Mailardalen University Press Licentiate Theses
No. 115

STATIC WCET ANALYSIS BASED ON ABSTRACT
INTERPRETATION AND COUNTING OF ELEMENTS

Stefan Bygde

2010

VA
L v

MALARDALEN UNIVERSITY
SWEDEN

School of Innovation, Design and Engineering

Copyright © Stefan Bygde, 2010

ISSN 1651-9256

ISBN 978-91-86135-55-3

Printed by Malardalen University, Vésteras, Sweden

National Graduate School of Computer Science

Abstract

In a real-time system, it is crucial to ensure that all taskthe system hold
their deadlines. A missed deadline in a real-time systermstfeat the system
has not been able to function correctly. If the system istgafigtical, this can
lead to disaster. To ensure that all tasks keep their desjlthe Worst-Case
Execution Time (WCET) of these tasks has to be known. Thiseatione by
measuring the execution times of a task, however, this igitifle, time con-
suming and in general not safe (i.e., the worst-case mightefound). Unless
the task is measured with all possible input combinatioms@mfigurations,
which is in most cases out of the question, there is no way &oaquee that the
longest measured time actually corresponds to the real wass.

Static analysis analyses a safe model of the hardware &gefith the
source or object code of a program to derive an estimate MABET. This es-
timate is guaranteed to be equal to or greater than the re&Wthis is done
by making calculations which in all steps make sure that itne is exactly
or conservatively estimated. In many cases, however, theution time of a
task or a program is highly dependent on the given input. Tthgsestimated
worst case may correspond to some input or configurationiwikicarely (or
never) used in practice. For such systems, where execirtierig highly input
dependent, a more accurate timing analysis which take infutonsideration
is desired.

In this thesis we present a framework based on abstracpnetation and
counting of possible semantic states of a program. This isreigl method
of WCET analysis, which is language independent and platiodependent.
The two main applications of this framework are a loop boumalysis and a
parametric analysis. The loop bound analysis can be usaddklgfind upper
bounds for loops in a program while the parametric framewmdvides an
input-dependent estimation of the WCET. The input-depategtimation can
give much more accurate estimates if the input is known atirna.

Acknowledgements

First, | would like to express my deepest thanks to my supersi Thank
you Bjorn Lisper, Andreas Ermedahl and Jan Gustafssorhowityou this
thesis wouldn’t exist. In addition, | would like to thankdsji Lisper, Hans
Hansson and Christer Norstrom for deciding to employ meRk.B. student
at Malardalen University!

| also would like to thank the people from my research grouprking
on Worst-Case Execution Time) for support, ideas, usefdudisions, com-
ments and reviews: Christer Sandberg, Jan Gustafssom Bjgper, Andreas
Ermedahl, Andreas Gustavsson, Marcelo Santos and Linllisefg.

Outside the thesis work | have also been involved in teaghiagrse de-
velopment and assisting at the division of Computer SciemzeNetwork. |
would like to thank the people | have had the pleasure to wagrkjuite a lot
with: Christer Sandberg, Gunilla Eken, Gordana Dodig-©xi, Jan Gustafs-
son and Rikard Lindell. In addition, many thanks goes to Aand Zebo at
CUGS,Asa, Monica, Else-Maj, Maria, Gunnar and Harriet at IDT foaking
things a lot easier.

While working on this thesis | have met a lot of people and | ladike to
thank the people | have spent most time with during coffeakseconferences
and parties: Aneta, Séve, Hiiseyin, Luis, Cristina, Wida (Blondie), Adnan,
Marcelo, Juraj (the soup), Ana, Luka, Josip, Leo, Dag, Baathrin (Mermy),
Farhang, lva, Pasqualina, Johan L, Johan K, Johan F, Kiflajsiviblikael,
Nolte, Lei, lvica and Jan C. | have had a lot of good times arat aflfun with
you people. Of course, | would also like to thank my parentd larothers:
Ing-marie, Jan, Bennet and Alexander.

This research was funded in part by CUGS (the National Gitadsehool
in Computer Science, Sweden) and has been supported by gddisBvrounda-
tion for Strategic Research (SSF) via the strategic rebeactre ROGRESS

Stefan Bygde
Vasteras, February, 2010

Contents

1 Introduction 1
1.1 Real-Time and Embedded Systems 1
1.1.1 Scheduling in Real-Time Systems 2
1.2 Worst-Case Execution Time Analysis 2
1.3 Problem Formulation, 3
1.4 ResearchResults 4
141 LoopBoundAnalysis 4
1.4.2 Parametric WCET Analysis 4
1.5 Summary of Contributions, 5
1.6 Summary of Publications 6
1.7 ThesisOutline., 7

2 Background and Related Work 9
2.1 AnalysisPhases, 9
211 FlowAnalysis 9
2.1.2 Low-LevelAnalysis 12
2.1.3 Calculation 13
2.1.4 Auxiliary Analyses and Techniques 14
2.2 ParametricMethods oL 16
3 Framework 17
3.1 ProgramsSyntax 17
3.1.1 InputParameters 18
3.2 ProgramSemantics, 19
3.2.1 InitialandFinalStates 20
322 Example 20
3.2.3 ProgramTiming 21

vii

viii Contents
3.3 TraceSemantics. 22
3.3.1 Computing the global WCET of a program 22
3.4 Collecting Semantics 23
3.4.1 Computing the WCET of a Program Using Collecting
Semantics 24
3.5 ControlVariables 26
3.6 FixedPointTheory 28
3.7 Abstract Interpretation 30
3.71 Abstraction 30
3.7.2 AbstractFunctions 32
3.7.3 Wideningand Narrowing 34
3.8 Abstract Interpretation in Static Analysis 36
3.8.1 Widening and Narrowing in Static Analysis 36
3.8.2 Relational vs. Non-Relational Domains 36
3.8.3 Terminology in Abstract Interpretation in Static Aysass 38
3.8.4 Abstract Interpretation over Flow Charts 39
3.8.5 Abstract Interpretation Example 40
3.9 AbstractDomains oo 42
3.9.1 Non-Relational Abstract Domains 43
3.9.2 Relational AbstractDomains 45
3.9.3 DomainProducts 47
3.10 Overview of the Framework 47
3.10.1 Slicing 48
3.10.2 Overview of Loop Bound Analysis 48
3.10.3 Overview of Parametric WCET Analysis 49
4 Finding Loop Bounds 53
4.1 Introduction 53
4.2 SlicingonLoops 54
4.3 LooplInvariantVariables 55
4.4 RestrictedWidening oL 55
4.5 Abstract Interpretation in Loop Bound Analysis 57
4.6 Counting Elements in Abstract Environments 2 6
4.6.1 Example of Loop Bounding with Intervals 63
4.6.2 Example of Loop Bounding with Intervals and Con-
OrUENCES . . . o v o e e e e e e e e 64
4.6.3 Limitation of Non-Relational Domains 64
4.7 Evaluation 65

Contents

5 The Congruence Domain
51 Background
5.2 Analysis on Low-Level and Intermediate-Level Code
5,21 Assumptions
5.2.2 Two'sComplement.
5.3 The CongruenceDomain
5.4 Integer Representation

5.4.1 Signed and Unsigned Integers

5.5 AbstractBit-Operations
551 BitwiseNOT
5.5.2 Bitwise Binary Logical Operators
5,53 Shifting L

6 Parametric WCET Analysis

6.1 Introduction

6.2 Relational Abstract Interpretation and Input Paransete. . .

6.3 Counting Elements in a Relational Abstract Environment.
6.3.1 EhrhartPolynomials
6.3.2 Barvinok's Rational Functions
6.3.3 Successive Projection.

6.4 ObtainingECFp
6.4.1 Polyhedral Abstract Interpretation
6.4.2 Counting Integer Points

6.5 ObtainingPCFp
6.5.1 Parametric Calculation

6.5.2 Parametric Integer Programming
6.5.3 PIP as Parametric Calculation

6.6 ObtainingPWCETp,
6.7 SimplifyingPWCETp

6.8 Reducing the Number of Variables

6.8.1 Concrete Example of Variable Reduction
6.9 Prototype Implementation of the Parametric Framewark ..
6.9.1 InputLanguage
6.9.2 ImplementedAnalyses
6.9.3 Conclusion and Experiences

X Contents
7 The Minimum Propagation Algorithm 107
7.1 Introduction 107
7.2 The Minimum Propagation Algorithm 107
721 TheMin-Tree 109
7.2.2 TheAlgorithm 109
723 ExampleofMPA oo 112
7.3 Propertiesof MPA 115
7.3.1 Termination. 115
7.3.2 Complexity, 117
7.3.3 Correctnessof MPA L. 117
7.3.4 UpperBoundsonTreeDepth 119
7.4 Evaluation. 119
7.4.1 ComparisonwithPIP 119
7.4.2 EvaluationofPrecision 121
7.4.3 Evaluation of Upper Bounds on Min-Tree Depth . . . 121
7.4.4 Scaling Properties 123
7.5 The Reason for Over-Estimation 126
8 Summary, Conclusions and Future Work 129
8.1 Summary 129
8.1.1 Contributions L. 129
8.2 FutureWork 131
8.2.1 FullEvaluation 131
8.2.2 The Minimum Propagation Algorithm 131
8.2.3 AbstractDomains. 131
8.2.4 Madifications to the Parametric Framework 131
8.3 Conclusions 132
8.3.1 Parametric WCET Analysisis Possible 132
8.3.2 Parametric Calculationis Complex. 133
8.3.3 The Minimum Propagation Algorithm Scales 134

Bibliography 135

Chapter 1

Introduction

1.1 Real-Time and Embedded Systems

An embedded system can be said to be computer system degigaexpecific
purpose. Such a computer system differs from a desktop ctamiothe sense
that it interacts with its environment via sensors, buseisadner devices rather
than a keyboard and monitor. Embedded systems are used iiterpbbnes,
cars, power plants etc. Typically, these systems have resmonstraints as
they are often small, battery driven or have real-time negnénts. Real-time
requirements on a system means that if a computation is nstéd before a
given deadline, the system will either have decreased pedioce or is consid-
ered to have failed. Systems which can not tolerate that dlidechave been
missed are calletlard real-time systems. A missed deadline can in a safety
critical hard real-time system have dire consequencegefitre, it is of great
importance for these systems to ensure that all softwaks ta#l meet their
deadlines. This is ensured by estimating the worst possitdeution time for
each task in the system, and produce a feasible schedulesior. tHowever,
determining the worst case execution time (WCET) of a tagikrogram is far
from trivial since it depends on hardware (including complardware features
such as pipelines, caches, branch prediction etc.) as svetifaiware semantics
(i.e., finding the worst possible paths through the progrand) the interplay
between the two. The solution is to findsafe estimatiomf the WCET of a
task. A safe estimation of the WCET is a number which is guaehto be
equal to or greater than the WCET. However, it is desiredtthiathnumber is
as close to the real WCET as possible, without compromisiagafety.

2 Chapter 1. Introduction

1.1.1 Scheduling in Real-Time Systems

A real-time system typically has a set of software tasks Whieed to execute
on the available processors of the systenredl-time scheduleis a piece of
software which assigns tasks to processors during diffeime slots. Tasks
with hard real-time constraints are required to executefeigh their execu-
tion before their given deadlines. Thus, a real-time sclezdas to make sure
that all real-time tasks can meet all their deadlines. Fisr tih be possible,
the given execution times of the tasks have to be short enfougli real-time
tasks to execute. If the given execution times are too pésisinit may be im-
possible for the scheduler to find a suitable schedule (sh#hé system is not
schedulable). For this reason, it is essential to obtain WE€&imates which
aresafe(to guarantee that the real-time constraints are met) atiteagame
time tight, i.e., as close to the real WCET as possible (to make the &tsk s
schedulable). This thesis investigates a method to findaadetight bounds
for the WCET of programs. This method is fully automatic, itee& and can
achieve symbolic upper bounds for the WCET.

1.2 Worst-Case Execution Time Analysis

A lot of research has been done in the area of worst-case tixetime analy-
sis, a good overview can be found in [WE@S]. WCET analysis can roughly
be divided into two disciplines, namely static and dynami€BEVW analysis.
A dynamic WCET analysis done by performing end-to-end measurements
of a running program on the target processor (or a simulafbin)s requires
either very extensive measurements to ensure enough gevaralternatively
attempting to enforce the program to execute its worst-pasie, which may
be very difficult. Dynamic analysis cannot in the generakoassure that the
worst-case have actually been found, and may thereforergstienate the
WCET. To come around this problem a safety margin is usualtled to the
worst found measurement.

The other approach static WCET analysiwhich computes a safe upper
bound of the WCET of a program by statically analysing thegpam code, its
possible inputs and a model of the hardware. A static WCETyaisahas to
do pessimistic assumptions in uncertain cases to give aupgier bound, i.e.,
a bound which is guaranteed to be at least as large as the AN here are
also hybrid approaches which in some way combines the staticdynamic
analyses. Figure 1.1 displays the relationship betweersuned execution
times, analysed execution times and the actual WCET. Thesfigiso shows

1.3 Problem Formulation 3

p worst-case performance

worst-case guarantee

probability

The actual WCET upper
must be found or actual timing
upper bounded WCET pound

lower
timing
bound

actual
BC

possible execution times ———— | time

timing predictability

Figure 1.1: Relation between execution times and analgsislts (taken from
[WEE'08])

the relation to BCET which means Best-Case Execution Tinme Upper and
lower timing bounds arsafeestimates of the WCET and BCET respectively.

This thesis will solely focus on static analysis. More sfieally, the thesis
will investigate a framework for static analysis which isbd on counting run-
time states to derive a WCET of a program. This framework hasrhajor
applications which will be presented in the thesis. The iappbns are loop
bound analysis and parametric WCET analysis.

1.3 Problem Formulation

In this section two common problems associated with WCETyaisare pre-
sented. While the two problems may seem to differ quite dhd thesis shows
that both problems can elegantly be solved by very similathods. The first
problem is to automatically find upper bounds of the lengttthefexecution
traces of a program. To be able to give an upper bound of thedimf a
program, the program has to execute in a finite number of stépgically,
programs spends most execution time is in loops, therefdseeissential to
find an upper bound for the iterations for each loop. l|dedilg should be
automatic and quick. Thus, we attempt to answer the question

How to efficiently and automatically find upper execution bds
for a program loop?

This thesis presents a method to quickly and automaticidubt (s, without
user interaction) derive safe upper bounds for loops in grara.

4 Chapter 1. Introduction

Static analysis derives, as seen in Figure 1.1, a safe upmperdbof the
WCET of a program. However, the execution time of a prograaffescted by
a number of things. Very often, the execution time of a progigheavily de-
pendent on input variables and/or configurations/moddseafatsk or program.
The input combination/configuration of the worst-case maglsuch which is
never used in practice, making the upper bound unnecespaskimistic. It
might even be too pessimistic to use in practice [BEGLO5, BEGCEE02].
Thus, the main question this thesis tries to solve is theviiig:

How to decrease the inherit pessimism introduced fromcstati
analysis by assuming the worst-case input combination?

This thesis tries to overcome this pessimism by the reais#bat the input of
a program may be known at run-time or even at deploy time. iflfdgsmation
can be used to derive a re-usable time estimate whidependenon the input
variables of a program. That is, rather than expressing t6&Was a constant
number, itis expressed as a formula in terms of the valudwdhput variables.

1.4 Research Results

1.4.1 Loop Bound Analysis

In order to provide a concrete upper bound of the WCET of afamoga static
analysis needs to be able to find execution bounds for therdiit parts of
the program. If the number of executions of a certain loomoaibe bound,
the analysis fails to give a finite, safe WCET estimation. §htis crucial
to have an upper bound for each loop in the program. This caacbived
with manual annotations (i.e., having the programmer atedhe code with
loop bounds) or it can be automatically derived by statidysie. A method
to quickly and automatically derive loop bounds was preseiti [ESG 07],
which is based on counting run-time states of a program.

1.4.2 Parametric WCET Analysis

In many cases the execution time of a program highly dependtsadnput.
If the control flow of the program depends on the input data, ékecution
time will naturally be affected. Since the WCET of a prograatds for all

possible input combinations, it may often be too pessimistor example,
the program may never be called with the worst-case inputactjce, and

1.5 Summary of Contributions 5

the real worst case may be much lower than the estimated ongolution
to this is to compute a WCET bound which is symbolic in termshef input
values. Such a bound can then quickly be instantiated bytifutirey concrete
input values for the symbols in the formula. Such a formuéntbonstitutes a
reusable upper bound on a program or task which is safe lutradse precise
since more information about the bound is known. Furtheemby having
a formula of the WCET, mathematical analysis can be apptietie formula
to perform things like sensitivity analysis. The investaghframework uses
known techniques to symbolically count run-time states jpraggram and can
be used to obtain these kind of formulae.

Parametric WCET analysis is naturally more complex thassital static
WCET analysis and should not be used on large systems willomsilof lines
of code; rather, the parametric estimation is most effityemged on smaller
program parts (like smaller tasks or functions) which haymut data depen-
dent execution times. Interesting applications wouldudeldisable interrupt
sectionswhich are code sections which may not be interrupted anthare-
fore naturally interesting to find the WCET for. These seditypically needs
to be small and are interesting candidates for a paramet@&WCEE"02].
Another important application of parametric WCET analysiaild be in com-
ponent based software development (CBD) [Crn05, HCO1].BDCreusable
components designed to interact with each other in diftecentexts can be
analysed in isolation. Since components are designed tdifumin different
contexts, a reusable WCET estimation is desired. Companedéls designed
for embedded systems (such as saveCCIﬁ(];HfO4] or Rubus [Arc09]) typ-
ically uses quite small components which makes paramet@EWanalysis
interesting.

1.5 Summary of Contributions

This thesis is based on a method for parametric WCET angtysisented in
[LisO3a], and a method for loop bound analysis presente&8$G"07]. The
concrete contributions of this thesis is the following.

e We have formalised and enhanced the method presented 08f]iand
merged it with the method presented in [EST] to obtain a formalised
framework on how to perform WCET analysis by counting rundi
states.

e A prototype implementing parts of the framework has beerlgped in

6 Chapter 1. Introduction

order to evaluate the method. This prototype has providsidti and
experience with the method, leading to the discovery oléaitcks and
potentials.

e We have proposed a set of simplifications of the method faaupatric
WCET analysis proposed in [LisO3a], such as reducing thebesurof
variables used in the calculation.

e An enhancement of an abstract domain used in loop boundsia&igs
been made to make it possible to use it for low level code, wisc
commonly used in WCET analysis.

¢ An algorithm for efficient parametric WCET calculation haseh pro-
posed, implemented and evaluated.

e Some of the methods and algorithms presented in the thesiskeen
experimentally evaluated with the prototype mentionedvaband in
the static WCET analysis tool SWEET (SWEdish Execution Tiow)
[GESLO7, WCEOQ9].

1.6 Summary of Publications

This thesis is based on four papers, of which three have bagisped.

Paper A

Analysis of Arithmetical Congruences on Low-Level Cdttefan Bygde. Ex-
tended abstract NWPT’07 [Byg07].

This paper describes the enhancement of the congruencdrdolnpro-
vides low-level support for the domain, including low-légstract operations
and an abstraction which works for both signed and unsignegjérs. The
contents of this paper is covered in Chapter 5.

Paper B

Loop Bound Analysis based on a Combination of Program Sjicikbstract
Interpretation, and Invariant AnalysisAndreas Ermedahl, Christer Sandberg,
Jan Gustafsson, Stefan Bygde, and Bjorn Lisper. Presattbd WCET work-
shop in 2007 [ESGO7].

1.7 Thesis Outline 7

This paper shows how to estimate loop bounds by countingeziesrof
abstract states. The evaluation of this methods also sHuatghe congru-
ence domain gives more accurate results. As the forth awththie paper, |
have been involved in formulating the original idea and jed the analysis
with the congruence domain. The contents of this paper islgnabvered in
Chapter 4, although the theoretical foundations of the oukik outlined in
Chapter 3. In addition to the published materials, thisithgees deeper on
some of the theoretical foundations of the approach.

Paper C

Towards an Automatic Parametric WCET Analy&efan Bygde, Bjorn Lisper.
Presented at the WCET workshop in 2008 [BLO8].

This paper presents an implementation of the parametric Wa&talysis
based on counting elements in abstract states introdu¢e@8a]. The paper
presents necessary workarounds to make a functioning mgpigation as well
as some simplifications that can be done to reduce complédtyirst author
| have been writing the paper and been the main driver. Théeotsof the
paper is mostly contained in Chapter 6. However, Chapterragms more
details than the original publication, including detaidamples.

Paper D

An Efficient Algorithm for Parametric WCET Calculatio8tefan Bygde, An-
dreas Ermedahl, Bjorn Lisper. Presented at RTCSA09 [BHL®est paper
award.

This paper introduces a new parametric calculation algaritalled MPA.
The paper presents the algorithm and evaluates it on a latgé lsenchmarks.
As first author | have been writing the paper and been the nanerd The
contents of the paper are included in Chapter 7, althougttthpter contains a
more detailed evaluation of the algorithm as well as morerétical properties
of it.

1.7 Thesis Outline

The thesis is outlined as follows:

8 Chapter 1. Introduction

Chapter 2 gives an overview over the field of WCET analysis and related
work.

Chapter 3 provides a formalisation of the proposed framework.

Chapter 4 explains how to use the framework to compute loop bounds and
evaluates it.

Chapter 5 introduces necessary developments to perform abstracpheta-
tion on a lower level using the congruence abstract domain.

Chapter 6 explainsin detail how to perform a parametric WCET analysik
the framework.

Chapter 7 introduces an efficient algorithm for parametric WCET cédeu
tion, and finally,

Chapter 8 presents a summary, conclusions and future work.

Chapter 2

Background and Related
Work

This chapter will introduce terminology and concepts usedtatic WCET
analysis and present some related work.

2.1 Analysis Phases

Static WCET analysis can essentially be divided into thndependent phases.
To put it simple, one phase analyses the software, one phasesa the hard-

ware and the final phase combines the analysis results tolaan estima-

tion of the WCET. This estimation is in most cases just thesivoase execu-

tion time in milliseconds. Figure 2.1 shows how the diffdranalysis phases
relate.

2.1.1 Flow Analysis

Flow analysis or high-level analysis analyses the sourobjerct code of a pro-
gram. The goal of this process is to find constraints on thgnara flow and
find bounds on the execution counts of different parts of togmmm. Informa-
tion about program flow are known #esw facts Several analysis techniques
can be applied during this phase to obtain as much informatgpossible.
It needs to be mentioned that exact information about progria general is

10 Chapter 2. Background and Related Work

Hardware
_ timing model

Flow Low-level
analysis analysis

Flow facts

Calculation

WCET bound

Figure 2.1: Relation between analysis phases

2.1 Analysis Phases 11

undecidable and many of these techniques need to introduoel &pproxima-
tions rather than giving precise results.

Loop Bound Analysis

As mentioned in Chapter 1, an important part of WCET analysgiscifically
the flow analysis phase, is to find an upper bound for each Id@ploop can
not be bounded the only safe assumption is that the loop wilbig forever
leading to an unbounded WCET of the program.

There have been some work focusing on the development oiesffiand
precise loop bound analysers. Healy et. al. [HSRW98], thiced a pat-
tern based approach to find upper and lower bounds on loopeequires
user knowledge and annotation about variable bounds asdibti fully au-
tomatic and requires structured loops (although multipléseare allowed).
Another loop bound analysis is suggested in [CMO07], it isslolasn flow anal-
ysis and binds loops by finding fixed increments of loop couwdeiables. It
requires structured loops and can handle only loops withd fiserements. In
[MBCSO08] an efficient loop bound analysis is presented. &halysis requires
programs to be run through a code simplifier to make sure tlogsl are struc-
tured and that they have single exits. Gustafsson et. al.S[®BF] presents
a method to find loop bounds by a technique called abstracuéra, which
is simulating the execution of a program over abstract staBartlett et. al.
[BBKO9] presents a method to find exact parametric loop bewigen a cer-
tain class of nested loops, however, this requires thataktraces of the pro-
grams execution is recorded and that the loop expressienslantified and
can therefore not be considered as fully automatic.

In our framework we base the loop bound analysis on the meihtithed
in [ESGT07] where general loops quickly and automatically can bdyaed
without imposing any restriction on the structure. This Inoek is based on
counting possible semantic states in a loop using abstigiretation, slic-
ing and invariant analysis techniques. Later work by Lokjesiski et. al
[LCFMOQ9] has achieved even better results using very smbdahniques but
with another abstract domain, acceleration techniquesvia iteration in the
abstract interpretation) and improved slicing. While wedaur work on the
earlier publication, the latter work fits quite well into theneral framework
suggested in this thesis. The advantage by using absttagbiatation in loop
bound analysis is that abstract interpretation is comigi@teependent of the
structure of loops and works on arbitrary program flow.

12 Chapter 2. Background and Related Work

Infeasible Path Detection

Essentially, the purpose of the flow analysis is to give asynaaua exact flow
facts as possible to be able to give an accurate WCET bouretefidre, find-
ing paths that due to semantic constraints cannot be takehvislue to de-
crease the pessimism of the analysis. To give a simple exarophsider the
following code
if n > 2then
statement 1
end if
if n < 0then
statement 2
end if
No execution of this piece of code can execute both stateinant state-
ment 2 (assuming statement 1 does not change the vahje 8bme research
efforts, devoted to finding infeasible paths to decreasb/sisgpessimism, are
presented in [Alt96, APT00, HW99, GESL07, CMRSO05, Lun02].

2.1.2 Low-Level Analysis

The low-level analysis analyses a mathematical model oh#rdware plat-
form. The model should be as detailed as possible, but itdhbs tonserva-
tive, e.g, assume a cache-miss rather than a cache-hit wisempossible to
determine statically. The purpose of the low-level analysito derive worst-
case execution times for atomic parts of the program. Atgraits can mean
either instructions, basic blocks or some other small gdgstinguishable part
of a program. Note that our work is mainly concerned with flovalgsis and
calculation, thus, the related work presented about Iagtanalysis will be
sparse.

Complex Hardware Features

In modern computer architectures it is common to have compiedware
features such as pipelines, caches and branch predictidnle Wese fea-
tures greatly improves average performance, they also riekéming be-
haviour much harder to predict. For a low-level analysiségbecise enough,
these complex features have to be taken into account angsadal This can
lead to high over-estimations of the WCET and the synerggcedf among
the different features may be hard to detect. A lot of work hasn pub-

2.1 Analysis Phases 13

lished in the area of low-level analysis and how to model ware features.
For instance low-level analysis and modelling has beengweg for caches
[HAM T99, LMW99, Rei08, FW99], pipelines [Eng02, Wil05], branaiegdic-
tors [BR0O5, BR04b, CP0O0], multi-core caches [ZY09] etc.

2.1.3 Calculation

When flow facts have been derived from the flow analysis anchiate/orst-
case execution times have been calculated by the low-leedysis, the results
can be combined to obtain a concrete bound of the WCET. Thi®fi® in
the calculation phase. There have been some different apipes to WCET
calculation proposed, like the tree-based (or structusedjpapproach [PS91,
LBJ*T95, PPVZ92, BBMP0O, CB02] which calculates the WCET by paysi
the program structure bottom-up, the path-based apprd#sM[-99, SA0O,
Erm08] which explicitly models the paths of the program talfthe worst-
case and the perhaps most used approach called IPET ingebdtuthe next
subsection.

Implicit Path Enumeration Technique

The Implicit Path Enumeration Technique (IPET) was prodose[LM95,
LM97]. Since the number of paths through a realisticallydiprogram tends
to get very large, it is simply infeasible to try to find the wbrase path. In-
stead, the idea of IPET is to formulate the flow constraintsthe atomic costs
as an Integer Linear Programming (ILP) problem. This is donmaximising
a cost function subject to the constraints obtained from #oalysis. Since the
flow facts might not be exact, this calculation may over-agpnate the final
result.

Much of the research presented in this thesis uses and tefére IPET
method, thus, a detailed presentation of the method is ptegéere. The idea
is to obtain an estimation of the WCET as the maximum of

§ CqZq

qEQpP

whereQp is a set of all points in the program, this may be edges or nodes in
a control flow graph, basic blocks, labels or whatever is tisedpresent a pro-
gram. The factor, represents the worst-case execution time of ppinhich
has been calculated by a low-level analysis. The facjaepresents an upper
bound of the execution count of program pajntThis factor is unknown but

14 Chapter 2. Background and Related Work

are subject to a set of constraints which may be obtaineddfidtv analysis.
For example, suppose that flow-analysis has determineththarogram point
g5 € Qp can never be visited more than five times. This imposes a i@ntt
looking as follows:

$Q5§5

Moreover, flow-analysis may have determined that the pragraintgs is vis-
ited at least as many timesa@ssince it is dominatingg. This can be expressed
through the constraint:

Lge S Lgs

Thus, with a objective function to maximise and a set of Imeanstraints,
this can be solved with the simplex algorithm. The simpleyodathm gives a
solution to the unknown variables,c o, such that all constraints holds and
that the objective function is as large as possible.

