
A Systematic Review of Software Evolvability
Hongyu Pei Breivold
ABB Corporate Research

Hongyu.pei-
breivold@se.abb.com

ABSTRACT

For long-lived systems, there is a need to address evolvability (i.e.

a system’s ability to easily accommodate changes) explicitly
during the entire lifecycle. In this paper, we undertake a

systematic review to obtain an overview of the existing studies in

promoting software evolvability at architectural level. The search
strategy identified 58 studies that were catalogued as primary

studies for this review after using multi-step selection process.

The studies are classified into five main categories of themes,
including techniques that support quality considerations during

software architecture design, architectural quality evaluation,
economic valuation, architectural knowledge management and

modeling techniques. The review investigates what is currently

known about software evolvability architecting at architecture
level. Implications for research and practice are presented.

Keywords

Systematic review, software architecture, software evolvability.

1. INTRODUCTION
For long-lived industrial software, the largest part of lifecycle

costs is concerned with the evolution of software to meet
changing requirements [7]. This puts critical demands on software

system’s capability of rapid modification and enhancement to

achieve cost-effective software evolution. In this context, software
evolvability has appeared as an attribute that ‘bears on the ability

of a system to accommodate changes in its requirements

throughout the system’s lifespan with the least possible cost while

maintaining architectural integrity’[44].

The ever-changing world makes evolvability a strong quality

requirement for the majority of software architectures [11, 43]. In

our previous study at ABB [13], and in other studies [15], we
have seen examples of different industrial systems that have a

lifetime of 10-30 years and are continuously changing. These

systems are subject to and may undergo a substantial amount of
evolutionary changes, e.g. software technology changes, system

migration to product line architecture, ever-changing managerial

issues such as demands for distributed development, and ever-
changing business decisions driven by market situations. As

software evolvability is a fundamental element for increasing

strategic decisions, characteristics, and economic value of the
software [14, 50], for such long-lived systems, there is a need to

address evolvability explicitly during the entire lifecycle and
prolong the productive lifetime of the software systems. Seeing

that a system without an adaptable architecture will degenerate

sooner than a system based on an architecture that takes changes
into account [24], evolvability was identified in these cases as a

very important quality attribute that must be continuously

maintained during their lifecycle. However, although there are
many research studies for analyzing and promoting software

evolvability, they focus on a particular technique or practice; No

systematic review of software architecture evolvability research
has been published previously (to our best knowledge).

The foundation for any software system is its architecture, which

allows or precludes nearly all of the quality attributes of the
system [18]. Our research is therefore concerned with obtaining a

holistic view of the existing studies in analyzing and achieving

software evolvability at architectural level through systematic
review [28]. The objectives are to answer the following question:

(i) What results have been reported in the scientific literature

regarding the analysis and achievement of software evolvability

at the architectural level? (ii) What are the implications of the

studies for research community and software practice?

The remainder of this paper is structured as follows: Section 2

describes the method used for this review. Section 3 presents the
results of the review in five main categories of themes. Section 4

discusses the findings of the review, and implications for research

and practice. Section 5 concludes the paper.

2. METHOD
This study is undertaken as a systematic literature review based on

the original guidelines as proposed by Kitchenham [28]. The
study includes several stages: (i) development of a review

protocol; (ii) identification of inclusion and exclusion criteria; (iii)

the search process for relevant publications; (iv) quality
assessment; (v) data extraction and (vi) synthesis.

2.1 Review Protocol
We developed a review protocol based on the guidelines and

procedures as proposed in [28]. This protocol specifies the
background for the review, research questions, search strategy,

study selection criteria, data extraction and synthesis of the
extracted data.

2.2 Inclusion and Exclusion Criteria
We only consider full papers in English from peer-reviewed

journals, conferences and workshops. The review includes
research studies that were published up to 2009. We exclude

studies that do not relate to software engineering/development,

software architecture and software quality analysis. We also
exclude prefaces, articles in the controversial corner of journals,

editorials, summaries of tutorials, panels and poster sessions.

Furthermore, when several duplicated articles of a study exist in
different versions that appear as journal papers, conference and

workshop papers, we include only the most complete version of

the study and exclude the others.

2.3 Search Process
We concentrate on searching in scientific databases rather than in

specific books or technical reports, as we assume that the major
research results in books and reports are also usually described or

referenced in scientific papers. However, this does not prevent us

from including a book as identified study when the book gives
comprehensive descriptions of a certain relevant topic. After an

initial search of databases, we did an additional reference

scanning and analysis in order to find out if we have missed
anything, thus to guarantee a representative set of studies. The

searched electronic databases include ACM Digital Library,

Compendex, IEEE Xplore, ScienceDirect – Elsevier,

SpringerLink, Wiley InterScience and ISI Web of Science. The

searched results were also checked against a core set of studies
within software architecture evolution and software quality

analysis to ensure confidence in the comprehensiveness of search

results.

