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Abstract

This paper presents a novel approach to validation of
temporal simulation models extracted from real industrial
control systems containing intricate task execution depen-
dencies, by introducing existing mature statistical methods
to the context. The proposed approach firstly collects sam-
pling distributions of response time data of tasks in both
the modeled system and the model, in terms of simple ran-
dom samples (SRS). The second step of the approach is to
compare the sampling distributions using a non-parametric
Kolmogorov-Smirnov test. After evaluating a fictive system
model inspired by a real robotic control system, the pro-
posed algorithm shows the possibility of identifying the tem-
poral differences between a target system and its extracted
model, i.e., whether the model is a sufficiently accurate ap-
proximation of the target system. The approach makes few
assumptions on the system design and scales to very large
and complex systems.

1 Introduction

To date, most existing embedded real-time software sys-

tems have been developed in a traditional code-oriented

manner. Many such systems are maintained over extended

periods of time, sometimes spanning decades, during which

systems become larger and increasingly complex. As a

result, these systems are difficult and expensive to main-

tain and verify. There are many industrial embedded sys-

tems consisting of millions of lines of C code, and contain-

ing 50 - 100 tasks or more, out of which many tasks have

real-time constraints. One example of such systems is the

robotic control systems developed by ABB. Looking closer

at these systems, the adhering tasks exhibit strong temporal

dependencies, e.g., asynchronous message-passing, glob-

ally shared state variables and runtime changeability of pe-

riods and priorities of tasks, which vary the execution time

of tasks radically.

Model-based analysis of complex real-time systems has

the potential of not only allowing for response-time analy-

sis of such systems, but also facilitating migration toward

a component based real-time system by e.g., analyzing the

timing properties of the existing code and wrapping it into

components.

A major issue when using model-based timing analysis

is how to obtain the necessary analysis model, which should

be a subset of the original program focusing on behavior

of significance for task scheduling, communication and al-

location of logical resources. For many systems, manual

modeling would be far too time-consuming and error-prone.

Two methods for automated model extraction are proposed

in [1]. A tool for automated model extraction is in devel-

opment, named MXTC - Model eXtraction Tool for C. The

MXTC tool targets large implementations in C, consisting

of millions of lines of code, and is based on program slicing.

However, there is one important issue to be raised, i.e.,

model validity, which is defined as the process of determin-
ing whether a simulation model is an accurate representa-
tion of the system, for the particular objectives of the study
[2]. As a model is an abstraction of the system, some system

details may be omitted in the model, for instance by using

probabilistic modeling. Thus, the results from a simulation

of such models may not be identical to the recordings of

the system, e.g., with regard to the exact task response time.

In order to convince system experts to use simulation-based

methods, the models should reflect the system with a satis-

factory level of significance, i.e., as a sufficiently accurate

approximation of the actual system. Therefore, an appro-

priate validation process should be performed before using

the models.

In this paper, we present a novel approach for valida-

tion of temporal simulation models extracted from real in-

dustrial control systems containing intricate task execution

dependencies. That is, to consider this particular problem

as a statistical problem, then, which could be solved by us-

ing existing, mature methods from statistic field. The pro-
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posed method uses sampling distributions collected by sim-

ple random samples (SRS) [3] at first, and then produces

results concerning whether the model is a sufficiently ac-

curate approximation of the target system according to a

non-parametric Kolmogorov-Smirnov test.

2 RTSSim Simulation Models

The models, as the outcome of the tool MXTC, are de-

scribed using the modeling language in RTSSim [5], which

describes both architecture and behavior of task-oriented

systems developed in C. An RTSSim simulation model con-

sists of a set of tasks, sharing a single processor. Each

task in RTSSim is a C program, which executes in a “sand-

box” environment with similar services and runtime mech-

anisms as a normal real-time operating system, e.g., task

scheduling, inter-process communication (message queues)

and synchronization (semaphores). The default scheduling

policy of RTSSim is Fixed-Priority Preemptive Scheduling

(FPPS) and each task has scheduling attributes such as pri-

ority, periodicity, offset and jitter. RTSSim allows for three

types of selections which are directly controlled by simula-

tor input data:

1. selection of execution times in execute statements,

2. selection of task jitter, and

3. selection of task behaviors, depending on the system

environment, e.g., random number of external events

generated by sensors.

