Developing Dependable Software-Intensive
Systems: AADL vs. EAST-ADL*

Andreas Johnsen and Kristina Lundqvist

School of Innovation, Design and Engineering
Malardalen University
Visteras, Sweden
{andreas. johnsen,kristina.lundqvist}@mdh.se

Abstract. Dependable software-intensive systems, such as embedded
systems for avionics and vehicles are often developed under severe qual-
ity, schedule and budget constraints. As the size and complexity of these
systems dramatically increases, the architecture design phase becomes
more and more significant in order to meet these constraints. The use of
Architecture Description Languages (ADLs) provides an important basis
for mutual communication, analysis and evaluation activities. Hence, se-
lecting an ADL suitable for such activities is of great importance. In this
paper we compare and investigate the two ADLs — AADL and EAST-
ADL. The level of support provided to developers of dependable software-
intensive systems is compared, and several critical areas of the ADLs are
highlighted. Results of using an extended comparison framework showed
many similarities, but also one clear distinction between the languages
regarding the perspectives and the levels of abstraction in which systems
are modeled.

Keywords: Dependable systems, Software-intensive systems, AADL,
EAST-ADL, Architecture description languages.

1 Introduction

One of the most critical phases in the development process of software-intensive
systems is the architecture design phase. The architecture specification repre-
sents a set of design-decisions, which are analyzed and evaluated to ensure con-
formance with the system requirements. The efficiency and effectiveness of the
evaluation method is largely dependent on the type of artifact being evaluated.
Hence, the means used to design architectures of dependable software-intensive
systems are critical to ensure quality of the system. Architecture Description
Languages (ADLs) have been developed as means for designing systems’ archi-
tecture.

Software-intensive systems are systems where software interacts with sensors,
actuators, devices, other systems and people [I]. Examples of such systems are

* This work was partially supported by the Swedish Research Council (VR), and
Milardalen Real-Time Research Centre (MRTC)/Malardalen University.

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. IOSE 2011.
© Springer-Verlag Berlin Heidelberg 2011

104 A. Johnsen and K. Lundqvist

embedded systems for vehicles, medical equipment and avionics. What these sys-
tems have in common is that they often operate in dynamic, time- and safety-
critical environments where the components embedded within the systems are
heterogeneous and have to meet real-time constraints. Two widely used ADLs
within both industry and the research community are the Architecture Analy-
sis and Design Language (AADL) [2], developed by the Society of Automotive
Engineers (SAE), and the Electronics Architecture and Software Technology -
Architecture Description Language (EAST-ADL) [3], initially developed by the
Embedded Architecture and Software Tools - Embedded Electronic Architec-
ture (EAST-EEA) project in the Information Technology for European Advance-
ment (ITEA) programme and further refined by the Advancing Traffic Efficiency
and Safety through Software Technology (ATESST and ATESST2) projects[4].
EAST-ADL was developed specifically for automotive systems, and AADL was
initially developed for Avionics but now targets all large-scale software-intensive
embedded systems and systems of systems, such as, aircraft, motorized vehicles,
autonomous systems, and medical devices.

In this paper, we investigate these two ADLs and compare the level of support
they provide developers to ensure correctness of software-intensive systems. An
ADL should support activities — or tools performing activities — such as analysis,
V&V, model checking (formal verification), code generation/synthesis, etc., by
providing multiple perspectives with well defined semantics. At the same time,
an ADL should support understandability and communication among stake-
holders, by providing multiple levels of abstraction [5]. Generally, ADLs do not
support both parts [6], which is critical for dependable systems since both parts
contribute to systems’ correctness.

The comparison is performed by applying an extension of Medvidovic and
Taylor’s ”classification and comparison framework for software architecture de-
scription languages” [6]. In order to be able to compare AADL and EAST-ADL,
Medvidovic and Taylor’s framework is expanded with aspects of hardware archi-
tectures and typical quality attributes of software-intensive systems, which are
timing and dependability.

