be accessed from applications running on different platforms, for example Unix
and Windows NT. Programming interfaces are available for many languages such as C,
C++, Visual Basic, Java, Smalltalk and SQL while interfaces to the IEC 1131-3 [4]
process control languages are under development. OMF is also adapted to Microsoft
Component Object Model (COM) via adapters and another component called OMF
COM aware. The adapters for OPC (OLE for Process Control) [6] and OLE
Automation are also implemented. Thanks to all these software interfaces, OMF makes
process and production data available to the majority of computer programmers and
users i.e. even to those not necessarily involved in the industrial control field. For
instance, it is easy to develop applications in Microsoft Word, Excel and Access to
access process information. OMF has been developed for demanding real-time
applications, and incorporates features, such as real-time response, asynchronous
communications, standing queries and priority scheduling of data transfers. On one side
OMF provides industry-standard interfaces to software applications, and on the other, it
offers interfaces to many important communication protocols in the field (see Figure 4),
including MasterNet, MOD DCN, TCP/IP and Fieldbus Foundation. These adapters
make it possible to build homogeneous control systems out of heterogeneous field
equipment and disparate system nodes.

Figure 4. Many different components and products use the OMF component.

4. Different Reuse Aspects

Applying Configuration Management Techniques to Component-Based Systems 63

OMF reduces the time and cost of software development by providing frameworks and
tools for a wide range of platforms and environments. These utilities are well integrated
into their respective surroundings, allowing developers to retain the tools and utilities
they prefer to work with.

3.3 C++_complib
C++_complib is a class library that contains general-purpose classes, such as containers,
string management classes, file management classes, etc. The C++_complib library was
developed when no standard libraries, such as STL [5], were available on the market.
The main purpose of having this library was to improve the efficiency and the quality,
and to get the uniform usage of the basic functions. The c++_complib library is reused
whenever possible even in cases in which similar services are supported by a specific
platform or development package. The library was ported to several platforms, and in
some cases the implementation part had small variations. The declaration part is the
same on all platforms.

4 Different Reuse Aspects

4.1 Component generality and efficiency
Reuse principles place high demands on the reusable components. The components
must be sufficiently general to cover the different aspects of their use. At the same time
they must be concrete and simple enough to serve a particular requirement in an
efficient way. Developing a reusable component requires three to four times more
resources than developing a component, which serves a particular case [7]. In the case
of C++_complib, the situation was simpler, because the requirements from the
theoretical point of view were clear. It was relatively easy to define the interface, which
was used by different components in the same way. The situation was more complicated
with complex components, such as OMF. Although the basic concept of component
functionality was clear, the demands on the component interface and behavior were
different in different components and products. Some components required a high level
of abstraction, others required the interface to be on a more detailed level. These
different types of requirements have led to the creation of two levels of components:
OMF base, including all low-level functions, and OMF framework, containing only a
higher level of functions and with more pre-defined behavior and less flexibility.

4.2 Evolution of Functional Requirements
The development of reusable components would be easier if functional requirements
did not evolve during the time of development. As a result of new requirements for the
products, new requirements for the components will be defined. The more reusable a
component is, the more demands are placed on it from products using that component.

Development Experiences from a Component-based system

64 Applying Configuration Management Techniques to Component-Based Systems

Product P1

Product P2

Component

Time

Requirements

Product P1

Product P2

Component

Time

Requirements satisfied in the releases

A number of the requirements coming from different products, may be the same or
very similar, but this is not necessarily the case for all requirements passed to the
components. In addition to the requirements stated from the products, a component
also collects demands on the internal behavior (for example code improvement,
improvement of the maintainability, etc.). This means that the number of requirements
of reusable components grow faster than of particular products or of a non-reusable
piece of software. To satisfy these requirements the components must be updated more
rapidly and the new versions must be released more frequently than the products using
them.

The evolution process is illustrated in Figure 5. The first graph shows the growing
number of requirements for certain products. The number of requirements of a
common component grows faster. Some of the product requirements are satisfied with
each new release of a product, which are shown as steps on the second graph. The
component satisfying the requirements by its releases, which normally precede the
releases of each product.

Figure 5. To satisfy the requirements the reusable component must be modified more
often.

Indeed this was the case with both components we are analyzing here: New functions
and classes were required from C++_complib, and new adapters and protocol support
were required from OMF. The development time for these components was
significantly shorter than for products: While new versions of a product are typically

4. Different Reuse Aspects

Applying Configuration Management Techniques to Component-Based Systems 65

OpenVMS

Digital UNIX

Win NT 3.5

HP-UX 8.x

HP-UX 9.x

HP-UX
10.x

Win NT 4.0

Win 2000

released each six months, new versions of components are released as least twice as
often.

4.3 Migration Between Different Platforms
 During their several years of development, Advant products have been ported on
different platforms. The reasons for this were the customer requirement, that the
products should run on specific platforms, and general trends in the growing popularity
of certain operating systems. Of course, at the same time, new versions and variants of
the platform already used appeared, supporting new, better and cheaper hardware.
Figure 6 shows the migration path of Advant products on different platforms.

Figure 6. Different platforms supported by OMF.

As an important part of the reuse concept was to keep the high-level components
unchanged as far as possible, it was decided to encapsulate the differences between
operating systems in low-level components. This concept works, however, only to some
extent. The minimal activity required for each platform is to rebuild the system for that
platform. To make it possible to rebuild the software on every platform, standard-
programming languages C and C++ have been used. Unfortunately, different
implementations of the C++ standard in different compilers, caused problems in the
code interpretation and required the rewriting of certain parts of the code. To ensure
that standard system services are available on all platforms, the POSIX standard has
been used. POSIX worked quite well on different Unix platforms, but much less so on
Windows NT. The second level of compatibility problem was Graphical User Interface
(GUI). The main dilemma was whether to use exactly the same GUI on every platform,

Development Experiences from a Component-based system

66 Applying Configuration Management Techniques to Component-Based Systems

OMF 1.0

OMF 2.0 OMF 2.0

OMF 1.0

or to use the standard "look and feel" GUI for each platform. This question applied
particularly on NT in relation to Unix platforms. Experience has shown that it is not
possible to give a definitive answer. In some cases it was possible to use the same GUI
and the same graphical packages, but in general, different GUIs were implemented.

The main work regarding to the reuse of code on different platforms was performed on
low-level components, such as UxBase and OMF. While UxBase provides different low-
level packages for every platform (for example different drivers), OMF capsulated the
differences directly in the code using conditional compilation. OMF itself is designed in
such a way that it was possible to divide the code into two layers. One layer is specific
for each operating system, and the other layer, with the business logic, is implemented
for all of the supported platforms. Reuse issues on different platforms for
C++_complib were easier, strictly the package contains general algorithms, which are
not hard connected to a specific operating system. Some problems appeared however,
related to different characteristics of compilers on different platforms.

4.4 Compatibility
One of the most important factors for successful reusability is the compatibility between
different versions of the components. A component can be replaced easily or added in
new parts of a system if it is compatible with its previous version. The compatibility
requirements are essential for Advant products, since smooth upgrading of systems,
running for many years, is required. Compatibility issues are relative simple when
changes introduced in the products are of maintenance and improvement nature only.
Using appropriate test plans, including regression tests, functional compatibility can be
tested to a reasonable extent. More complicated problems occur when new changes
introduced in a reusable component eliminate the compatibility. In such a case,
additional software, which can manage both versions, must be written.

A typical example of such an incompatible change, is a change in the communication
protocol between OMF clients and servers. All different versions of OMF must be able
to talk to each other to make the system flexible and open (Figure 7 It is possible to
have different combinations of operating systems and versions of OMF and it still
works. This has been solved with an algorithm that ensures the transmission of correct
data format. If two OMF nodes have the same version, they talk in their native
protocol.

Figure 7. Different versions of OMF must be compatible with all older versions.

4. Different Reuse Aspects

Applying Configuration Management Techniques to Component-Based Systems 67

If an old OMF node talks with a new, the new OMF is responsible for converting the
data to the new format, this being designated RMIR ("receiver makes it right"). If a new
OMF sends data to an older, the older OMF can not convert the data since it is unaware
of the new protocol. In this case the newer OMF must send in the old protocol format,
SMIR ("sender makes it right"). This algorithm builds on that fact all machines know
about each other and that they also know what protocol they talk. However, if an OMF-
based node does not know of the other node then it can always send in a predefined
protocol referred to as “well known format”. All nodes do recognize this protocol and
can translate from it. This algorithm minimizes the number of data conversions between
the nodes.

In the case of C++_complib the problems with compatibility were somewhat different.
New demands on the same classes and functions appeared because of new standards
and technology. One example is the use of C++ templates. When the template
technology became sufficiently mature, the new requirements were placed for
C++_complib: All the classes were to be re-implement as template classes. The reason
for this was the requirement for using basic classes in a more general and efficient way.
Another example was a Unicode support in addition to ASCII-support. These new
functions were added by new member-functions in the existing classes and by adding
new classes using the inheritance mechanism for reusing the already existing classes.

4.5 Development Environment
When developing reusable components several dimensions of the development process
must be considered:

▪ Support for development of components on different platforms;
▪ Support for development of different variants of components for different

products;
▪ Support for development and maintenance of different versions of components for

different product versions.

To cope with these types of problems, it is not sufficient to have appropriate product
architecture and component design. Development environment support is also essential.

