
A Case Study: Demands on Component-based Development
Ivica Crnkovic Magnus Larsson

Department of Computer Engineering Development and Research
Mälardalen University ABB Automation Products AB

Box 883, 721 23 Västerås, Sweden 721 59 Västerås, Sweden
+46 21 103183 +46 21 342666

Ivica.Crnkovic@mdh.se Magnus.Larsson@mdh.s
http://www.idt.mdh.se/presonal/icc http://www.idt.mdh.se/presonal/mlo

ABSTRACT

Building software systems with reusable components
brings many advantages. The development becomes more
efficient, the reliability of the products is enhanced, and the
maintenance requirement is significantly reduced.
Designing, developing and maintaining components for
reuse is, however, a very complex process which places
high requirements not only for the component functionality
and flexibility, but also for the development organization.
In this paper we discuss the different levels of component
reuse, and certain aspects of component development, such
as component generality and efficiency, compatibility
problems, the demands on development environment,
maintenance, etc. The evolution of requirements for
products generates new requirements for components, if
components are not enough general and mature. This
dynamism determines the component life cycle where the
component first reaches its stability and later degenerates in
an asset that is difficult to use, difficult to adapt and
maintain. When reaching this stage, the component
becomes an obstacle for efficient reuse and should be
replaced. Questions related to use of standard and de-facto
standard components are addressed specifically. As an
illustration of reuse issues, we present a successful
implementation of a component-based system which is
widely used for industrial process control.

Keywords
Reuse, component-based development, development
environment, architecture, standard components.

1 INTRODUCTION

Reuse and an open component-based architecture are the
keys to the success of systems with a long lifecycles.
Designing a system that supports this approach, requires
more effort in the design phase and the time to market
might be longer, but in the long run, the reusable
architecture will prove profitable. The reuse concept can be
used on different levels: On a low level it is a reuse of
source-code, and small-size components. More reuse is
obtained with larger components encapsulating business
functions. Finally, the integration of complete products in
complex systems can be seen as the highest level of reuse.
On each level of reuse there are specific demands on the

reusable components, on the component management and
on the integration process.

This paper describes important issues related to the
development and maintenance of reusable components and
as an example uses the ABB Advant industrial process
control system. In section 2 we give an overview of the
Advant system design and the main characteristics of
Advant reusable components. Section 3 outlines all the
development and maintenance aspects of a component
based system which must comply with customer
requirements. During evolution of the system new
technologies were developed which resulted in the
appearance on the market of many components with the
same functionality as the proprietary ones. The fact that
new components must be incorporated into the existing
systems introduces new demands on the system
development process. These new issues are discussed in
section 4.

2 THE CASE STUDY

Overview
ABB is a global electrical engineering and technology
company, serving customers in power generation,
transmission and distribution, in industrial automation
products, etc. The ABB group is divided into companies,
one of which, ABB Automation Products AB, is
responsible for development of industrial automation
products. The automation products encompass several
families of industrial process-control systems including
both software and hardware.

The main characteristics of these products are reliability,
high quality and compatibility. These features are results of
responses to the main customers requirements: The
customers require stable products, running around the
clock, year after year, which can be easily upgraded
without impact on the existing process. To achieve this,
ABB uses a component-based system approach to design
extendable and flexible systems.

The Advant Open Control System (OCS) [1] is component-
based to suit different industrial applications. The range
includes systems for Power Utilities, Power Plants and
Infrastructure, Pulp and Paper, Metals and Minerals,
Petroleum, Chemical and Consumer Industries,

Transportation systems, etc. An overview of the Advant
system is shown in Figure 1.

Figure 1. An overview of the conceptual architecture of
the Advant open control system.

Advant OCS performs process control and provides
business information by assembling a system of different
families of Advant products. Process information is
managed at the level of process controllers. The process
controllers are based on a real-time operating system and
execute the control loops. The Operator Station (OS) and
Information Management Station (IMS) gather and
supervise product information, while the business system
provides analysis information for optimization of the entire
processes. Advant products use standard and proprietary
communication protocols to satisfy real-time requirements.

