
System Development with Real-Time Components

Damir Isovi�c, Markus Lindgren and Ivica Crnkovic

M�alardalen Real-Time Research Centre

M�alardalen University, Sweden

fdamir.isovic j markus.lindgren j ivica.crnkovicgmdh.se

http://www.mrtc.mdh.se

Abstract

Component-based Software Engineering is a promising
approach to improve quality, to achieve shorter time
to market and to manage the increasing complexity of
software. Still there are a number of unsolved prob-
lems that hinder wide use of it. This is especially true
for real-time systems, not only because of more rigor-
ous requirements and demanding constraints, but also
because of lack of knowledge how to implement the
component-based techniques on real-time development.
In this paper we present a method for development of
real-time systems using the component-based approach.
The development process is analyzed with respect to
both temporal and functional constraints of real-time
components. Furthermore, we propose what informa-
tion is needed from the component providers to suc-
cessfully reuse binary real-time components. Finally,
we discuss a possibility of managing compositions of
components.

1 Introduction

Component-based Software Engineering (CBSE) [15] is
bene�cial to obtain faster development, to keep costs
down and to enable reuse of components from other

applications. Still CBSE is not widely recognized as
an appropriate approach in the development of real-
time systems. The question is if it is possible to utilize
CBSE for a successful and eÆcient development process
where demands regarding reliability, timing factors, etc.
are signi�cantly more important than in many non-real
time applications.

Real-time systems are computing systems in which

meeting timing constraints are essential to correctness.
The correct behaviour of these systems depends not
only on the value of the computation but also at which
time the results are produced [14]. Real-time systems
can be constructed out of sequential programs, but typi-
cally they are built of concurrent programs, called tasks.

Embedded real-time systems contain a computer as
a part of a larger system and interact directly with ex-
ternal devices. They usually have to meet stringent
speci�cation for safety, reliability, limited hardware etc.
An analysis of reuse factors for embedded systems de-
sign has been presented in [8].

A typical timing constraint on a real-time task is
the deadline, i.e., the time before which the task should
complete its execution. Depending on the consequences
that may occur due to a missed deadline, real-time sys-
tems are distinguished into two classes, hard and soft.
In hard real-time systems all task deadlines must be
met, while in soft real-time systems the deadlines are
desirable but not necessary.

In this paper we analyse the possibility of apply-
ing CBSE to the development of hard real-time sys-
tems. The aim is to identify real-time component at-
tributes and to provide a design method applicable to
reuse them. The main focus of the design method is
on temporal properties of real-time components. It is
an extension of the development process for real-time
systems presented in [11], which enables the bene�ts of
CBSE. The method uses a top-down approach with pre-
cisely de�ned real-time requirements at design time. It
also assumes a library of well-de�ned real-time compo-
nents.

This paper is divided into six sections. Section 2
extends the de�nition of components to include real-
time properties. Section 3 is the core part of the paper.
It presents the development method and the structure
of the component library. Section 4 deals with reuse
and e�ective replacement of real-time components. In
Section 5 we present the \state-of-the-practice" on real-
time components. We also suggest how an existing real-
time development environment can be extended to sup-
port our design method. Finally, Section 6 concludes
the paper.

2 CBSE and Real-Time Systems

CBSE systems are built in two stages: select, which
selects existing components to be used, and compose,
where the selected components are composed to ful�l
customer requirements. Separate from the system de-
velopment, we have development of components. This
approach requires two di�erent kinds of programmers:
application programmers who have great knowledge about
the system being built and which components that are
required, and component programmers who develop the
components that are needed in di�erent applications.

In purely functional applications, the components
are typically composed without considering timing re-
quirements. In real-time applications, components must
collaborate to meet timing constraints. In this section
we discuss what are additional demands on CBSE to
manage real-time components. We also elaborate how
a component can be de�ned with respect to real-time
properties.

2.1 Real-time Challenges

Designing reusable real-time components is more com-
plex than designing components in the normal case [4].
This complexity arises from several aspects of real-time
systems that do not appear in non-real-time systems.

In real-time applications, components must collabo-
rate to meet timing constraints, also referred as 'end-to-
end' transaction deadlines [16]. Furthermore, in order
to keep production cost down, embedded systems re-
sources are usually scarce, yet they must perform within
tight deadlines. They must often run continuously for
long periods of time.