The development environment must permit an efficient work in the project - editing,
compiling, building, debugging and testing. Parallel and distributed development must
also be supported, because the same components are to be developed and maintained at
the same time on different platforms. This requires the use of a powerful Configuration
Management (CM) tool, and definition of an advanced CM-process.

The CM process support exists on two levels. First on the source-code level, in which
source-code files are under version management and binary files are built. The second
level is the product integration phase. The product built must contain a consistent set of
the component versions. For example, Figure 8 shows an inconsistent set of
components. The product version P1-V2 uses the component versions C1-V2 and C2-

Development Experiences from a Component-based system

68 Applying Configuration Management Techniques to Component-Based Systems

Product P1,
Version V1

Product P1,
Version V2

Component C1,
Version V2

Component C1,
Version V1

Component C2,
Version V1

Component C2,
Version V2

V2. At the same time the component version C1-V2 uses the component version C2-
V1, an older version. Integrating different versions of the same component may cause
unpredictable behavior of the product.

Figure 8. An inconsistent component integration.

Another important aspect of CM in developing reusable component is Change
Management. Change management keeps track of changes on the logical level, for
example error reports, and manages their relations with implemented physical changes
(i.e. changes of source code, documentation, etc.). Because change requests (for example
functional requirements or error reports) come from different products, it is important
to register information about the source of change requests. It is also important to relate
a change request from one product to other products. The following questions must be
answered: What impact can the implemented change have on other products? If en
error appears in one product, does it appear in other products? Possible implications
must be investigated, and if necessary, the users of the products concerned must be
informed.

The development environment designated Software Development Environment (SDE)
[8] is used in developing Advant products. It is an internally built program package,
which encapsulates different tools, and provides support for parallel development. The
CM tool, based on RCS [9] provides support for all CM disciplines, such as Change
Management, WorkSpace Management, Build Management, etc. SDE runs on different
platforms, with slightly modified functions. For example, the build process is based on
Makefiles and autoconf on Unix platforms, while Microsoft Developer Studio with
additional Project Settings is used on Windows NT. The main objective of SDE is to keep
the source-code in one place under version control. Using baselines, and change
requests, the different versions of components are managed. The whole development
process is complex and requires an organized and planned support, but it is unavoidable
for an efficient and successful development of and with reusable components.

5. A New Paradigm -Standard Components

Applying Configuration Management Techniques to Component-Based Systems 69

5 A New Paradigm -Standard Components
In recent years the demands of customers on systems have changed. Customers require
integration with standard technologies and the use of standard applications in the
products they buy. This is a definite trend on the market but there is little awareness of
the possible problems involved. An improper use of standard components can cause
severe problems, especially in distributed real-time and safety-critical systems, with long-
period guarantees. In addition to these new requirements, time-to-market demands have
become a very important factor.

These factors and other changes in software and hardware technology have introduced a
new paradigm in the development process [10]. The development process is focused
now on the use of standard and de-facto standard components, outsourcing, COTS and
the production of components. At the same time, final products are no longer closed,
monolith systems, but are instead component-based products that can be integrated
with other products available on the market.

This new paradigm in the development process and marketing strategy has introduced
new problems and raised new questions:

▪ The development process has been changed. Developers are now not only designers
and programmers, they are also integrators and marketing investigators. Are the new
development methods established? Are the developers properly educated?

▪ What are the criteria for the selection of a component? How can we guarantee that a
standard component fulfills the product requirements?

▪ What are the maintenance aspects? Who is responsible for the maintenance? What
can be expected of the updating and upgrading of components? How can we satisfy
the compatibility and reliability requirements?

▪ What is the trend on the market? What can we expect to buy not only today but also
on the day we begin delivering our product?

▪ When developing a component, how can we guarantee that the "proper" standard is
used? Which standard will be valid in five, ten years?

All these questions must be considered before beginning a component-based
development project. Josefsson [11] presents certain recommendations to the
component integrator for use as guidelines: Test the imported component in the
environment where it is to run and limit the practical number of component suppliers to
minimize the compatibility problems. Make sure that the supplier is evaluated before a
long-term agreement is signed.

The focus of development environment support should be transferred from the “edit-
build-test” cycle to the “component integration-test” cycle. Configuration management
must give more consideration to rune-time phase [12].

Development Experiences from a Component-based system

70 Applying Configuration Management Techniques to Component-Based Systems

Subscription Object Creation

Object
Communication

DCOM OMF

5.1 Replacing Internal Component With Standard
Components

In the middle of the eighties, ABB Advant products were completely proprietary
systems with internally developed hardware, basic and application software. In the
beginning of the nineties, standard hardware components and software platforms were
purchased while the real-time additions and application software were developed
internally. The system is now developed further using components based on new,
standard technologies.

During this development, further new components become available on the market.
ABB faced this issue more than once. At one point in time, it was necessary abandon
the existing solutions in a favor of new solutions based on existing components and
technologies. To illustrate the migration process we the discuss possibility of replacing
OMF and C++_complib with standard components.

Experience from these examples showed that it is easier to replace component if the
replacement process is made in small incremental steps. Allowing the new component
to coexist with the old one makes it easier to be backward compatible and the change
will be smooth.

5.2 Replacing OMF with DCOM
Moving from a UNIX based system to a system based on Windows NT had serious
affect on the system architecture. Microsoft components using a new object model were
available, namely COM/DCOM [13]. DCOM has functionality similar to that of OMF
and this became a new issue when DCOM was released. Should ABB continue to
develop its proprietary OMF or change to a new standard component? The problem
was that DCOM did not have all the functionality of OMF and vice versa. The domains
overlap only partially as shown in Figure 9

Figure 9. The functionality domains of OMF and DCOM do not overlap completely.

A subscription of data with various capabilities can be made in OMF, and this
subscription functionality is not supported by DCOM.

6. Conclusion

Applying Configuration Management Techniques to Component-Based Systems 71

On the other hand, DCOM can create objects when they are required and not like OMF
where objects are created before the actual use of them. Both technologies support
object communication and in this area it is easier to replace OMF. with DCOM.

If the decision was made to continue with OMF, all the new components that run on
top of COM could not be used, which would drastically reduce the possibilities of
integration with other, third-party components. On the other hand, it would require
considerable work to make the current system run on top of COM. This was the
dilemma of COM vs. OMF.

To begin with OMF was adapted to COM with an adapter designated OMF COM
aware. This functionality helped COM developers access OMF objects and vice versa.
However, this solution to the problem using two different object models was not
optimal since it added overhead in the communication. Nor it was possible to match the
data types one to one, which made the solution limited. A decision was taken to build
the new system on COM technologies with proprietary extensions adding the functions
missing from COM. All communication with the current system was to be through the
OMF COM. Adapters are very useful when a new component is to used in parallel with
an existing one [14]. This solution makes it easy to remove the old OMF and replace it
with COM in small steps over time.

5.3 Replacing C++_complib with STL
To switch from C++_complib to STL [5] was much easier because STL covers almost
all the C++_complib functions and provides additional functionality. Still, much work
reminded do since all the code using C++_complib had to be changed to be able to use
STL instead. The decision was taken to continue using both components and to use
STL whenever new functionality was added. After a time the use of old components
was reduced and the internal maintenance cost reduced. In some cases in the same
components both libraries were used, which gave some disadvantages, especially in the
maintenance process.

6 Conclusion
The Advant OCS has been used as an example of a successful component based system
and we have shown what it means to develop with components that fit into a large
software system. A careful design and awareness of future demands on components are
necessary to be able to integrate the existing system with new technologies. When
Advant OCS was developed no one really though about Windows NT and ABB had to
pay the price for that when it suddenly became clear that Windows NT would be the
next operating platform. It was possible to move from one platform to another, but the
cost was greater than if the design would have been more independent from the
platform. We have shown certain problems with developing reusable components and
given examples for this. The experiences from the development of Advant OCS has
been that it is better to put more effort to create an open and extendable architecture
than to rush the development focusing on only current technologies.

Development Experiences from a Component-based system

72 Applying Configuration Management Techniques to Component-Based Systems

7 References
[1] Advant, ABB Automation Products, http://www.advantocs.com

[2] Sommerville I., Software Engineering, Addison-Wesely, 1999

[3] CORBA, http://www.corba.org

[4] International Electrotechnical Commision (1992), Programmable Controllers Part
3, Programming Languages, IEC 1131-3, IEC Geneva.

