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Abstract

In a real-time system, it is crucial to ensure that all tasks of the system hold
their deadlines. A missed deadline in a real-time system means that the system
has not been able to function correctly. If the system is safety critical, this can
lead to disaster. To ensure that all tasks keep their deadlines, the Worst-Case
Execution Time (WCET) of these tasks has to be known. This canbe done by
measuring the execution times of a task, however, this is inflexible, time con-
suming and in general not safe (i.e., the worst-case might not be found). Unless
the task is measured with all possible input combinations and configurations,
which is in most cases out of the question, there is no way to guarantee that the
longest measured time actually corresponds to the real worst case.

Static analysis analyses a safe model of the hardware together with the
source or object code of a program to derive an estimate of theWCET. This es-
timate is guaranteed to be equal to or greater than the real WCET. This is done
by making calculations which in all steps make sure that the time is exactly
or conservatively estimated. In many cases, however, the execution time of a
task or a program is highly dependent on the given input. Thus, the estimated
worst case may correspond to some input or configuration which is rarely (or
never) used in practice. For such systems, where execution time is highly input
dependent, a more accurate timing analysis which take inputinto consideration
is desired.

In this thesis we present a framework based on abstract interpretation and
counting of possible semantic states of a program. This is a general method
of WCET analysis, which is language independent and platform independent.
The two main applications of this framework are a loop bound analysis and a
parametric analysis. The loop bound analysis can be used to quickly find upper
bounds for loops in a program while the parametric frameworkprovides an
input-dependent estimation of the WCET. The input-dependent estimation can
give much more accurate estimates if the input is known at run-time.
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Västerås, February, 2010

v





Contents

1 Introduction 1
1.1 Real-Time and Embedded Systems . . . . . . . . . . . . . . . 1

1.1.1 Scheduling in Real-Time Systems . . . . . . . . . . . 2
1.2 Worst-Case Execution Time Analysis . . . . . . . . . . . . . 2
1.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research Results . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Loop Bound Analysis . . . . . . . . . . . . . . . . . 4
1.4.2 Parametric WCET Analysis . . . . . . . . . . . . . . 4

1.5 Summary of Contributions . . . . . . . . . . . . . . . . . . . 5
1.6 Summary of Publications . . . . . . . . . . . . . . . . . . . . 6
1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background and Related Work 9
2.1 Analysis Phases . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Flow Analysis . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Low-Level Analysis . . . . . . . . . . . . . . . . . . 12
2.1.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Auxiliary Analyses and Techniques . . . . . . . . . . 14

2.2 Parametric Methods . . . . . . . . . . . . . . . . . . . . . . . 16

3 Framework 17
3.1 Program Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Input Parameters . . . . . . . . . . . . . . . . . . . . 18
3.2 Program Semantics . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Initial and Final States . . . . . . . . . . . . . . . . . 20
3.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Program Timing . . . . . . . . . . . . . . . . . . . . 21

vii



viii Contents

3.3 Trace Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Computing the global WCET of a program . . . . . . 22

3.4 Collecting Semantics . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Computing the WCET of a Program Using Collecting

Semantics . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Control Variables . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Fixed Point Theory . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Abstract Interpretation . . . . . . . . . . . . . . . . . . . . . 30

3.7.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . 30
3.7.2 Abstract Functions . . . . . . . . . . . . . . . . . . . 32
3.7.3 Widening and Narrowing . . . . . . . . . . . . . . . . 34

3.8 Abstract Interpretation in Static Analysis . . . . . . . . . .. . 36
3.8.1 Widening and Narrowing in Static Analysis . . . . . . 36
3.8.2 Relational vs. Non-Relational Domains . . . . . . . . 36
3.8.3 Terminology in Abstract Interpretation in Static Analysis 38
3.8.4 Abstract Interpretation over Flow Charts . . . . . . . . 39
3.8.5 Abstract Interpretation Example . . . . . . . . . . . . 40

3.9 Abstract Domains . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9.1 Non-Relational Abstract Domains . . . . . . . . . . . 43
3.9.2 Relational Abstract Domains . . . . . . . . . . . . . . 45
3.9.3 Domain Products . . . . . . . . . . . . . . . . . . . . 47

3.10 Overview of the Framework . . . . . . . . . . . . . . . . . . 47
3.10.1 Slicing . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.10.2 Overview of Loop Bound Analysis . . . . . . . . . . 48
3.10.3 Overview of Parametric WCET Analysis . . . . . . . 49

4 Finding Loop Bounds 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Slicing on Loops . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Loop Invariant Variables . . . . . . . . . . . . . . . . . . . . 55
4.4 Restricted Widening . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Abstract Interpretation in Loop Bound Analysis . . . . . . .. 57
4.6 Counting Elements in Abstract Environments . . . . . . . . . 62

4.6.1 Example of Loop Bounding with Intervals . . . . . . . 63
4.6.2 Example of Loop Bounding with Intervals and Con-

gruences . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.3 Limitation of Non-Relational Domains . . . . . . . . 64

4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Contents ix

5 The Congruence Domain 67
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Analysis on Low-Level and Intermediate-Level Code . . . .. 67

5.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 Two’s Complement . . . . . . . . . . . . . . . . . . . 69

5.3 The Congruence Domain . . . . . . . . . . . . . . . . . . . . 69
5.4 Integer Representation . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Signed and Unsigned Integers . . . . . . . . . . . . . 72
5.5 Abstract Bit-Operations . . . . . . . . . . . . . . . . . . . . . 75

5.5.1 BitwiseNOT . . . . . . . . . . . . . . . . . . . . . . 75
5.5.2 Bitwise Binary Logical Operators . . . . . . . . . . . 76
5.5.3 Shifting . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Parametric WCET Analysis 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Relational Abstract Interpretation and Input Parameters . . . . 85
6.3 Counting Elements in a Relational Abstract Environment. . . 87

6.3.1 Ehrhart Polynomials . . . . . . . . . . . . . . . . . . 89
6.3.2 Barvinok’s Rational Functions . . . . . . . . . . . . . 89
6.3.3 Successive Projection . . . . . . . . . . . . . . . . . . 89

6.4 ObtainingECFP . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.1 Polyhedral Abstract Interpretation . . . . . . . . . . . 91
6.4.2 Counting Integer Points . . . . . . . . . . . . . . . . 91

6.5 ObtainingPCFP . . . . . . . . . . . . . . . . . . . . . . . . 93
6.5.1 Parametric Calculation . . . . . . . . . . . . . . . . . 93
6.5.2 Parametric Integer Programming . . . . . . . . . . . . 93
6.5.3 PIP as Parametric Calculation . . . . . . . . . . . . . 94

6.6 ObtainingPWCETP . . . . . . . . . . . . . . . . . . . . . . 96
6.7 SimplifyingPWCETP . . . . . . . . . . . . . . . . . . . . . 97
6.8 Reducing the Number of Variables . . . . . . . . . . . . . . . 99

6.8.1 Concrete Example of Variable Reduction . . . . . . . 100
6.9 Prototype Implementation of the Parametric Framework .. . . 102

6.9.1 Input Language . . . . . . . . . . . . . . . . . . . . . 102
6.9.2 Implemented Analyses . . . . . . . . . . . . . . . . . 103
6.9.3 Conclusion and Experiences . . . . . . . . . . . . . . 104



x Contents

7 The Minimum Propagation Algorithm 107
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 The Minimum Propagation Algorithm . . . . . . . . . . . . . 107

7.2.1 The Min-Tree . . . . . . . . . . . . . . . . . . . . . . 109
7.2.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . 109
7.2.3 Example of MPA . . . . . . . . . . . . . . . . . . . . 112

7.3 Properties of MPA . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.1 Termination . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . 117
7.3.3 Correctness of MPA . . . . . . . . . . . . . . . . . . 117
7.3.4 Upper Bounds on Tree Depth . . . . . . . . . . . . . 119

7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.4.1 Comparison with PIP . . . . . . . . . . . . . . . . . . 119
7.4.2 Evaluation of Precision . . . . . . . . . . . . . . . . . 121
7.4.3 Evaluation of Upper Bounds on Min-Tree Depth . . . 121
7.4.4 Scaling Properties . . . . . . . . . . . . . . . . . . . 123

7.5 The Reason for Over-Estimation . . . . . . . . . . . . . . . . 126

8 Summary, Conclusions and Future Work 129
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2.1 Full Evaluation . . . . . . . . . . . . . . . . . . . . . 131
8.2.2 The Minimum Propagation Algorithm . . . . . . . . . 131
8.2.3 Abstract Domains . . . . . . . . . . . . . . . . . . . . 131
8.2.4 Modifications to the Parametric Framework . . . . . . 131

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.3.1 Parametric WCET Analysis is Possible . . . . . . . . 132
8.3.2 Parametric Calculation is Complex . . . . . . . . . . . 133
8.3.3 The Minimum Propagation Algorithm Scales . . . . . 134

Bibliography 135



Chapter 1

Introduction

1.1 Real-Time and Embedded Systems

An embedded system can be said to be computer system designedfor a specific
purpose. Such a computer system differs from a desktop computer in the sense
that it interacts with its environment via sensors, buses and other devices rather
than a keyboard and monitor. Embedded systems are used in mobile phones,
cars, power plants etc. Typically, these systems have resource constraints as
they are often small, battery driven or have real-time requirements. Real-time
requirements on a system means that if a computation is not finished before a
given deadline, the system will either have decreased performance or is consid-
ered to have failed. Systems which can not tolerate that a deadline have been
missed are calledhard real-time systems. A missed deadline can in a safety
critical hard real-time system have dire consequences, therefore, it is of great
importance for these systems to ensure that all software tasks will meet their
deadlines. This is ensured by estimating the worst possibleexecution time for
each task in the system, and produce a feasible schedule for them. However,
determining the worst case execution time (WCET) of a task orprogram is far
from trivial since it depends on hardware (including complex hardware features
such as pipelines, caches, branch prediction etc.) as well as software semantics
(i.e., finding the worst possible paths through the program)and the interplay
between the two. The solution is to find asafe estimationof the WCET of a
task. A safe estimation of the WCET is a number which is guaranteed to be
equal to or greater than the WCET. However, it is desired thatthis number is
as close to the real WCET as possible, without compromising the safety.

1



2 Chapter 1. Introduction

1.1.1 Scheduling in Real-Time Systems

A real-time system typically has a set of software tasks which need to execute
on the available processors of the system. Areal-time scheduleris a piece of
software which assigns tasks to processors during different time slots. Tasks
with hard real-time constraints are required to execute andfinish their execu-
tion before their given deadlines. Thus, a real-time scheduler has to make sure
that all real-time tasks can meet all their deadlines. For this to be possible,
the given execution times of the tasks have to be short enoughfor all real-time
tasks to execute. If the given execution times are too pessimistic, it may be im-
possible for the scheduler to find a suitable schedule (that is, the system is not
schedulable). For this reason, it is essential to obtain WCET estimates which
aresafe(to guarantee that the real-time constraints are met) and atthe same
time tight, i.e., as close to the real WCET as possible (to make the task set
schedulable). This thesis investigates a method to find safeand tight bounds
for the WCET of programs. This method is fully automatic, flexible and can
achieve symbolic upper bounds for the WCET.

