
State of the Practice: Component-based Software
Engineering Course

Ivica Crnkovic Magnus Larsson, Frank Lüders
Department of Computer Engineering Development and Research

Mälardalen University ABB Automation Products AB
Box 883 721 59 Västerås

721 23 Västerås, Sweden Sweden
+46 21 103183 +46 21 342666

Ivica.Crnkovic@mdh.se {Magnus.Larsson, Frank.Luders}@mdh.se

ABSTRACT
Component-based development has many potential
advantages such as shorter time to market and lower
prices. These advantages are especially attractive for
customers, who often do not recognize the risks of lower
reliability, possible problems with maintenance, etc.
Many software companies are forced to use imported
components in their products, but are not able to keep the
development process under control. Component-based
development is still a process with lot of problems, not
well defined either from theoretical or practical points of
view. The lack of knowledge is probably the biggest
problem and the need for component-based software
engineering (CBSE) is urgent. This was the motivation to
a company and a university to organize a Ph.D. course on
CBSE. Both Ph.D. students and practitioners from the
industry participated in the course. The aim of the course
was to increase the knowledge and understanding of
CBSE, and to analyze the needs for software components
in different engineering areas. The course consisted of
lectures, seminars and student reports on chosen CBSE
topics. This paper describes the course, gives an overview
of the reports, and discusses the course result.

Keywords: CBSE, industrial systems, COTS, training

1 INTRODUCTION
There is a high trend of using components, especially
COTS (commercial off the shelf) components, in software
development. Both customers and producers share the
enthusiasm for the CBSE approach because of the
obvious advantages: The development time dramatically
decreases, the usability of the products increases, the
production costs usually decrease, and so on. Indeed, in
many domains significant improvements in efficiency of
development have been achieved. However, inclusion of
components, over which the producer does not have
complete control over, increases the risk of getting
unexpected results. Even good components can corrupt a
good product if they are managed in the wrong way. In
some domains, such as industrial automation, this risk is
unacceptable, and additional measures are required to
minimize it. One of the problems is the lack of established

procedures and, in general, a lack of knowledge of CBSE.
To highlight the problems and to see which is the primary
interest for industry and academia, Mälardalen University
has, together with ABB, a leading industrial automaton
company, arranged a Ph.D. course on CBSE. The
motivation for the course is described in chapter 2. The
course performance discussed in chapter 3. The state of
the art report that was the outcome from the CBSE course
is presented in chapter 4 with an overview of the contents.
An analysis of the reports is given in chapter 5.

2 IMPORTANCE OF CBSE FOR THE
INDUSTRY

ABB, one of the leading companies in industrial process
control, used to be a hardware company selling large
electrical equipment and similar products. Now it is
becoming software oriented. ABB is trying to focus on
the core competence using, instead of developing itself,
standard hardware and software components. There is
also a strong demand from customers for products that use
standard technologies and are open to integration with
systems from different vendors. For example, a paper
plant customer may want to have an operator station from
ABB and controllers from Simens. To mix systems from
different vendors were much more difficult when the
products were proprietary. Using COTS and standard
components helps to open up the system.

It looks very promising to use components as reusable
entities, but there are many traps for developers that can
lead to higher cost than benefits. There are many
problems for both developing components for reuse and
with using reusable components. For example, ABB has
made an architecture that is both developed with and for
reuse [1]. The system was designed to be flexible, robust,
stable and compatible. However, to achieve these
properties a higher price had to be paid. Reuse principles
placed high demands on the reusable components. The
components had to be sufficiently general to cover the
different aspects of their use. At the same time they had to
be concrete and simple enough to serve a particular
requirement in an efficient way. As a value of thumb,
developing a reusable component requires three to four

times more resources than developing a component for
particular use [2]. There is also a problem with evolving
of functional requirements. The development of reusable
components would be easier if functional requirements
did not evolve during the time of development. As a result
of new requirements for the products, new requirements
for the components will be defined. The more reusable a
component is, the more demands are placed on it from
products using that component.

The use COTS components and their integration into
proprietary reusable components raises even more
concerns because the proprietary components may loose
their characteristics. The unexpected behavior of COTS,
non-proper adaptation, and features that do not
completely fulfill the requirements, may lead to a
degradation of higher-level components [8].

There are also other issues that require different
management than before: For example, dynamic and on-
line configurations of component in the systems, dynamic
architectures [6][7] and component configuration
management [3] at run-time.

