2010 34th Annual IEEE Computer Software and Applications Conference

Timing Analyzing for Systems with Task Execution Dependencies

Yue Lu!, Thomas Nolte!, Tain Bate?, and Christer Norstrom?
I'Milardalen Real-Time Research Centre (MRTC), Visteras, Sweden
2Department of Computer Science, University of York, York, YO10 5DD

{yue .1u, thomas.nolte, christer. norstrom}@mdh .se, lain.bate@cs.york.ac.uk

Abstract

This paper presents a novel approach to timing analysis
of complex real-time systems containing data-driven tasks
with intricate execution dependencies. Using a system
model inspired by industrial control systems, we show how
the execution time of tasks can be represented as a math-
ematical expression instead of a single numeric value.
Next, based on this more detailed modeling, we introduce
a concrete process of formally obtaining the exact value of
both Worst-Case Execution-Time (WCET) and Worst-Case
Response-Time (WCRT) of tasks by using upper-part bi-
nary search and TIMES (a timed model checker). Finally,
in order to show the potential of the proposed approach,
we apply it to a model created from a real robotic control
system for which the traditional way of obtaining a WCET
estimate (through static WCET analysis) on tasks for us-
age in basic RTA is not appropriate. Our results indicate a
significant reduction of pessimism when compared to ba-
sic RTA using WCET estimates on tasks given by a basic
assumption.

1 Introduction

To date, most existing embedded real-time software
systems have been developed in a traditional code-oriented
manner, i.e., making extensive use of legacy software.
Many such systems are maintained over extended peri-
ods of time, sometimes spanning decades, during which
the systems become larger and increasingly complex. The
result is that these systems are difficult and expensive to
maintain and verify. Some existing complex industrial em-
bedded software systems consist of millions of lines of C
code. These systems are typically based on periodic tasks,
executed on a single processor under Fixed- Priority Pre-
emptive Scheduling (FPPS) and stringent real-time con-
straints. Examples of such systems include the aircraft
engine controller in [1] and the robotic control systems
developed by ABB [2]. Contrary to the assumption in
most real-time theory, i.e., independent tasks in the anal-
ysis model, tasks exhibit strong temporal dependencies,
e.g., asynchronous message-passing and globally shared
state variables used for dispatching to the control branches
that vary task execution time radically.

One desirable approach to avoid timing-related errors
in such complex systems is to use schedulability analy-
sis methods, such as Response-Time Analysis (RTA) [3].

0730-3157/10 $26.00 © 2010 IEEE
DOI 10.1109/COMPSAC.2010.57

515

Nevertheless, RTA (and most other schedulability analysis
techniques), although providing a prediction about timing
behavior of task response times in worst-case scenarios,
rely on the existence of a fixed Worst-Case Execution-
Time (WCET) of the tasks. Correspondingly, the quality
of the analysis is directly correlated to the quality of the
WCET estimates. Unfortunately, without having detailed
runtime information about task execution dependencies,
using static WCET analysis to obtain a single numeric
WCET estimate on tasks in such complex systems is not
feasible. Let us consider the following simplified example
in Figure 1, taken from an industrial robotic control sys-
tem. In this example, a task reads all messages buffered in
a message queue and processes them accordingly.

msg recvMessage (MyMessageQueue) ;
while (msg != NO_MESSAGE) {
process_msg(msg) ;

msg recvMessage (MyMessageQueue) ;

NN =

Figure 1. Iteration-loop wrt.
passing

message

Using static WCET analysis to obtain the WCET esti-
mate on the task is not feasible in this example, as the vari-
able msg can be changed from outside of the task due to
potential preemptions caused by tasks with a higher signif-
icant priority. Using program annotation' concerning the
number of messages received by the task might remedy the
situation, but it may be error-prone and time-consuming.
Consequently, without making any assumptions on the up-
per bound of the variable msg, basic RTA cannot be ap-
plied to the systems with this type of task behavior.

An alternative approach is to use simulation-based
methods that sample the state space of response times.
The first type of simulation technique to use is Monte
Carlo simulation, which can be described as keeping the
highest result from a set of randomized simulations. Sev-
eral frameworks already exist in this realm, such as the
commercial tool VirtualTime [4] and the academic tool
ARTISST [5]. However, the main drawback of using
Monte Carlo simulation is the low state-space test cover-
age, which subsequently decreases the confidence in the

!Program annotation is the information manually provided by a pro-
grammer.

IEEE
computer
CD psoae

ty

results of finding rare worst-case scenarios. The other
category is to apply an optimization algorithm (e.g., a
(meta)heuristic search algorithm) on top of Monte Carlo
simulation, as in [6] and [7], which yields substantially
better results, i.e., tighter lower bounds of the WCRT esti-
mation.

Another interesting approach features the use of
stochastic task execution times in RTA of hybrid task sets
in priority-driven soft real-time systems [8] and schedula-
bility analysis [9]. Nevertheless, this approach currently
does not allow for execution dependencies between tasks
in the analysis. More recently, [10] presented one promis-
ing research concerning the use of statistical-based re-
sponse time analysis of complex systems containing the
task execution dependencies as introduced above, based
on Extreme Value Theory [11]. The proposed method
has the potential of providing a tighter upper bound of
the WCRT estimation when compared to basic RTA, es-
pecially regarding the fact that basic RTA can not easily
be applied.

In this paper, we present a novel approach to timing
analysis of complex real-time systems containing data-
driven tasks. Our approach combines a set of analysis
methods traditionally inherent in different domains, ex-
tending the work presented in [12]. Specifically, the con-
tributions of this paper are three-fold:

e We propose a system model depicting a detailed
behavior of data-driven tasks concerning intricate
task execution dependencies such as asynchronous
message-passing and globally shared state variables
between tasks, and we discuss the necessity of hav-
ing such a new analysis model.