1.2 Worst-Case Execution Time Analysis

A lot of research has been done in the area of worst-case execution time analy-
sis, a good overview can be found in [WEE+08]. WCET analysis can roughly
be divided into two disciplines, namely static and dynamic WCET analysis.
A dynamic WCET analysisis done by performing end-to-end measurements
of a running program on the target processor (or a simulator). This requires
either very extensive measurements to ensure enough coverage or alternatively
attempting to enforce the program to execute its worst-casepath, which may
be very difficult. Dynamic analysis cannot in the general case ensure that the
worst-case have actually been found, and may therefore under-estimate the
WCET. To come around this problem a safety margin is usually added to the
worst found measurement.

The other approach isstatic WCET analysiswhich computes a safe upper
bound of the WCET of a program by statically analysing the program code, its
possible inputs and a model of the hardware. A static WCET analysis has to
do pessimistic assumptions in uncertain cases to give a safeupper bound, i.e.,
a bound which is guaranteed to be at least as large as the real WCET. There are
also hybrid approaches which in some way combines the staticand dynamic
analyses. Figure 1.1 displays the relationship between measured execution
times, analysed execution times and the actual WCET. The figure also shows
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Figure 1.1: Relation between execution times and analysis results (taken from
[WEE+08])

the relation to BCET which means Best-Case Execution Time. The upper and
lower timing bounds aresafeestimates of the WCET and BCET respectively.

This thesis will solely focus on static analysis. More specifically, the thesis
will investigate a framework for static analysis which is based on counting run-
time states to derive a WCET of a program. This framework has two major
applications which will be presented in the thesis. The applications are loop
bound analysis and parametric WCET analysis.

1.3 Problem Formulation

In this section two common problems associated with WCET analysis are pre-
sented. While the two problems may seem to differ quite a lot,this thesis shows
that both problems can elegantly be solved by very similar methods. The first
problem is to automatically find upper bounds of the length ofthe execution
traces of a program. To be able to give an upper bound of the timing of a
program, the program has to execute in a finite number of steps. Typically,
programs spends most execution time is in loops, therefore it is essential to
find an upper bound for the iterations for each loop. Ideally this should be
automatic and quick. Thus, we attempt to answer the question

How to efficiently and automatically find upper execution bounds
for a program loop?

This thesis presents a method to quickly and automatically (that is, without
user interaction) derive safe upper bounds for loops in a program.
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Static analysis derives, as seen in Figure 1.1, a safe upper bound of the
WCET of a program. However, the execution time of a program isaffected by
a number of things. Very often, the execution time of a program is heavily de-
pendent on input variables and/or configurations/modes of the task or program.
The input combination/configuration of the worst-case may be a such which is
never used in practice, making the upper bound unnecessarily pessimistic. It
might even be too pessimistic to use in practice [BEGL05, SEGL04, CEE+02].
Thus, the main question this thesis tries to solve is the following:

How to decrease the inherit pessimism introduced from static
analysis by assuming the worst-case input combination?

This thesis tries to overcome this pessimism by the realisation that the input of
a program may be known at run-time or even at deploy time. Thisinformation
can be used to derive a re-usable time estimate which isdependenton the input
variables of a program. That is, rather than expressing the WCET as a constant
number, it is expressed as a formula in terms of the values of the input variables.

1.4 Research Results

1.4.1 Loop Bound Analysis

In order to provide a concrete upper bound of the WCET of a program, a static
analysis needs to be able to find execution bounds for the different parts of
the program. If the number of executions of a certain loop cannot be bound,
the analysis fails to give a finite, safe WCET estimation. Thus, it is crucial
to have an upper bound for each loop in the program. This can beachieved
with manual annotations (i.e., having the programmer annotate the code with
loop bounds) or it can be automatically derived by static analysis. A method
to quickly and automatically derive loop bounds was presented in [ESG+07],
which is based on counting run-time states of a program.

1.4.2 Parametric WCET Analysis

In many cases the execution time of a program highly depends on its input.
If the control flow of the program depends on the input data, the execution
time will naturally be affected. Since the WCET of a program holds for all
possible input combinations, it may often be too pessimistic. For example,
the program may never be called with the worst-case input in practice, and
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the real worst case may be much lower than the estimated one. Asolution
to this is to compute a WCET bound which is symbolic in terms ofthe input
values. Such a bound can then quickly be instantiated by substituting concrete
input values for the symbols in the formula. Such a formula then constitutes a
reusable upper bound on a program or task which is safe but also more precise
since more information about the bound is known. Furthermore, by having
a formula of the WCET, mathematical analysis can be applied to the formula
to perform things like sensitivity analysis. The investigated framework uses
known techniques to symbolically count run-time states in aprogram and can
be used to obtain these kind of formulae.

Parametric WCET analysis is naturally more complex than classical static
WCET analysis and should not be used on large systems with millions of lines
of code; rather, the parametric estimation is most efficiently used on smaller
program parts (like smaller tasks or functions) which have input data depen-
dent execution times. Interesting applications would includedisable interrupt
sections, which are code sections which may not be interrupted and arethere-
fore naturally interesting to find the WCET for. These sections typically needs
to be small and are interesting candidates for a parametric WCET [CEE+02].
Another important application of parametric WCET analysiswould be in com-
ponent based software development (CBD) [Crn05, HC01]. In CBD, reusable
components designed to interact with each other in different contexts can be
analysed in isolation. Since components are designed to function in different
contexts, a reusable WCET estimation is desired. Componentmodels designed
for embedded systems (such as saveCCM [HÅCT04] or Rubus [Arc09]) typ-
ically uses quite small components which makes parametric WCET analysis
interesting.

1.5 Summary of Contributions

This thesis is based on a method for parametric WCET analysispresented in
[Lis03a], and a method for loop bound analysis presented in [ESG+07]. The
concrete contributions of this thesis is the following.

• We have formalised and enhanced the method presented in [Lis03a] and
merged it with the method presented in [ESG+07] to obtain a formalised
framework on how to perform WCET analysis by counting run-time
states.

• A prototype implementing parts of the framework has been developed in
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order to evaluate the method. This prototype has provided insight and
experience with the method, leading to the discovery of bottle-necks and
potentials.

• We have proposed a set of simplifications of the method for parametric
WCET analysis proposed in [Lis03a], such as reducing the number of
variables used in the calculation.

• An enhancement of an abstract domain used in loop bound analysis has
been made to make it possible to use it for low level code, which is
commonly used in WCET analysis.

• An algorithm for efficient parametric WCET calculation has been pro-
posed, implemented and evaluated.

• Some of the methods and algorithms presented in the thesis have been
experimentally evaluated with the prototype mentioned above, and in
the static WCET analysis tool SWEET (SWEdish Execution Timetool)
[GESL07, WCE09].

1.6 Summary of Publications

This thesis is based on four papers, of which three have been published.

Paper A

Analysis of Arithmetical Congruences on Low-Level Code. Stefan Bygde. Ex-
tended abstract NWPT’07 [Byg07].

This paper describes the enhancement of the congruence domain. It pro-
vides low-level support for the domain, including low-level abstract operations
and an abstraction which works for both signed and unsigned integers. The
contents of this paper is covered in Chapter 5.

Paper B

Loop Bound Analysis based on a Combination of Program Slicing, Abstract
Interpretation, and Invariant Analysis. Andreas Ermedahl, Christer Sandberg,
Jan Gustafsson, Stefan Bygde, and Björn Lisper. Presentedat the WCET work-
shop in 2007 [ESG+07].
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This paper shows how to estimate loop bounds by counting elements of
abstract states. The evaluation of this methods also shows that the congru-
ence domain gives more accurate results. As the forth authorof the paper, I
have been involved in formulating the original idea and provided the analysis
with the congruence domain. The contents of this paper is mainly covered in
Chapter 4, although the theoretical foundations of the method is outlined in
Chapter 3. In addition to the published materials, this thesis goes deeper on
some of the theoretical foundations of the approach.

Paper C

Towards an Automatic Parametric WCET Analysis. Stefan Bygde, Björn Lisper.
Presented at the WCET workshop in 2008 [BL08].

This paper presents an implementation of the parametric WCET analysis
based on counting elements in abstract states introduced in[Lis03a]. The paper
presents necessary workarounds to make a functioning implementation as well
as some simplifications that can be done to reduce complexity. As first author
I have been writing the paper and been the main driver. The contents of the
paper is mostly contained in Chapter 6. However, Chapter 6 contains more
details than the original publication, including detailedexamples.

Paper D

An Efficient Algorithm for Parametric WCET Calculation. Stefan Bygde, An-
dreas Ermedahl, Björn Lisper. Presented at RTCSA’09 [BEL09]. Best paper
award.

This paper introduces a new parametric calculation algorithm called MPA.
The paper presents the algorithm and evaluates it on a large set of benchmarks.
As first author I have been writing the paper and been the main driver. The
contents of the paper are included in Chapter 7, although thechapter contains a
more detailed evaluation of the algorithm as well as more theoretical properties
of it.

1.7 Thesis Outline

The thesis is outlined as follows:



8 Chapter 1. Introduction

Chapter 2 gives an overview over the field of WCET analysis and related
work.

Chapter 3 provides a formalisation of the proposed framework.

Chapter 4 explains how to use the framework to compute loop bounds and
evaluates it.

Chapter 5 introduces necessary developments to perform abstract interpreta-
tion on a lower level using the congruence abstract domain.

Chapter 6 explains in detail how to perform a parametric WCET analysiswith
the framework.

Chapter 7 introduces an efficient algorithm for parametric WCET calcula-
tion, and finally,

Chapter 8 presents a summary, conclusions and future work.



Chapter 2

Background and Related
Work

This chapter will introduce terminology and concepts used in static WCET
analysis and present some related work.

2.1 Analysis Phases

Static WCET analysis can essentially be divided into three independent phases.
To put it simple, one phase analyses the software, one phase analyse the hard-
ware and the final phase combines the analysis results to calculate an estima-
tion of the WCET. This estimation is in most cases just the worst-case execu-
tion time in milliseconds. Figure 2.1 shows how the different analysis phases
relate.

2.1.1 Flow Analysis

Flow analysis or high-level analysis analyses the source orobject code of a pro-
gram. The goal of this process is to find constraints on the program flow and
find bounds on the execution counts of different parts of the program. Informa-
tion about program flow are known asflow facts. Several analysis techniques
can be applied during this phase to obtain as much information as possible.
It needs to be mentioned that exact information about programs in general is

9
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undecidable and many of these techniques need to introduce sound approxima-
tions rather than giving precise results.

Loop Bound Analysis

As mentioned in Chapter 1, an important part of WCET analysis, specifically
the flow analysis phase, is to find an upper bound for each loop.If a loop can
not be bounded the only safe assumption is that the loop will go on forever
leading to an unbounded WCET of the program.

There have been some work focusing on the development of efficient and
precise loop bound analysers. Healy et. al. [HSRW98], introduced a pat-
tern based approach to find upper and lower bounds on loops. Itrequires
user knowledge and annotation about variable bounds and it is not fully au-
tomatic and requires structured loops (although multiple exits are allowed).
Another loop bound analysis is suggested in [CM07], it is based on flow anal-
ysis and binds loops by finding fixed increments of loop counter variables. It
requires structured loops and can handle only loops with fixed increments. In
[MBCS08] an efficient loop bound analysis is presented. Thisanalysis requires
programs to be run through a code simplifier to make sure that loops are struc-
tured and that they have single exits. Gustafsson et. al. [GESL07] presents
a method to find loop bounds by a technique called abstract execution, which
is simulating the execution of a program over abstract states. Bartlett et. al.
[BBK09] presents a method to find exact parametric loop bounds given a cer-
tain class of nested loops, however, this requires that several traces of the pro-
grams execution is recorded and that the loop expressions are identified and
can therefore not be considered as fully automatic.