The notion of evolvability is used in many different ways in the
context of software engineering with many other closely-related

quality attributes and synonyms such as flexibility,

maintainability, adaptability and modifiability [13]. Therefore, the
following search terms are used to find relevant studies:

S1: software architecture AND evolvability

S2: software architecture AND maintainability

S3: software architecture AND extensibility

S4: software architecture AND adaptability

S5: software architecture AND flexibility

S6: software architecture AND changeability

S7: software architecture AND modifiability

All these search terms were combined by using the Boolean OR
operator. The study selection process was performed through

several steps: (i) Search in databases and conference proceedings

to identify relevant studies; (ii) Exclude studies based on the basic
exclusion criteria; (iii) Exclude studies based on titles and

abstracts; and (iv) Obtain primary studies based on full text. The
search strategy identified a total of 3036 articles that were entered

into EndNote, which was also used for the subsequent steps for

reference storage and sorting. These references were subjected to
detailed exclusion criteria and resulted in 731 remaining articles.

After further filtering by reading titles and abstracts, 306 articles

were left for full text screening. In the end, 54 articles were
identified as primary studies. This search process was conducted

in April 2009. An additional 4 papers were added after we had

performed a complementary search in the end of August, 2009 in
order to cover the publications within the period of 2008 and the

first quarter of 2009. But some studies in the second quarter might

not have been indexed in the databases. This resulted in a total of
58 papers in the final list based on the inclusion and exclusion

criteria.

2.4 Quality Assessment
To guide the interpretation of findings and determine the strength

of inferences, we have, based on the quality assessment form [47],

identified the following quality criteria for appraising the selected
studies as these criteria indicate credibility of individual studies

when synthesizing results. Among these quality criteria, the first

two were used as the basis for including or excluding a study.

1) The study is based on research instead of a lessons-learned
report or expert opinion;

2) The study’s focus is on software architecture and software
development quality attribute;

3) The study has a description of the context in which the

research was carried out;
4) The research designs address the aims of the study;

5) The study has a description of the data collection methods;

6) The data analysis is rigorous.

2.5 Data Extraction and Synthesis
The data extracted from each study include the source and full

reference, main topic area, objectives and aims of the study,

statement of research hypothesis if any, research method

descriptions, data collection and analysis, findings and

conclusions. The data synthesis process includes identifying the
main concepts from each study and analyzing how they relate to

our review objectives.

3. RESULTS
Many studies promote and support software architecture
evolvability through focusing on a particular technique or

practice. Table 1 gives an overview of the studies according to

publication channels, including the number of studies from each
source along with the percentage of the total amount.

Table 1. Study Distribution per Publication Sources

Source Count %

Journal of Systems and Software 9 15.6

Books 6 10.4

Working IEEE/IFIP Conference on Software

Architecture (WICSA)

5 8.6

Journal of Systems Engineering 4 6.9

International Conference on Software Engineering

(ICSE)

4 6.9

IEEE International Conference on Software

Maintenance (ICSM)

4 6.9

Journal of Information and Software Technology 2 3.5

IEEE International Computer Software and

Applications Conference

1 1.7

ICSE Workshop on Sharing and Reusing

Architectural Knowledge-Architecture, Rationale,

and Design Intent (SHARK)

2 3.5

International Workshop on Principles of Software

Evolution

2 3.5

International Conference on Quality Software

(QSIC)

2 3.5

European Conference on Software Maintenance

and Reengineering

2 3.5

Journal of Software Maintenance and Evolution 1 1.7

Journal of Systems Architecture 1 1.7

Journal of Computer Standards & Interfaces 1 1.7

Journal of Advanced Engineering Informatics 1 1.7

IEEE/ACM International Conference on Automated

Software Engineering (ASE)

1 1.7

IEEE International Conference on Engineering of

Complex Computer Systems

1 1.7

IEEE International Symposium on Requirements

Engineering

1 1.7

International Conference on Software Reuse 1 1.7

International Software Metrics Symposium 1 1.7

ACM SIGSOFT software engineering notes 1 1.7

Conference of the Centre for Advanced Studies on

Collaborative research

1 1.7

International Computer Software and Applications

Conference

1 1.7

International Workshop on Economic-Driven

Software Engineering Research

1 1.7

International Workshop on the Economics of

Software and Computation

1 1.7

European software engineering conference held

jointly with 9th ACM SIGSOFT international

symposium on Foundations of software engineering

1 1.7

Total 58 100

The list of all the included studies is provided in the appendix of

[12]. Of these 58 studies, 48 were published in leading journals,
conferences or seminal books that are mostly cited in software

engineering community. The representation of high quality and

relevance of these studies and publication sources provides
confidence in the overall quality assessment of the systematic

review. After examining the research topics, data analysis and

findings addressed in each study, we classify the identified
primary studies into five main categories of themes, i.e. (i)

techniques that support quality considerations during software

architecture design, (ii) architectural quality evaluation, (iii)
economic valuation, (iv) architectural knowledge management

and (v) modeling techniques.

3.1 Quality Considerations Support during

Software Architecture Design
Several studies focus on how software quality can be introduced

and explicitly considered during software architecture design
phase. They are classified into three groups based on their focused

driving forces: quality attribute requirement-focused, quality

attribute scenario-focused and influencing factor-focused.

3.1.1 Quality Attribute Requirement-Focused
Adaptability Evaluation Method (AEM) [S56]1 is an integral part

of the Quality-driven Architecture Design and quality Analysis

(QADA) methodology [36] specializing in the adaptability aspect.
AEM captures the adaptability requirements that will be

subsequently considered in the architecture design, provides

guidelines on how to model adaptability in the architectural
models, and analyzes the candidate architectures to ensure that

adaptability requirements are met before system implementation.

