
Component Configuration Management

Magnus Larsson Ivica Crnkovic
Development and Research Department of Computer Engineering

ABB Automation Products AB Mälardalen University
721 59 Västerås, Sweden Box 883, 721 23 Västerås, Sweden

+46 21 342666 +46 21 103183
Magnus.Larsson@mdh.se Ivica.Crnkovic@mdh.se

www.idt.mdh.se/personal/mlo www.idt.mdh.se/personal/icc

Abstract: Component-based programming is nowadays
widely recognized approach in software development. Still
there are many open problems related to both technical and
non-technical aspects of the components. In this paper, we
point out the problem of component identification. Since
the components are usually binary units deployed in the
system at run-time, we do not have the same insight to their
characteristics as for software units that we manage at
development time. This problem could be solved if the
components had built in this information together with the
binary code, which can be achieved by defining a
standardized identification interface. As such interfaces do
not exist in standard component models today, this concept
is possible to use only with components built in-house. For
external components, extensive tests can, to some extent,
compensate the lack of information. To perform an efficient
and yet a successful testing we must limit the number of
test cases. Which parts of our system can be affected by
introduction of a component, or by its updating? We can
answer this if we can keep track of changes introduced in
the system and their impact on the system. These problems
are similar to the problems at development-time solved by
Software Configuration Management (SCM) disciplines. In
this paper we point out these problems and make proposals
for their utilization at run-time using SCM principles.

1 Introduction
When developing a component independently of system
development, we meet a number of problems due to the fact
that we miss information we usually have during the
component development process. One type of problems is
related to the components themselves – the component
interface, pre- and post-conditions and the component non-
functional characteristics such as reliability, requirement on
resources, timing requirements, etc. Another type of
problems are associated to the relation between the
component and the rest of the system. In this paper we
address this second type of the problems.

When integrated in a system, the new component has
impact on a part of the system. The new component may
refer to certain components, and it can also be used by other
components. In addition to these explicitly defined
dependencies we also have indirect ones, derived from the
components that are used by the new component. Finally,
we have implicit dependencies, which are related to the

system environment (for example timing or other resource
constraints). In general, we can expect that some parts of
the system are not affected by a change when introducing
a new component or a new component version. This
situation is shown in Figure 1.

Figure 1. Dependencies between the components

The dependencies are not directly visible in component
models available today, such as COM [1][2] or EJB [3].

To limit the uncertainty of the system behavior, we want
to identify those parts of the system which might be
affected by the introduction of a component.

If we could identify the component versions explicitly, we
could specify the entire system as a set of component
versions. Two systems, or two versions of a system can be
compared and differences on the component level can be
identified.

If we could automatically identify the dependencies
between the components and their version we could avoid
the well-known problems with different versions of shared
libraries. The problem is illustrated in Figure 2: We have
two programs Foo.exe and Bar.exe, which share
Common.dll library, version v1. At one point of time, we
upgrade the new version of Bar.exe, which also includes a
new version of Common.dll, v2. The replacement could be
successful if version v2 of Common.dll is compatible with
version v1, but if this is not the case the Foo.exe can fail.
Even if the new version is interface-compatible,
Common.dll may contain undetected errors, which appears
in a combination with Foo.exe. Foo.exe may then access

New
component

Used by new
component

Uses new
component

Affected parts

Entire system

some erroneous code and crash even if the library was
interface-compatible.

Figure 2. Uncontrolled update of a component

One way to handle multiple versions of libraries is to insert
version information into the actual library name as
Microsoft does in MFC [1]. For example, names such as
MFC40.dll and MFC42.dll can be used for version 4.0 and
4.2. This prevents name collisions problems but can
introduce a vast number of versions which we de not have
any control over.

In order to identify the parts of the system that can be
affected by the change we want to:

- Identify components including their versions.
- Identify direct and indirect dependencies.
- Get enough information to localize the implicit

dependencies.

The identification and dependency management is a typical
subject of SCM. The SCM disciplines and their possible
implementations for managing components are discussed in
section 2. In section 3 we discuss the problem with
dependency information which is missing in component
models available today. In absence of it, we discuss a
possibility of finding dependencies directly form the code.
A Dependency Browser, an application that displays
dependencies between binary assets, is depicted in section
4. Finally, section 5 outlines further investigations.

2 Component Management and SCM
As a component is a unit of composition, its management is
natural related to Software Configuration Management,
which main objective is to manage composite entities.
However, most of the SCM functions are used at the
development-time, and are not enough utilized at the run-
time[5]. The major disciplines of SCM are Version
Management, Configuration Management and Change
Management [7] [8], and we discuss their use for managing
components.