In our framework we base the loop bound analysis on the methodoutlined
in [ESG+07] where general loops quickly and automatically can be analysed
without imposing any restriction on the structure. This method is based on
counting possible semantic states in a loop using abstract interpretation, slic-
ing and invariant analysis techniques. Later work by Lokuciejewski et. al
[LCFM09] has achieved even better results using very similar techniques but
with another abstract domain, acceleration techniques (toavoid iteration in the
abstract interpretation) and improved slicing. While we base our work on the
earlier publication, the latter work fits quite well into thegeneral framework
suggested in this thesis. The advantage by using abstract interpretation in loop
bound analysis is that abstract interpretation is completely independent of the
structure of loops and works on arbitrary program flow.
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Infeasible Path Detection

Essentially, the purpose of the flow analysis is to give as many and exact flow
facts as possible to be able to give an accurate WCET bound. Therefore, find-
ing paths that due to semantic constraints cannot be taken isof value to de-
crease the pessimism of the analysis. To give a simple example, consider the
following code

if n > 2 then
statement 1

end if
if n < 0 then

statement 2
end if

No execution of this piece of code can execute both statement1 and state-
ment 2 (assuming statement 1 does not change the value ofn). Some research
efforts, devoted to finding infeasible paths to decrease analysis pessimism, are
presented in [Alt96, APT00, HW99, GESL07, CMRS05, Lun02].

2.1.2 Low-Level Analysis

The low-level analysis analyses a mathematical model of thehardware plat-
form. The model should be as detailed as possible, but it has to be conserva-
tive, e.g, assume a cache-miss rather than a cache-hit when it is impossible to
determine statically. The purpose of the low-level analysis is to derive worst-
case execution times for atomic parts of the program. Atomicparts can mean
either instructions, basic blocks or some other small easily distinguishable part
of a program. Note that our work is mainly concerned with flow analysis and
calculation, thus, the related work presented about low-level analysis will be
sparse.

Complex Hardware Features

In modern computer architectures it is common to have complex hardware
features such as pipelines, caches and branch prediction. While these fea-
tures greatly improves average performance, they also makethe timing be-
haviour much harder to predict. For a low-level analysis to be precise enough,
these complex features have to be taken into account and analysed. This can
lead to high over-estimations of the WCET and the synergy effects among
the different features may be hard to detect. A lot of work hasbeen pub-



2.1 Analysis Phases 13

lished in the area of low-level analysis and how to model hardware features.
For instance low-level analysis and modelling has been proposed for caches
[HAM +99, LMW99, Rei08, FW99], pipelines [Eng02, Wil05], branch predic-
tors [BR05, BR04b, CP00], multi-core caches [ZY09] etc.

2.1.3 Calculation

When flow facts have been derived from the flow analysis and atomic worst-
case execution times have been calculated by the low-level analysis, the results
can be combined to obtain a concrete bound of the WCET. This isdone in
the calculation phase. There have been some different approaches to WCET
calculation proposed, like the tree-based (or structure based) approach [PS91,
LBJ+95, PPVZ92, BBMP00, CB02] which calculates the WCET by parsing
the program structure bottom-up, the path-based approach [HAM+99, SA00,
Erm08] which explicitly models the paths of the program to find the worst-
case and the perhaps most used approach called IPET introduced in the next
subsection.

Implicit Path Enumeration Technique

The Implicit Path Enumeration Technique (IPET) was proposed in [LM95,
LM97]. Since the number of paths through a realistically sized program tends
to get very large, it is simply infeasible to try to find the worst-case path. In-
stead, the idea of IPET is to formulate the flow constraints and the atomic costs
as an Integer Linear Programming (ILP) problem. This is doneby maximising
a cost function subject to the constraints obtained from flowanalysis. Since the
flow facts might not be exact, this calculation may over-approximate the final
result.

Much of the research presented in this thesis uses and refersto the IPET
method, thus, a detailed presentation of the method is presented here. The idea
is to obtain an estimation of the WCET as the maximum of

∑

q∈QP

cqxq

whereQP is a set of all points in the programP , this may be edges or nodes in
a control flow graph, basic blocks, labels or whatever is usedto represent a pro-
gram. The factorcq represents the worst-case execution time of pointq which
has been calculated by a low-level analysis. The factorxq represents an upper
bound of the execution count of program pointq. This factor is unknown but
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are subject to a set of constraints which may be obtained by the flow analysis.
For example, suppose that flow-analysis has determined thatthe program point
q5 ∈ QP can never be visited more than five times. This imposes a constraint
looking as follows:

xq5
≤ 5

Moreover, flow-analysis may have determined that the program pointq5 is vis-
ited at least as many times asq6 since it is dominatingq6. This can be expressed
through the constraint:

xq6
≤ xq5

Thus, with a objective function to maximise and a set of linear constraints,
this can be solved with the simplex algorithm. The simplex algorithm gives a
solution to the unknown variablesxq∈QP

such that all constraints holds and
that the objective function is as large as possible.

Since there exist really efficient ILP solvers, IPET is an effective and widely
used technique. IPET is also very flexible, and work has been proposed to en-
hance the IPET model to analyse, for instance, caches [LMW99, ZY09].

2.1.4 Auxiliary Analyses and Techniques

Some common techniques in WCET analysis are not really part of any analysis
phase, but are auxiliary methods to generally facilitate WCET the different
analyses.

Program Slicing

Program slicing [Wei81, Wei84] is a process of eliminating certain statements
and variables from a program. A program slice is a program where each state-
ment which directly or indirectly affects a set of given variables (slicing crite-
rion) has been removed. In WCET analysis, slicing can be usedto produce a
program slice where all variables which affect program flow are removed. Flow
analysis over such a slice is more efficient since a program slice is smaller than
the original program but still contains the same flow facts. Program slicing is
an essential part of the framework outlined in this thesis, thus a detailed expla-
nation of the technique follows.

A program sliceis a minimal representation of a program with respect to a
slicing criterion. A slicing criterion is a set of variables observed at a certain
statement. The slice is then obtained by removing statements and variables
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from the original program which are guaranteed to not affectthe slicing crite-
rion. In general it is undecidable to get a perfect slice (i.e., a slice whereall
irrelevant statements have been removed), so slicing algorithms has to apply
some sort of conservative behaviour. We illustrate by an example, consider the
following program:

n← 10
i← 0
j ← 1
while n > 0 do

i← i + 1
j ← j ∗ 2 {“Statement”}

end while

If this program is sliced with respect to the variablei at “Statement”, this will
result in

n← 10
i← 0
while n > 0 do

i← i + 1
end while

As can be seen, this program has the same semantics as the original program
if one only observesi at the program point where “statement” was. However,
“statement” itself was irrelevant in this case and was removed by the slicing.

Slicing in the context of WCET analysis has been used in [SEGL06, ESG+07,
LCFM09].

Value Analysis

Value analysis is the process of determining a superset of the possible values
variables can be assigned to in the program. This can be used to find infeasi-
ble paths, loop bounds and dead code among other things. The most common
technique to perform value analysis is abstract interpretation [CC77]. Since,
as with general flow facts, an exact value analysis would in general be un-
decidable, abstract interpretation soundly approximatesprogram semantics in
order to obtain a set of values which variables can be assigned to. There are
many kind of approximations that can be chosen, and the choice is a trade-off
between precision and complexity of the analysis.



16 Chapter 2. Background and Related Work

Manual Annotations

Most of the above mentioned analyses have to introduce approximations and
can in most cases not find all possible flow facts. In addition,many analyses
may be costly. In some cases it may therefore be worthwhile tohave a human
manually annotate the source or object code with flow facts, known ascode
annotations. This might be error prone and requires good knowledge aboutthe
code, but it can on the other hand introduce flow facts which are impossible for
a static analysis to derive.

2.2 Parametric Methods

The parametric WCET analysis framework presented in this thesis is based on
the method outlined in [Lis03a] (see also [Lis03b]). The analysis is general,
fully automatic and works for arbitrary control flow and can give potentially
very complex and detailed formulae expressed in the input variables of a pro-
gram. In [CB02], a WCET analysis which computes a formula given in some
chosen set of function parameters, is presented. In this method, flow constraints
has to be manually provided. Two methods of parametric WCET analyses are
presented in [VHMW01] and [CHMW07]. They are both parameterised in
loop bounds only and they do not take global constraints intoconsideration. A
method similar to the one outlined in [Lis03a] were presented in [AHLW08],
but it is using loop and path analyses instead of abstract interpretation. It re-
quires special treatment of loops and is not as accurate as polyhedral abstract
interpretation. A method which computes the complexity of aprogram is pre-
sented in [GMC09]. This method derives symbolic bounds of the complexity
of the code only and does not take hardware into consideration, and cannot be
used to obtain WCET estimations.
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Framework

In this chapter we introduce and formalise a framework for static WCET anal-
ysis based on abstract interpretation and counting states.This framework is
based on the ideas published in [Lis03a] and [ESG+07]. This chapter will in-
troduce the theoretical foundations of the framework whilethe two following
chapters will go into details how to use the framework in practice.

3.1 Program Syntax

In this thesis, our general notion of aprogram is a piece of software; a task,
a function, a full system or even just a loop. In order to have asimple and
language-independent representation of programs they arerepresented by flow-
charts. Furthermore, we shall assume that all variables of aprogram are inte-
ger valued. While this may seem like a strong restriction, the control flow of
programs are usually governed by integers. Also, it is ofteneasy to gener-

Start Exitx<=yx:=e

Figure 3.1: Flow Chart Nodes
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Exit

Start

i<=n

Start

i:=0

i:=i+1

q0

q1

q2

q3q4

q5

Figure 3.2: An example programL

alise analyses to other data types, but our representation becomes simpler if
restricted to integers.

Definition 1. A programP = 〈VP ,QP ,VP 〉 is a piece of software, represented
by a flow chart. The setVP is the set of flow chart nodes (see Figure 3.1). The
setQP ⊆ VP × VP is the set of arcs in a flow chart, these will be referred to
asprogram points. The setVP denotes a set of program variables.

Every program is assumed to have single entry and exit points, where the
arc immediately connected to the entry (or start) node is referred to as the
initial program pointq0, and the arc connected to the exit node is called the
final program point.

As an example, a programL = 〈VL, {q0, q1, q2, q3, q4, q5} , {i, n}〉 is de-
picted in Figure 3.2. This program will be used as a running example of the
analysis techniques throughout the thesis.

3.1.1 Input Parameters

Since the execution time of a program varies with input, and this framework
aims to provide a parametric WCET we shall make an important definition.

Definition 2. Each programP is assumed to have a set ofinput parametersIP

which is a set of symbolic parameter corresponding to concrete values which
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affect the program flow ofP .

Depending on the type of program analysed, the input parameters can mean
different things. If a function is analysed, the input parameters may correspond
to the values of the formal parameters of the function. For a component, the
input parameters may correspond to the data of the input ports of the compo-
nent. For a loop, an input parameter may correspond to a givenloop bound.
For a task, the input parameter may correspond to the initialvalue of a global
variables etc. The important thing is that the value of an input parameter in
some way affects the timing of the program under analysis.

