
Towards Fully Automated Test Management for Large Complex Systems

Sigrid Eldh1,3, Joachim Brandt2, Mark Street2,
Hans Hansson3 and Sasikumar Punnekkat3

Ericsson AB1Sweden, Ericsson Ltd2 UK, Mälardalens University3 Sweden
sigrid.eldh@ericsson.com, joachim.brandt@ericsson.com mark.street@ericsson.com

Hans.Hansson@mdh.se, Sasikumar.Punnekkat@mdh.se

Abstract—Development of large and complex software
intensive systems with continuous builds typically
generates large volumes of information with complex
patterns and relations. Systematic and automated
approaches are needed for efficient handling of such
large quantities of data in a comprehensible way.

In this paper we present an approach and tool
enabling autonomous behavior in an automated test
management tool to gain efficiency in concurrent
software development and test. By capturing the
required quality criteria in the test specifications and
automating the test execution, test management can
potentially be performed to a great extent without
manual intervention.

This work contributes towards a more autonomous
behavior within a distributed remote test strategy based
on metrics for decision making in automated testing.
These metrics optimize management of fault corrections
and retest, giving consideration to the impact of the
identified weaknesses, such as fault-prone areas in
software.

Keywords- test management system; large complex systems;
automation; efficiency; industrial system;

I. INTRODUCTION
To increase efficiency, companies such as Ericsson work

towards “automation everywhere”, which means that all
aspects of the software development – including the testing
process – are targets for automation.

Today, it is not uncommon to have systems with more
than 1 000 requirements, 100 000 test cases, and 1 000
software components, sub-systems and other software
entities. These systems are developed in a distributed
manner at multiple sites worldwide, include third party
software, are frequently updated, and need to be tested at
multiple integration levels. For a single site this could result
in more than 50 000 test cases to execute for each
iteration/release.

Even in a perfect test execution situation, every test cannot
be executed on a daily basis, due to the complexity of the
systems under test and execution time of the test cases. The
complexity in terms of large sizes and internal dependencies
of industrial systems are impacting all aspects of software

development and test, something which research is rarely
targeting.

To handle the complexity of the test effort an efficient and
scalable test management is required. Current test
management requires a lot of manual handling due to the
diversity and lack of integration between tools for handling
requirements, configuration management (system builds),
test specification, test execution, test environments, failure
handling, quality and progress reporting, etc. Total
integration is not a viable solution, due cost and complexity,
as well as its inability to incorporate legacy and emerging
solutions.

This paper presents an autonomous test management
framework with the following key features:

• A loosely-coupled integration of diverse tools, based
on automated extraction and synthesis of a set of
measurements.

• Using test specifications as release criteria, the system
becomes ready for release when all tests have been
successfully performed.

• Automated traceability of failures to software
components, achieved by enforcing test specifications
to represent system entities.

This provides cost efficiency through reduction of manual
intervention and improved quality assessment in the context
of complex industrial systems, since historic quality data
can be taken into account. Using this framework, the role of
test managers during test execution can essentially be
eliminated. This has contributing to substantial savings for
Ericsson over the past seven years in use.

Test management systems have been around for many
years, with several commercial off-the-shelf (COTS) tools
available. One of the motivations of this work is the
problems associated with these, as e.g. outlined in [24]. At
least 16 open source systems are available, and within
Ericsson more than 20 different test management systems
have been developed, considering different needs of
automation. One of these systems aimed at tight integration
of the involved tools for requirement, configuration, review,
software and test management, as well as failure handling,
all combined in a large relational database.

Our experiences from working with the above system, as
well as with a variety of more loosely coupled test
management systems, are that loosely coupled systems are
less susceptible to performance problems and are much

2010 Third International Conference on Software Testing, Verification and Validation

978-0-7695-3990-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ICST.2010.58

412

better in handling legacy systems. Other reasons for our lack
of success with a tightly coupled solution, is that test
automation is typically achieved by integrating a series of
tools, and an integrated solution makes transfer to new tools
costly. The flexibility of loosely coupled systems also
increases their longevity, increasing the chances of being
able to use the same test management system throughout the
lifetime of the system.

Outline: In section II we describe an overview of test
management systems in general and in section III the
limitations of these types of systems. We present in section
IV our solution, the system used in this study in section V,
followed by a discussion in section VI, related work in
section VII, and conclusion in section VIII.

II. OVERVIEW OF TEST MANAGEMENT SYSTEMS
Test execution and test management need to cater for the

dynamics in the software build process. This means that for
large complex industrial software systems the measurements
collected throughout the test process are essential for the
continuous quality assessments. Test management in the
execution phase assumes that test cases are created, and that
extensive regression testing is required during the entire
project, taking historic test results into account.