We highlight a way of representing the WCET of
each task as a symbolic formula which is then maxi-
mized by using the bounds of the adhering parameters
derived from inter-task analysis at system-level, i.e.,
tasks are not analyzed in isolation.

We propose a novel idea of formally obtaining WCET
and WCRT values of tasks by using upper-part bi-
nary search [13] and a model checker, TIMES, after
performing a semantic-preserving model transforma-
tion between different analysis models as presented
in [14]. This also highlights how model-driven tech-
niques can be used to assess relevant issues in the
real-time realm.

In our evaluation work, we show that the proposed ap-
proach can find the exact WCET and WCRT of tasks in
the model, yielding less pessimistic results compared with
the WCET estimates on tasks given by a basic assumption,
and basic RTA in [15]%.

2Basic RTA [15] is also called classical RTA or traditional RTA in this
paper.

516

The remaining part of the paper is organized as follows:
Section 2 firstly presents the necessity of using a new sys-
tem model to analyze the target system. Secondly, we
propose a system model where the WCET of each data-
driven task is represented as an expression containing pa-
rameters. Then we introduce our prior work on extracting
models from real systems, and we show how the model-
ing language is used in practice. Section 3 firstly gives the
problem definition, then highlights how to perform formal
timing analysis in TIMES using upper-part binary search,
after a semantic-preserving model transformation has been
conducted. Section 4 firstly describes the implementation
details of our testbed and proposed toolchain, and then
it introduces the evaluation performed on a model taken
from a real robotic control system. Section 5 and Section 6
present the scalability of the method and related work re-
spectively, and finally, Section 7 concludes the paper and
discusses future work.

2 System Model

In this section, we firstly discuss the necessity of us-
ing a new system model to perform timing analysis of the
target system containing intricate execution dependencies
between data-driven tasks. Then we present the proposed
system model and its corresponding task execution-time
modeling, and finally, we introduce a brief view of our
prior work on model extraction including a modeling lan-
guage used in practice.

Our targeted industrial control systems contain a num-
ber of tasks communicating via asynchronous message-
passing, sharing Globally Shared State Variables (GSSVs)
used for dispatching the control branch, FPPS, on a sin-
gle processor. The adhering task execution time varies
dramatically due to the number of messages consumed or
sent by tasks, and the value of GSSVs impacting the se-
lection of control structures in tasks.> To perform RTA
on such systems, basic RTA uses a task model which as-
sumes that task-level WCET estimates are known, in terms
of single numeric values. However, unless program anno-
tation concerning the number of messages consumed or
sent by tasks and the value of GSSVs is given, the ap-
plication of standard static WCET analysis to obtain the
WCET estimates of tasks is not feasible. The reason is
that the relevant upper bounds of the number of messages
and the value of GSSVs are considered to be infinite due
to the fact that they can be changed by other tasks. On
the other hand, manual annotation may be error-prone (be-
cause of lack of detailed runtime information which is the
typical case for the systems with above intricate execution
dependencies) and far less efficient. Therefore, to obtain
a WCET estimate on a single task in the referred system
is not appropriate. As shown in Figure 2, Tteration
Loops (concerning the number of messages) and GSSVs
are in black with the indication of raising the mentioned

3There are no dependencies between the number of messages con-
sumed or sent by tasks and the value of GSSVs.

Static WCET Analysis on the Jobs in
Task A, and Inter-Task Level Analysis on
Iteration Loops and GSSVs in This Work

Static WCET Analysis on the
Entire Task A in Basic RTA

Iteration
Loops

lteration

Figure 2. Standard static WCET analysis
on the entire TASK A and standard static
WCET analysis on the jobs in TASK A.
The parts in gray denote that they are
under static WCET analysis.

problems when applying standard static WCET analysis
to obtain the WCET estimate on the entire task. Fur-
ther, it is necessary to develop a new system model which
could describe a more detailed behavior concerning data-
dependent task execution time. Such the detailed behavior
modeling is not considered in existing RTA and most other
schedulability analysis methods.

In this paper, we propose a system model in which the
WCET of tasks is represented as a symbolic formula cen-
tering around the number of messages in the buffers con-
sumed or sent by a task and the value of the GSSVs used in
selecting control branches. A WCET dependent on exter-
nal context is often referred to as a parametric WCET [16].
Moreover, the system model uses job-level* WCET esti-
mates, which make static WCET analysis feasible as there
will be no execution dependencies inside jobs. More im-
portant, these task WCET expressions can be maximized
by using the bounds of the adhering independent parame-
ters that are obtained by using (exhaustive search) inter-
task analysis performed at system-level. Consequently,
such WCET estimates can also significantly reduce the
pessimism in RTA, when compared to basic RTA using
WCET estimates with a basic assumption. As shown in
Figure 2, Iteration Loops and GSSVs are in white,
indicating that the problems introduced previously can be
solved by using the analysis method (to be introduced in
Section 3) on the proposed system model.

Hence, the system model S contains a set of non-
blocking tasks, each of which consists of n jobs, where
n € N. Each deadline-constrained task 7; is a tuple
7(T;,C¥, D;, 0;, Ji, P;), where T; is task period with
maximum jitter .J;, constant offset O; and a priority P;,
C’f is the WCET expression as a function of b buffers (i.e.,
Uii,...,Uip) and g GSSVs (i.e., V; 1,...,V; o) associated
with task 7; and execution time on jobs, D; is the relative
deadline (maz(C?) < D; < T;). The execution of task 7;

4A task consists of a sequence of jobs.

517

is divided into two types of sections: firstly, a non-volatile
(NV) section in which there is no input buffer and GSSV,
and secondly, a volatile (V) section containing either one
buffer, or a GSSV. In both sections, preemption caused by
higher priority tasks is allowed.

