
An Extended Quantitative Analysis Approach for Architecting Evolvable

Software Systems

Hongyu Pei Breivold1, Ivica Crnkovic2

1ABB Corporate Research, Industrial Software Systems, 721 78 Västerås, Sweden

hongyu.pei-breivold@se.abb.com
2Mälardalen University, 721 23 Västerås, Sweden

ivica.crnkovic@mdh.se

Abstract

For long-lived systems, there is a need to address

evolvability, i.e. a system’s ability to easily accommodate

changes, explicitly during the entire lifecycle. To improve
the capability in being able to understand and analyze

systematically software architecture evolution, we

introduced in our earlier work a software evolvability

model and a structured qualitative method for analyzing

evolvability at the architectural level - the ARchitecture

Evolvability Analysis (AREA) method. As architecture is
influenced by system stakeholders representing different

concerns and goals, the business and technical decisions

that articulate the architecture tend to exhibit tradeoffs

and need to be negotiated and resolved. To avoid intuitive

choice of architectural solutions, we propose to extend
the AREA method and strengthen its tradeoff analysis

with explicit and quantitative treatment of stakeholders’

prioritization of evolvability subcharacteristics and their

preferences on design solutions. Finally, an example is

used to illustrate the concept and applicability of the

proposed approach.

1. Introduction

Software evolution is characterized by inevitable

changes of software and increasing software complexities,

which in turn may lead to huge costs unless rigorously

taking into account change accommodations. Software

evolvability has thus been recognized as a fundamental

element for increasing strategic and economic value of

software [20], as it “bears on the ability of a system to

accommodate changes in its requirements throughout the

system’s lifespan with the least possible cost while

maintaining architectural integrity” [13]. This is in

particular true for long-lived systems. For such systems,

there is a need to address evolvability explicitly to

prolong the productive life of the software systems. As

software architecture holds a key to the possibility to

implement changes in an efficient manner [3], software

architecture evolution has become an integral part of

software lifecycle.

To improve the capability in being able to understand

and analyze systematically software architecture

evolution, we introduced, in our earlier work, a software

evolvability model [5], in which subcharacteristics of

software evolvability and corresponding measuring

attributes are identified. The evolvability model is a way

to articulate subcharacteristics for an evolvable system

that an architecture must support. In addition, we also

introduced a structured method for analyzing evolvability

at the architectural level, i.e. the ARchitecture

Evolvability Analysis (AREA) method [6].

The business and technical decisions that articulate an

architecture tend to exhibit tradeoffs that need to be

negotiated and resolved. In AREA method, the tradeoff

analysis is reflected in two constituent steps: (i) during

architecture workshops, the stakeholders prioritize

potential architectural requirements, which are mapped

against evolvability subcharacteristics. By prioritizing the

potential architectural requirements based on pre-defined

criteria, evolvability subcharacteristics are implicitly

prioritized by stakeholders; (ii) after the workshop, the

identified architectural refactoring choices are

qualitatively analyzed with respect to their impacts and

support for evolvability subcharacteristics.

Based on our earlier experiences in evolvability

analysis [4], we realize that designing and evolving a

software architecture which satisfies a collection of

evolvability subcharacteristics is a challenging task. This

is mainly due to the fact that architecting for evolvable

systems implies a complex decision-making process in

which multiple attributes need to be taken into

consideration, e.g. stakeholders’ needs and goals, multiple

quality requirements with competing priorities, various

architectural refactoring choices with divergent

implications on quality requirements. In AREA method,

these multiple attributes and corresponding tradeoffs are

treated qualitatively. To avoid intuitive prioritization of

evolvability subcharacteristics and intuitive choice of

architectural refactoring solutions, we introduce, in this

paper, a quantitative extension to the AREA method with

the aim to further strengthen its tradeoff analysis of

potential architectural requirements, as well as

preferences of architectural refactoring solutions in light

of multiple evolvability subcharacteristics.

The remainder of this paper is structured as follows.