The historic data can be as recent as yesterday, or
originate from substantially older versions of the system. A
positive consequence of automation is that it becomes
feasible to mine and collect new measurements, which give
new insights to the efficiency of software development and
test, as well as highlighting potential flaws in a chosen
approach. Figure 1 shows a screen shot from a test
management tool, presenting the fraction of test cases
executed for a sequence of builds. This is a typical picture
of a parallel development and test process, showing how
configuration management is combined with monitoring of
test status.

Figure 1: Overview of progress (number of builds and % of test cases

executed)

The test management process typically consists of a test
preparation phase (Figure 2) and a test execution phase

(detailed in Figure 3). In Figure 2 clouds denote manual
work. In Figure 3 all tasks contain manual work in a COTS
tool, whereas in our tool writing of failure report (by choice)
as well as analyze (debug) and correct the fault, are the only
tasks that still contain manual work.

The test preparation phase is often the same in different
test management systems, although with variations in how
data is stored, e.g. the test specification can either be a
separate textual document or an entry in the database/test
management system.

The test specifications might be traceable to the
requirements, and implicitly, the test case may be indirectly
traceable (usually through the ID or naming convention) to
either a certain test aspect or to a requirement. Some test
management systems can only provide this traceability if the
requirements are in the same system. An alternative is that
the relations between tests and the requirements, and thus
traceability, is provided in the requirement management
system, requiring the testers to enter information in more
than one system. It is clear that in neither of these systems
there is a direct relation or possibility to trace test cases to
the actual software being tested.

Figure 2. The test preparation phase

Basic data that are possible to record, edit, view and store

in any test management system are the following:
• Dates, creators´ information which includes version

handling and change information
• Test cases, including: Test ID/name/slogan, priority,

and type. More elaborate systems allow a step by step
description similar to the test instruction/test procedure
assuming a manual or key-word driven test. Test
Management systems do not contain test execution
capabilities, which are left to the test automation
system.

• Scheduling of tests (planning) which means assigning
testers and other resources to one or more test cases,
with qualifying information such as time, date and by
whom.

• Status of the test execution (captured from the
automated tool, imported from the automated system
or manually recorded) such as passed, failed or
attempted test cases. Variants of these status fields
exist [10]. For failed test cases, often textual fields that

Requirements

Test plan

Test
Specifications

Manual Test

Test Execution

Automated Test

413

can be used for recording Failure Reports name or ID
(e.g. failure ID from a failure tracking system).

• Test environment/test bed information, which is either
a link to a document, a slogan/ID or a textual field.

• A number of reports, which provide possibilities to
view the stored data in different ways, presented in
graphical form with trend analysis.

Figure 3. Activities within test execution

Depending on the test management system, different
philosophies exist on what and how much is stored in the
system. In some systems, only test cases and their status are
stored, and others store the entire process [9]. This means
that either a certain number of documents are to be linked or
need to be directly written in the system. Examples of data
that should exist can be found in IEEE Std. 829 -1998 [12]
or [13], i.e. test plan, test specification, test procedure (often
implemented as test case), test record, test reports, which all
would be textual.

Finally the tools have built-in or indirect methods to
integrate with other systems. For example, integration with a
failure tracking system or with a test automation system is
common, but more advanced test management system can
also be integrated to support traceability with requirements
management systems.

III. LIMITATIONS OF CURRENT TEST MANAGEMENT
SYSTEMS

There is a series of problems with the current approach to

test management that are listed and explained below:
• Information handling of test cases are manual [3, 5, 6,

7, 28, 29]

• The test cases are often written assuming manual
execution or a tool within the same tool family [3, 5, 7,
28, 29]

• Lack of version control or communication with a
configuration management tool (outside the “family of
tools”). [3, 5, 6, 7, 28, 29]

• Collection of information from other systems(failure
tracking, configuration management, test automation
tools) is often manual [3, 5, 6, 7, 28, 29]

• Historic data (traceability to the software quality)
between projects is not available [3, 5, 6, 7, 23, 28, 29]

• Changes in status of failures often requires manual
imports [3, 5, 6, 7, 23, 28, 29]

• Scheduling, starting and management of regression
testing (what test cases to select) is mostly a manual
task [3, 5, 6, 7, 23, 28, 29]

Most of these systems deal with management and
handling of manual test cases, their execution and outcome,
and all information is entered into the system by hand.