[5] Austern M., Generic Programming and the STL, Addison-Wesely, 1999

[6] OPC Foundation, http://www.opcfoundation.org

[7] Szyperski C., Component Software, Addison Wesely, 1999

[8] Crnkovic I., Experience with Change-Oriented SCM Tools, Software Configuration
Management ICSE’97 Symposium, 1997, proceedings, Springer

[9] Tichy W., RCS - A System for Version Control, Software and Practice Experience,
15(7):635-654, 1985

[10] Aoyama M.: New Age of Software Development: How Component-Based Software
Engineering Changes the Way of Software Development, 1998 International Workshop
on CBSE

[11] Josefsson M., Oskarsson Ö., Programvarukomponenter i praktiken – att köpa tid och
prestera mer, Report from Sveriges Verkstadsindustrier 1999

[12] Larsson M., Crnkovic I., New Challenges for Configuration Management, System
Configuration Management Symposium, 1999, proceedings, Springer

[13] Box D., Essential COM, Addison-Wesley, ISBN 0-201-63446-5

[14] Rine D., Nada N., Jaber K., Using Adapters to Reduce Interaction Complexity in Reusable
Component-Based Software Development, Proceedings of the fifth symposium on
software reusability, ACM Press, 1999

Applying Configuration Management Techniques to Component-Based Systems 73

NEW CHALLENGES FOR
CONFIGURATION MANAGEMENT

Magnus Larsson & Ivica Crnkovic

Abstract:

More and more systems are developed using components. There is a move from
monolithic to open and flexible systems. In such systems, components are
upgraded and introduced at run-time, which affects the configuration of the
complete system. Keeping up-to-date information about which components are
installed is a problem. Updating a component also affects the compatibility of
the system. It is therefore important to keep track of changes introduced in the
system. In the product life cycle, CM is traditionally focused on the
development phase, in particular on managing source code. Now when
changes are introduced in systems at run-time and systems are component-
based, a new discipline, component configuration management is required.
This paper analyses component management and highlights the problems
related to component configuration. Requirements on component configuration
management are outlined, and some directions to possible solutions of the
problems are given.

1 Introduction
In recent years we have recognized a new paradigm in the development process: From a
complete in-house development, to a development process which has focused on the
use of standard and de-facto standard components1, outsourcing, COTS (commercials
off the shelf). The final products are not closed, monolithic systems, but are instead
component-based products which can be integrated with other products available on
the market [3]. Developers are not only designers and programmers, they have become
integrators and marketing investigators. The new paradigm increases the efficiency of
development and the flexibility of delivered products, but at the same time increases the
risk of losing product configuration consistency. The higher risk reduces the product
reliability, which is a critical factor for certain types of systems, such as real-time and
safety-critical systems. Configuration Management (CM) is a discipline, which controls
the consistency between the parts of the entire system, and can increase the reliability of
component-based products.

1 Definitions of components are presented in chapter 3.

New Challenges for Configuration Management

74 Applying Configuration Management Techniques to Component-Based Systems

Software systems based on standard components are the results of a combination of
pure development and integration of components. The requirements for conventional
use of CM remains, but new requirements related to component management appear in
all phases: in the design, integration and run-time. We can expect that the source code
management will become less critical, because there is less internal development and
because of the fact that source code management in CM is very well established in both
theory and implementation. The integration part, i.e. configuration, and version
management of the components becomes more important. New aspects of CM arise in
the run-time phase, as components are usually loosely coupled, and their update is
allowed in the run-time environment.

The importance of CM, and challenges in research and implementation of CM support,
are emphasized in the 1998 CBSE (Component-based Software Engineering) workshop
[2], as quoted: "In particular, high composeability in a product line setting amounts to
mass customization and this introduces tremendous configuration management
challenges and support challenges."

Although CM provides good support in the development phase, especially in the coding
phase, there is a lack of CM disciplines managing components already developed. This
paper points to certain new aspects of CM in managing components. Chapter 2 shows
different phases in component development processes and run-time environments and
their relations to CM activities. The different compatibility levels of the components are
discussed in chapter 3. Chapter 4 gives an overview of the component characteristics
related to CM issues. The problems, which appear due to the lack of proper CM
support, are presented. Chapter 5 outlines certain models for improving the support and
improving the reliability of products.

2 Using CM in Component-based Product Life
Cycles

Configuration management is applied in different phases of a component-based product
life cycle. Figure 1 shows an example of a development and run-time process. In the
development phase we build libraries from the source code. A component is built by
assembling libraries and collecting other types of items such as documentation and
executable files. Finally, a typical component-based product consists of a set of
components.

2. Using CM in Component-based Product Life Cycles

Applying Configuration Management Techniques to Component-Based Systems 75

Foobar

Components

Foo.dll

Bar.dll

Foobar

product.exe

UI

Source code Dynamic libraries Products

Development

Run-time

Foo.dll

Bar.dll

common.dll

UI

Comp2

product.exe

Prod2.exe

Version
management

Build and
configuration

Configuration Packaging

On-line Configuration

Figure 1. CM activities in different phases of a component-based product life cycle

In the first development phase, source code management is used to track the
introduction of different versions of source code, to enable parallel development, etc.
Many CM tools supporting this are available today. The building phase is also supported
by CM tools such as different variants of make and configuration tools, the results of
the building procedures being connected to the source code. One step closer to CM for
components is to use description logic, to describe configurations, in combination with
make to build a product[10]. However, this does not solve the run-time issues.

Having control over the source code and producing the system entirely from the source
code makes it possible to control the target system configuration. When using imported
components, we lose this control, because we only partially know their behavior. It is
possible however to manage versions and configurations if we place the components
under version control and deliver them as a part of the product.

When delivering components or products, which are part of a target system, we face
two problems:

New Challenges for Configuration Management

76 Applying Configuration Management Techniques to Component-Based Systems

• We cannot predict the behavior of the entire environment of the target system. The
system may contain another product, which uses the same component as our
product. The relations between components, and the changes we may obtain by
introducing a new version of a component, are uncertain.

• A more serious problem is the dynamic behavior of the system configuration in the
run-time environment. If we permit component-updating during the run-time, by
updating dynamic libraries, we could be facing a situation in which a new component
version works for one product, but not for another. There are also different aspects
of updating, such as moving or copying an application from one computer to
another, or automatically generation of code.

CM can provide solutions to these problems, and those are new challenges for CM. To
cope with the problem, the research and practical implementations must focus on the
component management. The following chapters describe the mechanisms of
component management and point at the problems related to their identification. Finally
an outline of possible solutions for improvement of the component version and
configuration management are presented.

3 Component Compatibility
There are different definitions of software components [1]: A component is a non-
trivial, nearly independent, and replaceable part of a system which fulfills a clear
function. A component conforms to and provides the physical realization of a set of
interfaces. A run-time software component is a dynamically bindable package of one or
more programs managed as a unit and accessed through documented interfaces which
can be discovered at run-time. A component can be deployed independently and is
subject to composition by third party.

The importance of components becomes significant where technologies for their
development and integration are being standardized. The most prominent component
technologies today are Java Beans, COM/DCOM and ActiveX, and CORBA. In this
paper, we illustrate component-management problems using COM/DCOM technology,
but the same principles are valid with other technologies.

A new component version might be added to introduce new functions in a system, or
only to change its behavior, (better performance, better stability), without changing the
interface. When replacing a component or a component version we must consider
which type of change is permitted, and which type of compatibility is required. We
define three levels of compatibility:

• Input and Output compatibility. A component requires input in a specific format and
produces results in a defined format. The internal characteristics of the component
are of no interest. An example of this type of compatibility is provided by different
word-processors producing the same document format. This type of compatibility
does not ensure that the interfaces or the behavior are preserved.

4. Managing Components

Applying Configuration Management Techniques to Component-Based Systems 77

• Interface compatibility (at development time and at run time). The interface remains the
same, but the implementation can be different. A typical example is given by different
implementations of ActiveX objects, with the same interface. Interface compatibility
is more demanding than input and output compatibility, but it does not need to have
the same behavior.

• Behavior compatibility. Internal characteristics of the components, such as performance,
resource requirements, etc., must be preserved. Such requirements can be appropriate
for real-time systems. This is the strongest compatibility requirement and it includes
the previous ones.

The compatibility criteria can be used in deciding if a component can be replaced or
not. This decision can be especially important in case of a replacement "on the fly" in a
run-time environment. It is important to maintain the required level of compatibility to
avoid the risk of interrupting the whole system.

4 Managing Components
Components typically consist of shared libraries, where the component functions are
implemented. The programs using components do not refer to the libraries directly but
to the component interfaces. The libraries are implementations of the interfaces. We
need to keep track of changes on both logical and physical levels as well as their
relations. Both libraries and interfaces must be identified. Component Configuration
Management must work on both levels. Versioning of interfaces is a more difficult task,
because the interface is an abstraction without information about the physical
representation. For this reason, we separate the problem of managing components onto
two levels: Managing libraries and managing interfaces.

4.1 Libraries
Historically there were less problems in this area as all libraries were statically linked into
the executables. This prevented the executable from being updated when a new version
of the library was released. An advantage of this approach is that the executables are
protected from uncontrolled use by the new version of the library. A disadvantage is the
necessity to re-link the executable only to incorporate a new version of the library,
which is unnecessary work when the library is interface-compatible. Another
disadvantage is that all executables which shared the same library must be linked with
their own copies of the library. The concept of shared libraries was introduced to avoid
this. This was a significant improvement since we could now share libraries and make
updates without re-linking the executables while functions were interface-compatible. In
Microsoft platforms, shared libraries are designated dynamic link libraries or dlls, which
can be loaded and unloaded whenever needed. On other platforms, such as different
Unix platforms, shared libraries are loaded together with the main executable.

New Challenges for Configuration Management

78 Applying Configuration Management Techniques to Component-Based Systems

Version 2

Foo.exe Bar.exe

Common.dll

Bar.exe
Version 1

Common.dll

Old version 1 used
this version

Foo.exe Bar.exe

Common10.dll

Version 2

Common20.dll

Unfortunately, the concept of shared libraries introduces new problems related to the
consistency of the system, as illustrated by Figure 2.

Figure 2. Foo.exe stops work when the new incompatible version of Common.dll is
introduced.