As an example, consider the program in Figure 3.2. Here, the initial value
of n is a suitable input parameter ofL, since the execution time ofL is depen-
dent on it. Thus, we can assume that the initial value ofn is n0, and conse-
quentlyIL = {n0}. Note here thatn0 is treated as a symbolic parameter rather
than an absolute constant.

3.2 Program Semantics

The previous section defined how to represent programs without attaching any
meaning to them. As the meaning of the different flow charts nodes should be
straightforward to understand, we will not attach a formal definition of their
semantics. However, in order to be able to reason about programs, we need to
be able to reason about the run-time states of a program.

Definition 3. Anenvironmentof a programP is a mappingσP : VP → Z. In
other words, an environment is an assignment for every variable to an integer.
The set of all environments of a programP is denotedΣP .

Definition 4. A state〈q, σ〉 ∈ QP × ΣP of a programP is a program point
associated with an environment. The set of statesQP × ΣP is denotedSP .

Informally, an environment can be said to be a memory configuration and
a state is a memory configuration together with the program pointer. With
Definition 3 and 4 we can now reason formally about the run-time states of
programs.

Definition 5. Thesemantic functionτP of a programP is a partial mapping
τP : SP ↪→ SP , mapping one state to another.

The semantic function defines the meaning of the program, i.e., formally
defines what each flow chart node does to the current state. Themapping is
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partial since the function is not defined for the final programpoint. Again,
while it is possible to give a formal definition ofτP for each type of flow chart
node, we shall refrain from doing so since it is not significant for the rest of the
developments in this section.

3.2.1 Initial and Final States

Any program has a set of initial statesIP ⊆ SP and a set of final statesFP ⊆
SP

1. The initial states are all associated with the initial program point (i.e.,
they all have the form〈q0, σ〉). Conversely, the final states are all associated
with the final program point. The environment associated with the initial state
can be any environment2. However, some initial values may correspond to
input parametersIP of a program. Such variables will affect the execution
and the initial configuration of these variables will therefore lead to different
executions.

Definition 6. Thesemantic closure functionτ∗
P : SP → FP of a program is

recursively defined as

τ∗
P (s) =

{
s if s ∈ FP

τ∗
P (τP (s)) otherwise

The semantic closure function maps any state into a final state if it termi-
nates. It is not defined for non-terminating programs.

3.2.2 Example

As an example, consider programL from Figure 3.2 again. Below is a demon-
stration on how to compute the final state from a given initialstate. Choosing
an initial state consists in determining values for each input parameter inIL.
SinceIL = {n0}, this comes down to choosing an initial value forn, in this
example we setn0 to 2. We denote an environment wheren maps to2 as
[n 7→ 2]. Thus, we choose the initial state〈q0, [i 7→ i0][n 7→ 2]〉. Note that
the initial value ofi does not matter sincei is assigned before it is used, hence
an arbitrary valuei0 is chosen fori. To compute the semantics of executing
L on this initial state, we computeτ∗

L(〈q0, [i 7→ i0][n 7→ 2]〉). Without having

1Except programs which never terminate, but such programs are uninteresting for analysis
purposes.

2It is common to assume that the memory state before a program executes is undefined.
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definedτL formally, the reader should have no problems understandingthe fol-
lowing intuitively. We shall as in this example often omit the subscript (in this
caseL) when no ambiguity occurs.

τ∗(〈q0, [i 7→ i0][n 7→ 2]〉) = τ∗(〈q1, [i 7→ 0][n 7→ 2]〉)

τ∗(〈q2, [i 7→ 0][n 7→ 2]〉) = τ∗(〈q4, [i 7→ 0][n 7→ 2]〉)

τ∗(〈q5, [i 7→ 1][n 7→ 2]〉) = τ∗(〈q2, [i 7→ 1][n 7→ 2]〉)

τ∗(〈q4, [i 7→ 1][n 7→ 2]〉) = τ∗(〈q5, [i 7→ 2][n 7→ 2]〉)

τ∗(〈q2, [i 7→ 2][n 7→ 2]〉) = τ∗(〈q4, [i 7→ 2][n 7→ 2]〉)

τ∗(〈q5, [i 7→ 3][n 7→ 2]〉) = τ∗(〈q2, [i 7→ 3][n 7→ 2]〉)

τ∗(〈q3, [i 7→ 3][n 7→ 2]〉) = 〈q3, [i 7→ 3][n 7→ 2]〉 .

Thus, the semantics of executingL with initial state〈q0, [i 7→ i0][n 7→ 2]〉
is to derive the state〈q3, [i 7→ 3][n 7→ 2]〉.

3.2.3 Program Timing

In this thesis we will mainly focus on flow analysis, but for a WCET analysis to
estimate realistic times, a low-level analysis is needed. As explained in Chap-
ter 2, a low-level analysis is far from trivial. In this work,it is assumed that
a low-level analysis exists and that it can provide worst-case execution times
for each atomic part of the program. In reality, these atomicparts might have
different timings depending on execution history, that is,they may depend on
cache and pipeline contents as well as branch predictors etc. In our framework,
we will associate each program point with a worst-case execution time. While
this may seem pessimistic, it should be possible for most analyses in the frame-
work to add artificial program points to handle cases such as loop unrolling,
cache-hit, cache-miss cases etc. However, in order to stay clear from details,
we will assume that each edge in the flow chart has exactly one atomic WCET.
Therefore, the results of the low-level analysis will be a function, associating
an atomic WCET for each program point:

` : QP → Z

The value domain can be milliseconds, clock cycles or whatever measure suit-
able for the application. Below, some possible values for the atomic WCETs
of programL are shown. These values are often referred to in forthcoming
examples.
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`(q0) = 1 `(q1) = 3

`(q2) = 1 `(q3) = 2 (3.1)

`(q4) = 2 `(q5) = 8

3.3 Trace Semantics

Trace semantics [Cou01] is informally defined as all possible execution traces
of a program. To formally define the tracing semantics, we need to notion of a
trace. A traceS+ is a non-empty, possibly infinite string of states. Thetrace
closure functionT : S → S+ computes the unique trace corresponding to an
initial state. IfT (s0) = s0, s1, ... is a trace, then letsj be any element inT (s0),
thensj is defined as

sj = τ(sj−1)

if j ≥ 1. Note that ifT (s) is a terminating trace (that is, a finite trace ending
in a final state), then all but a finite number of states in the trace are undefined.
Thelengthof a trace is defined as the largest defined index in the string.Having
this formal definition of a trace given an initial state, we can define the full trace
semantics of a program as

T SP = {T (s) | s ∈ IP } .

Thus, the trace semanticsT SP is the set of all complete execution traces of a
program.

3.3.1 Computing the global WCET of a program

Theoretically, ifT SP could be efficiently computed and all program states
were associated with a worst-case execution time, the worst-case execution
time ofP could be computed by exhaustively computing the cost of eachtrace
in T SP and chose the maximum of these.

Table 3.1 shows the computation of the worst-case executiontime of a sin-
gle trace of programL (see Figure 3.2). The first column shows the trace, the
second column shows the cost consumed by the particular state (taken from
(3.1)), and the last column shows the accumulated cost for the whole trace.

In summary, the trace corresponding to the initial state〈q0, [i 7→ i0][n 7→ 2]〉
has a worst-case execution time of 40. However, there are several reasons why
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Trace Cost Acc. WCET
〈q0, [i 7→ i0][n 7→ 2]〉 `(q0) = 1 1
〈q1, [i 7→ 0][n 7→ 2]〉 `(q1) = 3 4
〈q2, [i 7→ 0][n 7→ 2]〉 `(q2) = 1 5
〈q4, [i 7→ 0][n 7→ 2]〉 `(q4) = 2 7
〈q5, [i 7→ 1][n 7→ 2]〉 `(q5) = 8 15
〈q2, [i 7→ 1][n 7→ 2]〉 `(q2) = 1 16
〈q4, [i 7→ 1][n 7→ 2]〉 `(q4) = 2 18
〈q5, [i 7→ 2][n 7→ 2]〉 `(q5) = 8 26
〈q2, [i 7→ 2][n 7→ 2]〉 `(q2) = 1 27
〈q4, [i 7→ 2][n 7→ 2]〉 `(q4) = 2 29
〈q5, [i 7→ 3][n 7→ 2]〉 `(q5) = 8 37
〈q2, [i 7→ 3][n 7→ 2]〉 `(q2) = 1 38
〈q3, [i 7→ 3][n 7→ 2]〉 `(q3) = 2 40

Table 3.1: Computation of the WCET of a trace

this is not a feasible approach. First of all, the computation of T SP is un-
decidable in general (since it may contain infinite traces for non-terminating
programs). Even if the program in question was guaranteed toterminate on all
input, the computation ofT SP would be far too costly to use in practice, due
to the often overwhelmingly large number of initial states.The computation of
T SP would essentially be equivalent to simulating the execution of P on all
possible input combinations. That being said, computingT SP and calculate
the cost for each trace (under the assumption of an exact low-level analysis)
would be an exact method of finding the global WCET of a programand will
act as an optimal model of our method. However, to make this efficiently com-
putable, a number of abstractions have to be made on top of this.

3.4 Collecting Semantics

Since trace semantics is too complex to use as basis for WCET analysis, a
first abstraction is to consider aset of statesrather then a set of traces. If the
order in which states are visited is forgotten and also in which traces the states
belongs to, then the problem becomes simpler. That is to say,the problem of
computing the set of possible states that may occur during any execution is
a simpler problem than to compute the set of possible traces that may occur
during any execution. The set of states which may occur during any execution
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of a program is known as thecollecting semantics[Cou01]. To define the
collecting semantics of a program we use a functionCSP : P(S) → P(S)
defined as follows

CSP (S) = S ∪ {τP (s)|s ∈ S} ∪ IP

This function takes a set of states and adds the immediate successor states of
these. Note that it always contains the initial states ofP . Using this function,
we can formally define the collecting semantics of a program.The following
result is stated in [CC77] using results from [Tar55].

Proposition 1. The following two statements are equivalent

1. S contains all states which may occur during execution ofP andS does
not contain any state which may not occur during an executionof P .

2. S is the least set (wrt. inclusion) such thatS = CSP (S). I.e.,S is the
least fixed pointof CSP .

Statement2 above expresses that the collecting semantics can be defined
as the least fixed point of the functionCSP . The reason for expressing the
semantics as such is that there exist standard techniques for solving fixed point
equations, which will be shown in Section 3.6.

3.4.1 Computing the WCET of a Program Using Collecting
Semantics

With collecting semantics there is no information about execution traces and
we cannot compute the WCET for individual traces using this technique. To be
able to compute the worst-case execution time we instead claim the following
two things.

• In any finite execution trace, each state occurs at most one time, and as
a consequence:

• the number of environments associated with a program point is an up-
per bound of the number times the program point can be visitedin any
execution.

By using these claims we will be able to give an accurate upperbound of the
WCET of a program without having information about the traces. First we will
prove that these claims actually hold.
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Lemma 1. In any finite traceT = s0, ..., sn−1, statesj occurs exactly once in
T .

