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Abstract 
 

For long-lived systems, there is a need to address 

evolvability, i.e. a system’s ability to easily accommodate 

changes, explicitly during the entire lifecycle. To improve 
the capability in being able to understand and analyze 

systematically software architecture evolution, we 

introduced in our earlier work a software evolvability 

model and a structured qualitative method for analyzing 

evolvability at the architectural level - the ARchitecture 

Evolvability Analysis (AREA) method. As architecture is 
influenced by system stakeholders representing different 

concerns and goals, the business and technical decisions 

that articulate the architecture tend to exhibit tradeoffs 

and need to be negotiated and resolved. To avoid intuitive 

choice of architectural solutions, we propose to extend 
the AREA method and strengthen its tradeoff analysis 

with explicit and quantitative treatment of stakeholders’ 

prioritization of evolvability subcharacteristics and their 

preferences on design solutions. Finally, an example is 

used to illustrate the concept and applicability of the 

proposed approach. 

1. Introduction 

Software evolution is characterized by inevitable 

changes of software and increasing software complexities, 

which in turn may lead to huge costs unless rigorously 

taking into account change accommodations. Software 

evolvability has thus been recognized as a fundamental 

element for increasing strategic and economic value of 

software [20], as it “bears on the ability of a system to 

accommodate changes in its requirements throughout the 

system’s lifespan with the least possible cost while 

maintaining architectural integrity” [13]. This is in 

particular true for long-lived systems. For such systems, 

there is a need to address evolvability explicitly to 

prolong the productive life of the software systems. As 

software architecture holds a key to the possibility to 

implement changes in an efficient manner [3], software 

architecture evolution has become an integral part of 

software lifecycle. 

To improve the capability in being able to understand 

and analyze systematically software architecture 

evolution, we introduced, in our earlier work, a software 

evolvability model [5], in which subcharacteristics of 

software evolvability and corresponding measuring 

attributes are identified. The evolvability model is a way 

to articulate subcharacteristics for an evolvable system 

that an architecture must support. In addition, we also 

introduced a structured method for analyzing evolvability 

at the architectural level, i.e. the ARchitecture 

Evolvability Analysis (AREA) method [6].  

The business and technical decisions that articulate an 

architecture tend to exhibit tradeoffs that need to be 

negotiated and resolved. In AREA method, the tradeoff 

analysis is reflected in two constituent steps: (i) during 

architecture workshops, the stakeholders prioritize 

potential architectural requirements, which are mapped 

against evolvability subcharacteristics. By prioritizing the 

potential architectural requirements based on pre-defined 

criteria, evolvability subcharacteristics are implicitly 

prioritized by stakeholders; (ii) after the workshop, the 

identified architectural refactoring choices are 

qualitatively analyzed with respect to their impacts and 

support for evolvability subcharacteristics. 

Based on our earlier experiences in evolvability 

analysis [4], we realize that designing and evolving a 

software architecture which satisfies a collection of 

evolvability subcharacteristics is a challenging task. This 

is mainly due to the fact that architecting for evolvable 

systems implies a complex decision-making process in 

which multiple attributes need to be taken into 

consideration, e.g. stakeholders’ needs and goals, multiple 

quality requirements with competing priorities, various 

architectural refactoring choices with divergent 

implications on quality requirements. In AREA method, 

these multiple attributes and corresponding tradeoffs are 

treated qualitatively. To avoid intuitive prioritization of 

evolvability subcharacteristics and intuitive choice of 

architectural refactoring solutions, we introduce, in this 

paper, a quantitative extension to the AREA method with 

the aim to further strengthen its tradeoff analysis of 

potential architectural requirements, as well as 

preferences of architectural refactoring solutions in light 

of multiple evolvability subcharacteristics. 

The remainder of this paper is structured as follows. 

Section 2 describes briefly the software evolvability 

model and the architecture evolvability analysis (AREA) 



method, and explains the motivations for extending the 

AREA method and strengthening its tradeoff analysis 

with quantitative analysis. Section 3 focuses on two 

constituent steps in the AREA method in which tradeoff 

analysis is involved, and presents the extended 

quantitative approach that would strengthen the tradeoff 

analysis. Section 4 illustrates the concept and applicability 

of the proposed approach with an example. Section 5 

reviews related work. Section 6 concludes the paper. 

2. Background and Motivation 

This section describes the software evolvability model 

and evolvability analysis method, and motivates the need 

for an extended quantitative analysis for strengthening the 

tradeoff analysis in AREA method. 