The figure shows how a new version might damage the system. Common.dll version 1
will be overwritten with version 2 when the new version of bar.exe is introduced. The
replacement could be successful if version 2 of Common.dll is interface-compatible with
version 1, but definitely not if the compatibility level is less. There is a risk that Foo.exe
will stop working after the new version of Common.dll is introduced.

The new interface-compatible version of Common.dll may contain undetected errors as
it was tested with Bar.exe only and not with Foo.exe. Foo.exe may then access some
erroneous code and crash even if the library was interface-compatible.

One way to handle multiple versions of libraries is to insert version information into the
actual library name as Microsoft does in MFC [9]. For example, names such as
MFC40.dll and MFC42.dll can be used for version 4.0 and 4.2. This prevents name
collisions problems such as developed in Figure 2. With different names for different
version, the situation may be as in Figure 3.

Figure 3. Common10.dll can now coexist with Common20.dll

4. Managing Components

Applying Configuration Management Techniques to Component-Based Systems 79

This solution is to some extent similar to the static linking of executables, because an
executable always uses the same version of the shared library. The solution however
becomes cumbersome when several versions and variants must be installed in the
system. There are, for example MFC42d.dll, MFC42u.dll and MFC42ud.dll which are
respectively debug, Unicode and debug/Unicode versions of the MFC library. This tight
coupling emerges from the design of the C/C++ compilation model, which was not
intended to support independent binary components.

Another way to circumvent the problems is to upgrade all executables dependent on a
particular library when the new release is ready. This means that both Foo.exe and
Bar.exe will be updated instead of Bar.exe only (Figure 2). This approach can be taken
on the assumption that complete control over the whole deployment exists, and from
that perspective is very limited.

Suitable support can be achieved with the help of CM functions which keeps track of
changes, and by checking which changes are permitted for an executable or a
component.

4.2 Interfaces
An interface is a connection between a component and its user. If an interface is
changed, the user needs to know that it has been changed and how to use the new
version.

Functions exposed to the user are usually designated Application Programmable
Interfaces (API). If a change is made in the API, the user must recompile his code. This
is the case for compiled languages such as C/C++ but not for interpretative languages
such as Smalltalk or Java.

In an object-oriented world, an interface is a set of the public methods defined for an
object. Usually the object can be manipulated only through its interface. In C++ the
user need only recompile the code when an interface, referred to from the code, is
changed.

A disadvantage is that the user of the object must use the same programming language
throughout the whole development.

Separation of the interface from the implementation is a means of avoiding this tight
coupling. This kind of separation is performed with binary interfaces as in CORBA [3]
and COM [6]. Binary interfaces are defined in an interface definition language (IDL) and
an IDL compiler, which generates stubs and proxies to make the applications location
transparent.

COM solves the interface versioning problem by defining interfaces as unchangeable
units. Each time a new version of the interface is created a new interface will be added
instead of changing the older version. A basic COM rule is that an interface cannot be

New Challenges for Configuration Management

80 Applying Configuration Management Techniques to Component-Based Systems

Word processor
version 1

Word processor
version 2

Dictionary
version 2 ISynonyms

ISpellCheck

Dictionary
version 1

ISpellCheck

changed when it has been released. This makes couplings between COM components
very loose and it is easy to upgrade parts of the system indifferent from each other.
Figure 4 shows that it is possible to run new clients together with old server
components or vice versa.

Figure 4. Possible combinations between old and new clients and their server
component.

Even if an interface has not been changed, its implementation can be changed. This
increases the flexibility of possible updates, but also introduces the possibility of
resultant uncontrolled effects. For this reason, it is of interest to know if the
implementation has been changed.

Today there is no support for the handling of components in the configuration
management perspective. CM functions should provide information about the changes
on the interface level.

5 Proposed CM for Libraries and Components
No or insufficient information is available when a system is assembled from
components. There is no standard way to track the dependencies between components.
When a system is upgraded with a new program, the programs running already might be
affected without notice because the new program may introduce new versions of
existing components in the system (see Figure 2). It is necessary to determine which
interfaces (i.e. components) are used by a program or a component.

As a component is placed in a set of shared libraries some control may be obtained by
keeping the libraries under control. We propose a component configuration
management on two levels, the library level and the component level.

5. Proposed CM for Libraries and Components

Applying Configuration Management Techniques to Component-Based Systems 81

Kernel32

ntdll

MSVCRT

OleAut32

Rpcrt4

Ole32

AdvApi32 User32 GDI32

5.1 CM for libraries
Which shared libraries are linked to another library or program can be seen. This can be
used to list the dependencies between different programs and libraries. When installing a
new program containing libraries the following steps shall be taken:

1. Take a snapshot of the current system configuration.
2. Install the new modules.
3. Take a snapshot of the new system configuration.

The contents of a snapshot are all programs and libraries installed in the system and are
treated as nodes in a graph. A number of different attributes are associated with each
library. The information for each node in the graph uniquely identifies the module. We
propose that at least date, time, size and name shall be stored. Other attributes are
which compatibility change is allowed or if a warning is to be given when a particular
module is updated.

A snapshot of the system is presented as a dependency graph. Figure 5 shows an
example of how one of the COM libraries depends on other libraries.

Figure 5. A dependency graph for OleAut32.dll.

Different versions of snapshots are placed under version control and treated as
configuration items. A tool which could browse this information would present the
differences graphically to the end user. The user would now gain an understanding of
the effects of the introduction of new and updated libraries in the system. An alarm
would be activated if a library which should not have been affected is changed. The
configuration tool could browse different configurations and could label components as
changeable or not changable.

New Challenges for Configuration Management

82 Applying Configuration Management Techniques to Component-Based Systems

User32

Kernel32 ntdll

Ole32

AdvApi32

ntdll

user32 Component

Component

Figure 6. A dependency graph that shows all changed versions.

This kind of knowledge is useful if the cause of malfunction in the system is to be
traced. An incorrect version of a library may have been installed by mistake. This kind
of identification gives no direct information about which components are changed and
which can be affected by the change, but indirect information is available since the
physical representation of components are libraries.

5.2 CM for components
In this chapter, we discuss COM as an example. COM treats interfaces in a manner
unlike other object models such as CORBA.

COM components expose themselves and communicate through COM interfaces only.
Moreover, COM is designed to work with loose references between components. There
is no requirement that the clients shall know the class declaration since every class
declaration contains implementation details. Components should be able to add or
remove interfaces without affecting existing clients.

As components are loosely coupled there is no information connecting different
versions of components with each other. A COM component finds its fellow
components through the Windows registry in which all installed components store their
activation data, such as Interface id, class id, library locations and where to find their
stubs and proxies. Connections between components are set up first at run-time. A
client uses a unique key to find the server component in the registry and then the COM
run-time will load the corresponding component or stub into the client memory.

Unfortunately, there is no capability in the target system for finding which interfaces are
used by a component. This prevents us from getting proper information about all
dependencies in the system.

If we do not know which components a program uses in run-time, we must request that
knowledge. This can be obtained if the provider of the components implements a
specific interface for version management, which we designate IVersion (Figure 7). The

5. Proposed CM for Libraries and Components

Applying Configuration Management Techniques to Component-Based Systems 83

IVersion interface can return facts about version, name, creation date, compatibility
change, interfaces provided and components used. If the components had such an
interface, it would be possible to write a tool that could browse and record the
dependencies between the components.

interface IVersion : IUnkown
{

HRESULT Name([out , retval] BSTR *name);
HRESULT Version([out , retval] VERSION *version);
HRESULT CreationDate([out , retval] DATE *date);
HRESULT TypeOfChange([out , retval] BSTR *name);
HRESULT History([in] LONG size,

[out, size_is(size)] HISTORY history[*]);
HRESULT HasInterfaces([in] LONG numOfElements,

[out, size_is(numOfElements)]IID interfaces[*]);
HRESULT UsesInterfaces([in] LONG numOfElements,

[out, size_is(numOfElements)] IID
interfaces[*]);
}

Figure 7. IDL specification of IVersion.

• Name, Version and CreationDate identifies the component.
• TypeOfChange indicates the compatibility level affected by the change.
• History informs about previous versions of the component and which type of

change applied between them.
• HasInterfaces shows all interfaces provided by the component.
• UsesInterfaces lists all interfaces used. This list makes possible the building of

the dependency tree of the components.

In the absence of a standard version interface, another method is to parse in some way
the dependency data from source code files to provide a list of dependencies with the
release of a new product. This has some major disadvantages. Firstly, it cannot be
applied to third party components. Secondly, it might work for the first level of
dependencies where there is source code, but if other third party components are
included, no information can be obtained because of the lack of source code.

A possible partial solution to the problem finding dependencies between components is
to track the interfaces from the registry repository. All interfaces are registered in the
Windows registry with information about where to find the dynamic link library which
implements the stubs and proxies for that particular interface. This mechanism provides
us with the information we need to see if an interface has been changed during an
update. The snapshot browsing tool has a list of all interfaces apart from the libraries
and programs installed. The tool can now warn if the implementation of an interface has

New Challenges for Configuration Management

84 Applying Configuration Management Techniques to Component-Based Systems

been changed. It is possible, using this method, to determine if new interfaces have been
registered or if old interfaces have changed implementation.

6 Conclusion
We consider that there is a need for component configuration management, especially
during the run-time when components can be changed on the fly. In this paper we have
highlighted the different phases in component management in which CM is needed.
Support from CM related to component management is rudimentary today and we
propose beginning work in a new area, Component Configuration Management.