2.1 WCET Expression of Data-driven
Tasks with Execution Dependencies

Each NV section consists of h jobs j; , in task 7;, where
x is in the range of [1, h]. The WCET of the job j; , is
represented as C'(J; ,), and practically, such a value can
be obtained by using either static WCET analysis (which
is safe but more pessimistic compared to the exact WCET)
that is used in applications with hard real-time constraints,
or through dynamic WCET estimates based on measure-
ments with probability distribution when dealing with ap-
plications with soft real-time constraints. In this work,
such WCETs of jobs are obtained by using static WCET
analysis, in terms of a single numeric value for each task.
Further, the WCET of a NV section containing A jobs is
expressed as follows:

h
Cinv =Y Cljix) (1
z=1

There are two types of V section: execution on GSSV
and execution on message passing, of which the WCET
is heavily dependent on data stored in the GSSV and the
number of processed messages in the input buffer associ-
ated to task 7; respectively.

Val(V; ;,t,T) is the value of the GSSV V; ; at model
time ¢ in the context of I', determining the control branch
in the model (where j is in the range of [1,g] and g is
the number of GSSVs associated to task 7;). The WCET
estimate on the task with respect to V; ; is:

c?

i (Vi) = Sel(Val(Vi;, 1, F)chi.J) @)
where Cy, ; = Cv,, 1,...,Cv; k> Cv;, k is a specified
execution-time in the kth branch of control structure in the
system, such as if-else, switch-case, and Sel is a
function returning the argument specified by the first argu-
ment, expressed as Sel(x, Yo, ..., Yyn—1) > Y. Since there
are g GSSVs associated with task 7;, the corresponding
WCET of g V sections regarding GSSVs is expressed as
follows:

g g
> CP(Viy) = Sel(Val(V;;,t,T),Cv,,) (3
i=1 =1

The message passing between two non-blocking tasks
in the system model conforms to asynchronous communi-
cation, i.e., the sending and receiving tasks place no con-
straints on each other in terms of completion, in the com-
munication process. For each task 7; either as a sending
or receiving task, there are b input buffers associated, and
the execution time of message passing primitives invoked

(i.e., sendMessage and recvMessage) is noted as
Cmsg-primitive - aq a single numeric value WCET repre-
sentation obtained by using static WCET analysis. The
execution time on handling the messages (which may in-
clude both message passing primitives and [jobs) in the
buffer U; ; in task 7;, can be expressed as follows:

l
Cf(U7J) = Mg X (Cmsg,primitive + Z O(J?r)) (4)

z=0

where my; ; is either the number of messages sent by the
sending task 7; to buffer U; ;, or the number of messages
received from buffer U; ; by the receiving task 7;. Fur-
ther, the value of m,; ; may not be bounded by the maxi-
mum length of the buffer U; ; as the preemption caused by
higher priority tasks may preempt the execution in terms
of refilling more messages to the buffer U; ; at runtime.
In summary, by combining the two parts of task execu-
tion time, i.e., V and NV sections in task 7;, the WCET
expression of task 7; is a function shown as follows:

b g
CP =

P=N"CPUi)+ > CP(Vig)+ > Cimn; (5)
j=1 j=1 j=1

where ¢ is the number of NV sections in task 7;. Since

there are no dependencies between U; ; and V; ; (i.e., pa-

rameters in the WCET expression are independent of each

other), the exact WCET of task 7; in the system model can

be obtained by maximizing Equation 5.

2.2 Model Extraction

In general, a major issue when using model-based tim-
ing analysis of existing systems is how to obtain the neces-
sary analysis model, which should be a subset of the orig-
inal program focusing on behavior of significance for task
scheduling, communication and allocation of logical re-
sources. For many systems, manual modeling would be
far too time-consuming and error-prone. Two methods for
automated model extraction are proposed in [17]. A tool
for automated model extraction is in development, named
MXTC - Model eXtraction Tool for C. The MXTC tool
targets large implementations in C, consisting of millions
of lines of code, and is based on program slicing [18].
Though the MXTC tool does not support composing the
WCET expression of tasks in the real system automati-
cally after the model extraction process, such functionality
could be interesting to be developed in a future version.

The models, as the outcome of the tool MXTC, are
described by the modeling language used by RTSSim,
which describes both architecture and behavior of task-
oriented systems developed in C. An RTSSim simulation
model consists of a set of tasks, sharing a single proces-
sor. Each task in RTSSim is a C program, which executes
in a “sandbox” environment with similar services and run-
time mechanisms as a normal real-time operating system,

518

e.g., task scheduling, inter-process communication (mes-
sage queues) and synchronization (semaphores). The de-
fault scheduling policy of RTSSim is FPPS and each task
has scheduling attributes such as priority, periodicity, off-
set and jitter. A more thorough description of RTSSim can
be found in [19].

3 Formal Analysis in TIMES

In this section, we firstly give the problem definition
concerning timing analysis of the referred system model
containing data-driven tasks. Then we briefly introduce
the prior work on semantic-preserving model transforma-
tion, and finally, we present our formal timing analysis us-
ing TIMES and upper-part binary search in details.

3.1 Problem Formulation

The problem can be defined as follows. We are given
a model S containing n data-driven tasks and m adhering
independent parameters which would impact the execution
time and response time of tasks radically. Let ET'(.S) and
RT(S) denote the highest execution time and response
time measured for the task under analysis in the model
S. Our goal is then to find the values of all m parameters
which produce ET'(S) and RT(S).