Section 2 describes briefly the software evolvability

model and the architecture evolvability analysis (AREA)

method, and explains the motivations for extending the

AREA method and strengthening its tradeoff analysis

with quantitative analysis. Section 3 focuses on two

constituent steps in the AREA method in which tradeoff

analysis is involved, and presents the extended

quantitative approach that would strengthen the tradeoff

analysis. Section 4 illustrates the concept and applicability

of the proposed approach with an example. Section 5

reviews related work. Section 6 concludes the paper.

2. Background and Motivation

This section describes the software evolvability model

and evolvability analysis method, and motivates the need

for an extended quantitative analysis for strengthening the

tradeoff analysis in AREA method.

2.1 Software Evolvability Model

To improve the capability in being able to understand

and analyze systematically software architecture

evolution, we introduced a software evolvability model

[5]. This model regards software evolvability to be a

multifaceted quality attribute [13], and refines software

evolvability into a collection of subcharacteristics that can

be measured through a number of corresponding

measuring attributes.

The evolvability model and identified evolvability

subcharacteristics are the results from case studies [5-7]

and are valid for a class of long-lived industrial software-

intensive systems that often are exposed to many, and in

most cases evolutionary changes. For this type of systems

we have identified the following subcharacteristics:

• Analyzability describes the capability of the

software system to enable the identification of

influenced parts due to change stimuli;

• Architectural Integrity describes the non-

occurrence of improper alteration of architectural

information;

• Changeability describes the capability of the

software system to enable a specified modification to

be implemented and avoid unexpected effects;

• Extensibility describes the capability of the software

system to enable the implementations of extensions

to expand or enhance the system with new features;

• Portability describes the capability of the software

system to be transferred from one environment to

another;

• Testability describes the capability of the software

system to validate the modified software;

• Domain-specific Attributes are the additional

quality subcharacteristics that are required by specific

domains.

2.2 Architecture Evolvability Analysis

We introduced in [6] a structured method for analyzing

evolvability at the architectural level, i.e. the

ARchitecture Evolvability Analysis (AREA) method. The

evolvability analysis method starts with identification of

change stimuli and guides architects through the analysis

of potential architectural requirements that the software

architecture needs to adapt to, and continues with

identification of potential architecture refactoring

solutions along with their implications. Through the

analysis process, the implications of the potential

improvement proposals and evolution path of the software

architecture are analyzed with respect to evolvability

subcharacteristics. Based on our experience in using the

method [6], the result is that the architecture

requirements, corresponding architectural decisions,

rationale and architecture evolution path become more

explicit, better founded and documented. The method

consists of three phases as illustrated in Figure 1. The

steps with gray color background comprise qualitative

tradeoff analysis.

• Phase 1: Analyze the implications of change stimuli

on software architecture. The outputs are identified

and prioritized potential requirements on software

architecture.

• Phase 2: Analyze and prepare the software

architecture to accommodate change stimuli and

potential future changes. This phase focuses on the

identification of potential improvement proposals for

the components that need to be refactored.

• Phase 3: Synthesize the previous results and finalize

the evaluation.

Figure 1. The Phases of ARchitecture Evolvability Analysis

(AREA) Method

2.3 Motivations for Extending AREA Method

with Quantitative Analysis

This section describes motivations for extending the

AREA method and strengthening its existing qualitative

tradeoff analysis with quantitative analysis.

2.3.1. Explicit stakeholders’ views on prioritization

and preferences on evolvability subcharacteristics.

Depending on their roles that are involved in the

development and evolution of a software system, the

stakeholders usually have different concerns, i.e. interests

which pertain to the system’s development, its operation

or evolution. Consequently, architecting for an evolvable

software system implies that an architect needs to balance

numerous stakeholders’ concerns that are reflected in

terms of their prioritization and preferences on

evolvability subcharacteristics. In AREA method, this is

treated implicitly in step Prioritize requirements in phase

1; i.e. potential architectural requirements are mapped

against evolvability subcharacteristics to justify whether

the realization of each requirement would lead to an

improvement of any of the subcharacteristics. These

potential architectural requirements are then prioritized

based on predefined criteria. Consequently, the choice of

prioritized architectural requirements implicitly sets

priority ranking on evolvability subcharacteristics.