Proof. Assume for contradiction thatsi = sj and thati 6= j. Thensi+1 =
τ(si) by definition of a trace. Then we have thatsi+1 = τ(si) = τ(sj) =
sj+1. By induction we have that for allm ∈ N we have thatsi+m = sj+m.
SinceT is finite there exist anm such thatsj+m is the final state. But since
si+m = sj+m, thensi+m must be a final state too. But the assumption says that
i 6= j soT must have two different final states, which is a contradiction.

Lemma 2. LetCSP denote the collecting semantics forP . PartitionCSP into
|QP | partitions{CSq

P | q ∈ Q}, where each partitionCSq
P contains environ-

ments associated with an elementq ∈ QP . Then|CSq
P | is an upper bound on

the number of times program pointq occurs inanyfinite traceT .

Proof. Since a states occurs maximum one time in any finite traceT (accord-
ing to lemma 1), a state in the collecting semantics can be visitedmaximum one
time per finite trace. The collecting setCSq

P contains all states associated with
program pointq that can be reached during any finite execution trace. Since
each state can be visited maximum once per trace, this is naturally an upper
limit on how many timesq can be visited in a single trace.

Using the result from Lemma 2, a naı̈ve upper bound of the global WCET
of the program can be derived if all traces of the program are finite. By com-
puting the partitionsCSq∈Q

P , we can see that

WCETP ≤
∑

q∈Q

`(q)|CSq
P | . (3.2)

The reason for this should be obvious; the execution time cannot be greater
than the cost of visiting a program point multiplied with themaximum number
of times it may be visited, summed for all program points in the program. This,
in itself, may not be a very tight bound since there is little risk that the program
visits all program points the maximum time. Therefore, in order to tighten the
bound, techniques can be used to ”reconstruct” parts of the traces by using the
program structure. As an example, detection of infeasible paths can provide
useful information.

The framework presented in this thesis is founded on (3.2), but with ad-
ditional techniques to find a tighter bound. One subtlety which should not be
missed in this context is that this is based on the assumptionthat for any anal-
ysed programP , all traces are finite. If not all traces are finite, Lemma 1 is no
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longer valid (a non-terminating loop may visit the same state an unlimited num-
ber of times) and the technique can not be applied. However, the whole prob-
lem of finding the WCET of a program which have non-terminating branches
is moot anyway, so this is not a major restriction.

Section 3.6 introduces fixed point theory which is a technique used to solve
equations likeS = CSP (S). However, as will be seen, the collecting semantics
is not in general computable (even though abstracting the trace semantics) and
further approximations will therefore be introduced in Section 3.7.

3.5 Control Variables

A first step to reduce over-approximations which may be introduced in (3.2) is
to realise that all variables inVP do not need to be present in the computation
of the collecting semantics for the purpose of counting the collected states. A
control variableis a variable which directly or indirectly affects the control
flow of a program. In other words, control variables are variables which affect
the expressions in conditional nodes.Non-controlvariables are all variables
which are not control variables. We will prove that non-control variables can
be disregarded in the computation for the purpose of computing the size of
states by showing that states which only differ in non-control variables must
come from different execution traces.

Definition 7. PartitionVP into controlCP and non-controlNCP variables, so
thatVP = CP∪NCP . Then two statess = 〈q, σ〉 , s′ = 〈q′, σ′〉 are considered
to becontrol equivalent, denoteds ∼ s′, iff ∀v ∈ CP : σ(v) = σ′(v) ∧ q = q′.

In other words,s ∼ s′ iff s ands′ belongs to the same program point and all
control variables map to the same value. Note that∼ is an equivalence relation
onSP .

Lemma 3. If s0 ∼ s1 thenτ(s0) ∼ τ(s1). Furthermore, it also holds that
τn(s0) ∼ τn(s1) for all n ∈ N

Proof. Let s0 = 〈q0, σ0〉 ands1 = 〈q0, σ
′
0〉, and lets0 ∼ s1 (by definition of

∼, s0 ands1 needs to be associated with the same program pointq0). First we
prove that ifτ(s0) = 〈q1, σ1〉, thenτ(s1) = 〈q1, σ

′
1〉, i.e.,τ mapss0 ands1 to

the same program pointq1.
Assume for contradiction thatτ would mapq0 to q1 for s0 and that it would

mapq0 to q2 for s1 and thatq1 6= q2, i.e., that two different paths were exe-
cuted fors0 and s1. But sinces0 ∼ s1, all control variables maps to the



3.5 Control Variables 27

same values, which means that it is impossible forτ to maps0 and s1 to
different paths, soτ(s0) andτ(s1) must map to the same program pointq1.
Now, let τ(s0) = 〈q1, σ1〉 and τ(s1) = 〈q1, σ

′
1〉. We will now show that

∀v ∈ CP : σ1(v) = σ′
1(v). First of all, it holds that∀v ∈ CP : σ0(v) = σ′

0(v),
sinces0 ∼ s1. Assume that there is av0 ∈ CP such thatσ1(v0) 6= σ′

1(v0).
This means that one variable which isnot in CP has changed the value ofv0

through the image ofτ (since the variables inCP are the same forσ1 andσ′
1

per assumption). However, the variables inNCP may not in any way affect the
variables inCP (again, per definition), so this may not happen. Thus, we must
reach the conclusion that〈q1, σ1〉 ∼ 〈q1, σ2〉, in other wordsτ(s0) ∼ τ(s1).
As a consequence of the transitivity of∼ we can also draw the conclusion that
τn(s0) ∼ τn(s1) for all n ∈ N.

Lemma 3 shows that the control equivalent relation holds during the full
execution of a trace, which leads to the following importantproposition:

Proposition 2. Let s0 be a state belonging to a finite tracet0, and lets1 be a
state belonging to a finite tracet1. Assume thats0 6= s1, thens0 ∼ s1 ⇒ t0 6=
t1.

This is to say that two control equivalent states cannot be onthe same finite
trace.

Proof. Let s0 = 〈q, σ〉 , s1 = 〈q, σ′〉. Assume thats0 ∼ s1 ∧ s0 6= s1.
Assume for contradiction thats0 ands1 belongs to the same tracet. Without
loss of generality, we can assume thats0 precedess1 in t. Sinces0 precedes
s1 in t, there exists ann0 such thatτn0(s0) = s1. By Lemma 3 we have that
τn(s0) ∼ τn(s1) for anyn ∈ N, sos1 = τn0 (s0) ∼ τn0(s1) = s2 = 〈q, σ′′〉.
Accordingly, we define the statesk asτkn0 (s0) and deduce thatτkn0 (s0) =
〈q, σk〉 for all k ∈ N. This implies thatt visitsq infinitely many times, and thus
t is an infinite trace which never reaches the final state and thus contradicts the
assumption thatt is a finite trace which boths0 ands1 belongs to.

Proposition 2 suggests that two states which differ only in the values of
non-control variables must belong todifferent traces. This means, effectively,
that when counting the states associated with a program point, states which
differs only in non-control variables (i.e., which are control equivalent) need
only to be countedonce, since they by Proposition 2 areguaranteedto belong
to different traces. The summary of this is that non-controlvariables can be
completely disregarded from analysis, since multiple states with different non-
control variables do not contribute to the upper bound of thetimes which that
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particular program point can be visited. Program slicing (see Section 2.1.4)
can be used to identify and remove all statements and variables which do not
affect control flow. This is done by slicing with respect to all conditionals and
all variables in the conditionals (see [SEGL06] for details).

3.6 Fixed Point Theory

Section 3.4 introduced the collecting semantics which is the theoretical basis
for the framework presented in this thesis. The collecting semantics can be
formulated as a fixed point equation (see Proposition 1 on page 24). This sec-
tion introduces some elementary domain theory in order to develop a method
to solve fixed point equations. Details about domain theory can be found in
[NNH05, AJ94].

Definition 8. (Poset)
A poset(or partially ordered set)〈L,vL〉 is a set and a relation such thatvL

is

• reflexive:∀l ∈ L : l vL l

• anti-symmetric:∀l, m ∈ L : l vL m ∧m vL l⇒ l = m

• and transitive:∀k, l, m ∈ L : k vL l ∧ l vL m⇒ k vL m

Definition 9. (Upper and lower bounds)
Let 〈L,v〉 be a poset and letM ⊆ L. An elementu ∈ L is anupper bound

of M if it holds thatm v u for all m ∈ M . Conversely, an elementl ∈ L is
considered to be alower boundif l v m for all m ∈M .

Definition 10. (Supremum and infimum)
Let 〈L,v〉 be a poset and letM ⊆ L. If M has upper bounds and there exist
an upper boundu0 such that for all other upper boundsu ∈ L it holds that
u0 v u, thenu0 is thesupremumof M and is denotedtM . Similarly, if M
has lower bounds and the exist a lower boundl0 such that for all other lower
boundsl ∈ L it holds thatl v l0, thenl0 is theinfimum of M and is denoted
uM . The supremum or infimum of a subsetM ⊆ L is always unique if it exists.

Note that a subset of a poset does not necessarily have upper and lower
bounds, and if they do, they don’t necessarily have a infimum or supremum.
A posetL such that for all subsetsM ⊆ L, tM anduM exists, is called a
complete lattice. SinceL ⊆ L, this also means that a complete lattice has a
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supremum, which in domain theory is commonly refered to as the topelement
of L, denoted>L. The infimum ofL, conversely, is called thebottomelement
of L and is denoted⊥L.

Definition 11. (Monotone functions) Let〈L,vL〉 and 〈L′,vL′〉 be a posets
and letf : L → L′ be a function. Thenf is a monotoneor order-preserving
function iff

l vL m⇒ f(l) vL′ f(m)

A well-known and important result of monotone functions on complete
lattices is that for any monotone self-map over a complete lattice has aleast
fixed point.

Proposition 3. (Tarski [Tar55])
LetL be a complete lattice andf : L→ L be a monotone function. Then the
setfixf = {l ∈ L | f(l) = l} is a complete lattice.

A consequence of Proposition 3 is that sincefixf is a complete lattice,
u(fixf) is the least element in this lattice, and consequently theleast fixed
point of f . In order to compute this fixed point, a few more definitions are
needed.

Definition 12. (Chains)
LetL be a complete lattice, thenM ⊆ L is a chainif it is non-empty and for
all elementsm, m′ ∈M eitherm v m′ or m w m′.

In other words, a chain is a subset of a complete lattice wherethe ele-
ments are completely ordered. Thus, chains can be describedas decreasing or
increasing sequences (e.g.,m0 v m1 v ...).

Definition 13. (Continuity)
A monotone functionf : L → L is Scott-continuousiff that for every chain
M ⊆ L, it holds thatf(tM) = t{f(m) | m ∈M}.

A constructive result on how to compute the least fixed point (lfp) of a
continuous function can be presented. This result is due to Kleene, and is not
presented in its full generality here.

Proposition 4. (Kleene [Kle52])
LetL be a complete lattice andf : L→ L a Scott-continuous function, then

lfpf =
⊔
{fn(⊥) | n ∈ N}
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This result basically says that starting by⊥ and iteratively computef until
a fixed point is reached, will obtain the least fixed point off . Of course, this
requires the ascending sequence(fn(⊥))n∈N = ⊥ ⊆ f(⊥) ⊆ f(f(⊥)) ⊆ ...
to reach a fixed point in a finite number of steps to be useful.