Since there exist really efficient ILP solvers, IPET is aeefive and widely
used technique. IPET is also very flexible, and work has begpgsed to en-
hance the IPET model to analyse, for instance, caches [LM\Z¥09].

2.1.4 Auxiliary Analyses and Techniques

Some common techniques in WCET analysis are not really partyoanalysis
phase, but are auxiliary methods to generally facilitate BVGhe different
analyses.

Program Slicing

Program slicing [Wei81, Wei84] is a process of eliminatirgtain statements
and variables from a program. A program slice is a progranrevhach state-
ment which directly or indirectly affects a set of given \addlies (slicing crite-
rion) has been removed. In WCET analysis, slicing can be tspdoduce a
program slice where all variables which affect program floeramoved. Flow
analysis over such a slice is more efficient since a prograeisl smaller than
the original program but still contains the same flow factagPam slicing is
an essential part of the framework outlined in this thebigsta detailed expla-
nation of the technique follows.

A program sliceis a minimal representation of a program with respect to a
slicing criterion A slicing criterion is a set of variables observed at a ¢erta
statement. The slice is then obtained by removing statesreamd variables

2.1 Analysis Phases 15

from the original program which are guaranteed to not affieetslicing crite-
rion. In general it is undecidable to get a perfect slice,(geslice whereall
irrelevant statements have been removed), so slicing itigts has to apply
some sort of conservative behaviour. We illustrate by amgse, consider the
following program:
n «— 10
i+—0
J—1
while n > 0 do
1+—1+1
j < j*2 {“Statement’}
end while

If this program is sliced with respect to the variablat “Statement”, this will
resultin

n «— 10

i+—0

while n > 0 do

i+—1+1

end while
As can be seen, this program has the same semantics as timalgpiggram
if one only observes at the program point where “statement” was. However,
“statement” itself was irrelevant in this case and was reszddw the slicing.

Slicing in the context of WCET analysis has been used in [SEBGESG 07,
LCFMO9].

Value Analysis

Value analysis is the process of determining a supersetegbdissible values
variables can be assigned to in the program. This can be adedltinfeasi-

ble paths, loop bounds and dead code among other things. @$iecammon

technique to perform value analysis is abstract interfcgtdCC77]. Since,

as with general flow facts, an exact value analysis would imeg@ be un-

decidable, abstract interpretation soundly approximptegram semantics in
order to obtain a set of values which variables can be assitmeThere are
many kind of approximations that can be chosen, and the elisia trade-off
between precision and complexity of the analysis.

16 Chapter 2. Background and Related Work

Manual Annotations

Most of the above mentioned analyses have to introduce ajppations and
can in most cases not find all possible flow facts. In additioany analyses
may be costly. In some cases it may therefore be worthwhitete a human
manually annotate the source or object code with flow faciewh ascode
annotations This might be error prone and requires good knowledge aheut
code, but it can on the other hand introduce flow facts whietimpossible for
a static analysis to derive.

2.2 Parametric Methods

The parametric WCET analysis framework presented in thasighis based on
the method outlined in [Lis03a] (see also [LisO3b]). Thelgsia is general,
fully automatic and works for arbitrary control flow and camegpotentially
very complex and detailed formulae expressed in the inpudalis of a pro-
gram. In [CB02], a WCET analysis which computes a formulagiin some
chosen set of function parameters, is presented. In thisadetiow constraints
has to be manually provided. Two methods of parametric WOaAlyaes are
presented in [VHMWO1] and [CHMWOQ7]. They are both paramiseat in
loop bounds only and they do not take global constraintsdotesideration. A
method similar to the one outlined in [Lis03a] were preserime[AHLWO08],
but it is using loop and path analyses instead of abstraetgretation. It re-
quires special treatment of loops and is not as accuratelglsgual abstract
interpretation. A method which computes the complexity pfegram is pre-
sented in [GMCO09]. This method derives symbolic bounds efdbmplexity
of the code only and does not take hardware into consideratitd cannot be
used to obtain WCET estimations.

Chapter 3

Framework

In this chapter we introduce and formalise a framework faticWCET anal-
ysis based on abstract interpretation and counting stdtks framework is
based on the ideas published in [Lis03a] and [E®@. This chapter will in-
troduce the theoretical foundations of the framework wtiike two following
chapters will go into details how to use the framework in pcac

3.1 Program Syntax

In this thesis, our general notion ofpeogramis a piece of software; a task,
a function, a full system or even just a loop. In order to hawwnaple and
language-independentrepresentation of programs theggresented by flow-
charts. Furthermore, we shall assume that all variablegpobgram are inte-

ger valued. While this may seem like a strong restrictior,dbntrol flow of
programs are usually governed by integers. Also, it is oéiasy to gener-

PEN9 O

Figure 3.1: Flow Chart Nodes

17

18 Chapter 3. Framework

Figure 3.2: An example prograim

alise analyses to other data types, but our representatioontes simpler if
restricted to integers.

Definition 1. AprogramP = (Vp, Qp, Vp) is a piece of software, represented
by a flow chart. The sétp is the set of flow chart nodes (see Figure 3.1). The
setQp C Vp x Vp is the set of arcs in a flow chart, these will be referred to
asprogram pointsThe sel’p denotes a set of program variables.

Every program is assumed to have single entry and exit poirftsre the
arc immediately connected to the entry (or start) node isrrefl to as the
initial program pointq, and the arc connected to the exit node is called the
final program point

As an example! a prograIm = <VL7 {q07 q1,92, 93,44, q5}) {7’7 n}> is de-
picted in Figure 3.2. This program will be used as a runningngxle of the
analysis techniques throughout the thesis.

3.1.1 Input Parameters

Since the execution time of a program varies with input, dmsl framework
aims to provide a parametric WCET we shall make an importafinition.

Definition 2. Each programP is assumed to have a setiaput parametergp
which is a set of symbolic parameter corresponding to caecvalues which

3.2 Program Semantics 19

affect the program flow aP.

Depending on the type of program analysed, the input paeasiean mean
different things. If a function is analysed, the input paesens may correspond
to the values of the formal parameters of the function. Fooragonent, the
input parameters may correspond to the data of the inpus$ pbthe compo-
nent. For a loop, an input parameter may correspond to a ¢mgnbound.
For a task, the input parameter may correspond to the indiale of a global
variables etc. The important thing is that the value of arufrgmrameter in
some way affects the timing of the program under analysis.

As an example, consider the program in Figure 3.2. Herenitialivalue
of n is a suitable input parameter 6f since the execution time df is depen-
dent on it. Thus, we can assume that the initial value & ny, and conse-
quentlyZ;, = {no}. Note here that, is treated as a symbolic parameter rather
than an absolute constant.

3.2 Program Semantics

The previous section defined how to represent programs utitiitaching any
meaning to them. As the meaning of the different flow chartéessshould be
straightforward to understand, we will not attach a formefimition of their
semantics. However, in order to be able to reason aboutg@mgyrwe need to
be able to reason about the run-time states of a program.

Definition 3. Anenvironmenbdf a programP is a mappingrp : Vp — Z. In
other words, an environment is an assignment for every béito an integer.
The set of all environments of a prograrnis denoted p.

Definition 4. A state(q,o) € Qp x Xp of a programP is a program point
associated with an environment. The set of st@gsx Y p is denotedSp.

Informally, an environment can be said to be a memory conrdigum and
a state is a memory configuration together with the programt@o With
Definition 3 and 4 we can now reason formally about the ruretstates of
programs.

Definition 5. Thesemantic functionp of a programP is a partial mapping
7p : Sp — Sp, mapping one state to another.

The semantic function defines the meaning of the program faenally
defines what each flow chart node does to the current state mébpeing is

20 Chapter 3. Framework

partial since the function is not defined for the final prognaoint. Again,
while it is possible to give a formal definition ef> for each type of flow chart
node, we shall refrain from doing so since it is not signifidanthe rest of the
developments in this section.

3.2.1 Initial and Final States

Any program has a set of initial statés C Sp and a set of final statgsp C
Spl. The initial states are all associated with the initial peog point (i.e.,
they all have the formgqg, o)). Conversely, the final states are all associated
with the final program point. The environment associateth ¥ie initial state
can be any environmeht However, some initial values may correspond to
input parameters p of a program. Such variables will affect the execution
and the initial configuration of these variables will themef lead to different
executions.

Definition 6. Thesemantic closure functiory, : Sp — Fp of a program is
recursively defined as

£ (s) = s ifse Fp
TPiS) = 75(Tp(s)) otherwise

The semantic closure function maps any state into a fina #téttermi-
nates. Itis not defined for non-terminating programs.

3.2.2 Example

As an example, consider progranfrom Figure 3.2 again. Below is a demon-
stration on how to compute the final state from a given ingtate. Choosing
an initial state consists in determining values for eacluirgarameter i€ .
SinceZ;, = {ny}, this comes down to choosing an initial value fgrin this
example we sety to 2. We denote an environment whetemaps to2 as

[n — 2]. Thus, we choose the initial stafey, [i — io][n — 2]). Note that
the initial value ofi does not matter sinceis assigned before it is used, hence
an arbitrary valué€, is chosen fori. To compute the semantics of executing
L on this initial state, we compute ({qo, [i — i0][n — 2])). Without having

1Except programs which never terminate, but such programsuminteresting for analysis
purposes.
2|t is common to assume that the memory state before a progracuies is undefined.

3.2 Program Semantics 21

definedr,, formally, the reader should have no problems understantafpl-
lowing intuitively. We shall as in this example often omietlubscript (in this
caseL) when no ambiguity occurs.

7 ({q0, [i = do][n — 2])) = 77 ({q, [i = O][n — 2]))
7 (g2, [i = O][n = 2])) = 7" ({ga, [i = O][n — 2]))
7' (g5, [P = 1][n = 2])) = 77 ((ga, [i = 1][n — 2]))
7 (g4, [= Uln = 2])) = 77 ({gs, [i = 2][n — 2]))
7 (g2, [i = 2)[n = 2])) = 7" ({qa, [i = 2][n — 2]))
7 (g5, [P = 3][n = 2])) = 77 (g2, [i = 3][n — 2]))
7 (g3, [i = 3][n = 2])) = (g3, [i = 3][n — 2]).

Thus, the semantics of executifigwith initial state(qo, [i — io][n — 2])
is to derive the statéys, [¢ — 3][n — 2]).

3.2.3 Program Timing

In this thesis we will mainly focus on flow analysis, but for BT analysis to
estimate realistic times, a low-level analysis is needesieXplained in Chap-
ter 2, a low-level analysis is far from trivial. In this worlk,is assumed that
a low-level analysis exists and that it can provide worstecaxecution times
for each atomic part of the program. In reality, these atguaids might have
different timings depending on execution history, thatli®y may depend on
cache and pipeline contents as well as branch predictarbetar framework,
we will associate each program point with a worst-case di@ttime. While
this may seem pessimistic, it should be possible for mosyaesin the frame-
work to add artificial program points to handle cases sucloag unrolling,
cache-hit, cache-miss cases etc. However, in order to &ay ftom details,
we will assume that each edge in the flow chart has exactly tomei@ WCET.
Therefore, the results of the low-level analysis will be adiion, associating
an atomic WCET for each program point:

{:Q0p — 7

The value domain can be milliseconds, clock cycles or wieatsneasure suit-
able for the application. Below, some possible values feratomic WCETSs

of programL are shown. These values are often referred to in forthcoming
examples.

22 Chapter 3. Framework

3
l(q2) =1 £(g3) =2 (3.1)
8

3.3 Trace Semantics

Trace semantics [Cou01] is informally defined as all poss#ixlecution traces
of a program. To formally define the tracing semantics, wealneaotion of a
trace A traceST is a non-empty, possibly infinite string of states. Traee
closure functiorll’ : S — ST computes the unique trace corresponding to an
initial state. IfT'(so) = so, s1, ... iS atrace, then let; be any elementiff'(so),
thens; is defined as

sj = 7(sj-1)

if 7 > 1. Note that ifT'(s) is a terminating trace (that is, a finite trace ending
in a final state), then all but a finite number of states in thedrare undefined.
Thelengthof a trace is defined as the largest defined index in the stHaging
this formal definition of a trace given an initial state, wa cifine the full trace
semantics of a program as

TSPZ{T(S) | SEIP} .

Thus, the trace semanti@sS p is the set of all complete execution traces of a
program.

3.3.1 Computing the global WCET of a program

Theoretically, if 7Sp could be efficiently computed and all program states
were associated with a worst-case execution time, the weast execution
time of P could be computed by exhaustively computing the cost of &acle
in 7S p and chose the maximum of these.

Table 3.1 shows the computation of the worst-case exectiti@of a sin-
gle trace of prograni (see Figure 3.2). The first column shows the trace, the
second column shows the cost consumed by the particular @&déen from
(3.1)), and the last column shows the accumulated cost éowtiole trace.

In summary, the trace corresponding to the initial stage[i — io][n — 2])
has a worst-case execution time of 40. However, there asgaleeasons why

3.4 Collecting Semantics 23

Trace Cost Acc. WCET
(g0, [i = iol[n — 2]) | £(go) =1 1
(g1, [i = 0][n — 2]) | £(q1) =3 4
(g2;[i = O][n — 2]) | £(g2) =1 S
(qa;[i = O][n — 2]) | £(qa) =2 7
(g5, [i = 1][n— 2]) | £(g5) =8 15
(g2, [i = 1[n—2]) | £(g2) =1 16
(s, [i = 1[n—2]) | £(qa) =2 18
(g5, [i = 2][n — 2]) | £(g5) =8 26
(g2;[i = 2][n — 2]) | lg2) =1 27
(s, [i = 2][n — 2]) | £(qa) =2 29
(g5, [i = 3][n—2]) | (gs) =8 37
(g2, [i = 3][n—2]) | l(g2) =1 38
(g3, [i = 3][n — 2]) | £(gz) =2 40

Table 3.1: Computation of the WCET of a trace

this is not a feasible approach. First of all, the computatd7 Sp is un-
decidable in general (since it may contain infinite tracesnfan-terminating
programs). Even if the program in question was guarantettitcinate on all
input, the computation of Sp would be far too costly to use in practice, due
to the often overwhelmingly large number of initial stat€se computation of
TS p would essentially be equivalent to simulating the exeeutibP on all
possible input combinations. That being said, compufii®f> and calculate
the cost for each trace (under the assumption of an exactelesV-analysis)
would be an exact method of finding the global WCET of a progaauah will
act as an optimal model of our method. However, to make tfisefitly com-
putable, a number of abstractions have to be made on topsof thi

3.4 Collecting Semantics

Since trace semantics is too complex to use as basis for W@BRIysas, a
first abstraction is to considerset of statesather then a set of traces. If the
order in which states are visited is forgotten and also irchviiaces the states
belongs to, then the problem becomes simpler. That is tatisayproblem of
computing the set of possible states that may occur duriggeaacution is
a simpler problem than to compute the set of possible trdwsmay occur
during any execution. The set of states which may occur duaity execution

24 Chapter 3. Framework

of a program is known as theollecting semanticfCou01]. To define the
collecting semantics of a program we use a functigh> : P(S) — P(S)
defined as follows

CSp(S) =S U{rp(s)ls e S} UIp

This function takes a set of states and adds the immediatessar states of
these. Note that it always contains the initial state®otJsing this function,
we can formally define the collecting semantics of a progréire following
result is stated in [CC77] using results from [Tar55].

Proposition 1. The following two statements are equivalent

1. S contains all states which may occur during executio@nd S does
not contain any state which may not occur during an execuafan.

2. Sis the least set (wrt. inclusion) such théit= CSp(S). l.e.,S is the
least fixed poinbf CSp.

Statemen® above expresses that the collecting semantics can be defined
as the least fixed point of the functi@iSp. The reason for expressing the
semantics as such is that there exist standard techniqussl¥ing fixed point
equations, which will be shown in Section 3.6.

3.4.1 Computing the WCET of a Program Using Collecting
Semantics

With collecting semantics there is no information aboutoei®n traces and
we cannot compute the WCET for individual traces using #ggsihique. To be
able to compute the worst-case execution time we insteau thee following
two things.

¢ In any finite execution trace, each state occurs at most ore aind as
a consequence:

e the number of environments associated with a program pgiahiup-
per bound of the number times the program point can be vigiteay
execution.

By using these claims we will be able to give an accurate uppeand of the
WCET of a program without having information about the tsaderst we will
prove that these claims actually hold.

3.4 Collecting Semantics 25

Lemma 1. In any finite tracel’ = sy, ..., s,—1, States; occurs exactly once in
T.

Proof. Assume for contradiction thay = s; and that # j. Thens;;1 =
7(s;) by definition of a trace. Then we have that, = 7(s;) = 7(s;) =
sj+1. By induction we have that for ath € N we have thak; ., = sj4m.
SinceT is finite there exist amn such thats;,, is the final state. But since
Si+m = Sj+m, thens;,, mustbe afinal state too. But the assumption says that
1 # 7 soT must have two different final states, which is a contradictio [

Lemma 2. LetCS p denote the collecting semantics fBr Partition CS p into
|Qp| partitions {CS% | ¢ € Q}, where each partitiol©S%, contains environ-
ments associated with an element Qp. Then|CS%| is an upper bound on
the number of times program poigoccurs inanyfinite traceT'.

Proof. Since a state occurs maximum one time in any finite tra€gaccord-

ing to lemma 1), a state in the collecting semantics can ligedisiaximum one
time per finite traceThe collecting se€S% contains all states associated with
program poinf; that can be reached during any finite execution trace. Since
each state can be visited maximum once per trace, this isallgtan upper
limit on how many timeg; can be visited in a single trace. O

Using the result from Lemma 2, a naive upper bound of thead iCET
of the program can be derived if all traces of the program aitefi By com-
puting the partition@S(}fg, we can see that

WCETp <) £(q)|CSE|. (3.2)
qeQ

The reason for this should be obvious; the execution tim&eibe greater
than the cost of visiting a program point multiplied with tmaximum number
of times it may be visited, summed for all program points impinogram. This,
in itself, may not be a very tight bound since there is littdk that the program
visits all program points the maximum time. Therefore, idearto tighten the
bound, techniques can be used to "reconstruct” parts ofdites by using the
program structure. As an example, detection of infeasibtdgpcan provide
useful information.

The framework presented in this thesis is founded on (3Z)wlith ad-
ditional techniques to find a tighter bound. One subtletycltghould not be
missed in this context is that this is based on the assumfttairfor any anal-
ysed progran®, all traces are finite If not all traces are finite, Lemma 1 is no

26 Chapter 3. Framework

longer valid (a non-terminating loop may visit the sameestat unlimited num-
ber of times) and the technique can not be applied. Howdvervhole prob-
lem of finding the WCET of a program which have non-termingtimanches
is moot anyway, so this is not a major restriction.

Section 3.6 introduces fixed point theory which is a techaigged to solve
equations likes = CSp(S). However, as will be seen, the collecting semantics
is not in general computable (even though abstracting #te tsemantics) and
further approximations will therefore be introduced in B&t3.7.

3.5 Control Variables

A first step to reduce over-approximations which may be ohiaed in (3.2) is

to realise that all variables iYip do not need to be present in the computation
of the collecting semantics for the purpose of counting thléected states. A
control variableis a variable which directly or indirectly affects the canitr
flow of a program. In other words, control variables are Jada which affect
the expressions in conditional noddsdon-controlvariables are all variables
which are not control variables. We will prove that non-cohvariables can
be disregarded in the computation for the purpose of comgutie size of
states by showing that states which only differ in non-aantariables must
come from different execution traces.

Definition 7. Partition Vp into controlC'» and non-controlNVC'p variables, so
thatVp = CpUNCp. Thentwo states = (q,0),s’ = (¢’,c’) are considered
to becontrol equivalentdenoteds ~ ', iff Vo € Cp : o(v) = o' (v) Aq=¢.

In other wordss ~ s iff s ands’ belongs to the same program point and all
control variables map to the same value. Note th& an equivalence relation
onSp.

Lemma 3. If sy ~ s1 thent(sg) ~ 7(s1). Furthermore, it also holds that
T (s09) ~1"(s1) foralln € N

Proof. Let so = (qo,00) andsy = {(qo, o), and letsy ~ s1 (by definition of
~, 8o ands; needs to be associated with the same program pgjnFEirst we
prove that ifr(so) = (q1,01), thenr(s1) = (q1,0}), i.e.,7 mapssy ands; to
the same program point.

Assume for contradiction thatwould mapgg to ¢; for s¢ and that it would
mapqo to g2 for s; and thaty; # ¢., i.e., that two different paths were exe-
cuted forsg and s;. But sincesy ~ si, all control variables maps to the

3.5 Control Variables 27

same values, which means that it is impossiblefadio map sy and s; to
different paths, sa(sg) andr(s;) must map to the same program poimt
Now, let (sg) = {(g1,01) and7(s1) = (¢q1,07). We will now show that
VYo € Cp : 01(v) = o1 (v). First of all, it holds tha¥v € Cp : a¢(v) = o (v),
sincesp ~ s1. Assume that there is@ € Cp such thato;(vy) # o7 (vp).
This means that one variable whichrietin C'» has changed the value of
through the image of (since the variables i6'p are the same far, ando}
per assumption). However, the variable\id’p may not in any way affect the
variables inC'p (again, per definition), so this may not happen. Thus, we must
reach the conclusion thégi,o1) ~ (g1, 02), in other wordsr(sg) ~ 7(s1).
As a consequence of the transitivity-efwe can also draw the conclusion that
T"(s9) ~ 7"(s1) foralln € N. O

Lemma 3 shows that the control equivalent relation holdsnduthe full
execution of a trace, which leads to the following importamposition:

Proposition 2. Let sy be a state belonging to a finite tra¢g, and lets; be a
state belonging to a finite tradg. Assume thaty # sq, thensg ~ s = tg #
t1.

This is to say that two control equivalent states cannot lb@same finite
trace.

Proof. Let sp = {(q,0),s1 = {(q,0’). Assume thatsy ~ s1 A so # s1.
Assume for contradiction that ands; belongs to the same tra¢e Without
loss of generality, we can assume thgiprecedes; in t. Sincesy precedes
s1 in t, there exists am such that-"°(sg) = s;. By Lemma 3 we have that
T"(s0) ~ 7"(s1) foranyn € N, s0s; = 70 (sg) ~ 7™°(s1) = s2 = (g, 0").
Accordingly, we define the statg, as7""(so) and deduce that"™o (sq) =
{q,01) forall k € N. Thisimplies that visits ¢ infinitely many times, and thus
t is an infinite trace which never reaches the final state argldbntradicts the
assumption thatis a finite trace which botk, ands; belongs to. O

Proposition 2 suggests that two states which differ onlyhia values of
non-control variables must belong different traces This means, effectively,
that when counting the states associated with a progrant, ®iates which
differs only in non-control variables (i.e., which are camhtequivalent) need
only to be countednce since they by Proposition 2 ageiaranteedo belong
to different traces. The summary of this is that non-conteslables can be
completely disregarded from analysis, since multiplesstatith different non-
control variables do not contribute to the upper bound oftitihes which that

28 Chapter 3. Framework

particular program point can be visited. Program slicineg(Section 2.1.4)
can be used to identify and remove all statements and vagatthich do not
affect control flow. This is done by slicing with respect tbanditionals and
all variables in the conditionals (see [SEGLO06] for dedails

3.6 Fixed Point Theory

Section 3.4 introduced the collecting semantics which ésthieoretical basis
for the framework presented in this thesis. The collectiegantics can be
formulated as a fixed point equation (see Proposition 1 oe g4y This sec-
tion introduces some elementary domain theory in order @lde a method
to solve fixed point equations. Details about domain theary lze found in
[NNHO5, AJ94].

Definition 8. (Poset)
A poset(or partially ordered set) L, C) is a set and a relation such that;,
is

o reflexive:vie L: 1 Cp 1
e anti-symmetricVl,m e L:ICymAmCELl=1l=m
e and transitiveVk,l,me L:kCLINICrm=kCrm

Definition 9. (Upper and lower bounds)

Let(L,C) be a poset and let/ C L. An element. € L is anupper bound
of M if it holds thatm C w for all m € M. Conversely, an elemehte L is
considered to be bbwer boundf | C m forall m € M.

Definition 10. (Supremum and infimum)

Let(L,C) be a posetand led/ C L. If M has upper bounds and there exist
an upper bound., such that for all other upper bounds € L it holds that
ug C u, thenug is thesupremunof M and is denotediM . Similarly, if M
has lower bounds and the exist a lower boudnduch that for all other lower
boundd € L it holds thatl C [, thenly is theinfimum of M and is denoted
MM . The supremum or infimum of a sub8&tC L is always unique if it exists.

Note that a subset of a poset does not necessarily have upgédower
bounds, and if they do, they don’t necessarily have a infimasupremum.
A posetL such that for all subsetd/ C L, LM andnM exists, is called a
complete lattice SinceL. C L, this also means that a complete lattice has a

3.6 Fixed Point Theory 29

supremum, which in domain theory is commonly refered to asdpelement
of L, denotedT ;. The infimum ofL, conversely, is called theottomelement
of L and is denoted._ ;..

Definition 11. (Monotone functions) Let., C1) and (L', C/) be a posets
andletf : L — L’ be a function. Therf is amonotoneor order-preserving
function iff

LELm = f(l) Er f(m)

A well-known and important result of monotone functions amplete
lattices is that for any monotone self-map over a compldteéahas deast
fixed point

Proposition 3. (Tarski [Tar55])
Let L be a complete lattice anfl: L — L be a monotone function. Then the
setfixf = {l € L | f(I) =1} is a complete lattice.

A consequence of Proposition 3 is that sirfoef is a complete lattice,
M(fixf) is the least element in this lattice, and consequentlyl¢hst fixed
point of f. In order to compute this fixed point, a few more definitions ar
needed.

Definition 12. (Chains)
Let L be a complete lattice, theW C L is achainif it is non-empty and for
all elementsn, m’ € M eitherm & m’ orm 3 m/.

In other words, a chain is a subset of a complete lattice wtereele-
ments are completely ordered. Thus, chains can be desegha@elcreasing or
increasing sequences (exgy = m1 C ...).

Definition 13. (Continuity)
A monotone functiorf : L — L is Scott-continuoudf that for every chain
M C L,itholds thatf(UM) = U{f(m) | m € M}.

A constructive result on how to compute the least fixed pdip) ©Of a
continuous function can be presented. This result is dudderi€, and is not
presented in its full generality here.

Proposition 4. (Kleene [Kle52])
Let L be a complete lattice anfi: L — L a Scott-continuous function, then

Mpf =| [{f"(L) | neN}

30 Chapter 3. Framework

This result basically says that starting hyand iteratively computg until
a fixed point is reached, will obtain the least fixed pointfofOf course, this
requires the ascending sequeigé(L)),en = L C f(L) C f(f(L)) C ...
to reach a fixed point in a finite number of steps to be useful.

3.7 Abstract Interpretation

In this chapter we have introduced the collecting semautscthe theoretical
basis for the framework in this thesis. As hinted in Sectiof, 8ollecting
semantics can not in general be computed, so even more @hsisahave to
be layered on top of it to make it efficiently computable.

Abstract Interpretation [CC77] is a well-known technigoeesbundly ap-
proximate program semantics. The collecting semantiosfineld as the small-
est possible set of states which can be reached during aoytexe of a pro-
gram, while with abstract interpretation it is possible évide a superset of the
collecting semantics (abstract semantics) in a computatdeefficient man-
ner. A superset of the collecting semantics may naturalehess exact in-
formation since it may contain states which actually nevaruo during any
execution, but the information is stsloundin the sense that there i® state
whichmayoccur during execution but which is not present in the derset of
states. Abstract interpretation approximates semartisding to some prop-
erty of choice, this is formalised by choosing an approprdistract domain
to use as abstraction of the semantics. A great variety dfadiglomains can
be formulated and the choice of domain offers a trade-offvben precision
and computational complexity. Examples of abstract domane presented
in Section 3.9. The following sections will introduce theatiny of abstract
interpretation.

3.7.1 Abstraction

The idea of abstract interpretation is to have a certaitiogiship between two
complete lattices. One lattice is referred to asdbacrete domaid, and the
other as thabstract domainV/. The intention is to have the abstract domain
approximating the concrete domain. This is done by havifakis connec-
tion (L, «, v, M) between the two lattices, consisting of alpstractionfunc-
tion o : L — M and aconcretisatiorfunctiony : M — L. The relationship
is depicted in Figure 3.3.