Software architecture is influenced by system

stakeholders [3]. In circumstances when there are

numerous roles of stakeholders, representing different and

sometimes contradictory concerns and goals, explicit

quantitative assessment of stakeholders’ preferences on

evolvability subcharacteristics will strengthen qualitative

data and assist architects in making architectural design

decisions. Otherwise, when the prioritization and

preferences of evolvability subcharacteristics are not

explicitly expressed by involved stakeholders, it becomes

difficult to determine the dimensions along which a

system is expected to evolve.

2.3.2. Quantification of refactoring solution

alternatives’ impacts on evolvability

subcharacteristics. Choosing an architectural refactoring

solution that satisfies evolvability requirements is vital to

the evolution and success of a software system.

Nonetheless, each solution is associated with multiple

attributes, as the choice of component refactoring and/or

implementation solution alternatives for fulfilling each

architectural requirement may probably cause tradeoffs

among evolvability subcharacteristics. Hence, it is

important to understand how a refactoring alternative

supports different evolvability subcharacteristics,

especially when there are several refactoring alternatives

to choose among, each of which exhibits varied support

for evolvability subcharacteristics. Consequently, these

alternatives need to be ranked, and meanwhile, can reflect

stakeholders’ preference information on evolvability

subcharacteristics. In AREA method, the determination of

potential refactoring solutions along with their impact on

evolvability subcharacteristics is qualitatively handled in

step Identify/assess refactoring solutions in phase 2, by

examining the rationale of a solution proposal along with

its architectural implications (positive or negative impact)

of the deployment of the component on evolvability

subcharacteristics.

Architects must often make architectural design

decisions and give preference to a certain refactoring

solution. In circumstances when there are multiple

architectural alternatives to choose among, each of which

exhibiting divergent impacts on evolvability

subcharacteristics, a quantitative assessment of

refactoring alternatives’ impacts on evolvability

subcharacteristics will guide and support architects to

avoid making intuitive decisions in software architecture

evolution.

3. Proposed Approach

In this section, we first clarify the notion of multiple

attribute decision making process when evolving software

architectures and we present briefly the Analytic

Hierarchy Process (AHP) method which provides a basis

for the extended quantitative analysis approach. This

section will then detail the extended quantitative analysis

which provides a structured way in quantitatively eliciting

stakeholders’ preferences for desired evolvability

subcharacteristics and in obtaining quantitative

understanding of the impacts of refactoring solutions on

evolvability.

3.1 Multiple Attribute Decision Making Process

The proposed approach focuses on two constituent

steps of the AREA method in which tradeoff analysis is

concerned, i.e. step Prioritize requirements in phase 1,

and step Identify/assess refactoring solutions in phase 2.

These two steps entail subjective judgments with regard

to preferences of architectural requirements, evolvability

subcharacteristics, as well as choice of refactoring

solutions. These subjective judgments constitute

accordingly a multiple-attribute decision making process

in architecting for evolvable software systems, as

illustrated in Figure 2, i.e. stakeholders’ preferences on

evolvability subcharacteristics are determined by their

different viewpoints, whereas the choice of architectural

alternatives is dependent on their respective impacts on

evolvability, and is meanwhile constrained by

stakeholders’ preference information on evolvability

subcharacteristics.

Figure 2. Multiple-Attribute Decision Making Process

3.2 Analytic Hierarchy Process

To obtain quantitative data with regard to

stakeholders’ preferences on evolvability

subcharacteristics and refactoring alternatives’ impacts on

evolvability, we use Analytic Hierarchy Process (AHP)

[14], because it is a multiple-attribute decision making

method that enables quantification of subjective

judgments. It makes relative assessments through pair-

wise variable comparison and consists of five basic steps:

Step 1: Create an n x n matrix, in which n is the number

of variables to be compared.

Step 2: Perform pair-wise comparison of the variables

with respect to importance. The interpretation of the

scales for comparison is shown in Table 1.

Table 1. Scale for Pair-wise Comparison

Scale Explanation

1 Variable i and j are of equal importance

3 Variable i is slightly more important than j

5 Variable i is highly more important than j

7 Variable i is very highly more important than j

9 Variable i is extremely more important than j

2,4,6,8 Intermediate values for compromising between the

other numbers

Step 3: Compute eigenvector of the n x n matrix. In this

paper, we apply the ‘averaging over normalized columns’

method [14] using the following equations:

a) Calculate sum of the columns;

�� � ������
�

�	

b) Divide each element in a column by the sum of

the column, resulting in a new matrix;

��� � ���/��
c) Calculate sum of each row in the new matrix;

�� � ������
�

�	

d) Normalize the sum of rows to obtain priority

vector P by dividing by n, which is the number

of variables.