Version management takes care of the identification of
entities and recognizes different versions of them. We can
apply this principle to the components at run-time: Every
component in the system should be identified by a name,
version number and other version attributes such as creation
date, history information, etc. We need the component
version identification for two reasons: First, when we

update a component with a new version, we want to have
possibility to identify that change. Second, in some cases,
we want to keep several component versions integrated in
the system. Managing different versions of components is
important for middle-size or large systems. In the
beginning, a component might not have been designed to
cover all the requirements from the system that evolves. In
general, it is better to release a component containing
currently required features and later upgrade it, instead of
releasing a full-fledged component to late. Later, when
new features are added to the component, it may happen
that the new component version is not compatible with the
previous one, or that is not fully tested. In that case we
want to keep both versions - the new one exploiting new
features, and the old one, used by those parts of the system
we had not yet changed or tested. When the system must
support this type of environment, and when several
versions of components are used at the same time, the
development time and maintenance increases. However,
the experience is that this type of evolution is appropriate
for large systems [4].

Configuration and build management methods are used to
select and identify specific versions of entities (i.e. to
generate a baseline or a configuration) and integrate them
into a new version of the composite entity. It also includes
build procedures. The building procedures use information
about the dependencies between the entities. These
principles can be applied on the run-time system: A
system configuration is defined as a set of component
versions. By adding a new component or a new version of
a component, a new configuration of the system is
identified. Similar to Make dependencies, which describes
the dependencies at build-time, a component should
include the specification of the components used (the
references to the components used actually exist in the
component, but they are hidden in the binary code).

 Change management provides information about the
changes introduced in the system on an abstract level,
what logical changes have been introduced in the process,
rather then physical. Change management becomes
important when new entity version is created. In a similar
way, every component version can include information
about what type of change is put in it, regarding to the
previous version. This information cannot be
automatically generated (which is possible for other type
of information, such as version identification and version
attributes), but the component developers must explicitly
define it. A new component version might be added to
introduce new functions in a system, or only to change its
behavior, (better performance, better stability), without
changing the interface. When replacing a component or a
component version we must consider which type of
change we permit and what system characteristics we want
to preserve, in order to guarantee the system behavior.

To describe this possible impact on the system, we have
defined three levels of compatibility:

Input and Output compatibility. A component requires
input in a specific format (or maybe have no input at all)

Foo.exe Bar.exe

Common.dll

Version 1

Bar.exe

Common.dll

Version 2

replace

and produces results in a defined format. The internal
characteristics of the component are of no interest.

Interface compatibility. The interface remains the same, but
the implementation can be different

Behavior compatibility. Internal characteristics of the
components, such as performance, resource requirements,
must be preserved.

The compatibility criteria can be used to decide if a
component can be replaced or not. This decision can be
especially important in case of a replacement "on the fly" in
a run-time environment.

3 Managing Component Dependencies
Binary components are delivered as shared libraries and
executables, which usually have no additional information
about dependencies between components. To be able to
predict what will happen in a system when a component is
installed we need to have information about what part of
the system will be affected by the component.

As components can be loosely coupled there is no
information connecting different versions of components
with each other. In COM for example, a component finds
components it refers to through the Windows registry. In
the Window registry all installed components store their
activation data, such as Interface id, class id, library
locations and where to find their stubs and proxies.
Connections between components are set up first at run-
time. A client uses a unique key to find the server
component in the registry and then the COM run-time will
load the corresponding component or stub into the client
memory [2].

To be able to get full dependency graphs over the system
with coherent information about all the components, and
the type of change introduced in a component, we need
meta-data. With meta-data we mean additional information
that is not crucial for the component to run but is valuable
for the entire system. Meta-data can be provided as a new
interface on the component [5] or stored in a repository
where have been placed during the component registration
process. Facts about version, name, creation date,
compatibility change, interfaces provided and components
used, as mentioned in the previous section, are examples of
meta-data that will help building a system that has
consistent configuration management.

The World Wide Web Consortium has defined a standard to
describe components and their dependencies. This language
is XML-based and is called Open Software Description
(OSD) [6]. However, OSD is mainly designed for web
components and do not solve the problems with component
dependencies. It is important that meta-data is accessible
for third part users. A common standard that makes it
possible to describe components in all component models is
probably a utopia. We can expect that different types of
components will be described in different ways, which is
vastly better than not to describe them at all.

As we do not have meta-data incorporated in the standard
component models, the only information about the
components we can get through binary libraries and
executables. The information about which shared libraries
are linked to other libraries or programs can be gathered
fairly easy. In general this information is linked into the
binary code and can be extracted. This information can be
used to list the dependencies between different programs
and libraries.

The following formal procedure is taken: A component
version c is implemented as a library or an executable. A
component version has a set of attributes (name, size,
creation-date, and others [11] used in different component
models), by which it is identified.

The set of all components installed on the system is called
S. We define a relation à called “depends on”, where ci

à cj if the correct operation of ci requires the correct
operation of cj. This relation is transitive which means that
from the direct dependencies we can derive all indirect
dependencies.

The set of all dependencies is defined as

D = {(ci,cj) : ci,cj ∈ S ∧ ciàcj}.