All these and similar issues are apparently becoming
important for a successful development and marketing of
industrial system. ABB is very much aware of this
importance and that is the reason why it has started a
common project with Mälardalen University. The main
purpose of the project is to increase the knowledge and
raise interests for CBSE in both industry and academia.
The project includes different research and training
activities, and one of them is giving a Ph.D course –
CBSE.

3 THE CBSE PH.D. COURSE
The aim of this course was to collect and systematize
knowledge related to CBSE. One goal was also to find the
areas where CBSE is used or where there are interests to
use CBSE. The final goal was to produce a “state of the
art” report and to present the work in a seminar with
attendees from both industry and academia.

During the course different issues from a development life
cycle [5] were taken into consideration: Component
development, component selection and adaptation,
deployment and integration, system architecture issues,
maintenance, and of course, use and management of
components.

The course was structured in four parts: lectures,
seminars, workshops and report writing [4].

During the lectures an introduction to CBSE and a
framework for students self studies were given. The
different problems with using existing components and
component models like COM, CORBA, and EJB were
presented. One lecture was focused on the risks of having
components in safety critical and real-time systems. New

configuration management problems that appear when
dealing with components were also discussed. The
lectures were problem-oriented, i.e. the existing problems
were emphasized and possible directions to their solutions
indicated.

 After the lectures the students selected one of the
proposed topics or one of their own interests. All students
had a five-minute presentation, where they presented the
topic and the particular issues that they planned to address
in their reports, to make sure that the chosen topics were
in the scope of the course.

 Several seminars with invited speakers, the experts in this
area, were organized during the course. In conjunction
with these seminars workshops were organized to follow
up the students’ work. Between the workshops the
students made investigations into the topics, and wrote the
reports. The intention of the reports was primarily to
describe the current status of CBSE and the current
requirements on it, although many students were inclined
to make a research reports. The papers were presented and
discussed at a seminar, which also was open for everyone
to get valuable comments from the industry. Finally, the
papers were collected in a "CBSE - state of the art" report.

Practitioners from the industry were also invited to take
the course and from thirty students who attended the
course in total, eight were from the industry.

4 THE CBSE REPORTS - STATE OF THE ART
In their reports, the students described different
approaches, methods, technologies, problems and possible
solutions related to CBSE. The students have chosen
themselves their area of interests. The benefit of letting
the students to chose topics of their free will is that they
picked topics that were interesting to them which led to
higher motivation and a better quality of the produced
reports. More important, this approach emphasized the
problems of using CBSE in different domains, and point
to various demands on CBSE from different points of
view. To minimize the risk of getting completely
different reports, the lectures, seminars and workshops
were used as a common background.

The reports are categorized according to component life-
cycle phases (finding, selecting, creating, adapting,
deploying and replacing components):

- Definitions and Specifications of Software Components
- Component Software Architecture
- Developing Software Components
- Pragmatics of Software Components
- Real-time Software Components

The reports classified in these categories are described
below.

Definitions and Specifications of Software
Components
The reports address the problems of non-complete
component specifications and discuss the questions if
formal specifications can completely describe the
components. The following reports fall in this category:

- On the definition of concepts in CBSE
- Semantic integrity in CBD

On the definition of concepts in CBSE
This report gives an overview of commonly used terms
within the area of CBSE. The concepts “components”,
“objects”, “contracts”, “interfaces”, “patterns” and
“frameworks” and their relations are discussed. In the
paper it is found that there seems to be some variations as
to what the different terms really mean in different
situations and by different authors. However, a general
line of definitions has been extracted in which there is, for
instance, a clear distinction between a component and an
object. The relation between patterns and frameworks is
mentioned. Frameworks as defined in UML and Catalysis
[9] are further described from the formal aspect, and
finally a similarity between frameworks and contracts is
discussed.

Semantic integrity in component based development
The purpose of the paper is to investigate how the
semantic aspects are described when defining components
and to see if pre- and post-conditions or similar traditional
methods are used and how such methods can be
applicable in a component-based environment. The paper
introduces the problem with describing and handling
methods and modules in a non component-based
environment. After that, a survey on the current state in
semantic integrity with regards to components follows.
Finally, the paper discusses a possibility to bring in
aspects of the traditional methods into CBD and how this
would affect the quality and robustness of the
components.