In RTSSim, Monte Carlo simulation is realized by pro-

viding randomly generated input data. A more thorough

description of RTSSim can be found in [5].

3 Model Validation

Related Work
For the sake of space, we only briefly introduce the re-

lated work concerning the model validation process. There

are various methods to do the comparison; these methods

are either objective or subjective. Subjective methods are

often used for validation of simulation models; examples

of subjective methods are Face Validation, Graphical Com-

parisons and Sensitive Analysis [6], which are highly de-

pendent on domain expertise and prone to human error.

Objective methods use mathematical methods to compare

the outputs from the real system with the output from the

simulation model. In [7], authors presented a notation of

model equivalence based on observable property equiva-

lence which is used to compare results of a model and

an actual system. A method in [8] is presented for auto-

mated validation of models extracted from real-time sys-

tems by checking if the model can generate the same event

sequences as the recorded event sequences from the system

using a model checker.

Problem Formulation
We are given a model S

′
which is extracted from a real

system (or modeled system) S containing a task set Γ in-

cluding m tasks, where m ∈ N. Let RTsamples(S
′
, τi) and

RTsamples(S , τi) denote the sampling distributions of the re-

sponse time measured for a task τi in S
′

and S respectively.

The goal of the problem is then to find: whether for ev-

ery task τi in the task set Γ, its underline population (from

which the sampling distribution of a task τi is) of response

time in S and S
′

is statistically significant or not.

Descriptive Statistics of Response-Time Distributions
Table 1 shows the numerical summary of the center and

the spread (or variability) of sampling distributions of the

response time (RT) data of tasks in the Model 1 containing

intricate execution dependencies, used for the evaluation in

Section 5. In Table 1, Std. Dev, Coef., Q1 and Q3 repre-

sents standard deviation, coefficient of variation, first quar-
tile and third quartile respectively. As we can see, the skew-

ness of sampling distributions for all the tasks are right (pos-

itive) skewed (i.e., the numerical representation of tasks’

skewness are positive; in the view of graph, the sampling

distribution has relatively few high values, and the mass of

the distributions is concentrated on the left of the figure).

Therefore, we add the five-number summary introduced in

[3] consisting of Min, Q1, Median, Q3 and Max to Table 1.

Further, in order to have an overview statistic description

of these sampling distributions, we include some common

numerical descriptions as well, such as Mean, Standard de-
viation.

Table 1. Descriptive statistics of the tasks in the system

model M1 used in the evaluation.

DRIVE IO CTRL PLAN

Samples 199994 400000 199990 199988

Mean 222.08 125.0 1967.3 2002.9

Std. Dev 14.291 45.576 390.09 412.46

Coef. 0.06435 0.36461 0.19829 0.20593

Skewness 6.7334 0.00128 0.38184 7.0644

Min 220 0 1074 332

Q1 220 100 1594 1631

Median 220 125 1919 1931

Q3 220 150 2339 2376

Max 420 250 6954 45957

Using Non-parametric Test
By using a conventional statistical procedure (parametric

test), e.g., t-test, analysis of variance (ANOVA), the under-

line assumptions are: E.g., in ANOVA, firstly, each individ-

ual at the sampling distribution is supposed to be indepen-

dent. While in our case, due to intricate task execution de-
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pendencies in the system, an upcoming RT data may not be

independent with the RT data previously recorded because

the value of a Globally Shared State Variable (GSSV) can

impact the selection of control branches for the upcoming

RT data; Secondly, in both t-test and ANOVA, the under-

line population is assumed to follow a normal distribution.