Advant OCS therefore includes information management
functions with real-time insight into all aspects of the
process controlled. Advant Information Management has an
SQL-based relational database accessible to resident
software and all connected computers. Historical data
acquisition reports, versatile calculation packages and an
application programming interface (API) for proprietary
and third party applications are examples of the
functionality provided. Advant components have access to
process, production and quality data from any Process
Control unit in a plant or in an Intranet domain.

Designing with Reuse
Designing with reuse of existing components has many
advantages [2]. The software development time can be
reduced and the reliability of the products increased. These
were important prerequisites for the Advant OCS
development.

Advant OCS products can be assembled in many different
configurations for use in various branches of industry.
Specific systems are designed with the reuse of Advant
OCS products and other external products. This means
customers get a tailor-made system that meets their needs.
External products and components can be used together
with the Advant OCS due to the openness of the system.
For example a satellite communication component, which

is used to transmit data from the offshore station to the
supervision system inland, can be integrated with the
Advant OCS (Figure 2).

Figure 2. Component view of an oil production platform.

The offshore system in Figure 2 uses the Information
Management Station to gather all relevant data from the oil
producing process and this is then transmitted to the
headquarters on shore via the external satellite component.
A safety component is used to provide a more robust
system. Another component is the well supervision unit
which monitors the oil wells.

Component-based systems for different types of
applications can be easily designed and produced because
of the open and scalable architecture of Advant OCS.

The Advant system architecture is designed for reuse.
Different products such as Operator and Information
Management Stations are used as system components in
assembling complete systems. The two operator station
versions, Master OS and MOD OS are used in building
different types of operator applications.

Scalability
Advant OCS can be configured in a multitude of ways,
depending on the size and complexity of the process. The
initial investment can consist of stand-alone process
controllers and, optionally, local operator stations for
control and supervision of separate machines and process
sections. Subsequently, several process controllers can be
interconnected and, together with central operator and
information management stations build up a control
network. Several control networks can be interconnected to
give a complete plant network which can share centrally
located operator, information and engineering workplaces.

Openness
The system is further strengthened by the flexibility to add
special hardware and software for specific applications
such as weighing, fixed- and variable-speed motor drives,
safety systems and product quality measurements and
control in for example the paper industry. Second- and third
party administrative, information, and control can also be
easily incorporated.

Cost-effectiveness
The step-by-step expansion capability of Advant OCS
allows users to add new functionality without making

Business System

Process
Controller

Process
Controller

Process
Controller

Information
Management

Station
Operator Station

Safety
System

Input
Devices

Information
Management

Station

Satellite
Communication

Well
Supervision

Offshore
oil

existing equipment obsolete. The system’s self-
configuration capability eliminates the need for engineers
to enter or edit topology descriptions when new stations are
physically installed. New units can be added while the
system is in full operation. With Advant OCS, system
expansion is therefore easy and cost-effective.

Reusable Components
The Advant OCS products are component based to
minimize the cost of maintenance and development. Figure
3 shows the component architecture of the operator station
assembled from components.

Figure 3. The operator station is assembled from
components.

The operator station consists of a specific number of
functional components and of a set of standard Advant
components. These components use the User Interface
System (UIS) component. Object Management Facility
(OMF) is a component which handles the infrastructure and
data management. OMF is similar to CORBA [3] in that it
provides a distributed object model with data, operation and
event services. The UxBase component provides drivers
and other specific operating system functions. Helper
classes for strings, lists, pointers, maps and other general-
purpose classes are available in the C++_complib library
component. The components are built upon operating
systems, one, a standard system(such as Unix or Windows),
and the other a proprietary real-time system.

To illustrate different aspects of component-based
development and maintenance, we shall further look at two
components:

- Object Management Facility (OMF), a business type of
component with a high-level of functionality and a
complex internal structure;

- C++_complib is a basic and a very general library
component.