If the test case is automated, it is not very clear what and
how much of the managing information that is in the test
execution automation system or in the management system.
Automated test execution systems often have rudimentary
handling and management of the test cases, and provide
verdicts, often in the form of logs. These systems often fail
to collate and present the result without substantial manual
work or without manually exporting data to another system.

Historic data is not available without extensive data
mining and without know-how of the software system
structure in the different projects.

Handling of failure tracking in separate tools, e.g., [23],
requires testers to constantly monitor when the correction is
scheduled into a build. Though more modern failure
tracking system can inform when a failure has been
debugged and corrected, a lot of manual interventions are
still required, both to make the new version with the
corrections and to create information about the corrections
included. This is tedious manual work. Not only must the
re-assignment be done, but the actual planning of what test
bed and what build to use etc. are manually selected and the
build might be manually initiated. When the goal is a daily
build process, this would beyond doubt require full time
work to supervise, to make sure what corrections are
submitted in the build, and what test can be executed as a
consequence. Handling a large amount of automated test
cases, the problem becomes unmanageable, and often
solutions such as minimizing the number of test cases are
adopted to make sure a decent turn-around time is met.
Minimization of test suites seriously compromises the
overall quality of the test.

Current test management tools lack in active and seamless
integration with tools for system build, failure tracking,
automated test execution, and report construction. Ericsson
has attempted to create an “ultimate” tool, in which all
involved systems are retained. Unfortunately this resulted in

Test Case Execution (build version, system version)

Failed TC Passed Attempted TC

Write Test Record Write Test
Record

Write Failure Report

Analyze, Correct

Build new version of software

Re-plan, re-assign, schedule

Metrics, Progress Report, Final Report

414

heavy performance problems, and lack of scalability
between different sized projects. This system also enforced
a rigid (inflexible) development process. A similar though
more open approach is adopted in the new Jazz platform by
IBM/Rational [4], which is still under development.

IV. OUR TEST MANAGEMENT SYSTEM SOLUTION
Our Test Management System (named TMS) enables a

new approach to automated test management. In TMS
(shown in Figure 4) we introduce the following new
elements compared to standard test management as shown
in Figure 2: (1) we make explicit links between test
specifications and elements of the system structure, (2) we
use test specifications as release criteria, and (3) we make
sure the manual test cases can be handled by the test
management system, rather than being contained in separate
documents. This enables control of execution through
sending email to a tester when a specific manual test is to be
executed or re-tested after a correction.

By defining the test specification as release criteria, and
by letting test specification represent a part of the software
(could both be aspects of the system, or a particular part of
the software, e.g. a sub-system, component or similar), it
becomes possible to use each test specification as a
container for the test cases defining the particular release
criteria for that particular part of the software. Each part of
the software is uniquely identifiable through its structure,
naming and hierarchy. The unique ID is denoting each
source code, each executable, and furthermore each “level”
of integration. The unique ID of the software in the system
structure makes it possible to link software with the test
specification. We create our test cases as an implementation
of a test specification. The test specification is then
manually related to the test object list, which is in its turn
related to the software structure. Hence, traceability will
automatically be obtained for the test case. The binding of
the system structure to the test specification is indicated by
the gray areas in Figure 4.

Figure 4. The test preparation phase in TMS

By tracing test result back not only to specific
requirements, but also to the software system, it becomes
possible to retrieve historic data on software quality. This
gives a better overview of quality over time, compared to
any other available test management system.

A. Is TMS a Fully Automated Solution?
The test execution can be fully automated, though we

claim that there is currently no business case for fully
automated generation of failure reports. The reason being
that if a test case does not pass, a manual review must be
made at some point in the process anyhow, and if this is
done early in the process, our experience is that a
substantially smaller number of failure reports are written.

Our estimations indicate that each duplicate of a failure
report consumes on average one hour, and in one project
this could easily amount to several man years in extra costs
if allowed. This manual handling of failure reports is labor
intensive, and research contributions can be seen in e.g.
automatic debugging [19], but have not yet reached
industrial maturity.

For example many test cases can fail for the same reason,
causing duplications of reports, and it is possible that a
failure is already reported in another failure tracking system
or for another project on the same software. Instead of
analyzing a series of “duplicate” failures that might have
occurred due to the latest change, and same source file, we
perform a brief analysis of the failed test cases by the testers
in relation to software involved, minimizing the number of
failure reports. If the same failure occurs as the result of
multiple test cases, then only a single failure report should
be written. The relations are visible in Figure 51, showing
that failures are associated to sets of test cases. This is
saving considerable time for developers correcting the
corresponding code fault. Consequently, when failure
reports are manually connected to test cases, the system
makes an automated association to trace a failure to a
specific software unit identified (since the test specification
is a direct trace to the software). This feature in the system
supports faster identification of who is to debug and correct
the problem. This is an essential time saver in globally
distributed software development.