2.1 Software Evolvability Model 

To improve the capability in being able to understand 

and analyze systematically software architecture 

evolution, we introduced a software evolvability model 

[5]. This model regards software evolvability to be a 

multifaceted quality attribute [13], and refines software 

evolvability into a collection of subcharacteristics that can 

be measured through a number of corresponding 

measuring attributes.  

The evolvability model and identified evolvability 

subcharacteristics are the results from case studies [5-7] 

and are valid for a class of long-lived industrial software-

intensive systems that often are exposed to many, and in 

most cases evolutionary changes. For this type of systems 

we have identified the following subcharacteristics:  

• Analyzability describes the capability of the 

software system to enable the identification of 

influenced parts due to change stimuli; 

• Architectural Integrity describes the non-

occurrence of improper alteration of architectural 

information;  

• Changeability describes the capability of the 

software system to enable a specified modification to 

be implemented and avoid unexpected effects; 

• Extensibility describes the capability of the software 

system to enable the implementations of extensions 

to expand or enhance the system with new features;  

• Portability describes the capability of the software 

system to be transferred from one environment to 

another;  

• Testability describes the capability of the software 

system to validate the modified software; 

• Domain-specific Attributes are the additional 

quality subcharacteristics that are required by specific 

domains. 

2.2 Architecture Evolvability Analysis 

We introduced in [6] a structured method for analyzing 

evolvability at the architectural level, i.e. the 

ARchitecture Evolvability Analysis (AREA) method. The 

evolvability analysis method starts with identification of 

change stimuli and guides architects through the analysis 

of potential architectural requirements that the software 

architecture needs to adapt to, and continues with 

identification of potential architecture refactoring 

solutions along with their implications. Through the 

analysis process, the implications of the potential 

improvement proposals and evolution path of the software 

architecture are analyzed with respect to evolvability 

subcharacteristics. Based on our experience in using the 

method [6], the result is that the architecture 

requirements, corresponding architectural decisions, 

rationale and architecture evolution path become more 

explicit, better founded and documented. The method 

consists of three phases as illustrated in Figure 1. The 

steps with gray color background comprise qualitative 

tradeoff analysis. 

• Phase 1: Analyze the implications of change stimuli 

on software architecture. The outputs are identified 

and prioritized potential requirements on software 

architecture.  

• Phase 2: Analyze and prepare the software 

architecture to accommodate change stimuli and 

potential future changes. This phase focuses on the 

identification of potential improvement proposals for 

the components that need to be refactored. 

• Phase 3: Synthesize the previous results and finalize 

the evaluation. 

 
Figure 1. The Phases of ARchitecture Evolvability Analysis 

(AREA) Method 

2.3 Motivations for Extending AREA Method 

with Quantitative Analysis 

This section describes motivations for extending the 

AREA method and strengthening its existing qualitative 

tradeoff analysis with quantitative analysis. 

2.3.1. Explicit stakeholders’ views on prioritization 

and preferences on evolvability subcharacteristics. 

Depending on their roles that are involved in the 



development and evolution of a software system, the 

stakeholders usually have different concerns, i.e. interests 

which pertain to the system’s development, its operation 

or evolution. Consequently, architecting for an evolvable 

software system implies that an architect needs to balance 

numerous stakeholders’ concerns that are reflected in 

terms of their prioritization and preferences on 

evolvability subcharacteristics. In AREA method, this is 

treated implicitly in step Prioritize requirements in phase 

1; i.e. potential architectural requirements are mapped 

against evolvability subcharacteristics to justify whether 

the realization of each requirement would lead to an 

improvement of any of the subcharacteristics. These 

potential architectural requirements are then prioritized 

based on predefined criteria. Consequently, the choice of 

prioritized architectural requirements implicitly sets 

priority ranking on evolvability subcharacteristics. 

Software architecture is influenced by system 

stakeholders [3]. In circumstances when there are 

numerous roles of stakeholders, representing different and 

sometimes contradictory concerns and goals, explicit 

quantitative assessment of stakeholders’ preferences on 

evolvability subcharacteristics will strengthen qualitative 

data and assist architects in making architectural design 

decisions. Otherwise, when the prioritization and 

preferences of evolvability subcharacteristics are not 

explicitly expressed by involved stakeholders, it becomes 

difficult to determine the dimensions along which a 

system is expected to evolve.  