Object Management Facility (OMF)
OMF is object-oriented middle-ware for industrial process

automation. It encapsulates real-time process control
entities of almost every conceivable description into objects
that can be accessed from applications running on different
platforms, for example Unix and Windows NT.
Programming interfaces are available for many languages
such as C, C++, Visual Basic, Java, Smalltalk and SQL
while interfaces to the IEC 1131-3 [4] process control
languages are under development. OMF is also adapted to
Microsoft Component Object Model (COM) via adapters
and another component called OMF COM aware. The
adapters for OPC (OLE for Process Control) [6] and OLE
Automation are also implemented. Thanks to all these
software interfaces, OMF makes process and production
data available to the majority of computer programmers
and users i.e. even to those not necessarily involved in the
industrial control field. For instance, it is easy to develop
applications in Microsoft Word, Excel and Access to access
process information. OMF has been developed for
demanding real-time applications, and incorporates
features, such as real-time response, asynchronous
communications, standing queries and priority scheduling
of data transfers. On one side OMF provides industry-
standard interfaces to software applications, and on the
other, it offers interfaces to many important communication
protocols in the field including MasterNet, MOD DCN,
TCP/IP and Fieldbus Foundation. These adapters make it
possible to build homogeneous control systems out of
heterogeneous field equipment and disparate system nodes.

OMF reduces the time and cost of software development by
providing frameworks and tools for a wide range of
platforms and environments. These utilities are well
integrated into their respective surroundings, allowing
developers to retain the tools and utilities they prefer to
work with.

C++_complib
C++_complib is a class library that contains general-
purpose classes, such as containers, string management
classes, file management classes, etc. The C++_complib
library was developed when no standard libraries, such as
STL [5], were available on the market. The main purpose
of this library was to improve the efficiency and quality,
and promote the uniform usage of the basic functions.

C++_complib is not a component according to the
definition in [7], where a component is a unit of
composition deployed independently of the product.
However, in a development process C++_complib is treated
in a very similar way as binary components with some
restrictions, such dynamic configuration.

Experience
The Advant system is a successful system and the main
reasons for its success are its component-based architecture
giving flexibility, robustness, stability and compatibility,
and effective build and integration procedures. This type of
architecture is similar to product line architectures [19].

Object Management (OMF)

Operator Station

User Interface (UIS)

Standard Operating SystemReal-time Operating System

C++ Component Library

Functional ComponentsFunctional ComponentsFunctional Components

OS-Base functions (UxBase)

Some case studies [20] have shown that product-line
architectures are successfully applied in small- and
medium-sized enterprises although there exists a number of
problems and challenges issues (organization, training,
information distribution, product variants, etc.). The
Advant experience shows that applying of product-line
architectures can be successful for large organizations.

However, the cost of achieving these features has been
high. To suit the requirements of an open system, new ABB
products have always to be backward compatible. It would
have been easier to develop a new system that not required
being compatible with the previous systems. A guarantee
that the system is backward compatible is a warranty that
an existing system will work with new products and this
makes the system trustworthy.

Development with large components which are easy to
reuse increases the efficiency significantly as compared
with reusing a smaller component that could have been
developed in-house at the same cost as its purchase price.
Advant OCS products are examples of large components
which have been used to assemble process automation
systems.

3 DIFFERENT ASPECTS OF REUSE

Component generality and efficiency
Reuse principles place high demands on reusable
components. The components must be sufficiently general
to cover the different aspects of their use. At the same time
they must be concrete and simple enough to serve a
particular requirement in an efficient way. Developing a
reusable component requires three to four times more
resources than developing a component, which serves a
particular case [7]. The fact that the requirements of the
components are usually incomplete and not well understood
[2] brings additional level of complexity. In the case of
C++_complib, the situation was simpler, because the
functional requirements were clear. It was relatively easy to
define the interface, which was used by different
components in the same way. The situation was more
complicated with complex components, such as OMF.
Although the basic concept of component functionality was
clear, the demands on the component interface and
behavior were different in different components and
products. Some components required a high level of
abstraction, others required the interface to be on a more
detailed level. These different types of requirements have
led to the creation of two levels of components: OMF base,
including all low-level functions, and OMF framework,
containing only a higher level of functions and with more
pre-defined behavior and less flexibility. In general,
requirements for generality and efficiency at the same time
lead to the implementation of several variants of
components which can be used on a different abstraction
level. In some specific cases, a particular solution must be
provided. This type of solution is usually beyond the

object-oriented mechanisms, since such components are on
the higher abstraction level.