3.2 Semantic-preserving Model Trans-
formation

In order to exhaustively search the possible value of
both parameters (encoded in the WCET expression that
may generate the exact WCET of tasks) and the WCRT of
tasks in the entire system state space, the RTSSim mod-
els are transformed into a network of task automata [20] in
TIMES [21] at the meta-model level via a concrete process
semantic anchoring. This ensures model validity after the
transformation, i.e., the semantics of the source RTSSim
model is preserved in its counterpart TIMES model, in
terms of describing the same system behavior and valued
data. The reason why TIMES is chosen in this work, rather
than other widely used model checkers such as UPPAAL
[22], is that the detailed execution order of jobs in different
priority tasks in the RTSSim model can easily and simply
be controlled by giving the fask attributes and arrival pat-
tern to the scheduler automaton encoded in TIMES (the
jobs in the RTSSim tasks are modeled as tasks in TIMES).
For the sake of space, the interested readers are referred to
[14] for more details concerning the transformation rules
used in the context which are applied at meta-model level
of both the source and target model. Further, a more thor-
ough description of task automata such as the syntax, the
semantics, and TIMES tool tutorial can be found in [20]
and [21].

3.3 Timing Analysis by using TIMES

Briefly stated, the exact value of the parameters used
in the tasks’ WCET calculation and the WCRT of tasks
are obtained by checking if the candidate solution con-

cerning the value of the counterpart of the parameters in
the RTSSim model is the maximum in the entire system
search space in the TIMES model, after analyzing the cor-
responding reachability properties in TIMES. More-
over, each candidate solution is derived by using Algo-
rithm 1 and Algorithm 2 together with an upper-part bi-
nary search algorithm. In the following sections, we will
go through the procedure by referring to some detailed ex-
amples.

3.3.1 Obtaining the WCET of Tasks

Algorithm 1 shows the procedure of maximizing the task
WCET expression, i.e., Equation 5 introduced in Sec-
tion 2.1, by using upper-part binary search and reachabil-
ity property check in TIMES. As introduced in Section 2,
each 7; is associated with b input buffers and g GSSVs.
The number of messages m; ; (see Equation 4), which
is either the number of messages sent by task 7; when 7;
is a sending task, or the number of messages received by
task 7, when 7; is a receiving task, can be obtained by
using an upper-part binary search algorithm in the search
space (see lines 4 to 25 in Algorithm 1) consisting of a
lower bound O (i.e., when the queue is empty) and an upper
bound queuesize (i.e., the maximum queue length which
is given either by the assumption under the worst-case sce-
nario when preemption caused by higher priority tasks oc-
curs, or by the experienced engineers who have the knowl-
edge of such system behavior). For the WCET estimate
with respect to a GSSV V; ; (where 1 < j < g¢), it can be
obtained by checking the reachability property concern-
ing each condition specified by Sel(Val(V; ;,t,T),Cy, ;)
(see Equation 3 in Section 2.1). The corresponding part in
Algorithm 1 covers lines 26-28. Finally, the WCET calcu-
lation can be done by using Equation 5, once the value of
parameters M;, V; and N V;3 are given.

For a better understanding, we refer to an example
where there are two parameters, i.e., parameter i and
j (see lines 36-53 in Figure 5). The counterpart of
the parameter i in the CTRL task is a bounded integer
recvIOQ_i_ctrl in the TIMES model preserving the
same semantics, i.e., it counts for the number of times that
the primitive recvMessage is executed. Step 4 in Ta-
ble 1 shows that the maximum of the parameter i is 10
(in bold in Table 1), obtained by checking the reachabil-
ity properties with regard to recvIOQ_i_ctrl, such as
E <> recvlOQ_i_ctrl == 11 (with verification result
Not satisfied)and £ <> recvlOQ_i_ctrl == 10
(with verification result Satisfied) in TIMES using
upper-part binary search. The maximum of the param-
eter j is O due to the fact that the corresponding reach-
ability check in the TIMES model regarding the condi-
tion gstatel ctrl > 6 can not be true. The tight-
ness of the results obtained by our proposed method is
16.7% and 100% less pessimistic when compared to the

SThe value of N'V; could either be automatically obtained by using
the relevant tool developed, or manually derived from code inspection.

Algorithm 1 weetcal.., (M;)
1. M; M1y e MG b
2: Vi — Vi 1y ey Vig
32 NV; = nv;1,...,n0;c
4: for all m; ; suchthat1 < j < bdo
5 lwb «— 0, upb «— queuesize
6: success «— false,retye.; — false
7 while success = false do

lwb + upb

8: p — \‘#

9: Tetyeri < reachabilitycheck(p)
10: if retyer; = false then
11: if p + 1 = upb then
12: mij < p— 1

13: success «— true

14: else

15: upb «— p

16: end if

17: else

18: if lwb = upb — 1 then
19: lwb «— upb
20: else
21: lwb «— p
22: end if
23: end if
24: end while
25: end for

26: for all v; ; suchthat 1 < j < g do

27: tmp « reachabilitycheck(Sel(Val(v; ;,t,T),C.y,)

. CP(vij) — tmp
29: end for

30: weetcal,, — C?
31: return wcetcal;,

results obtained through our basic assumption (introduced
in Section 4.4). Further, our proposed analysis methods
can not only contribute to deriving less pessimistic WCET
and WCRT estimates of tasks, but it can also save mem-
ory space used in the system by providing shortened but
assured queue size of messages covering worst-case sce-
narios.

Next, by using Equation 8 which is populated by rele-
vant timing information about modeling primitives (refer
to Section 4.3), the WCET of the CTRL task is 22 (i.e.,
10 x 24240 x 10). As the result is obtained by exhaus-
tively searching the entire system state space, we believe
that this is the exact WCET of the CTRL task in the model.
In addition the result is in line with the result derived from
simulation-based methods, and thus we have confidence in
the result being a safe upper bound.