3.7 Abstract Interpretation 31

Concrete domain Abstract domain

Figure 3.3: Relation between the concrete and abstractidoma

Definition 14. A Galois connectiofL, a,y, M) is a tuple consisting of two
complete latticed., M and two monotone functiong,vy) € (L — M) x
(M — L), such that

aoy Ly Am.mandyoa Cp Al

If it also holds thata o v Jj; Am.m, then(L,«, v, M) is called aGalois
insertion

In general it is desired to have a Galois insertion rathan th&alois con-
nection since any concrete element has exactly one abstemeént describing
it.

Example

As an example of a Galois connection, considen = (L, «,~y, M), where
the concrete domain i& = (P(Z),C) and the abstract domain & =
({L,-,0,4,T},C) with an ordering as shown in Figure 3.4. We then form

32 Chapter 3. Framework

Figure 3.4: The lattice of signs

the following Galois connection:

Y(L)=2 (@) =1
V(=) =7Z_ a(A)=—iff Vae A:a <0
7(0) = {0} a({0}) =0
Y(+) = Z4 a(Ad)=+iff Vace A:a>0
YT)=12% a(A) = T in all other cases

Note that Definition 14 holds fofc,). The intuition behind this is that
the set of integers are abstracted by sign by this Galoisemiiom. Thea
function abstractsa set by mapping the set into its minimum representation
in the abstract domain. As an example, consider theg{5et,3} € P(Z).

The abstract version of this element is obtainedyy1, 2,3}) = +. The set
{1,2,3} is represented by a "+” in the abstract domain, meaning tiesét

is a set of positive integers. The "meaning” of this set isaoi®#d by mapping

this abstract representation back into the concrete dowiain. We see that
~v(+) = Z4. Mapping to the abstract domain and back makes us lose preci-
sion; from the concrete sét, 2, 3} of three numbers, "abstracting” the set and
"concretising” it again gives us only the information thla¢ toriginal set was a

set of positive integers.

3.7.2 Abstract Functions

By using abstract interpretation it is possible "simulate® usage of functions
over a complex lattice by performing the functions over thestect lattice
instead. Doing this may under some assumptions turn unaeeigproblems
decidable, but then naturally with some lost precision. {etw, v, M) be a

3.7 Abstract Interpretation 33

Galois-connection and lgt: L — L be a monotone function over the concrete
lattice L. Then we say thatf : M — M is approximatingf or that f is an
abstract versiorof f, iff

o~

VieL:f(l)Crvyo foa(l).

This relation is depicted in Figure 3.5. The idea here is t!ﬁAagives a cor-
rect interpretation of the semantics 6f but with possible loss of informa-
tion. As an example, consider the Galois connectign = (L, o, vy, M)
from Section 3.7.1 again. First, consider fifeed multiplication operation
-p: P(Z) x P(Z) — P(Z) defined as

A-pB={a-blac ANbe B} .

This operation is simply normal multiplication defined osets of integers, for
instance{1,2,3}-p {—1,-2} = {-1,-2,—-3,—4, —6}. Thisis an operation
on our concrete domaiR(Z) and is the operation which we are interested to
approximate. Now, we define the abstract multiplication: M — M as
follows

+ 4+ =+
’.:_|_
=
07a=0
T a=T
17bh=1

wherea is any non-bottom element aids any element. This is a correct defi-
nition of an abstract operation, which should be easy tdyeks an example,
we see that

{1,2,3}-p{-1,-2} ={-1,-2,-3,-4,-6} C
Y(e({1,2,3}) a({-1,-2}) =y(+7"-) =
V(=) =2-
When abstract interpretation is applied in static analykis abstract func-
tions approximates functions available in the programntémguage seman-
tics. In this thesis we are restricted to integer valuedaideis, and will be

interested in approximating functions over integers (saghddition, subtrac-
tion, multiplication and addition), i.e., functions of tiype f : Z" — Z.

34 Chapter 3. Framework

f
—_—

L L
4
M f

ﬁM

Figure 3.5: Relation between concrete and abstract fumetio

However, the concrete domain used in abstract interpogtatperates over
sets of integers rather than integers themselves. Thusnfpn-ary opera-
tion, f : Z" — Z, itis possible to define bfted versionfp : P(Z)" — P(Z)
defined as

fp()(o7 ...,Xn_l) = {f(xo, ---,Z‘n—l) | z;, € X;forall0<i < n}

In practice, when operations over the integers are used;aherete domain
will be P(Z), correspondingly, it is the lifted versions of the operatighat
will be approximated. For this reason, we will from now on tise abusive
notationf for fp in the context of abstract operations. Note that lifted func
tions are always monotone.

Fixed Points of Abstract Functions

The reason to formulate abstract functions is that abstngapretation is per-
formed over the abstract functions rather than the conaneés to obtain a
correct result without having to iterate over the concreteé aften not prac-
tically computable lattice. A basic result from abstrademretation is that
for any monotone functiong : L — L and f : M — M such thatf is
approximatingf. Then

Ifpf C~(lfp f).

This means that the least fixed point of the abstract funéti@nsafe approxi-
mation of the least fixed point of the concrete function.

3.7.3 Widening and Narrowing

To find the least fixed point of a monotone operafar L — L over a lattice
L, two cumbersome requirements are imposed.@md f:

e f must be Scott-continuous.

3.7 Abstract Interpretation 35

e The sequence C f(L) C f(f(L1)) C ... stabilises after a finite num-
ber of steps.

By "stabilises after a finite number of steps”, we mean thatdfexist & € N
such that for the increasing seque¢®(L)),en = L C f(L) C f(f(L)) C
...itholds thatf* (L) 3 f(f*(L)). In practice, these two requirements are too
restrictive. Thus, a way of approximating the fixed pointeiit these require-
ments is desired. The solution is to introduce a so-call@kning operator
[cCTT].

Definition 15. A widening operatoV : L x L — L is an operator over a
lattice fulfilling VI,1’ : 1,1’ C (IV!') and for any increasing sequenége C
[y C ..., the increasing sequendg C [(VI; C (Vi1 Vi C ... eventually
stabilises.

Thus if the sequencef™(L))nen = L T f(L) C f(f(L)) C ... is re-
placed by the sequen¢¢y), en = L C f(L)VL C f(f(L)VF(L)VLE
..., then the sequence will eventually stabilisdfgf f+) and by definition of
the widening operation, it will hold thafp(fv) 3 lfp(f). Thus, an approxi-
mation of the fixed point can be found in a finite number of sté@ss to the
cost of possible lost precision; the widening operatiorréater or equal to the
supremum of its arguments. However, the situation can bedwel by having
a somewhat dual concept oharrowingoperator.

Definition 16. A narrowing operatorA : L x L — L is an operator over
a lattice fulfilingVvi,l’ : Il C I’ — [C (IAl') C I’ and for any decreasing
sequencé, 1 /; 1 ..., the decreasing sequenked [pAly O IgAl1Aly O ...
eventually stabilises.

Note that the sequen¢g), cn is stable atfp(fv), so the sequend(fv) =
fafp(fv)) 3 f(f(fp(fv))) 2 ... is a decreasing sequence, in fact it is a
stable sequence, the inequalities could be replaced byliggsigns. Thus,
any element in this sequence is greater or equaliptgf). Furthermore, the
sequencéfp(fv) 2 f(lfp(fv))Alfp(fv) 3 ... eventually stabilises (by defi-
nition of the narrowing operator) #fip(f2) and any element in the sequence
is greater or equal tip(f) as shown in [NNHO05]. Thus,

Ifp(f) C p(f$) C p(fv).

In summary, to find a good approximation of the least fixed poiirf in finite
time without the requirements thiitis Scott-continuous or that the increasing
sequencéf™),en should stabilise:

36 Chapter 3. Framework

e First computéfp(fv)
e Uselfp(fy) as starting point and compuit® ().

3.8 Abstract Interpretation in Static Analysis

In this section we will explain how abstract interpretatissually is applied
in static analysis, and in particular how it is applied in éiamework. The
basic idea is that the power set of program st&éSp) are used as concrete
domain in the abstract interpretation, andadostract semantic functiodsS p
approximating the collecting semanticS » over a programP is used. The
abstract interpretation is then formulated as computimgléast fixed point
of the abstract semantic function as a correct approximatfdhe collecting
semantics of the program. To abstract the collecting senwiitis necessary
to abstract the semantic functiop of a program including all operations used
to definerp. This consist of choosing an appropriate abstract domaid, a
lifting all used concrete operations to abstract ones irchwsen domain.

3.8.1 Widening and Narrowing in Static Analysis

If the abstract domain used in static analysis containsitefascending chains
it is necessary to introduce widening as described in Se&id.3. However,
the abstract semantic function transfers states fromsstettech are associated
with program points in the flow chart. In [CC77] it is showntltas sufficient
to use the widening operator at least once per cycle in thedhawt to ensure
termination. Thus, instead of using the sequences desdrilf&ection 3.7.3, it
is sufficient to introduce the widening operation once peplanore on this is
presented in Section 3.8.4.

3.8.2 Relational vs. Non-Relational Domains

A semantic state of a program is, as seen in Section 3.2, a program point
associated with an environment. Consequently, the setnodustic states of a
program is a subset of

P(Q % (Vp — Z))

Since the actual set of program points is not going to be attstd, it is suffi-
cient to consider the following set as the concrete domain

Q—>'P(Vp—>Z).

3.8 Abstract Interpretation in Static Analysis 37

That s, each program point is associated wiietf environments. Then, itis
sufficient to usé®?(Vp — Z) as concrete domain. In practical cases of analysis
(see Chapter 5), the real value domain of variables are sahtthematical set

of integer<Z but a finite set of integers, limited by the representatianteigers

in the computer. So by imagining a finite value domain,Bay, which means
the set of integers modul2s? and set

P(VP - ZQSQ) .

as the concrete domain. The number of elemenigdn— Zys: is (232)1Vr],
and the full domain has two to the power(@f?)/V*| as cardinality. Thus, even
with a finite domain, the size of possible program states@atsml with a single
program point grows i (2(2*)") wheren is the number of variables. Even if
this set is abstracted using an appropriate abstract dothaipossibilities to
abstract this set somewhat accurately is getting hard withynvariables. To
remedy this, the concrete domain can be approximated usitognain which
is not affected by the number of variables. Consider a fongti

Vp — P(Z)

as concrete domain. l.e., a function which associates eathble with aset
of integers. This is, a direct abstractionfVp — Z), as can be seen by for-
mulating the Galois-connectid®(Vp — Z), o, v, Vp — P(Z)) as follows:

aX) = .{o(v)|oceX}
v(o) ={ v.n|ne€o(v)}

The loss in this abstraction is that the relation betweeiakégs are abstracted
away; each variable is associated with a set of values imdkgrely of other
values, while before abstraction, a sefuwictionsof variables were associated
with a program point. In this abstraction there is no needhtdude the vari-
ables in the abstraction, it is enough to use the simpl®§&} as the concrete
domain, and perform analysis once per variable. Since therete lattice does
not grow in number of variables, the analysis is much lessigeato the num-
ber of variables. To summarise, performing analysis ovectincrete domain

PVp —7Z)

is calledrelational abstract interpretatioysince the relation between variables
are preserved through the abstraction. Using the concosteith

Vp — P(Z)

38 Chapter 3. Framework

is callednon-relational abstract interpretatiobecause no relation between
variables are preserved. The choice of concrete domain ¢ansequently,
also abstract domain) is a trade-off between computatammaplexity and pre-
cision. A non-relational domain is much simpler and fasteartalyse but loses
more precision than a relational one. In Section 3.9 somegadtglomains of
both classes are presented.

3.8.3 Terminology in Abstract Interpretation in Static Anal-
ysis

It is often necessary to talk about abstraction in diffetapers, therefore it is
necessary to have a terminology for the abstract countsrpfwalues, envi-
ronments and states. This terminology in turn depends dreifibstraction is
relational or non-relational. In this section we shall malear definitions of
the terms used in the rest of the thesis and what they mearfirsheefinition
mainly concerns non-relational abstract domains.

Definition 17. Let(P(Z), «,y, A) be a Galois-connection, then
e Anelement € A shall be referred to as aabstract value
e Anelements € (V — A) is called anabstract environment
e Anelement’ € Q — V — Ais called anabstract state

Note that all these sets can be seen as lattices, in partithdsy can be
seen as abstractions of the concrete counterparts. Thergdé the lattices
are given below. Lez and 6 be abstract environments, then

G Ly 0 oYWweV:o(w)Ta 0(v).
Similarly, lets ands’ be abstract states, then
sCss’ ©Vqe Q:s(q) Ex s'(q)

For relational domains, a similar terminology is used, bithwa slightly
different meaning.

Definition 18. Let<7?(V —Z), a7, 5 > be a Galois-connection, then

e Anelements € X is called anabstract environment

3.8 Abstract Interpretation in Static Analysis 39

e Anelement’ € Q — Y is called anabstract state

Note that in a relational domain it does not make sense toatadiut "ab-
stract values” since the abstraction is directly on theremvhents. Also notice
that the termabstract environmergndabstract statere similar enough to use
on both non-relational domains and relational domainsautttausing confu-
sion. So in summary, for non-relational and relational dmmave shall use
the notationA for the set of abstract valueg; for the set of abstract environ-
ments andS for the set of abstract states, all subscripted with the amog
under consideration if necessary.

3.8.4 Abstract Interpretation over Flow Charts

Our representation of programs are flow charts, so a stasitysisa needs to
be defined over such. This section will define the abstracaséimfunction
7 : S8 — & forthe different types of arcs in a flow chart. For any are Q
we shall denote its predecessor arcgas. For merge nodes, which have two
incoming arcs, the second is denotggd. . In the following, a partial definition
of 7 is given for every type of program point.

Start arc. At the start argg, hothing is known about the values of variables,
except possibly the variables which are correspondingpatiparam-
eters. However, assuming that the abstract interpretéioorrect for
all possible combinations of input, we make the assertion thttimg
is known about the input parametér$laving said this, the natural def-
inition of an abstract state associated with the initialesthould be as
follows:

TN =T

Assignment arc. An assignment arc is an arc which emerges from an assign-
ment node. An assignment node has an assignment e associated
with it, wherex is a variable an@ is an arithmetical formula. The ab-
stract function should equal to the previous abstract enwirent with
the variablex updated to the abstract valueafas follows:

7 (5)(a) = S(gpre) [z — afe)]
wheref|[x — y] for a functionf means

flz =] :)‘v~{ z}(v)

3In some cases it can be useful to put known constraints omifie state though.

fo==a
otherwise.

40 Chapter 3. Framework

Note that the computation af(e) requires abstract versions of all arith-
metical operations ii.

Merge arc. A merge arc is an arc emerging from a merge node. A merge
node combines the analysis results of the two incoming arhse. least
abstract value which is correct with respect to both incagmialues is
the supremum of the these. In addition, if the merge nodedsetiiry
of a loop, then that is a good place to put the widening, if thetract
domain requires that. Thus, the abstract transition fonctbr merge

nodes is
7 (8)(q) = S(¢)V(S(gpre) U S(qpre)) if loop merge
T (S) (Q) = S(Qpre) u S(Qpre/) otherwise

Conditional arcs. The conditional node has two outgoing arcs. While there
seems to be no standard approach of handling conditionaladio-
relational domains, we shall adopt the same approach asH8TRA A
more elaborate and constructive method is presented irD@GuSondi-
tionals are resolved by relations, so for an abstract doih@inecessary
to have abstract version of all relations. An abstract i@tét a function
< : A" — bool |, wherebool | is the lattice shown in Figure 3.6. The
outgoing arc then reflects the largest (wk) abstract value which is
at leasttrue respectivefalse. For a conditionah <= b, the transfer
function for a true-arg is as follows:

7(8)@) =||{ 7 = S(are) | 7 (2) 2 7 (b) true}.

Similarly, the transfer function for a false-aygs:

7(8)@) =]{5 CStame) | 5 () 2 5 (b) C galse}.

3.8.5 Abstract Interpretation Example

To see how abstract interpretation is used in practicest#dtion shows a thor-
ough example of applying abstract interpretation to progkadepicted in Fig-
ure 3.2 on page 18. The sign abstraction presented in Sekffoh is used
in the abstract interpretation. The sign abstraction isranedational domain

3.8 Abstract Interpretation in Static Analysis 41

Figure 3.6: The lattice of Booleam®ol |

since it is an abstraction @*(Z). The equations defining is as follows:

a)=|]{7 £ 5|72 7 @) C true}
() (@) = |{? S S@)| ()2 & (n) C false]
7 (S)(as) = Sli = S(a) @) T a(1)]

As seen in the calculation f@g, an abstract operation far is needed to eval-
uate the abstract value. This set of equations is the sanadl foon-relational
abstract domains, to make it more specific for the sign doymegrcan specify
a more sign-domain specific set of equations,

7 (9)(q0) = Tsign

7 (S)(q1) = S[i — O]

7 (9)(g2) = S(q1) U S(gs)

7(S)(as) = || {7 £ S(@) | 7()Z 7 (n) C true}
7 (S)(a1) =|_| { G CS(g)|d(@)2dmC false}

7 ()(gs) = S[i = S(aa)(@) + +]

Note here that widening is not necessary since the sigicdatbes not contain
any infinite ascending chains. The abstract semantids isf now specified
as the fixed point of the functiorr , and can be computed by the iterates of

7™(L). So setS = Ag.L, then the first iterater! will contain the following:

42 Chapter 3. Framework

[

7 (L)(q)=T

7H L) (@) = L[i— 0]

71 (L)(g2) = L[i — 0]

71 (L)(gs) = L[i — 0]

7 (1) (qa) = L[i — 0]
THWL)(gs) = L[i—0F + = +]

We use Jacobi iteration here, i.e., when computifig(L)(g,,) we use the
values computed fof (L)(g,,) for allm < n, and 7371(L)(g,) if m > n.
New here is the calculation of the abstract operation, but it should be
obvious that a positive value added to zero is again a pesithlue. Next
iteration:

72 L)(q) =T

72 L)(q) = L[i — 0]

72 (L)(q2) = L[i—T]
72(L)(g3) = Lli— T]
72(L)(qa) = Lli— T]
T2(L)(gs) =Lli—TF +=T]

The reasori maps toT in 7 2(_1)(g2) is that the union of the values from
andgs gives rise to the computationJ 0 = T. The third iterate will be equal
to the second one, meaning that a fixed point is reached aneshé is the
least fixed point. The sign lattice is a very simple latticeadoxed point could
be reached really fast (3 iterations), but as seen, not mfohnation about
the program has been obtained; all that can be said now ig thiltalways
be zero aty;. Note that nothing can be said aboufor any non-relational
abstraction since is never assigned any valuein

3.9 Abstract Domains

In this section we will give examples of a few abstract doreawmmmonly used
in literature. All domains used in this section abstracts séintegers (since

3.9 Abstract Domains 43

-« [~ > =) D
I @ @ Z &
2O QOQQOES -- [+ < = e
eSO z €3] < -] ®
22O OQ I @] e ®
OO S O z e e e =
(a) Interval domain (b) Congruence domain
A h
2o e 2
20O 29D
220D 2SSO
PSSO SOTS 20O STOS
(c) Octagon domain (d) Polyhedral domain

Figure 3.7: Examples of abstract domains. The black dot®espond to the
set which is being abstracted, the others denotes ovepxzippation.

this is the most common abstraction), and with simple maatifims they can
all be used to abstract the collecting semantics of a program

This section is divided into two parts, one which handles-redational
domains, which use®(Z) as concrete domain, and the other one presents
relational domains, which usé®(Z™) as concrete domain (note that this is
equivalenttoP(V — Z) if [V| = n).

3.9.1 Non-Relational Abstract Domains

Non-relational domains all have in common that they arerabsbns of the
setP(Z). Non-relational domains can be used to quickly determiop@rties

44 Chapter 3. Framework

of program variables independently.

The Interval Domain

One of the most commonly used abstract domains is the intsowaain [CC77].
The interval domain has a simple representation consisfitige form[a,] for
non-bottom values, wherg b € ZU{—o0, oo}. The interval domain abstracts
a set of integers as an interval of integers ranging from thennum element
to the maximum. The details of the lattice is given below:

[a,b] C[a, 0] & a>ad ANb<V
[a,b] U [d’,b] def [min(a, a’), max(b, b')]

(a,b] M [a’, 6] % [max(a,), min(b, b')]

[N
h

T = [—00, o]

Note that if the result fromm by two intervals results in an intervgd, b] where
a > b, itis interpreted ag..
The abstraction and concretisation functions are as fallow

a(@)=1
a(A) = [min(A), max(A4)]
(L) =2

Y([a, b)) ={n€Z|a<n<b}
The interval domain contains infinite ascending chainsh ssc
[0,1]C[0,2] C ... C [0, 0]

indicating that a widening (and narrowing) operation netedse introduced.
The widening and narrowing suggested in [CC77] are

[a,b]V[a', V'] = [if ' < athen — cc elsed’, if b’ > bthenoco elseb’]
The narrowing can be defined as follows
[a,b]Ala’, V'] = [if a = —oo thena' elsemin(a, a’),
if b = oo thend’ elsemax (b, b’)]

The interval domain is used to find upper and lower bounds nébbkes and
have been is commonly used in WCET analysis [GESLO7, TheUAg do-
main is depicted in Figure 3.7(a).

3.9 Abstract Domains 45

The congruence domain

The congruence domain was introduced by Phillippe Grangf®ia89] and
is somewhat of an orthogonal concept to the interval donigie. congruence
domain abstracts a set of integers to their least possilbigraence class. The
abstract elements are on the form+ kZ for non-bottom values The details
of the lattice is given below:

m+kZCm +EZem—-—m' cek’ZANEZ CEZ

m+kZum +k'z <

m+kZOm' +k'Z

def [m"” +lem(k,ENZ fm”" em+EkEZNm' +EkZ
] L otherwise

T=0+1Z

m + ged{|m —m/|, k, k'}Z

Hereged andlem stands for thegreatest common divis@nd theleast com-
mon multiplerespectively. Both can be applied to pairs (indicated byepar
thesis) or sets (indicated by set-notation). The abstma@nd concretisation
maps are defined as follows

o(2) =
(A)—a0+gcd{|a—a||a a e AtZ
(m—|—kZ)—{m—|—kn|n€Z}

(L) =

whereaqy is the least non-negative numberAn The intention of the invention
of the congruence domain was to aid compilers to performnaatic vectori-

sation [Gra89]. The congruence domain has successfully bsed in con-
junction with the interval domain (see Section 3.9.3). Thendin is depicted
in Figure 3.7(b).

3.9.2 Relational Abstract Domains

Relational abstract domains abstract the/¥gt™) (or equivalentlyP(V — Z)

for n = |V|) wheren is a fixed number of dimensions. The number of dimen-
sions usually correspond to the number of variables whiduishbe analysed

in the program. The complexity of these domains are direetgted to the

“This can be read as "all elements which are equahtmodulusk”

46 Chapter 3. Framework

number of dimensions. The domains presented in this seat®all restricted
to preserve only linear relationships between variablés means that the ab-
stract functions provided for these domain are restriatdohear assignments,
meaning that non-linear assignments will in most cases fresented by the
respective domain’s top value.

The Polyhedral Domain

The polyhedral domain [CH78] approximates a set of integentp in n-
dimensional space by the smallest (wrt. inclusion) possianvex polyhe-
dron enclosing all points in the set (see Figure 3.7(d)). Avea polyhe-
dron can be represented in two ways, one being a system air linequal-
ities Ax < b, the other being a set of vertices and rd¥5 R) where the
vertices represents the extreme points of a polyhedronyanregpresents in-
finite lines in one direction in case the polyhedron is unlomeh Both these
representations need to be used in order to efficiently coenine infimum
(concatenation of linear inequalities) and supremum (ater@tion of rays
and vertices), as well as a method for converting betweesetiwo repre-
sentations. The ordering in the lattice of convex polyhésgiisimply the set-
inclusion operator. Convex polyhedra have been used irraeapplications
[BJT99, HPR94, Ben02, BL08], and there exist a few open soimplemen-
tations of the domain [New09, Par09, Pol09, Apr09].

The Octagon Domain

The octagon domain was suggested by Miné in [Min01], and rislaional
domain where a set of integer points are enclosed by the eshglbssible
octagon. An octagon can be expressed as a set of constrairitee dorm
+x + y < ¢. The octagon domain is less precise domain than the polghedr
domain, but in compensation it is much more efficient. Octsgoan effi-
ciently be represented lgifference bound matricemnd graphs. There is an
open source implementation of the octagon domain avai[&@ge9, Oct09].

An approximation of a set of points using the octagon domsishiown in
Figure 3.7(c).

The Linear Congruence Domain

In [Gra91], a generalisation of the congruence domain isereed. This do-
main derives the congruence relationship between dimesgi@riables) and
is represented by a system of linear congruence relalens m mod k.

3.10 Overview of the Framework 47

3.9.3 Domain Products

To increase the precision of an abstract domain, it is ptestibcombine do-

mains to have an abstract domain which captures the prepattiseveral ab-
stract domains. This is known agpeoductof abstract domains [CC79]. The
direct productof two abstract domaind andB is defined as the Galois con-
nection{C, «,y, A x B) where

a(c) = (aa(e), ap(c))
7((a, b)) = v(a) (D).

However, this connection does not preserve Galois ingextimeaning that
the domains in the product do not take advantage of each. othepracti-
cal terms this means that this is equivalent to simply pemnfog the analysis
twice; once for each domain and taking the intersectionsilte. However, in
many cases the domains can provide information for eachr tdhgive more
precise results. This can be achieved viartticed produciwhich is defined
by introducing an equivalence relation on the abstracteshnd considering
the abstract domain modulus this equivalence relation. thaws done techni-
cally depends on each pair of domains for which the reducediymt is defined.
A common reduced product domain is the reduced product dhteeval and
congruence domains [ES®7, Min06, VCKL05, BR04a].

3.10 Overview of the Framework

In this section we give an overview of a static WCET analysisnework
based on abstract interpretation and counting of abstratomments. This
is a framework based on standard static analysis technanees conforms to
the classical layered model with flow analysis, low-levehlgis and calcu-
lation. The basic idea is based on computing a set of possiates at each
program point (i.e., the collecting semantics of a programj observing the
fact that the number of states is an upper bound of the timesatiprogram
can be visited (see Section 3.4.1), and thereby the WCET obgram can
be approximated by the equation (3.2) on page 25, subjedartsti@ints ob-
tained from structural analysis and flow analyses. Howesiage collecting
semantics is undecidable in the general case, the statesrapted using ab-
stract interpretation. The abstract states are usualhgsepted by well-known
mathematical spaces, and by counting the discrete elenretitese spaces,
an upper bound of the number of program points is obtainedtHeointerval

48 Chapter 3. Framework

Figure 3.8: Abstract environment associated with the bddysimple nested
loop

domain and other finite simple non-relational domain, thentimg of discrete
points is fairly straightforward, whereas in relationahtiins such as the poly-
hedral one, counting integer points might be more complex.

3.10.1 Slicing

While WCET analysis in general can benefit from using progsiaing (see
for example [SEGLO6]), it is an integral part of this framewio The set of
possible states in a program serves the basis as upper bafiprdgram points
and the more combination of variable assignments therettaedarger these
sets become. However, non-control variables do not cangito the upper
bound of the execution count of any program point as seen aid®e3.5.

Thus, slicing can be used to remove all non-control vargble

3.10.2 Overview of Loop Bound Analysis

To derive a loop bound of a loap the following steps are taken. First, slicing

is used to remove statments and variables which do not afteutrol flow.
Here non-control variables refer to variables which do rffeca the control

of the number of times the loop iterates. In addition, a sticiith respect

to the exit conditions of. are also made to remove statements and variables
which do not affect the number of times the loop iterates. nl @@ invariant
analysis is used to remove variables which are invariast @o not change) in

3.10 Overview of the Framework 49

the loop body. After that, abstract interpretation is useddrive a superset of
the possible states that are visited in the loop headerllitize elements in
the abstract states are counted to derive a concrete uppedloba loop. As a
simple example, consider the following program:
fori=1to5do
{Loop 1}
for j =1to4do
{Loop 2}
statement
end for
end for

The program point correspondingstatement is bounded by the num-
ber of possible environments associated with it. Usingrabsinterpretation
with the interval domain results in the environments shawRigure 3.8. Af-
ter slicing on Loop 2, the variablecan be taken out of consideration and it
can effectively be bound té. The loop bounds are then used as constraints in
the calculation phase to derive a concrete WCET. The amsalysiescribed in
detail in Chapter 4.