Evolution of Functional Requirements
The development of reusable components would be easier
if functional requirements did not evolve during the time of
development. As a result of new requirements for the
products, new requirements for the components will be
defined. The more reusable a component is, the more
demands are placed on it. A number of the requirements
coming from different products, may be the same or very
similar, but this is not necessarily the case for all
requirements passed to the components. This means that the
number of requirements of reusable components grow
faster than of particular products or of a non-reusable piece
of software. The relation between component requirements
and the requirements from the products is expressed with
the following equation:

RC = RC0 + Σ ai Rpi 0 ≤ ai ≤ 1

RC0 denotes direct requirements of the component, Rpi
requirements of the products Pi , ai impact factors to the
component and RC is the total number of the component
requirements.

To satisfy these requirements the components must be
updated more rapidly and the new versions must be
released more frequently than the products using them.

The process of the change of components is more dynamic
in the early stage of the components lives. In that stage the
components are less general and cannot respond to the new
requirements of the products without being changed. In
later stages, their generality and adaptability increase, and
the impact of the product requirements become less
significant. In this period the products benefit from
combinatorial and synergy effects of components reuse. In
the last stage of its life, the components are getting out-of-
date, until they finally become obsolete, because of
different reasons: Introduction of new techniques, new
development and run-time platforms, new development
paradigms, new standards, etc. There is also a higher risk
that the initial component cohesion degenerates when
adding many changes, which in turn requires more efforts.

This process is illustrated in Figure 4. The first graph shows
the growing number of requirements for certain products
and for a component being used by these products. The
number of requirements of a common component grows
faster in the beginning, saturates in the period [t0– t1], and
grows again when the component features become
inadequate. Some of the product requirements are satisfied
with new releases of products and components, which are
shown as steps on the second graph. The component
implements the requirements by its releases, which
normally precede the releases of the product if the
requirements originated from the product requirements.

Figure 4. To satisfy the requirements the reusable
component must be modified more often in the beginning
of their life.

Indeed this was the case with both components we are
analyzing here: New functions and classes were required
from C++_complib, and new adapters and protocol support
were required from OMF. The development time for these
components was significantly shorter than for products:
While new versions of a product are typically released
every six months, new versions of components are released
as least twice as often. After several years of intensive
development and improvement, the components became
more stable and required less effort for new changes. In that
period the frequency of the releases has been lowered, and
especially the effort has been significantly lower.

Migration Between Different Platforms
During their several years of development, Advant products
have been ported to different platforms. The reasons for
this were the customer requirement, that the products
should run on specific platforms, and general trends in the
growing popularity of certain operating systems. Of course,
at the same time, new versions and variants of the platform
already used appeared, supporting new, better and cheaper
hardware. The Advant products have migrate through
different platforms: Starting on Unix HP-UX 8.x and
continuing trough new releases (HP-UX 9.x, 10.x), they
have been ported to other Unix platforms, such as Digital
Unix, and also to complete different platforms, such as
Open VMS and Windows NT family (NT 3.5, NT 4.0 and
Windows 2000). The products have been developed and
maintained in parallel. The challenge with this multi-
platform development was to keep the compatibility

between the different variants of the products, and to
maintain and improve them with the minimal efforts.

As an important part of the reuse concept was to keep the
high-level components unchanged as far as possible, it was
decided to encapsulate the differences between operating
systems in low-level components. This concept works,
however, only to some extent. The minimal activity
required for each platform is to rebuild the system for that
platform. To make it possible to rebuild the software on
every platform, standard-programming languages C and
C++ have been used. Unfortunately, different
implementations of the C++ standard in different
compilers, caused problems in the code interpretation and
required the rewriting of certain parts of the code. To
ensure that standard system services are available on all
platforms, the POSIX standard has been used. POSIX
worked quite well on different Unix platforms, but much
less so on Windows NT. The second level of compatibility
problem was Graphical User Interface (GUI). The main
dilemma was whether to use exactly the same GUI on
every platform, or to use the standard "look and feel" GUI
for each platform. This question applied particularly on NT
in relation to Unix platforms. Experience has shown that it
is not possible to give a definitive answer. In some cases it
was possible to use the same GUI and the same graphical
packages, but in general, different GUIs were implemented.