3.3.2 Obtaining the WCRT of Tasks

Before obtaining the WCRT of the task being considered,
the sum of all WCETs of higher priority tasks and the
task itself has to be calculated by iteratively repeating

Table 1. The procedure of using upper-
part binary search concerning the value
of the parameter 1.

Step Iwb upb Checkpoint Results

1 0 12 6 Satisfied

2 6 12 9 Satisfied

3 12 10 Satisfied

4 10 12 11 Not satisfied

upper-part binary search as introduced in Section 3.3.1.
Next, the concept of deriving the exact WCRT by check-
ing the reachability properties with respect to one clock
task_clk_rt and a bounded integer task_finish (in
the range of 0 and 1) in the TIMES model is explained
using Figure 3.

e When the task is released, task_clk_rt is reset to
0, and task_finish is assigned to 0.

e Once the task finishes its execution, task_finish
is assigned to 1.

The corresponding reachability property involved in
upper-part binary search is as follows:

o F <> task_clk_rt == Checkpoint and
task_finish ==

Algorithm 2 wert., ()
1: lwb «— 0, upb < upb;n;it
2: success +— false,retye.; < false
3: while success = false do

lwb + upb
5. retyeri < reachabilitycheck(p)
6: ifretye.; = false then
7: if p+ 1 = upb then
8: wertcal;, «—p—1
9: success «— true
10: else
11: upb — p
12: end if
13: else
14: if lwb = upb — 1 then
15: lwb «— upb
16: else
17: lwb — p
18: end if
19: end if

20: end while
21: return wertcal,

Further, for task 7;, i.e., the task under analysis, the ini-
tial lower bound used in upper-part binary search is the
WCET of the task, i.e., C;, and the upper bound upb;,;; is
obtained by Equation 6.

520

Task is released Task is finished

4
rtask,clk,rt > 0, task_finish =£j

task_clk_rt:=0
task_finish:=0

task_clk_rt > 0, task_finish = 1 task_clk_rt > 0, task_finish = 1

task_clk_rt:=WCRT
task_finish:=1

Time

Figure 3. Using one clock and one
bounded integer to calculate WCRT of
task on focus in the TIMES model.

upbinit = »_ Cj+Ci
Vj€hp(i)

(6)

where hp(i) is the set of all tasks with priority higher than
that of task 7;.

upbini: equates to the sum of the WCET of all higher
priority tasks and task 7; itself. This is a safe upper bound
for which the true WCRT of task 7; cannot be bigger.
Next, Algorithm 2 will search the possible maximum of
the WCRT of tasks in the model in the range of C; and
upb;nit. Table 2 shows a concrete example of using upper-
part binary search in Algorithm 2 to derive the WCRT of
the task under analysis in the system model used in the
evaluation as introduced in Section 4. The lower bound
of the search space concerning the WCRT estimate on
the CTRL task is its WCET estimate, i.e., 22 model-time
units. 34 (model-time units) which is in bold in Table 2 is
the final result obtained through the search procedure.

Table 2. The procedure of using upper-
part binary search to obtain the WCRT
of the task under analysis in the exam-
ple used for the evaluation. The unit is a
model-time unit.

Step Iwb upb Checkpoint Results

1 22 34 28 Satisfied
2 28 34 31 Satisfied
3 31 34 32 Satisfied
4 32 34 33 Satisfied
5 34 34 34 Satisfied

4 Experimental evaluation

In this section, we firstly introduce our testbed and the
toolchain in details, and then we describe the model used
for the evaluation, which is designed to include all the be-
havioral mechanisms from the system model presented in
Section 2. Next, the WCET expression of the tasks in the
model is given, and finally, the results comparison between
basic RTA using WCET estimates on tasks with a basic as-
sumption and our proposed analysis method is presented.

Semantic-preserving
Model Transformation

Model Extraction
via MXTC

RTSSim Models
Real Systems # +

Task WCET Expressions

Task Automata
in TIMES

—

The Exact Value of Upper-Part Binary Search

WCET and WCRT ot
Estimates of Tasks Reachability Property
_Check in TIMES

«

Figure 4. The toolchain in this work.

4.1 Testbed and Toolchain

Our testbed is running Microsoft Windows XP Profes-
sional, version 2002 with Service Pack 3. The computer is
equipped with the Intel Core Duo CPU P9400 processor,
3.45 GB RAM and a 6 MB L2 Cache. The processor has
2 cores and 1 frequency level: 2.40 GHz.

The toolchain proposed in this work is showed in Fig-
ure 4. A key point here is that the current work con-
cerning semantic-preserving model transformation is con-
ducted and validated manually to ensure that it is not error-
prone. More important, the entire toolchain will be auto-
mated when the relevant tools, concerning performing au-
tomatic model transformation and the process of obtaining
the WCET and WCRT of tasks by using Algorithm 1, Al-
gorithm 2 and TIMES introduced in Section 3.3, are de-
veloped, as part of our future work.

4.2 Model Description

The evaluation model contains a First-In-First-Out
(FIFO) buffer I0Q with a queue size 12° and three peri-
odic, non-blocking tasks executed on a single processor
under FPPS, i.e., ENV_IO, IO and CTRL task with the pa-
rameters shown in Table 3. The ENV_IO task is an en-
vironmental task which generates 2 external events that
are stored in the global variable nofEvents, as shown
in line 8 in Figure 5. The complex temporal dependen-
cies between the 10 and CTRL tasks are dependent on
the input-dependent data placed in the IOQ queue and the
GSSV gstatel_ctrl which vary the execution time of
tasks radically:

e The IO task sends an uncertain number (from O to
6) of messages to the IOQ queue depending on the
value of the global variable nofEvents: if the value
is bigger than 6, then there will be at most 6 mes-
sages sent to the IOQ queue; Otherwise, the num-
ber of messages sent by the IO task is the same as
the value of nofEvents. Once a message is sent to
the 10Q queue, the value of nofEvents is accord-
ingly decreased by 1, in order to note that one ex-
ternal event is successfully stored in the IOQ queue.