3.10.3 Overview of Parametric WCET Analysis

The parametric WCET framework is based on the same idea ésap&ound
analysis but requires some additional steps. The frameisgkesented here
similarly to the presentations in [BLO8, BEL09]. The goalloé analysis is to
derive a functioPWCETp : ZIZr| — 7 as the WCET rather than a constant
as in the classical case. The et is the set of input parameters 6f Thus,

the function take$Z | arguments which correspond to concrete values of the
input parameters of a program. This function is construatethe functional
composition of two other functions; tharametric calculation functio(PCF)

and theexecution count functidr(ECF). The parametric calculation function
of a programP

PCFp:N°rl 4 N

takes a vector of upper bounds (wh&e is the set of program points d?)

for each program poinin the program and returns the worst case execution
time given those bounds. This function is generated in theutaion phase

of the analysis. Thus, the calculation phase has to be dlteraparametric

5Named maximum execution count function in [BLOS].

50 Chapter 3. Framework

calculation. More on this in Chapter 6. The execution counicfion of a
programpP
ECFp : z77| — Nler!

takes a vector of instantiated input parameters and reanector of upper
bounds for each program point in the program. This functegenerated
during the flow analysis via abstract interpretation andtsylio state counting.
The composition ofPCF and ECF gives a function which takes a vec-
tor of instantiated input parameters and returns the werst execution time.
Formally:
PWCETp : Z¥*l - N=PCFp o ECFp .

Computing PCF p

The PCF p function is computed by a parametric calculation [LiSO3B08,
BELO09]. A parametric calculation works like the normal edation phase in
WCET analysis; it takes flow constraints and low-level as@lyesults and
calculates the worst-case subject to these constraints. difference is that
the result of the parametric calculation is a formula in teofsymbolic upper
bounds These symbolic upper bounds can be loop bounds, upper bamd
paths [Lis03b], or execution bounds on program points. Tvethods of para-
metric calculation have been investigated within this femrark: Parametric
Integer Programming (PIP) [Fea88] and the Minimum Progagaigorithm
(MPA) [BEL09]. These methods are discussed in detail in Gdrapand 7.

Computing ECF p

The ECFp function is computed in a very similar fashion as the looprimsi
By performing abstract interpretation to obtain super eétbe collecting se-
mantics of a program, and then counting the number of elesetite abstract
state an upper bound of the execution count of the progrant pas been com-
puted. However, the bounds computed should be in terms a@fiphe parame-
ters of the program. This can be achieved by using a reldtidrstract domain.
In a relational abstract domain information about the refeship between vari-
ables are preserved and can be used to compute tighter boDadsider the
following loop
for i = 1tondo
for j =1to4do
statement
end for

3.10 Overview of the Framework 51

Figure 3.9: A part of an abstract environment associateld tivé loop body of
a simple nested loop

end for
where the initial value of is an input parameter. Figure 3.9 shows a part of
an abstract environment associated wsititement computed using abstract
interpretation with the polyhedral domain. As seen, thecatien count of
statement depends on the variable

Chapter 4

Finding Loop Bounds

4.1 Introduction

This chapter outlines a methodology for finding loop bouratsgal on counting
elements in abstract states. This methodology was firstdotred in [ESG07],
and is shown here to illustrate the principles of countiregrednts in abstract
states and to further motivate the developments of the cemge domain as
shown in Section 5.3. A similar method has later been pregénfLCFMO09].

The loop bound analysis relies on the principles outlinedhapter 3. The
method is presented using non-relational abstract irg&apon since it in gen-
eral is more efficient that relational ditto. Since the numdsieelements in
an abstract state is an upper bound of the number of timegaircerogram
point can be visited, a loop can easily be bounded by couttiagglements
of an abstract state corresponding to a program point wisichsited inev-
ery loop iteration However, some additional techniques are needed to obtain
tight and finite loop bounds, namedicing andinvariant analysis Invariant
analysis [Muc97, ESG07] is a technique to find variables which ameariant
in a loop, that is, variables which do not change in the loogybdrinding
these variables are essential for two reasons: 1) they magdxtto prevent
the widening operation to severely over-estimate the tésuéven make them
unbounded) and 2) they may be used to substantially redecgzé of the re-
sulting abstract states. How this is done is explained idahewing sections.

53

54 Chapter 4. Finding Loop Bounds

Invarlz{nt (_ Loop bounds
analysis ~

Loop
invariant State counting
variables \

Slicing

interpretation \ states

Abstract Abstract

Figure 4.1: Workflow for the loop bound analysis

4.2 Slicing on Loops

To find out the bound of an individual loop, slicing can be &xpivith respect
to the exit conditions of the loop, to obtain a program slideeve most state-
ments and variables that do not affect the number of looptitars have been
removed. As an example, consider the following nested loop:
fori=1to10do
{Loop L1}
for j =1toido
{Loop L2}
statementl
end for
statement2
end for

Assume thastatementl andstatement2 do not affect or j directly or
indirectly. A slicing onL1 would result in the following loop:
fori=1to10do
{Loop L1}
end for

since neithel 2, statementl norstatement2 affect the number of iter-
ations of L1.

4.3 Loop Invariant Variables 55

4.3 Loop Invariant Variables

As mentioned in previous section, it is an important stephid toop bound
analysis to find loop invariant variables for the analysezpk Each loop.
has a set of loop invariant variabl&g defined as the set of variables of a
programVp minus the set of variables which are updated in the Ibop

A simple approach to find loop invariant variables is preséir [ESG07];
it simply searches for variables which are used in a (slitef) body but which
are not updated. In addition, the result from abstract prtgation may dis-
cover variables which are guaranteed to have only one valge (he interval
[1,1]). Such variables must trivially be loop invariant as well.

4.4 Restricted Widening

The widening operation can sometimes yield imprecise tesihce it may
not correspond to the least fixed point. Consequently, the bmund analysis
may not be able to bind some loops. When the widening is plpstdefore
a conditional, as the case is in our flow charts, the wideniag prevent the
conditional from properly prune the abstract states afterconditional. Fig-
ure 4.2 illustrates this problem. In the left part of the figua first abstract
interpretation iteration with the interval domain has bperformed. The sec-
ond incoming arc to the merge node, is in the first iteratiankibttom value.
The right part of the figure shows the second iteration whieeesecond in-
coming arc to the merge node mapnd; to [1, 9]. Since9 > 1 the widening
maps (see Section 3.9.1) this[fig oo]. This causes the true-arc of the condi-
tional to mapj to [1, co] where]1, 9] would have been more precise, yet still
correct. We will solve this problem by using a restrictednfioof widening.
This widening was used in the evaluation|BSG07] but was not explained
or proved to be correct.

We define theestricted widening operatov¢ : (Vp — A) — (Vp — A)
in terms of a widening operatar : (Vp — A) — (Vp — A) as:

Y (v) ifveC

XVeY = Aov. { XVY(v) otherwise

whereC' C Vp. To demonstrate the usage of the restricted widening, as-
sume thaty is a loop merge arc for a loop, and thatZ;, is the set of loop
invariant variables fol.. Let p, r be incoming arcs to the merge node, then the
corresponding data-flow equation for this node is:

56 Chapter 4. Finding Loop Bounds

i >[1,%]
J[1,=] jimissl

Figure 4.2: A widening is made just after the merge node. Thisses the
abstract values after the conditional to be grossly ovemeased.

7 L(5)(q9) = S(@)Vz, (S(p) L S(r))

This means that, in a non-relational domain, the wideningegormed
only over the variables which are possibly changed in thp.loo

The reason that this is a valid approach is as follows. (b€t)),.cn be
an infinite strictly increasing chain. This means that eitte variablev is
updated inside a loop, erdirectly or indirectly depends on a variable which is
updated inside a loop (sineemust be updated an infinite number of times in
order to cause an infinite strictly increasing chain). Cqounsatly, ifv is a loop
invariant variable for a loof. and (¢(v)),en IS associated with a program
point inside L, thenv must be either be updated insidaotherloop L’ or
be dependent (directly or indirectly) on a variablewvhich is updated in said
loop. This means that ther(v)),cy is an infinite strictly increasing chain
because it depends on another infinite strictly increashainc(c’ (v'))nen
associated with the loop’. Here, eithen”’ = v or v depends directly or
indirectly onv’. However, since’ cannot be a loop invariant di’, applying
the restricted widening 'z, , to (o' (v'))nen results in a ascending chain which
eventually stabilises, sineé ¢ 7, . ApplyingVz,, to (0(v))nen in addition,
would make also this chain to eventually stabilise, evemdio € Z;, since
the reason thao (v)),en Were strictly increasing was the dependency on the
strictly increasing chaifo’ (v'))nen.

4.5 Abstract Interpretation in Loop Bound Analysis 57

4.5 Abstract Interpretation in Loop Bound Anal-
ysis

Abstract interpretation is used in the loop bound analysi$irntd an over-
approximation of the set of states reachable inside a logpwilVillustrate the
loop bound analysis by using an example progf@f, shown in Figure 4.3.
This program is not doing anything useful; it is designeditcsirate the tech-
niques. Itis assumed to already have been sliced, thugiagsiould not be
able to remove any statements or variable$'#f. The program consists of a
nested triangular loop, and the developments of this chajilidoe devoted on
finding the number of iterations of the loop bodies. The twap® of TP are
Ly = {q2,43,44,95,98,90} and L2 = {5,496, q7}. However, slicing on’,
would remove{qu, g5, g6, g7, g3 } from it, leavingL; = {g2,q3,49}. Slicing
on L, would not remove any program points.

An invariant analysis may detect the set of loop invarian&des ag;,, =
{j}andZ, = {i}.

As seen in Figure 4.1, the next step is the abstract intefiwat We per-
form the abstract interpretation using three non-relai@abstract domains to
demonstrate that the achieved precision varies by usifeydift domains. The
domains used in this section are the interval domain, thgrmmce domain
and the reduced product of these two. The definition of th&adtssemantic
function for non-relational domains is defined as followsTaP:

58 Chapter 4. Finding Loop Bounds

Figure 4.3: Triangular loop prograt,P

4.5 Abstract Interpretation in Loop Bound Analysis 59

7(8)(a0) =T

7 (8)(@1) = S(ao)li — a({1})]

7 (8)(a2) = 5(a2)V(S(ar) U S(g9))

7(8)(as) = ||{7 C5(a) | 7 (3) < a({100}) C true}
7 (8)(as) = S(aw)lj — a({1})]

7 (8)(4s) = S(5)V 11y (S(a1) U S(ar)

7(8)(ae) = ||{7 CS(as)| () 2 7 (i) € vrue}

7 (S)(a7) = S(as)j — S(a6)(j) + a({1})]

7 (8)(as) = | {7 C5() | 70() 2 () C talse}
7 (S)(g0) = Sas)li — S(as)(0) + a({2})]
7(S)(a10) = | {7 C S(a2) | 5 () < a({100}) C talse}

Note that the definition ofr (S)(gs) uses restricted widening in the loop
invariant;. Using Jacobi-iteration over the interval domain result§able 4.1.
The third iteration is a narrowing pass on the final resud. (ireplacing all
widenings with narrowings). As can be seen, the use of oestriwidening is
crucial to find correct finite bounds on both loop countersrdfinary widening
was used in the definition of (5)(g¢s), the widening would have resulted in
i — [1, 00] in the second iteration of row 5. This in turn would have preee
the pruning of the conditional in7 (.5)(¢s), which would have yielded the
abstract staté — [1,0],j — [1,00] instead ofi — [1,100],5 — [1,100].
This illustrates the usefulness of the restricted widening

Table 4.2 displays the result of performing abstract ireation using the
congruence domain, and finally, in table 4.3, the reducedymioof these two
domainsis displayed. Note the synergy of the two domainsastie intervals
tighter in Table 4.3 compared to using the interval domairsalation as in
Table 4.1.

60 Chapter 4. Finding Loop Bounds
V | iteration 1 iteration 2
fll'?(J-)(O) (e [—O0,00],j = [—O0,00] (g [—O0,00],j = [—O0,00]
7L | i [1,1],5 [0, 00] i— [1,1],j — [—00,]
:1"2(J-)(2) (e [1’ 1]vj = [_OO’OO] i [1700]7.j = [—O0,00]
:1"2(J_)(3) i—[1,1],j — [—00, 0] i — [1,100], j — [—o0,]
7Y@ | i [1,1),5 = [1,1] i [1,100],5 — [1,1]
TE2A)G5) | i [1,1],5 = [1,1] i+ [1,100],5 — [1,00]
TL2(L)(6) | i [1,1],5 — [1,1] i+ [1,100], § — [1,100]
TL2)NT) | i [1,1],5 — [2,2] i [1,100], § — [2,101]
f1’2(J_)(8) i [1,1],7 — [2,2] i+ [1,100], 5 — [2, 00]
7 L2(1)(9) | i+ [3,3],5 — [2,2] i [3,102], § — [2, 0]
TE2(L)(10) | i L,j— L i+ [101, 00], j + [—00, 0]
A | iteration 3

fd(L)(O) i+ [~00,00], j = [—00, 00]

13(J-)(1) 1= [17 1]7j = [_007 OO]

73L)(2) | i [1,102],5 > [—o0, 00]

72(L)(3) | i+ [1,100], 5 — [—00, o0

T3(1)(4) | i [1,100],5 = [1,1]

73(L)(5) | i~ [1,100],5 — [1,101]

T3(L)(6) | i+ [1,100],5 — [1,100]

7T3(L)(7) | i [1,100],5 — [2,101]

T3(L)(8) | i~ [1,100],5 — [2,101]

T3A)9) | i+ [3,102],5 — [2,101]

73(L)(10) | i~ [101,102], j + [—00, 0]

Table 4.1: Jacobi-iteration using the interval domain

iteration 1

iteration 2

i—>0+1Z,j—0+1Z
i 1+0Z,§— 0417
i 140Z,j—0+17Z
i 140Z,j—0+1Z
i 140Z,j—1+0Z
i 140Z,j—1+0Z
i 140Z,j—1+0Z
i 140Z,j—2+0Z
i 140Z,j— 2+ 0Z
i 3+0Z,j— 2+ 0Z
i L L

i—0+1Z,5— 0+ 1Z
i—140Z2,j—0+12Z
i—14+27Z,5— 04+ 1%
i—14+27Z,5— 04+ 1%
i—1+272,5—1+0Z
i—1422,j— 0+ 1Z
i—1422,j— 0+ 1Z
i—14+27Z,5— 04+ 1%
i—14+27Z,5— 04+ 1%
i—14+27Z,5— 04+ 1%
i—1422,j— 0+ 1Z

Table 4.2: Abstract interpretation with the congruence diom

61

4.5 Abstract Interpretation in Loop Bound Analysis

N

i

P ~ S - T FeSE . g=
IR T esNgNe| B2 NefN8-g
Srrrgosgsy | 2r33IFHNIEIS PrelgiEi T r s
QYoocoscSSsSos QoI+ttt 8 Mo@Lwo+ooﬂw
oo+ +++++ IR IR TR s I oo R Gy o
8BBB 4 mm,yyhﬂﬂmﬂwm g8 g 8x88s+
Liddmmmama | (L8878 ad |[Lg 187 5= "a1
T S aa A ar <_FFEH7.EMB7Q< <_GFU7U7,H7.MB7QJ
ool HGMMMMMMMHH <1y {111l
'~) N = : <N
A A A A [A g O e (N S o e e e s
S S R B N oot oQN Rogoo oo oot
>>>>>>>>> — — —
1995999998 | JgRNRRNRRT Y PEYRERRARTS
= S+ B2 LA+ L=
— o =~ M e _”_ 1.”_ 777777 .”_1

adlg oo n s lla|lg R I TTDD O cm|goo e e o -
Sllicdoddsssss S| ldddddddasEs|llddddddsass
S=SESSEESSS 2SS oSS oSSl 2 =SSESSSSSSs
g1 11111111 TTg(I111TTTTTTT gl 11T TTTTTTI]I
PecanzbetrxaghPlctanzoestxwasdesanraobras
33333333335 33333333335 53333333335
1111111111 (2222222222(3333333333(
ATATATATATATAT:/ATATAT ATATATATATATATATATATMAT ATATATATATATATATATATMQT

Table 4.3: The reduced product of the interval and congreidomain

62 Chapter 4. Finding Loop Bounds

4.6 Counting Elements in Abstract Environments

Having obtained an abstract environment for each prograint pothe pro-

gram, we are now ready to extract loop bounds using thisimition. A safe
upper bound of the number of times a loop can iterate can baaat from

an abstract state corresponding to a program point whiclisites in each
iteration. Since an abstract state safely approximatesahef possible con-
crete states at that program point, the "size” of that abstravironment is an
upper bound of the number of loop iterations. &t a,~, M) be a Galois-
connection, then we define tkezeof an abstract value € L as follows:

lal = |v(a)] (4.1)
The size of an abstract value in the interval domain is tloeeef

L =) =[2] =
|[a, b]| = [7(la,])I—l{n6Z|a<n<b}|—b—a+1
Tl =Ml =12 =

for the congruence domain the sizes are
|1l =] =0

|m + kZ| = { {m +kn|n €Z} =oco otherwise

Finally, the size of a value in the reduced product of therirakand congruence

domainis
[Lf=]2|=0

[{[a,b],m +EZ) =|{m+kn|ne€ZNa<m+kn <b}
_[b—a+1
N k
[T|=1Z] = 00
The size of an abstract environment is an upper bound of theution

count of its associated program point and thus a loop boumhe. size of an
environment can be derived by the following formula:

71=1]17

veEVY

4.6 Counting Elements in Abstract Environments 63

This corresponds to the actual number of possible envirotsnassociated
with a program point. To bind a loop, we look at the elementtai aloop
representativei.e., a program point which is guaranteed to execute gxactl
once in every loop iteration. To avoid over-estimations,inimum count of
all possible loop representatives should be chdsen

4.6.1 Example of Loop Bounding with Intervals

We illustrate the loop bounding process by considefingand Ly from T'P.
The set of possible representativesigfis {¢s}, note thatg> shouldnot be
included in this set sincg; may also execute outside the loop. The set of
representatives fok is {gs, g7}, and by similar reasoning;s should not be
included in this set. First we compute the upper boundofising the interval
domain.

q3 = |[Z = [17 100]7j = [—OO»OO]H
= |y([1, 100])| (sincej is disregarded)
=[{z|1<2<100} =100
By slicing of L, and also by invariant analysigcan be completely disre-
garded from the loop bound analysis here, resulting in a lmmd of100.
To compute the bound fdr, we proceed in a similar fashion, sin€g, =

{i}, we can disregarticompletely for the purposes of element counting. This
is becauseé remains the same during the executiorief Thus, we have

g6 = |[i = [1,100], j ~— [1,100]]|
= |7([1,100])| (sincei is disregarded)
=100

qr = |[l = [17 100]7j = [27 101]“

= [y([1,100])]
=100

The minimum of these ar)0, which is the derived loop bound fdr,.

lin[ESGT07] it is suggested to simply choose one representativeshiiiclearly possible but
might lead to over-approximations.

64 Chapter 4. Finding Loop Bounds

4.6.2 Example of Loop Bounding with Intervals and Con-
gruences

To illustrate the differences between abstract domainsyilelso calculate

the loop bounds using other abstract domains. The congesstract domain

is not useful in itself for computing loop bounds, since edoxdtvalues in most

cases correspond to infinite concrete sets. However, by itsim conjunction

with the interval domain via the reduced product, tight@pldoounds can be

found. To illustrate this, we make the following computasdased on the
results of Table 4.3.

gz = |[i = ([1,99],1 4 2Z) ,j + ([~o0, 00],0 + 1Z)]]
= |7([1,99],1 + 2Z)| = 50

Thus, we can safely bountd, to 50, which in this case is an exact bound.
Also L, can be bound tighter, as suggested by the following:

g6 = |[i — ([1,99],1+2Z) , j — ([1,99],0 + 1Z)]]
= |v({[1,99],0 + 1Z))| (sincei is disregarded)
=99

g7 = |[i — ([3,101],1 + 2Z) , j — ([2,100],0 + 1Z)]|
= [7(({[2,100],0 + 1Z))]
=99

So, L, can get a slightly more precise upper bound®f

4.6.3 Limitation of Non-Relational Domains

The loop bounds derived using the technology outlined iwviptes sections
derives local loop bounds by the use of loop invariant vaeisb However,
an abstract state derived for a program point can also be tosddtermine
an upper bound of the total number of times that that prograimtgan be
visited. As an example, counting the number of elementsrogiam poiniys;

4.7 Evaluation 65

gives, when using the reduced product, an upper bourd ofil00 = 4900.
While this is a safe upper bound, it is not very precise. Thibdcause the
abstract interpretation does not take the fact that theboomd of L, changes
depending on the value efat that point. In other words, the loop counger
of L, is dependent on the value ©f A non-relational abstract domain fails to
take advantage of this fact, which leads to an unavoidalde-approximation.
The solution to this is to use a relational abstract domaiithviracks some
of the relations between variables, and thus can be abletéztdhese kind
of dependencies. A relational abstract domain is more esiperno use in
analysis but can capture some of these essential depeadeiibe loop bound
analysis in [LCFMO09] uses the polyhedral abstract domainHis. The use of
relational abstract domains will be more thoroughly exadiim Chapter 6.

4.7 Evaluation

An evaluation of the method outlined in this chapter was nmiafESG07]. In
this publication, 28 benchmarks from the Malardalen WCERdhmark suite
(see [MDHQ9]) where analysed. The method was evaluatedj tiseninterval
domain and the reduced product as described above. Thesartaityds 63% of
the loops in the benchmarks and 51% of them are bound ex&otlygix of the
loops, a tighter bound was found by using the reduced praafubie interval
and congruence domains compared to when using only theséhtdomain.
Table 4.4, taken from [ES@)7], shows the results from the evaluation. Here
#LC is the lines of code#L is the number of loops#B is the number of
loops bound by the analystB is the percentage of loops bountk is the
number of loops bound exactB6E is the percentage of loops bound exactly
and finally,Time is the execution time of the analyis (implemented in SWEET
[WCEQ9]) running on a 3 GHz PC running Linux.

[Program [#LC] #L| #B] %B[#E| %E][Time]

adpcm 879| 27| 18| 67%| 8| 30%| 48.6
bs 114/ 1] 0| 0%| O 0% 0.81
cnt 267| 4| 4|100% 4|100% 0.24
cover 640/ 3| 3|100% 3|100% 0.32
crc 128 6| 6{100%| 6]100% 0.11]
duff 86| 2| 1| 50%| 1| 50%| 0.04
edn 285 12| 12|100% 9| 75%| 0.71]
expint 157 3| 3{100%| 3[100% O0.04
fac 21| 1| 1|100%| 1|100% 0.01
fdct 239| 2| 2|100% 2|100% 0.05
fftl 219 30| 7| 23%| 3| 10%| 5.39
fibcall 72| 1| 1|100%| 1/100% 0.01
fir 276| 2| 2|100%| 1| 50%| 0.38
inssort 92| 2| 1| 50%| 1| 50%| 0.54
jcomplex 64| 2| 0| 0%| 0| 0%| 0.04
jfdctint 375 3| 3[100%| 3(100% 0.06
lcdnum 64| 1| 1|/100% 1/100% 0.01
ludcmp 147| 11| 6| 55%| 5| 45%]247.6
matmult 163 7| 7{100%| 7{100% 0.51]
ndes 231 12| 12|100% 12|100% 3.11
ns 535 4| 1| 25%| 1| 25%| 91.9
nsichneu 4253 1| 1[{100% 1({100% 1.11]
prime 535 2| 0| 0%| 0| 0%| 0.05
gsort-exam 121 6| 0| 0%| O] 0%| 76.4
qurt 166 3| 1| 33%| 1| 33%| 0.09
select 114 4] 0| 0%| O] 0%| 19.6
statemate 1276 1| 0| 0%| O] 0%| 1.00
ud 161 11 11{100%| 10| 91%| 0.53
|Tota| | -|164| 104| 63%| 84| 51%| |

Table 4.4: Benchmark programs and result of loop bound aisafiaken from
[ESGT07])

Chapter 5

The Congruence Domain

5.1 Background

This chapter investigates the congruence domain inventdtl Granger, pre-
sented in [Gra89]. The congruence domain was implementediie static
WCET analysis tool SWEET [WCEOQ9] to produce tighter loop bdsi (see
[ESGT07]) and as a complement to abstract execution [GESLO07]t \éra
sion of SWEET operated on an intermediate level languadeccBliC (New
Intermediate Code). SWEET uses an internal compiler dpeelby a research
group at Uppsala University which compiles C code into NitCtHe compila-
tion some type information is lost, such as if an integergasd or unsigned. In
addition, the intermediate format commonly uses lowerlleperations such
as bit-shifting and logical bit-operations. This chaptergents necessary de-
velopments of the congruence domain in order to able to paréotight and
safe analysis on intermediate or low-level code.

5.2 Analysis on Low-Level and Intermediate-Level
Code

The theory of abstract interpretation is, usually in therliture, formulated
over abstract representation of programs (like in thisifieand the abstract
domains are based on this abstract model of programs. Td apekial cases
and language dependencies, the domains, including thsiragh operations
are usually given over basic mathematical sets of numbikesZ| N, Q or R.

67

68 Chapter 5. The Congruence Domain

While maintaining clarity and language independence, itiletb actual pro-
gram code is getting lost. When analysing real code on ami&giate or ob-
ject code level, the structures looks highly different.sEwof all, numbers can
not be arbitrary large as they are usually represented afipigs. In addition,
the operations performed on program variables are noticestrto common
arithmetical operations; bit-string operations such aftis and logical oper-
ations are often applied. Abstract domains as found irdlitee usually do not
take these things into consideration. This requires extsaarch to make the
domains practically usable when analysis is performed loveor intermedi-
ate level code.

In this chapter, we shall focus on developments of the cargre domain
(see Chapter 3). Related work to this section is the work ofiéd’and Olm
[MOS07, MOSO05] which investigates the congruence domaar aunore re-
alistic concrete domain. Another related work with the @safthe reduced
product of the congruence domain and the interval domainbioea is pre-
sented in [RBLO6], where the developments requires the tvoains in con-
junction, while our work is provided for the congruence damia isolation.

5.2.1 Assumptions

To motivate the developments of this chapter, we shall md&e@assumptions
about the system for which we want to apply the analysis. &lagsumptions
are safe for most modern systems, independent of sourcedgegr platform.

e Integers are represented by a fixed number of bifasually 16, 32 or
64). When an operation results in a larger or smaller number taa
which be represented by bits, either a run-time error is caused or the
number is wrapped-arouhd

e An integer represented by a stringrobits can be interpreted aggned
(in the rangg—2"~1 27~ — 1]) or unsigned(in the rangd0, 2" — 1])

¢ Integers may be computed as a result from and/or as argumnoefiuisc-
tions over bit-strings such as shifting or bitwise logicpeeations

These assumptions have an impact on the formulation of s@siiy order
for them to be correct and precise. The following sectionglig the congru-
ence domain using the above assumptions as basis.

1That is, considered modul@g'.

5.3 The Congruence Domain 69

5.2.2 Two’s Complement

The most common way to represent negative numbers in bioanyat is the
so-callediwo’s complementThe two’s complement of a binary numbBris
obtained by first reversing all bits (i.e., performing a iNOT) and then
adding 1. For example, the two’s complement of the binary Ioeni101 is
1011. Negative numbers can then be recognised by the most seymifiut;
a zero as least significant bit means a positive number, amednoplies a
negative number. Thu$101 would be interpreted a5 and 1011 would be
interpreted as the negation of the two's complement, thatid10 = —5. If
the two’s complement is used to represent negative numthens,an integer
is calledsigned and if it is not (i.e., if1011 would be interpreted normally, as
11), then the integer is callaghsigned

5.3 The Congruence Domain

The abstract domain of arithmetical congruences was peapbg Philippe
Granger in [Gra89]. The domain approximates a set of integera residue
class, i.e., as a class of integers which are equal imodulusm. This do-

main was used in the developments of Chapter 4 to obtairetigddp bounds.
The domain as proposed in [Gra89] has several problems éthgsumptions
outlined in Section 5.2.1:

e The domain is presented as an abstractio®(£), while we consider
integer valued variables which are represented by a fixedpuof bits.

e The domain does not take ambiguous interpretation of imsgigéo con-
sideration (such as signed/unsigned).

¢ In the original presentation, abstract operations wergdiito common
arithmetic operations such as addition, subtraction, iplidation, divi-
sion and modulus. In lower level code there are more operatioat
need to be taken into consideration such as bitwise logipataiors,
bit-shifting etc.