The dependency set D is stored as a baseline before new
components are installed. A snapshot of the current
configuration is the set of all components and their
dependencies:

C = (S,D).

When new versions of existing components or new
components are installed they will affect the configuration

C´=(S’,D’)

We identify all component versions that are placed in only
one configuration

cnew ∈ S∆ : S∆ = S∩S’ ,

and the dependencies D∆ of components cnew

D∆ = {c : c à cnew}.

All components in S∆ and dependencies in D∆ can change
the behavior of the system and are subjects for futher
investigation.

For the dependencies where new components use other
components

D´∆ = { cnew : cnew à c}

we test if the input-output domain (i.e. expected outputs
from cnew for inputs to c) have been preserved or not. If a
new range of input to the component c occurs, this
dependency should be tested in this new domain range [9].

If a system configuration can contain several component
versions, specified ranges in input/output domain can be
compared with the current values and used as criteria for
selecting a component version to be executed [10][11].

4 Dependency Browser
To show how dependencies can be traced, we have
designed an application on Windows NT 4.0, Dependency
Browser which parses through the system, finds all shared
libraries and generate the dependency three. A snapshot of
the current configuration can be shown and saved in a
repository. Different versions of snapshots are placed under
version control and treated as configuration items. The
current configuration, or an old snapshot, can be compared
with other configuration snapshots, and the differences
between the configurations can be displayed. Typically,
before installation of a component, a snapshot can be saved.
Then the component is installed, and a new snapshot can be
done. The difference graph shows what components have
been changed and what are their relations to other parts of
the system. The browser can show the entire system, or a
specific component and its dependencies, which makes it
possible to see a potential consequence of a component
update. System integrators can use the dependency browser
to view dependencies in the test system, when a new
component has been integrated in the system.

All components that depend on the changed component are
highlighted and the user can decide and take action upon
this information as shown in Figure 3. The dependency
browser helps the integrator of the system to verify that
nothing unexpected occurs when the system starts. With
the tool it is possible to see all the affected files when a
component has been updated or installed.

Figure 3. Affected components are highlighted in the
browser to alert the user.

The changed or updated components have the stop sign
icon while affected components are marked with an arrow
icon. Version information of the component is presented in
the right pane.

The browser can be used to browse the information and to
get an understanding of the effects of the introduction of
new and updated components in the system. The tool can
browse different configurations and label components as
changeable or not changeable. This kind of knowledge is
useful if the cause of malfunction in the system is to be
traced. An incorrect version of a library may have been
installed by mistake and without the dependency

information it is difficult to find the real cause of the
problem.

5 Conclusion
In this paper we have pointed out the problems with
dynamic configuration of systems. Our contribution is a
proposal for component configuration management where
components can be put under version control. We tie
together software configuration management (SCM) and
component-oriented programming (COP) with ideas from
both disciplines. A simple dependency model is presented
and we have shown how to solve the dependency problem
for this model when new components are installed. We
plan to do more work on a formal description and
management of dependencies.

Future work will include the realisation of the Dependency
Browser, its implementation for different component
models and platforms. In this paper we have treated
components as binary entities, i.e. executables or shared
libraries. A deeper investigation how dependencies
between loosely coupled components can be recorded, will
be done. The goal is to be able to predict the behavior of a
system before the system update.

6 References
[1] D. Rogerson, Inside COM, Microsoft Press, ISBN 1-

57231-349-8
[2] D. Box, Essential COM, Addison-Wesley, ISBN 0-

201-63446-5
[3] E. Roman, Mastering EJB, Wiley, ISBN 0-471-

33229-1
[4] M. Larsson, I. Crnkovic, Development Experiences of

a Component-Based System, 7th IEEE International
Conference and Workshop on the Engineering of
Computer Based Systems (ECBS 2000)

[5] M. Larsson, I. Crnkovic, New Challenges for
Configuration Management, System Configuration
Management, SCM-9, Springer 1999, ISBN 3-540-
66484-X

[6] W3C, Open Software Description Format,
http://www.w3.org/TR/NOTE-OSD.html

[7] R. Conradi and B. Westfechtel, Version Models for
Software Configuration Management, Software
Configuration Management Symposium, SCM-7,
1977, Springer, ISBN 3-540-63014-7, ACM
Computing Surveys, Vol. 30, No.2, June 1998

[8] J. Estublier, S. Dami, M. Amiour, Hifgh Level
Process Modeling for SCM Systems,

[9] H. Thane, A. Wall, Formal and Probabilistic
Arguments for component Reuse in Safty-Critical
Real-Time Systems, Technical report CBSE – State of
the Art, Mälardalen University, 2000

[10] J. E. Cook, J. A.Dage, Highly Reliable Upgrading of
Components, 21st ICSE, 1999, ACM ISBN 1-58113-
074-0

[11] Henrik Lykke Nielsen, René Elmström, Proposal for
Tools Supporting Component-based programming,
Workshop on Component-based Programming, 1999