Non-Functional Requirement (NFR) framework [S20] considers
adaptability as a key quality attribute for evolving systems during

the process of software development. The NFR framework helps

to systematically consider the conflicts and synergies between the
NFRs to develop an adaptable architecture. Another concrete

application example of using NFR framework describes an NFR

approach in developing software system through using design
patterns as potential adaptability enhancers [S19].

Bosch [S11] explicitly considers quality attributes during the

design process and proposed a design method which examines
three key phases, i.e. functionality-based architecture design,

architecture assessment and architecture transformation.

Attribute-Driven Design (ADD) [S6] is a recursive method that

helps the architect base the design process on the desired quality
attribute. Required input to ADD includes known functional

requirements, quality attribute requirements and constraints.

3.1.2 Quality Attribute Scenario-Focused
A systemized method for software architecture analysis
throughout the processes of software design and development is

described in [S18]. Architectural quality goals are expressed

through scenarios that measure the goals, mechanisms that realize
the scenarios, and analytic models that measure the results. As the

systems evolve, the analytic models can be used to assess the

1 The references starting with S are the studies that were identified

in the systematic review. A complete list of these included
studies can be found in the appendix of a technical report [12].

impact of architectural changes and monitor how architectural

evolution over a system’s lifetime affects its capability to support
predicted modifications.

Quality Attribute Workshop (QAW) [3] is a method that engages

system stakeholders before the creation of the software

architecture to discover a software system’s driving quality
attribute requirements. The identified quality attribute

requirements are elicited in the form of scenarios from the

perspectives of diverse groups of stakeholders. The scenarios are
classified into use case scenarios, growth scenarios that represent

anticipated future changes, and exploratory scenarios that stress
the system and expose the limits of the current design. In this way,

the development team can understand and address the right

problem through basing the scenarios on the business goals, and
use this information to design the architecture.

Active Reviews for Intermediate Designs (ARID) [S22] is a

scenario-based assessment method for evaluating intermediate

design or parts of an architecture. It is used to judge if the design
of a partial architecture is appropriate for its intended purpose

before the development of the complete architecture.

3.1.3 Influencing Factor-Focused
ArchDesigner [S55] is a quality-driven design approach for
architectural design process. It attempts to best satisfy conflicting

stakeholders’ quality goals, architectural concerns and project

constraints through using optimization techniques. This approach
considers software architecture design problem as a global

optimization problem because of the dependencies among

different design decisions that need to be maintained, and the
global constraints, e.g. stated project constraints that the selection

of any design alternative must take into account.

Global analysis [S30] provides a systematic way to identify,
accommodate, and describe architecturally significant factors

including quality attributes early into the design phase. The

influencing factors are classified into three categories, i.e.
organizational factors that constrain the design choices,

technological and product factors that influence the architecture.

Global analysis activities help to uncover the most influential
factors, develop strategies for designing the architecture in order

to accommodate these factors and reflect future concerns.

[S28] focuses on changeability and defines four aspects that have
influence changeability, i.e. flexibility, agility, robustness and

adaptability.

3.2 Quality Evaluation at the Software

Architecture Level
Various business goals trigger architecture assessment activities

[35], e.g. to evaluate and improve the architecture and its

qualitative attributes, to identify any architectural drift and
erosion, and to identify the risks related to a particular

architecture. From evolution perspective, architecture evaluation

is a preventive activity to delay the architectural decay and to limit
the effect of software aging [46]. Several studies focus on

software architecture evolvability evaluation and they are

classified into three groups: experience-based, scenario-based and
metric-based evaluation methods.

3.2.1 Experience-Based
Experience-based architecture evaluation means that the

evaluations are based on the previous experiences and domain

knowledge of developers or consultants [1]. Attribute-Based

Architectural Style (ABAS) [29] builds on architectural styles by
explicitly associating with reasoning frameworks based on

quality-attribute-specific models. ABAS consists of four parts: (i)

problem description explains the problem being solved by the
software structure; (ii) stimuli and response correspond to the

condition affecting the system and measurement of the activity as

a result of the stimuli; (iii) architectural styles are descriptions of
patterns of component interaction; and (iv) analysis constitutes a

quality-attribute-specific model that provides a method for

reasoning about the behavior of interacting components in the
pattern.

Empirically-Based Architecture Evaluation (EBAE) [34] defines a

process for defining and using a number of architectural metrics to
evaluate and compare different versions of architectures in terms

of maintainability. The main steps include (i) select a perspective

for the evaluation; (ii) define and select metrics; (iii) collect
metrics; and (iv) evaluate and compare the architectures.

A subset of Architecture Level Modifiability Analysis [6] relates

to software architecture comparison for optimal candidate
architecture, and focuses on quantitatively measuring the

stakeholders’ views of the benefits and liabilities of software

architecture candidates [S50]. The data collection is based on the
knowledge, experiences and opinions of stakeholders. Any

disagreements between the participating stakeholders are

highlighted for further investigation.