Due to tasks periodicity and priority (refer to Table 3), in the worst-
case scenario, the CTRL task would be preempted by the IO task twice
in one of its invocation. Further, per preemption, the 1O task will refill
the maximum number of messages to the buffer I0Q, i.e., 6. The cor-

responding safe upper bound of the 10Q size is i.e., (LJL‘—W X6 =

Tio
[2060] x 6 = 12.

521

Moreover, the number of messages sent by the 10
task is counted by the local variable k (see lines 16-30
in Figure 5). More important, in line 23, the GSSV
gstatel_ctrl is assigned by the global variable
nofEvents, impacting the WCET of the CTRL
task;

e When the CTRL task starts running, it will firstly
consume all the messages stored in the IOQ queue.
However, in the event that its priority is lower than
the priority of the IO task, the CTRL task may be pre-
empted in the loop do while by the 1O task which
refills an uncertain number of messages as described
previously. This will increase the number of mes-
sages consumed by the CTRL task, which is counted
by the local variable i (see lines 39-46 in Figure 5).
After consuming all the messages in the I0Q queue,
the CTRL task may continue its execution with 10
model-time units more and increase the value of the
local variable j depending on whether the value of
the GSSV gstatel_ctrl is bigger than 6 or not
(see lines 48-52 in Figure 5).

e The WCET estimate on jobs and modeling primitives
in the adhering tasks in the evaluation model is de-
signed as a single numeric value, which is supposed
to be obtained by using static WCET analysis in prac-
tice.

Table 3. Tasks and task parameters for the
evaluation model. The lower numbered
priority is more significant, i.e., 0 stands
for the highest priority.

Task Priority Period V section Parameter Job
ENVIO 0 200 0 No 0
10 1 500 1 k 1
CTRL 2 1000 2 i,J 2

4.3 The Task WCET Expression

For the IO task, there is only one V section inher-
ent in the asynchronous message-passing with the CTRL
task via the I0Q queue. For the CTRL task, there are
two V sections inherent in the asynchronous message-
passing with the IO task via the IOQ queue and the GSSV
gstatel_ctrl shared with the IO task. Further, all the
V sections in both the IO and CTRL tasks are marked
with comments in Figure 5 for a better illustration. The
WCET expression of the two tasks are as follows:

_ CZJ =k x Csend]\/fsg

CfO 10,V (7)
Clppp =i x CTVMsa L9 4 55 C(10) (8)

where C®ndMsg and CTevMs9 are 2 model-time
units consumed by the primitives sendMessage (tcb,

I0Q, 1, 0) and recvMessage (tcb, IO0Q, 0)
respectively; C(10) represents 10 model-time units con-
sumed by the primitive execute (tcb, 100, 10).

4.4 Basic RTA

In order to apply basic RTA to analyze the evaluation
model, the WCET of tasks has to be computed beforehand.
Moreover, such WCETS in basic RTA specify the longest
time of executing the code of the task on the CPU unin-
terruptedly. However, since the variables are dependent
on other tasks, such as ioevent and gstatel _ctrlin
the CTRL task, they are unbounded. Unless program an-
notation is given, the application of static WCET analysis
is not feasible. Manual annotation may be error-prone and
far less efficient. In addition, with the purpose of perform-
ing safe analysis, covering the system model worst-case
behavior when runtime information is missing, the anno-
tation to, e.g., ioevent and gstatel_ctrl is given by
the basic assumption, that is, the maximum queue length
(i.e., 12) and the maximum of the variable (i.e., 1). Fur-
ther, our basic assumption is also at system-level, since
the way of designing queue size takes the possibility of
task preemption into consideration. Once the value of pa-
rameters is obtained, the WCET of tasks can be calculated
and plugged into the response-time computation formula
in basic RTA, in a position to obtain the WCRT of tasks on
focus. Note that the cost of executing 12 true evaluations
of the control structure do while and 1 false evaluation
is not considered under the assumption that such costs are
far smaller compared with the WCET of jobs and execu-
tion of primitives such as message passing.

4.5 Results Comparison

In Table 4, the value of parameter i obtained by TIMES
is 10, and can be seen to be 16.7% (i.e., (12 — 10)/12 x
100%) less pessimistic than 12 given by our basic assump-
tion relying on the use of maximum queue length. More-
over, the value of parameter j obtained by TIMES, i.e., 0,
is 100% (i.e., (1 — 0)/1 x 100%) less pessimistic when
compared with the value assumed by our basic assump-
tion, i.e., the maximum of the variable. This shows that
the worst-case behavior can never include executing the
statement execute (tcb, 100, 10) due to the condi-
tion that gstatel _ctrl > 6 can not be true. Next,
concerning the WCET of the CTRL task, the result us-
ing the value of parameters obtained by using TIMES is
38.9% (i.e., (36 — 22)/36 x 100%) less pessimistic when
compared with the WCET estimate derived from a basic
assumption, as shown in Table 5. Regarding the WCRT of
the CTRL task, clearly, the result given by TIMES reduces
the pessimism by 29.2% (i.e., (48 — 34) /48 x 100%) when
compared to basic RTA.

5 Scalability of the Method

A common issue when using a model checker is the
risk of state space explosion, though the corresponding re-

522

Table 4. The upper bound of parameters
in the evaluation model determined by
different analyses.

Parameter | Basic Assumption | TIMES
i 12 10
j 1 0
k 6 6

Table 5. The results obtained by TIMES
and basic RTA using WCET estimates on
tasks with basic assumption. The unit is
one model time unit.