In this chapter we will enhance the congruence domain byraddip-
port to use it in intermediate or low-level code. This will dene by adopt-
ing an abstraction of the latticB ({0, 1}") rather thanP(Z), and develop-
ing lower-level abstract operations for the congruencealomrhe definition
of the congruence domain and its lattice operations are sttowpage 45 in

70 Chapter 5. The Congruence Domain

Chapter 3. The lattice of arithmetical congruences is reteto as”'(Z) in the
following. For completeness, we here present the defindf@ome arithmetic
abstract operations as presented in [Gra89]. We will usedmgention that
ged(0,m) = m,lem(0,m) = 0,lem(1,m) = 1,gcd(m,n) = ged(Im/|, [n|)
andlem(m,n) = lem(|m|, |n|). Letmy + koZ andm, + k1Z be two non-
bottom abstract values of the congruence domain, then

(mo + k‘oZ) + (m1 + k‘1Z) déf mo = mq + ng(kQ, kl)Z
(mo + koZ) * (m1 + k1Z) 2 momy + ged{mok, m1ko, kok1 }Z

(mo + k‘oZ)* IH.O\d (m1 +]C1Z)+ déf mo + ng{k‘o, mi, k‘l}Z

(mo + koZ), div (m1 + k1Z)4 < 0+ 17

wheremod is the modulus operatatijv is integer division and.. 4 SnNand
Sy ' en Z, forall S C Z. The operationt denotes the abstract versions
of the operations- and—. Sometimes, when one operand is a singleton set, it
is possible to give a more precise result.

Letm + kZ be an abstract value,+ 0Z be a singleton abstract value, and
let N = k((a —m) div k)) + m. Then,

(m+kZ), diva + 0Z
def [mdiva+ (kdiva)Z if alk
|l 0+1Z otherwise
a+0Z div (m + k7).
def [0+ (adivN)Z ifN>0
| 04+0Z otherwise
(m + kZ) mod a + 0Z
det [mmoda+0Z ifalk
~ | m+ged(k,a)Z otherwise
a+ 0Z mod (m + kZ)4
a—+0Z if N <0
=< a+ged(m,k)Z ifadivN =1
a+ N(adivN)Z ifadivN >2

5.4 Integer Representation 71

5.4 Integer Representation

As mentioned in Section 5.2.1, the concrete donfjfi) is not correct with
respect to the outlined assumptions, since integers aredrby the reserved
memory to represent them and the fact that "overflows” rés@trors or wrap-
around effects. Muller and Olm [MOS07, MOSO05] have suge$d use an
abstraction of the domaiR(Z/nZ) to remedy the situation. The s&y2"7Z
contains all co-sets of the Abelian groip That is, all integers are considered
modulo2™. If n is the number of bits used in the system, the elemerifsoZ
has the nice property of simulating wrap-around effects.ifkstance, in a 32-
bit system, elements would represent equivalence classésas5 + 2327,
meaning that any operation on this set would still be corezen if out-of-
bounds. The drawback of this approach is that the class ajrcences de-
tected are limited to a power of two. The reason for this i thast lattice
computations involve a computation of the greatest comnigsat, and since
all classes are powers of two, the domain can only presee/grimatest com-
mon divisor when it is a power of two.

Before analysing congruence invariants on low-level coddave to make
a decision. We may:

1. Use the less precise analysis over the abstract dof@yi2"Z). This
amounts to deriving invariants of the typec b + 2*Z, which is the
same as knowing thee least significant bits of a variable.

2. Rely on the assumption that no overflows (or underflows) o@gur.
While this in theory could yield unsound results, it is a m@ble as-
sumption to do if the user of the analysis by other means cauteethat
no overflow (underflow) can occur in the program to be analysed

3. We could use the analysis in conjunction with another orsee where
possible overflow/underflows can occur. For instance, theaed prod-
uct of the congruence domain and an interval domain desifgmdihite
domains can find program points in which overflows/underflamesim-
possible and for other program points consider the abstediges mod-
ulo 2™.

We will in this thesis use the second item approach, sincevésgthe
most precise result. From now on we will assume that no owesflor un-
derflows are present in the program we wish to analyse. Owgestign is to
useB™ = P({0,1}") as concrete domain, and abstract the congruence domain
via functions which interpret bit-strings as integers. &tbtat this approach is

72 Chapter 5. The Congruence Domain

Figure 5.1: Relation between bit-representations angérse

actually general and could potentially be applied to othstract domains to
solve similar problems.

5.4.1 Signed and Unsigned Integers

In this section we introduce three Galois connections, siigithe set of bit-
stringsB™ as basis and the lattice of arithmetical congrueit@) as abstract
domain. The first Galois connectigh; = (P(B"), o, yu, C(Z)) is used for
unsigned integers, the second Galois conneciipr- (P(B"), as,vs, C(Z))

is used for signed integers, and finatly, = (P(B"), a., v+, C(Z)), is a
Galois-connection which is safe to use independently ofrttexpretation of
the bit-strings. The definitions of these abstractions Higased on the origi-
nal domainCy, = (P(Z), az, vz, C(Z)) presented in [Gra89]. To define these
properly, we need to specify formally how to interpret kiirgys.

Definition 19. Let B™ be the set of all bit-strings of lengih Then we define
two interpretation functiongy : B™ — Zg and 6y : B" — Z{ where
Zp={zecZ| -2"" <z <2l -1}andZ} ={z € Z|0 <z < 2" —1}.
The functiordg is the signed interpretation of a bit-string adg is the regular
(unsigned) interpretation. Also we define the functigfis¢y; : Z — B"
which map integers (modul¥) to their respective sighed and unsigned bit-
string representations.

Figure 5.1 shows how the interpretation functions and tipeerentations
are related in a diagram. To get a set of integers that is safeatter how we
interpret the strings we introduce the functibnP(B") — P(Z) as

0" = AB.O%(B) U 0% (B).

5.4 Integer Representation 73

Suppose that we represent integerd tjts and that we want to find an ab-
stract value corresponding to the $&110,0110}. This set can be interpreted
as{—2,6} or {6, 16} depending on if we use signed or unsigned integers (i.e.,
depending on which version éfwe use). Therefore we define the abstraction
functions as follows

a's = ag 003
afy = ag o 0

ol = ag o0}
The last functiory” is used as a safe approximation no matter how we interpret

the bit-strings, i.e., it is safe to use for both signed ansigmed integers. The
concretisation functions are defined as:

Vs =¢507z
o= ¢ oz
Ve = dL oz

An example of the usage of the functions is given below:

a’({1110,0110}) = az 0 05({1110,0110})
= az({-2,6})
=—24+0ZL6+0Z
=6+8Z

o ({1110,0110}) = az o 6f,({1110,0110})
= az({16,6})
=16 +0Z U6 + 0Z
=6+ 10Z

As can be seen, different abstract values are obtained d&jgean the
interpretation of the bit strings. Using will obtain an abstract value which
is valid for both interpretations.

74 Chapter 5. The Congruence Domain

C(Z)

Figure 5.2: Relation between bit-representation and tsaatt domain.

a2({1110,0110}) = az o #2({1110,0110})
= az(03({1110,0110}) U ¢, ({1110,0110}))
= oz({-2,6} U {14,6})
=az({~2,6,14})
=-2+0ZU6+0ZU 14+ 0Z
=6-+8ZU14+0Z
=6+ 8Z

The relation between the different abstractions are degiict Figure 5.2.
To summarise, we replace the concrete dori(#) by P(B™). This makes
analysis on intermediate or low-level possible because:

1. The analysis is safe for both sighed and unsigned inteiy&sslso pos-
sible to make analysis safe when the interpretation is unwkAo

2. The analysis can handle overflows since ghiidnterpretation of an ab-
stract value only consider theleast significant bits of any integer.

3. The analysis does not assume that the number of integefmite.

2Using only this abstraction will lead to similar problemsiagMOS07, MOSO05], since only
modulus which are a power of two can be detected.

5.5 Abstract Bit-Operations 75

5.5 Abstract Bit-Operations

In [Gra89] abstract operations for addition, subtractiowiltiplication, divi-
sion and modulus is presented. This section will in addipoovide abstract
definitions of the bitwise operations AND, OR and XOR, as vesllabstract
versions of bit-shifting (left and right). Bit operationseaused even in high-
level languages as C, whereas bit-shifting operationsramdation are usually
found in intermediate representations or object code.eSirecare dealing with
three different Galois connectiod;, C's andC., we have to provide differ-
ent abstract functions for them. For an abstract functj%nNe shall use the
notations fy , fs and ﬁ respectively.

5.5.1 BitwiseNOT

The bitwiseNOT operation takes a set of bit-strings and returns a set of bit-
strings where all zeroes are replaced by ones, and vice.vétsaxample
NOT({0110,1101}) = {1001, 0010}. If the bit-strings are interpreted as in-
tegers, we see that

0s o NOT(B) = {~b—1|b € 0s(B)} (5.1)
0y oNOT(B)={2"-b—1|be€ 0y(B)} (5.2)
Equation (5.1) follows directly from the definition of twaé®mplement—b —
1 = (NOT() +1) — 1 = NOT b. Bitwise NOT for unsigned integers
is simply taking a string of ones (a string of. ones is represented by the
decimal numbeR™ — 1) and subtracting it with the original string, obtaining

(5.2). These facts can be used as basis for the definitiorealiktract version
of bitwiseNOT:

Definition 20. Letm + kZ be a non-bottom abstract value, then we define

NOTy, (m+kZ) “on —m—1+k2

NOTs (m+kZ) < —m—-1+kz
NOT, (m +kZ) < NOTy,(m + kZ) UNOTg (m + kZ)
=—m — 1+ gecd{k,2"}Z.

Proposition 5. The abstract operations in Definition 20 are correct appfoxi
mations of abstracdNOTg, NOTy andNOT,,.

The proof is trivial, it follows directly from (5.1) and (52

76 Chapter 5. The Congruence Domain

5.5.2 Bitwise Binary Logical Operators

The most common binary bitwise logical operators AtéD, OR andXOR.
These operations all take two bit-strings as argument$oimes the logical
connectives bitwise on the two strings, and returns theltteshile most
such behaviour destroys congruence relations, thereibusogte cases where
a modulus which is a power of two can be preserved. This sed#éines
an abstract version afND, from which the other two logical operations can
be derived by identities (such as De Morgan’s laws). The digfinof the
abstractAND requires some preliminaries. In the following, we shall y8e
to denote eithepg or ¢y when the result applies for both. Furthermore, if
x andy are integers, we shall use the notatioAND y for the expression
¢" () AND " (y).

Lemma4. Let2"Z = {2"k | k € Z} and letp™(2"Z) = {¢™ (k) | k € 2"Z}.
Then any for any bit-string € ¢"(2"Z), then least significant bits ob are
zeroes.

Proof. Take any element € 2"Z, thenk can be re-written ak = 2"k’ for
some numbek’. Multiplying a bit-string by two corresponds to shifting it
left one step (both for signed and unsigned integers). lheftiisg a bit-string
introduces a zero as least significant bit, and since 2"k’ the interpreted
string¢™ (2" k') corresponds to left shiftingf, n steps, thug™ (2"k’) = ¢™ (k)
has at least zeroes as least significant bits. O

Definition 21. Let A be a bit-string. Then we defing A) as the position of
the least significant (rightmost) "one” of, and M (A) as the most significant
(leftmost) "one” of A. The least significant bit of a string is considered to be
position0.

As an example of this, consider the bit-strib@01. ThenLZ(1001) = 0
since the least significant "one” is on position Also, M (1001) = 3 since
the most significant "one” is on position three. Furthermave have that
L(0110) = 1 andM (0110) = 2.

Lemma 5. Take the set8*Z and2*'Z such thatk > £/, then
0(2*Z AND,, 2¥'7) = 2*Z.

Proof. According to Lemma 4, the sef*(2¥7Z) contains only bit-strings that
have theirk least significant bits as zeroes. The result of "AND”-ing aoze
with anything results again with a zero, so the number ofitigizeroes ofk

5.5 Abstract Bit-Operations 77

will be in the result. Note thad is not subscripted since the result holds for
both signed and unsigned integers, in other wofdsan be replace with any
of fg, Oy orb,. O

Proposition 6. LetaZ, bZ be sets such thatandb are odd. Then
o™ (aZ AND4OZ) =0+ 1Z
The functiom™ represents all of the functions;, ag; anday.
We will prove the proposition using the following lemma.

Lemma 6. LetaZ, bZ be sets such thatandb are odd. Then
a™(aZ ANDy bZ) 2 2%7
for some non-negative integkr

Proof. Consider the element € aZ. Let L(¢™(a)) = k and consider the
element*p ¢ bZ and note that iR*b > 2" then¢™ (28b) = ¢™(2¥b mod 27)
which significantly means that the least significant bits o2*b are remains
the same. Nowg ANDy 2*b = ¢"(2*) since positionk will be the only
position where bothy™(a) and¢™(2%b) has a one. This can be generalised
to ¢ (2F+™) = 2ma AND, 28T™p for all non-negative integers.. Conse-
quently,¢™ (2™ +*) € aZ AND, bZ for all integersm. Now,

a(@"({2™* | m € N})) = 0+ 2*Z,
which implies thatv(¢" (2¥Z)) C aZ ANDy bZ. O
Using the result of Lemma 6, the proof of Proposition 6 caniterg

Proof. (of Proposition 6)

Letc = a ANDy b, thena” (aZ ANDy bZ) 3 c+0Z, sincec € aZ AND 4 bZ.
Now, a"(aZ AND, bZ) must be equal to or larger than the supremum of
the two elements + 0Z and0 + 2™Z since they are included (the latter by
Lemma 6). Bute 4+ 0Z U0+ 2™Z = 0+ ged(0,2™,2™ — ¢)Z. Sincea andb

are odd¢ must also be odd, thus, the greatest common divisor of tisemed,
implying thata™ (¢™ (aZ) AND ¢"(bZ)) 3 0 + 1Z. O

Proposition 6 states that t#eND operation for abstract values which have
a moduli which is odd results in the top value. This justifiee following

78 Chapter 5. The Congruence Domain

abstraction, we introducewaeakening operatoon C(Z). The weakening op-
erator¢ is defined as followed:

&(m+ kZ) = (m mod ged(2™, k)) + ged (2™, k)Z

Note thatm + kZ T &(m + kZ), which follows directly from the definition
of C given in Section 5.3. For any abstract valyé€(c) will have a moduli of
the form2* for somek € N. Having a moduli as a power of two is beneficial
since it means that the s2tZ has itsk least significant digits as zeroes.

Lemma 7. If A and B are bit strings such thatt AND B = 0. Then, for any
bit string C"

(A+B)ANDC =AANDC+ BANDC
Furthermore,(A AND C') AND(B AND C) = 0.

Proof. SinceA andB contains no common ones, a plus between two bits with
at least one zero is exactly the same asQfReoperation. Thus:

(A+ B)ANDC = (AORB)ANDC
Bitwise OR is distributive over bitwiseAND, so
(AORB)ANDC = (AAND C)OR(B AND C)
Note that sinced AND B = 0, then for any strind”, it holds that
(AAND C) AND(BAND C)
asC' can only "remove” ones froml and B. As a consequence,
(AAND C) OR(BAND C) = (AAND C) + (BAND C)

sinceOR between two bits, where at least one is zero, equals the pkrao
tion. O

Note that if M (A) < L(A) implies thatA AND B = 0. Now we present
the definition of the abstracdtND operation.

Proposition 7. Letm + 2¥Z andm’ + 2*'Z be non-bottom abstract values
such thatt’ < k. Then,

mANDym/ + 2K Z it M(m') < k'

k7 AN kE'rm _
m+ 22 ANDm' + 2" Z = { mAND¢mI+2kZ otherwise

is a correct abstraction oAND.

5.5 Abstract Bit-Operations 79

Proof. Takem + 2¥n € m + 2¥Z andm’ + 2¥'n’ € m’ + 2 n’Z such that
k' < k arbitrarily. Note thatt’ < k is not a restriction since the abstract
values could just be reversed. Since we assumerthahdm’ are minimal
representatives for the abstract values respectivelylavis that

m ANDg 2"n = 0,m’ AND, 28 n/ = 0
Thus,
m+25n ANDym' +25n' = (m+25n ANDy m') + (m+2*n AND4 2% n')

by Lemma 7. Furthermore,

(m + 2Fn AND, m') + (m + 2°n AND, 2%'n’) = (5.3)
((m AND,m’) (5.4)

+(28n AND,, m")) (5.5)

+((m AND,, 2¥'n/) (5.6)

+(2Fn AND4 2% n')) (5.7)

Now, term 5.5 is equal to zero, sin@& z AND,m’ = 0 foranyz € N. In
particular, it holds forzy, = 2*~*'p (this is an integer sincé > k'), since
2’“12'0 = QN gk=K'py — ok +k—kK') — okp

Term 5.6 has two cases: ¥/ (m) < L(2¥'n’) then it is equal to zero
sincemn and2*'n’ would have no common ones. Butlf(m) > L(2¥n/)
then the term may result in a non-zero, where the possible are in the
position-intervaI[L(2’“'n’), M(m)]. Thus it is safe to represent this term by
the expressio* » for somez € N.

Term 5.7 has its: least significant digits as zeroes, sinee> k’, thus
(2"n AND,, 2% n/) can be written ag*p for somep € N.

Thus, term 5.4 isn AND,, m/, term 5.5is zero, term 5.6 is zeraif (m) <
L(2¥n’) and can be written a&* = for somez otherwise. Term 5.7 can be
rewritten a2*p for somep. Thus we can rewrite (5.3) as

m AND, m' + 2Fp
it M(m) < L(2¥'n’), and

m ANDgm’ + 2z + 2Fp

80 Chapter 5. The Congruence Domain

otherwise. Since the elements were taken arbitrary it méeiall elements
can be written on this form, with variations erandp. Thus, it is safe to say

m ANDg m’ + 2Fp € m ANDym/ + 2F7Z
mANDgm' + 2 2 + 25p € m ANDy m/ + 2V 7
The latter can be deduced from the fact thlak k. O

Note that Proposition 7 defineAND only for abstract values on the form
m + 2F7Z. Any abstract value can be converted to this form via the eeig
operator however, making a safe abstraction of the valuaéstipn. A defini-
tion on the regular formn + kZ is not useful since by Proposition 6 any odd
moduli will result in the top value. Now, when we have the lii@AND and
bitwise NOT we can easily construct the bitwi€R andXOR using identi-
ties such as De Morgan’s Law. To show that these identitiés foo abstract
functions we show the following.

Proposition 8. Let f, g : Z — Z be functions, and lef., g. : P(Z) — P(Z)
be the lifted functions defined as
fi(A)
9+(B) =

{f(a)|ac A}
{9(b) [b€ B}

Note thatf, and g. are monotone w.r.t.C. Now let f, g be functions
abstractingf. andg. respectively, i.e.,

-~

fe Cyo foa
g« Syogoa

Then, it holds that R

feogi Cyo(fog)oa
That s, function abstraction is closed under functionahgmsition.

Proof. First,

fx0gx C fuo(yo goa)
since f, is monotone ang. C yo g o « by definition of g . Furthermore,
since f is abstractingf. we have:

o~

foo(roGoa)C(vo foa)o(yogoa)Cro(fog)oa

5.5 Abstract Bit-Operations 81

where the last inequality is the implication &f.I = « o v by definition of a
Galois-connection. O

Thus, the following identities can be used to derive therabsbperations
OR and XOR:

(m + kZ) OR (m + kZ) =
NOT((NOT (m + kZ)) AND (NOT (m’ + k'Z))
and
(m + kZ) XOR (m + kZ)
= (m + kZ AND NOT (m/ + K'Z))
OR (NOT (m + kZ) AND m’ + k'Z).

5.5.3 Shifting

Shifting bit-strings is a common low-level operation. Lsffiifting one step is
the process of moving all bits to the left and inserting a zithe least signif-
icant position. A right shift inserts zero from the righttead. An arithmetic
right shift inserts a copy of the most significant bit instef@ zero. Shifting
left one step is equal to multiplying by two (holds both fagrsed and unsigned
integers) and shifting right one step corresponds to (eedivision by two.
We use the notation LSH b to denote that should be left shifted steps to
the left. We assume that the right argument is always pesitiv

Definition 22. Letm + kZ anda + 0Z be non-bottom abstract values such
thata is non-negative. Then,

(m + kZ) LSH (a + 0Z) % 2%m + 297,
is a correct abstraction for left shifting with a singletohsiract valuex 4 0Z.

Proof. Take an arbitrary elememt + kn € m + kZ. Left shiftinga +0Z = a
steps corresponds to multiplyimg + kn by 2¢. Thus,

2%(m + kn) = 2°m + 2%mn € 2°m + 2°kZ

82 Chapter 5. The Congruence Domain

Proposition 9. Letm + kZ andm’ + k'Z be non-bottom abstract values. Then
the definition of the abstract left shift operat®SH :

(m + kZ) LSH (m’ + K'Z) "< 2™ m 1 2™ ged(k, m(2 — 1))Z
is correctly abstractind.SH.
Proof. Naturally, the best correct approximation of this opermatg
|_|{2“m—|—2“kZ laem' +k'n" An' € Z}

since the supremum of all constant right shifts should egué&irst we com-
pute

|_|{2"’m +2°kZ |aem' +k'n" An' €{0,1}}

In the case where’ = 0 thena = m’/, whenn’ = 1, thena = m’ + k’. Thus,
we compute

2™ 4+ 2™ KZ U 2™ R m 4 2 N k7,
= 27 + ged {27k, 274K ke, |27 i — 27 } 2
= 92" + ged {Qm'k, 12 2K, — 2M’m|} Z
=2"'m + ged(2™ k, 2™ m|2¥ —1))Z
=2""'m+ 2™ ged(k,m(2" —1))Z
To conclude the proof, let’ be any integer greater than one, and we take
2™ m + 2™ ged(k, m(2¥ — 1)Z L 2™ T F iy 4 2 R 7,
= 2™ m + ged {Qm/gcd(k, m(2F — 1)), 2m K e o R gy 2m/m|} Z
= 9™'m + ged {2m'k, o™’ (2% — 1)m, 2™ 2" Kk, |27 9Ky 2m'm|} Z
= 2™ 4 2™ ged {k m(2¥ —1),27% k, m(27'% — 1)} Z

Now sincek divides2™'*'k for anyn’ andm(2¥ — 1) dividesm(2"'* — 1)
for anyn’, we conclude that

2™ m + 2™ ged {k m(@¥ 1), 27" k., m(2n 1)} Z

C 2™ m + 2™ ged(k, m(2F —1))Z.

5.5 Abstract Bit-Operations 83

Sincen’ > 1 was chosen arbitrarily and merged with= 0 andn’ = 1 the
result holds by merging any othef as well, so this is a safe approximation.
O

The right-shift operation behaves less well. Right shiftis equivalent
to (integer) division by two. As seen in section 5.3 divisidestroys most
congruence relations.

Proposition 10. Let a be any positive integer angh + £Z be a non-bottom
abstract value, then the definition

(m—i—k:Z)l{ST{a

def [mRSHa+2'79Z ifk=2"anda <t (5.8)
Tl 0+1Z otherwise '
(m + kZ) RSH (m’ + ¥Z) ¥ 0+ 12 (5.9)

is a correct definition of the abstract right shift.

This proposition is stated without proof since (5.8) is jaste-writing of
the definition of the abstract integer-division and (5.9yial. Note that we
do not claim that (5.9) is thbestdefinition, but certainly a correct one. How-
ever, it seems unlikely that it is possible to defingemerallybetter abstract
operation.

Chapter 6

Parametric WCET Analysis

6.1 Introduction

In Chapter 4, we showed how to count elements in abstract@mnmients to
calculate bounds for loops. This was done with non-relatiabstract inter-
pretation. However, a relational domain can provide moferination and
can preserve some relations between variables. In thigehage will show
how a relational abstract interpretation and some othénigoes can achieve
a parametric WCET analysis. A brief overview of this framekvaas given
in Chapter 2, while this chapter presents the details. Thergemethodology
presented in this chapter was first proposed in [LisO3a] arntthér explained
in [LisO3b]. An overview of the parametric framework is shoim Figure 6.1.

6.2 Relational Abstract Interpretation and Input
Parameters

As explained in Section 3.10.3 and as seen in Figure 6. Irzadbgtterpretation
and element counting is used to obtain the execution comctibn ECF. The
purpose of the execution count function is to compute an uppend of the
number of times that a program point can be visited, given afgeitial values
for the input parameters. Thus, the relation between thsilplesenvironments
associated with a program point and the values of the inpainpeters has to
be analysed. This is done via abstract interpretationgusialationaldomain,
such as the polyhedral or octagon domain.

85

86 Chapter 6. Parametric WCET Analysis

Hardware
_ timing model

_Abstract Structural Low-level
|nterpretat|))
on analysis analysis

Abstract Structural Atomic
states _ constraints \ WCETs

Input Symbolic Parametric
variables . .
counting calculation

Composition

Parametric
WCET formula

Figure 6.1: The workflow of the parametric framework

6.3 Counting Elements in a Relational Abstract Environment 87

Since the input parameters has to be related to the variattles program,
they have to be present in the abstract interpretation. ddaisbe done by
adding a set of artificial constants to the program corredipgnto the input
parameters. Consider the following program:

while i > 0 do

1—1—1

end while
In this program, the initial valu&, of < would be considered an input param-
eter. To model this, the artificial constaigthas to be added to the abstract
interpretation and the artificial statement i, is added to the beginning of
the program. Note that these artificial constants and s&iedon’t need to
be added manually, it is a straightforward transformatidriciv can be done
automatically given a set of input parameters. Indeed tbesd't even have
to be applied to the actual code, since it is just a matter adeting the ab-
stract interpretation. However, in many cases the inpudrpaters correspond
to constant variables in the program. In those cases naatifonstants have
to be introduced. As an example,finsee Section 3.1), the input parametgr
does not have to be explicitly modelled since= ng through the execution.

Consider a prograrfi’ with V; = {i} andZ; = {n}. Figure 6.2 shows
an abstract state which has been derivedgfar Qr, using the polyhedral
domain. Note here that is not a program variable but an artificial constant
correspondingto an input parameter. As can be sdes the maximal number
of elements whem is 1, namely 7. However, singecorresponds to an input
parameter, it should be known before execution. Thus, thmdshould be
expressed in terms of. In this case the functiorf(n) = max(0,9 — 2n)
would be a precise upper bound wheis known. Note that, if a non-relational
domain was used, the number of possible values feould be independent
of n so such a function would not be meaningful. The idea of thaticial
abstract interpretation is thus

to derive relational abstract states in a program in ordekpoess
their execution counts in terms of input parameters.

6.3 Counting Elements in a Relational Abstract
Environment

In Section 4.6, some examples of how to count elements imadbstnviron-
ments are shown. In this case it was fairly simple since thmaios were

88 Chapter 6. Parametric WCET Analysis

o 0

=N W s O
L

o
o e
e e
o 06
e 0

[}
o
0

[
N
w
IS
(€2}
()
~J

Figure 6.2: A triangular abstract environment

non-relational. In the non-relational case it is sufficiemtount the states of
an abstraction oP(Z) individually, and then to multiply the individual counts
for each variable with each other. In the relational cadee@omes more com-
plex since we need to count abstractions of environmentg definition of
thesizeof an abstract environment for a relational domain is theesag(4.1)
given in Section 4.6, i.e.,

|5 | =|y(o)]
This calculation however, is for most relational domaing-tidvial. As an
example, the abstract environment depicted in Figure 6r2psesented the
following system of linear inequalities:

1 -2 1 i 0
o= -1 0 7 n|>1o0
0o 1 -1 1 0

The functiony of this abstract environment maps to the set
Yo, ={limi]n—nT|n >1A{<TAd>20" —1Ai'n €7}

To compute the size of this set is non-trivial and is equaldmputing the
number of integer solutions to a system of linear inequeitiTrhere are known
methods of doing this, which is shown in the following sesoHowever, as
shown eatrlier, in this case the variableshould be disregarded, so we want
to compute the number of elements in this sginbolically i.e., in terms of

6.3 Counting Elements in a Relational Abstract Environment 89

the value of variable.. This makes the computation even more complex. The
following subsections reviews some methodologies to campizes of this
kind of sets.

6.3.1 Ehrhart Polynomials

In [Cla96], a method of symbolically counting the number itleger points
inside the union of rational convex polytopes (i.e., bouhpelyhedra) is pre-
sented. The method uses Ehrhart’s theory to find quasi-patjels (polyno-
mials which has periodic functions as coefficient, which@intan be seen as
a finite set of polynomials) which corresponds to the numib@rteger points
in polytopes.

6.3.2 Barvinok’s Rational Functions

In [VSBT07], a parametric version of Barvinok’s rational functidB8P99]
is presented, using a similar method of [Cla96] to find quredynomials that
represent the number of integer points inside polyhedra rbthod can be
extended to handle general Presburger formulae, but itnejpotentially very
costly preprocessing using parametric integer programgiffiaad8].