Concurrent real-time systems are extremely complex
to specify and develop because many independent op-
erations can occur at the same time. When systems
are large, these interactions make it diÆcult for de-
velopers to understand the implications of their design
decisions. Often it is impossible to predict with cer-
tainty when particular events will occur, what their or-
der or occurrence will be, and how long they will last.
Yet real-time systems must respond to events within a
speci�ed, predictable time limit. Similarly, hardware
and software failures are usually unpredictable, but the
real-time software must be able to handle them in a
predictable manner.

The load on a real-time system that comes from its
external environment is another source of complexity.
Often this means developing a priority-driven system
that drops less essential tasks under big load on the
system. To be able to address this issue, real-time com-
ponents must be designed to handle exceptional situa-
tions.

Real-time developers need to ensure they are us-
ing available target resources as eÆcient as possible.
Hence, common CBSE technologies (such as JavaBeans,
CORBA and COM) are seldom used, due to their pro-
cessing and memory requirements and unpredictable
timing properties.

2.2 Real-time Components

According to [15] a component is a binary element, a
unit of independent deployment, a unit of third-party
composition and has no persistent state. The de�nition
of a real-time component should also include that its
timing requirements must be met.

Introducing timing constraints into components im-
plies some diÆculties. For example, the timing behavior
of a component depends on the target architecture and
memory organization. If we obtain a component from a
third party company then it is probable that their tar-
get di�ers from ours, and hence the timing behavior on
our target could be di�erent.

In hard real-time systems a tasks worst-case exe-
cution time (WCET), i.e., the longest possible time it
takes to complete the task, is used during schedulability
analysis to determine whether the timing requirements
can be met or not [5]. If the above component de�nition
is used, we cannot be certain that the timing informa-
tion we get from the supplier is correct. To overcome
this we could try to acquire this information by test-
ing the binary component. However, we can never be
certain of �nding the WCET (in reasonable time) by
testing only [10]. Hence, there is an associated risk of
using binary components in real-time systems.

In real-time systems the smallest element that is
scheduled is a task. Our de�nition of a real-time compo-
nent assumes that a real-time component should never

be smaller than one task. This level of abstraction en-
ables us to design reusable interfaces, and to assign tim-
ing attributes that are relevant to the system.

A component interface should be well de�ned and

well speci�ed to enable good use of it. There are two
basic ways of exchanging information between RT com-
ponents in a system (which de�ne interfaces between the
components): These two are bu�ered (message queues)
and unbu�ered (shared memory) communication:

� Bu�ered data may arrive at any time. When used
in hard real-time systems, upper bounds on the
number of produced/consumed messages must be
determined to enable guarantee of temporal prop-
erties.

� Unbu�ered data is accessed through shared mem-
ory, which always can be read and written to.

Generally it is easier to check systems temporal require-
ments if unbu�ered communication is used. Further-
more, this style of communication is also the most pre-
ferred in controller applications. Hence, interfaces of
hard real-time components should be unbu�ered. We
call unbu�ered interfaces ports.

3 System Development

In this section we present a method for system develop-
ment with real-time components. This method is an ex-
tension of [6, 9], which also is being used for developing
real-time systems at a Swedish car industry company.
It is a top-down development process where timing and
other real-time speci�c constraints are precisely de�ned
(or better to say are predicted) at design time. Our
idea is to implement the same principles, but also tak-
ing into consideration features of existing components
that might be used in the system. This means that
the system is designed not only according to the sys-
tem requirements, but also in respect to the existing
components. This concept assumes that there exists a
library of well-de�ned real-time components.

The development process requires a system speci�-
cation, obtained by analyzing the customer's require-
ments. We assume that the speci�cation is consistent
and correct, in order to simplify the presentation of the
method.

3.1 Development Process

The development process with real-time components is
divided into several stages, as depicted in Figure 1.