WCET/WCRT | Basic RTA using WCET Esti- | TIMES
mates on Tasks with Basic As-
sumption
WCET(I0) 12 12
WCET(CTRL) | 36 22
WCRT(CTRL) | 48 34

sults of the analysis are ensured to cover the worst-case
scenario. We would like to separate the scalability of the
method presented in this paper from the efficiency of the
model checker handling the problem, since the current
analysis tool TIMES may not be the optimal solution.

Further, TIMES provides the functionality of convert-
ing the TIMES model which consists of a network of task
automata, to the timed automata used in UPPAAL tool,
which could be used for instance to measure the growth
rate of the system state space and memory assumption
when the number of jobs, GSSVs and message queues
are changed. However, such a process failed due to many
errors caused by the obsolete modeling pattern of timed
automata encoded by TIMES in the conversion process,
especially regarding the scheduler automaton encoded in
TIMES. Therefore, in this work, it is impossible to use,
e.g., verifyta in UPPAAL to achieve the goal. Nonethe-
less, we can provide information about the growth rate of
the system space concerning the GSSVs in terms of Big
O notation [23], i.e., O(m™), where m is the maximum
interval of n GSSVs, and n is the number of GSSVs.

By checking each reachability property using our ex-
perimental computer as introduced in Section 4.1, the time
in which an answer is returned by a verification engine in
TIMES is less than 1 second. Moreover, we succeeded
in analyzing the system model containing 4 periodic non-
blocking tasks with 2 message queues and 2 GSSVs suc-
cessfully. However a small example such as this is not
sufficient evidence of scalability and therefore more ex-
perimentation will be performed as part of future work.
Preferably, the method proposed in this work is better off

fitting to the case where the size of the system model is
relatively small, e.g., there is a small number of tasks,
message queues, jobs and GSSVs. However, on the posi-
tive side, our approach would return accurate information
about the WCET and WCRT of the tasks under analysis
in the system model containing intricate execution depen-
dencies between tasks.

6 Related Work

This section introduces related work which has not
been discussed previously. The prior work presented in
the field of WCET analysis [24] generally does not con-
sider handling asynchronous message-passing and glob-
ally shared state variables between tasks. Instead, such
work assume that tasks in the analysis are isolated and
independent of each other. For RTA, the current work
on execution precedence constraints of tasks is presented
in [25]. The latest work on temporal dependencies be-
tween tasks, in terms of offset, is presented in [26]. The
work about using timed automata-based analysis to per-
form worst-case response-time analysis of an in-car radio
navigation system and conformance tests for real-time sys-
tems with timed automata specification are presented in
[27] and [28] respectively.

Another interesting work is to use model-based schedu-
lability analysis of safety critical hard real-time Java pro-
grams by using the model checker UPPAAL as presented
in [29]. However, the tasks (or threads as introduced in
[29]) do not have the execution dependencies that we are
aiming at, such as asynchronous message passing impact-
ing the number of the adhering loop iterations and glob-
ally shared state variables used for dispatching the control
branch.

7 Conclusions and future work

In this paper we have presented a novel approach to
timing analysis of software systems with task execution
dependencies. We proposed a new system model to al-
low for a more complex task WCET expression which
could be maximized by using bounds of parameters ob-
tained by inter-task analysis at system-level. Given this
model, we show how to derive the exact WCRT of tasks
using TIMES. By applying the approach presented in the
paper to a model derived from a real robotic control system
shows the benefit, in terms of reduced pessimism, over ba-
sic RTA and WCET estimates using our basic assumption,
e.g., maximum queue size and maxima of the variables.
As part of our future work, the proposed method will be
extended to handle cases in which the priority and period
of the task under analysis can be changed by other tasks
during runtime. More important, the possibility of using
other model checkers will be explored with the focus on
better dealing with the state space explosion issue, as well
as modeling context switch and/or scheduler cost.

523

Acknowledgment
This work was supported by the Swedish Foundation

for Strategic Research via the strategic research centre
PROGRESS. We are grateful to Stefan Bygde, Diane Pec-
orari and Linh Thi Xuan Phan for the constructive com-
ments and improvement suggestions.

References
[1] I Bate, “Scheduling and timing analysis for safety-critical
systems,” Ph.D. dissertation, Department of Computer Sci-
ence, University of York, November 1998.

[2] “Website of ABB Group,” www.abb.com.

[3] N. Audsley, A. Burns, R. Davis, K. Tindell, and
A. Wellings, “Fixed priority pre-emptive scheduling: an
historical perspective,” Real-Time Systems, vol. 8, no. 2/3,
pp- 129-154, 1995.

[4] “Rapita systems, www.rapitasystems.com, 2008.”

[5] D. Decotigny and I. Puaut, “ARTISST: an extensible and
modular simulation tool for real-time systems,” in Proc. of
the 5" IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC ’02), 2002, pp.

365-372.

J. Kraft, Y. Lu, C. Norstrom, and A. Wall, “A metaheuris-
tic approach for best effort timing analysis targeting com-
plex legacy real-time systems,” in RTAS 08, April 2008, pp.
258-269.

M. Bohlin, Y. Lu, J. Kraft, P. Kreuger, and T. Nolte,
“Simulation-based timing analysis of complex real-time
systems,” in RTCSA 09, August 2009, pp. 321-328.

G. A. Kaczynski, L. L. Bello, and T. Nolte, “Deriving ex-
act stochastic response times of periodic tasks in hybrid
priority-driven soft real-time systems,” in Proceedings of
12th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA’07). IEEE In-
dustrial Electronics Society, September 2007, pp. 101-110.