For want of standardized techniques in component management, we have proposed
certain relatively simple methods to identify components and possible changes they can
cause in the system. Further work will include a deeper investigation of how to
snapshot a system for an insight into the interrelationships between different
components. A tool capable of browsing and analyzing an existing system for this
should be developed.

7. References

Applying Configuration Management Techniques to Component-Based Systems 85

7 References
[1] Don Box, Essential COM, Addison-Wesley, ISBN 0-201-63446-5

[2] Alan W. Brown, Kurt C. Wallnau: An Examination of the Current State of CBSE: A
Report on the ICSE Workshop on Component-Based Software Engineering, 1998
International Workshop on CBSE,
http://www.sei.cmu.edu/cbs/icse98/summary.html

[3] Continuus Software Corporation, http://www.continuus.com/homepage.html,
1999

[4] CORBA, http://www.corba.org

[5] Ivica Crnkovic, Magnus Larsson, Managing Standard Components in Large
Software Systems, Position paper on Second International Workshop on
Component-Based Software Engineering, Los Angeles, May 1999

[6] Microsoft corporation, http://www.microsoft.com/com

[7] Microsoft Source Safe, http://msdn.microsoft.com/ssafe

[8] Rational http://www.rational.com/products/clearcase/index.jtmpl, 1999

[9] Dale Rogerson, Inside COM, Microsoft Press, ISBN 1-57231-349-8

[10] Andreas Zeller, Versioning System Models Through Description Logic, Proceedings
ECOOP’98 SCM-8 Symposium, vol 1439 of Lecture Notes in Computer Science,
Springer-Verlag.

New Challenges for Configuration Management

86 Applying Configuration Management Techniques to Component-Based Systems

Applying Configuration Management Techniques to Component-Based Systems 87

COMPONENT CONFIGURATION
MANAGEMENT

Magnus Larsson & Ivica Crnkovic
Abstract:

Component-based programming is now a widely recognized approach in
software development. There remain many open problems related to both
technical and non-technical aspects of the components. In this paper, we point
out the problem of component identification. Since the components are usually
binary units deployed in the system at run-time, we do not have the same
insight into their characteristics as into those of the software units which we
manage at development time. This problem could be solved if the components
had this information integrated together with the binary code, which can be
achieve by defining a standardized identification interface. As such interfaces
do not exist in standard component models today, this concept can only be used
with components built in-house. For external components, extensive tests can,
to some extent, compensate for the lack of information. To perform a successful
testing efficiently we must limit the number of test cases. Which parts of our
system can be affected by the introduction of a component, or by its updating?
We can answer this if we can keep track of changes introduced in the system
and their impact on the system. These problems are similar to the problems
arising at development-time solved by Software Configuration Management
(SCM) disciplines. In this paper we point out these problems and make
proposals for their solutions at run-time using SCM principles.

1 Introduction
When developing a component independently of system development, we meet a
number of problems due to the fact that information we usually have during the
component development process is not available. One type of problem is related to the
components themselves – the component interface, pre- and post-conditions and the
nonfunctional component characteristics such as reliability, resource requirements,
timing requirements, etc. Another type of problem is associated with the relationship
between the component and the rest of the system. In this paper we address this second
type of problem.

When integrated in a system, the new component has an impact on a part of the system.
The new component may refer to certain components, and it can also be used by other
components. In addition to these explicitly defined dependencies, we also have indirect
dependencies, derived from the components which are used by the new component.

Component Configuration Management

88 Applying Configuration Management Techniques to Component-Based Systems

Finally, we have implicit dependencies, which are related to the system environment (for
example timing or other resource constraints). In general, we can expect that some parts
of the system are not affected by a change when introducing a new component or a new
component version. This situation is shown in Figure 1.

Figure 1. Dependencies between components

The dependencies are not directly visible in component models available today, such as
COM [2] or EJB [3].

To limit the uncertainty of the system behavior, we must identify those parts of the
system which might be affected by the introduction of a component.

If we could identify the component versions explicitly, we could specify the entire
system as a set of component versions. Two systems, or two versions of one system can
be compared and differences on the component level can be identified.

If we could automatically identify the dependencies between components and their
versions we could avoid the well-known problem with different versions of shared
libraries. The problem is illustrated in Figure 2: We have two programs Foo.exe and
Bar.exe, which share a Common.dll library, version v1. We then upgrade Bar.exe, obtaining
a new version of Common.dll, v2. The replacement could be successful if version v2 of
Common.dll is compatible with version v1, but if this is not the case the Foo.exe program
can fail. Even if the new version is interface-compatible, Common.dll may contain
undetected errors, which appear in a combination with Foo.exe. Foo.exe may then import
some erroneous code and crash, even if the library was interface-compatible.

New
component

Used by new
component

Uses new
component

Affected parts

Entire system

2. Component Management and SCM

Applying Configuration Management Techniques to Component-Based Systems 89

Figure 2. Uncontrolled update of a component

One way to handle multiple versions of libraries is to insert version information into the
actual library name as Microsoft does in MFC [1]. For example, names such as
MFC40.dll and MFC42.dll can be used for version 4.0 and 4.2. This prevents name
collision problems but can introduce a vast number of versions over which we have no
control.

To identify the parts of the system which can be affected by the change we must:

▪ Identify components including their versions.
▪ Identify direct and indirect dependencies.
▪ Obtain sufficient information to localize the implicit dependencies.

Identification and dependency management is a typical subject of SCM. The SCM
disciplines and their possible implementations for managing components are discussed
in section 2. In section 3 we discuss the problem with dependency information which is
missing from component models available today. In its absence, we discuss a possibility
of finding dependencies directly from the code. A Dependency Browser, an application
which displays dependencies between binary assets, is depicted in section 4. Finally,
section 5 outlines further investigations.

2 Component Management and SCM
As a component is a unit of composition, its management is natural related to Software
Configuration Management, the main objective of which is to manage composite
entities. However, most of the SCM functions are used at development-time, and are
not utilized sufficiently at run-time[5]. The major disciplines of SCM are Version
Management, Configuration Management and Change Management [7] [8], and we discuss their
use for managing components.

Version management performs the identification of entities and recognizes different
versions of enities. We can apply this principle to the components at run-time: Every
component in the system should be identified by a name, version number and other

Foo.exe Bar.exe

Common.dll

Version 1

Bar.exe

Common.dll

Version 2

Replace

Component Configuration Management

90 Applying Configuration Management Techniques to Component-Based Systems

version attributes such as creation date, historical information, etc. We need the
component version identification for two reasons: Firstly, when we update a component
with a new version, we want to be able to identify that change. Secondly, in some cases,
we wish to keep several component versions integrated in the system. Managing
different versions of components is important for middle-size or large systems. A
component might not have been originally designed to cover all the system
requirements which evolve. In general, it is better to release a component containing
currently required features and to upgrade it later, instead of releasing a fully-fledged
component too late. Later, when new features are added to the component, it may
happen that the new component version is not compatible with the previous, or that is
not fully tested. In that case we want to keep both versions - the new one exploiting
new features, and the old one, to be used by those parts of the system we had not yet
changed or tested. When the system must support this type of environment, and when
several versions of components are used at the same time, the development time and
maintenance increase. Experience shows however that this type of evolution is
appropriate for large systems [4].

Configuration and build management methods are used to select and identify specific versions
of entities (i.e. to generate a baseline or a configuration) and to integrate them into a new
version of the composite entity. It also includes build procedures. The building
procedures use information about the dependencies between the entities. These
principles can be applied in the run-time system: A system configuration is defined as a
set of component versions. By adding a new component or a new version of a
component, a new configuration of the system is identified. Similar to Make
dependencies, which describe the dependencies at build-time, a component should
include the specification of the components used (the references to the components
used actually exist in the component, but they are hidden in the binary code).

Change management provides information about the changes introduced in the system on
an abstract level, the logical changes which have been introduced in the process, rather
then a physical. Change management becomes important when a new entity version is
created. In a similar way, every component version can include information about the
differences between it and the previous version. This information cannot be
automatically generated (which is possible for other type of information, such as version
identification and version attributes), and it must be explicitly defined by the component
developers. A new component version might be added to introduce new functions in a
system, or only to change its behaviour, (better performance, better stability), without
changing the interface. When replacing a component or a component version we must
consider which type of change we permit and which system characteristics we want to
preserve, in order to guarantee the system behaviour.

To describe this possible impact on the system, we have defined three levels of
compatibility:

3. Managing Component Dependencies

Applying Configuration Management Techniques to Component-Based Systems 91

Input and Output compatibility. A component requires input in a specific format (or
perhaps no input at all) and produces results in a defined format. The internal
characteristics of the component are of no interest.
Interface compatibility. The interface remains the same, but the implementation can be
different
Behavior compatibility. Internal characteristics of the components, such as performance,
resource requirements, must be preserved.

The compatibility criteria can be used to decide if a component can be replaced or not.
This decision can be especially important in case of a replacement "on the fly" in a run-
time environment.

3 Managing Component Dependencies
Binary components are delivered as shared libraries and executables, which usually have
no additional information about any dependency between components. To be able to
predict what will happen in a system when a component is installed we need to have
information about which part of the system will be affected by the component.