Component Software Architecture
CBSE and software architecture (SA) [10] are separate
but related topics in software engineering research and
practice. CBSE focuses on the realization of systems
through integration of pre-existing components, while SA
is concerned with the high-level organization and
structure of systems in general. The current high interest
in SA is mainly motivated by the possibility of managing
complex software by using components. The questions
discussed in the papers bring together SA and CBSE
methods. The following papers belong to this category:

- Architectural styles in component based software
engineering

- Separation of concerns in software components
- Towards a component framework for complex

mechatronics

Architectural styles in component based software
engineering
One of the important issues studied in SA is recurring
architectural patterns and idioms or architectural styles.
CBSE and SA are clearly related, and the importance of
architectural issues in CBSE is now widely recognized.
However, since their motivations differ (and therefore
their criteria for what should and should not be viewed as
a component), the relationship between the two topics
may not be straightforward. This report investigates this
relationship with particular focus on architectural styles
and component-based technologies such as DCOM and
JavaBeans. The following questions are discussed: What
is the relationship between CBSE-components and SA-
components? Which architectural styles are best suited
for CBSE? Which architectural styles do current
component technologies support?

Separation of concerns in software components
Separation of concerns was always at the core of modern
software engineering. After presenting an overview of
separation of concerns and of the latest developments in
the mechanisms supporting it, this report presents the
problems related to supporting concerns within
components, and crosscutting components. This study
focus on how various separation of concerns approaches
can respect and adapt to coarse-grain components and
their supporting technologies.

Towards a component framework for complex
mechatronics
A mechatronics system embodies technologies from
several engineering disciplines in the domains of
mechanics, automatic control, software and computer
hardware. The major objective of the report is to explore
and define a component framework for such systems, e.g.,
robotics. Firstly, the main characteristics of the system are
described, and then a principle for identifying various
components (e.g. concept component, control component,
SW component, HW component, mechanical component)
are discussed. Finally, the interdependencies between
these components are examined in order to find out how
the use one type of component is constrained by others.

Developing Software Components
The following reports are focused on the development
phase of CBSE:

- The need for more mature life-cycle models in CBD
- Applying CBSE theory on corporate resource
- A parallel development approach to CBSE
- Role based component engineering
- Designing components for variability
- Building flexible components based on design patterns

The need for more mature life-cycle models in CBD
The paper discusses differences between CBD and

traditional software development and argues for the need
of a more mature life-cycle models in CBD. The different
approaches to development such as sequential, iterative,
incremental and evolutionary are analyzed from the
CBD's point of view.

A parallel development approach to CBSE
The paper describes a model of parallel developing
components. One of basic characteristics of components
is the interface which in many component models identify
the component. When the component is changed the
component gets the new identity. This principle is very
good when using released components, but it adds many
complications during the component development phase,
where interfaces are still not stable. This paper describes a
Configuration Management model, which allows parallel
development of several Interfaces of a component and
several versions of the same interface.

Role based component engineering
The paper discuses a role oriented object/component
design, in particular, how one can use roles to glue
components together, the importance of roles in designing
frameworks and how one can map the role paradigm onto
existing programming languages. The idea of role based
components is that the public interface is split into smaller
interfaces that model the different roles a component can
take in a system. Users of a component can communicate
with the component through the smaller role interfaces
instead of using the full interface. The main advantage of
this is that by limiting the communication between two
components by providing a smaller interface, the
communication becomes more general and it becomes
easier to plug in components in the system. This and other
aspects of role oriented design are discussed in the paper.
Role based modeling is discussed in Reenskaug’s work
about objects [11].

Designing components for variability
The paper elicits the different aims and requirements
regarding the design of component for single-products,
product lines, and COTS markets. This is complemented
with a description of the different variation aspects, i.e.
product variability, deployment variability, and domain
evolution. With this as a basis, the authors discuss what
the particular problems for each type of variability is, and
how these challenges can be met, either by means of
management, or by technical solutions such as
configuration management, parameterization, or design
pattern.

Building flexible components based on design patterns
In the past ten years design patterns have played an
important role in software reuse. Design patterns are
verified and general solutions to common reoccurring
problems. Some of the interesting questions are: What
benefits might design patterns bring to CBSE? What is the
relationship between design patterns and software

components? Is there a set of design patterns defining
software components? These questions are elaborated in
the paper.