2.3.2. Quantification of refactoring solution 

alternatives’ impacts on evolvability 

subcharacteristics. Choosing an architectural refactoring 

solution that satisfies evolvability requirements is vital to 

the evolution and success of a software system. 

Nonetheless, each solution is associated with multiple 

attributes, as the choice of component refactoring and/or 

implementation solution alternatives for fulfilling each 

architectural requirement may probably cause tradeoffs 

among evolvability subcharacteristics. Hence, it is 

important to understand how a refactoring alternative 

supports different evolvability subcharacteristics, 

especially when there are several refactoring alternatives 

to choose among, each of which exhibits varied support 

for evolvability subcharacteristics. Consequently, these 

alternatives need to be ranked, and meanwhile, can reflect 

stakeholders’ preference information on evolvability 

subcharacteristics. In AREA method, the determination of 

potential refactoring solutions along with their impact on 

evolvability subcharacteristics is qualitatively handled in 

step Identify/assess refactoring solutions in phase 2, by 

examining the rationale of a solution proposal along with 

its architectural implications (positive or negative impact) 

of the deployment of the component on evolvability 

subcharacteristics. 

Architects must often make architectural design 

decisions and give preference to a certain refactoring 

solution. In circumstances when there are multiple 

architectural alternatives to choose among, each of which 

exhibiting divergent impacts on evolvability 

subcharacteristics, a quantitative assessment of 

refactoring alternatives’ impacts on evolvability 

subcharacteristics will guide and support architects to 

avoid making intuitive decisions in software architecture 

evolution.  

3. Proposed Approach 

In this section, we first clarify the notion of multiple 

attribute decision making process when evolving software 

architectures and we present briefly the Analytic 

Hierarchy Process (AHP) method which provides a basis 

for the extended quantitative analysis approach. This 

section will then detail the extended quantitative analysis 

which provides a structured way in quantitatively eliciting 

stakeholders’ preferences for desired evolvability 

subcharacteristics and in obtaining quantitative 

understanding of the impacts of refactoring solutions on 

evolvability.  

3.1 Multiple Attribute Decision Making Process 

The proposed approach focuses on two constituent 

steps of the AREA method in which tradeoff analysis is 

concerned, i.e. step Prioritize requirements in phase 1, 

and step Identify/assess refactoring solutions in phase 2. 

These two steps entail subjective judgments with regard 

to preferences of architectural requirements, evolvability 

subcharacteristics, as well as choice of refactoring 

solutions. These subjective judgments constitute 

accordingly a multiple-attribute decision making process 

in architecting for evolvable software systems, as 

illustrated in Figure 2, i.e. stakeholders’ preferences on 

evolvability subcharacteristics are determined by their 

different viewpoints, whereas the choice of architectural 

alternatives is dependent on their respective impacts on 

evolvability, and is meanwhile constrained by 

stakeholders’ preference information on evolvability 

subcharacteristics. 

 
Figure 2. Multiple-Attribute Decision Making Process 

 



3.2 Analytic Hierarchy Process 

To obtain quantitative data with regard to 

stakeholders’ preferences on evolvability 

subcharacteristics and refactoring alternatives’ impacts on 

evolvability, we use Analytic Hierarchy Process (AHP) 

[14], because it is a multiple-attribute decision making 

method that enables quantification of subjective 

judgments. It makes relative assessments through pair-

wise variable comparison and consists of five basic steps: 

Step 1: Create an n x n matrix, in which n is the number 

of variables to be compared. 

Step 2: Perform pair-wise comparison of the variables 

with respect to importance. The interpretation of the 

scales for comparison is shown in Table 1. 

Table 1. Scale for Pair-wise Comparison  

Scale Explanation 

1 Variable i and j are of equal importance 

3 Variable i is slightly more important than j 

5 Variable i is highly more important than j 

7 Variable i is very highly more important than j 

9 Variable i is extremely more important than j 

2,4,6,8 Intermediate values for compromising between the 

other numbers 

Step 3: Compute eigenvector of the n x n matrix. In this 

paper, we apply the ‘averaging over normalized columns’ 

method [14] using the following equations: 

a) Calculate sum of the columns; 

�� � ������
�

�	

 

 

b) Divide each element in a column by the sum of 

the column, resulting in a new matrix; 

��� � ���/��  
c) Calculate sum of each row in the new matrix; 

�� � ������
�

�	

 

d) Normalize the sum of rows to obtain priority 

vector P by dividing by n, which is the number 

of variables. 