Development starts with the system speci�cation,
which is the input to top-level design. At the top-
level design, which includes the decomposition of the
system into modules, the designer browses trough the
component-library and designs the system having in
mind the possible component candidates. The detailed
design will show which components are suitable for inte-
gration. To select components both real- and non real-
time aspects must be considered. The scheduling and
interface check will show if the selected components are
appropriate for the system, if adaptation of components
is required, or new ones have to be developed. The pro-
cess of component selection and scheduling may have
to be repeated several times to re�ne the design and
�nd proper components. In case that new component
must be developed, it should be (when developed and
tested) put in the component library. When the system
�nally meet the requirements from the speci�cation, the
timing behavior of the components must be tested on
the target platform to verify if they meet the timing

System specification

Top-level design

Detailed design

Scheduling /
Interface check

Obtain components timing
behavior on target platform

System verification

Final product

Component
 Library

 the new components
Create specfications for

Implement and verify new
components using classical
develoment methods

to library
add new comp.

Figure 1: Design model for real-time components

constraints de�ned in the design phase. A detailed de-
scription of these steps is given below.

3.1.1 Top-level Design

The �rst stage of the development process involves de-
composition of the system into manageable modules.
We need to determine the interfaces between them and
to specify the functionality and safety issues associated
with each module. At the same time we do the decom-
position, we browse the component library to identify
a set of candidate components, i.e., components that
might be useful in our design.

3.1.2 Detailed Design

At this stage a detailed module design is performed, by
selecting components to be used in each module from
the candidate set. In a perfect world, we could design
our system by only using the library components. In
a more realistic scenario we have to identify missing
components, i.e., components needed for our design but
not available in the component library.

Once we have identi�ed all components to be used,
we can start by assigning attributes to them, such as
time-budgets, periods, release times, precedence con-
straints, deadlines and mutual exclusion among them.

A standard way of doing the detailed design is use
WCET speci�ed for every task. Instead of relying on

WCET values for components at this stage, a time-
budget is assigned to each component. A component
is required to complete its execution within its time-
budget. This approach has also been adopted in [6],
and shown to be useful in practice. Experienced engi-
neers are often needed to make correct assignments of
time budgets.

3.1.3 Scheduling

At this point we need to check if the system's tempo-
ral requirements can be ful�lled, assuming time-budgets
assigned in the detailed design stage. In other words,
we need to provide a schedule based on temporal re-
quirements of each component.

A scheduler that can handle the mentioned timing
attributes has been presented in [6]. It takes a set of
components with assigned timing attributes, and cre-
ates a static schedule.

If scheduling fails, changes need to be done. It could
be suÆcient to redo detailed design by re�ning the tem-
poral requirements or simply replacing components by
new ones from the candidate set. Otherwise, we need
to go back to top-level design and either choose other
components from the library, or specify new ones.

At the same time when scheduling is done, compo-
nent interfaces are checked to see if input ports are con-
nected and if their types match, i.e., system integration
is performed.

3.1.4 WCET Veri�cation

Even if we have a speci�cation of the WCET from a
component provider, we must verify it on our target
platform. This is absolutely necessary when the sys-
tem environment is not the same as in the component
speci�cation. We can verify WCET by running test
cases obtained by component creator, and measuring
the execution time. The longest time is assigned as
the components WCET. Obtaining WCET for a com-
ponent is a quite complex process, especially if we do
not have the source code and no possibility to do an
analysis based on that. For this reason proper infor-
mation about WCET from the component provider is
essential. Subsection 3.2.1 discusses what type of infor-
mation related to WCET is desirable.

3.1.5 Implementation of New Components

Now we need to implement new components; those that
are not in the library. Standard development process for
development of software components is used. It may
happen that some of the new components fail to meet

their assigned time budgets. It's up to designer to ei-
ther add those to the library for eventual reuse in other
projects, or to discard them.

In order to proceed, the target platform must be
available at this stage. Once a component is imple-
mented and veri�ed we have to derive its WCET on
our target platform. We even need to verify WCET of
library components, if not done earlier.

3.1.6 System Build and Test

Finally, we build the system using old and new com-
ponents. Now we need to verify the obtained system's
functional and temporal properties. If the test fails, we
need to go back to appropriate stage of the development
process and correct the error.

3.2 Component library

The component library is the most central part of any
CBSE system, since it contains binaries of components
and descriptions of them. When selecting components
we examine the available attributes in the library. A
component library that contains real-time components
should provide the following:

Component identi�cation | A unique name that
identi�es the component. In many cases it may
happen that the component evolves over time. New
functions or new non-functional attributes can be
added to new component versions. If di�erent
component versions are identi�ed by the same name,
there is a risk that a system includes a compo-
nent version that is not tested in the system. For
this reason the components must also be identi-
�ed by versions numbers and information about
the changes between the versions are needed [7].