6.3.3 Successive Projection

The successive projection method was suggested in [Pugd4.method is
used to count the number of solutions to a Presburger formdiich is more
general than unions of polytopes. The method is presentadasof rules to
successively transform a symbolic summation to a formuilaceSthe method
is not an algorithm, but a set of rules, some additional wak to be done to
make it computable. This method has been implemented in tatppz tool
for the parametric framework presented in this chapter f§L®&ince Pugh's
method has been investigated and implemented, this is tfieocheve make
use of to count integer points in polyhedra in this thesis: this reason, we
explain the method more thoroughly.

The method computes the result of generalised SR : P : x) where
V is a set of variables to sum ové?,is a Presburger formula (the guard) and
x is any formula. The result of such a sum is the sum for all Welsw € V
which satisfyP of z. As a simple example, the sum’_, v is represented by
the general summatiof{v} : | < v < u : v) and the sund_; ;577" 1
would be represented (E{7,j} : 0 < i <nAi<j<m:1). The result

90 Chapter 6. Parametric WCET Analysis

is then computed by choosing an appropriate projectiontaumplify the
formula. The most important rule to reduce a generalised(@¥h: P : x) is
to choose a variable € V' and compute the general sum

EVA\{v}: P : (E{v}:l<v<u:z))

where P’ is P where all information aboui is removed. SincéX{v} : | <

v < u: z)is equivalenttoy_._, z, known formulae of summations over the
form of 2 can be used to simplify it. I\ {v} is non-empty another variable
is chosen and the procedure is repeated Gnt# @, and the result is a sum
of generalised sum& : G : 2’) which should be read as” if G holds, else
0”. This result is symbolic in the variables occurring freecior P but not in
V. To exemplify, take the sut®{i,j} : 0 <i<nAi<j<m:1)again.
Applying the rule, projecting the variableabove would yield

(E{i,j}:0<i<nAi<j<m:1)
=E{ti<ism:(E{i}:0<i<n:1))

Now, naturally(X {i} : 0 < i < n:1) = n+1(thisis a "known formula”),
S0 we can conclude

E{i}:i<i<m:(Z{i}:0<i<n:1)=E{j}:i<ji<m:n+1)

and continue applying rules until we cannot apply more rulée situation
is however not always this easy; variables can have sewsvatlupper bounds
or be unbounded and bounds can be negative and/or ratioiidhese cases
are handled in [Pug94].

In the special case where the integer points are countedeirssiconvex
polyhedron, the problem becomes a bit easier. In the foligwive will as-
sume that it is integer points inside convex polyhedra whiehto be counted
We assume two restrictions of the generalised sums; fitsterahan having
the guard as a Presburger formula, the guard is considereel #osystem of
linear inequalities in the variables df (since this is exactly what the poly-
hedral abstract interpretation will give). The other riesiton is that we model
the formulae to sum over as polynomials, simplifying botpresentation and
computation. Polynomials can easily be modelled as a suerofs, where a
term is a vector representing an integer coefficient ancbbipowers. As an

INote that this also is applicable for the octagon domairgesits abstract environments are
also abstract environments of the polyhedral domain.

6.4 Obtaining ECF p 91

example we can model the polynom$a’b® + 5a* (assumingVp = {a,b})
as the sum of the term@ 2 3) and (5 4 0). This also makes arithmetical
operations on these vectors straightforward to implemieatthermore, since
the guards are polyhedra, the lower and upper bound of amgblawill be
sets of linear expressions. Summing a linear expressionapelynomial is
again a polynomial, so this model is closed under summatidawever, these
restrictions sometimes require the result to be slightgreapproximated. The
constrainBa — b < 0 gives an upper bound farasa < L%J, sincea andb are
integers. As seen, the upper bound is not a polynomial amdftre problem-
atic in our model. Sincé is a safe upper bound fQ@J and on polynomial
form we can use it as approximation. Lower bounds are haridladsimilar
fashion.

6.4 Obtaining ECFp

In this section we will give an example on how to obtain #/@F p function
using relational abstract interpretation and countinglefnents. The exam-
ple is performed on the programin Figure 3.2 on page 18. This example
uses abstract interpretation with the polyhedral domal78] and counting
of integer points by successive projection [Pug94].

6.4.1 Polyhedral Abstract Interpretation

Abstract interpretation using the polyhedral domain rssui the following
abstract states df (presented in a more human readable format than matrices).

So=T Ss3={i>0,i>n+1}
Si={i=0} S,={0<i<n} (6.1)
So={i>0} S;={1<i<n+1}

6.4.2 Counting Integer Points

The ECF 1, function is computed by calculating the size of the abststates

in (6.1). We are interested in computing the siggsbolicallyin terms of the
input parametersf L. In practice, using Pugh’s method this consists of sum-
ming over all non-constant program variables, but not thet®ylic constants
corresponding to input parameters. Hothis means, we sum ovéi}. The

92 Chapter 6. Parametric WCET Analysis

guard in the general sums will correspond to the inequalifieen for a convex
polyhedron. The result of computing the sizes is shown below

|§| (Xi:2:1) =00 (unbounded sum)
|1S1|=(Zi:i=0:1)=1

|S:2|:(Ez':z'20:1):oo 62)
|S3=(Zi:i>0Ai>n+1:1)=0cc

|84l = (
| 85|

:0<i<n:1)=XE:n>0:n+1)

Note that we have used the short habifor X {i}. By this, theECF,
function has been computed. The function takes an instahite énput pa-
rametern and returns a vector of upper execution bounds for each anogr
point. Componeny of the result will then be interpreted as the upper exe-
cution count bound for program poigj. The formal definition ofECF, is
thus,

ECFL = An.{00,1,00,00,(n >0?n+1: 0),(n>07n+1 : 0))

where(n > 0?n+1 : 0)is a compressed if-statement borrowed from
C, it should be understood as "if > 0 thenn + 1 else(”. However, our
assumption about programs suggests that the single erdrgxanpoints of a
program will be taken exactly once. Thus, a better definigbfiCF, is to
ignore the counting for these program points and define tipempound for
the initial program poing, and the final program poift as one, giving

ECFL =An.{1,1,00,1,(n>0?n+1:0),(n>07?n+1 : 0))

Note that no finite bound could be found fgr. This is because the widen-
ing in the abstract interpretation yielded an unboundegtpdron for S, .
However, it is not necessary to have bounds on all programtpi order to
obtain a WCET bound or loop bound, since it is in general th@mmim of the
bounds that are interesting (see Chapter 4).

As an example, the upper execution bounds for the six prog@ints in
@9y, for the input parameter instantiatedras= 2 equals

ECFL(2) = (1,1,00,1,3,3).

6.5 Obtaining PCF p 93

6.5 Obtaining PCFp

As seen in Chapter 1, the calculation phase of WCET analgsithines the
results from low-level analysis and high-level flow anadytsi compute a con-
crete worst-case execution time. If the calculation phasatered, it can be
used to compute a parametric worst-case execution timehigrsection we
will look at some techniques for computing a WCET which isgmaetric in

the number of times that the program points can be maximaited. In other

words, the WCET is computed in terms of parametric capacifethe flow

chart. In this framework, as seen in Figure 6.1 and in Se@&itA.3, paramet-
ric calculation is used to obtain the functi®f@F p of a programpP.

6.5.1 Parametric Calculation

Parametric Calculation can be stated as the general praifleraximising the
objective function
D caty

qeEQp

subject to constraints on the program flow
Ax+b>0
as well as thesymbolic constraints

Zq < Pq

wherec is a vector of atomic WCETSs obtained from low-level analysiss

the solution vector corresponding to execution countsdchgrogram pointin
the program angb is a vector of symbolic execution bounds for each program
point. The solution of a parametric calculation is a formelgressing the
vectorx in terms of the symbols ip.

Two approaches to solve this has been proposed, one basedamatric
integer programming [LisO3a, BL08] and one based on prafp@gaf flow
constraints [BELQ9]. In this chapter we will focus on theffinsethod while
the second is handled in Chapter 7.

6.5.2 Parametric Integer Programming

P. Feautrier suggested in [Fea88] an algorithm for paraciateger program-
ming (PIP). Parametric integer programming gives the layiaphical mini-

94 Chapter 6. Parametric WCET Analysis

mum of the set
F(z)={Ay+Bz+c>0Ay€cZ"}

in terms of the vectog. In the following, we cally the solution vectorand

z the parameter vectar The matricesA and B correspond to constraints on
the variables and the parameters, respectively. Theresexisol called Piplib,
which is an open source implementation of the algorithm@B]p The result

of a parametric integer problem is a binary tree where theskeaorrespond to
linear solutions and the other nodes correspond to lineatitionals. The tree

is expressed as a nesiéd-statement (an example of a solution can be seen in
Figure 6.3 on page 96).

6.5.3 PIP as Parametric Calculation

Parametric calculation with PIP can be formulated by havhey execution
count vectorx as solution vectoy in the PIP problem. The matrid and the
vectorc will correspond to program flow constraints, and the vectasym-
bolic upper boundp will be the parameter vectarin PIP. However, using PIP
with this set-up will result in the lexicographical minimushx. What is de-
sired is to obtain the maximum of an objective function. Torison (which
can be found in the Piplib manual [Pip09]) is to introduce & variabley
which represents the objective function. Sincshould be maximised rather
than minimised, an artificial "big” parametét is introduced. The parameter
B is considered to be arbitrarily large, and therefore a mapdtion problem

is achieved by minimisin@ — y. In addition, to actually connegtto the ob-
jective functiony_ o cqz4, an additional constraint —y < 5° o ¢qq
has to be added. Now, the new variableas to be added to the solution vector
x, as thefirst componenof the solution vector. In this sensgjs guaranteed
to have the highest priority in the lexicographical ordgrihus, PIP will at-
tempt to minimiseB — y which by the constraint is guaranteed to be less than
the objective function.

The functionPCF p is obtained by parametric calculation. The function
calculates the worst-case execution times of a progPagiven a vector of
upper bounds for each program point. We illustrate by an @k@wof the pro-
gramL in Figure 3.2 on page 18. The objective function in this casibtained
by the cost vector presented in (3.1) on page 22. The funétioR, is then
obtained by maximising:

zo + 321 + 2 + 223 + 224 + 825 (6.3)

6.5 Obtaining PCF p 95

subject to some constraints. To get a bounded problem itosgnto provide
structural constraints of a program together with the sylinlzonstraints. This
is because the solution will be expressed in terms of the slimbxecution
bounds.

The structural constraints are obtained by adding comssréor each pro-
gram pointg. The exact form of constraint is determined by the type of pro
gram point. The initial program poimt and the final program point; will be
taken exactly once, so for these the constraints

{L‘o:].

=1

are added. For any program poinsucceeding a merge node, the sum of the
two incoming edgeg’ andp’ of the merge node will equal the execution count
of ¢q. Thus,

Tyg =Tq + Ty
can be added. For a program pojrgucceeding an assignment node, the exe-
cution count simply equals the execution count of the incapgirogram point
to that assigment nodg, so

Tg = Ty

can be added. Finally, for any program popmbceedinga conditional, the
execution count is equal to the sum of the two outgoing prograints of the
conditionalg,,ye aNdgsaise. Thus,

Tq = Ttrue + Ttalse

can be added as constraints.
This process is what is referred tostauctural analysisn Figure 6.1. The
structural constraints of are:

zo =1 initial node

T1 = Xo proceeding assignment

To = X1 + X5 proceeding merge node (6.4)
To = T3+ X4 preceeding conditional

Ty = X4 proceeding assignment

x3 =1 final program point

Finally, the symbolic constraints, < p, for all ¢ € Q;, have to be added.
Maximising (6.3) subject to these constraints with Pipldgs the result shown

96 Chapter 6. Parametric WCET Analysis

PCFr, = Apo,p1, D2, P3, P4, Ds-
if po > 1then

if po > 1then
if p1 > 1then
if p3 > 1then
if po < ps4+ 1then
if po < ps + 1then

11p2 —4
else
].1]95 +7
end if
else
if P4 < Pps then
11ps + 7
else
].1]95 +7
end if
end if
end if
end if
end if
else
0
end if

Figure 6.3: Result oPCF 1, function from Piplib

in Figure 6.3. As can be seen in the figure, this result s tfiaitien of PCF ..
As an example, suppose thag, ..., p; are instantiated a¢l, 1, 0o, 1, 3, 3).
Then,

PCF.(1,1,00,1,3,3) =11-3+7 =40

which should be easy to see by studying Figure 6.3.

6.6 Obtaining PWCETp

The final and most interesting functionf®VCET p which computes a WCET
bound given an instantiation of all input parameters of gpam. The function

6.7 Simplifying PWCET p 97

is obtained by the composition 8ICF p andPCF p.
PWCETP = PCFP o ECFP

Functional composition is simple in terms of computationg¢s it consti-
tutes of substituting the result BICF p for the arguments iRCF p. Figure 6.4
shows the composition @CF ;, andPCF 1, which were derived in Section 6.4
and 6.5 respectively. As an example, we com@RY¥ECET, with the argu-
mentn = 2.

PWCET[(2) = PCF, 0 ECF(2)
=PCFL((1,1,00,3,3))
=40
Note that this result is also obtained by substitutirigr » in Figure 6.4. Com-
pare this result to the trace computation in Figure 3.1 ore28 The worst-

case trace was computed #swhich correspond exactly to the result in this
case. So in this case the exact result was obtained from ttieoche

6.7 Simplifying PWCETp

The final formula foPWCET, shown in Figure 6.4 contains a lot of redun-
dancy and is unnecessarily complex for this small examplecdOrse, this
complexity is much worse in realistic examples. Thus, tlieeeneed for sim-
plification. During the composition phase, a lot of redungais introduced
in the formula, which could easily be removed. Examplesiefdrsimplifica-
tions that can be done:

e All then branches can be cut from conditionals on the fornx z.
e All else branches can be cut from conditionals on the fotm> .
e All else branches can be cut from conditionals on the farmi x.

e If z,y are constants such that< y, then allelse branches can be cut
from conditionals on the form < y.

Applying these trivial simplifications t8 WCET |, reduces the formula to:

1In+18 ifn>0

= ? M =
PWCET, = An.11(n > 0?n+1 : 0)+7)\n.{ 7 otherwise.

98 Chapter 6. Parametric WCET Analysis

PWCET, = A\n.
if co > 1then
if 1 > 1then
if 1 > 1then
if 1 > 1then
ifoo<(n>07?n+1:0))+ 1then
ifoo<(n>0?n+1: 0)+1then

11-00—4
else
11n>0?n+1:0)+7
end if
else

ifn>0?n+1:0)<(n>07n+1
1I(n>0?n+1:0)+7
else
11n>0?n+1:0)+7
end if
end if
end if
end if
end if
else
0
end if

: 0) then

Figure 6.4: The resultingyCET, function

6.8 Reducing the Number of Variables 99

6.8 Reducing the Number of Variables

PIP has exponential complexity in the number of variablethenworst-case,
making scalability problematic. However, the structurahstraints of a pro-
gram produces an under-determined system of equationsuch & system
with n variables, the solution space is the span of a set-ef- vectors (where

r is the rank of the constraint matrix). Thus, theser vectors form a basis for
the solution space. The variables can be expressed as tioegdninations of
this basis, meaning that the problem can be computed usigghenbasis. Let
Ax = b be a system of structural and possible other linear equatibtained
from flow analyses ang = cTx be the cost function. The constraints together

with the cost function is
1 —c\ /[y _ (O
b 7)©)-6) ©9

If we perform Gauss-Jordan elimination on the above (indlgdhe right-
hand side by augmenting the constraint matrix(by)T) and re-arrange the
columns ofA and the components &f such that all pivot columns are to the
left, andx is re-arranged accordingly, we get

1 0 —¢ y
(0 I, A(3> Xpy | = (é) (6.6)

XFV

wherel,. is ther x r identity matrix andr is the rank ofA. Furthermorez
is the last column of the solution of the augmented matrigraélimination.
The vectorx has now been partitioned into two vectors, one partitiornés t
vector ofbasic variablesxgy with » components, and the other being-

r free variablesxpy (wheren is the number of columns aofl). Note that
this transformation also removes any redundant consér&iom the system.
From this we can derive two important equations. One is theotige function
expressed in terms of the free variables

y =z +c'xpy (6.7)
and a way to express the basic variables in terms of the freg on

XBV = bl — AIXFV (68)

100 Chapter 6. Parametric WCET Analysis

As we model the parametric upper bounds as the constrairtsp, we can
now simply model our IPET problem as

z + c'xpy Yy
b/ — A,XFV S PBV (69)
XFV Prv

where we have partitioned and re-arrangezkactly as fo. Now it suffices to
solve the IPET with these constraints, thus reducing thebrmuiraf unknowns
by the rank ofA. This method of eliminating variables is not restricted to
the parametric case, but can be used to reduce the dimelisiafany IPET
problem.

6.8.1 Concrete Example of Variable Reduction

As an example on how the variable reduction can be appliechai perform
variable reduction on the program First we assemble a matrix like (6.5)
by assembling the cost function (6.3) bfand the structural constraints (6.4).
Thus, we have

c=(1 31 2 2 8)

and
1
0
0
b_O
0
1
and
1 0 0 0 O 0
-1 1 0 0 O 0
0O 1 -1 0 0 -1
A_00—111 0
0O 0 0 0 -1 0
0O 0 0 1 0 0
and finally,

XZ(Z‘Q Tr1 X2 T3 X4 .235)

6.8 Reducing the Number of Variables 101

The resulting constraint matrix as in (6.5) is:

[1]-1 -3 -1 =2 =2 =8\ [y) 0
of1 0 0 0 0 0][=x 1
0j]-1 1.0 0 0 0]]|m 0
0/]0 1 -1 0 0 —1]]|z|=]0
00 0 -1 1 1 0] 0
0]/0 0 0 0 -1 0] | 0
0jo o0 0o 1 0 0/ \as 1

Now we perform Gauss-Jordan elimination of the above toinlatanatrix as
in (6.6). The resultis:

(L]0 0 0 0 of-11\ 7
0[1 00O0O0| O ;L-O 1
00 1.0 0 0| 0 x1_1
010 0 1 0 01|21
0/0 001 0] 0 x3 1
0[0 000 1]-1 4 0

L5
This means that fof. we have:
¢=(1),4=0 00 -1 0 —1)"
T
xpy = (®0 @1 %2 *3 x4) ,Xpv = (25)
b=(1 1 110" ,2=7
Thus, we can conclude (6.7) and (6.8) as
y=7+1lxs
and
ro=1l,z1=1,x0o =25+ 1,23 =1,24 = 75
We can model the IPET problem by (6.9), which gives the folfmxconcrete
constraints:
T+ 1lzs <y
1+25 <po
1 S Po,P1,P3
Z5 < pa
x5 < ps

102 Chapter 6. Parametric WCET Analysis

thus, we have reduced the problem to one unknown variaglef(om the
original six. Solving this system with Piplib results in thadlowing, which
can be inspected to realise that it is the same as the solstiown in Fig-
ure 6.3:

Ap2, P4, Ps.

if po > 1then

if p4 +1 > po then
if p5 + 1 > ps then

y=11p; — 4
else
y=11ps +7
end if
else
if P4 < ps then
y=11ps+7
else
y=11ps +7
end if
end if
else
0
end if

6.9 Prototype Implementation of the Parametric
Framework

A prototype of the parametric framework has been implenteirteorder to
evaluate the approach.

6.9.1 Input Language

The input language for the prototype is a very simple langwelgich translates
into flow charts as defined in Chapter 3. The language has llogviog BNF
grammar:

6.9 Prototype Implementation of the Parametric Framework 03

Stmt — Var := Expr
| If Expr then Stmt else Stmt
| While BExpr do Stmt
| Skip
| Stmt ; Stmt

Expr — Num * Var
| Num * Var + Expr’
| NL

BExpr — Expr >= 0 | Expr ==

whereNum andVar are the syntactic categories for integers and variables re-
spectively. The non-termin@kpr’ denote€xpr without theNL rule. Some
syntactic sugar is layered on top of this, but the BNF gramabawe illustrates
the expressiveness of the input language. This structdheistranslated into
a flow chart data structure. Thus, the prototype does notidengointers, ar-
rays, structs or any other types than integers or Booleansction calls are
supported but are analysed by inlining each function befareslating into the
BNF above. This means that recursion is not supported. Strecerototype is
implemented for relational domains, which in most casesordy handle lin-
ear assignments and conditionals, the language in thetppetts restricted to
linear conditionals and assignments only. That is allhar#tic expressions in
the language either have the fo@?;ol a;v; or the special valulNL denoting
a non-linear expression. Any non-linear value is mappeldddp value of the
abstract domain.

6.9.2 Implemented Analyses

Since the computational tasks in Figure 6.1 (that is, theebpare quite modu-
lar, every green box is implemented as an independent gproggenmunicating
the data (i.e., the ovals) through files. The prototype isgiabstract interpre-
tation with the polyhedral domain, using the Parma Polyadibrary [Par09].
The abstract interpretation was implemented in C++. Symlwolunting was
implemented using the method outlined in [Pug94] adopteddavex polyhe-
dra as described in Section 6.3.3. The symbolic countingimptemented in

104 Chapter 6. Parametric WCET Analysis

Haskell. The prototype does not implement any low-levelysis, instead, it
assumes that all program points has a worst case cost ofdek@jcles. The
reason for this is that our focus has not been on low-levdi/aisa however, to
use the framework in a realistic setting, a proper low-larelysis would be
needed. Two different parametric calculations have begheimented, one of
them is PIP (using the Piplib library [Pip09]). The other as¢he Minimum
Propagation Algorithm which is explained in Chapter 7. Thatgtype imple-
ments the 84PLESLICE algorithm, which is a quick flow-insensitive slicing
algorithm presented in [SEGLO6].

6.9.3 Conclusion and Experiences

The prototype has provided experience with the parametaioéwork. Run-
ning the prototype on toy-examples and translated versiérsome of the
benchmarks in [MDHO09] has provided the following observas:

e The method suggested in [LisO3a] can be implemented, masthg
existing code libraries to apply parametric WCET estimatesimple
programs.

e The bottle-neck of the method is clearly the parametricidaton. This
is because the parametric calculation essentially solge$ ef concrete
calculation problems. As an example: IPET is in general Niyalete,
thus, a method such as PIP generalising it is naturally evam mom-
plex.

e PIP gives very large solutions, even for small programsrdgated by
Figure 6.3. Simplification is clearly needed. The composipart of the
framework introduces, in general, a lot of redundancy. Tharspracti-
cal use, simplification is needed both before parametricutation and
after. For this reason, we propose an alternative parasretculation
outlined in Chapter 7.

e PIP fails to produce solutions for larger programs, propalie to high
complexity.

e The number of variables of the parametric calculation ugitigycan be
reduced by the technique outlined in Section 6.8. Howeber,num-
ber of symbolic parameters can not be reduced in the same ineg s
they correspond to upper bounds. What can be done is to inteoone

6.9 Prototype Implementation of the Parametric Framework 05

parameter for each basic blgcknd assign it to the minimum of all pa-
rameters in that basic block, and use it in the calculatichaexample,

let B = {qo,¢1,92} be a basic block. Then we can use the parameter
pp = min {pg, p1, p2} as substitute fopy, p; andp-. This has been im-
plemented into the prototype, but it does not seem to havsignificant
impact on the complexity of the method.

“that is, a series of consecutive program points with a siegley and a single exit point, which
is not containing any branches.

Chapter 7

The Minimum Propagation
Algorithm

7.1 Introduction

Chapter 6 introduced a framework for parametric WCET ansilyg comput-
ing two functiong£CF p andPCF p independently of each other. The function
PCFp is obtained by parametric calculation. In Chapter 6 this @semmpli-
fied using parametric integer programming. Unfortunatilg, complexity of
parametric integer programming is very large and this totrgo be the bottle-
neck in the framework for the purposes of parametric catmriaNot only the
computational complexity is a problem with PIP; the solnfi@btained from
PIP tends to grow exponentially in size and for large progr&iplib fails to
deliver a solution. This chapter evaluates PIP and intredamn alternative al-
gorithm for parametric calculation calléde minimum propagation algorithm
(MPA) introduced in [BEL09]. MPA scales much better than RiBoth com-
putation time and solution size, as seen in Section 7.4.

7.2 The Minimum Propagation Algorithm
The Minimum Propagation Algorithm computes the functid@F p of a pro-

gram P given its flow chart and results from low-level analysis. $hih may
operate as thparametric calculatiorphase as seen in Figure 6.1 in Chapter 6.

107

108 Chapter 7. The Minimum Propagation Algorithm

Being a parametric calculation, MPA computes the maximum of
D caty
qEQpP

given the flow constraints and the symbolic upper bounds
Vg€ Qp:xqg <pg (7.1)

The idea of the algorithm is to use the naive, but correceuppund
PCFp = Y cqpq (7.2)
qEQpP

as basis, and then gradually improve the bound by propapttaflow con-
straints through the program. When flow chart edges are useatagram
points (as in our case), the following facts hold

e A program point can never be visited more times than the suitsof
predecessors

e A program point can never be visited more times than the suitsof
successors

or formally,

g < Z Ty (7.3)
¢’ €pred(q)

g < Z Ty (7.4)
q’ €succ(q)

Note here that these aiequalities since an incoming edge to a successor of
a programming point may cause the successor to be visited tinwgs than the
program point (see Figure 7.1). Now, the execution cayrfor each program
point have three upper bounds: (7.1), (7.3) and (7.4). Qlslothe smallest
one of these is the tightest and most desirable one. The fdd&A is to use
(7.2) as basis, but to substitutgfor p, wheret, is a upper bound computed
from (7.1), (7.3) and (7.4). The upper boutidis computed by propagating
the upper bounds through the graph and construct a tree wyichsents the
upper bound.

7.2 The Minimum Propagation Algorithm 109

Figure 7.1: The program point can be visited more times thaneven though
q3 is the only successor qf

7.2.1 The Min-Tree

The upper bound for a program point needs to be valid for asiide combi-
nations of symbolic execution counigco. An upper bound, will be repre-
sented as a tree with three types of nodes: minimum nodesnplles and leaf
nodes. Minimum nodes (denotéd express the minimum of all its children.
Plus nodes (denoted) express the sum of all its children. Leaf nodes (de-
notedp,) express the value g@f,. Such a tree will be referred to advin-Tree
Figure 7.2 depicts an example of a Min-Tree. This tree is @ fapresenting
the upper bound af in L (see Figure 3.2, on page 18).

7.2.2 The Algorithm

MPA is shown in Algorithm 1. It is a recursive procedure whiekes as
argument a program point, a context and a set of constraidtsaurns a Min-
Tree as described in previous section. The context is a sasitéd program
points for internal book keeping. The algorithm is alwayléechwith the empty
set as context when used. The set of constraints correspmtias of (7.3) and
(7.4) and is obtained directly from the graph structure. Gtwestraint (7.1) is
implicit and is not needed in the constraint argument of figerithm. MPA
searches the given constraints and recursively builds aTvée by adding
visited nodes as children to a minimum node. It searchegaile paths first,
leaving the branches for later. The branches are then teelyrsomputed as
children for plus nodes.

The root of the Min-Tree will always be a minimum node, ancchddren
will be all maximum bounds found for the program point undeglgisis. MPA
maintains a worklist and a branch set; the worklist keepsktcd visited pro-

110

Chapter 7. The Minimum Propagation Algorithm

Algorithm 1 MPA(g;, context, constraints)

L

N NN NNNRRRRRRR B B R
gAR®NREOO®®NDTOR®®NROQ

W N NN

)

node < mkMinNode()
worklist < push(NIL, 7)
branch «— @
while worklist = NIL do
k — peek(worklist)
worklist «<— pop(worklist)
if k ¢ context then
context < context U {k}
node < addLeaf(node, py)
forall [xy < z;] € constraints do
if j ¢ context then
worklist < push(worklist, j)
end if
end for
forall [z <),y Zn] € constraints such thatN| > 2 do
if N N context = @ then
branch « branch U {N}
end if
end for
end if

: end while
: forall N € branch do

plusNode « mkPlusNode()
forall n € N do
child < MPA (n, context, constraints)
plusNode « addChild(plusNode, child)
end for
node < addChild(node, plusNode)

: end for
: return node

7.2 The Minimum Propagation Algorithm 111

ps3 p4 ps

Figure 7.2: A Min-Tree representing the formulain(po,pi,ps +
min(ps, ps), p2).

gram points and the branch set keeps track of pending plussadfhenever
a program point has single predecessors and successongigidouring ca-
pacities alone constitute as upper bounds for the programb gad is therefore
put in the worklist for continued processing. In the caserahlohing program
points, the program points are put in the pending branchosettursive pro-
cessing as children of a plus node. The reason for this cagdakdirectly from
(7.3) and (7.4), where it is obvious that it is themof the upper bounds of the
other program points that needs to be computed.