However, the sampling distribution of RT data of the CTRL

task (i.e. the task on focus) is a multimodal distribution

having several peaks, when the number of samples is large

enough i.e. 199 990 (refer to row Samples for the CTRL

task in Table 1). Further, by using a commercial statistic

analysis software EasyFit, according to the results given by

a Goodness of Fit (GOF) test, i.e., Chi-square test at α-value

of 0.051, the obtained results clarify that the sampling dis-

tributions of RT data of all the tasks cannot fit to any of the

65 known distributions, e.g. Normal, Uniform, Student’s t,

Lognormal. Further, in t-test, the mean value μ0 of the pop-

ulation has to be known beforehand, which is not the fact

in this work. Therefore, parametric test cannot be applied

in this work. Instead, we use the two sample Kolmogorov-

Smirnov [4] (hereafter KS test) which is non-parametric and

makes no assumptions on the underline population of a sam-

pling distribution.

4 Algorithm

Simple Random Sample
In order to eliminate bias on the sampling, which is a key

issue of selecting samples from the population of all indi-

viduals concerning the desired information, the technique

of simple random samples (SRS) [3] is adopted. SRS gives

every possible sample of a given size the same chance to

be chosen. For instance, Monte Carlo simulation is used

as a way of implementing SRS to collect sampling distribu-

tions of RT data of tasks in the extracted RTSSim model,

in terms of giving each possible input to the RTSSim simu-

lator an equal chance to be chosen, e.g., task jitter, number

of external events generated by sensors etc. This is done

by an embedded random number generator rnd inst()2 in

the RTSSim simulator, which is an improved version of the

Pseudo-random number generator used in C. Moreover, em-

pirical results showed that the distribution of random num-

bers given by rnd inst() is conforming to the uniform dis-

tribution, which assures that for each selection in RTSSim

input data, all possible values in any range are equally likely

to be chosen. Analogously, the sampling distributions of

RT data of tasks in the real system can be collected based

on measurements given a randomized system input. Some

1α = 0.05 means that we are requiring that the RT data of tasks give

evidence against H0 so strong that it would happen no more than 5% of the

time when H0 is true.
2For the sake of space, the detailed implementation of rnd inst()will

not be given in this paper.

of the outliers (extreme values) which are caused by errors,

e.g., hardware failure, have to be removed from the sam-

pling distributions.

StatiVal
The proposed method, StatiVal, is shown in Algorithm 1.

The algorithm returns the result concerning if the modeled

system S and the model S
′

are statistically significantly.

Further, τ∗ is the task on focus. The outline of StatiVal is as

follows:

1. Construct the sampling distribution of n RT data of all

the tasks in both the system S and the model S
′

by

using the randomized measurement RandMeasure()

and Monte Carlo simulation MonteCarlo() respec-

tively (refer to lines 1 to 6 in Algorithm 1).

2. Use KS test to compare if the sampling distribution of

RT data of task τ∗ in both S and S
′

are statistically

significant. If the result is positive, then Algorithm 1

draws the conclusion C1, i.e., the model S
′
is not a suf-

ficiently accurate approximation of the system S due
to an improper model extraction process, and finally,

stops the entire validation process (refer to lines 7 to 8

in Algorithm 1). Otherwise, StatiVal goes to Step 3.

3. Remove τ∗ which has been already evaluated in Step

2 from the task set Γ in both S and S
′
, then iteratively

compare sampling distributions of the remaining tasks

in both S and S
′
by using KS test, unless a positive an-

swer is given; Otherwise, StatiVal will draw the con-

clusion C0, i.e., the model S
′

is a sufficiently accurate
approximation of the system S after a proper model ex-
traction process (refer to lines 9 to 16 in Algorithm 1).