B. Test Case Scheduling
The total number of test cases developed for a particular

product should be represented in the test management
system. The database containing this information is very
large, and similar to most test management systems. The
active selection of what test cases are going to be used and
updated for a particular project (software enhancement) is
still a test manager task. Once it is decided that these test
cases form the right scope for the project, and the test cases
are assigned to a tester, the test management system takes
over and scheduling is automated, meaning that if a test case

1 Note that this is just an example in which actual content of individual test
specification, test cases, and failures in are not supposed to be readable.

Test Execution

 Automated

Test Cases

Requirements

Test plan

Test Specifications
Release criteria

Manual
Test Cases

System Structure

415

has failed it will be automatically re-scheduled when the
software is corrected in a new build.

Figure 5. Hierarchical/traceability view: Relationship with failures,

test case and system

Any management information needed will be retrieved by
pre-defined queries to both the proprietary and commercial
systems used. For example, different types of failure
tracking systems are checked by the time of a request. Some
data in the different databases are actively refreshed, and
some need page-refreshment to be accurate. E.g., when a
failure report has been “fixed” or cleared by the developer,
TMS will first identify the status-change and then trigger the
automated rescheduling of re-execution of all the test cases
involved in that failure report. As a user you can set this
regression testing at any frequency you prefer.

Our system can concurrently work with several different
failure tracking systems. Traceability with respect to the
initial requirements is provided by the system (see Figure
5). The test case can be tagged for regression test, for use in
a particular version or branch, or for other purposes. The
test cases are as usual in a test management system
containing author, date, updates, priority and other
necessary information.
The difference here is that the test execution will be
performed by a diverse set of test tools, and that the test
management system is able to handle the results in an
integrated manner. The aim is to group the test cases
according to how the tests relate to the structure/anatomy of
the software system into software component or series of
integration components. The hierarchy of the software
system is clearly reflected in the different levels, as
illustrated in Figure 5. By hierarchically organizing the test

cases, it is easy to select which test cases should be used for
executing a particular part of the system that has been
changed. From an automation standpoint, TMS provides
available test cases for a particular software product (part)
and makes it easy to define and decide which test cases
should be planned for execution and on what test bed/test
environment.

C. Test Execution
Test Execution means that the test procedure or test cases

are automated (implemented) in some script language to be
executed with given data. Currently the test suites are driven
from the test execution system, but with little effort it is
possible to glue existing test harness systems with the test
management.

Once the system is set up at the beginning of the project,
the execution is fully automated. Still manual test cases
might be assigned and executed in parallel with an
automated suite. Invoking regression test (after a fix, or
when initiating the system) is triggered by the TMS sending
an email to a set of pre-assigned testers. Not all test cases
are possible to automate (at a reasonable cost), since some
tests contain elements of manual nature, e.g. to test the
behavior when a cable is broken (simulated by a pulling it
out manually).

This means that our automation can combine and
integrate the test execution, the build system and the failure
tracking system, and yet allow these systems to develop and
mature at their own pace, to achieve the best execution. A
test management system that combines supervision will
provide a better overview of status, e.g. checking in which
state a particular failure is, and have a convenient overview
of what is tested in each version and in what build, in
addition to provide system specific quality and historic data.

D. Instant Progress Reporting
The planning of test cases in TMS provides few new

features compared to existing commercial software tools,
since creating test cases, naming and describing them in a
stepwise manner, and provide a verdict is not new.
However, by deliberately making test specifications a
representation of the system and requirements, the set of test
cases will represent the system quality criteria and thus
function as release criteria. This eliminates the need of
monitoring during the execution phase, which substantially
improves efficiency of this phase.

The test management system will in addition to planning,
also support the manager when deciding which test cases
should be run at a specific instant, and then it should collect
the result in a way that makes the evaluation of the system
clear. These common tasks are normally handled manually,
as is the re-assignment to the next test execution of test
cases that did not pass. Often test managers need to spend
most of their time in following up problems, in particular
related to the test cases that did not pass. This means
ensuring that someone takes care of the problem, analyzes
it, debugs and corrects the fault(s), and then makes sure that

Test Specifications Test Cases Failures

416

the proper regression testing is done. Many systems will
provide a clear pass or fail picture of the system at any
instant, but there are seldom more information that improves
on the quality assessment. A more modern test management
system allows defining the status types at set up time.
Combining historic and concurrent information of software
components is an important feature of this system that
contributes to a much more elaborate analysis of quality and
regression tests. Not only should the particular test case
which found the failure be re-tested, but also any other
dependent test cases should be re-scheduled. How the
dependencies of test cases are related to the software
components is described and defined in the test
specifications and test procedures. This feature is provided
by the system and will in both a push and pull fashion get
the test result from whatever test automation tool in use. The
feature is one of the main contributors to the perceived
savings and success of TMS. The hierarchy of the system
and its test cases is clearly reflected – and visible – in the
test management system.