A knowledge-based approach for assessing evolvability based on
interviews with selected stakeholders, evaluates the evolutionary

path of the software architecture during its lifecycle [S24]. The
outcomes of the assessment include the current architecture

overview, the main issues found and optionally recommendations

for their resolutions. [S27] describes causes for changes during
the lifecycle of a system as well as strategies to cope with

changes. To understand the changes in the entire product

development process, the authors suggest analyzing already
finished projects to extract experiences on the most frequent

changes in terms of sources of stimuli and cost of each change.

3.2.2 Scenario-Based
Scenario-based architecture evaluation means that quality

attributes are evaluated by creating scenario profiles that force a
concrete description of a quality requirement [37]. This is to avoid

terminological ambiguities and conflicting interpretation of
quality attributes. Software Architecture Analysis Method

(SAAM) [S34, S35] is originally created for evaluating

modifiability of software architecture although it has been used
for other set of quality attributes as well, such as portability and

extensibility. The main outputs from a SAAM evaluation include

a mapping between the architecture and the scenarios that
represent possible future changes to the system, providing

indications of potential future complexity parts in the software

and estimated amount of work related to the changes.

Architecture Tradeoff Analysis Method (ATAM) [S22, S36]

evaluates software architectures in terms of quality attribute

requirements. It is used to expose the risks, non-risks, sensitivity
points and tradeoff points in the software architecture. An

extension to ATAM is Holistic Product Line Architecture

Assessment (HoPLAA) method [S43] for assessing product line
architectures. It identifies risks at the core architecture level as

well as the individual product architecture level. The notion of

evolvability points is used to designate a sensitivity point or a

tradeoff point that contains at least one variation point.
Evolvability points ensure that quality attributes at individual

product architecture level do not preclude core architecture

quality attributes.

Architecture Level Modifiability Analysis (ALMA) [S9, S38, and
S39] analyzes modifiability based on change scenarios that are

used to capture future events the system needs to adapt to in its

lifecycle. It can also assess risk and expose the boundaries of
software architecture with respect to flexibility using complex

scenarios [32].

Scenario-Based Architecture Reengineering (SBAR) [S8]
considers multiple quality attributes, including development-

oriented and operational-related ones. Another assessment method

based on SAAM, ATAM and SBAR, evaluates evolvability of
software product family architecture towards forthcoming

requirements [S23]. The output includes the potential flaws and

evolutionary path of the software.

3.2.3 Metric-Based
Several metrics have been proposed for evaluating evolvability.

Ramil and Lehman proposed metrics based on implementation

change logs [S45] and computation of metrics using the number
of modules in a software system [S40]. Another set of metrics is

based on software life span and software size [S52]. In [S48], a

framework of process-oriented metrics for software evolvability
was proposed to intuitively develop architectural evolvability

metrics and to trace the metrics back to the evolvability

requirements based on the NFR framework [16].

A process-oriented metric for software architecture adaptability is

described in [S21], which analyzed the degree of adaptability

through intuitive decomposition of goals and intuitive scoring for
the goal-satisfying level of software architecture. As the method

depends much on intuition and expert expertise, a quantitative

metric-based approach that evaluates software architecture
adaptability is proposed in [S41]. This approach supports

decision-making in choosing architecture candidates that meet the

stakeholders’ adaptability goals. The adaptability goals are
expressed in terms of adaptability scenario profiles. The impact of

each scenario profile is measured through two metrics, i.e. IOSA

(impact on the software architecture) and ADSA (adaptability
degree of software architecture). Another approach to

quantitatively analyze software evolution is using evolution ratio
which is the amount of evolution in terms of software size, and

evolution speed which is an indicator for the organization’s

capability for software system’s evolution [S1].

A quality model provides a framework for quality assessment and
aims to describe complex quality criteria through breaking them

down into concrete subcharacteristics that are measured through

metrics. Some well-known quality models are McCall’s quality
model [38], Dromey’s quality model [21], Boehm’s quality model

[10], ISO 9126 [27] and FURPS quality model [25]. [S12]
outlines a software evolvability model, in which subcharacteristics

of software evolvability and corresponding measuring attributes

are identified.

3.3 Economic Valuation in Determining the

Level of Uncertainty
The uncertainties in software architecture evolution arise from, to

certain extent, understanding how architectural decisions map

onto quality attribute responses in terms of costs and benefits.

Several approaches have been proposed to cope with uncertainty
and mitigate risks in the investment. Cost Benefit Analysis

Method (CBAM) [S46] is an architecture-centric economic

modeling approach that helps to address the long-term benefits
with regards to a change and its complete product lifecycle

implications. This method quantifies design decisions in terms of

cost and benefits analysis to determine the level of uncertainty and
decides how to prioritize changes to architecture, based on

perceived difficulty and utility. A related economics-driven

method is Architecture Improvement Workshop (AIW)
(http://www.sei.cmu.edu/architecture/products_services/aiw.html)

which values architectural decisions in relation to quality

attributes.

Software architecture decisions carry economic value in form of

real options [2, 45]. Options offer flexibility and consider

architectural evolution over time [S4, S25]. An approach that
considers cost, value and alignment with business goals to support

architectural evolution is described in [S31]. This approach

guides the selection of design patterns, the elicitation of
architecturally significant requirements, and the valuation of

architecture in terms of design decisions with multiple quality-

attribute viewpoints. Another application of real options theory is
described in [S5], which provides insights into architectural

flexibility and investment decisions related to the evolution of

software systems. This approach examines a set of probable
changes as well as their added value, e.g. accumulated savings

through enduring the change without violating architectural

integrity; supporting future growth; and capability of responding
to competitive forces and changing market conditions.