The main work regarding the reuse of code on different
platforms was performed on low-level components, such as
UxBase and OMF. While UxBase provides different low-
level packages for every platform (for example different
drivers), OMF capsulated the differences directly in the
code using conditional compilation. OMF itself is designed
in such a way that it was possible to divide the code into
two layers. One layer is specific for each operating system,
and the other layer, with the business logic, is implemented
for all of the supported platforms. Reuse issues on different
platforms for C++_complib were easier, strictly the
package contains general algorithms, which are not
depending on specific operating system. Some problems
appeared however, related to different characteristics of
compilers on different platforms.

Compatibility
One of the most important factors for successful reusability
is the compatibility between different versions of the
components. A component can be replaced easily or added
in new parts of a system if it is compatible with its previous
version. The compatibility requirements are essential for
Advant products, since smooth upgrading of systems,
running for many years, is required. Compatibility issues
are relative simple when changes introduced in the products
are of maintenance and improvement nature only. Using
appropriate test plans, including regression tests, functional
compatibility can be tested to a reasonable extent. More
complicated problems occur when new changes introduced

Product P1

Product P2

Component

Time

Accumulated Requirements

t-o t-1

Product P1

Product P2

Component

Time

Requirements satisfied in the releases

t-o t-1

in a reusable component eliminate the compatibility. In
such a case, additional software, which can manage both
versions, must be written.

A typical example of such an incompatible change, is a
change in the communication protocol between OMF
clients and servers. All different versions of OMF must be
able to talk to each other to make the system flexible and
open as shown in Figure 5. It is possible to have different
combinations of operating systems and versions of OMF
and it still works. This has been solved with an algorithm
that ensures the transmission of correct data format. If two
OMF nodes have the same version, they talk in their native
protocol.

Figure 5. Different versions of OMF must be compatible
with all older versions.

If an old OMF node talks with a new, the new OMF is
responsible for converting the data to the new format, this
being designated RMIR ("receiver makes it right"). If a
new OMF sends data to an older, the older OMF can not
convert the data since it is unaware of the new protocol. In
this case the newer OMF must send in the old protocol
format, SMIR ("sender makes it right"). This algorithm
builds on that fact all machines know about each other and
that they also know what protocol they talk. However, if an
OMF-based node does not know of the other node then it
can always send in a predefined protocol referred to as
“well known format”. All nodes do recognize this protocol
and can translate from it. This algorithm minimizes the
number of data conversions between the nodes.

In the case of C++_complib the problems with
compatibility were somewhat different. New demands on
the same classes and functions appeared because of new
standards and technology. One example is the use of C++
templates. When the template technology became
sufficiently mature, the new requirements were placed for
C++_complib: All the classes were to be re-implement as
template classes. The reason for this was the requirement
for using basic classes in a more general and efficient way.
Another example is Unicode support in addition to ASCII-
support. These new functions were added by new member-
functions in the existing classes and by adding new classes
using the inheritance mechanism for reusing the already
existing classes. The introduction of the same functions in
different format have led to additional efforts in reusing
them. In most of the cases the old format has been replaced

by new one, with help of simple tools built just for this
purpose. In some other cases, due to non-proper planning
and prioritizing the time-to-market requirements, both old
and new formats have been used in the same source
modules which have led to lower maintainability and to
some extend to lower quality of the products.

Development Environment
When developing reusable components several dimensions
of the development process must be considered:

- Support for development of components on different
platforms;

- Support for development of different variants of
components for different products;

- Support for development and maintenance of different
versions of components for different product versions.

To cope with these types of problems, it is not sufficient to
have appropriate product architecture and component
design. Development environment support is also essential.

The development environment must permit an efficient
work in the project - editing, compiling, building,
debugging and testing. Parallel and distributed development
must also be supported, because the same components are
to be developed and maintained at the same time on
different platforms. This requires the use of a powerful
Configuration Management (CM) tool, and definition of an
advanced CM-process.