The extended framework will be presented in Section [2, before overviews of
the languages under comparison is given in Section [l The results of applying the
ADLs to the extended framework are presented in Section Hl which is followed
by conclusions in Section [l

2 The Comparison Framework

Medvidovic and Taylor developed a framework [6] for classification and compar-
ison of software ADLs. In this paper, we extend their framework with hardware
architecture aspects and vital quality-attributes of software-intensive systems.
The new framework consists of, as in the original framework, a set of building
blocks and their features (depicted in Table[Il) that an ADL should provide. The
main building blocks are components, connectors and configurations, where
these components, in order to interchange architectural information, must have

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 105

Table 1. ADL Building Blocks (bold), their Features (italic) and vital quality-
attributes

ADL: Building Blocks and Features
Components
Interface, Types, Semantics, Requirements, Evolution, Non-functional properties
Connectors
Interface, Types, Semantics, Requirements, Fvolution, Non-functional properties
Configurations
Understandability, Compositionality, Refinement and traceability, Heterogeneity,
Scalability, Fvolution, Requirements, Non-functional properties
ADL: Vital Quality Attributes
Dependability
Timing

interfaces. Connectors are the interactions within the architecture whereas con-
figurations define how each building block is combined to form an architecture
description.

Architectures of software-intensive systems can be represented by these build-
ing blocks, which are abstractions of architectural elements. The framework
developed by Medvidovic and Taylor restricts these building blocks to be ab-
stractions of architectural elements of software. The extensions are reflected in
the defined restrictions (given in section 2] 22 223]) of what the building blocks
are abstractions of, which are: architectural elements of software, architectural
elements of hardware and architectural elements of software mapped on hard-
ware.

Within following subsections, an overview of each architecture building block,
their features and the vital quality attributes is given.

2.1 Building Block: Component

Components are abstractions of main hardware/execution platform-units,
computational software-units or composition of software and hardware-units.
Computational software units refer to procedures/functions as well as entire ap-
plications. Main hardware/execution platform-units refer to complex hardware
that may be associated with software to complete its functionality. Examples of
such units are: sensors, actuators, processors, memories and communication links
such as buses. Composition of software and hardware units refer to systems where
computational software units are mapped to main hardware/execution platform
units (e.g. flight control system, GPS system, electronic cruise control system,
etc.). Components interact through their interfaces which are logical points of
interactions between a component and its environment. An interface of a com-
ponent describes the services a component provides and requires. The behavior
model of a component, which here is referred to as component semantics, is an
important feature of a component since it describes requirements and provides
information for analysis and V&V activities. Components that are encapsulated

106 A. Johnsen and K. Lundqvist

within a certain subset of semantics and properties are here referred to as a
component type, which can be instantiated several times within an architecture.
Component types facilitates the ability to understand and analyze architectures
since instances of a component type have common properties. Types are most
often created by extensible type systems within ADLs, but built-in component
types should also be provided. Components should be able to be modeled with
external and internal properties specifying unacceptable borders, which we here
refer to as component requirements. Furthermore, an ADL should provide mod-
eling of non-functional properties (e.g. reliability, safety, performance, etc.) as-
sociated with components for V&V, simulation and analysis purposes. In order
to control evolution of components within a system, i.e., modifications of com-
ponent properties, the language should be able to support the evolution of the
system. An ADL can support the evolution by supporting subtyping of compo-
nent types as well as refinement of component features.

2.2 Building Block: Connector

Connectors are abstractions of interactions, where the method to interact may
be of simple or highly complex nature. The nature may exclusively consist of
software (e.g. data flows, control flows, function calls and access to data), hard-
ware (e.g. wires) or a combination of the two (e.g. bus system). Connectors may
have interfaces, specifying interaction points which components or connectors
can be connected to. The behavior models of connectors which specify interac-
tion protocols, are here referred to as connectors semantics. Similar to compo-
nent semantics, connector semantics provide information for analysis and V&V
activities, where the information is based on interconnection and communica-
tion requirements/properties. Connectors that are encapsulated within a subset
of connector semantics and properties are here referred to as a connector type.
These types are provided, similar to component types, by ADLs to facilitate
modeling and understandability by reusable building blocks. Connector require-
ments assert interaction protocol properties by describing unacceptable borders.
Connectors should also be able to be modeled with non-functional properties,
which can not be derived from the connector semantics. As these interaction
protocol properties are modified according to the evolution, ADLs should be
able to support this evolution through subtyping and refinement of connector
features.