� � ��/�
Step 4: Assign a relative importance to the variables, each

accounts for a certain amount of percent of the

importance of the variables.

Step 5: Evaluate consistency of subjective judgment.

3.3 Extended Quantitative Analysis

The application of the AHP method is described in the

following subsections, detailing the extended quantitative

analysis that is used to strengthen the two tradeoff

analysis steps embodied in AREA method.

3.3.1 Stakeholders’ prioritization and preferences of

evolvability subcharacteristics. In this extension,

stakeholders representing different roles provide their

preferences on evolvability subcharacteristics by a pair-

wise comparison of subcharacteristics (�� , ��� with

respect to their relative importance. The AHP weighting

scale shown in Table 1 is used to determine relative

importance for each evolvability subcharacteristic pair.

Note that the domain-specific attributes might comprise

several additional quality characteristics that are required

by a specific domain. Therefore, each of these domain-

specific quality attributes is also included for pair-wise

comparison together with the other evolvability

subcharacteristics. The pair-wise comparison is conducted

for all pairs, hence, n(n-1)/2 comparisons are made by

each stakeholder role. Afterwards, for each stakeholder

role, the aforementioned equations in AHP method are

used to create a priority vector signifying the relative

preference of evolvability subcharacteristics. As different

stakeholder roles might have diversified preferences on

evolvability subcharacteristics, for each evolvability

subcharacteristic, we obtain normalized preference on an

evolvability subcharacteristic by dividing sum of the

preference of each stakeholder role by the number of

roles.

The description below concretizes the calculation

procedure, providing an example calculation of

preferences of subcharacteristics aggregated from two

stakeholders’ perspectives. A matrix of pair-wise

comparison is shown below, in which �
 represents one

stakeholder role, �
 , �� and �� are evolvability

subcharacteristics, ��� represents pair-wise comparison in

terms of relative importance based on Table 1 (Note ��� =

1 if i = j).

�� �� �� … ��

�
 ��� ���

�� ��� ���

…

�� ��� ��� ���

Then by applying equation a), we get the sum of the

columns:

�� � ������
�

�	

By applying equation b), we get the following new

matrix:

��� � ���/��

Then by applying equations c) and d), we get normalized

preference weight information of subcharacteristic
�� from stakeholder �
 perspective as shown in equation

1) below:

����
 �
� �� !�

"
!#$

� (i is an integral and 1 ≤ i ≤ k) 1)

Likewise, the values indicating the preference weights of

subcharacteristics (�
, ��, …��) from stakeholder ��

perspective are calculated. We designate them as ��
�� ,
�����, …�����.

Given that the preference consistency is correct, the

overall stakeholders’ preferences and prioritization of

subcharacteristics are calculated by aggregating the

preferences from the two stakeholders �
 and �� as shown

below, in which ��
, ��� and ��� indicate respectively

the overall preferences on the specific subcharacteristics

aggregated from the two stakeholders:

��
 � (��
�
 + ��
��)/2

��� � (����
 + �����)/2

…

��� � (����
 + �����)/2

Generalizing the above results, the overall preference

weight on subcharacteristic �� aggregated from n number

of stakeholders is shown in equation 2) below:

��� �
� �%&�'��

(
!#$

� (i is an integral and 1 ≤ i ≤ k) 2)

3.3.2 Refactoring alternatives’ impacts on evolvability

subcharacteristics. In this extension, system architects or

main technical responsible persons provide their judgment

on how well each refactoring alternative supports

different evolvability subcharacteristics. This is firstly

done by a pair-wise comparison of the refactoring

alternatives ()*+� ,)*+�� with respect to a certain

evolvability subcharacteristic, using the weighting scale

in Table 1. Next, for each evolvability subcharacteristic,

the aforementioned equations in AHP method are used to

create a priority vector signifying the relative weight of

how well different refactoring alternatives support a

specific evolvability subcharacteristic. Afterwards,

recalling the overall weights, i.e. stakeholders’ preference

weight of evolvability subcharacteristics (as described in

the previous subsection) and the weight of how well

different refactoring alternatives support a specific

evolvability subcharacteristic, we can obtain a normalized

value, designating the overall weight for each refactoring

alternative’s support on evolvability in general.