3.7 Abstract Interpretation

In this chapter we have introduced the collecting semanticsas the theoretical
basis for the framework in this thesis. As hinted in Section 3.4, collecting
semantics can not in general be computed, so even more abstractions have to
be layered on top of it to make it efficiently computable.

Abstract Interpretation [CC77] is a well-known technique to soundly ap-
proximate program semantics. The collecting semantics is defined as the small-
est possible set of states which can be reached during any execution of a pro-
gram, while with abstract interpretation it is possible to derive a superset of the
collecting semantics (abstract semantics) in a computableand efficient man-
ner. A superset of the collecting semantics may naturally have less exact in-
formation since it may contain states which actually never occur during any
execution, but the information is stillsoundin the sense that there isno state
whichmayoccur during execution but which is not present in the derived set of
states. Abstract interpretation approximates semantics according to some prop-
erty of choice, this is formalised by choosing an appropriate abstract domain
to use as abstraction of the semantics. A great variety of abstract domains can
be formulated and the choice of domain offers a trade-off between precision
and computational complexity. Examples of abstract domains are presented
in Section 3.9. The following sections will introduce the theory of abstract
interpretation.

3.7.1 Abstraction

The idea of abstract interpretation is to have a certain relationship between two
complete lattices. One lattice is referred to as theconcrete domainL and the
other as theabstract domainM . The intention is to have the abstract domain
approximating the concrete domain. This is done by having aGalois connec-
tion 〈L, α, γ, M〉 between the two lattices, consisting of anabstractionfunc-
tion α : L → M and aconcretisationfunctionγ : M → L. The relationship
is depicted in Figure 3.3.
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Concrete domain Abstract domain

Figure 3.3: Relation between the concrete and abstract domain

Definition 14. A Galois connection〈L, α, γ, M〉 is a tuple consisting of two
complete latticesL, M and two monotone functions〈α, γ〉 ∈ (L → M) ×
(M → L), such that

α ◦ γ vM λm.m andγ ◦ α vL λl.l

If it also holds thatα ◦ γ wM λm.m, then〈L, α, γ, M〉 is called aGalois
insertion.

In general it is desired to have a Galois insertion rather than a Galois con-
nection since any concrete element has exactly one abstractelement describing
it.

Example

As an example of a Galois connection, considersign = 〈L, α, γ, M〉, where
the concrete domain isL = 〈P(Z),⊆〉 and the abstract domain isM =
〈{⊥,−, 0, +,>} ,v〉 with an ordering as shown in Figure 3.4. We then form
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Figure 3.4: The lattice of signs

the following Galois connection:

γ(⊥) = ∅ α(∅) = ⊥

γ(−) = Z− α(A) = − iff ∀a ∈ A : a < 0

γ(0) = {0} α({0}) = 0

γ(+) = Z+ α(A) = + iff ∀a ∈ A : a > 0

γ(>) = Z α(A) = > in all other cases

Note that Definition 14 holds for〈α, γ〉. The intuition behind this is that
the set of integers are abstracted by sign by this Galois connection. Theα
function abstractsa set by mapping the set into its minimum representation
in the abstract domain. As an example, consider the set{1, 2, 3} ∈ P(Z).
The abstract version of this element is obtained byα({1, 2, 3}) = +. The set
{1, 2, 3} is represented by a ”+” in the abstract domain, meaning that the set
is a set of positive integers. The ”meaning” of this set is obtained by mapping
this abstract representation back into the concrete domainvia γ. We see that
γ(+) = Z+. Mapping to the abstract domain and back makes us lose preci-
sion; from the concrete set{1, 2, 3} of three numbers, ”abstracting” the set and
”concretising” it again gives us only the information that the original set was a
set of positive integers.

3.7.2 Abstract Functions

By using abstract interpretation it is possible ”simulate”the usage of functions
over a complex lattice by performing the functions over the abstract lattice
instead. Doing this may under some assumptions turn undecidable problems
decidable, but then naturally with some lost precision. Let〈L, α, γ, M〉 be a
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Galois-connection and letf : L→ L be a monotone function over the concrete
latticeL. Then we say thatf̂ : M → M is approximatingf or that f̂ is an
abstract versionof f , iff

∀l ∈ L : f(l) vL γ ◦ f̂ ◦ α(l) .

This relation is depicted in Figure 3.5. The idea here is thatf̂ gives a cor-
rect interpretation of the semantics off , but with possible loss of informa-
tion. As an example, consider the Galois connectionsign = 〈L, α, γ, M〉
from Section 3.7.1 again. First, consider thelifted multiplication operation
·P : P(Z)× P(Z)→ P(Z) defined as

A ·P B = {a · b | a ∈ A ∧ b ∈ B} .

This operation is simply normal multiplication defined oversets of integers, for
instance,{1, 2, 3} ·P {−1,−2} = {−1,−2,−3,−4,−6}. This is an operation
on our concrete domainP(Z) and is the operation which we are interested to
approximate. Now, we define the abstract multiplication·̂ : M → M as
follows

+ ·̂ + = +

− ·̂ − = +

− ·̂ + = −

0 ·̂ a = 0

> ·̂ a = >

⊥ ·̂ b = ⊥

wherea is any non-bottom element andb is any element. This is a correct defi-
nition of an abstract operation, which should be easy to verify. As an example,
we see that

{1, 2, 3} ·P {−1,−2} = {−1,−2,−3,−4,−6} v

γ(α({1, 2, 3}) ·̂ α({−1,−2})) = γ(+ ·̂ −) =

γ(−) = Z−

When abstract interpretation is applied in static analysis, the abstract func-
tions approximates functions available in the programminglanguage seman-
tics. In this thesis we are restricted to integer valued variables, and will be
interested in approximating functions over integers (suchas addition, subtrac-
tion, multiplication and addition), i.e., functions of thetype f : Zn → Z.
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Figure 3.5: Relation between concrete and abstract functions

However, the concrete domain used in abstract interpretation operates over
sets of integers rather than integers themselves. Thus, forany n-ary opera-
tion, f : Zn → Z, it is possible to define alifted versionfP : P(Z)n → P(Z)
defined as

fP (X0, ..., Xn−1) = {f(x0, ..., xn−1) | xi ∈ Xi for all 0 ≤ i < n}

In practice, when operations over the integers are used, theconcrete domain
will be P(Z), correspondingly, it is the lifted versions of the operations that
will be approximated. For this reason, we will from now on usethe abusive
notationf for fP in the context of abstract operations. Note that lifted func-
tions are always monotone.

Fixed Points of Abstract Functions

The reason to formulate abstract functions is that abstractinterpretation is per-
formed over the abstract functions rather than the concreteones to obtain a
correct result without having to iterate over the concrete and often not prac-
tically computable lattice. A basic result from abstract interpretation is that
for any monotone functionsf : L → L and f̂ : M → M such that f̂ is
approximatingf̂ . Then

lfpf v γ(lfp f̂ ).

This means that the least fixed point of the abstract functionis a safe approxi-
mation of the least fixed point of the concrete function.

3.7.3 Widening and Narrowing

To find the least fixed point of a monotone operatorf : L → L over a lattice
L, two cumbersome requirements are imposed onL andf :

• f must be Scott-continuous.
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• The sequence⊥ v f(⊥) v f(f(⊥)) v ... stabilises after a finite num-
ber of steps.

By ”stabilises after a finite number of steps”, we mean that there exist ak ∈ N
such that for the increasing sequence(fn(⊥))n∈N = ⊥ v f(⊥) v f(f(⊥)) v
... it holds thatfk(⊥) w f(fk(⊥)). In practice, these two requirements are too
restrictive. Thus, a way of approximating the fixed point without these require-
ments is desired. The solution is to introduce a so-calledwidening operator
[CC77].

Definition 15. A widening operator∇ : L × L → L is an operator over a
lattice fulfilling ∀l, l′ : l, l′ v (l∇l′) and for any increasing sequencel0 v
l1 v ..., the increasing sequencel0 v l0∇l1 v l0∇l1∇l2 v ... eventually
stabilises.

Thus if the sequence(fn(⊥))n∈N = ⊥ v f(⊥) v f(f(⊥)) v ... is re-
placed by the sequence(fn

∇)n∈N = ⊥ v f(⊥)∇⊥ v f(f(⊥))∇f(⊥)∇⊥ v
..., then the sequence will eventually stabilise atlfp(f∇) and by definition of
the widening operation, it will hold thatlfp(f∇) w lfp(f). Thus, an approxi-
mation of the fixed point can be found in a finite number of steps. This to the
cost of possible lost precision; the widening operation is greater or equal to the
supremum of its arguments. However, the situation can be improved by having
a somewhat dual concept of anarrowingoperator.

Definition 16. A narrowing operator∆ : L × L → L is an operator over
a lattice fulfilling ∀l, l′ : l v l′ → l v (l∆l′) v l′ and for any decreasing
sequencel0 w l1 w ..., the decreasing sequencel0 w l0∆l1 w l0∆l1∆l2 w ...
eventually stabilises.

Note that the sequence(fn
∇)n∈N is stable atlfp(f∇), so the sequencelfp(f∇) w

f(lfp(f∇)) w f(f(lfp(f∇))) w ... is a decreasing sequence, in fact it is a
stable sequence, the inequalities could be replaced by equality signs. Thus,
any element in this sequence is greater or equal tolfp(f). Furthermore, the
sequencelfp(f∇) w f(lfp(f∇))∆lfp(f∇) w ... eventually stabilises (by defi-
nition of the narrowing operator) atlfp(f∆

∇ ) and any element in the sequence
is greater or equal tolfp(f) as shown in [NNH05]. Thus,

lfp(f) v lfp(f∆
∇ ) v lfp(f∇).

In summary, to find a good approximation of the least fixed point of f in finite
time without the requirements thatf is Scott-continuous or that the increasing
sequence(fn)n∈N should stabilise:
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• First computelfp(f∇)

• Uselfp(f∇) as starting point and computelfp(f∆
∇ ).

3.8 Abstract Interpretation in Static Analysis

In this section we will explain how abstract interpretationusually is applied
in static analysis, and in particular how it is applied in ourframework. The
basic idea is that the power set of program statesP(SP ) are used as concrete
domain in the abstract interpretation, and anabstract semantic functionASP

approximating the collecting semanticCSP over a programP is used. The
abstract interpretation is then formulated as computing the least fixed point
of the abstract semantic function as a correct approximation of the collecting
semantics of the program. To abstract the collecting semantics, it is necessary
to abstract the semantic functionτP of a program including all operations used
to defineτP . This consist of choosing an appropriate abstract domain, and
lifting all used concrete operations to abstract ones in thechosen domain.

3.8.1 Widening and Narrowing in Static Analysis

If the abstract domain used in static analysis contains infinite ascending chains
it is necessary to introduce widening as described in Section 3.7.3. However,
the abstract semantic function transfers states from states which are associated
with program points in the flow chart. In [CC77] it is shown that it is sufficient
to use the widening operator at least once per cycle in the flowchart to ensure
termination. Thus, instead of using the sequences described in Section 3.7.3, it
is sufficient to introduce the widening operation once per loop, more on this is
presented in Section 3.8.4.