Functional description | Describes the functional-
ity of a component. Given the current state-of-
the-art we believe that natural language is still to
be preferred. Formal methods might be applicable
when those techniques mature.

Interface | De�nes the input and output ports of the
component (name, type, and description). Should
be unbu�ered.

Memory requirements | Important information when
designing memory restricted systems, and when
doing trade-o� analysis.

Test cases | A set of test cases, mainly for regres-
sion testing, with input and output values. The
test cases are used to make sure that the com-
ponent delivers the speci�ed functionality. Since

unbu�ered interfaces are used, we can also use pre-
conditions on input ports and post conditions on
output ports to express more input/output com-
binations.

Component binary | The binary code for the com-
ponent for a speci�c processor family.

WCET test cases | Test cases that reveal the com-
ponents WCET on a particular processor family.
See below for a detailed description. Information
about WCET for previously used targets should be
stored, in order to give a sense of the components
processor requirements.

Dependencies |Describes dependencies to other com-
ponents.

Environment assumptions - Assumptions about the
environment in which the component operates, i.e.,
processor family.

3.2.1 WCET test cases

Since the timing behavior of components depends both
on the processor and the memory organization, it is
necessary to re-test the WCET for each target that is
di�erent from the speci�ed one. The process of �nding
WCET can be a hard and tedious process, especially
if not complete information or source code is available.
Giving the WCET as a number gives not too much in-
formation. What is more interesting for the test cases
is the execution time behavior shown as a function of
input parameters, as shown in �gure 2.

Execution
Time

domain 2domain 1 Inputdomain 3

Figure 2: An execution time graph

The execution time shows di�erent values for the
di�erent input sub-domains. Producing such a graph
can also be a diÆcult and time-consuming process. In
many cases, however, the component developer can de-
rive WCET test cases combining source code analysis
with the test execution. For example, the developer
can �nd that the execution time is independent of in-
put parameters within an input range. (This is possible
for many \simple" processors used in embedded sys-
tems, and for others not.) It is not important to give

the exact values of the execution time e(t), but �nd the
maximum value within input intervals, i.e.,

Ei�j(t) � e(t) : t 2 [t1; t2]

where t denotes the input value. Example of such pre-
sentation is shown in Figure 3.

Execution
Time

domain 2domain 1 Inputdomain 3

Figure 3: Maximum execution time per sub-domain

When a component is instantiated, the WCET test
cases are chosen from the appropriate input sub-domain,
i.e., the timing behavior depends on how the component
is instantiated. Also, the graph shows the behavior on

execution time and may indicate which test cases are of
greatest interest.

3.3 Composition of Components

As mentioned earlier a component consists of one or
more tasks. Several components can be composed into
a more complex one. This is achieved by de�ning an
interface of the new component and connecting input
and output ports of its building blocks, as in Figure 4.

This new kind of component is also stored in the
component library, in a similar way as the other com-
ponents. However, two aspects are di�erent: the timing
information and the component binary.

The WCET of a composed component cannot be
computed since its parts may be executing with di�er-
ent periods. Instead we propose that end-to-end dead-
lines should be speci�ed for input and output of the
component. End-to-end deadlines are set such that sys-
tem requirements are ful�lled, similarly as time-budgets

Comp 1

Comp 2

Comp n

in1_C2
out_C2

in2_Cn
out1_Cn

out2_Cn

in1_Cnew in_C1
out2_C2

in2_Cnew

in3_Cnew

in4_Cnew in2_C2

out1_Cnew

out2_Cnew

out3_Cnew

New Component

Figure 4: Composition of components

are set. These deadlines should be the input to a tool
that can derive constraints on periods and deadlines for
the sub-components. However, this topic is still open
for research, and cannot be considered feasible today.

Furthermore, we specify virtual timing attributes
(period, release time and deadline) of the composed
component, which are used to compute timing attributes
of sub-components. For example, if the virtual period
is set to P then the period of sub-component A should
be fa �P and the period of B is fb �P , where fa and fb

are constants for the composed component, which are
stored in the component library. This enables the spec-
i�cation of timing attributes at the proper abstraction
level. The binary of the composed component is not
stored in the component library. Instead references are
kept to the sub-components, to enable the retrieval of
the correct set of binaries.