2.3 Building Block: Configuration

ADL configurations define how each building block (components and connectors) is
combined to form an architecture describing correct component connections, com-
ponent communications, interface compatibility and that the combined semantics
of the whole system result in correct system behavior. Since a system architecture
partly serves as a mutual communication blueprint among stakeholders, the under-
standability of specifications is of great importance. An ADL specification should
describe the topological system with understandable syntax or/and graphical no-
tions, where an architecture configuration can be understandable without knowing

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 107

components’ and connectors’ architectural details. Closely related to the under-
standability of an architecture configuration is the architecture compositionality. In
order to provide an understandable architecture configuration, it is important to be
able to describe the system at different abstraction levels, by abstracting away un-
interesting details when concerning specific perspectives of the system. Such views
can be provided by ADLs that have the capability to model a system hierarchically,
where an architecture configuration may be contained within a higher abstracted
component. As ADLs provide means for architectural description at different lev-
els of abstraction, it is important to have traceability throughout the refinement of
properties and relationships, from high levels of abstraction to the concrete system,
in order to bridge the gaps between them. Since ADLs partly are used to facilitate
development of large, complex and often highly heterogeneous systems, it is impor-
tant that ADLs can meet these heterogeneity and scalability problems by providing
possibilities to specify components and connectors described by external formal
languages, and to be able to handle large and growing systems. Evolvability, which
is closely related to scalability, does not only concern ADLs ability to accommodate
to new architectural building-blocks to be added, but does also concern how ADLs
can accommodate to incomplete architectural specifications, since it is unfeasible
to make all design decisions at once. Requirements and non-functional properties
of architectural configurations are not specific to individual components or connec-
tors, but may be extracted from or are depended upon component- or connector-
specific requirements and non-functional properties.

2.4 Vital Quality Attributes

Software-intensive systems are of highly complex nature with numerous criti-
cal quality-attributes. What software-intensive systems have in common is that
they often are operating in safety-critical and time-critical environments. Con-
sequently, two of the most important quality-attributes are dependability and
timing. Even though one of the fundamental results of architecture-based devel-
opment is increased dependability, as a result of abstracting complex systems
to understandable and manageable blueprints, an ADL for software-intensive
systems should explicitly provide means for dependability modeling. An ADL
should facilitate safety- and reliability-analysis, such as for example, provide
means for error modeling, reliability modeling, hazard analysis, risk analysis,
and structures of requirements. Another critical aspect of software-intensive sys-
tems is timing since these systems often have to meet real-time constraints. An
ADL should provide means to support modeling and analysis of timing require-
ments and properties, such as for example, end-to-end timing (sensor to actuator
timing), latency, task execution time and deadlines.

3 ADLs Under Comparison

We present an overview of both ADLs in order to provide a basis for the com-
parison in section @l

108 A. Johnsen and K. Lundqvist
3.1 Overview of AADL

AADL (1.0) [7] [8] was released and published as a Society of Automotive En-
gineers (SAE) Standard AS5506 [2] in 2004. It is a textual and graphical lan-
guage used to model, specify and analyze software- and hardware-architectures
of real-time embedded systems. The AADL language is based on a component-
connector paradigm that describes components, component interfaces and the
interaction (connections) between components. Hence, the language captures
functional properties of the system, such as input and output through compo-
nent interfaces, as well as structural properties through configurations of com-
ponents and connectors. Furthermore, means to describe quality attributes are
also provided. A system is modeled as a hierarchy of components where compo-
nents that represent the application software are mapped onto the components
that represent the hardware platform. A component is modeled by a compo-
nent type and a component implementation. The component type specifies the
external interfaces of the component in which other components can interact
through, while the component implementation specifies the internal view of a
component, such as subcomponents and their connections, and must be coupled
to a component type.

Although a new version of AADL (AADLv2) [9] was published in 2009, the
survey is restricted to the version of the language released in 2004.