� � ��/� 
Step 4: Assign a relative importance to the variables, each 

accounts for a certain amount of percent of the 

importance of the variables. 

Step 5: Evaluate consistency of subjective judgment.  

3.3 Extended Quantitative Analysis 

The application of the AHP method is described in the 

following subsections, detailing the extended quantitative 

analysis that is used to strengthen the two tradeoff 

analysis steps embodied in AREA method. 

3.3.1 Stakeholders’ prioritization and preferences of 

evolvability subcharacteristics. In this extension, 

stakeholders representing different roles provide their 

preferences on evolvability subcharacteristics by a pair-

wise comparison of subcharacteristics (�� , ��� with 

respect to their relative importance. The AHP weighting 

scale shown in Table 1 is used to determine relative 

importance for each evolvability subcharacteristic pair. 

Note that the domain-specific attributes might comprise 

several additional quality characteristics that are required 

by a specific domain. Therefore, each of these domain-

specific quality attributes is also included for pair-wise 

comparison together with the other evolvability 

subcharacteristics. The pair-wise comparison is conducted 

for all pairs, hence, n(n-1)/2 comparisons are made by 

each stakeholder role. Afterwards, for each stakeholder 

role, the aforementioned equations in AHP method are 

used to create a priority vector signifying the relative 

preference of evolvability subcharacteristics. As different 

stakeholder roles might have diversified preferences on 

evolvability subcharacteristics, for each evolvability 

subcharacteristic, we obtain normalized preference on an 

evolvability subcharacteristic by dividing sum of the 

preference of each stakeholder role by the number of 

roles. 

The description below concretizes the calculation 

procedure, providing an example calculation of 

preferences of subcharacteristics aggregated from two 

stakeholders’ perspectives. A matrix of pair-wise 

comparison is shown below, in which  �
 represents one 

stakeholder role,  �
 , ��  and �� are evolvability 

subcharacteristics, ��� represents pair-wise comparison in 

terms of relative importance based on Table 1 (Note ��� = 

1 if i = j).  

�� �� �� …  �� 

�
 ��� ���  

��  ��� ���  

…  

 

  

��  ��� ��� ��� 

Then by applying equation a), we get the sum of the 

columns: 

�� � ������
�

�	

 

By applying equation b), we get the following new 

matrix: 

��� � ���/��  



Then by applying equations c) and d), we get normalized 

preference weight information of subcharacteristic  
�� from stakeholder  �
 perspective as shown in equation 

1) below: 

����
 �
� �� !�

"
!#$

�      (i is an integral and 1 ≤  i ≤ k)  1) 

Likewise, the values indicating the preference weights of 

subcharacteristics (�
, ��, …��) from stakeholder ��  

perspective are calculated. We designate them as ��
�� , 
�����, …�����. 

Given that the preference consistency is correct, the 

overall stakeholders’ preferences and prioritization of 

subcharacteristics are calculated by aggregating the 

preferences from the two stakeholders �
 and �� as shown 

below, in which ��
, ��� and ��� indicate respectively 

the overall preferences on the specific subcharacteristics 

aggregated from the two stakeholders: 

��
 �  (��
�
 + ��
��)/2 

��� � (����
 + �����)/2 

… 

��� � (����
 + �����)/2 

Generalizing the above results, the overall preference 

weight on subcharacteristic �� aggregated from n number 

of stakeholders is shown in equation 2) below: 

��� �
� �%&�'��

(
!#$

�      (i is an integral and 1 ≤  i ≤ k) 2) 

3.3.2 Refactoring alternatives’ impacts on evolvability 

subcharacteristics. In this extension, system architects or 

main technical responsible persons provide their judgment 

on how well each refactoring alternative supports 

different evolvability subcharacteristics.  This is firstly 

done by a pair-wise comparison of the refactoring 

alternatives ()*+� , )*+�� with respect to a certain 

evolvability subcharacteristic, using the weighting scale 

in Table 1. Next, for each evolvability subcharacteristic, 

the aforementioned equations in AHP method are used to 

create a priority vector signifying the relative weight of 

how well different refactoring alternatives support a 

specific evolvability subcharacteristic. Afterwards, 

recalling the overall weights, i.e. stakeholders’ preference 

weight of evolvability subcharacteristics (as described in 

the previous subsection) and the weight of how well 

different refactoring alternatives support a specific 

evolvability subcharacteristic, we can obtain a normalized 

value, designating the overall weight for each refactoring 

alternative’s support on evolvability in general.  