Detailed Explanation of the Algorithm

Row 1 creates the root of the tree which is always a minimunenthge prim-
itive mkMinNode returns a minimum node without children. The Rows 2-3
initialise the worklist and the branch set. The worklistnspiemented as a
stack and using the stack primitiveash , pop andpeek (peek returns the
top element of the stackop returns the stack with the top element removed)
to manipulate it. The loop in rows 4-21 builds the leaves efrtfinimum node
and puts the pending plus nodes in the branch set. Row 7 enthatenodes
which have already been considered (and thus don’t comgrifouany tighter

112 Chapter 7. The Minimum Propagation Algorithm

result) are skipped. Row 9 adds leaves to the minimum nodesknguthe
primitive addLeaf which takes a node and a leaf and returns the node with
the leaf added. Then, in rows 10-14, all single entry/exitstraints are added

to the worklist for further processing. Rows 15-19 add thdtiple entry/exit
constraints to the pending branch set.

When no more program points are present in the worklist, Itq@righm has
added all leaves to the current min node, and enters the pHre @lgorithm
which builds the plus nodes (row 22). By nawgdeis a minimum node, pos-
sibly with a couple of leaves, which are all maximum boundstrenprogram
pointi. In other words, the constraints from (7.1) have been addeftito add
are the plus nodes, which correspond to (7.3) and (7.4). iSkdene in rows
16-23. Each constraint which is corresponding to a branttamprogram (i.e.,
a constraint which is a sum of program points) will producéus mode (row
23), this is done by the primitivenkPlusNode which simply returns a plus
node without children. The children of the plus node are tieearsively com-
puted from each term in the constraint (row 25), and then éddechildren to
the plus node via the primitivaddChild (row 26). Finally, each plus node
is added as a child of the minimum node (row 28) and the roo¢i®returned
(row 30).

7.2.3 Example of MPA

Consider the example prograinn Figure 3.2. We will show how to compute
a Min-Tree forgg. The set of constraints obtained from (7.1), (7.3) and (7.4)
are the following

Vg e Qr:xy <py
o < a1
1 < T2, To
To < x1 + x5,73 + T4
x3 < T2
T4 < T2,%5

r5 < T4, 2.

We start by callingMPA(qo, &, constraints). Processing in row 4-21 will
generate the following intermediate results:

7.2 The Minimum Propagation Algorithm 113

analysis(qo, &, constraints)
node worklist | branch | context
min() [0] 1%} 15
min(po) [1] o {0}
min(po,p1) (2]) {0,1}
min(o,p1,p2) | [] {{3,4}} | {0,1,2}

After the worklist has become empty and the main loop hashiausthe
algorithm is in row 22 and the plus nodes will be evaluated hase thatV =
{3,4} and so this leads to two recursive calldPA (¢s, {0, 1, 2}, constraints)
andMPA (gs, {0, 1, 2}, constraints). The following tables show the interme-
diate results for these calls.

MPA (g3, {0, 1,2}, constraints)

node worklist | branch| context
min() | [0] o {0,1,2}
min(p3) [] 1Y) {07 1; 27 3}

MPA (g4, {0, 1,2}, MPA)
node worklist | branch| context
min() [4] %) {0,1,2}
min(p4) [5] %) {0,1,2,4}
min(p4,p5) [] %] {0,1,2,4,5}

The result of these two calls will both be children to a plud@awhich in
turn will be child to the minimum node that will be returnedin the original
call. This plus node is then added as child to the previougmim node. The
final Min-Tree forgy expresses:

min(pOaplaPQa mm(PB) + min(p4,P5)))-

114 Chapter 7. The Minimum Propagation Algorithm

Computing the Min-Treg, for all program pointg € Q. results in

to = min(po, p1,p3 + min(ps, ps), p2)

t1 = min(po, p1, p3 + min(p4, ps), p2)

ty = min(pa, min(po, p1) + min(ps, ps), p3 + min(pa, ps))
t3 = min(p2, p3, min(po, p1) + min(ps, ps))

t4 = min(pa, pa, ps)

t5 = min(pa, P4, Ps5)-

The functionPCF, is then computed by taking

PCFL = Y cotq,

qeEQL

where the atomic WCETs are taken from (3.1) on page 22.

PCFr = Apo, p1,p2, p3, P4, ps-
min(po, p1, p3 + min(pa, ps), p2)
+3(min(po, p1, p3 + min(ps, ps), p2))
“+min(pg, min(pg, p1) + min(pg, ps), ps + min(py, ps)) (7.5)
+2(min(p2, p3, min(po, p1) + min(pa, ps))
+2(min(pz, pa, ps))
+8(min(pz, pa, ps)).-

ComputingPCF;, o ECF, (by substituting execution counts for symbolic
parameters) will result in

7.3 Properties of MPA 115

PWCET, = An.
min(l,14+(n>0?n+1 : 0),00)
+3(min(1,1+(n>0?n+1 : 0),00))
+min(co,1+(n>0?n+1 : 0))
+2(min(oo, 1,1+ (n>07?n+1 : 0)))
+2(min(co,(n >0?n+1 : 0)))
+8(min(co,(n >0?n+1 : 0)))
= An.
4(min(1,1+(n>07n+1 : 0)))
+1+n>07n+1:0)
+2+10n>0?n+1:0)
=74+11(n>0?n+1:0)

oy, 181 ifn>0
=AY 7 otherwise.

which equal®WCET], obtained by PIP.

7.3 Properties of MPA

This section investigates different properties of MPA. artzular, the algo-
rithm is proven to terminate and to be correct. A bound on themex-

ity of the algorithm is also given. MPA contains five loopsaméd to as
Ly, Lo, L5, Lo and Loy, Where the subscript is the row number of the loop
header in Algorithm 1.

7.3.1 Termination

In order to prove that MPA terminates, we show that the recnrand all five
loops of MPA terminate. First, we see that the lodpg and L5 terminate
because they iterate over stable and finite sets. For the isen, the loops
Loo and Loy terminateprovidedthat the recursive calls to MPA all terminate.
The fact thabranchis a finite set is a consequence of thatterminates, which

is shown below. This means thaf executes a finite number of times and thus
adding a finite number of elementshitanch

116 Chapter 7. The Minimum Propagation Algorithm

In each iteration of., exactly one of the following holds:

1. The setontextwill contain one more element than in the previous iter-
ation.

2. The listworklist will contain one less element than in the previous itera-
tion.

Row 7 will execute in every iteration af,. If the conditional evaluates to
true, thenk was not part otontextand will on row 8 be added. Thuspntext
contains one more element than the previous iteration. Nie mlements are
added tocontextin the loop. If the conditional in row 7 evaluatesfadse no
elements will be added tworklist (row 12 can not execute). Since row 6 will
be executed in any case, the ligbrklist will contain one element less.

By definition,contextC Qp, and if context; = Qp, thenL, would ter-
minate immediately. This is because the conditional on rowillFevaluate
to false and continue to loopss. Now, branch = &, since row 3 was the
last assignment offranch. Thus, Loo will terminate immediately and o,
will never execute. Now, assume for contradiction that ehexists an in-
put I = (g;, context;, constraints;) such thatl, does not terminate. Thus,
context; C Qp. Statement 1 in the list above may only occur a finite num-
ber of times sinc& p is a finite set. This means that there exists an infinite
sequence of iterations such that statement 2 occur. Hoyweweklist is a fi-
nite set (since a finite number of elements can be added tonita fiumber
of times), meaning thatorklist in this infinite sequence of iterations will be-
come empty, but the conditional on row 4 terminatgsasworklist is empty.
This contradicts that there exists an input such fthabever terminates.

Left to prove is that the recursive calls to MPA eventuallgrimate. [If
MPA is called withcontext; C Qp as input, then MPA may recursively call
MPA a finite number of times witkontext; as input. We want to show that
for every recursive caltontext; C context; (i.e., the recursive calls to MPA
are called with a context with at least one more element tharctirrent call),
which would imply that in a finite number of steps MPA will esthhave ter-
minated or will be called witltontext; = Qp, which also means that MPA
will terminate. First, note that row 25 is executed onlwifis non-empty. The
setN is non-empty only ibranch is non-empty. Finally, branch is non-empty
only if row 17 executes, when the conditional on row 7 evadadb true, in
which case row 8 executes, meaning thaitext has at least one more ele-
ment than before the call (sinéewas not previously a member). This proves
that Algorithm 1 terminates.

7.3 Properties of MPA 117

7.3.2 Complexity

The complexity of MPA involves a lot of factors. In fact thenaplexity de-
pends more on the structure of the input program than on tialeize of the
program (i.e., the number of program points). While it isgble to derive a
worst-case complexity of MPA in terms of the number of prognaoints of
a program, it would not be a very useful one. To investigagedbmplexity
of MPA we take an informal alternative approach in which weestigate the
behaviour of MPA rather than the algorithm itself. All primaes used in MPA
can be implemented so that they take constant time. Thetingt that needs to
be said about the complexity of MPA is thiat, and L5 actually do not need to
be implemented as loops. This is because there are maximarodmstraints
associated with a single program point (incoming and outgedges). Thus,
the constraints can be stored in such a way that each progrisntngan access
two constraints, meaning that it is not necessary to loopuin all constraints
in Lip andL;5. Consequently, we considér, andL,5; to beO(1).

Now, the loopL, iterates through all program points found in any non-
branching path in both directions (row 10-12). All branahimaths are put
into branch , which then recursively call MPA for every branching patbwr
25), in a recursive call a previously explored path will netdxplored again,
since previously explored edges will be storedamtext . However, an edge
may be explored several times in different recursive cdlMP@A. In summary,
this means that MPA will explore every non-cyclic path of @€G. Thus, the
complexity of MPA is directly proportional to the number aim-cyclic paths
in the analysed program.

7.3.3 Correctness of MPA

In this section we will prove that MPA is correct. By correc wean that edge
q is guaranteed to be visited less than or equal to the expresspresented by
the Min-Tree returned bWIPA (¢, @, constraints). This will be proven by
induction over the depth of the MPA tree.

Proposition 11. Let ¢ be a program poing € Qp and lett be a Min-Tree

produced by calling Algorithm 1 for program pointwith an empty context.
Assume that consists only of a set of leaf nodesand no plus nodes. Then

is a correct upper bound of the number of timds visited.

Lalthough the arrangement of constraints would req@Gite) of memory, wheren is the size
of Qp

118 Chapter 7. The Minimum Propagation Algorithm

The first level of the Min-Tree is the tree produced before goursive
calls to MPA is performed. Thus, a one-level Min-Tree cotssigly in a Min-
Node and a set of leaf nodes.

Proof. All leaf nodes are added by row 9 of Algorithm 1. The first nodded

is the constraint, < p, which is directly taken from (7.1). Then, the con-
straintsz, < p, wherer is any program point which may be in the worklist.
The program points that may be in the worklist are the neighbtog (includ-
ing ¢ itself) whichmustbe or myst have been visited whers visited (see row
10). All nodes in this set of program points must be visiteglgame number of
times, saym. Since all nodes in this set must be visited every tinevisited,
the least capacity of these nodes constitutes maximum baund O

This means that it is safe to terminate the algorithm befoseracursive
calls. However, to reach a potentially tighter result, theursive calls may
contribute to a tighter, yet still correct bound.

Proposition 12. Let ¢ be a program poiny € Qp and lett be the Min-Tree
produced by calling Algorithm 1 for program poigtwith an empty context.
Assume that consists of a (possibly empty) set of leaf nofliesand a set of
plus nodesP;, where each plus node € P, has a set ofi-level Min-Trees.

Then, if alln-level Min-Trees are correct (that is, they constitute eatrupper

bounds of the program points they represent), thesmann + 1-level Min-Tree

representing a correct upper bound of the number of tigiissvisited.

Proof. First of all, the minimum of the set of leaf nodés is a correct upper
bound forg as stated by Proposition 11. Now, every set of program paints
in the branch set (see row 17) represents a selection of éulges CFG, that
is, exactly one of the program pointsMwill be taken for every time program
pointq is visited. This means that the sum of all upper bounds of tbgnam
points in N is an upper bound also on the number of timesan be visited.
Assuming that all.-level Min-Trees produced by MPA are correct, this also
corresponds to a correct upper bound of the number of tiniesisited. The
proposition holds since the minimum of a set of correct ufy@emds (i.e., the
bound derived by the leaf nodes and the bound derived by tlerdes) are
again a correct upper bound. O

Proposition 11 and Proposition 12 together proves that Mi@8lyces cor-
rect bounds.

7.4 Evaluation 119

7.3.4 Upper Bounds on Tree Depth

An important consequence of the arguments in Section &3t&t every level
of the Min-Tree is asafeupper bound of the execution time of a program point.
This means that it is safe to skip the computation of any sehitn the Min-
Tree, although it may result in a less precise sub tree. Tihus,possible
to set an upper bound on the depth of the produced Min-Treesidare a
faster termination of the MPA algorithm, to the cost of pbksprecision loss.
However, the deeper a node is in a Min-Tree, the less likely id actually
contribute to a tighter upper bound. This is because subties children to
plus nodes, which in turn probably will give a larger boundrththe children
of Min-nodes, and since the root node is always a Min-node|dtger nodes
will not contribute to the final solution.

To summarise: the first levels in the Min-Tree are the nodest likely
to contribute to the final results. Thus, computing very de@p trees will in
many cases be a waste of computation time. In Section 7.4 3yilvshow
setting an upper bound of the depth of Min-Trees affects adatjpn time and
precision.

7.4 Evaluation

In this section we evaluate MPA in two ways. First, executiore and solu-

tion size is compared to that of PIP. This is done by runniegwo approaches
on the prototype described in Chapter 6. Since the inputiagg to this proto-
type is somewhat limited (requiring source code to be tedadlby hand), the
scalability of MPA is also evaluated by running it in isotation a larger set
of benchmarks. This is possible since parametric cal@ratan be performed
over the structure (control flow graph) and does not needdhebcode.

7.4.1 Comparison with PIP
Experiment Set-up

The experiments are run under Windows XP Professional SR8 dmtel core
duo 2.4 GHz with 2.39GB RAM and a 6MB L2-cache. Both Piplib @a@d++
implementation of MPA were compiled with GCC 3.4.4 under ®yg Since
the prototype tool lacks a proper low-level analysis, aliggam points are as-
sumed to have a constant WCET of 10 clock cycles in this etialua The
experiments have been performed by analysing some benkbmsing both

120 Chapter 7. The Minimum Propagation Algorithm

Benchmark | #Pps PIP MPA
Time | Size | Time | Size

edn/fir 11| 0.1s 3 0.1s 1
edn/latsynth 7| 0.1s 1 0.1s 1
edn/latsynth x2 12| 0.1s 2 0.1s 1
edn/latsynth x4 251 0.1s| 10 0.1s 3
cnt/initialize 12| 0.1s 3 0.1s 1
cnt/initialize x2 23| 0.2s 83 0.1s 3
cnt/initialize x3 34| 2.6s | 1782| 0.1s 6
cnt/sum 16 | 0.3s| 80 0.1s 2
cnt/sum x2 31 - - 0.1s 5
jcomplex 23 - - 0.1s 7
matmult/Initialize 12 | 0.1s 3 0.1s 1
matmult/Initialize x2 23| 0.3s 83 0.1s 3

Table 7.1: Test results

PIP and MPA. These benchmarks have been manually transtetieel simpli-
fied analysed language. After analysis, some sample pairiteiparameters
have been chosen and instantiated. Table 7.1 shows theagwaluand the
columns are explained below.

Benchmark

The benchmarks are taken from the Malardalen benchmark${08]. These
benchmarks are standard WCET benchmarks and are commoe ia tie
field of WCET analysis. We have chosen benchmarks that cortimthe limi-
tation of the prototype and which have a timing behaviourchtis parametric
in some variables or constant macros. One function at a tandben analysed
and the name of the function is given as second name in thehb&rk col-
umn. When a benchmark is marked with x2, x3 etc, it means tiegbtarticular
function has been called repeatedly and is thus inlinedipteitimes. This is
just to see how the PIP and MPA scale with the number of progaints.

Program points

Labelled agtPpsin the table. This is the number of arcs in the flow chart.

7.4 Evaluation 121

Execution time

The execution time of the running algorithms. The cases &tier time is not
given means that Piplib failed to solve the problem due tawdntgh complexity
of the solution. All times have been obtained by the UNIX coamaitime .

Size

The size of the solution, given in KB. The measurements cdnoes the file
sizes of the solutions textual representations. Note thpdibRioes not scale
well, especially not in solution size.

7.4.2 Evaluation of Precision

The precision of MPA compared to PIP is hard to measure sineesolu-
tions of MPA and PIP looks so different. The precision hashbeempared

by evaluatingPCF p for some chosen values for some chosen input parame-
ters. As an examplgcomplex has been evaluated by choosing instances
of the input parameters andb, and compute a vector of upper bounds by
ECF jcomprex(a, b). The resulting vector of upper bounds has been used as ar-
guments taP CFjconp1ex t0 derive a concrete WCET. Table 7.2 shows the es-
timated WCETSs of instantiated variables from the two pataimealculation
methods. The input parameters have been chosen so they paranaetric be-
haviour and are instantiated with values somewhat clogeeiodriginal values

in the benchmark programs. The last two columns shows howrinecMPA
solution differs from the PIP solution in that particulastantiation. As can be
seen, MPA gives slightly less precise result compared to ARmprecision

of up t032.3% has been observed (on cnt/sum), but in most cases it is l&ss th
one percent.

7.4.3 Evaluation of Upper Bounds on Min-Tree Depth

As mentioned in Section 7.3.4, the first levels of a Min-Treeethe ones most
likely to contribute to the final solution. This can be demoated by running

MPA with different max-depths of the Min-Trees. Interegtinenough, for

most of the evaluated programs, it is sufficient to have a mari depth of

one to achieve the precision presented in Table 7.2. To loésgrehe following

programs gives the same precision as in Table 7.2 when themaxdepth is

set to one: edn/fir, edn/latsynth, edn/latsynth x2, edsytah x4, cnt/initialize,

cnt/sum and matmult/initialize.

122 Chapter 7. The Minimum Propagation Algorithm

Benchmark Parameters PIP result | MPA result Diff Percent
edn/fir N =100, ORDER =25 60790 60810 20 0.03%
N =100, ORDER =50 78040 78060 20 0.03%

N =100, ORDER =75 57790 57810 20 0.03%

N =200, ORDER =25 141790 141810 20 0.01%

N =200, ORDER =50 234040 234060 20 | <0.01%

N =200, ORDER =75 288790 288810 20 | <0.01%

N =300, ORDER =25 222790 222810 20 | <0.01%

N = 300, ORDER =50 390040 390060 20 | <0.01%

N =300, ORDER =75 519790 519810 20 | <0.01%

edn/latsynth n=>50 1520 1520 0 0%
n =100 3020 3020 0 0%

n =200 6020 6020 0 0%

edn x2 n=>50 3030 3060 30 0.99%
n=100 6030 6060 30 0.5%

n =200 12030 12060 30 0.25%

edn x4 n=>50 6050 6160 110 1.82%
n =100 12050 12160 110 0.91%

n =200 24050 24160 110 0.46%

cnt/initialize MAXSIZE=10 4640 4660 20 0.4%
MAXSIZE=20 17240 17260 20 0.1%

MAXSIZE=30 37840 37860 20 0.05%

cnt x2 MAXSIZE=10 9270 9810 540 5.83%
MAXSIZE=20 34470 35510 1040 3.02%

MAXSIZE=30 75670 77210 1540 2.04%

cnt x3 MAXSIZE=10 13900 15460 1560 | 11.22%
MAXSIZE=20 51700 54760 | 3060 5.92%

MAXSIZE=30 113500 118060 | 4560 4.02%

cnt/sum MAXSIZE=10 6640 8660 2020 30.4%
MAXSIZE=20 25240 33260 | 8020 31.8%

MAXSIZE=30 55840 73860 | 18020 32.3%

cnt x2 MAXSIZE=10 - 17810 - -
MAXSIZE=20 - 67510 - -

MAXSIZE=30 - 149210 - -

jcomplex a=1b=1 - 80 - -
a=1b=15 - 120 - -

a=1,b=30 - 110 - -

a=15b=1 - 80 - -

a=15b=15 - 80 - -

a=15,b=30 - 30 - -

a=30,b=1 - 80 - -

a=30,b=15 - 80 - -

a=30,b=30 - 30 - -

matmult/Initializé UPPERLIMIT = 100 406040 406060 20 | <0.01%
UPPERLIMIT =150 909040 909060 20 | <0.01%

UPPERLIMIT =200 1612040 1612060 20 | <0.01%

matmult x2 UPPERLIMIT =100 812070 817110 | 5040 0.62%
UPPERLIMIT =150 1818070 1825610 | 7540 0.41%

UPPERLIMIT =200 3224070 3234110 | 10040 0.31%

Table 7.2: Precision Comparison

7.4 Evaluation 123

Benchmark Parameters Result with max-depth

1 2 3 4
cnt/initialize x2 MAXSIZE = 10 00 9810 9810 9810
cnt/initialize x3 MAXSIZE = 10 00 17840 | 15460 | 15460
cnt/sum x2 MAXSIZE =10 00 17810 | 17810| 17810
jcomplex a=30,b=30 20 80 70 30
matmult/initialize x2 | UPPERLIMIT=100| oo | 817110 | 817110 | 817110

Table 7.3: Comparison of precision with different max-diept

The rest of the benchmarks lost precision when the depth &ta® ®ne.
Table 7.3 shows how the precision changes when changingdkealepth. As
can be seen, in all tested programs, the best possible iprecan be achieved
with the maximum depth set th but in most cases it is sufficient to set it even
lower. Note that in these small examples, the execution 6fdPA is still
neglectable, so there are no obvious benefits on setting amaaxdepth for
them. However, in larger programs, as will be seen in Sedtidnthe benefits
are obvious.

7.4.4 Scaling Properties

Since the translated benchmarks used in previous secéosnaill, they don’t
show the scaling properties of MPA properly. In order to stigate how MPA
scales in more realistic cases, we have run the algorithraalation (inde-
pendent of the parametric framework and the prototype) enfuli bench-
mark suite of [MDHO09]. We have used the WCET analysis resegratotype
SWEET [EG97, WCEOQ9] to obtain control flow graphs for the demarks. A
control flow graph (CFG) is a graph where each node is a basakbl Note
that the MPA is equally valid on control flow graph as on a flovarthsince
the premises of the constraints are the same. The CFGs etifaom SWEET
are on thdull programs that is, it includes all functions and all function calls.
In contrast to the evaluation in Section 7.4, the CFGs obthfrom SWEET
are not inlined; each function call is an edge from the catighe callee, and
each return is an edge from the exit of a function, back to #llerc Since the
algorithm in this experiment is not run on the full parameframework, we
cannot examine the precision of MPA in this test, just howuese consuming
itis.

2that is, a sequence of consecutive instructions endinguma j

124 Chapter 7. The Minimum Propagation Algorithm

Benchmark| #Pps| MD | Iterations Calls | Time Size
adpcm 884 4 - - - -
bs 39 2 249 1538 | 0.04s 6633
bsort 66 2 1750 9610 | 0.14s 44152
cnt 93 2 1537 11547| 0.16s 48022
cover 1593 | 121 - - - -
compress 380 5 - - - -
crc 127 2 10543 69017 | 0.85s 316212
duff 390 9 5937 121369| 1.22s 475556
edn 342 2 7202 95585| 1.04s 421438
expint 88 2 1028 7983 | 0.11s 32407
fac 36 2 260 1298 | 0.08s 5959
fdct 147 2 973 21565| 0.22s 79457
fftl 266 4 72572 482486| 6.18s | 2390541
fibcall 29 2 75 702 | 0.03s 2567
fir 77 2 779 6828 | 0.10s 27315
insertsort 39 2 175 1313 | 0.03s 5310
jcomplex 48 2 792 3289 | 0.06s 16763
jfdctint 122 2 1038 14726 | 0.16s 55563
lcdnum 158 | 17 4042 40164 | 0.46s 168927
Ims 262 4 90864 586176| 7.44s | 2959463
ludcmp 181 3 5583 35101 | 0.47s 169103
matmult 97 2 1351 9441 | 0.13s 40263
minmax 109 3 1926 18881 | 0.23s 74619
ndes 445 9 | 1235359| 11593218| 2m19s| 54938649
ns 46 2 562 2838 | 0.06s 13245
nsichneu 3313 5 - - - -
prime 114 3 11425 79060| 0.95s 356992
gsort-exam| 153 2 15861 104870| 1.30s 501762
qurt 135 4 27658 178578| 2.17s 821808
select 136 2 32418 165320| 2.25s 842275
sqrt 49 3 896 4717 | 0.08s 21758
statemate | 1287 | 47 - - - -
ud 150 2 2770 15938 | 0.23s 78277

Table 7.4: Scalability Properties of MPA

7.4 Evaluation 125

Benchmark| Execution Time of MPA with Min-Tree max-depth
2 3 4 5 6

adpcm 3s 17s 30s 53s -

compress | 0.8s 1.6s 3s 4s 7s

cover 1m9s| 1m18s - - -

statemate 11s 36s | 1mlls| 1m16s -

nsichneu - - - - -

Table 7.5: scaling properties with max-depth

Table 7.4 shows the result of the tests. The first column ib#mehmark
name, second column (#Pps) is the number of program poiti.third col-
umn (MD) is the maximum degree of a node, i.e. the maximum rermob
outgoing or incoming edges from a node. As seen in Table Tsdptioperty
strongly affects the time consumed by MPA. The fourth coluiterations) is
the global number of iterations of MPAs main loop (rows 442 Algorithm 1).
The fifth column (Calls) is the global number of calls (indluglrecursive calls)
to Algorithm 1. The sixth column (Time) is the real time of thlgorithm run-
ning, obtained by the UNIX commartishe. Finally, the seventh column (Size)
is the size of the solution file in bytes.

Note that MPA runs without imposing a limit on the Min-Treeptle This
caused five of the programs to fail the analysis. The reasems¢o be the
combination of many program points and a high vertex degrethe nodes,
resulting in a high number of recursive branches. Howeweinposing an
upper bound on the depth of the produced Min-Trees, mostesktiprograms
can be analysed. Since we do not run the whole framework settests, we
are not able to see how much precision is lost from doing sb tHritests
in the previous section indicated that a maximum depth of feas enough
for small benchmarks. For the five programs that failed theounded Min-
Tree depth we have analysed them with different upper botmdee how
they would scale. The result is shown in Table 7.5. The prodi@sichneu”
fails to be analysed even for maximum depth 2 and is the onhclmaark
which completely fails to be analysed. As seen, the othechmarks can be
analysed, but may or may not be over-approximated.

126 Chapter 7. The Minimum Propagation Algorithm

7.5 The Reason for Over-Estimation

As seen in Table 7.2, MPA often over-estimates the resuligpened to Pip.
This occurs in the cases where MPA fails to derive the tigittessible bounds
for a Min-Tree. There are cases where the bounds (7.3), &AdH{7.1) are not
sufficient to express the tightest possible bound. Constdgrre 7.3 which
depicts a nested loop (note that MPA is not concerned wittséimeantics of
the program, so the boxes are intentionally left empty). Mive Tree ofq; and
gs (they are equal) is shown in Figure 7.4. By inspection of Fegli3 we can
see that the execution @f implies execution of; andgs, thusps is an upper
bound ofg; (since, by (7.1)gs can not execute more than times, which
implies that neither cag;). As seen in Figure 7.4, MPA does not derjyeas
an upper bound, instead, the boupgs- MIN(ps, pg) andps + p, are derived.
This is becauses is one out of two outgoing edges fragm as well as one out
of two incoming edges fog,, giving rise to the constraints, < x3 + xg (by
(7.3)) andry < zo + x3 (by (7.4)). In summary, the upper boupglcannot be
determined fog; only by the constraints (7.3),(7.4) and (7.1) only, and leenc
MPA fails to find it.

As an example, we will show that for a certain instantiatibthe symbolic
boundspy, ..., ps, that none of the bounds (i.e., branches) in Figure 7.4 are
sufficiently tight. Assume that the symbolic bounds aredginsated as follows:

Po,---, P8 = [17007 1) 17007353700700]'

Again, by inspection of Figure 7.3 we can conclude tiatan maximally be
executed once, sineg < 1. Butthe bounds derived from Figure 7.4 are (from
left to right): ps + MIN(ps,ps) = 1 + MIN(3,3) = 4, p1 = 00, ps = 0,

pr = o0, ps = oo andps + p2 = 1 4+ 1 = 2. Thus, the tightest bound
(the minimum of the above) given from the Min-Treeiswhich clearly is an
over-approximation.