3.2 Overview of EAST-ADL

The EAST-ADL [3] [10] is a domain-specific ADL for modeling and development
of automotive electronic systems, where the language has modeling possibilities
to specify software components, hardware components, features, requirements,
variability and annotations to support analysis of the system. The language
supports modeling of electronic systems at four different conceptual abstraction
levels, namely: Vehicle level, Analysis level, Design level and the Implementation
level. These abstraction levels reflect the amount of details in the architecture
where abstract features and functions modeled in higher abstraction levels are re-
alized to software and hardware components modeled in lower abstraction levels.
The language provides a complete traceability through the different abstraction
levels. The basic vehicle features (e.g. wipers and breaks) of the electronic sys-
tems are captured at the Vehicle level, the highest level of abstraction. These
features are refined in related functions at the Analysis level by abstract elements
representing software functions and devices interacting with the vehicle environ-
ment. The Design level represents a realization of the functionalities depicted at
the analysis level, where the level allows further decomposition or restructuring
of software functions and preliminary allocation of software elements. Specified
devices are realized at this level into hardware architectures, such as sensors
and actuators, including software for signal transformations. The lowest level of
abstraction, the Implementation level is defined by using the Automotive Open
System Architecture (AUTOSAR) standard[11].

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 109

4 AADL vs. EAST-ADL

AADL and EAST-ADL are compared according to the comparison framework
given in section 2] where each architectural building block, their features and
vital quality-attributes are analyzed and discussed based on the AADL standard
specification [2] and the EAST-ADL standard specification [3].

4.1 Modeling of Components

Both AADL and EAST-ADL support modeling of all three component categories
(i.e. computational software, main hardware/execution platform and composi-
tion of software and hardware). EAST-ADL refer these components to features,
functions or components, depending on which conceptual abstraction level is
considered whereas AADL exclusively refer to components.

Interface. AADL support modeling of five different types of component inter-
faces, or component features as referred to in the AADL standard. The different
types of component interfaces are: ports, data access, bus access, subprogram or
parameter. Ports are interaction points of software components for transfer of
typed data and events. Data access interfaces are used to connect software com-
ponents to static data whereas bus access interfaces are used to interconnect
hardware components through bus components (built-in component types are
depicted in the ”types” section). Subprogram components may be used as in-
terfaces of data components, representing methods that can be called by thread
components. Parameters are interaction points of subprogram components for
transfer of data. EAST-ADL on the other hand provides modeling of different
interfaces, depending on which conceptual abstraction layer is being modeled.
At the functional analysis level and the functional design level it is possible to
model interfaces such as client-server ports and flow ports. Client and server
ports are interaction points for communication between clients and servers, i.e.
operations are required or provided by client ports and server ports. Flow ports
are directional interaction points for exchange of data which is specified by as-
sociated data-types. The hardware design architecture, modeled at the design
level, provides pin interfaces in which hardware elements can be connected to
electrical sources, sinks and ground.

Types. The AADL language provides ten types of built-in component abstrac-
tions: process, thread, thread group, data, subprogram, processor, memory, bus,
device and system. Note that a bus component represents an entity that inter-
connects hardware components (processor, memory, device and bus components)
for exchange of data and control according to some communication protocol, and
thus, it could be argued to be a connector type. Families of related components
may also be modeled in the AADL language by an extension system where a
component extending an antecedent component will inherit its antecedent char-
acteristics, which can be refined or modified. EAST-ADL has built-in component
types which encapsulate semantics and properties in relation to a certain abstrac-
tion level, in contrast to AADL which types encapsulate semantics and properties

110 A. Johnsen and K. Lundqvist

in relation to the concrete component that is abstracted by the language. For ex-
ample, at the vehicle level, it is only possible to model feature components, and
at the analysis level, it is only possible to model function and device components,
where the encapsulated semantics and properties of these types are abstract. As
the abstraction level decreases, the types are getting more concrete. For exam-
ple, at the design level, it is possible to model hardware components of sensor
or actuator type, and at the implementation level it is possible to realize (by
using AUTOSAR) design level functions into software components types. The
EAST-ADL language provides modeling of component types where occurrences
of such instances, in a modeling artifact, are called typed prototypes. Modeling
by these typing systems is provided at every abstraction level, except at the
vehicle level. The EAST-ADL language does also provide modeling of variabil-
ity models, which has similarities with modeling of component types but with
a difference of the conceptual usage. The main conceptual usage of variability
models is to facilitate controllability of product lines, and not mainly to facilitate
understandability and analyzability. The variability management is provided at
all the different conceptual abstraction levels, where related components can be
merged to a component (which can be seen as a component type) with variability
properties, meaning that the aspect of such a component can vary to another
closely related aspect.