The following description concretizes the calculation 

procedure, providing an example calculation of two 

refactoring alternatives’ overall support on software 

evolvability. A matrix of pair-wise comparison is shown 

below, in which  �
  represents one of the evolvability 

subcharacteristics, )*+
 and )*+� are two architectural 

alternatives, ��� represents pair-wise comparison (based 

on Table 1, ��� = 1 if i = j) in terms of relative support of 

each alternative on a certain subcharacteristic such as 

�
 as shown below: 

�� ,-.� ,-.� 

)*+
 ��� ��� 

)*+� ��� ��� 

Then by applying equations a) and b), we get the 

following matrix: 

 

�� ,-.� ,-.� 

)*+
 �

 � ���//��� 0  ���� �
� � ���//��� 0 ���� 

)*+� ��
 � ���//��� 0  ���� ��� � ���//��� 0 ���� 

Then by applying equations c) and d), we get normalized 

support rates of the two architectural alternatives with 

respect to �
 as shown below, in which �)*+
1
 and 

�)*+�1
 indicate impacts of the two alternatives on 

subcharacteristic �
 , i.e. how well they respectively 

support  �
 . 

�)*+
1
 � /�

 0 �
��/2 

�)*+�1
 � /��
 0 ����/2 

Likewise, the values indicating how well the two 

alternatives support other subcharacteristics ( �� … �� � 

are calculated. We designate them as �)*+
1� , �)*+�1� 

…  �)*+�1�  and  �)*+�1�  . 

Then 

 ,-.� ,-.� 

�
 �)*+
1
 �)*+�1
 

�� �)*+
1� �)*+�1� 

…   

�� �)*+
1� �)*+�1� 

Given that judgment of architectural alternatives’ support 

on subcharacteristics is consistent, the overall weights of 

the two alternatives’ support on evolvability are 



calculated by aggregating the preferences of 

subcharacteristics from the previous quantitative analysis 

(i.e. ��
 and ��� in the previous subsection) as shown 

below, in which 3456
 and 3456� indicate respectively the 

overall weights of how well the two alternatives support 

evolvability: 

3456
  � �����  7  �)*+
1��
�

�	

 

3456�  � �����  7  �)*+�1��
�

�	

 

Generalizing the above results to m architectural 

alternatives, alternative m’s support on evolvability is 

expressed in equation 3) as shown below: 

3456�  � 8 ����  7  �)*+�1���
�	
    3) 

4. Example 

In this section, we illustrate the method by using an 

example which is simplified but has realistic context [6], 

in which a complex industrial control system was 

analyzed and refactored to facilitate product line 

architecture migration, driven by the need to improve its 

evolvability. Within this setting, we examine a subsystem 

for inter-process communication (IPC), which includes 

mechanisms that allow communication between 

processes, such as remote procedure calls, message 

passing and shared data. 

4.1 Stakeholders’ Preferences on Evolvability 

Subcharacteristics 

Suppose we have two involved stakeholder roles with 

different perspectives on evolvability subcharacteristics. 

The domain-specific attribute is performance, due to the 

fact that the software has critical real-time calculation 

demands. One of the stakeholders’ preferences on 

subcharacteristics is expressed in Table 2.  

Table 2. Evolvability Subcharacteristics Preference Weights 

from One Stakeholder’s Perspective 

Q1: Analyzability; Q2: Architectural Integrity; Q3: Changeability;  

Q4: Extensibility; Q5: Portability; Q6: Testability; Q7: Performance 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 

Q1 1 1 1/5 1/4 3 3 1/3 

Q2 1 1 1/2 1/3 1 1 1/3 

Q3 5 2 1 1 3 5 3 

Q4 4 3 1 1 3 5 1 

Q5 1/3 1 1/3 1/3 1 1 1/3 

Q6 1/3 1 1/5 1/5 1 1 1/3 

Q7 3 3 1/3 1 3 3 1 

After performing calculations based on equation 1) as 

described in section 3.3.1, the values indicating 

subcharacteristic preference from stakeholder S1 

perspective are summarized below. The figures suggest 

that, from stakeholder S1 perspective, the evolvability 

subcharacteristics are prioritized as (in declining order): 

changeability, extensibility, performance, analyzability, 

architectural integrity, portability and testability. 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 

S1 0.097 0.078 0.281 0.238 0.065 0.055 0.187 

Likewise, the second stakeholder’s preferences on 

evolvability subcharacteristics are collected and 

calculated. The values are summarized below. 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 

S2 0.114 0.105 0.178 0.316 0.088 0.058 0.180 

We aggregate the stakeholders’ preferences and 

prioritizations of evolvability subcharacteristics based on 

equation 2) as described in section 3.3.1, and the results 

are shown in Table 3. 