As components can be loosely coupled there is no information connecting different
versions of components with each other. In COM for example, a component finds
components it refers to through the Windows registry. In the Window registry all
installed components store their activation data, such as Interface id, class id, library
locations and where to find their stubs and proxies. Connections between components
are set up first at run-time. A client uses a unique key to find the server component in
the registry and then the COM run-time will load the corresponding component or stub
into the client memory [2].

To be able to get full dependency graphs over the system with coherent information
about all the components, and the type of change introduced in a component, we need
meta-data. By meta-data we mean additional information which is not crucial for the
component to run but is valuable for the entire system. Meta-data can be provided as a
new interface on the component [5] or stored in a repository where it have been placed
during the component registration process. Facts about version, name, creation date,
compatibility change, interfaces provided and components used, as mentioned in the
previous section, are examples of meta-data which can be of help when building a
system with consistent configuration management.

The World Wide Web Consortium has defined a standard to describe components and
their dependencies. This language is XML-based and is called Open Software
Description (OSD) [6]. However, OSD is mainly designed for web components and
does not solve the problems with component dependencies. It is important that meta-
data is accessible to third part users. A common standard making it possible to describe
components in all component models is probably a utopia. We can expect that different

Component Configuration Management

92 Applying Configuration Management Techniques to Component-Based Systems

types of components will be described in different ways, which is vastly better than their
not being described at all.

As we do not have meta-data incorporated in the standard component models, the only
information about the components we can get through binary libraries and executables.
The information about which shared libraries are linked to other libraries or programs
can be gathered fairly easy. In general this information is linked into the binary code and
can be extracted. This information can be used to list the dependencies between
different programs and libraries.

The following is the formal procedure: A component version c is implemented as a
library or an executable. A component version has a set of attributes (name, size,
creation-date, and others [11] used in different component models), by which it is
identified.

The set of all components installed in the system is designated S. We define a relation
� called “depends on”, where ci � cj if the correct operation of ci requires the correct
operation of cj. This relation is transitive which means that we can derive all indirect
dependencies from the direct dependencies.

The set of all dependencies is defined as

D = {(ci,cj) : ci,cj ∈ S ∧ ci�cj}.

The dependency set D is stored as a baseline before new components are installed. A
snapshot of the current configuration is the set of all components and their
dependencies:

C = (S,D).

When new versions of existing components or new components are installed they will
affect the configuration

C´=(S’,D’)

We identify all component versions which are placed in only one configuration

cnew ∈ S∆ : S∆ = S∩S’ ,

and the dependencies D∆ of components cnew

D∆ = {c : c � cnew}.

All components in S∆ and dependencies in D∆ can change the behavior of the system
and are subjects for futher investigation.

4. Dependency Browser

Applying Configuration Management Techniques to Component-Based Systems 93

For the dependencies where new components use other components

D´∆ = { cnew : cnew � c}

we test if the input-output domain (i.e. expected outputs from cnew for inputs to c) have
been preserved or not. If a new range of input to the component c occurs, this
dependency should be tested in this new domain range [9].

If a system configuration can contain several component versions, specified ranges in
input/output domain can be compared with the current values and used as criteria for
selecting a component version to be executed [10][11].

4 Dependency Browser
To show how dependencies can be traced, we have designed an application for
Windows NT 4.0, Dependency Browser which parses through the system, finds all
shared libraries and generates the dependency graph. A snapshot of the current
configuration can be shown and saved in a repository. Different versions of snapshots
are placed under version control and treated as configuration items. The current
configuration, or an earlier snapshot, can be compared with other configuration
snapshots, and the differences between the configurations can be displayed. Typically,
before installation of a component, a snapshot can be saved. The component is then
installed, and a new snapshot can be taken. The difference graph shows which
components have been changed and their relations to other parts of the system. The
browser can show the entire system, or a specific component and its dependencies,
which makes it possible to see a potential consequence of a component update. System
integrators can use the dependency browser to view dependencies in the test system,
when a new component has been integrated in the system.

All components which depend on the changed component are highlighted and the user
can decide and take action upon this information as shown in Figure 3. The dependency
browser helps the integrator of the system to verify that nothing unexpected occurs
when the system starts. With this tool, it is possible to see all the files affected when a
component has been updated or installed.

Component Configuration Management

94 Applying Configuration Management Techniques to Component-Based Systems

Figure 3. Affected components are highlighted in the browser to alert the user.

The changed or updated components have the stop sign icon while affected
components are marked with an arrow icon. Version information of the component is
presented in the right pane view. The browser can be used to browse through the
information and to get an understanding of the effects of the introduction of new and
updated components in the system. The tool can browse through different
configurations and label components as changeable or not changeable. This kind of
knowledge is useful if the cause of malfunction in the system is to be traced. An
incorrect version of a library may have been installed by mistake and without
dependency information it is difficult to find the real cause of the problem.

5 Conclusion
In this paper we have pointed out the problems encountered during the dynamic
configuration of systems. Our contribution is a proposal for component configuration
management in which components can be placed under version control. We tie together
software configuration management (SCM) and component-oriented programming
(COP) with ideas from both disciplines. A simple dependency model is presented and
we have shown how to solve the dependency problem for this model when new
components are installed. We plan to do more work on a formal description and
management of dependencies.

Future work will include the realization of the Dependency Browser, its implementation
for different component models and platforms. In this paper we have treated
components as binary entities, i.e. executables or shared libraries. How dependencies
between loosely coupled components can be recorded, will be studied in a more
thorough investigation. The goal is to have ability to predict the behavior of a system
before a system update.

6. References

Applying Configuration Management Techniques to Component-Based Systems 95

6 References
[1] D. Rogerson, Inside COM, Microsoft Press, ISBN 1-57231-349-8

[2] D. Box, Essential COM, Addison-Wesley, ISBN 0-201-63446-5

[3] E. Roman, Mastering EJB, Wiley, ISBN 0-471-33229-1

[4] M. Larsson, I. Crnkovic, Development Experiences of a Component-Based System,
7th IEEE International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS 2000)

[5] M. Larsson, I. Crnkovic, New Challenges for Configuration Management, System
Configuration Management, SCM-9, Springer 1999, ISBN 3-540-66484-X

[6] W3C, Open Software Description Format,
http://www.w3.org/TR/NOTE-OSD.html

[7] R. Conradi and B. Westfechtel, Version Models for Software Configuration
Management, Software Configuration Management Symposium, SCM-7, 1977,
Springer, ISBN 3-540-63014-7, ACM Computing Surveys, Vol. 30, No.2, June 1998

[8] J. Estublier, S. Dami, M. Amiour, Hifg Level Process Modeling for SCM Systems,

[9] H. Thane, A. Wall, Formal and Probabilistic Arguments for component Reuse in
Safety-Critical Real-Time Systems, Technical report CBSE – State of the Art,
Mälardalen University, 2000

[10] J. E. Cook, J. A.Dage, Highly Reliable Upgrading of Components, 21st ICSE, 1999,
ACM ISBN 1-58113-074-0

[11] Henrik Lykke Nielsen, René Elmström, Proposal for Tools Supporting Component-
based programming, Workshop on Component-based Programming, 1999

Component Configuration Management

96 Applying Configuration Management Techniques to Component-Based Systems

Applying Configuration Management Techniques to Component-Based Systems 97

COMPONENT CONFIGURATION
MANAGEMENT FOR FRAMEWORKS

Ivica Crnkovic , Magnus Larsson & Kung-Kiu Lau
Abstract:

 Object-oriented Design frameworks are increasingly recognized as better
components than objects. In this paper, we briefly explain the framework
concept, show a COM implementation, and discuss the accompanying
configuration management issues.

Keywords: Components, configuration management, frameworks, COM,
objects, CBD, CBSE

1 Introduction
Object-oriented Design (OOD) frameworks are increasingly recognized as better
components in software development than objects (see e.g. [4] and [7]). The reason for
this is that in practical systems, objects tend to have more than one role in more than
one context, and OOD frameworks can capture this, whereas existing OOD methods
(e.g. Fusion [1] and Syntropy [2]) cannot. The latter use classes or objects as the basic
unit of design or reuse, and are based on the traditional view of an object, as shown in
Figure 1, which regards an object as a closed entity with one fixed role.

Figure 1. Objects with one fixed role.

On the other hand, frameworks allow objects that play different roles in different
frameworks to be composed by composing frameworks. In Catalysis [3], for instance,
this is depicted in Figure 2.

Encapsulated
internal structure Visible

functions

Component Configuration Management for Frameworks

98 Applying Configuration Management Techniques to Component-Based Systems

Figure 2. Objects with multiple roles in different frameworks.

In this paper we discuss a possible COM implementation of framework and the
accompanying configuration management (CM) issues.

2 Frameworks: An Example
The following example illustrates the framework concept. Consider the framework for
employees as depicted in Figure 3, in which a person plays the role of an employee of a
company.

Figure 3. PersonAsEmployee and PersonAsConsumer framework.

A person as an employee has an attribute pocket representing the amount of money he
possesses, and two actions receive_pay and work. Now consider another view of a person,
e.g., a person plays the role of a consumer, as shown in the PersonAsConsumer
framework in Figure 3. In this role a person also has the attribute pocket, but he has the
action buy (instead of the actions receive_pay and work). We may compose the frameworks
for PersonAsEmployee and PersonAsConsumer, to obtain a person with both roles
together. A person now has all the actions of both roles, namely receive_pay, work and buy,
and the attribute pocket in both roles. The composition is illustrated by Figure 4.