3.8.2 Relational vs. Non-Relational Domains

A semantic state of a programP is, as seen in Section 3.2, a program point
associated with an environment. Consequently, the set of semantic states of a
program is a subset of

P(Q× (VP → Z))

Since the actual set of program points is not going to be abstracted, it is suffi-
cient to consider the following set as the concrete domain

Q → P(VP → Z) .
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That is, each program point is associated with asetof environments. Then, it is
sufficient to useP(VP → Z) as concrete domain. In practical cases of analysis
(see Chapter 5), the real value domain of variables are not the mathematical set
of integersZ but a finite set of integers, limited by the representation ofintegers
in the computer. So by imagining a finite value domain, sayZ232 , which means
the set of integers modulus232 and set

P(VP → Z232) .

as the concrete domain. The number of elements inVP → Z232 is (232)|VP |,
and the full domain has two to the power of(232)|VP | as cardinality. Thus, even
with a finite domain, the size of possible program states associated with a single
program point grows inO(2(232)n

) wheren is the number of variables. Even if
this set is abstracted using an appropriate abstract domain, the possibilities to
abstract this set somewhat accurately is getting hard with many variables. To
remedy this, the concrete domain can be approximated using adomain which
is not affected by the number of variables. Consider a function,

VP → P(Z)

as concrete domain. I.e., a function which associates each variable with aset
of integers. This is, a direct abstraction ofP(VP → Z), as can be seen by for-
mulating the Galois-connection〈P(VP → Z), α, γ,VP → P(Z)〉 as follows:

α(Σ) = λv. {σ(v) | σ ∈ Σ}

γ(σ) = {λv.n | n ∈ σ(v)}

The loss in this abstraction is that the relation between variables are abstracted
away; each variable is associated with a set of values independently of other
values, while before abstraction, a set offunctionsof variables were associated
with a program point. In this abstraction there is no need to include the vari-
ables in the abstraction, it is enough to use the simple setP(Z) as the concrete
domain, and perform analysis once per variable. Since the concrete lattice does
not grow in number of variables, the analysis is much less sensitive to the num-
ber of variables. To summarise, performing analysis over the concrete domain

P(VP → Z)

is calledrelational abstract interpretation, since the relation between variables
are preserved through the abstraction. Using the concrete domain

VP → P(Z)
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is callednon-relational abstract interpretationbecause no relation between
variables are preserved. The choice of concrete domain (andconsequently,
also abstract domain) is a trade-off between computationalcomplexity and pre-
cision. A non-relational domain is much simpler and faster to analyse but loses
more precision than a relational one. In Section 3.9 some abstract domains of
both classes are presented.

3.8.3 Terminology in Abstract Interpretation in Static Anal-
ysis

It is often necessary to talk about abstraction in differentlayers, therefore it is
necessary to have a terminology for the abstract counterparts of values, envi-
ronments and states. This terminology in turn depends on if the abstraction is
relational or non-relational. In this section we shall makeclear definitions of
the terms used in the rest of the thesis and what they mean. Thefirst definition
mainly concerns non-relational abstract domains.

Definition 17. Let 〈P(Z), α, γ, A〉 be a Galois-connection, then

• An elementa ∈ A shall be referred to as anabstract value.

• An element̂σ ∈ (V → A) is called anabstract environment.

• An elements′ ∈ Q → V → A is called anabstract state.

Note that all these sets can be seen as lattices, in particular, they can be
seen as abstractions of the concrete counterparts. The ordering of the lattices
are given below. Let̂σ and θ̂ be abstract environments, then

σ̂ vΣ θ̂ ⇔ ∀v ∈ V : σ̂ (v) vA θ̂ (v) .

Similarly, lets ands′ be abstract states, then

s vS s′ ⇔ ∀q ∈ Q : s(q) vΣ s′(q)

For relational domains, a similar terminology is used, but with a slightly
different meaning.

Definition 18. Let
〈
P(V → Z), α, γ, Σ̂

〉
be a Galois-connection, then

• An element̂σ ∈ Σ̂ is called anabstract environment
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• An elements′ ∈ Q → Σ̂ is called anabstract state

Note that in a relational domain it does not make sense to talkabout ”ab-
stract values” since the abstraction is directly on the environments. Also notice
that the termsabstract environmentandabstract stateare similar enough to use
on both non-relational domains and relational domains without causing confu-
sion. So in summary, for non-relational and relational domains we shall use
the notationA for the set of abstract values,̂Σ for the set of abstract environ-
ments and Ŝ for the set of abstract states, all subscripted with the program
under consideration if necessary.

3.8.4 Abstract Interpretation over Flow Charts

Our representation of programs are flow charts, so a static analysis needs to
be defined over such. This section will define the abstract semantic function
τ̂ : Ŝ → Ŝ for the different types of arcs in a flow chart. For any arcq ∈ Q
we shall denote its predecessor arcs asqpre. For merge nodes, which have two
incoming arcs, the second is denotedqpre′ . In the following, a partial definition
of τ̂ is given for every type of program point.

Start arc. At the start arcq, nothing is known about the values of variables,
except possibly the variables which are corresponding to input param-
eters. However, assuming that the abstract interpretationis correct for
all possible combinations of input, we make the assertion that nothing
is known about the input parameters3. Having said this, the natural def-
inition of an abstract state associated with the initial state should be as
follows:

τ̂ (S)(q) = >
Σ̂

Assignment arc. An assignment arc is an arc which emerges from an assign-
ment node. An assignment node has an assignmentx := e associated
with it, wherex is a variable ande is an arithmetical formula. The ab-
stract function should equal to the previous abstract environment with
the variablex updated to the abstract value ofe, as follows:

τ̂ (S)(q) = S(qpre)[x 7→ α(e)]

wheref [x 7→ y] for a functionf means

f [x 7→ y] = λv.

{
y if v = x
f(v) otherwise.

3In some cases it can be useful to put known constraints on the initial state though.
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Note that the computation ofα(e) requires abstract versions of all arith-
metical operations ine.

Merge arc. A merge arc is an arc emerging from a merge node. A merge
node combines the analysis results of the two incoming arcs.The least
abstract value which is correct with respect to both incoming values is
the supremum of the these. In addition, if the merge node is the entry
of a loop, then that is a good place to put the widening, if the abstract
domain requires that. Thus, the abstract transition function for merge
nodes is

τ̂ (S)(q) = S(q)∇(S(qpre) t S(qpre′)) if loop merge

τ̂ (S)(q) = S(qpre) t S(qpre′) otherwise

Conditional arcs. The conditional node has two outgoing arcs. While there
seems to be no standard approach of handling conditionals for non-
relational domains, we shall adopt the same approach as in [AH87]. A
more elaborate and constructive method is presented in [Gus00]. Condi-
tionals are resolved by relations, so for an abstract domainit is necessary
to have abstract version of all relations. An abstract relation is a function
≤̂ : An → bool⊥, wherebool⊥ is the lattice shown in Figure 3.6. The
outgoing arc then reflects the largest (wrt.v) abstract value which is
at leasttrue respectivefalse. For a conditionala <= b , the transfer
function for a true-arcq is as follows:

τ̂ (S)(q) =
⊔{

σ̂ v S(qpre) | σ̂ (a) ≤̂ σ̂ (b) v true

}
.

Similarly, the transfer function for a false-arcq is:

τ̂ (S)(q) =
⊔{

σ̂ v S(qpre) | σ̂ (a) ≤̂ σ̂ (b) v false

}
.

3.8.5 Abstract Interpretation Example

To see how abstract interpretation is used in practice, thissection shows a thor-
ough example of applying abstract interpretation to programL depicted in Fig-
ure 3.2 on page 18. The sign abstraction presented in Section3.7.1 is used
in the abstract interpretation. The sign abstraction is a non-relational domain
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Figure 3.6: The lattice of Booleansbool⊥

since it is an abstraction ofP(Z). The equations defininĝτ is as follows:

τ̂ (S)(q0) = >

τ̂ (S)(q1) = S[i 7→ α(0)]

τ̂ (S)(q2) = S(q2)∇(S(q1) t S(q5))

τ̂ (S)(q3) =
⊔{

σ̂ v S(q2) | σ̂ (i) ≤̂ σ̂ (n) v true

}

τ̂ (S)(q4) =
⊔{

σ̂ v S(q2) | σ̂ (i) ≤̂ σ̂ (n) v false

}

τ̂ (S)(q5) = S[i 7→ S(q4)(i) +̂ α(1)]

As seen in the calculation forq5, an abstract operation for+ is needed to eval-
uate the abstract value. This set of equations is the same forall non-relational
abstract domains, to make it more specific for the sign domain, we can specify
a more sign-domain specific set of equations,

τ̂ (S)(q0) = >sign

τ̂ (S)(q1) = S[i 7→ 0]

τ̂ (S)(q2) = S(q1) t S(q5)

τ̂ (S)(q3) =
⊔{

σ̂ v S(q2) | σ̂ (i) ≤̂ σ̂ (n) v true

}

τ̂ (S)(q4) =
⊔{

σ̂ v S(q2) | σ̂ (i) ≤̂ σ̂ (n) v false

}

τ̂ (S)(q5) = S[i 7→ S(q4)(i) +̂ +]

Note here that widening is not necessary since the sign-lattice does not contain
any infinite ascending chains. The abstract semantics ofL is now specified
as the fixed point of the function̂τ , and can be computed by the iterates of
τ̂ n(⊥). So setS = λq.⊥, then the first iterateτ̂1 will contain the following:
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τ̂ 1(⊥)(q0) = >

τ̂ 1(⊥)(q1) = ⊥[i 7→ 0]

τ̂ 1(⊥)(q2) = ⊥[i 7→ 0]

τ̂ 1(⊥)(q3) = ⊥[i 7→ 0]

τ̂ 1(⊥)(q4) = ⊥[i 7→ 0]

τ̂ 1(⊥)(q5) = ⊥[i 7→ 0 +̂ + = +]

We use Jacobi iteration here, i.e., when computingτ̂ j(⊥)(qn) we use the
values computed for̂τ j(⊥)(qm) for all m < n, and τ̂ j−1(⊥)(qn) if m ≥ n.
New here is the calculation of the abstract operation+̂ , but it should be
obvious that a positive value added to zero is again a positive value. Next
iteration:

τ̂ 2(⊥)(q0) = >

τ̂ 2(⊥)(q1) = ⊥[i 7→ 0]

τ̂ 2(⊥)(q2) = ⊥[i 7→ >]

τ̂ 2(⊥)(q3) = ⊥[i 7→ >]

τ̂ 2(⊥)(q4) = ⊥[i 7→ >]

τ̂ 2(⊥)(q5) = ⊥[i 7→ > +̂ + = >]

The reasoni maps to> in τ̂ 2(⊥)(q2) is that the union of the values fromq1

andq5 gives rise to the computation+t 0 = >. The third iterate will be equal
to the second one, meaning that a fixed point is reached and theresult is the
least fixed point. The sign lattice is a very simple lattice soa fixed point could
be reached really fast (3 iterations), but as seen, not much information about
the program has been obtained; all that can be said now is thati will always
be zero atq1. Note that nothing can be said aboutn for any non-relational
abstraction sincen is never assigned any value inL.

3.9 Abstract Domains

In this section we will give examples of a few abstract domains commonly used
in literature. All domains used in this section abstracts sets of integers (since
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(a) Interval domain (b) Congruence domain

(c) Octagon domain (d) Polyhedral domain

Figure 3.7: Examples of abstract domains. The black dots correspond to the
set which is being abstracted, the others denotes over-approximation.

this is the most common abstraction), and with simple modifications they can
all be used to abstract the collecting semantics of a program.