The following description concretizes the calculation

procedure, providing an example calculation of two

refactoring alternatives’ overall support on software

evolvability. A matrix of pair-wise comparison is shown

below, in which �
 represents one of the evolvability

subcharacteristics,)*+
 and)*+� are two architectural

alternatives, ��� represents pair-wise comparison (based

on Table 1, ��� = 1 if i = j) in terms of relative support of

each alternative on a certain subcharacteristic such as

�
 as shown below:

�� ,-.� ,-.�

)*+
 ��� ���

)*+� ��� ���

Then by applying equations a) and b), we get the

following matrix:

�� ,-.� ,-.�

)*+
 �

 � ���//��� 0 ���� �
� � ���//��� 0 ����

)*+� ��
 � ���//��� 0 ���� ��� � ���//��� 0 ����

Then by applying equations c) and d), we get normalized

support rates of the two architectural alternatives with

respect to �
 as shown below, in which �)*+
1
 and

�)*+�1
 indicate impacts of the two alternatives on

subcharacteristic �
 , i.e. how well they respectively

support �
 .

�)*+
1
 � /�

 0 �
��/2

�)*+�1
 � /��
 0 ����/2

Likewise, the values indicating how well the two

alternatives support other subcharacteristics (�� … �� �

are calculated. We designate them as �)*+
1� , �)*+�1�

… �)*+�1� and �)*+�1� .

Then

 ,-.� ,-.�

�
 �)*+
1
 �)*+�1

�� �)*+
1� �)*+�1�

…

�� �)*+
1� �)*+�1�

Given that judgment of architectural alternatives’ support

on subcharacteristics is consistent, the overall weights of

the two alternatives’ support on evolvability are

calculated by aggregating the preferences of

subcharacteristics from the previous quantitative analysis

(i.e. ��
 and ��� in the previous subsection) as shown

below, in which 3456
 and 3456� indicate respectively the

overall weights of how well the two alternatives support

evolvability:

3456
 � ����� 7 �)*+
1��
�

�	

3456� � ����� 7 �)*+�1��
�

�	

Generalizing the above results to m architectural

alternatives, alternative m’s support on evolvability is

expressed in equation 3) as shown below:

3456� � 8 ���� 7 �)*+�1���
�	
 3)

4. Example

In this section, we illustrate the method by using an

example which is simplified but has realistic context [6],

in which a complex industrial control system was

analyzed and refactored to facilitate product line

architecture migration, driven by the need to improve its

evolvability. Within this setting, we examine a subsystem

for inter-process communication (IPC), which includes

mechanisms that allow communication between

processes, such as remote procedure calls, message

passing and shared data.

4.1 Stakeholders’ Preferences on Evolvability

Subcharacteristics

Suppose we have two involved stakeholder roles with

different perspectives on evolvability subcharacteristics.

The domain-specific attribute is performance, due to the

fact that the software has critical real-time calculation

demands. One of the stakeholders’ preferences on

subcharacteristics is expressed in Table 2.

Table 2. Evolvability Subcharacteristics Preference Weights

from One Stakeholder’s Perspective

Q1: Analyzability; Q2: Architectural Integrity; Q3: Changeability;

Q4: Extensibility; Q5: Portability; Q6: Testability; Q7: Performance

 Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q1 1 1 1/5 1/4 3 3 1/3

Q2 1 1 1/2 1/3 1 1 1/3

Q3 5 2 1 1 3 5 3

Q4 4 3 1 1 3 5 1

Q5 1/3 1 1/3 1/3 1 1 1/3

Q6 1/3 1 1/5 1/5 1 1 1/3

Q7 3 3 1/3 1 3 3 1

After performing calculations based on equation 1) as

described in section 3.3.1, the values indicating

subcharacteristic preference from stakeholder S1

perspective are summarized below. The figures suggest

that, from stakeholder S1 perspective, the evolvability

subcharacteristics are prioritized as (in declining order):

changeability, extensibility, performance, analyzability,

architectural integrity, portability and testability.