KS test is conducted by using a commercial software XL-
STAT, which is a plug-in to EXCEL. Moreover, the number

of data to handle by XLSTAT is practically dependent on the

number of data dealt by EXCEL. In our experimental com-

puter, due to that EXCEL 2003 is in use, the upper bound of

the number of data in KS test is 65 535 (i.e. 216 − 1). Cor-

respondingly, the upper bound of the number of samples in

sampling distributions of all the tasks in both the system S
and the model S

′
in Algorithm 1 is 60 000; Otherwise, the

extra samples will be discarded in KS test unless EXCEL

2007 is used. Note that more investigation on optimizing

the number of samples in the sampling distributions of RT

data of tasks in S and S
′

will be given as the part of the

future work.

5 Evaluation

Currently, we are not able to perform the model vali-

dation process concerning the extracted model and a real

system (or a modeled system). Therefore, in this work, we

examine the idea by using a fictive model, i.e., Model 1

(M1). M1 has similar architecture and analysis problems
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Algorithm 1 S tatiVal(Γ,Γ
′
)

1: for all τi such that 1 ≤ i ≤ m in Γ in S do
2: Xτi ← xi,1, ..., xi, j, ..., xi,n ← RandMeasure(n, rt, rnd inst())
3: end for
4: for all τ′i such that 1 ≤ i ≤ m in Γ

′
in S

′ do
5: X

′
τi
← x

′
i,1, ..., x

′
i, j, ..., x

′
i,n ← MonteCarlo(n, rt, rnd inst())

6: end for
7: ret ← 0

8: ret ← kstest(Xτ∗ , Xτ′∗ , α)

9: if ret = 0 then
10: Γ← remove(Γ, τ∗)
11: Γ

′ ← remove(Γ
′
, τ

′
∗)

12: while k < m − 1 and ret = 0 do
13: ret ← kstest(Xτi , X

′
τi
, α)

14: end while
15: end if
16: return ret

as an industrial real-time application in use at ABB. Al-

though FPPS is used as base, in M1, one task changes its

priority during runtime. The task model is presented in Ta-

ble 2. The outcome of the simulation model M1 in which

there are no changes applied, is used as the outcome of the

real system, and then we change M1 regarding the follow-

ing three change scenarios which are initially introduced in

[9] and outlined in Table 3. Finally, we compare the outputs

against the original model to investigate the performance of

the method. If the result returned by StatiVal is negative

(NO), then the conclusion C0 is given; Otherwise, C1 is ob-

tained.

Table 2. Tasks and task parameters for M1. The lower

numbered priority is more significant, i.e., 0 stands for the

highest priority.

Task Period (μs) Offset (μs) Priority

DRIVE 2000 12000 1

IO 5000 500 3

CTRL 10000 or 20000 0 4 or 2

PLAN 40000 0 5

Table 3. Results obtained by using StatiVal concerning

different models.

Change

Scenarios

Changes Description Results of StatiVal

Case 1 PLAN: Prio = 6 NO (C0)

Case 2 PLAN: Prio = 2 YES (C1)

Case 3 DUMMY: Prio = 6, T =

5000, C = 25000

NO (C0)

As shown in Table 3, StatiVal considers the results of

validation between the system and the models in Case 1

and Case 3 as negative (i.e. NO). Whilst for case 2, the cor-

responding result given by StatiVal is positive (i.e. YES),

which shows that the system and the model are statistically

different. Moreover, the validation results are in line with

the results in [9], which used the same evaluation model and

change scenarios but using a different validation method.

6 Conclusions and Future Work

This paper has presented ongoing work on validation of

temporal simulation models extracted from real industrial

control systems containing intricate task execution depen-

dencies. In particular, we have presented and validated the

method by using a fictive system model inspired by a real

system, which shows that the proposed method has the po-

tential to identify differences between the system and the

extracted models. As part of future work, an effort will be

spent on evaluating more scenario changes on the fictive

model. Moreover, the possibility of evaluating the proposed

method on real systems will be explored.
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