The CM process support exists on two levels. First on the
source-code level, where source-code files are under
version management and binary files are built. The second
level is the product integration phase. The product built
must contain a consistent set of the component versions.
For example, Figure 6 shows an inconsistent set of
components. The product version P1-V2 uses the
component versions C1-V2 and C2-V2. At the same time
the component version C1-V2 uses the component version
C2-V1, an older version. Integrating different versions of
the same component may cause unpredictable behavior of
the product.

Figure 6. An inconsistent component integration.

OMF 1.0

OMF 2.0 OMF 2.0

OMF 1.0

Product P1,
Version V1

Product P1,
Version V2

Component C1,
Version V2

Component C1,
Version V1

Component C2,
Version V1

Component C2,
Version V2

Impact on other
components

Product P1Defect
report

Component Cn

Root cause

Product QnProduct Pn

Impact on
productsImpact on

products

Component C1
Another important aspect of CM in developing reusable
components is Change Management. Change management
keeps track of changes on the logical level, for example
error reports, and manages their relations with implemented
physical changes (i.e. changes of documentation, source
code, etc.). Because change requests (for example
functional requirements or error reports) come from
different products, it is important to register information
about the source of change requests. It is also important to
relate a change request from one product to other products.
The following questions must be answered: What impact
can the implemented change have on other products? If an
error appears in one product, does it appear in other
products? Possible implications must be investigated, and if
necessary, the users of the products concerned must be
informed.

The development environment designated Software
Development Environment (SDE) [8] is used in developing
Advant products. It is an internally-built program package
which encapsulates different tools, and provides support for
parallel development. The CM tool, based on RCS [10],
provides support for all CM disciplines, such as change
management, workSpace management, build management,
etc. SDE runs on different platforms, with slightly modified
functions. For example, the build process is based on
Makefiles and autoconf on Unix platforms, while Microsoft
Developer Studio with additional Project Settings is used
on Windows NT. The main objective of SDE is to keep the
source-code in one place under version control. Different
versions of components are managed using baselines, and
change requests. Change requests are also under version
control, which gives a possibility of acquiring information
useful for project follow-up, for every change from
registration to implementation and release [9].

The whole development process is complex and requires
organized and planned support, which is essential for
efficient and successful development of reusable
components and of applications using these.

The Maintenance Process
The maintenance process is also complex, because it must
be handled on different levels: On the system level, where
customers report their problems, on the standard product
level, where errors detected in a specific product version
are reported, and finally on the component level. A failure
occurs at the product level, while the root cause lies in a
component. The modification of the component can have
impact on other components and other products, which can
lead to an explosion of requirements for re-building (see
Figure 7). To minimize this cumbersome process, ABB
used a policy to avoid generating and sending specific
patches to the selected customers. Instead, the revised
products containing sets of patches were generated and
delivered to all customers contracted for maintenance, to
keep the customer installation consistent.

Figure 7. Impact of changes of components to other
components and products

The relations between components, products and systems
must be carefully registered to make it possible to trace an
error on all the levels. A systematic use of Software
Configuration Management places a crucial role in the
maintenance process. To support the maintenance process,
Advant products andcomponents together with error reports
are saved in several classes of repositories (for more details
see [11][12]).

4 INTEGRATING STANDARD COMPONENTS

In recent years the demands of customers on systems have
changed. Customers require integration with standard
technologies and the use of standard applications in the
products they buy. This is a definite trend on the market but
there is little awareness of the possible problems involved.
An improper use of standard components can cause severe
problems, especially in distributed real-time and safety-
critical systems, with long-period guarantees. In addition to
these new requirements, time-to-market demands have
become a very important factor.

These factors and other changes in software and hardware
technology [13] have introduced a new paradigm in the
development process. The development process is focused
now on the use of standard and de-facto standard
components, outsourcing, COTS and the production of
components. At the same time, final products are no longer
closed, monolith systems, but are instead component-based
products that can be integrated with other products
available on the market.