 Q1 Q2 Q3 Q4 Q5 Q6 Q7

S1 0.097 0.078 0.281 0.238 0.065 0.055 0.187

Likewise, the second stakeholder’s preferences on

evolvability subcharacteristics are collected and

calculated. The values are summarized below.

 Q1 Q2 Q3 Q4 Q5 Q6 Q7

S2 0.114 0.105 0.178 0.316 0.088 0.058 0.180

We aggregate the stakeholders’ preferences and

prioritizations of evolvability subcharacteristics based on

equation 2) as described in section 3.3.1, and the results

are shown in Table 3.

Table 3. Aggregated Stakeholders’ Preferences and

Prioritizations of Evolvability Subcharacteristics

 Q1 Q2 Q3 Q4 Q5 Q6 Q7

S 0.106 0.092 0.230 0.277 0.077 0.057 0.184

The above aggregated values indicate that extensibility

has the highest priority, followed by changeability,

performance, analyzability, architectural integrity,

portability and testability.

4.2 Architectural Alternatives’ Impact on

Evolvability Subcharacteristics

Three alternatives are considered for the IPC

subsystem:

• Alt1: Static allocation of connection slot

All the slot names and slot IDs that are used are defined in

a C header file in the system. The developers edit this file

to register their slot name and slot ID, and recompile.

Afterwards, both the slot name and slot ID are specified

in the startup command file for thread creation.

• Alt2: Dynamic allocation of connection slot

All the slot names and IDs are defined and used without

booking in any header file. The IPC connection is

established dynamically, and a connection slot ID is

returned when no predefined slot ID is given.

• Alt3: Static allocation of connection slot for base

software and dynamic allocation for application

extensions
The slot names and IDs that are used by the base software

are defined in a C header file in the system. The base

software developers edit this file to register their slot

name and slot ID, and recompile. The slot IDs for

application extension are not booked in the header file.

The command attribute dynamic slot ID is used instead.

The three alternatives are rated with respect to how well

each supports each evolvability subcharacteristic. From

changeability perspective, an example of the pair-wise

comparison of the three alternatives is shown in Table 4.

 Table 4. Pair-wise Comparison of Alternatives with Respect

to Their Support on Changeability

Changeability Alt1 Alt2 Alt3

Alt1 1 1/5 1/9

Alt2 5 1 1/3

Alt3 9 3 1

After performing the AHP calculations, the values

indicating the support weights of the three alternatives

with respect to changeability are summarized below. The

values indicate that, from changeability perspective, the

choices of alternatives are prioritized as (in declining

order): Alt3, Alt2 and Alt1.

 Alt1 Alt2 Alt3

Changeability 0.064 0.267 0.669

Likewise, the values of how well the three alternatives

support the other evolvability subcharacteristics are

collected and calculated. The values are summarized in

Table 5.

Table 5. Alternatives’ Support on Evolvability

Subcharacteristics

 Alt1 Alt2 Alt3

Analyzability 0.633 0.106 0.260

Integrity 0.333 0.333 0.333

Changeability 0.064 0.267 0.669

Extensibility 0.106 0.260 0.633

Portability 0.143 0.429 0.429

Testability 0.333 0.333 0.333

Performance 0.633 0.106 0.260

Consequently, considering the prioritization weights of

evolvability subcharacteristics in Table 3, together with

the values indicating each alternative’s support on

evolvability subcharacteristics shown in Table 5, the

overall weight for Alt1 is calculated based on equation 3)

as:

3456
 = 0.106 70.633 + 0.092 70.333 + 0.230 70.064 +

0.277 70.106 + 0.077 70.143 + 0.057 70.333 + 0.184

70.633 = 0.288

Likewise, 3456� = 0.247, 34569 = 0.487, which indicates

that Alt3 is the preferred alternative with respect to

evolvability.