Semantics. Both AADL and EAST-ADL provide specification of components’
behavior, but with some limitations which can be exceeded by language annexes
and integrated tools. For example, the AADL language is extended with a be-
havioral annez [12], which provides modeling of components’ behavior by using
automata theory whereas the EAST-ADL language has traceability to behavior
models based on external notations such as Simulink [4]. Both core languages
provide sufficient modeling of behavior and functionality through modeling of
component modes and triggers based on data, events or timing, for exchange
of modes.

Requirements. The AADL language provides modeling of requirements
through the generic property annotation, which does not only provide modeling
of requirements, but also modeling of a component’s functional properties (com-
ponent semantics) as well as non-functional properties. Component properties
can be specified with either the component types or the component implemen-
tations, to distinguish internal and external requirements of a component. The
AADL language provides built-in properties (requirements) and possibilities to
define new properties. EAST-ADL, on the other hand, treats requirements as
separate entities that are associated to the target EAST-ADL element with a
specific association, according to principles of SysML [13]. The concept of the
requirement modeling is to provide an interface between OEMs (original equip-
ment manufacturer) and suppliers.

Evolution. AADL provides means for structural evolution through its com-
ponent extension system, where an instance of a component type can be used
to type other components. Since AADL is built on a paradigm where a system

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 111

is modeled as a hierarchy of components, its nature provides means for refine-
ments of component features across different levels of abstraction. EAST-ADL
does not allow modeling of component subtypes, because the EAST-ADL domain
model (metamodel) only describes component types and their prototypes (type
instances). However, EAST-ADL provides means for refinement across different
level of abstraction, but with a hierarchical difference compared to AADL. Even
though starting from a high abstraction level, AADL specifies components that
are abstractions of concrete implementation components (e.g. a system compo-
nent with sensors, processes and actuators as subcomponents), which then can
be refined with other abstracted components (e.g. thread components), modeled
inside components. EAST-ADL, on the other hand, starts with specification of
components that are abstractions of features and functions (which themselves
are abstractions), which can be decomposed in a lower abstraction by specifying
these features and functions by using more concrete building blocks (compo-
nents). EAST-ADL’s terminology defines this as each abstraction layer realizes
its antecedent layer.

Non-functional properties. Both languages provide modeling of built-in non-
functional properties of components, as well as means for specifying new non-
functional properties. For example, for AADL components, there are built-in
non-functional properties such as execution time, latency, throughput, startup
deadline and write-time. For EAST-ADL components, there are properties such
as safety, timing (e.g. execution time and latency), development cost, cable length
and power consumption in addition to low-level properties represented through
AUTOSAR elements. As can be seen by the presented built-in non-functional
properties, EAST-ADL has properties of importance to higher levels of organi-
zations compared to AADL.

4.2 Modeling of Connectors

Neither of EAST-ADL or AADL model connectors explicitly, instead connections
are modeled "in-line” with the components, i.e. connectors are not first-class
entities. Modeling of connectors within AADL and EAST-ADL basically consist
of describing which component interfaces are connected. Connectors between
software components are left out completely in the AUTOSAR language since
the modeling concept is built on standardized component interfaces interacting
through an abstract component called the Virtual Functional Bus (VFB).

Interface. EAST-ADL and AADL connectors do not have interfaces.

Types. EAST-ADL and AADL provides built-in connector types which encap-
sulates properties and semantics of a connector. Each connector type can be
used to connect one or several types of component interfaces. For example, in
AADL there is a data access connection connector type which can be used to
connect data access interfaces, and in EAST-ADL there is a FunctionConnector
connector type which can be used to connect FunctionFlowPorts or ClientServer-
Ports. AADL does also provide modeling of abstract information paths through

112

A. Johnsen and K. Lundqvist

Components

AADL

EAST-ADL

Interface Data/event ports, component accesses, Flow ports, client-server ports, power ports and
subprograms and parameters hardware pins
Types Process, thread, thread group, data, Feature, analysis function, functional device, design
subprogram, processor, memory, bus, device function, basic software function, local device manager,
and system hardware function, hardware component, sensor, node,
actuator and power supply
Semantics Component modes and Behavioral annex Function modes

Requirements

Through property annotations of component
types/implementations and through specified
interfaces, semantics and subcomponents

Through models of requirements and constraints, and
though specified interfaces and semantics

Evolution

Subtyping through extension system and
refienment through refine annotations

No subtyping and refinement through realize
associations between abstraction levels

N-F properties

Through property annotations of component
types/implementations

Through requirements and constraint models

Connectors

Interface None None

Types Port connection, component access connection, | Feature link, function connector, hardware connector
subprogram call and parameter connection

Semantics No explicit support No explicit support

Requirements

Through associated property annotations

Through requirement and constraint models

Evolution

None

None

N-F properties

Through associated property annotations

Through requirement and constraint models

Fig. 1. Modeling of Components and Connectors

a system, called AADL flows, to support control- and data-flow analysis such as
end-to-end timing, reliability, resource management and latency.