This new paradigm in the development process and
marketing strategy has introduced new problems and raised
new questions [18]:

- The development process has been changed. Developers
are now not only designers and programmers, they are
also integrators and marketing investigators. Are the
new development methods established? Are the
developers properly educated?

- What are the criteria for the selection of a component?
How can we guarantee that a standard component
fulfills the product requirements?

- What are the maintenance aspects? Who is responsible
for the maintenance? What can be expected of the
updating and upgrading of components? How can we
satisfy the compatibility and reliability requirements?

- What is the trend on the market? What can we expect to
buy not only today but also on the day we begin
delivering our product?

- When developing a component, how can we guarantee
that the "proper" standard is used? Which standard will
be valid in five, ten years?

All these questions must be considered before beginning a
component-based development project. Josefsson [14]
presents certain recommendations to the component
integrator for use as guidelines: Test the imported
component in the environment where it is to run and limit
the practical number of component suppliers to minimize
the compatibility problems. Make sure that the supplier is
evaluated before a long-term agreement is signed.

The focus of development environment support should be
transferred from the “edit-build-test” cycle to the
“component integration-test” cycle. Configuration
management must give more consideration to run-time
phase [15].

Replacing Internal Components with Standard
Components
In the middle of the eighties, ABB Advant products were
completely proprietary systems with internally developed
hardware, basic and application software. In the beginning
of the nineties, standard hardware components and software
platforms were purchased while the real-time additions and
application software were developed internally. The system
is now developed further using components based on new,
standard technologies.

During this development, further new components become
available on the market. ABB faced this issue more than
once. At one point in time, it was necessary to abandon the
existing solutions in a favor of new solutions based on
existing components and technologies. To illustrate the
migration process we discuss the possibility of replacing
OMF and C++_complib with standard components.

Experience from these examples showed that it is easier to
replace a component if the replacement process is made in
small incremental steps. Allowing the new component to
coexist with the old one makes it easier to be backward
compatible and the change will be smooth.

Replacing OMF with DCOM
Moving from a UNIX based system to a system based on
Windows NT had serious effect on the system architecture.
Microsoft components using a new object model were
available, namely COM/DCOM [16]. DCOM has
functionality similar to that of OMF and this became a new
issue when DCOM was released. Should ABB continue to

develop its proprietary OMF or change to a new standard
component? The problem was that DCOM did not have all
the functionality of OMF and vice versa. The domains
overlap only partially.

A subscription of data with various capabilities can be
made in OMF, and this subscription functionality is not
supported by DOCM. On the other hand, DCOM can create
objects when they are required and not like OMF where
objects are created before the actual use of them. Both
technologies support object communication and in this area
it is easier to replace OMF with DCOM.

If the decision was made to continue with OMF, all the new
components that run on top of COM could not be used,
which would drastically reduce the possibilities of
integration with other, third-party components. On the other
hand, it would require considerable work to make the
current system run on top of COM. This was the dilemma
of COM vs. OMF.

To begin with, OMF was adapted to COM with an adapter
designated OMF COM aware. This functionality helped
COM developers access OMF objects and vice versa.
However, this solution to the problem using two different
object models was not optimal since it added overhead in
the communication. Nor was it possible to match the data
types one to one, which made the solution limited. A
decision was taken to build the new system on COM
technologies with proprietary extensions adding the
functions missing from COM. All communication with the
current system was to be through the OMF COM. Adapters
are very useful when a new component is to used in parallel
with an existing one [17]. This solution makes it easy to
remove the old OMF and replace it with COM in small
steps over time.

Replacing C++_complib with STL
To switch from C++_complib to STL [5] was much easier
because STL covers almost all the C++_complib functions
and provides additional functionality. Still, much work
reminded to be done, since all the code using C++_complib
had to be changed to be able to use STL instead. The
decision was taken to continue using both components and
to use STL whenever new functionality was added. After a
time the use of old components was reduced and the
internal maintenance cost reduced. In some cases in the
same components both libraries were used, which gave
some disadvantages, especially in the maintenance process.