PersonAsEmployee

Person

pocket: Money

receive_pay(amt:
Money)
work(…)

Company worksfor

PersonAsConsumer

Person

pocket: Money

buy(price: Money)

Shop
buysfrom

role A
role B

role A role B

Framework 2 Framework 1 Framework 1 +2

3. A COM Implementation of Frameworks

Applying Configuration Management Techniques to Component-Based Systems 99

Figure 4. PersonAsEmployeeConsumer framework.

3 A COM Implementation of Frameworks
We illustrate the frameworks in Figure 3 and Figure 4 with an implementation example
using COM [8]. COM suits multiple roles because it can use multiple interfaces for each
role. We will use the aggregation mechanism in COM to compose frameworks. First, we
implement the Person object, which corresponds to the encapsulated internal structure in
Figure 1. The Person object is constructed so it supports aggregation of role objects and
it has one IPerson interface (see Figure 5).

Figure 5. A COM object for the person object and the consumer role.

Second, the consumer and employee roles are implemented so they support being
aggregated into a person object. Figure 5 shows the consumer role with one IConsumer
interface. The consumer object needs also a reference to the person object to be able to
work on the pocket variable. The person reference is set up when the consumer is
aggregated into the person object (see Figure 6). In a similar way the employee role is
implemented. Using aggregation we can reuse the different components that we have
created. Figure 6 shows how Person aggregates the two already defined COM objects.
Frameworks are created at run-time by adding roles to an object.

PersonAsEmployeeConsumer

Person

pocket: Money

receive_pay(amt:
Money)
work(…)
buy(price: Money)

Compan worksfor Shopbuysfrom

Consumer
IConsumer IPerson

IUnknown

Person
IPerson

IUnknown

Component Configuration Management for Frameworks

100 Applying Configuration Management Techniques to Component-Based Systems

Figure 6. The Consumer and Employee roles are aggregated into the Person object.

The COM implementation of the framework concept has some limitations. The COM
model defines frameworks as aggregates of the completed objects created at run-time,
while a general framework model allows us to use incomplete objects (at run-time) or
classes (at build-time).

4 Configuration Management Issues
Using frameworks instead of pure objects gives several advantages, but it also
introduces an additional level of complexity when building them. Frameworks are
composite types of entities – they have an internal structure which is built from objects,
or from parts of them. A framework entity also has relations to other frameworks, and
can be composed from other (sub)frameworks. The definition and creation of such a
composite entity introduces configuration problems. Some of them will be illustrated
here for a COM implementation.

Let us consider the following examples:

▪ Sharing objects in several frameworks;
▪ Composing frameworks from objects and frameworks.

4.1 Sharing objects in several frameworks
Suppose framework F1 includes objects O1 and O2 with a relation R12 between them, and
framework F2 contains objects O1 and O3 with a relation R13. The object O1 is shared by
two frameworks:

F1 = {O1 O2 ; R12}, F2 = {O1 O3 ; R13} (1)

Suppose we now add a new property to the object O1, a property that is required in (an
improved version of) framework F2. This creates a new version of the object O1;v2,
(v2 denotes the new version) which is included into the framework F2:

Person
IPerson

ConsumerIConsumer

Employee
IEmployee

IUnknown

IPerson

IPerson

IUnknown

IUnknown

4. Configuration Management Issues

Applying Configuration Management Techniques to Component-Based Systems 101

F2 = {O1;v2 O3 ;R13 } (2)

However, if we do not take versioning into consideration, then the framework
specifications will remain the same. In this case, we can be aware of the change of the
object O1 in the context of framework F2, but not necessary in that of F1. Our
specification of F1 is defined by (1), but in reality we have

F1 = {O1;v2 O2 ;R12 } (3)

If the role of the object O1;v2 used in F1 is changed, then the behaviour of F1 will be
changed unpredictably, and a system using F1 can fail.

To avoid these unpredictable situations we can introduce basic configuration
management methods – a version management of objects and configuration of
frameworks [9]:

▪ An object is identified by its name and version.
▪ A framework is identified by a name and a version. A new framework version is

derived from object versions included in the framework.

These rules imply that new versions of frameworks will be configured when a new
object version is created, as shown in our example:

F1;vi={O1;vm O2;vn ; R12 }, F2;vk={O1;vm O3;vk ; R13 } (4)

F1;vi+1={O1;vm+1 O2;vn ; R12 }, F2;vk+1={O1;vm+1 O3;vk ; R13 } (5)

As several frameworks can share one object, and a framework can contain several
objects, the number of generated frameworks can grow explosively. It is, however,
possible to limit the number of interesting configurations. Typically, in a development
process, we would implement the changes on all the objects we want, collect the
versions of objects we want in a baseline and derive the frameworks from the baselined
object versions. In such a case, experience for similar cases [10] shows that the number
of derived entities does not necessarily grow rapidly.

A shared object is not necessarily completely shared, but different parts of the object,
defined by the object’s roles, are used in the frameworks. In the COM implementation a
complete object will be included, but a part of it will be used. In a general framework
model, a class (or an object at run-time) includes only those parts which are specified in
the object’s role.

When we define a new role for an object in a framework or re-define the existing one,
we need to change a specific part of the object class. We call this specific part an object
aspect. The change of an object aspect will affect only those frameworks where the
aspect is included. Other frameworks, though containing the object (or part of it), are
not affected by the change. In this case, it is better to keep version control on the
aspect level, and relate a framework configuration to the object aspects.

Component Configuration Management for Frameworks

102 Applying Configuration Management Techniques to Component-Based Systems

If we declare an aspect as a subset of an object Ai (Ok) ⊆ Ok, then an object version is
defined as a set of aspect versions:

Oi;vk = { Aj;vl } (6)

and a framework version is defined as a set of aspect versions with relations between the
aspects:

Fvk = { {Aj;vl (Oi;vk)} ; Rjl } (7)

Having control over changes on the aspect level, we can gain control over the changes
on the framework level. Now we can more precisely identify the frameworks being
affected by changes in object roles.

4.2 Composing frameworks from objects and
frameworks

In the framework model it is possible to compose new frameworks from existing
frameworks. A new framework is a superset of the classes and relations from the
frameworks involved. If a new framework is created at run-time, as in a COM
implementation, then the objects from the selected frameworks comprise the new
framework.

The following example illustrates the merging process of two frameworks F1 and F2
into F3:

F1 = {O1 O2 ; R12 }, F2 = {O1 O3 ; R13 }, F3 = {O1 O2 O3 ;R12 , R13, R23} (8)

The composition works fine as long as we do not need to consider the changes of
objects within one framework.

Suppose we create a new object version (or a new object aspect version) in F2 and keep
the old version of the same object in F1:

F1;vi = {O1;v1 O2;vk ; R12 }, F2;vj = {O1;v1+1 O3;vl ; R13 } (9)

In the merging process we have to recognise if different versions of the same objects are
included in the frameworks being merged. If that is the case, we have two possible
solutions:

– Selecting one specific version of the object (for example the latest):

 F3;v1 = { O1;v1+1 O2;vk O3 ;v1 ;R12 , R13, R23} (10)

– Selecting both versions and enable their consistence in the new framework:

5. Discussion

Applying Configuration Management Techniques to Component-Based Systems 103

F3;v1 = { O1;v1 , O1;v1+1 , O2;vk O3 ;v1 ;R12 , R13, R23} (11)

For the second case there must be support for identifying object versions. This support
can be provided by introducing an identification interface [12] as the standard interface
of an object. There must also be support for managing different versions of the same
object in the running system.

5 Discussion
The framework approach gives a better possibility to reuse components in composing
systems. A discussion on formal description of frameworks can be found in [5] and [6].
In this paper we have presented a possible implementation of the framework model
using the COM technology. This implementation shows some limitations. Further
investigation on how to improve the implementation should be carried out.

The second topic discussed in this paper is configuration management for frameworks.
The paper emphasises a need for using CM methods for managing frameworks as
composite objects. The CM issues are complicated and need further investigations:
Questions of managing relations, concurrent versions of frameworks, inclusion of
change management [11], etc., must be addressed. Since aspects and objects are not
entities recognised as CM-items by standard CM tools (which recognise entities such as
files, directories, etc.), new, semantic-based rules must be incorporated into the CM
tools. For different OO and component-technologies, different tools have to be made.
How different do they need to be, and are there possibilities to define common rules
and implementation? These are questions for future investigation.

Component Configuration Management for Frameworks

104 Applying Configuration Management Techniques to Component-Based Systems

6 References
[1] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P.

Jeremaes: Object-Oriented Development: The Fusion Method, Prentice-Hall, 1994.

[2] S. Cook and J. Daniels: Designing Object Systems, Prentice-Hall, 1994.

[3] D.F. D'Souza and A.C. Wills: Objects, Components, and Frameworks with UML:
The Catalysis Approach, Addison-Wesley, 1998.

[4] R. Helm, I.M. Holland, and D. Gangopadhay: Contracts - Specifying behavioral
compositions in OO systems, Sigplan Notices 25(10) (Proc. ECOOP/OOPSLA
90).

[5] K.-K. Lau, S. Liu, M. Ornaghi, and A. Wills: Interacting frameworks in Catalysis. In
J. Staples, M. Hinchey and S. Liu, editors, Proc.Second IEEE Int. Conf. on Formal
Engineering Methods, pages 110-119, IEEE Computer Society Press, 1998.