Table 3. Aggregated Stakeholders’ Preferences and 

Prioritizations of Evolvability Subcharacteristics 

  Q1 Q2 Q3 Q4 Q5 Q6 Q7 

S 0.106 0.092 0.230 0.277 0.077 0.057 0.184 

The above aggregated values indicate that extensibility 

has the highest priority, followed by changeability, 

performance, analyzability, architectural integrity, 

portability and testability. 

4.2 Architectural Alternatives’ Impact on 

Evolvability Subcharacteristics 

Three alternatives are considered for the IPC 

subsystem: 

• Alt1: Static allocation of connection slot 

All the slot names and slot IDs that are used are defined in 

a C header file in the system. The developers edit this file 

to register their slot name and slot ID, and recompile. 

Afterwards, both the slot name and slot ID are specified 

in the startup command file for thread creation.  

• Alt2: Dynamic allocation of connection slot 

All the slot names and IDs are defined and used without 

booking in any header file. The IPC connection is 

established dynamically, and a connection slot ID is 

returned when no predefined slot ID is given. 

• Alt3: Static allocation of connection slot for base 

software and dynamic allocation for application 

extensions 
The slot names and IDs that are used by the base software 

are defined in a C header file in the system. The base 

software developers edit this file to register their slot 

name and slot ID, and recompile. The slot IDs for 

application extension are not booked in the header file. 

The command attribute dynamic slot ID is used instead. 

 

The three alternatives are rated with respect to how well 

each supports each evolvability subcharacteristic. From 



changeability perspective, an example of the pair-wise 

comparison of the three alternatives is shown in Table 4. 

 Table 4. Pair-wise Comparison of Alternatives with Respect 

to Their Support on Changeability 

Changeability Alt1 Alt2 Alt3 

Alt1 1 1/5 1/9 

Alt2 5 1 1/3 

Alt3 9 3 1 

After performing the AHP calculations, the values 

indicating the support weights of the three alternatives 

with respect to changeability are summarized below. The 

values indicate that, from changeability perspective, the 

choices of alternatives are prioritized as (in declining 

order): Alt3, Alt2 and Alt1. 

 Alt1 Alt2 Alt3 

Changeability 0.064 0.267 0.669 

Likewise, the values of how well the three alternatives 

support the other evolvability subcharacteristics are 

collected and calculated. The values are summarized in 

Table 5. 

Table 5. Alternatives’ Support on Evolvability 

Subcharacteristics 

 Alt1 Alt2 Alt3 

Analyzability 0.633 0.106 0.260 

Integrity 0.333 0.333 0.333 

Changeability 0.064 0.267 0.669 

Extensibility 0.106 0.260 0.633 

Portability 0.143 0.429 0.429 

Testability 0.333 0.333 0.333 

Performance 0.633 0.106 0.260 

Consequently, considering the prioritization weights of 

evolvability subcharacteristics in Table 3, together with 

the values indicating each alternative’s support on 

evolvability subcharacteristics shown in Table 5, the 

overall weight for Alt1 is calculated based on equation 3) 

as: 

3456
 = 0.106 70.633 + 0.092 70.333 + 0.230 70.064 + 

0.277 70.106 + 0.077 70.143 + 0.057 70.333 + 0.184 

70.633 = 0.288 

Likewise, 3456� = 0.247, 34569 = 0.487, which indicates 

that Alt3 is the preferred alternative with respect to 

evolvability. 

4.3 Analysis 

As illustrated in the example, the extended analysis 

approach provides quantitative support in understanding 

subjective decision making which is influenced by 

multiple attributes, e.g. stakeholders’ preferences and 

architectural refactoring alternatives’ impacts on 

evolvability subcharacteristics. Through the relative 

importance measuring process, we gain an explicit view 

on how stakeholders prioritize numerous evolvability 

subcharacteristics, and on the rationale behind a choice of 

an architectural alternative. Thus, the quantitative 

extension provides decision support and helps to avoid 

intuitive prioritization of evolvability subcharacteristics 

and intuitive choice of refactoring solutions. 