Another way to address economic valuation is through estimating

the required effort for system modification to accommodate future
changes, e.g. maintenance cost prediction [S7] calculates the

expected effort for each change scenario based on the analysis of

how the change could be implemented and the amount of required
changed code.

Given particular schedule constraints, a model-based approach

[S44] strategically determines an appropriate degree of
architectural flexibility through four strategic elements, i.e. feature

prioritization, schedule range estimation, core capability

determination and architecture flexibility determination, thus to
mitigate the risk of violating schedule, cost and quality

constraints. [S49] is another example that treats evolvability of

software design using the value of strategic flexibility.

A conceptual approach to quantifying a system’s life cycle value

is proposed in [S14] to facilitate adaptability to changing

circumstances and stakeholder preferences. This approach is based
on several key parameters for quantifying the perceived value to a

system’s stakeholders.

3.4 Architectural Knowledge Management
Architectural knowledge comprises architecture design, design
decisions, assumptions, context, and other factors that together

shape software architecture. An explicit representation of

architectural knowledge is helpful for evolving quality systems
and assessing future evolutionary capabilities of a system [30].

Apart from using change scenarios and change cases to explicitly

model variability and describe the future evolutionary capabilities,
it is also useful to explicitly model invariability assumptions, i.e.

things that are assumed will not change [S37]. Assumptions are

design decisions and rationale that are made out of personal

experience and background, domain knowledge, budget
constraints and available expertise. This information can be used

to provide additional what-if scenarios for software architecture

assessment, i.e. what if a certain assumption proves to be invalid.
In addition, explicit representation of the traceability between the

software architecture evolution and the early-made assumptions

augments design decisions in the face of uncertainties when
predicting the future user requirement changes. A relevant method

is Recovering Architectural Assumptions Method (RAAM) [S47]

that makes the assumptions explicit through recapitulating
historical information of software system evolution.

To assess architectural design erosion [49], an architecture

assessment model objectively measures the extent of deviation in
terms of functional and structural divergence [S10]. To track

software evolution, the loss of system functionality and

architectural structure as a software system evolves is represented
through functional and structural erosion indicators. Documenting

design rationale is another approach that is used to maintain and

evolve architectural artifacts [S54] in order to allow unanticipated
changes in the software without compromising software integrity

and to evolve in a controlled way [8]. The concept of architectural

constraints is introduced in [S29] to generalize architectural
styles, patterns and similar concepts, based on the conjecture that

architectural constraints influence the quality of architectural

design process and the improvement of software quality. In order
to provide support for capturing quality attribute knowledge,

design decisions for quality attributes and their rationale, several

tools have been developed [S2, S3, S15, S16, S17, S26, S32, and
S33]. A comparative study of these architecture knowledge

management tools is detailed in [S53].

An initial work on improving architecture evaluation activities for
pattern oriented systems is to improve software architecture

evaluation through mining patterns [S58] to systematically extract

and document architecturally significant information.

3.5 Modeling Techniques
Several modeling techniques enable software architecture

evolvability. One of them is Business Rule Model [S57] that

captures and specifies business rules, and relates them to the
metamodel level of software design elements through a Link

Model. As business rules have impact on software and business

process, explicit consideration and modeling of business rules
facilitate the improvement of software evolvability. Another way

to enable evolvability is a model-based approach for modeling the
traceability links through considering the relations between

requirements, architectural elements and implementation [S13]. A

quality-driven software reengineering model [S51] addresses the
evolution of system requirements and software architecture, by

adopting NFR Framework [16] and the concept of soft goals to

support the systematic modeling of the design rationale through a
soft-goal interdependency graph.

To capture and assess software architectures for evolution and

reuse, a framework for modeling relevant information and
architectural views for reengineering, analyzing, and comparing

software architectures is proposed [S42]. The types of information

for modeling include: (i) Stakeholder information describes
stakeholders’ objectives, which provide boundaries for analysis;

(ii) Architecture information refers to design principles or

architectural objectives; (iii) Quality information refers to non-

functional attributes; (iv) Scenarios describe the use cases of the

system to capture the system’s functionality. Scenarios that are
not directly supported by the current system can be used to detect

possible flaws or to assess the architecture’s support for potential

enhancements.

4. DISCUSSIONS
This section discusses implications for research and practice,

summarizes the principle findings of the systematic review, and

discusses the validity threats of this review.

4.1 Implications for Research
1. Potential to further improve the value and applicability of

research ideas The systematic review provides us a perspective of

where the field of software evolution and software architecture
evolvability stands today. One indicator of technology maturity is

Redwine-Riddle model [42], which identifies six typical phases
for technology maturation, i.e. basic research, concept

formulation, development and extension, internal enhancement

and exploration, external enhancement and exploration, and
popularization. We examine the maturity phase of ideas and

concepts, as well as the status of their applications by looking into

the research methods used in each study’s validation. A
distribution of the studies per research method is shown in Table

2. Only one-fourth of the studies have extended their approaches

to other domains and use the approach for industrial problems,
indicating accomplishment of the internal enhancement and

exploration phase. Two surveys were conducted on practitioners

in companies. Most of the case studies are single-case, with 20
studies done in projects in industry and 13 studies in academic

settings. This implies a potential for future research to further

improve the value and applicability of these research ideas.