4 Reuse of RT Components

Design for reuse means that a component from a cur-
rent project should require a minimum of modi�cation

for use in a future project. Abstraction is extremely
valuable for reuse. When designing components for

reuse, designers should attempt to anticipate as many

future applications as possible. Reuse is more successful
if designers concentrate on abstract rather than existing
uses. The objective should be to minimize the di�erence
between the component's selected and ideal degrees of
abstraction. The smaller the variance from the ideal
level of abstraction, the more frequently a component
will be reused.

There are some other important factors that design-
ers of reusable components must consider. They must
not only anticipate future design context, but also think
about future reuses. They must consider:

� What users need and do not need to know about a
reusable design, or how to emphasize relevant and
hide irrelevant information.

� What is expected from potential users, and what
are their expectations about the reusable design.

� It is desirable, though diÆcult to implement for
binary components, to allow users to instantiate
only relevant parts of components. For example,
if a user wants to use only some of the available
ports of a component, then only the relevant parts
should be instantiated.

No designer can actually anticipate all future design
contexts, when and in which environment the compo-
nent will be reused. This means that a reusable com-
ponent should depend as little as possible on its envi-
ronment and carry out suÆcient self-checking. In other

words, it should be as independent as possible. Fre-
quency of reuse and utility increase with independence.
Thus independence should be another main area of con-
cern when designing reusable components.

There is an interesting observation about eÆcient
reuse of real-time components, made by engineers at
Siemens [8] which says that as a rule of thumb, the
overhead to develop a reusable component, including
design plus documentation, is recaptured after the �fth
reuse.

Similar experience at ABB [3] shows that reusable
components are exposed to changes more often than
non-reusable parts of software in the beginning of the
their life, until they reach a stable state.

Designing reusable components for embedded real-
time systems is even more complicated due to memory
and execution time restrictions. Furthermore, real-time
components have to be much more carefully tested be-
cause of their safety-critical nature.

These examples show that it is not easy to achieve ef-
�cient reuse, and that the development of reusable com-
ponents requires systematic approach in design plan-
ning, extensive development and support of a more com-
plex maintenance process.

4.1 Online Upgrades of Components

A method for online upgrades of software in safety-
critical real-time systems has been presented in [13,
12]. It can also be applied to component-based systems
when replacing components.

Replacing a component in a safety critical system
can result in catastrophic consequences if the new com-
ponent is faulty. Complete testing of new components
is often not economically feasible or even possible, e.g.,
bringing down a process plant with high demands on
availability can result in big �nancial losses. It is often
not suÆcient to simulate the behavior of the system in-
cluding new component. The real target has to be used
for this purpose. However, testing on the real system

means that it needs to be shut down, and also intro-
duces a potential risk that the new component could
endanger human life or other vital systems.

To overcome these problems it is proposed in [13, 12]
that the new component should be monitored to see
if its output is within valid ranges. If it is not, then
the old component will take over control of the system
again. It is assumed that the old component is reliable,
but not as good as the new one in some aspect, e.g.,
the new one provides much better control performance.
This technology has been shown to be useful for control
applications.

Similar approach can be found in [2] where a com-
ponent wrapper invokes a speci�c component version

depending on the input values. The timing constraints
regarding to the wrapper execution time must be taken
into consideration, also such a system must support ver-
sion management of components.

In our development model we assume that a static
schedule is used at run-time to dispatch the tasks, and
since the schedule is static the
exibility is restricted.
However, in some cases it is possible to perform online
upgrades.

Online upgrade of the system requires that the new
components WCET is less or equal to the time-budget
of the component it replaces. It is also required that
it has the same interface and temporal properties, e.g.,
period and deadline. If this is infeasible, a new schedule
has to be generated and we must take down the system
to upgrade it. Using the fault-tolerance method above,
we can still do this safely with a short downtime.

A method for online upgrades of software in safety-
critical real-time systems has been presented in [13, 12].
It can also be applied to component based systems when
replacing components.