5. Related Work 

Several researches focus on quantitative evaluation of 

software architecture. Adaptability Evaluation Method 

(AEM) [18] is an integral part of the Quality-driven 

Architecture Design and quality Analysis (QADA) 

methodology [11] with specialization in the adaptability 

aspect. AEM defines adaptability goals through capturing 

the adaptability requirements that will be subsequently 

considered in the architecture design. One feature of 

AEM is that it fills the gap between requirement 

engineering and architecture evaluation as it provides 

guidelines on how to model adaptability in architectural 

models, and qualitatively/quantitatively analyzes 

candidate architectures to ensure that adaptability 

requirements are met before system implementation. 

However, this method does not explicitly focus on 

evolvability. 

The idea of using Analytical Hierarchy Process to 

quantitatively support architectural decisions has been 

described in several research studies; nonetheless, these 

studies do not focus on evolvability analysis. For instance, 

[16] introduces a method for architecture evaluation and 

selection to ensure that the selected software architecture 

is the most potential one for fulfilling a blend of quality 

attributes. This method uses AHP to support the 

comparison of candidate architectures in order to reach 

consensus among stakeholders. [17] describes another 

quantitative quality-driven design approach that applies 

AHP for architectural design process. It helps evaluate 

stakeholder quality preferences and design alternatives, 

utilize optimization techniques in order to determine the 

optimal combination of design alternatives. [19] 

introduces a method which uses scenarios from the 

Architecture Tradeoff Analysis Method (ATAM) [8] and 

analyzes them with Analytical Hierarchy Process for 

making decisions in evaluating different integration 

strategies.  

Cost Benefit Analysis Method (CBAM) [12] is an 

architecture-centric economic modeling approach that 

helps to address the long-term benefits of a change and its 

complete product lifecycle implications. This method 

quantifies design decisions in terms of cost and benefits 

analysis to determine the level of uncertainty and decides 

how to prioritize changes to architecture, based on 

perceived difficulty and utility.  

Software architecture decisions carry economic value 

in form of real options [2, 15]. Options offer flexibility 

and take into account architectural evolution over time. 

[9] incorporates the concept of architecture options into 

design in order to exploit the optimal degree of design 



flexibility and provide a quantitative means of optimizing 

system architecture. [10] hypothesizes that architectural 

patterns carry economic value in the form of real options, 

and proposes an approach that considers cost, value and 

alignment with business goals to support architectural 

evolution. This approach guides the selection of design 

patterns, elicitation of architecturally significant 

requirements, and valuation of architecture in terms of 

design decisions with multiple quality-attribute 

viewpoints. Another application of real options theory is 

described in [1], which provides insights into architectural 

flexibility and investment decisions related to the 

evolution of software systems. This approach examines a 

set of probable changes as well as their added value, e.g. 

accumulated savings through enduring the change without 

violating architectural integrity; supporting future growth; 

and capability of responding to competitive forces and 

changing market conditions. In this paper, instead of 

focusing on the values of each design decision, we focus 

on how well each design alternative supports evolvability 

subcharacteristics. 

6. Summary and Future Work 

This paper proposes and demonstrates a quantitative 

extension to strengthen the tradeoff analysis in the 

architecture evolvability analysis (AREA) method, which 

was developed in our earlier work and applied in a 

complex industrial context to assist software evolvability 

analysis. As architecture is influenced by system 

stakeholders representing different concerns and goals, 

the business and technical decisions that articulate the 

architecture tend to exhibit tradeoffs and need to be 

rigorously negotiated and resolved. The extended 

quantitative analysis provides a structured way in eliciting 

stakeholders’ preferences for desired evolvability 

subcharacteristics and in obtaining quantitative 

understanding of the impacts of architectural refactoring 

solutions on evolvability. We have described the approach 

in detail and illustrated theoretically its use with 

nonetheless a realistic example. Compared to only using 

the AREA method and qualitatively analyzing software 

architecture evolvability, the quantitative extension 

strengthens the tradeoff analysis part in AREA method 

and provides a structured way for explicit reasoning 

around the tradeoffs among evolvability 

subcharacteristics, as well as explicit reasoning around 

choice of architectural alternatives. 

In future work, we intend to continue working on the 

extended architecture evolvability analysis method by 

conducting industrial case studies to collect experiences 

and refine the approach. 
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