Table 2. Study Distribution per Research Method

Research Method Number %

Single-case in Industry 20 34.5

Single-case in Academia 13 22.4

Multiple-case 16 27.6

Theoretical Reasoning 7 12.1

Survey 2 3.4

Total 58 100

2. Potential areas for further research With respect to the

research topics of the studies, we illustrate the distribution of the
studies per architecture-centric activity [4] in Figure 1. The

lifecycle activities of architecture-centric development include:

A. Creating the business case for the system;

B. Understanding the requirements;

C. Creating or selecting the software architecture;

D. Documenting and communicating the software architecture;

E. Analyzing or evaluating the software architecture;

F. Implementing the system based on the software architecture;

G. Ensuring that implementation conforms to the software
architecture.

Several studies address multiple architecture activities [S21, S51,

S58]. Many studies address architecture analysis and evaluation.
The recognition of a strong connection between architecture and

business value as well as the emergence of tool support for

architecture documentation signals the progress in the field of
software architecture evolution. However, it is interesting to note

that two architecture activities, i.e. implementation based on the

architecture and conformance checking, are addressed by
comparatively fewer studies. This seems to be in accordance with

the potential areas for improvement that were identified in a

recent IEEE Software article [19], i.e. object-oriented
programming vs. architecture, conformance checking.

0

5

10

15

20

25

A B C D E F G

Figure 1. Study Distribution per Architecture-Centric Activity

3. Combination of appropriate techniques with a lifecycle view
Each of the techniques and approaches identified in the review

has its strengths and shortcomings, and has its specific context

that it is appropriate for. For instance, most scenario-based
software architecture analysis methods share the strength of being

able to concretize the driving quality attribute requirements, but

they also share the weakness of being optimistic in change
scenario elicitation due to the unpredictable nature of changes as

well as the stakeholders’ short horizon in foreseeing future

changes [33]. Some architectural knowledge management
approaches can complement scenario-based methods and address

this weakness through explicit representation of invariabilities to

provide additional what-if scenarios. Economic valuation methods
complement with details on architectural decisions’ business

consequences. We see the initiative in research community to

combine appropriate techniques for software architecture
evolution [23, 40]. As evolvability needs to be addressed and

maintained throughout the complete software lifecycle,
combination of appropriate techniques with a lifecycle view poses

a future research theme that is necessary for software systems to

cope with diverse types of influencing factors.

4. Software process model facilitating software architecture

evolution Software engineering is a field with several disciplines
relevant to software architecture evolution, e.g. the exploration

and introduction of software development paradigms, such as

agile software development [20]. None of the identified studies
address this aspect. This might be due to the assumption of the

lack of focus on architecture in agile development methods [22].

However, Rajlich [41] describes that ‘the new Agile paradigm
brings a host of new topics into the forefront of software

engineering research’. Researchers have started to explore the

interplay between software process improvement and software
architecture [17, 39]. Continuing to investigate practices and

techniques in software process models that facilitate software

architecture evolvability remains an interesting research theme.

4.2 Implications for Practice
As indicated in implications for research, each technique and

approaches identified in the review has its specific context that it
is appropriate for. The main consideration for practitioners is thus

to use this review as a source in searching for relevant studies,

compare the settings to their own context, adopt and tailor
appropriate methods in their software development lifecycle. In

this process, practitioner can find multiple dimensions of factors

that exert influence on software architecture evolvability, e.g. (i)
business, (ii) technology, (iii) development process and (iv)

organization. From business perspective, system requirements

evolve because stakeholders’ needs and expectations change, the
context in which the software operate changes [9], and business

models evolve [48]. From technology perspective, many

unknown, uncontrollable technological and environmental
constraints outweigh design principles [26]. Assumptions shaping

software architectures [31] consist of technical assumptions that
concern the technical environment a system is running in,

organizational assumptions that concern the organizational

aspects in a company, and managerial assumptions that reflect the
decisions taken to achieve business objectives.

Patterns of risk themes that influence evolvability are categorized

into architecture, process and organization [5]. From architecture

perspective, the lack of attention to potential growth paths and
unknown requirements result in the failure to achieve

modifiability goals. From process perspective, requirement is
identified as one risk theme due to its nature of being uncertain or

rapid-changing, e.g. lack of attention to important concerns of key

stakeholders, lack of consistent marketing input, and disagreement
among stakeholders. From organization perspective, one risk

theme is the unrecognized need, arising from the failure to

consider architecture aspects in the overall system construction.
We believe that understanding of these influencing factors and

causes for changes will benefit practitioners in tailoring the

approaches so that they can fit more easily into their own existing
lifecycle models.

4.3 Principle Findings
The goal of this review was to identify a holistic view of the

existing studies in analyzing and achieving software evolvability
at architectural level. A spectrum of techniques and approaches

has been identified that promote software evolvability from a

specific perspective or architecture-centric activity in the software
lifecycle:

• Most of the techniques that support quality considerations

during software architecture design help identify key quality
attribute requirements early.