The most common data used to describe progress and
actual results for most Test Management systems are
combining the accumulated number of test cases planned,
attempted, passed or failed, as well as faults found and
fixed. In addition Ericsson uses the following status labels:

• Blocked Not Run, which means the test case cannot be
executed, since something (failure of another test case,
code, equipment etc) is missing

• Blocked Run, which means that the test case was
attempted and executed partially, but could not
complete due to a blocking problem (special case of
fail)

• Concessed, which means that the test case was granted
a concession to be deferred to a later release due to
irresolvable reason.

• Not Possible, a status describing test case
description/implementation that was scoped in but not
implemented satisfactorily to test execution

• Correction (fix) Available, which is a measure of
corrections (that should fix a failed test case), as
discussed with respect to fault-failure relations in [16].

The combined test case results for a certain project is also
available at any time, which supports baseline, and release
support. This means that at any given moment it is possible
to enforce sign off-procedures, which is to be used for
auditing purposes. This status is communicated by the use
of icons and color in the system.

The trend analysis can be used to monitor progress at any
time of the test execution, and gives information on how
much work is needed for completion of the test tasks in the
project. This is considered the most important task of a test
management system. We have found that this data can give
an accurate picture of the progress of the software
development, but it can also be deceiving since the reporting
is based on a non-disturbed environment, and contains
accumulated data. In fact, for every new build or release

there should be an individual curve, since each build is a
“new” system, and if not a thorough dependency analysis
(on how the software impacts the change) is done, one
cannot make sure that because a test case passed the first
time, the same test case is unaffected in the next new build
version. The probability that the test case will pass the next
time is probably high, but should not be taken for granted.
Therefore it is important to have other metrics that give a
better picture of the quality. Currently the Configuration
Management system holds the data of what lines have been
changed, but the information is insufficient, since every
code change triggers a series of execution impacts, and can
thus make test cases that have passed fail, even if they were
not directly involved in the change. This is due to dynamic
binding and dependencies in the system.

There is seldom time to execute all tests in a regression
suite. Based on available reports we have identified that
some projects could not execute more than 40% of their test
cases in a suite. A goal must be that at least once in each
release, all test cases should pass, preferably in the final test
suite. By comparing the accumulated view provided in the
trend analysis, the percent of tests provides a new visibility,
which provides an overview of the system regression testing
can be reached. It should be clear that what is considered
“100%” completed in Figure 1, is referring to the selected
number of test cases, not the system. The numbers of
selected test cases are still only a small sample of all
possible test cases that could be created for the software in
question. The number of builds in a system is an indication
of the number of changes of the system.

E. Failure Tracking and Test Case relations
TMS allows different failure tracking systems to be used

for the same project. This reflects a common work-habit that
developers in the agile work-teams often record their
failures differently than testers. The customers also have
different ways to report anomalies. The different failures
should be consolidated by relating them to one or many test
cases. If the test case is hierarchically organized in
containers reflecting the system components, this could give
a strong indication on what part of the system needs more
attention. One example of this is that if a particular fault is
contributing to failing several test cases, it should be given
priority.

This support is a necessity when there are thousands of
failures to correct in a large complex system, where this still
equates to a failure density of telecom grade (aka 10-6) in
relation to the code base. In this context it is not humanly
possible to determine the priority in terms of failures
relating to the development. Our system contributes to an
improved sensitivity analysis of the failures and subsequent
software improvement, due to better data.

417

V. THE TEST MANAGEMENT SYSTEM USED IN THIS
STUDY

Test Management System (TMS) was developed by using
open source products, including MySQL v. 5 [14], Apache
web server v.2 [15], and Perl scripts. The first prototype was
developed in 2002 during one year, and has been used and
constantly improved since then. TMS is an example of a
tool that has been created out of need, in a situation where
no commercial tool has been possible to use or available to
handle the diverse environment. By integration with the
largest test harness execution system at Ericsson, it will
support future generations in strong competition with a
number of commercial tools.