Replacing a component in a safety critical system
can result in catastrophic consequences if the new com-
ponent is faulty. Complete testing of new components
is often not economically feasible or even possible, e.g.,
bringing down a process plant with high demands on
availability can result in big �nancial losses. It is often
not suÆcient to simulate the behaviour of the system
including new componen. The real target has to be used
for this purpose. However, testing on the real system
means that it needs to be shut down, and also intro-
duces a potential risk that the new component could
endanger human life or other vital systems.

To overcome these problems it is proposed in [13, 12]
that the new component should be monitored to see if
its output is within valid ranges. If it is not, then the old
component will take over control of the system again.
It is assumed that the old component is reliable, but
not as good as the new one in some aspect, e.g., the
new one is much faster. This new technology has been
shown to be useful for control applications, e.g. for the
inverted pendulum problem.

In our develoment model we assume that a static
schedule is used at run-time to dispatch the tasks, and
since the schedule is static the
exibility is restricted.
However, in some cases it is possible to perform online
upgrades.

Online upgrade of the system requires that the new
component's WCET is less or equal to the time-budget
of the component it replaces. It is also required that
it has the same interface and temporal properties, e.g.,
period and deadline. If this is infeasible a new sched-
ule has to be generated and we must take down the to
upgrade it. Using the fault-tolerance method above, we

can still do this safely with a short downtime.

5 Current status on RT components

Currently there are few real-time operating systems that
support static scheduling, and even fewer that have
some concept of components. The Rubus operating sys-
tem [1] is one of those. In this section we will describe
the main features of Rubus, and then present extensions
that will make it suitable to use together with our de-
velopment process. The scheduling theory behind this
framework is explained in [5].

5.1 Rubus

Rubus is hybrid operating system, in the sense that it
supports both pre-emptive static scheduling and �xed
priority scheduling, also referred to as the red and blue

parts of Rubus. The red part deals only with hard real-
time and the blue part only with soft. Here we focus
on the red part only.

Each task in the red part is periodic and has a set of
input and output ports, which are used for unbu�ered
communication with other tasks. This set also de�nes
a tasks interface. In Figure 5 we see an example of how
a task/component interface looks like.

speed

Task state
information

oil pressure brake left wheel

brake right wheel
....

Task: BrakeLeftRight
Period: 50 ms
ReleaseTime: 10ms
Deadline: 30ms

WCET: 2ms
Precedes: outputBrakeValues

Figure 5: A task in the red model and its interface

Tasks in the red model are implemented as functions,

which are passed their input and output ports via pa-
rameters to the function. The input to the function is
guaranteed not to change during the execution of it, in
order to avoid inconsistency problems. The function is
re-invoked by the kernel periodically.

The timing requirements of the component/task are
shown in Figure 5. The timing requirements are speci-
�ed by release-time, deadline, WCET and period. Be-
sides the timing requirements, it is also possible to spec-
ify ordering of tasks using precedence relations, and mu-
tual exclusion. For example the task in Figure 5 is re-
quired to execute before the outputBrakeValues task,
i.e., task BrakeLeftRight precedes outputBrakeValues.

....
Task: BrakeLeftRightspeed

brake_left

brake_right

Task: outputBrakeValues
input1

input2

Task state
information

Task state
information

oil_pressure

Figure 6: A composed system in the red model

A system is composed of a set of tasks for which
the input and output ports have been connected, as in
Figure 6. However, this model does not support that
components themselves are composed of other compo-
nents.

When the design of a system is �nished, a pre run-
time scheduler is run to check if the temporal require-
ments can be ful�lled. If the scheduler succeeds then it
also generates a schedule for the design, which is later
used by the red kernel to execute the system.

5.2 Extensions for CBSE

What is missing in Rubus and its supporting tools to
make them more suitable for component based develop-
ment? Firstly, there is currently no support for creating
composite components. Secondly, some tool is needed
to manage the available components and their associ-
ated source �les, so that components can be fetched
from a library and instantiated into new designs. Be-
sides this there is a lack of real-time tools like: WCET
analysis, allocation of tasks to nodes.

Support for composition of components can easily be
incorporated into Rubus, since only a front-end tool is
needed that can translate component speci�cations to
task descriptions. The front-end tool needs to perform
the following for composition:

1. assign a name to the new component

2. specify input and output ports of the composition

3. input and output ports are connected to the tasks/
components within the component, see Figure 7.

4. generate task descriptions and port connections for
the tasks within the component.