• In the subsequent iteration when the architecture starts to
take form, architectural quality evaluation methods help elicit

and refine additional quality attribute requirements and

scenarios.

• Economic valuation methods provide more details on

architectural decisions’ business consequences and assist
development teams in choosing among architectural options.

• Architectural knowledge management and modeling

techniques add value by modeling traceability and
visualizing corresponding impact of the evolution of

software architecture artifacts.

Besides, we have discussed the implications for research and
practice.

4.4 Validity
One possible threat of the review is bias in the selection of

publications and data extraction. This is addressed through
specifying a research protocol that defines the research questions,

inclusion and exclusion criteria, search strategy and strategy for

data extraction. The research protocol and the identified
publications have been reviewed by several researchers to

minimize the risk of exclusion of relevant studies. Besides,

additional reference checking of the identified studies was
conducted to guarantee a representative set of studies for the

review.

5. CONCLUSIONS
The systematic review of studies in promoting software
evolvability at architectural level identified 58 primary studies.

They are classified into five main categories of themes, i.e.
techniques that support quality considerations during software

architecture design, architectural quality evaluation, economic

valuation, architectural knowledge management and modeling
techniques. The main implications for research include further

improvement of the value and applicability of research ideas, and

integrate appropriate approaches with a lifecycle viewpoint. The
main implications for practice is the need to understand the causes

and factors that exert influence on software architecture

evolvability, and the need to tailor appropriate methods to suit
their application context.

6. REFERENCES
[1] Avritzer, A., and Weyuker, E.J.: ‘Metrics to Assess the

Likelihood of Project Success Based on Architecture Reviews’,
Empirical Software Engineering, 1999, 4, (3), pp. 199-215

[2] Baldwin, C.Y., and Clark, K.B.: ‘Design rules: Volume 1:

The power of modularity’ (Mit Press Cambridge, MA, 2000.)
[3] Barbacci, M.R., Ellison, R., Lattanze, A.J., Stafford, J.A.,

Weinstock, C.B., and Wood, W.G.: ‘Quality attribute workshops

(qaws)’, (CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST, 2003.

[4] Bass, L., Clements, P., and Kazman, R.: ‘Software

architecture in practice’ (Addison-Wesley Professional, 2003.)
[5] Bass, L., Nord, R., Wood, W., Zubrow, D., and Ozkaya, I.:

‘Analysis of architecture evaluation data’, Journal of Systems and
Software, 2008, 81, (9), pp. 1443-1455

[6] Bengtsson, P., Lassing, N., Bosch, J., and van Vliet, H.:

‘Architecture-level modifiability analysis (ALMA)’, Journal of
Systems and Software, 2004, 69, (1-2), pp. 129-147

[7] Bennett, K.: ‘Software evolution: past, present and future’,

Information and Software Technology, 1996, 38, (11), pp. 673-
680

[8] Bennett, K.H., and Rajlich, V.T.: ‘Software maintenance and

evolution: a roadmap’, (ACM NY, USA, 2000, edn.), pp. 73-87
[9] Bhattacharya, S., and Perry, D.E.: ‘Architecture assessment

model for system evolution’, (Inst. of Elec. and Elec. Eng.

Computer Society, 2007.
[10] Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M.,

MacLeod, G.J., and Merritt, M.J.: ‘Characteristics of software

quality’ (North-Holland, 1978.)
[11] Borne, I., Demeyer, S., and Galal, G.H.: ‘Object-oriented

architectural evolution’, LECTURE NOTES IN COMPUTER

SCIENCE, 1999, 1743, pp. 57-64
[12] Breivold, H.P., and Crnkovic, I.: ‘A Survey of Software

Evolvability’, MRTC report ISSN 1404-3041 ISRN MDH-

MRTC-239/2009-1-SE, Mälardalen Real-Time Research Centre,

Mälardalen University, September, 2009
[13] Breivold, H.P., Crnkovic, I., and Eriksson, P.J.: ‘Analyzing

Software Evolvability’, compsac, 2008.

[14] Cai, Y., and Huynh, S.: ‘An evolution model for software
modularity assessment’, ICSE Workshop on Software Quality

2007.

[15] Christian, D.R.: ‘Continuous evolution through software
architecture evaluation: a case study’, J. Softw. Maint. Evol.: Res.

Pract, 2006, 18, pp. 351-383

[16] Chung, L.: ‘Non-Functional Requirements in Software
Engineering’ (Springer, 2000.)

[17] Clements, P., Ivers, J., Little, R., Nord, R., Stafford, J., and

File, H.: ‘Documenting Software Architectures in an Agile
World’, Technical Note CMU/SEI-2003-TN-023, 2003.

[18] Clements, P., Kazman, R., and Klein, M.: ‘Evaluating

Software Architectures: Methods and Case Studies’ (Addison-
Wesley, 2002.)

[19] Clements, P., and Shaw, M.: ‘“The Golden Age of Software

Architecture” Revisited’, IEEE Software 2009.
[20] Cockburn, A.: ‘Agile software development’ (Addison-

Wesley Boston, MA, 2002.)