 Is TMS fully automated? Yes, in one sense, since all the
tasks performed by the test manager in the execution phase
can be removed. The entire test execution phase includes
manual tester tasks, e.g. writing failure report, to minimize
the administrative overhead in analyzing (see discussion
below). The idea was that once the test cases were entered,
the system would be available to all to give an instant
overview of all aspects of the progress until completion
through its web-interface, guarded in availability by user
security settings. This goal is not farfetched, and few
enhancements are needed to get there. We are still hesitant
to automate the failure report writing, even if it was
possible, since all available logs and data exist. We can
easily assign the failed test cases to the correct design team,
but believe that it is better to let testers write the reports. But
even if this part of the process is manual, the rest of the
process is automated, since when the debugging (currently
also manual – but not a part of any test management system)
and correction is done, the developer responsible will assign
the correction to a build and change the status in the report.

Currently the test management system will monitor and
make sure the correct test or tests for the specific fault is
rescheduled and retested. This is visible in Figure 5, where
it is easy to identify test cases that failed, and the current
status of the correction. Figure 5 also shows that one test
case can have two or more failures that must be corrected to
pass the test case. The colors represent the status, e.g. if a
passed test case have a failure associated with it but is now
corrected and re-tested.

The TMS system contains a series of reports, not seen in
normal test management systems, including:

• Test Statistical overview
• Hierarchical/traceability overview (Figure 5) – where

you can visualize the relationship between the
system/documents test cases and failures.

• Test State overview – which gives the test progress by
Test Specification, thus software area or characteristic
of the system.

• Failure (Fault) Statistical summary– which gives
failures based on priority – where you can get a
multitude of system versions, and also for all history of

the product, where different states can be identified
from the failure tracking system.

• Time Statistical Summary – which gives time for
executing the test case. This is automatically recorded
for the automated tests, and gives a feedback for
planning purposes. This also gives an input on how to
combine automated daily builds in different suites. It
also shows, the total time used for running a certain
test, and an average execution time for each test.

• Change Activity Report – presenting what a particular
team has done recently, and what change has occurred
in the project.

In our quest to automate the entire management, we want
to find measurements that truly would give important
insight in the actual process. Not only how progress is
proceeding, but giving us a feedback on the quality
evaluation – and also on where extra attention needs to be
focused on. Important data that could easily be retrieved
from the TMS system are:

• What test cases are associated with a certain part of the
system, and traceability to either requirement or
software parts

• What faults/failures that are known for a certain
product – and the current status of all these

• How many faults a certain product or part of product
have had over time and where

• How long a test execution takes (both for manual and
execution), which make better planning of regression
suites and manual testing possible

• Estimations on total time for test execution in the
system

• What test cases located failures
• Time to fix a fault and time for retest e.g. turnaround

time
These measures contribute to improve planning of both

manual and automated tests, planning of order to correct
failures – which is a very important area in large complex
system, since more testing means more failures found. An
advanced test suite finds more failures, since it has higher
coverage.

VI. DISCUSSION
Our claim and hypothesis is that it is possible to automate

many of the test management tasks, e.g. supervision of test
cases being corrected and reassigning test cases to the
different testers. This means that the work of the test
manager could diminish almost completely in the test
execution phase. The tester, once assigned to the test case,
will make sure it executes to completion, analyze if a failure
occurs, and report failures, and when corrected,
automatically be reassigned to re-testing (if manual), or
alerted if a failure in the automatic suite is occurring. The
entire test suite will be automatically executed for each
release. Automating the test case execution will in itself
contribute to efficiency, but our focus on automation of the

418

entire test execution phase could save substantial additional
time.

We have built and used a tool in real production, and tried
it over seven years to evaluate its sustainability to carter for
old and new tool adaptations. In practice, a large number of
tools are used to cater for different aspects of the test
process in large scale, complex software development
within Ericsson.

Our results indicate that not only does efficiency by
automating the test execution, but also by automating
support for test management beyond the normal test
management systems, which makes the test execution phase
seamless. Our aim in this paper is to clarify some
distinguishing features of our system, and also to present a
more elaborate view of future test management and test,
which we envisage to be more autonomous in nature,
compared to contemporary test management.

The strength of our test management system lays in its
open interaction with failure handling, build management
systems, and several different test automation and execution
systems, which enables new types of automated information
processing. During the setup of the test plan and test
specification, traceability is provided through the test
specifications that explicitly relate the requirements to the
corresponding software system parts. This is enabled by
active polling through queries; the result of the query (the
log) gets selected, aggregated and displayed according to the
presentation required in our test management system web
interface.