S. Manolache, P. Eles, and Z. Peng, “Schedulability anal-
ysis of applications with stochastic task execution times,”
ACM Trans. Embed. Comput. Syst., vol. 3, no. 4, pp. 706—
735, 2004.

Y. Lu, T. Nolte, J. Kraft, and C. Norstrom, “Statistical-
based response-time analysis of systems with execution de-
pendencies between tasks,” in ICECCS 2010, March 2010.

J. S.J. Beirlant, Y. Goegebeur and J. Teugels, Statistics of
Extremes: Theory and Applications. Wiley Press, 2004.

Y. Lu, T. Nolte, I. Bate, and C. Norstrom, “Timing ana-
lyzing for systems with execution dependencies between
tasks,” in Track on Real-Time Systems, The 25th ACM Sym-
posium on Applied Computing (SAC2010). ACM, March
2010.

R.R. T. Cormen, C. Leiserson and C. Stein, Introduction to
Algorithms, 2nd ed. The MIT Press, September 2001.

Y. Lu, A. Cicchetti, S. Bygde, J. Kraft, T. Nolte, and
C. Norstrom, “Transformational specification of complex
legacy real-time systems via semantic anchoring,” in 2nd
1IEEE International Workshop on Component-Based De-
sign of Resource-Constrained Systems (CORCS 2009) @
COMPSAC. IEEE Computer Society Press, July 2009.

(6]

(7]

(8]

(9]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(23]

(24]

[27]

(28]

[29]

M. Joseph and P. Pandya, “Finding response times in a real-
time system,” The Computer Journal (British Computer So-
ciety), vol. 29, no. 5, pp. 390-395, October 1986.

S. Bygde, A. Ermedahl, and B. Lisper, “An efficient al-
gorithm for parametric wcet calculation,” in The 15th
IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, RTCSA 2009,
August 2009.

J. Kraft, J. Huselius, A. Wall, and C. Norstrom, “Extract-
ing simulation models from complex embedded real-time
systems,” in Real-Time in Sweden 2007, August 2007.

M. Weiser, “Program Slicing,” in Proc. of the Int. Conf.
ICSE’81. 1EEE Press, 1981, pp. 439-449.

J. Kraft, “RTSSim - A Simulation Framework for Complex
Embedded Systems,” Malardalen University, Technical Re-
port, March 2009.

E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task au-
tomata: Schedulability, decidability and undecidability,”
Inf. Comput., vol. 205, no. 8, pp. 1149-1172, 2007.

T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and
W. Yi, “Times: a tool for schedulability analysis and code
generation of real-time systems,” in Procs. of FORMATS
03, ser. LNCS, no. 2791. Springer-Verlag, 2003, pp. 60—
72.

G. Behrmann, A. David, and K. G. Larsen, “A tutorial
on UPPAAL,” in Formal Methods for the Design of Real-
Time Systems: 4th International School on Formal Meth-
ods for the Design of Computer, Communication, and Soft-
ware Systems, SFM-RT 2004, ser. LNCS, M. Bernardo and
F. Corradini, Eds., no. 3185. Springer—Verlag, September
2004, pp. 200-236.

“Big-O Notation and Algorithm Anal-
ysis,” /www.eecs.harvard.edu/ ellard/Q-
97/HTML/root/node8.html, Jan. 2010.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,

S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
mann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenstrom, “The worst-case execution-
time problem—overview of methods and survey of tools,”
Trans. on Embedded Computing Sys., vol. 7, no. 3, pp. 1—
53, 2008.

1. Bate and A. Burns, “An integrated approach to scheduling
in safety-critical embedded control systems,” Real-Time
Syst., vol. 25, no. 1, pp. 5-37, 2003.

J. Miéki-Turja and M. Nolin, “Efficient implementation of
tight response-times for tasks with offsets,” Real-Time Sys-
tems Journal, vol. 40, no. 1, pp. 77-116, October 2008.

M. Hendriks and M. Verhoef, “Timed automata based anal-
ysis of embedded system architectures,” in The 20th IEEE
International Parallel and Distributed Processing Sympo-
sium, IPDPS 2006, April 2006.

R. Cardell-Oliver, “Conformance tests for real-time sys-
tems with timed automata specifications,” Formal Aspects
of Computing, pp. 350-371, December 2000.

T. Bggholm, H. Kragh-Hansen, P. Olsen, B. Thomsen,
and K. G. Larsen, “Model-based schedulability analysis
of safety critical hard real-time java programs,” in JTRES

524

OO0 N W —

—_

12
13
14
15
16
17
18
19
20
21
22
23

34

"08: Proceedings of the 6th international workshop on Java
New

technologies for real-time and embedded systems.
York, NY, USA: ACM, 2008, pp. 106—-114.

#define IOQSIZE 12

int nofEvents = 0;
int gstatel ctrl = 0;

void RTSSim ENV_IO(TCB* tcb)

{
}

void RTSSim IO(TCBx tcb)

{

nofEvents += 2;

int eventsToProcess = 0;
int k = 0; // parameter k

if
eventsToProcess = 6;

telse{
eventsToProcess =
}

gstatel ctrl = nofEvents;

(nofEvents > 6)

nofEvents;

while (eventsToProcess-- > 0) // V section starts
nofEvents--;
sendMessage (tcb, IOQ, 1, 0);
k++;

} // V section ends

}

void RTSSim_CTRL(TCB+ tcb)

{

int ioevent = 0;
int 1 = 0; // parameter i
int j = 0; // parameter j
dof{ // V section starts
iocevent = recvMessage(tcb, IOQ, 0);
if (iocevent > -1)
i++;
}
}while (ioevent > -1); // V section ends
if (gstatel ctrl > 6) // V section starts
execute (tcb, 100, 10);
J++;
// V section ends.

Figure 5. The RTSSim model used in the
evaluation.