4.3 Analysis

As illustrated in the example, the extended analysis

approach provides quantitative support in understanding

subjective decision making which is influenced by

multiple attributes, e.g. stakeholders’ preferences and

architectural refactoring alternatives’ impacts on

evolvability subcharacteristics. Through the relative

importance measuring process, we gain an explicit view

on how stakeholders prioritize numerous evolvability

subcharacteristics, and on the rationale behind a choice of

an architectural alternative. Thus, the quantitative

extension provides decision support and helps to avoid

intuitive prioritization of evolvability subcharacteristics

and intuitive choice of refactoring solutions.

5. Related Work

Several researches focus on quantitative evaluation of

software architecture. Adaptability Evaluation Method

(AEM) [18] is an integral part of the Quality-driven

Architecture Design and quality Analysis (QADA)

methodology [11] with specialization in the adaptability

aspect. AEM defines adaptability goals through capturing

the adaptability requirements that will be subsequently

considered in the architecture design. One feature of

AEM is that it fills the gap between requirement

engineering and architecture evaluation as it provides

guidelines on how to model adaptability in architectural

models, and qualitatively/quantitatively analyzes

candidate architectures to ensure that adaptability

requirements are met before system implementation.

However, this method does not explicitly focus on

evolvability.

The idea of using Analytical Hierarchy Process to

quantitatively support architectural decisions has been

described in several research studies; nonetheless, these

studies do not focus on evolvability analysis. For instance,

[16] introduces a method for architecture evaluation and

selection to ensure that the selected software architecture

is the most potential one for fulfilling a blend of quality

attributes. This method uses AHP to support the

comparison of candidate architectures in order to reach

consensus among stakeholders. [17] describes another

quantitative quality-driven design approach that applies

AHP for architectural design process. It helps evaluate

stakeholder quality preferences and design alternatives,

utilize optimization techniques in order to determine the

optimal combination of design alternatives. [19]

introduces a method which uses scenarios from the

Architecture Tradeoff Analysis Method (ATAM) [8] and

analyzes them with Analytical Hierarchy Process for

making decisions in evaluating different integration

strategies.

Cost Benefit Analysis Method (CBAM) [12] is an

architecture-centric economic modeling approach that

helps to address the long-term benefits of a change and its

complete product lifecycle implications. This method

quantifies design decisions in terms of cost and benefits

analysis to determine the level of uncertainty and decides

how to prioritize changes to architecture, based on

perceived difficulty and utility.

Software architecture decisions carry economic value

in form of real options [2, 15]. Options offer flexibility

and take into account architectural evolution over time.

[9] incorporates the concept of architecture options into

design in order to exploit the optimal degree of design

flexibility and provide a quantitative means of optimizing

system architecture. [10] hypothesizes that architectural

patterns carry economic value in the form of real options,

and proposes an approach that considers cost, value and

alignment with business goals to support architectural

evolution. This approach guides the selection of design

patterns, elicitation of architecturally significant

requirements, and valuation of architecture in terms of

design decisions with multiple quality-attribute

viewpoints. Another application of real options theory is

described in [1], which provides insights into architectural

flexibility and investment decisions related to the

evolution of software systems. This approach examines a

set of probable changes as well as their added value, e.g.

accumulated savings through enduring the change without

violating architectural integrity; supporting future growth;

and capability of responding to competitive forces and

changing market conditions. In this paper, instead of

focusing on the values of each design decision, we focus

on how well each design alternative supports evolvability

subcharacteristics.

6. Summary and Future Work

This paper proposes and demonstrates a quantitative

extension to strengthen the tradeoff analysis in the

architecture evolvability analysis (AREA) method, which

was developed in our earlier work and applied in a

complex industrial context to assist software evolvability

analysis. As architecture is influenced by system

stakeholders representing different concerns and goals,

the business and technical decisions that articulate the

architecture tend to exhibit tradeoffs and need to be

rigorously negotiated and resolved. The extended

quantitative analysis provides a structured way in eliciting

stakeholders’ preferences for desired evolvability

subcharacteristics and in obtaining quantitative

understanding of the impacts of architectural refactoring

solutions on evolvability. We have described the approach

in detail and illustrated theoretically its use with

nonetheless a realistic example. Compared to only using

the AREA method and qualitatively analyzing software

architecture evolvability, the quantitative extension

strengthens the tradeoff analysis part in AREA method

and provides a structured way for explicit reasoning

around the tradeoffs among evolvability

subcharacteristics, as well as explicit reasoning around

choice of architectural alternatives.