Semantics. Semantics of AADL connections are defined by the type of the
connection, types of components involved, as well as properties specified with
the connections where the properties can be used to specify communication
protocols. EAST-ADL connector types have predefined semantics, where means
to specify additional semantics is not provided by the language.

Requirements. Modeling of requirements on connections is feasible in AADL
through property statements, which is conceptually similar as with modeling
requirements of AADL components. The same conclusion goes for EAST-ADL,
where modeling of requirements on connectors is similar as on components.

Evolution. As both languages do not treat connectors as first-class entities,
which can not be typed or reused, they do not provide means for controlling
their evolution.

Non-functional properties. Modeling of non-functional properties of connec-
tors is supported by both languages, similarly as with modeling of non-functional
properties of components.

4.3 Modeling of Configurations

Architectural configurations can be modeled and expressed syntactically and/or
graphically by the AADL language whereas in EAST-ADL configurations are

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 113

modeled and expressed according to the UML-based metamodel. Modeling of a
system configuration that may vary to another system configuration is provided
by both languages, through their modes modeling features.

Understandability. Understandability of an AADL system configuration de-
pends on which way it is expressed (syntactically or graphically). The graphical
perspective provides a view of the system configuration that is easily under-
stood. If a more detailed view is preferred, the syntactical model offers this, con-
sequently with difficulties to perceive the whole system at once. Since there are
precise relationships between a graphical and a syntactical configuration, both
can be used simultaneous to enhance understandability. The understandabil-
ity of EAST-ADL configurations depends upon which abstraction level is being
viewed, since each level provides a complete configuration of the system with
respect to the concerns of the level. Each abstraction level is modeled according
to the metamodel, where mappings between elements among two neighbor ab-
straction levels are expressed by realization relationships, which provides means
for expressing all the configurations at once.

Compositionality. Both languages support hierarchical description of systems
at different levels of abstractions, however with a difference which we already
have touched upon in Section [l A system in AADL is modeled by specifying
components and connections among components within a system component,
which is not the case in EAST-ADL. In EAST-ADL a system is being viewed as
completely specified according to a specific abstraction level with specific con-
cerns. Note here that each abstraction level does not only provide a level of detail,
but also specific concerns, and thus a certain perspective. However, systems are
specified hierarchically in EAST-ADL since each architectural element in a spe-
cific abstraction level is realized by one or several elements in the subsequent
(lower) level. Thus, with respect to the explicit abstraction layers, each compo-
nent (excluding vehicle/top level and implementation/bottom level components)
has relations to a "superior” and a ”"subordinate” component element(s). Con-
sequently, the fundamental hierarchical differences between the languages are
the relations between the members (components) of the hierarchy. In AADL,
the hierarchy is generated by the notion of subcomponents, i.e., components are
subsumed within another component and thus generates a kind of ”subsumptive
containment hierarchy”. EAST-ADL, on the other hand, generates the hierarchy
through the notion of realization. The realization is done through decomposition
of components to more concrete elements provided at a subsequent abstraction
level. Thus, the hierarchy is a kind of ”compositional containment hierarchy”
where vehicle level entities are composed of analysis level entities, which are
composed of design level entities, which are composed of AUTOSAR entities.

Refinement and traceability. The languages’ compositionality nature pre-
serves traceability among properties and relationships throughout the refinement
process. EAST-ADL explicitly relate requirement properties to each other, where
requirements in the higher abstraction levels are refined to more detailed require-
ments in the lower levels.