This contributes to a new and unique overview of the
system being developed. The data can then be combined
into reports containing, e.g. execution times, failure
traceability and test case dependencies, which adds new
information and insight into the product development.

Development of the TMS system as well as its evolution
over the past few years has given us a series of insights. We
have questioned the practice where current test management
systems require many manual tasks. Our insights can be
summarized in the following statements:

• Creating test cases based on test specifications that are
defined (linked) to the system components enables
traceability. This provides the novel feature of being
able to assess the quality of individual software
components over time in many different versions and
configurations, instead of only for a specific project.

• Considering a set of passed test cases as release criteria
makes the test manager role redundant in the test
execution, since all tasks of are handled by the test
management system.

• We can automate the test execution process, including
the handling of build information, and failure tracking
and to combine these different tools and separate
processes into one seamless flow of loosely coupled
separate systems.

• Even if it is possible to automate failure reports, we
advise against it. If one fault makes many test cases

fail, this will result in many duplicated failure reports,
which is inefficient.

• It is possible to automatically build, reschedule and
automatically re-test corrected code, without any
human intervention. This enables daily build and an
extremely quick turn-around time.

By our contribution several manual tasks in the test
execution phase are not needed in our proposed test
management system, such as handling progress, handing out
tasks, dealing with failure reports, re-planning of test cases
for regression test, and identifying software with poor
quality.

The remaining tasks can be part of the basic project
management. Progress and trend information is available
instantly in the system. The system is ready for release when
all test cases are passed or remaining failure cases have been
handled. Test execution planning of the regression suites
improves when execution times are available for both
manual and automated test cases.
Tracking execution times will be instrumental in planning
the daily build regression suites, to make sure the test suite
can be completed within the time limits. Our system
contributes to remove some of the administrative overhead,
where one important aspect is enabling a faster turn-around
time (the time between failure discovery, until it is corrected
and back for retesting).

VII. RELATED WORK
There are several commercial off-the-shelf (COTS) tools

such as [3, 4, 5, 6, 23, 28, 29] available. One of the
motivations of this work is the problems associated with
these, as e.g. outlined in [24]. There are at least 16 open
source systems available with various features and qualities
identified [7], and within Ericsson more than 20 different
test management systems have been developed, considering
different needs of automation.

There are a web-based system to support a process similar
to ours [1] and a related evaluation of test automation
management [2]. None of these solutions cater for all
aspects in our solution, especially the handling of a
multitude of different systems. The area of test management
tools is surprisingly scarce in research papers, as vivid as it
is in usage, especially during the latest decade, e.g. [10].
The common view is that test management is either a result
of automating the test process [9] or a consequence of test
execution automation [11]. Defining the set of test cases as
quality criteria up front, i.e. by letting successful completion
of all test cases in the set be the release criteria is an old idea
[22], and defining test specifications as the bases for release
is not new. Organizing the test specification in a way that
reflects requirements is the most common approach,
supported by standards [12, 13] that yield traceability [25],
Connecting test cases to source file is also part of the
regression paradigm in [27]. The notion of grouping the test
specifications in direct relation not only to requirements, but
also to the different software entities is new. Traceability is

419

always possible to set up manually or automatically.
Technically this is not a problem, but creating the active
relations is seldom done. Instead most organizations define
this to be the prime work of the test manager. The new
system Jazz [23] attempts an approach similar to ours, by
requiring all other systems not already within the framework
to add an eclipse plug-in. This solution might be a bit costly
for some legacy tools. The use of the eclipse framework
[26] is an improvement, since it is enabling tool
integrations, which provides a partial solution to our
problem.
Currently there is little support for test design in any test
management system. Only some of the test design
techniques are supported by tools for test case generation,
e.g., evolutionary/genetic programming (GP) [17] systems
and state transition/model based testing (MBT) [18]
systems. This is today entirely an engineering task, even if
formal approaches can solve specific task in such systems.
Even a very small software component in our system will be
at least around 200 000 lines of code, implying that the use
of only GP or MBT as the main source of test design
techniques is not sufficient for a quality test [16].

VIII. CONCLUSIONS
This paper demonstrates the importance of continuous

data capture of test results in relation to traceability and
failure detection, as a result of an automated test process.
This is an important step towards a fully automated test
management, through the following main features:

• A loosely-coupled integration of diverse tools, based
on automatic extraction and synthesis of a set of
measurements.

• Using test specifications as release criteria, i.e. the
system will be ready for release when all tests have
been successfully performed.

• Automatic traceability of failures to software
components, achieved by enforcing test specifications
to represent system entities.