[6] K.-K. Lau, M. Ornaghi, and A. Wills: Frameworks in catalysis: Pictorial notation
and formal semantics, In M. Hinchey and S. Liu, editors, Proc. 1st IEEE Int. Conf.
on Formal Engineering Methods, pages 213-220, IEEE Computer Society Press,
1997.

[7] R. Mauth: A better foundation: development frameworks let you build an
application with reusable objects. BYTE 21(9):40IS 10-13, September 1996.

[8] D. Box, Essential COM: Addison-Wesely, 1998

[9] R. Conradi, B. Westfechtel: Version Models for Software Configuration
Management, ACM Computing Surveys, Vol. 30, No.2, June 1998

[10] U. Asklund, L. Bendix, H.B. Cristensen, B. Magnusson: The Unified Extensional
Versioning Model, System Configuration Managemnt SCM-9, Springer, 1999

[11] I. Crnkovic: Experience with Change Oriented SCM Tools, Software Configuration
Management SCM-7, Springer, 1997

[12] M. Larsson, I. Crnkovic: New Challenges for Configuration Management, System
Configuration Management SCM-9, Springer, 1999

Applying Configuration Management Techniques to Component-Based Systems 105

INDEX

A

ABB · 58, 70
Advant · 58

ActiveX · 20
adjacency lists · 44
adjacency matrix · 43
Agora · 31
API · See Application Programmable

Interface
Application Programmable Interface ·

26, 59, 79
Architectural Description Languages ·

36
architectural style · 25

B

baseline · 32, 38, 90, 101
branch · 33
Build Management · 34, 68
business component · 17
business logic · 20

C

C++_complib · 63
Catalysis · 97
CBSE · See Component-Based Software

Engineering
Change Management · 33, 38, 40, 68,

90
data · 34
process · 33

Clear Case · 35
Clear Quest · 33
CM activities · 75
CM Process · 51
COM · 18, 19, 47, 62, 82, 88, 98
COM+ · 20
COMCAD · 31
Commercial Off The Shelf · 27, 73
Compatibility · 66, 90

Behavior · 77, 91
Input and output · 76, 91
Interface · 77, 91

complexity · 42
Component · 16

Compatibility · 76
Definitions · 16
Development · I, 28
Development Cycle · 30
external · 17
Framework · 18
Identification · I, 39
Interfaces · 26
internal · 17
Models · 18
Multiple versions · 47
Patterns · 25

Component Object Model · 19
component-based architecture · 57
Component-based development · 11
Component-based Software

Engineering · 11, 16, 74
Conclusion · 52
configuration · 42, 92, 93

Index

106 Applying Configuration Management Techniques to Component-Based Systems

Configuration and build management ·
90

configuration item · 32
Configuration Management · 32, 38, 67,

73, 89, 98, 100
Configuration Model · 39
Connectors · 26
Continuus · 35
Contribution · 13
Cool: Spex · 31
CORBA · 18, 22, 47
Cost-effectiveness · 59
COTS · See Commercial Off The Shelf
critical path · 42

D

daily build · 34
DCOM · 19, 20, 70
Dependencies · I, 38, 42, 44, 92

List Representation · 44, 52
Matrix Representation · 43, 52

Dependency analysis · I, 52
Dependency Browser · 48
dependency graph · 82
Design patterns · 25
Development

Distributed · 35
Parallel · 35

development cycle · 30
Development models

iterative · 30
prototype · 30
spiral · 30
waterfall · 30

directed graph · 40
Dynamic Configurations · 11, 34, 36
Dynamic invocation · 18
dynamic reconfiguration · 12
dynamical contents · 37

E

EJB · 20, 88
Entity beans · 21

F

Fieldbus Foundation · 62
frameworks · 97, 100, 102
Functional Requirements · 63
Future Work · 51

G

general-purpose components · 29
glue code · 16
graph theory · 13, 37
Graphical User Interface · 65
GUI · See Graphical User Interface

I

IDL · See Interface Definition Language
incompatible change · 66
input domain · 47
Install shield · 34
Interface Definition Language · 22, 26,

79
Interfaces · 79
Internet Information Server · 20

J

J2EE · See Java 2 Platform Enterprise
Edition

Java · 19, 26
Java 2 Platform Enterprise Edition · 20
Java class · 21
JavaBean · 18, 21
Jcentral · 31

Index

Applying Configuration Management Techniques to Component-Based Systems 107

JMS · 20
JNDI · 20
JSP · 20

L

localization factor · 42

M

magic number · 39
Make · 34
Master OS · 59
MasterNet · 62
Method · 12
MFC · 89
Migration · 65
MOD DCN · 62
MOD OS · 59

N

node · 40

O

object aspect version · 102
Object Management Facility · 62
object version · 102
Object-oriented Design · 97
object-oriented programming · 26
OLE for Process Control · 62
OMA · 22
OMF · See Object Management Facility
OMG · 22
OPC · See OLE for Process Control
Open Control System · 58
Open Software Description · 91
Openness · 59
ORB · 22

OSD · 91
outsourcing · 35

P

path · 41
Pattern

Adapter · 21
Aggregation · 25
Dynamic Factory · 25
Embedding · 25, 39, 51
Propagator · 25

Patterns · 16
POSIX · 65
Product line · 17, 39
PVCS tracker · 33

R

Release Management · 34
reliability · 27, 58
reliable system · 47
remote method invocation · 20, 21
remote procedure calls · 23
requirements · 64
reusable component · 17, 63
Reuse · 57, 59, 60
RMI · See Remote Method Invocation
RPC · See remote procedure calls
run-time · 12, 34
run-time software component · 17

S

scalability · 11
Scalability · 59
SDE · See Software Development

Environment
Session beans · 21
shared libraries · 48, 78

Index

108 Applying Configuration Management Techniques to Component-Based Systems

shared library · 18
Smalltalk · 26
software component · 17
Software Development Environment ·

68
Software Release Manager · 34
source code · 32
Standard Template Library · 46
STL · 71
system of components · 39

T

TCP/IP · 62
three-tier application · 21
transitive closure · 13, 41, 49

U

Unix · 66
UxBase · 61

V

variant explosion · 11
Variants · 32
version control · 32, 38
version information · 38
version interface · 39, 83
Version Management · 32, 82, 89
vertices · 40
Visual Basic · 19
Visual Intercept · 33

W

Warshall’s algorithm · 43
Windows 2000 · 13, 48, 50, 52
Windows installer · 34
Windows NT · 65
Workspace Management · 35, 38, 68

X

XML · 91

Licentiate theses from the Department of Information Technology

2000-001 Katarina Boman: Low-Angle Estimation: Models, Methods and Bounds
2000-002 Susanne Remle: Modeling and Parameter Estimation of the Diffusion

Equation
2000-003 Fredrik Larsson: Efficient Implementation of Model-Checkers for Networks of

Timed Automata
2000-004 Anders Wall: A Formal Approach to Analysis of Software Architectures for

Real-Time Systems
2000-005 Fredrik Edelvik: Finite Volume Solvers for the Maxwell Equations in Time

Domain
2000-006 Gustaf Naeser: A Flexible Framework for Detection of Feature Interactions

in Telecommunication Systems

	Introduction
	Method
	Related work
	Contribution
		Development Experiences from �a Component-based System
	New Challenges for Configuration Management
	Component Configuration Management
	Component Configuration Management for Frameworks

	Component-Based Software Engineering
	Component Definitions
	Component Models
	Component Object Model (COM)
	Enterprise Java Beans (EJB)
	Common Object Request Broker Architecture (CORBA)
	Comparison of COM, EJB and CORBA

	Patterns
	Interfaces
	Commercial Off-The-Shelf Components
	Component-based Development
	Developing Components
	Developing with Components

	Development Cycle

	Configuration Management
	Version Management
	Change Management
	Build Management
	Release Management
	Workspace Management
	Related Work

	Dynamic Configurations
	Component Configuration Management
	Component Identification
	Configuration Model
	Change Management
	Managing Dependencies
	Dependencies Between Components
	Matrix Representation
	List Representation

	Differences between Configurations
	Managing Multiple Versions of a Component
	Dependency Browser

	Future Work
	A Proposed CM Process with Components

	Conclusion
	References
	Introduction
	ABB Advant Open Control System
	Designing for Reuse
	Scalability.
	Openness.
	Cost-effectiveness.

	Designing with Reuse
	Experiences

	Reusable Components
	Components
	Object Management Facility (OMF)
	C++_complib

	Different Reuse Aspects
	Component generality and efficiency
	Evolution of Functional Requirements
	Migration Between Different Platforms
	Compatibility
	Development Environment

	A New Paradigm -Standard Components
	Replacing Internal Component With Standard Components
	Replacing OMF with DCOM
	Replacing C++_complib with STL

	Conclusion
	References
	Introduction
	Using CM in Component-based Product Life Cycles
	Component Compatibility
	Managing Components
	Libraries
	Interfaces

	Proposed CM for Libraries and Components
	CM for libraries
	CM for components

	Conclusion
	References
	Introduction
	Component Management and SCM
	Managing Component Dependencies
	Dependency Browser
	Conclusion
	References
	Introduction
	Frameworks: An Example
	A COM Implementation of Frameworks
	Configuration Management Issues
	Sharing objects in several frameworks
	Composing frameworks from objects and frameworks

	Discussion
	References