5 CONCLUSION

We have presented the ABB Advant Control Systems
(OCS) as a successful example of the development of a
component-based system. The success of these systems on
the market has been primarily the result of appropriate
functionality and quality. Success in development,
maintenance and continued improvement of the systems
has been achieved by a careful architecture design, where

the main principle is the reuse of components. The reuse
orientation provides many advantages, but it also requires
systematic approach in design planning, extensive
development, support of a more complex maintenance
process, and in general more consideration being given to
components. It is not certain that an otherwise successful
development organization can succeed in the development
of reusable components or products based on reusable
components. The more a reusable component is developed,
the more complex is the development process, and more
support is required from the organization.

Even when all these requirements are satisfied, it can
happen that there are unpredictable extra costs. One
example illustrate this: In the early stage of the ABB
Advant OCS development, insufficient consideration was
given to Windows NT and ABB had to pay the price for
this oversight when it suddenly became clear that Windows
NT would be the next operating platform. The new product
versions on the new platform have been developed by
porting the software from the old platform, but the costs
were significantly greater than if the design had been done
more independent from the first platform.

Another problem we have addressed, is the question of
moving to new technologies which require the re-creation
of the components or the inclusion of standard components
available on the market. In both cases it can be difficult to
keep or achieve the same functionality as the original
components had. However, it seems that the process of
replacing proprietary components by standard components
available from third parties is inevitable and then it is
important to have a proper strategy for migrating from old
components to the new ones.

6 REFERENCES

[1] Advant, ABB Automation Products,
http://www.advantocs.com

[2] Sommerville I., Software Engineering, Addison-
Wesely, 1999

[3] CORBA, http://www.corba.org

[4] International Electrotechnical Commission (1992),
Programmable Controllers Part 3, Programming
Languages, IEC 1131-3, IEC Geneva.

[5] Austern M., Generic Programming and the STL,
Addison-Wesely, 1999

[6] OPC Foundation, http://www.opcfoundation.org

[7] Szyperski C., Component Software, Addison
Wesely, 1999

[8] Crnkovic I., Experience with Change-Oriented SCM
Tools, Software Configuration Management
ICSE’97 Symposium, 1997, proceedings, Springer

[9] Crnkovic I. and Willför P., Change Measurements
in an SCM Process, System Configuration
Management Symposium, 1998, proceedings,
Springer

[10] Tichy W., RCS - A System for Version Control,
Software and Practice Experience, 15(7):635-654,
1985

[11] Kajko-Mattsson, M., Maintenance at ABB (I):
Software Problem Administration Processes,(the
state of practice), Software Maintenance, 1999.
(ICSM '99). Proceedings. IEEE International
Conference on Maintenance

[12] Kajko-Mattsson, M., Maintenance at ABB. (II).
Change execution processes (the state of practice),
Software Maintenance, 1999. (ICSM '99).
Proceedings. IEEE International Conference on
Maintenance

[13] Aoyama M.: New Age of Software Development:
How Component-Based Software Engineering
Changes the Way of Software Development, 1998
International Workshop on CBSE

[14] Josefsson M., Oskarsson Ö., Programvaru-
komponenter i praktiken – att köpa tid och prestera
mer, Report from Sveriges Verkstadsindustrier
1999, in Swedish

[15] Larsson M., Crnkovic I., New Challenges for
Configuration Management, System Configuration
Management Symposium, 1999, proceedings,
Springer

[16] Box D., Essential COM, Addison-Wesley, ISBN 0-
201-63446-5

[17] Rine D., Nada N., Jaber K., Using Adapters to
Reduce Interaction Complexity in Reusable
Component-Based Software Development,
Proceedings of the fifth symposium on software
reusability, ACM Press, 1999

[18] McKinney D., Impact of Commercial Off-The-Shelf
(COTS) Software on the Interface Between systems
and Software Engineering, Proceedings 21st

International Conference on Software Engineering,
ACM Press, 1999

[19] Bass L. et al., Third Product Line Practice Report,
Technical Report CMU/SEI-99-TR-003, Software
Engineering Institute, March 1999.

[20] Jan Bosch, Product-Line architectures in Industry:
A Case Study, Proceedings 21st International
Conference on Software Engineering, ACM Press,
1999