By the development and use of a test management system
(TMS) that can integrate a wide variety of external systems
and thus automated the entire execution, correction and re-
testing, we have demonstrated the feasibility and value of
automation of test management. We believe we have
contributed towards an autonomous solution, and thus
minimized the work for test managers in the execution
phase.

ACKNOWLEDGMENT
We would like to thank Ericsson AB and Ericsson Ltd

for funding our work and for allowing us to publish these
results. The Knowledge Foundation is acknowledged for
funding this work through the SAVE-IT program.

REFERENCES
[1] Giruado, G., Tonella, P. and Basili, V. (ed). “Designing and

Conducting an Empirical Study on Test Management Automation”,
Empirical Software Engineering, 8, Kluwer Academic Publishers, p.
59–81, 2003

[2] Gao, J. Z., Itaru, F. and Touoshima, Y. ”Information Technology and
Management” 3, 85–112, Kluwer Academic Publishers 2002

[3] HP Test Director https://h10078.www1.hp.com/ cda/
hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-127-
24%5E1131_4000_100__

[4] IBM Rational(R) Quality Manager http://www-
01.ibm.com/software/awdtools/rqm/standard/

[5] T-plan see http://www.t-plan.co.uk/
[6] Imbus TestBench, see http://www.imbus.de/products/ imbus-

testbench/
[7] See http://www.opensourcetesting.org/testmgt.php/
[8] Rothermel, G., Harrold, M. J. “Analyzing regression test selection

techniques” IEEE Trans. on Software Engineering, V. 22, Issue 8, pp.
529-551, Aug. 1996

[9] Pocatilu, P. “Automated Software Testing Process”, Economy
Informatics, no. 1, p. 97-99, 2002

[10] Eickelmann, N.S. and Richardson, D.J. “An Evaluation of Software
Test Environment Architectures”, IEEE Proc. of ICSE-18, 1996

[11] Berner, S. Weber, R. and Keller, R.K. “Observations and Lessons
Learned from Automated Testing”, IEEE Proc. of ICSE’05, 2005

[12] IEEE Std. for Software Test Documentation 829-1998
[13] IEEE Standard for Software and Systems Test Documentation 829,

2008
[14] MySQL v.5.1 see: http://www.mysql.com/
[15] Apache see: http://www.apache.org/
[16] Eldh, S., Punnekkat, S., Hansson, H., Jönsson., P: “Component

Testing is Not Enough - A Study of Software Faults in Telecom
Middleware”, Proc. 19th IFIP Int. Conf. TESTCOM/FATES,
Springer, 2007

[17] Wegener, J. Sthamer, H., Jones, B.F. and Eyres, D.E., “Testing real-
time systems using genetic algorithms”, Journal of Soft. Quality,
Springer, Vol. 6 (2), June 1997

[18] Dalal, S.R.; Jain, A.; Karunanithi, N.; Leaton, J.M.; Lott, C.M.;
Patton, G.C.; Horowitz, B.M: “Model-based Testing in Practice”,
Proc. of ICSE, IEEE 1999

[19] Agrawal, H. “Towards automatic debugging of computer programs”,
Thesis, Purdu University, 1991

[20] Failure Tracking tools see http://www.testingfaqs.org/t-track.html
[21] Auguston, M., Jeffery, C., Underwood, S., “A Framework for

automatic debugging”, Proc. of 17’th Int. conf ASE, IEEE, 2002
[22] Bruno, M., Canfora, G., Di Penta, M., Esposito, G., and Mazza, V.,

“Using Test Cases as Contract to Ensure Service Compliance across
Releases”, Springer Verlag, LNCS Vol. 3826, pp.87-100, 2005

[23] IBM Jazz Technological Platform, see http://www-
01.ibm.com/software/rational/jazz/

[24] Basili, V.R., Boehm, B.,”COTS-Based Systems Top 10 list”, IEEE
Computer, Vol. 34, Issue 5, 2001

[25] Nebut, C., Fleury, F., Le Traon, Y., Jezequel, J.-M.: “Automatic test
generation: a use case driven approach”, IEEE Trans. On Soft. Engin.
Vol 32, Issue 3, 2006

[26] eclipse, see http://www.eclipse.org/
[27] Wikstrand, G., Feldt, R., Gorantla, J., Zhe, W., and C. White.
“Dynamic regression test selection based on a file cache an industrial
evaluation”. ICST, 2009
[28] QAtraq Professional, see http://www.testmanagement.com/
[29] SilkCentral Test Manager, Borland, see
http://www.borland.com/us/products/silk/silkcentral_test/index.htm

420