Pragmatics of Software Components
The papers in this category point to utilization of CBSE,
not only methods and technologies but also ideas. The
following papers are selected into this category:

- Applying CBSE theory on corporate resource
- Variations in component implementations
- Making it possible to use smaller components
- Outsourcing, cots for the new millennium?
- Towards a visual working environment

Applying CBSE theory on corporate resource
This report is an experience report, which discuss some of
the problems raised during work with different CBSE
technologies. It also describes the project with a goal to
create company component-library. The goal was to
gather, maintain and develop a C++ class library that
would contain different functionality needed by a
software developer developing COM-components. It was
soon realized that reuse of binary components was not
enough. There is also a need to incorporate even
knowledge, and other parts, which do not directly belong
to executable part of the components, for example test
programs and examples implemented in different
programming languages, different kind of documentation,
etc. The paper describes different examples of reusing
components. Finally the idea of the component paradigm
is applied on management any kid of resources and
aspects, even human resources.

Variations in component implementations
The paper is a report on an exploratory empirical study of
multiple independent implementations of software
components. The components are developed for reuse by
independent teams or individuals following an informal
specification of a potential component and possibly a
informal description of application domain. Metrics,
technical aspects, solution aspects and domain aspects are
considered. The hypothesis this study is based on is that
component implementations do vary and the goal is to
learn about the nature of the variation, and its reasons.

Making it possible to use smaller components
In the industry, large components have been used for
several years. Large components are often easy to find
because they are well known. The complex nature of large
components makes it obvious that it is easier to reuse
them than to develop your own version. Small
components on the other hand are difficult to find because
the code-per-spec ratio is much lower making them less
tempting to use. The problem of using and finding small
components are more of administrative than of
technological nature. This paper studies some Open
Source Software (OSS) projects, which are being

developed over the Internet. Two different development
models are examined, the Cathedral and the Bazaar [12],
and their impact on the use of components is analyzed.
The goal of this report is to find some common ground of
success factors from the OSS development projects that
can be adopted for use in corporate environments.

Outsourcing, COTS for the new millennium?
One of basic problem in CBSE is insufficient knowledge
about the component used in the system development
process, and uncertainty of the component's future.
Outsourcing is a development outside the development
organization, but what it differs from COTS is that the
development still under control of the component user.
Having this control, a lot of problems related to COTS
can be avoided. There are, however, disadvantages in
outsourcing comparing to using COTS: Time to market is
probably slower, the costs can be higher, etc. This paper
describes these characteristics and compare them COTS-
based development.

Towards a visual working environment
The paper describes a possibility to utilize a "component
language" which will automatically generate the glue
code between components. The possibility of the glue
code generation is discussed by relating problems to
Artificial Intelligence methods. The components can be
composed in a frame of a visual working environment
where the user does not care of how operations are done,
but just moves the components to each other to perform
different operations. In such an environment the system
can warn the user is the operation the user is intended to
do in not possible. The paper describes a simulation of
such an environment in a specific domain.

Real-time Software Components
This category includes papers that discuss use of CBSE in
domains with higher requirements on reliability, timing
characteristic, etc., i.e. where non-functional requirements
play crucial role. The specification of non-functional
characteristics is a weak side of the specification of the
components. Is it at all possible to use components, in
particular COTS, for such systems? It is possible to prove
a correctness of imported components? These questions
are discussed in the following papers:

- Requirements for real-time components
- Component contracts for safety-critical real-time

systems
- How component technology can be used in mobile

robotics?

Requirements for real-time components
The purpose of this report is to identify specific
requirements needed for Real-Time Components. The
report includes the following topics:

- Instantiation of real-time components (both functional
and temporal)

- Effective reuse of general components (is it possible to
reuse only a portion of a real-time component, in order
to reduce memory and computing requirements?)

- Homogeneous in relation to heterogeneous component
interfaces.

- Verification and testing (real-time systems are often
safety-critical. How does this influence verification and
testing?)

Component contracts for safety-critical real-time systems
In this paper presents a framework for specifying and
relating component contracts for components used in
safety-critical real-time systems. Using both quantitative
and qualitative descriptions of component attributes and
assumptions about the environment, we can relate input-
output domains, temporal characteristics, fault
hypotheses, integrity levels, and task models. Using these
quantitative and qualitative attributes we can deem if a
component can be reused or not, how much and what
subsets, of say input-output domains, that need additional
functional and safety verification. This framework will
give formal and quantitative arguments for reuse of
components in safety-critical real-time systems.