In future work, we intend to continue working on the

extended architecture evolvability analysis method by

conducting industrial case studies to collect experiences

and refine the approach.

7. References

[1] Bahsoon, R., and Emmerich, W.: ‘Evaluating architectural

stability with real options theory’, IEEE Computer Society,

ICSM 2004, pp. 443-447

[2] Baldwin, C.Y., and Clark, K.B.: ‘Design rules: Volume 1:

The power of modularity’, MIT Press Cambridge, MA, 2000.

[3] Bass, L., Clements, P., and Kazman, R.: ‘Software

Architecture in Practice’, Addison-Wesley Professional, 2003.

[4] Breivold, H.P., and Crnkovic, I.: ‘Software Architecture

Evolution – An Integrated Approach in Industry’, accepted at

ASWEC, 2010

[5] Breivold, H.P., Crnkovic, I., and Eriksson, P.J.: ‘Analyzing

Software Evolvability’, COMPSAC 2008.

[6] Breivold, H.P., Crnkovic, I., Land, R., and Larsson, M.:

‘Analyzing Software Evolvability of an Industrial Automation

Control System: A Case Study’, ICSEA 2008, pp. 205-213

[7] Breivold, H.P., Larsson, S., and Land, R.: ‘Migrating

Industrial Systems towards Software Product Lines: Experiences

and Observations through Case Studies’, Euromicro SEAA

2008, pp. 232-239

[8] Clements, P., Kazman, R., and Klein, M.: ‘Evaluating

software architectures: methods and case studies’, Addison-

Wesley, 2006.

[9] Engel, A., and Browning, T.R.: ‘Designing systems for

adaptability by means of architecture options’, Systems

Engineering, 2008, 11, (2)

[10] Ipek, O., Rick, K., and Mark, K.: ‘Quality-Attribute Based

Economic Valuation of Architectural Patterns’, Proceedings of

the First International Workshop on the Economics of Software

and Computation 2007.

[11] Matinlassi, M.: ‘Quality-driven software architecture model

transformation’, WICSA 2005.

[12] Rick, K., Jai, A., and Mark, K.: ‘Quantifying the costs and

benefits of architectural decisions’, Proceedings of the 23rd

International Conference on Software Engineering, Toronto,

Ontario, Canada, 2001.

[13] Rowe, D., Leaney, J., and Lowe, D.: ‘Defining systems

evolvability-a taxonomy of change’, ECBS 1998, pp. 541-545

[14] Saaty, T.L.: ‘The analytical hierarchy process’, McGraw-

Hill, New York, 1980.

[15] Sullivan, K.J., Chalasani, P., Jha, S., and Sazawal, V.:

‘Software design as an investment activity: a real options

perspective’, Real Options and Business Strategy: Applications

to Decision Making, 1999, pp. 215–262

[16] Svahnberg, M., Wohlin, C., Lundberg, L., and Mattsson,

M.: ‘A quality-driven decision-support method for identifying

software architecture candidates’, International Journal of

Software Engineering and Knowledge Engineering, 2003, 13,

(5), pp. 547-573

[17] Tariq, A.-N., Ian, G., Muhammed Ali, B., Fethi, R., and

Boualem, B.: ‘A quality-driven systematic approach for

architecting distributed software applications’, Proceedings of

the 27th international conference on Software engineering, St.

Louis, MO, USA2005.

[18] Tarvainen, P.: ‘Adaptability evaluation of software

architectures; A case study’, COMPSAC 2007, pp. 579-584

[19] Wallin, P., Froberg, J., and Axelsson, J.: ‘Making Decisions

in Integration of Automotive Software and Electronics: A

method based on ATAM and AHP’, Proceedings of the 4th

International Workshop on Software Engineering for

Automotive Systems, IEEE Computer Society, 2007.

[20] Weiderman, N.H., Bergey, J.K., Smith, D.B., and Tilley,

S.R.: ‘Approaches to Legacy System Evolution’, SEI Technical

Report, 1997.