114 A. Johnsen and K. Lundqvist

Configurations AADL EAST-ADL

Understandability | In-line textual specification with related Graphical and partly textual specification
graphical view

Compositionality Supported through subcomponents and Supported through realization relations between
their connections abstraction levels

Refinement and Implicit support (explicitly supported by Explicit support through realization relations for

traceability subtyping, through extends and refines components and refine relations for requirements
annotations)

Heterogeneity Annexes and possible to associate source Extension packages
text

Scalability Problems due to in-line configurations Problems due to in-line configurations

Evolution Supported Supported

Requirements Similar as with requirements of components | Through a model of requirements associated to the
(configuration created inside a component) | configuration (the abstraction level)

N-F properties Through associated property annotations Through requirements and constraint models

Fig. 2. Modeling of Configurations

Heterogeneity. AADL and EAST-ADL provide explicit support for specifica-
tion by multiple specification languages, such as approved annexes (e.g. Behav-
ioral annex, Error Model annex, etc.) for AADL and extension packages (e.g.
ErrorBehavior, Requirements, Constraints, etc.) for EAST-ADL. AADL pro-
vide additional support for implementation details through predeclared proper-
ties where components can be associated with source text written in software
languages such as C and Ada, modeling languages such as Simulink, and hard-
ware languages such as VHDL. Implicitly, they support specification by multiple
languages through model transformation into formal specification languages.

Scalability. Both languages have scalability issues since both are ”in-line con-
figuration ADLs”, meaning that components and connectors are not modeled
separately from the configurations. Adding new components to a configuration
may require modifications to existing connections, since connections within in-
line configurations are solely dependent upon the components they connect.

Evolution. Partial architecture specifications are supported by both languages.
For example, the AADL language allows architectures of components without
component implementation descriptions and with untyped data port interfaces.
EAST-ADL allows architectures lacking of entire abstraction levels.

Requirements. Modeling of requirements on configurations is similar as mod-
eling of requirements on components in AADL, since configurations are modeled
inside components. EAST-ADL provide possibilities to associate requirements
to a complete abstraction level.

Non-functional properties. Both languages support modeling of non-
functional properties, such as timing and dependability, for architecture con-
figurations.

4.4 Dependability

EAST-ADL consist of an explicit dependability package which provides means,
such as hazard analysis, structuring of safety requirements according to their

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 115

purpose in the safety life-cycle, formalizing requirements through safety con-
straints, analysis of fault propagation through error models and structuring evi-
dence of safety, to specify and classify dependability. The dependability package
is constructed to support the automotive safety standard ISO/DIS 26262. The
AADL language does also support dependability modeling through the Error
model annex, which defines a sub-language for modeling of error models that
can be associated with AADL components. Through the error modeling fea-
tures, the annex enables modeling and assessment of redundancy management,
risk mitigation and dependability in architectures.

4.5 Timing

Specification of timing is provided by the AADL language through timing prop-
erties (such as deadlines, worst-case execution time, arrival rate, period etc.) as
well as predefined concurrency, interaction and execution semantics. AADL has
tool support for timing analysis through the Cheddar tool [I4] and the Oca-
rina tool-suite [I5]. Cheddar is a free real-time scheduling tool for analysis of
temporal constraints. The tool supports both cyclic and aperiodic tasks, as well
as a wide range of scheduling policies such as Rate Monotonic (RM), Earliest
Deadline First (EDF), Deadline Monotonic, etc. Ocarina provides schedulability
analysis of AADL models. EAST-ADL on the other hand has an explicit timing
package, as with dependability, which provides means for modeling structures
of timing constraints and timing descriptions. A timing structure is based on
events and event chains that can be modeled across all abstraction levels. An
event describes a distinct point in time where a change of state in the system
takes place or it may also be an report of the current state. An event chain
describes the temporal behavior of steps in a system, where the behavior is ex-
pressed by two related groups of events: stimulus and response. The chains is
also used to specify built-in timing requirements on the different steps in the sys-
tem. Timing analysis of EAST-ADL models is supported by the MARTE UML
profile through the Papyrus add-in [16].