How component technology can be used in mobile
robotics?
The building of a complete mobile robot system, requires
expertise in a number of different disciplines such as
automatic control, computer science, sensor knowledge,
mechatronics, artificial intelligence, etc. Most robot
researchers are specialists in one of these areas.
Nevertheless, a complete system is needed to prove any
work made in a special field. It is the belief that the
introduction of components is a necessary step to move
the robot technology from research labs to commercial
business applications. This paper discusses ongoing work
in this area, and proposes further solutions.

5 THE ANALYSIS OF THE REPORTS
The different backgrounds and areas of interests of
students have led to different subjects, different
approaches, focuses, and styles of the reports. As a
consequence of this, and because the students have chosen
the topics themselves, there is a large variety in the
reports. In that sense the “CBSE – state of the art” report
is more like a proceedings than a homogeneous book. On
the other hand the reports show that there exist many
areas where CBSE can be successfully applied, and at
least some of the approaches and ideas implemented.
Many reports discuss the component development and
identification issues: How a piece of software can be
recognized as a reusable component, how to design a
component, how to describe a component, and so on.
Another group of reports discusses the usability of
components in specific domains. Finally, there are reports
which focus on the practical issues – how to easy get
information about components and about all aspects

around it, and how to utilize the CBSE methods in the
software and system development. In general, we can say
that the course has fulfilled the purpose. The lectures,
seminars and reports with a combination with several
shortened seminars for the industry increased the
knowledge of students, developers and even software
managers.

6 CONCLUSION
Running this course for graduate students and
practitioners has been very valuable and interesting. Many
of the written papers have good quality and we have
succeeded to highlight some of the areas of CBSE. Some
of the papers have been or will be sent to different
international conferences. However, the goal of the course
was not to create research papers but to give a state of the
art and a state of the practice of CBSE. A benefit of
building up a “state of the art” material is a good base to
continue to perform the seminars for the industry people
and spread information about CBSE. Also, new courses of
the same type will be organized in the future. We see that
there is a strong demand for information in the CBSE
area. CBD is a hot topic and the industry must adopt the
technology quickly to be able to be competitive. The
course has been valuable for the students, especially for
those with different research area, to understand the
problems and to get overview of interesting research
topics. There was also a valuable experience to meet and
to listen to the invited speakers, experts in the software
engineering. A good forum for questions about
component-based development has been created. Finally,
creating this course was very good opportunity for
lecturers to gather a lot of information about particular
topics and share that information by all the members of
the course.

7 REFERENCES
[1] Larsson M., Crnkovic I., "Development Experiences

of a Component-based System", Proceedings of
Engineering of Computer Based Systems (ECBS
2000), IEEE, 2000

[2] Szyperski C., Component Software, Addison Wesely,
1999

[3] Larsson M., Crnkovic I., New Challenges for
Configuration Management, System Configuration
Management Symposium, 1999, proceedings,
Springer

[4] Ivica Crnkovic, Magnus Larsson, Kung-Kiu Lau, The
CBSE course,
http://www.idt.mdh.se/kurser/CBSE

[5] Wallnau K., 2d international workshop on CBSE, Los
Angeles, 1999

[6] Goedicke M., Meyer T., Dynamic semantics
negotiation in distributed and evolving CORBA
systems: towards semantic-directed system
configuration, Proceedings of Configurable
Distributed Systems, IEEE, 1998

[7] Feiler P., Li J., Managing inconsistency in
reconfigurable systems, IEEE Software Vol. 145
Issue 5, 1998

[8] Josefsson M., Oskarsson Ö., “Programvaru-
komponenter i praktiken – att köpa tid och prestera
mer”, Report from Sveriges Verkstadsindustrier
1999, In swedish

[9] D.F. D'Souza and A.C. Wills: Objects, Components,
and Frameworks with UML: The Catalysis
Approach, Addison-Wesley, 1998

[10] Len Bass, Paul Clements, and Rick Kazman,
Software Architecture in Practice. Addison-Wesley,
1998

[11] Reenskaug T., Working with Objects, Manning
publications, 1996

[12] Eric S. Raymond, The Cathedral & the Bazaar, 1st
Edition, O'Reilly, ISBN 1-56592-724-9, October
1999