6 Summary

In this paper we presented a method for the develop-
ment of reliable real-time systems using the component-
based approach. The method emphasizes the temporal
constraints that are estimated in the early design phase
of the systems, and matched with the characteristics of

Component: BrakeSystem

Task state
information

speed
brake_right

input1brake_left

input2

Task state
informationpressure

vehicleSpeed

oil_pressure

Task: BrakeLeftRight Task: outputBrakeValues

Figure 7: Extending Rubus with composition of com-
ponents

existing real-time components. We outlined what in-
formation is needed when reusing binary components,
saved in a real-time component library.

Furthermore, we give a suggestion how components
can be composed, and how these compositions can be
handled when designing real-time systems. This paper
gives several ideas that require further research: Real-
time component identi�cation, a component library and
related tools implementation and re�nement of the de-
velopment process are some of them.

Acknowledgement

The authors wish to thank Christer Norstr�om for his
fruitful comments and stimulating discussions, which
helped to improve the quality of the paper.

References

[1] Rubus OS - Reference Manual. Articus Systems,
1996.

[2] J.E. Cook and J.A. Dage. Highly Reliable Upgrad-
ing of Components. In Proceedings 21

st
Interna-

tional conference on Software Engineering, pages
203{212. Springer, 1999.

[3] Ivica Crnkovic and Magnus Larsson. A Case Study:
Demands on Component-based Development. In
Proceedings 22

nd
International conference on Soft-

ware Engineering, 2000. To be published.

[4] Bruce Powel Douglas. Real-Time UML - Develop-

ing eÆcient objects for embedded systems. Addison
Wesley Longman, Inc, 1998. ISBN 0-201-32579-9.

[5] C. Eriksson, J. Gustavsson, J. Brorson, and
M. Gustafsson. An Object Oriented Framework
for Designing Hard Real-Time Systems. In Proc.

5
th

Euromicro Workshop on Real-Time Systems,
pages 90{97. IEEE Computer Society Press, 1993.

[6] Christer Eriksson, Jukka M�aki-Turja, Kjell Post,
Mikael Gustafsson, Jan Gustafsson, Kristian Sand-
str�om, and Ellus Brorsson. An Overview of RTT:
A Design Framework for Real-Time Systems. Jour-
nal of Parallel and Distributed Computing, August
1996.

[7] Magnus Larsson and Ivica Crnkovic. New chal-
lenges for Software Con�guration Management.
In Proceedings 9

th
Software Con�guration Sympo-

sium. Springer, 1999.

[8] Michael Mrva. Reuse Factors in Embedded Sys-
tems Design. High-Level Design Techniques Dept.

at Siemens AG, Munich, Germany, 1997.

[9] Christer Norstr�om, Kristian Sandstr�om, Mikael
Gustafsson, and Jukka M�aki-Turja. Experiences
from using state-of-the-art real-time techniques in
an industrial project. Technical report, M�alardalen
Real-Timer Research Centre, Sweden, March 2000.

[10] P. Puschner and R. Nossal. Testing the result of
static worst-case execution-time analysis. In Proc.

19
th

Real-Time Systems Symposium, pages 134{
143. IEEE Computer Society Press, 1998.

[11] Kristian Sandstr�om, Christer Eriksson, and Mikael
Gustafsson. RealTimeTalk: A Design Frame-
work for Real-Time Systems | a Case Study.
SNART'97, August 1997, Sweden.

[12] L. Sha, R. Rajkumar, and M. Gagliardi. Evolving
Dependable Real-Time Systems. In Proc. IEEE

Aerospace Applications Conference. IEEE Com-
puter Society Press, 1996.

[13] Lui Sha. Dependable System Upgrade. In Proc.

19
th

Real-Time Systems Symposium, pages 440{
448. IEEE Computer Society Press, 1998.

[14] John Stankovic and Krithi Ramamritham. Tuto-
rial on Hard Real-Time Systems. IEEE Computer

Society Press, 1988.

[15] Clemens Szyperski. Component Software - Beyond
Object-Oriented Programming. Addison-Wesley,
1997.

[16] Andy Wellings and Pete Cornwell. Transaction In-
tegration For Reusable Hard Real-Time Compo-
nents. IEEE database, 0-8186-7629-9/97, 1997.