5 Conclusion

In this paper, we addressed the importance of an ADL for dependable software-
intensive systems to support activities such as analysis, V&V, code genera-
tion/synthesis, etc., and at the same time support understandability and mutual
communication. The classification and comparison framework for software Ar-
chitecture Description Languages [6] developed by Medvidovic and Taylor was
extended and used to compare the levels of support AADL and EAST-ADL
provide these two aspects. The framework highlighted several areas when the
languages were compared. One area was frequently highlighted during the com-
parison, which is that the metamodel of EAST-ADL has possibilities to describe
systems at higher abstraction levels compared to the AADL standard. EAST-
ADL provides means to model component types such as features, devices and

116 A. Johnsen and K. Lundqvist

functions of automotive systems, where a more detailed software architecture
of concrete software components can be modeled by AUTOSAR, a complemen-
tary language to EAST-ADL. AADL on the other hand, models a system using
abstractions of concrete system elements (e.g. processes and threads), which pro-
vide less freedom of the structure and how the functionality is obtained in the
implementation. As EAST-ADL’s point of view is on a higher abstraction level,
hiding implementation solutions behind abstract features, devices and function-
alities, it concentrates on system aspects of importance between the main parties
within the automotive industry (e.g. between suppliers and OEMs) such as mod-
eling of requirements, dependability, variability and timing of the system. This
can be concluded in that the gap between an architecture description artifact
and its implementation is larger when developing systems using EAST-ADL
compared to using AADL, whereas the gap between the understandability of a
system (as well as the controllability and the communicability) and its complex-
ity is smaller. Therefore, EAST-ADL tend to primarily focus on understandabil-
ity and communication of systems whereas AADL tend to be more appropriate
for analysis tools, model checkers and compilers.

References

1. Wirsing, M.: Report of the beyond the horizon thematic group 6 on software in-
tensive systems. Technical report, Thematic Group 6: Software-Intensive Systems
(2006)

2. As-2 Embedded Computing Systems Committee SAE. Architecture Analysis &
Design Language (AADL). SAE Standards no. AS5506 (2004)

3. The ATESST Consortium. East-adl 2.0 specification (November 2010),
http://www.atesst.org

4. ATESST2. Advancing traffic efficiency and safety through software technology
(November 2010), http://www.atesst.org

5. Medvidovic, N., Rosenblum, D.S.: Domains of concern in software architectures and
architecture description languages. In: Proceedings of the Conference on Domain-
Specific Languages (DSL 1997), p. 16. USENIX Association, Berkeley (1997)

6. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26(1), 70-93
(2000)

7. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis and design lan-
guage (aadl): An introduction. Technical report (2006)

8. Hudak, J., Feiler, P.: Developing aadl models for control systems: A practitioner’s
guide. Technical report, CMU Software Engineering Institute (SEI) (2007)

9. As-2 Embedded Computing Systems Committee SAE. Architecture Analysis &
Design Language (AADL). SAE Standards no. AS5506A (2009)

10. Cuenot, P., Frey, P., Johansson, R., Lénn, H., Reiser, M.-O., Servat, D., Tavakoli
Kolagari, R., Chen, D.J.: Developing automotive products using the east-adl2, an
autosar compliant architecture description language. In: European Congress on
Embedded Real-Time Software (ERTS), Toulouse, France (2008)

11. AUTOSAR. Automotive open system architecture (November 2010),
http://www.autosar.org

http://www.atesst.org
http://www.atesst.org
http://www.autosar.org

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 117

12. Franca, R.B., Bodeveix, J.-P.; Filali, M., Rolland, J.-F., Chemouil, D., Thomas,
D.: The aadl behaviour annex — experiments and roadmap. In: ICECCS 2007:
Proceedings of the 12th IEEE International Conference on Engineering Complex
Computer Systems, pp. 377-382. IEEE Computer Society, Washington, DC, USA
(2007)

13. SysML. Systems modeling language (November 2010), http://www.sysml.org

14. The cheddar project: a free real time scheduling analyzer (November 2010),
http://beru.univ-brest.fr/~singhoff/cheddar/

15. Ocarina: An aadl model processing suite (November 2010),
http://www.ocarina.enst.fr

16. Papyrus for east-adl (November 2010), http://www.papyrusuml.org

http://www.sysml.org
http://beru.univ-brest.fr/~singhoff/cheddar/
http://www.ocarina.enst.fr
http://www.papyrusuml.org

	Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL
	Introduction
	The Comparison Framework
	Building Block: Component
	Building Block: Connector
	Building Block: Configuration
	Vital Quality Attributes

	ADLs Under Comparison
	Overview of AADL
	Overview of EAST-ADL

	AADL vs. EAST-ADL
	Modeling of Components
	Modeling of Connectors
	Modeling of Configurations
	Dependability
	Timing

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