7.5 The Reason for Over-Estimation 127

Figure 7.3: A program causing over-estimation in MPA

p3 p5 p6 p3 p2

Figure 7.4: The Min-Tree for the program poiltsandgs.

Chapter 8

Summary, Conclusions and
Future Work

8.1 Summary

In this thesis we have suggested a modular framework fac$4CET anal-
ysis. The framework is based on the idea of counting semaidies of a
program to be able to estimate a tight and correct upper botittte WCET
of a program. Two possible applications of this framework been presented;
one is to quickly and efficiently calculating loop boundsj &me perhaps most
useful application: a method of deriving a parametric WCETineate. The
framework presented is based on results presented in piepigblications by
other authors, but this thesis contributes with importasearch on how to
make the methods practically useful.

8.1.1 Contributions

As summary of the thesis, the individual contributions a$ tthesis are listed
in detail. The following sections correspond to the list ohtributions given
in Chapter 1 on page 5.

Formalised Framework

The framework of the parametric WCET analysis proposedisOga, Lis03b]
has been investigated, refined and formalised, though #rerstill some as-

129

130 Chapter 8. Summary, Conclusions and Future Work

pects presented in [LisO3b], which has not been investilyg@ach as using
the method to find infeasible paths). The method inspiredpiligication
[ESGT07] which is based on similar techniques, and hence incatpdras
a framework for finding loop bounds.

Research Prototype

The research presented in this thesis has been based otypedbol imple-

menting the parametric framework. The tool has providedtmal experience
with the parametric framework and has helped to discoveptitentials and
bottle-necks of the framework, as well as made it possiblevtduate the ap-
proach.

Simplification of the Parametric Framework

In addition to the prototype, some research results corisglpractical issues
such as how to implement Pugh’s method for element countidgaamethod
for reducing the number of variables in a IPET problem havenlgesented.

The Congruence Domain

The congruence abstract domain which is an integral patiefdop bound
analysis has been modified to be able to perform analysisadistie low-level

or intermediate level code. This by introducing abstratdiover bit strings
and introducing abstract low-level operations.

The Minimum Propagation Algorithm

Perhaps the most important contribution of the thesis istimmum Propaga-
tion Algorithm which is intended to replace Parametric ¢rleProgramming
as parametric calculation. The evaluation of the algoritaicates that the al-
gorithm can be practically used for larger programs conpardIP, and thus
be more useful for realistic analysis.

Evaluation of Algorithms

The general framework have been evaluated through therobspeototype.
This shows that the framework is possible to use and thanitacelyse pro-
grams correctly. Furthermore, the PIP and MPA algorithmetiseen evalu-
ated on a larger set of benchmarks.

8.2 Future Work 131

8.2 Future Work

8.2.1 Full Evaluation

Future work includes a full evaluation of the parametricrfeavork on more re-
alistic benchmark programs. A final evaluation on real indalscode should
be able to give strong indications of the usefulness of tiop@sed approach.
The evaluation is planned to be done by implementing the draonk into
the research prototype SWEET [GESL07, WCEQ9], which catyaaaC pro-
grams which has been compiled to an intermediate format.

8.2.2 The Minimum Propagation Algorithm

While the minimum propagation algorithm works quite wellgractice, there
are still things that can be done to improve it. For instameete (memory)

efficient data types could possibly be invented. In addjtiwa plan to inves-

tigate the possibility of adding additional constraintsds as infeasible path
information) to MPA. Finally, future work is to see if the avestimation can

be reduced.

8.2.3 Abstract Domains

While the congruence domain has been investigated, otheaiths, and in
particular relational domains, are presented on the saswrgdions as the
congruence domain in literature. For relational domaihs,issues as those
presented in Chapter 5 will have to be solved, such as handfifinite value
domains, signed and unsigned integers, as well as abstragidrations. But
another problem arises in relational domains, namely, whatld be treated
as variables (dimensions)? On low-level code, the memomyeinmay not be
divided clearly into "variables”, but as registers, mempogitions etc. Further
research is needed to practically be able to use relatidnstdeect interpretation
on low-level code.

8.2.4 Modifications to the Parametric Framework

The resulting functio®WCETp of a program is meant to be stored as a final
result, and should ideally be instantiated at run-time wiesduaes of input vari-
ables are known. However, to avoid the bottle-neck of them&aork, which
seems to be the parametric calculation, an alternativecapprwould be to

132 Chapter 8. Summary, Conclusions and Future Work

not computePCFp, but to use the result frolRCFp to generate a regular
ILP-problem for every instance. The result frddCF p is a concrete vector
p (instead of a symbolic one), which can be used to generateRupioblem
based on the structural constraints and the concrete valygsIn this way,
the computation oPCF p can be skipped. Thus, the functibdWCET p will
not be computed, but an ILP-problem can be obtained for agtaimiation of
the input variables. This means that the ILP problem has &obe=d to get a
concrete WCET estimation, but due to fast solvers this shioaifairly efficient
(if not efficient enough to instantiate at run-time). Thigegach would then
make the time for instantiation longer, while reducing timeet for analysis.
Future work is to evaluate this approach and compare it totitlened one.

8.3 Conclusions

This section will summarise and conclude the experienceimpact of the
research results found in this thesis.

8.3.1 Parametric WCET Analysis is Possible

The prototype tool presented in Chapter 6 implements thedveork for-
malised in the thesis and most of the methods suggestedi®3ha] and [LisO3b].
Its main drawback is currently its input language which preg analysis on
large programs. However, the implementation shows thaapipeoach is fea-
sible and that it indeed can produce correct parametric WE€&imates of
programs in reasonable time. With the MPA algorithm we lvelithat para-
metric WCET analysis is possible to perform on smaller paagparts (such
as "disable interrupt’-sections or small embedded systemponents). We
have discovered that the two functions used to compute argdrae WCET
estimate PCFp andECF p are independent of each other and can be used in
isolation if needed.

One of the most powerful properties of the proposed framkvi®that
it is general; it is based on the language-independent amgrgm structure-
independent abstract interpretation. Furthermore, tbpgeed framework has
a modular work flow which means that most of the individuallgses can be
replaced and customised. For instance, the framework isestiticted to a
certain abstract domain, calculation method or low-levallgsis.

8.3 Conclusions 133

8.3.2 Parametric Calculation is Complex

The most complex and time consuming part of the frameworknset® be
the parametric calculation. This is because a parametdaledgion essentially
tries to solve multiple concrete calculation problems.c8ithe most popular
regular calculation methods proposed already have a higiplexity, this is
not surprising. Thus, the most important results in thisithis the suggestions
to make the parametric calculation more efficient. The foiltm three points
apply to parametric calculation in general and can be uself® as well as
MPA:

e Reduce the number of parameters in the parametric calonlati

This was briefly mentioned in Section 6.9.3. The parametkes ara-
metric calculation problem can be classified into equivededasses so that
a single parameter per basic block can model the set of péeesria the ba-
sic block. This typically reduces the number of parametpm@ximately one
third.

e Exploit the results fronkECF p in the parametric calculation

As said in Section 8.2, in the final WCET formula, the boundsipoted by
ECF p is substituted for the symbolic boundsie€F p (that is, the arguments
of PCF p) after it has been computed. However, some of the subgtipee
rameters may be constant values or unbounded, some of thgnalswmbe
equal to each other. This can be used to reduce the numberashpters and
constraints of the resulting parametric calculation peatl While the benefit
of this has not been investigated, it could in combinatiothwhe other ap-
proaches further simplify the parametric calculation.

e Skip the parametric calculation

Also mentioned in Section 8.2 was that the step of computi@f'» can
be skipped in favour of producing concrete IPET problemspud rather
than a parametric formula. However, this may make it imgaedo instantiate
formulae at run-time and no concrete formula estimating\WHeET will be
produced.

The last point on how to simplify parametric calculationyapplies to
PIP:

e Reduce the number of variables in the PIP problem

134 Chapter 8. Summary, Conclusions and Future Work

As shown in Section 6.8, the number of variables of the proldan be
reduced significantly. While this simplifies the problemddtes not actually
reduce the asymptotic behaviour of the method.

8.3.3 The Minimum Propagation Algorithm Scales

As seen in Section 7.4, PIP does not seem to scale well, eveglitsome of
the simplifications in the previous sections have been agpln the compari-
son to PIP, the MPA algorithm scales much better. In addifidRA provides

a trade-off in that it can provide correct but possibly lesscfse results by
imposing an upper bound on the depths of the produced MiesTré/ith this

possibility MPA is able to analyse all benchmarks from [MCH®ut one.

Bibliography

[AH87]

[AHLWO08]

[AJ94]

[Alt96]

[Apro9]

[APTOO]

[Arc09]

[BBKO9]

S. Abramsky and C. Hankin. Introduction to abstranterpreta-
tion. In S.Abramsky and C. Hankin, editoisbstract Interpre-
tation for Declarative Languagegages 9-31. Ellis Horwood,
1987.

Sebastian Altmeyer, Christian Himbert, Bjorisper, and Rein-
hard Wilhelm. Parametric timing analysis for complex areti
tures. InProc. 14th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications (RTCS
08), Kaohsiung, Taiwan, August 2008.

Samson Abramsky and Achim Jung. Domain theoryH&md-
book of Logic in Computer Sciencpages 1-168. Clarendon
Press, 1994.

P. Altenbernd. On the false path problem in hard +&ale pro-
grams. INEUROMICRO96pages 102-107, June 1996.

Apron website, 2009apron.cri.ensmp.fr/library/

H. Aljifri, A. Pons, and M. Tapia. Tighten the comatibn
of worst-case execution-time by detecting feasible patihs.
IPCCC2000IEEE, February 2000.

Arcticus Systems homepage, 2009.
www.arcticus-systems.com

Mark Bartlett, lain Bate, and Dimitar Kazakov. Gaateed loop
bound identification from program traces for wceReal-Time
and Embedded Technology and Applications Symposium,,IEEE
0:287-294, 2009.

135

136 Bibliography

[BBMPOO]

[BBP99]

[BEGLO5]

[BELO9]

[Ben02]

[BJT99]

[BLOS]

[BRO4a]

[BRO4b]

|. Bate, G. Bernat, G. Murphy, and P. Puschner. Llevel analy-
sis of a portable java byte code WCET analysis framewRsdal-
Time Computing Systems and Applications, InternationakwWo
shop on 0:39, 2000.

Alexander Barvinok, Er Barvinok, and James E. Pomnsimeim.
An algorithmic theory of lattice points in polyhedra. New Per-
spectives in Algebraic Combinatorigzages 91-147. MSRI Pub-
lications, 1999.

Susanna Byhlin, Andreas Ermedahl, Jan Gustafssoa Bjorn
Lisper. Applying static WCET analysis to automotive commu-
nication software. IProc. 17" Euromicro Conference of Real-
Time Systems, (ECRTS'03uly 2005.

Stefan Bygde, Andreas Ermedahl, and Bjorn Lisper.efficient
algorithm for parametric WCET calculation. Trhe 15th IEEE
International Conference on Embedded and Real-Time Comput
ing Systems and Applications, RTCSA 2(@es 13-21. IEEE
Computer Society, August 2009.

Patricia Mary BenoyPolyhedral Domains for Abstract Interpre-
tation in Logic Programming PhD thesis, Computing Labora-
tory, University of Kent, Canterbury, Kent, UK, January 200

Frédéric Besson, Thomas P. Jensen, and JeareP#pin. Poly-

hedral analysis for synchronous languageSA% '99: Proceed-
ings of the 6th International Symposium on Static Anajysiges

51-68, London, UK, 1999. Springer-Verlag.

Stefan Bygde and Bjorn Lisper. Towards an automgaicametric
WCET analysis. InNorst-Case Execution Time Analysis Work-
shop pages 9-17. Austrian Computer Society, July 2008.

Gogul Balakrishnan and Thomas W. Reps. Analyzinghory
accesses in x86 executables. @&, volume 2985 ofLecture
Notes in Computer Sciengeages 5—-23. Springer, 2004.

lain Bate and Ralf Reutemann. Worst-case exectitio@ anal-
ysis for dynamic branch predictors. ECRTS '04: Proceedings
of the 16th Euromicro Conference on Real-Time Systearges
215-222, Washington, DC, USA, 2004. IEEE Computer Society.

Bibliography 137

[BROS]

[Byg07]

[CBO2]

[CC77]

[CC79]

[CEE+02]

[CH78]

[CHMWO7]

Claire Burguiere and Christine Rochange. A contiitiu to
branch prediction modeling in WCET analysis. DATE '05:
Proceedings of the conference on Design, Automation and Tes
in Europe pages 612—-617, Washington, DC, USA, 2005. IEEE
Computer Society.

Stefan Bygde. Analysis of arithmetical congruesoa low-level
code (extended abstract). In Olaf Owe and Gerardo Schneider
editors,Nordic Workshop on Programming Theo@slo Univer-

sity, October 2007.

Antoine Colin and Guillem Bernat. Scope-tree: A mam rep-
resentation for symbolic worst-case execution time agal{si-
romicro Conference onReal-Time SystethS0, 2002.

Patrick Cousot and Radhia Cousot. Abstract intégpicn: A
unified lattice model for static analysis of programs by ¢ares
tion or approximation of fixpoints. IRroc. 4" ACM Symposium
on Principles of Programming Languaggsages 238-252, Los
Angeles, January 1977.

Patrick Cousot and Radhia Cousot. Systematic dedigrogram
analysis frameworks. IROPL, pages 269-282, 1979.

Martin Carlsson, Jakob Engblom, Andreas Ermedahl, jad-L
blad, and Bjorn Lisper. Worst-case execution time analp$i
disable interrupt regions in a commercial real-time opegatys-
tem. InProc. 2*¢ International Workshop on Real-Time Tools
2002.

Patrick Cousot and Nicholas Halbwachs. Automatscdiery of
linear restraints among variables of a progranPioc. 5th ACM
Symposium on Principles of Programming Languageges 84—
97, 1978.

Joel Coffman, Christopher Healy, Frank MuellendaDavid
Whalley. Generalizing parametric timing analysis. UBTES
'07: Proceedings of the 2007 ACM SIGPLAN/SIGBED Confer-
ence on Languages, Compilers, and Toplsges 152—-154, New
York, NY, USA, 2007. ACM.

138 Bibliography

[Cla96]

[CMO7]

[CMRSO05]

[Cou01]

[CPOO]

[Crn05]

[EGY7]

[Eng02]

Philippe Clauss. Counting solutions to linear andlinear con-
straints through ehrhart polynomials: applications tdy#eand
transform scientific programs. IS '96: Proceedings of the
10th international conference on Supercomputipgges 278—
285, New York, NY, USA, 1996. ACM.

Christoph Cullmann and Florian Martin. Data-flow bdsde-
tection of loop bounds. In Christine Rochange, edWECET,
volume 07002 oDagstuhl Seminar Proceedingsternationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI)
Schloss Dagstuhl, Germany, 2007.

Ting Chen, Tulika Mitra, Abhik Roychoudhury, and/y Suhen-
dra. Exploiting branch constraints without exhaustivehpat
enumeration. In Reinhard Wilhelm, editoRroc. 5" In-
ternational Workshop on Worst-Case Execution Time Anglysi
(WCET’2005) pages 40-43, Palma de Mallorca, July 2005.

Patrick Cousot. Abstract interpretation basethfdrmethods and
future challenges. In Reinhard Wilhelm, editorformatics vol-
ume 2000 ot.ecture Notes in Computer Scienpages 138—156.
Springer, 2001.

Antoine Colin and Isabelle Puaut. Worst case exenuiime
analysis for a processor with branch predictidteal-Time Sys-
tems 18(2/3):249-274, 2000.

Ivica Crnkovic. Component-based software engimgegfor em-
bedded systems. limternational Conference on Software engi-
neering, ICSE’05ACM, 5 2005.

A. Ermedahl and J. Gustafsson. Deriving AnnotatifmmsTight
Calculation of Execution Time. [iRroc. Euro-Par'97 Parallel
Processing, LNCS 130pages 1298-1307. Springer Verlag, Aug
1997.

Jakob EngblomProcessor Pipelines and Static Worst-Case Ex-
ecution Time AnalysisPhD thesis, Uppsala University, Dept. of

Information Technology, Uppsala, Sweden, April 2002. ISBN
91-554-5228-0.

Bibliography 139

[Erm08]

[ESG+07]

[Fea88]

[FW99]

[GESLO7]

[GMCO9]

[Gra89]

[Gra91]

Andreas ErmedahA Modular Tool Architecture for Worst-Case
Execution Time Analysi&/DM Verlag, 2008.

Andreas Ermedahl, Christer Sandberg, Jan GustafsgefanS
Bygde, and Bjorn Lisper. Loop bound analysis based on a
combination of program slicing, abstract interpretatiand in-
variant analysis. In Christine Rochange, edit®rpc. 7" In-
ternational Workshop on Worst-Case Execution Time Aralysi
(WCET'2007) Pisa, Italy, July 2007.

P. Feautrier. Parametric integer programmingOpera-
tionnelle/Operations Researci?2(3):243-268, 1988. cite-
seer.ist.psu.edu/feautrier88parametric.html.

Christian Ferdinand and Reinhard Wilhelm. Fast affidient
cache behavior prediction for real-time systerReal-Time Sys-
tems 17(2/3):131-181, 1999.

Jan Gustafsson, Andreas Ermedahl, Christer Sagdénd Bjorn
Lisper. Automatic derivation of loop bounds and infeasjtd¢hs
for WCET analysis using abstract execution. Real-Time in
Sweden (RTiS) 200August 2007.

Sumit Gulwani, Krishna K. Mehra, and Trishul Chilom
SPEED: precise and efficient static estimation of program-co
putational complexity. IfPOPL '09: Proceedings of the 36th an-
nual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languagespages 127-139, New York, NY, USA,
2009. ACM.

Philippe Granger. Static Analysis of Arithmeti€dngruences.
International Journal of Computer Mathematjgmges 165-199,
1989.

Philippe Granger. Static analysis of linear corgiaue equalities
among variables of a program. TAPSOFT '91: Proceedings of
the international joint conference on theory and practi¢saoft-
ware development on Colloquium on trees in algebra and pro-
gramming (CAAP '91): vol lpages 169-192, New York, NY,
USA, 1991. Springer-Verlag New York, Inc.

140 Bibliography

[Gus00]

[HACTO04]

[HAM *+99]

[HCO1]

[HPR94]

[HSRWOS]

[HWOQ)]

[Kle52]

[LBJ*95]

Jan GustafssonAnalyzing Execution-Time of Object-Oriented
Programs Using Abstract InterpretatioPhD thesis, Dept. of In-
formation Technology, Uppsala University, Sweden, May @200
Available as report DoCS 00/115.

Hans Hansson, Mikadlkerholm, Ivica Crnkovic, and Martin
Torngren. SaveCCM - a component model for safety-critical
real-time systems. IEUROMICRO '04: Proceedings of the
30th EUROMICRO Conferencepages 627—-635, Washington,
DC, USA, 2004. IEEE Computer Society.

Christopher A. Healy, Robert D. Arnold, Frank MuelleraM
ion G. Harmon, and David B. Walley. Bounding pipeline and
instruction cache performancieEE Trans. Comput48(1):53—
70, 1999.

George T. Heineman and William T. Councllomponent-Based
Software Engineering: Putting the Pieces Togethéddison-
Wesley Professional, June 2001.

Nicolas Halbwachs, Yann-Eric Proy, and Pascal Rayn Veri-
fication of linear hybrid systems by means of convex appraxim
tions. INSAS pages 223-237, 1994.

C. Healy, Mikael Sjodin, V. Rustagi, and David Wy Bound-
ing Loop Iterations for Timing Analysis. IRroc. 4" IEEE Real-
Time Technology and Applications Symposium (RTASRESB)e
1998.

Christopher Healy and David Whalley. Tighter timipgedic-
tions by automatic detection and exploitation of value etefent
constraints. INRTAS '99: Proceedings of the Fifth IEEE Real-
Time Technology and Applications Symposipage 79, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

Stephen Cole Kleenelntroduction to metamathematicBibl.
Matematica. North-Holland, Amsterdam, 1952.

Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do
Rhee, Sang Lyul Min, Chang Yun Park, Heonshik Shin, Kun-
soo Park, Soo-Mook Moon, and Chong-Sang Kim. An accurate
worst case timing analysis for risc processoEEE Trans. Soft-
ware Eng, 21(7):593-604, 1995.

Bibliography 141

[LCFMO9]

[LisO3a]

[Lis03b]

[LMO5]

[LM97]

[LMW99]

[Lun02]

[MBCSO08]

Paul Lokuciejewski, Daniel Cordes, Heiko FalkdalReter Mar-
wedel. A fast and precise static loop analysis based onaatbstr
interpretation, program slicing and polytope models. CIGO
'09: Proceedings of the 2009 International Symposium oneCod
Generation and OptimizatiQmpages 136—146, Washington, DC,
USA, 2009. IEEE Computer Society.

Bjorn Lisper. Fully automatic, parametric worsise execution
time analysis. In Jan Gustafsson, ediRmc. Third International

Workshop on Worst-Case Execution Time WCET Analpaiges

77-80, July 2003.

Bjorn Lisper. Fully automatic, parametric woisise execution
time analysis. Technical Report ISSN 1404-3041 ISRN MDH-
MRTC-97/2003-1-SE, Malardalen University, April 2003.

Yau-Tsun Steven Li and Sharad Malik. Performancelysia of
embedded software using implicit path enumeration.Ptac.
ACM SIGPLAN Workshop on Languages, Compilers and Tools
for Real-Time Systems (LCT-RTS'95) Jolla, CA, June 1995.

Yau-Tsun Steven Li and Sharad Malik. Performancelysia
of embedded software using implicit path enumeratioBEE
Trans. Computer-Aided Design of Integrated Circuits and-Sy
tems 16(12):1477-1487, December 1997.

Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfeerfor-
mance estimation of embedded software with instructiomeac
modeling. ACM Transactions on Design Automation of Elec-
tronic Systems4(3):257-279, 1999.

Thomas LundqvistA WCET Analysis Method for Pipelined Mi-
croprocessors with Cache Memorig2hD thesis, Chalmers Uni-
versity of Technology, Goteborg, Sweden, June 2002.

Marianne De Michiel, Armelle Bonenfant, Huguess§@a, and
Pascal Sainrat. Static loop bound analysis of ¢ programedbas
on flow analysis and abstract interpretationTtre 14th IEEE In-
ternational Conference on Embedded and Real-Time Congputin
Systems and Applications, RTCSA 2008ges 161-166. IEEE
Computer Society, 2008.

142 Bibliography

[MDHO09]

[Min01]

[Min06]

[MOSO05]

[MOS07]

[Muc97]

[New09]

[INNHO5]

[Oct09]

[Par09]

[Pip09]

The malardalen benchmark suite, 2009.
www.mrtc.mdh.se/projects/wcet/benchmarks.html

A. Miné. The octagon abstract domain.Pmoc. of the Workshop

on Analysis, Slicing, and Transformation (AST'OBEE, pages
310-319, Stuttgart, Germany, October 2001. IEEE CS Press.
www.di.ens.fr/ mine/publi/article-mine-ast01.pdf.

A. Miné. Field-sensitive value analysis of embedd C
programs with union types and pointer arithmetics. In
ACM SIGPLAN/SIGBED Conf. on Languages, Compilers,
and Tools for Embedded Systems (LCTES'Opages 54—
63, Ottawa, Ontario, Canada, June 2006. ACM Press.
www.di.ens.fr/ mine/publi/article-mine-Ictes06.pdf.

Markus Miller-Olm and Helmut Seidl. Analysis of chadar
arithmetic. In Shmuel Sagiv, editdESOR volume 3444 ot.ec-
ture Notes in Computer Sciengeges 46—60. Springer, 2005.

Markus Miller-Olm and Helmut Seidl. Analysis of chdar
arithmetic. ACM Trans. Program. Lang. Sys9(5):29, 2007.

S. S. Muchnick. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann Publishers, 1997. ISBN: 1-55860-320-
4,

New polka webpage, 2009.
pop-art.inrialpes.fr/people/
bjeannet/bjeannet-forge/newpolka/index.html

Flemming Nielson, Hanne Ries Nielson, and Chris KlanPrin-
ciples of Program Analysis,”? edition Springer, 2005. ISBN
3-540-65410-0.

Octagon library website, 2009.
www.di.ens.fr//mine/oct/

Parma polyhedra library website, 2009.
www.cs.unipr.it/ppl/

The parametric integer programming’s home, 2009.
www.piplib.org/

Bibliography 143

[P0l09]
[PPVZ92]

[PS91]

[Pug94]

[RBLO6]

[Rei08]

[SA00]

[SEGLO4]

[SEGLOE6]

[Tar55]

[The04]

Polylib website, 2009cps.u-strasbg.fr/polylib/

Gustav Pospischil, Peter Puschner, Alexandehdticky, and
Ralph Zainlinger. Developing real-time tasks with predite
timing. IEEE Softw, 9(5):35-44, 1992.

Chang Yun Park and Alan C. Shaw. Experiments with a pro
gram timing tool based on source-level timing schen@om-
puter, 24(5):48-57, 1991.

William Pugh. Counting solutions to presburgenfafas: How
and why. InPLDI, pages 121-134, 1994.

Thomas Reps, Gogul Balakrishnan, and Junghee Lim.
Intermediate-representation recovery from low-leveleodn
PEPM '06: Proceedings of the 2006 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program maaipul
tion, pages 100-111, New York, NY, USA, 2006. ACM.

Jan ReinekeCaches in WCET Analysi®hD thesis, Universitat
des Saarlandes, Saarbriicken, November 2008.

Friedhelm Stappert and Peter Altenbernd. Completestacase
execution time analysis of straight-line hard real-timegrams.
J. Syst. Archif.46(4):339-355, 2000.

D. Sandell, A. Ermedahl, J. Gustafsson, and B. drispStatic
timing analysis of real-time operating system codePtac. 1*

International Symposium on Leveraging Applications ofnfrak
Methods (ISOLA'04)October 2004.

Christer Sandberg, Andreas Ermedahl, Jan Gsstafand Bjorn
Lisper. Faster WCET flow analysis by program slicing AGM
SIGPLAN Conference on Languages, Compilers and Tools for
Embedded Systems (LCTES20@&M, June 2006.

Alfred Tarski. A lattice theoretical fixpoint theemn and its ap-
plications. InPacific Journal of Mathpages 285-309, 1955.

S. ThesingSafe and Precise WCET Determination by Abstract
Interpretation of Pipeline ModelsPhD thesis, Saarland Univer-
sity, 2004.

[VCKLO5]

[VHMWO1]

[VSB*07]

[WCEO09]

[WEE+08]

[Weig1]

[Weig4]

[Wil05]

[ZY09]

Michael Venable, Mohamed R. Chouchane, Md. Enakadim,

and Arun Lakhotia. Analyzing memory accesses in obfuscated
x86 executables. In Klaus Julisch and Christopher Krige,
itors, DIMVA, volume 3548 ofLecture Notes in Computer Sci-
ence pages 1-18. Springer, 2005.

E. Vivancos, C. Healy, F. Mueller, and D. Whalley.aamet-
ric timing analysis. In Jay Fenwick and Cindy Norris, edstor
LCTES’'01 pages 88-93, Snowbird, Utah, June 2001.

Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Virtdezech-
ner, and Maurice Bruynooghe. Counting integer points irapar
metric polytopes using Barvinok’s rational function&lgorith-
mica, 48(1):37-66, 2007.

The WCET analysis project, 2009.
www.mrtc.mdh.se/projects/wcet/

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl)adik
Holsti, Stephan Thesing, David Whalley, Guillem Bernat,
Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, rika
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschot®er
Stenstrom. The worst-case execution time problem — ogervi
of methods and survey of toolaCM Transactions on Embedded
Computing Systems (TEGS)3):1-53, 2008.

Mark Weiser. Program slicing. IFCSE '81: Proceedings of
the 5th international conference on Software engineenrages
439-449. IEEE Press, 1981.

Mark Weiser. Program SlicindEEE Transactions on Software
Engineering SE-10(4):352—-357, July 1984.

Stephan Wilhelm. Efficient analysis of pipeline nedd for
WCET computation. IrProceedings of the 5th Intl. Workshop
on Worst-Case Execution Time Analy&805.

Wei Zhang and Jun Yan. Accurately estimating worase exe-
cution time for multi-core processors with shared direetpmed
instruction caches. In Patrick Kellenberger, edifdre 15th IEEE
International Conference on Embedded and Real-Time Comput
ing Systems and Applications, RTCSA 20p8ges 455-463.
IEEE Computer Society, August 2009.