[21] Dromey, R.G.: ‘Cornering the Chimera’, IEEE Software,
1996, 13, (1), pp. 33-43

[22] Dybå, T., and Dingsøyr, T.: ‘Empirical studies of agile
software development: A systematic review’, Information and

Software Technology, 2008

[23] Falessi, D., Capilla, R., and Cantone, G.: ‘A value-based
approach for documenting design decisions rationale: a replicated

experiment’, ACM NY, USA, 2008, pp. 63-70

[24] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: ‘Design
patterns: elements of reusable object-oriented software’ (1995.)

[25] Grady, R.B., and Caswell, D.L.: ‘Software metrics:

establishing a company-wide program’ (Prentice-Hall, Inc. Upper
Saddle River, NJ, USA, 1987.)

[26] Graham, T.C.N., Rick, K., and Chris, W.: ‘Agility and

Experimentation: Practical Techniques for Resolving
Architectural Tradeoffs’. Proc. Proceedings of the 29th

international conference on Software Engineering2007.

[27] ISO9126: ‘ISO/IEC 9126-1, International Standard,
Software Engineering. Product Quality – Part 1: Quality Model’

[28] Kitchenham, B.: ‘Procedures for performing systematic

reviews’, Keele University TR/SE-0401/NICTA Technical Report
0400011T, 2004, 1

[29] Klein, M., Kazman, R., Bass, L., Carriere, J., Barbacci, M.,

and Lipson, H.: ‘Attribute-Based Architecture Styles’ (Kluwer,
BV Deventer, The Netherlands. 1999)

[30] Kruchten, P., Lago, P., and van Vliet, H.: ‘Building up and

reasoning about architectural knowledge’, LECTURE NOTES IN
COMPUTER SCIENCE, 2006

[31] Lago, P., and van Vliet, H.: ‘Explicit assumptions enrich
architectural models’, ICSE 2005.

[32] Lassing, N., Rijsenbrij, D., and van Vliet, H.: ‘On software

architecture analysis of flexibility, Complexity of changes: Size

isn't everything’, 2nd Nordic Software Architecturee Workshop

1999, pp. 1103-1581
[33] Lassing, N., Rijsenbrij, D., and van Vliet, H.: ‘How well can

we predict changes at architecture design time?’ Journal of

Systems and Software, 2003, 65, (2), pp. 141-153
[34] Lindvall, M., Tvedt, R.T., and Costa, P.: ‘An Empirically-

Based Process for Software Architecture Evaluation’, Empirical

Software Engineering, 2003, 8, (1), pp. 83-108
[35] Maccari, A.: ‘Experiences in assessing product family

software architecture for evolution’, ACM NY, USA, 2002, pp.

585-592
[36] Matinlassi, M.: ‘Quality-driven software architecture model

transformation’, WICSA 2005.

[37] Mattsson, M., Grahn, H., and Mårtensson, F.: ‘Software
Architecture Evaluation Methods for Performance,

Maintainability, Testability, and Portability’, QoSA 2006.

[38] McCall, J.A., Richards, P.K., Walters, G.F., United, S.,
Electronic Systems, D., Force, A., Rome Air Development, C.,

and Systems, C.: ‘Factors in Software Quality’ (NTIS, 1977.)

[39] Nord, R.L., and Tomayko, J.E.: ‘Software architecture-
centric methods and agile development’, IEEE Software, 2006,

pp. 47-53

[40] Nord, R.L., Wood, W.G., and Clements, P.C.: ‘Integrating
the Quality Attribute Workshop (QAW) and the Attribute-Driven

Design (ADD) Method’, Technical Note CMU/SEI-2004-TN-017
[41] Rajlich, V.: ‘Changing the paradigm of software

engineering’, Communications of the ACM 2006.

[42] Redwine Jr, S.T., and Riddle, W.E.: ‘Software technology
maturation’, (IEEE Computer Society Press Los Alamitos, CA,

USA, 1985, edn.), pp. 189-200

[43] Rowe, D., and Leaney, J.: ‘Evaluating evolvability of
computer based systems architectures-an ontological approach’,

ECBS 1997, pp. 24-28

[44] Rowe, D., Leaney, J., and Lowe, D.: ‘Defining systems
evolvability-a taxonomy of change’, Change, 1994, pp. 541-545

[45] Sullivan, K.J., Chalasani, P., Jha, S., and Sazawal, V.:

‘Software design as an investment activity: a real options
perspective’, Real Options and Business Strategy: Applications to

Decision Making, 1999, pp. 215–262

[46] Tonu, S.A., Ashkan, A., and Tahvildari, L.: ‘Evaluating
architectural stability using a metric-based approach’, CSMR

2006.

[47] Tore, D., Torgeir, D., and yr: ‘Empirical studies of agile
software development: A systematic review’, Inf. Softw. Technol.,

2008, 50, (9-10), pp. 833-859

[48] Wan-Kadir, W.M.N., and Loucopoulos, P.: ‘Relating
evolving business rules to software design’, Journal of Systems

Architecture, 2004, 50, (7), pp. 367-382

[49] van Gurp, J., and Bosch, J.: ‘Design erosion: problems and
causes’, Journal of Systems and Software, 2002, 61, (2), pp. 105-

119
[50] Weiderman, N.H., Bergey, J.K., Smith, D.B., and Tilley,

S.R.: ‘Approaches to Legacy System Evolution’, CMU/SEI-97-

TR-014, 1997.