This section is divided into two parts, one which handles non-relational
domains, which usesP(Z) as concrete domain, and the other one presents
relational domains, which usesP(Zn) as concrete domain (note that this is
equivalent toP(V → Z) if |V| = n).

3.9.1 Non-Relational Abstract Domains

Non-relational domains all have in common that they are abstractions of the
setP(Z). Non-relational domains can be used to quickly determine properties
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of program variables independently.

The Interval Domain

One of the most commonly used abstract domains is the interval domain [CC77].
The interval domain has a simple representation consistingof the form[a, b] for
non-bottom values, wherea, b ∈ Z∪{−∞,∞}. The interval domain abstracts
a set of integers as an interval of integers ranging from the minimum element
to the maximum. The details of the lattice is given below:

[a, b] v [a′, b′]⇔ a ≥ a′ ∧ b ≤ b′

[a, b] t [a′, b′]
def
= [min(a, a′), max(b, b′)]

[a, b] u [a′, b′]
def
= [max(a, a′), min(b, b′)]

>
def
= [−∞,∞]

Note that if the result fromu by two intervals results in an interval[a, b] where
a > b, it is interpreted as⊥.

The abstraction and concretisation functions are as follows

α(∅) = ⊥

α(A) = [min(A), max(A)]

γ(⊥) = ∅

γ([a, b]) = {n ∈ Z | a ≤ n ≤ b}

The interval domain contains infinite ascending chains, such as

[0, 1] v [0, 2] v ... v [0,∞]

indicating that a widening (and narrowing) operation needsto be introduced.
The widening and narrowing suggested in [CC77] are

[a, b]∇[a′, b′] = [if a′ < a then −∞ elsea′, if b′ > b then∞ elseb′]

The narrowing can be defined as follows

[a, b]∆[a′, b′] = [if a = −∞ thena′ elsemin(a, a′),

if b =∞ thenb′ elsemax(b, b′)]

The interval domain is used to find upper and lower bounds of variables and
have been is commonly used in WCET analysis [GESL07, The04].The do-
main is depicted in Figure 3.7(a).
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The congruence domain

The congruence domain was introduced by Phillippe Granger in [Gra89] and
is somewhat of an orthogonal concept to the interval domain.The congruence
domain abstracts a set of integers to their least possible congruence class. The
abstract elements are on the formm + kZ for non-bottom values4. The details
of the lattice is given below:

m + kZ v m′ + k′Z⇔ m−m′ ∈ k′Z ∧ kZ ⊆ k′Z

m + kZ tm′ + k′Z
def
= m + gcd{|m−m′|, k, k′}Z

m + kZ um′ + k′Z

def
=

{
m′′ + lcm(k, k′)Z if m′′ ∈ m + kZ ∩m′ + k′Z
⊥ otherwise

> = 0 + 1Z

Heregcd andlcm stands for thegreatest common divisorand theleast com-
mon multiplerespectively. Both can be applied to pairs (indicated by paren-
thesis) or sets (indicated by set-notation). The abstraction and concretisation
maps are defined as follows

α(∅) = ⊥

α(A) = a0 + gcd {|a− a′| | a, a′ ∈ A}Z

γ(m + kZ) = {m + kn | n ∈ Z}

γ(⊥) = ∅

wherea0 is the least non-negative number inA. The intention of the invention
of the congruence domain was to aid compilers to perform automatic vectori-
sation [Gra89]. The congruence domain has successfully been used in con-
junction with the interval domain (see Section 3.9.3). The domain is depicted
in Figure 3.7(b).

3.9.2 Relational Abstract Domains

Relational abstract domains abstract the setP(Zn) (or equivalentlyP(V → Z)
for n = |V|) wheren is a fixed number of dimensions. The number of dimen-
sions usually correspond to the number of variables which should be analysed
in the program. The complexity of these domains are directlyrelated to the

4This can be read as ”all elements which are equal tom modulusk”
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number of dimensions. The domains presented in this sectionare all restricted
to preserve only linear relationships between variables. This means that the ab-
stract functions provided for these domain are restricted to linear assignments,
meaning that non-linear assignments will in most cases be represented by the
respective domain’s top value.

The Polyhedral Domain

The polyhedral domain [CH78] approximates a set of integer points in n-
dimensional space by the smallest (wrt. inclusion) possible convex polyhe-
dron enclosing all points in the set (see Figure 3.7(d)). A convex polyhe-
dron can be represented in two ways, one being a system of linear inequal-
ities Ax ≤ b, the other being a set of vertices and rays〈V, R〉 where the
vertices represents the extreme points of a polyhedron an rays represents in-
finite lines in one direction in case the polyhedron is unbounded. Both these
representations need to be used in order to efficiently compute the infimum
(concatenation of linear inequalities) and supremum (concatenation of rays
and vertices), as well as a method for converting between these two repre-
sentations. The ordering in the lattice of convex polyhedrais simply the set-
inclusion operator. Convex polyhedra have been used in several applications
[BJT99, HPR94, Ben02, BL08], and there exist a few open source implemen-
tations of the domain [New09, Par09, Pol09, Apr09].

The Octagon Domain

The octagon domain was suggested by Miné in [Min01], and is arelational
domain where a set of integer points are enclosed by the smallest possible
octagon. An octagon can be expressed as a set of constraints on the form
±x ± y ≤ c. The octagon domain is less precise domain than the polyhedral
domain, but in compensation it is much more efficient. Octagons can effi-
ciently be represented bydifference bound matricesand graphs. There is an
open source implementation of the octagon domain available[Apr09, Oct09].
An approximation of a set of points using the octagon domain is shown in
Figure 3.7(c).

The Linear Congruence Domain

In [Gra91], a generalisation of the congruence domain is presented. This do-
main derives the congruence relationship between dimensions (variables) and
is represented by a system of linear congruence relationsAx ≡m mod k.
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3.9.3 Domain Products

To increase the precision of an abstract domain, it is possible to combine do-
mains to have an abstract domain which captures the properties of several ab-
stract domains. This is known as aproductof abstract domains [CC79]. The
direct productof two abstract domainsA andB is defined as the Galois con-
nection〈C, α, γ, A×B〉 where

α(c) = 〈αA(c), αB(c)〉

γ(〈a, b〉) = γ(a) u γ(b).

However, this connection does not preserve Galois insertions, meaning that
the domains in the product do not take advantage of each other. In practi-
cal terms this means that this is equivalent to simply performing the analysis
twice; once for each domain and taking the intersection of results. However, in
many cases the domains can provide information for each other to give more
precise results. This can be achieved via thereduced product, which is defined
by introducing an equivalence relation on the abstract values and considering
the abstract domain modulus this equivalence relation. Howthis is done techni-
cally depends on each pair of domains for which the reduced product is defined.
A common reduced product domain is the reduced product of theinterval and
congruence domains [ESG+07, Min06, VCKL05, BR04a].

3.10 Overview of the Framework

In this section we give an overview of a static WCET analysis framework
based on abstract interpretation and counting of abstract environments. This
is a framework based on standard static analysis techniquesand it conforms to
the classical layered model with flow analysis, low-level analysis and calcu-
lation. The basic idea is based on computing a set of possiblestates at each
program point (i.e., the collecting semantics of a program)and observing the
fact that the number of states is an upper bound of the times that a program
can be visited (see Section 3.4.1), and thereby the WCET of a program can
be approximated by the equation (3.2) on page 25, subject to constraints ob-
tained from structural analysis and flow analyses. However,since collecting
semantics is undecidable in the general case, the states arecomputed using ab-
stract interpretation. The abstract states are usually represented by well-known
mathematical spaces, and by counting the discrete elementsin these spaces,
an upper bound of the number of program points is obtained. For the interval
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i
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Figure 3.8: Abstract environment associated with the body of a simple nested
loop

domain and other finite simple non-relational domain, the counting of discrete
points is fairly straightforward, whereas in relational domains such as the poly-
hedral one, counting integer points might be more complex.

3.10.1 Slicing

While WCET analysis in general can benefit from using programslicing (see
for example [SEGL06]), it is an integral part of this framework. The set of
possible states in a program serves the basis as upper boundsof program points
and the more combination of variable assignments there are,the larger these
sets become. However, non-control variables do not contribute to the upper
bound of the execution count of any program point as seen in Section 3.5.
Thus, slicing can be used to remove all non-control variables.

3.10.2 Overview of Loop Bound Analysis

To derive a loop bound of a loopL the following steps are taken. First, slicing
is used to remove statments and variables which do not affectcontrol flow.
Here non-control variables refer to variables which do not affect the control
of the number of times the loop iterates. In addition, a slicing with respect
to the exit conditions ofL are also made to remove statements and variables
which do not affect the number of times the loop iterates. Then, an invariant
analysis is used to remove variables which are invariant (i.e., do not change) in
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the loop body. After that, abstract interpretation is used to derive a superset of
the possible states that are visited in the loop header. Finally, the elements in
the abstract states are counted to derive a concrete upper bound of a loop. As a
simple example, consider the following program:

for i = 1 to 5do
{Loop 1}
for j = 1 to 4do
{Loop 2}
statement

end for
end for

The program point corresponding tostatement is bounded by the num-
ber of possible environments associated with it. Using abstract interpretation
with the interval domain results in the environments shown in Figure 3.8. Af-
ter slicing on Loop 2, the variablei can be taken out of consideration and it
can effectively be bound to4. The loop bounds are then used as constraints in
the calculation phase to derive a concrete WCET. The analysis is described in
detail in Chapter 4.

3.10.3 Overview of Parametric WCET Analysis

The parametric WCET framework is based on the same idea as theloop bound
analysis but requires some additional steps. The frameworkis presented here
similarly to the presentations in [BL08, BEL09]. The goal ofthe analysis is to
derive a functionPWCETP : Z|IP | → Z as the WCET rather than a constant
as in the classical case. The setIP is the set of input parameters ofP . Thus,
the function takes|IP | arguments which correspond to concrete values of the
input parameters of a program. This function is constructedas the functional
composition of two other functions; theparametric calculation function(PCF)
and theexecution count function5 (ECF). The parametric calculation function
of a programP

PCFP : N|QP | → N

takes a vector of upper bounds (whereQP is the set of program points ofP )
for each program pointin the program and returns the worst case execution
time given those bounds. This function is generated in the calculation phase
of the analysis. Thus, the calculation phase has to be altered to aparametric

5Named maximum execution count function in [BL08].
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calculation. More on this in Chapter 6. The execution count function of a
programP

ECFP : Z|IP | → N|QP |

takes a vector of instantiated input parameters and returnsa vector of upper
bounds for each program point in the program. This function is generated
during the flow analysis via abstract interpretation and symbolic state counting.

The composition ofPCF andECF gives a function which takes a vec-
tor of instantiated input parameters and returns the worst case execution time.
Formally:

PWCETP : Z|IP | → N = PCFP ◦ ECFP .

Computing PCFP

ThePCFP function is computed by a parametric calculation [Lis03a, BL08,
BEL09]. A parametric calculation works like the normal calculation phase in
WCET analysis; it takes flow constraints and low-level analysis results and
calculates the worst-case subject to these constraints. The difference is that
the result of the parametric calculation is a formula in terms ofsymbolic upper
bounds. These symbolic upper bounds can be loop bounds, upper bounds on
paths [Lis03b], or execution bounds on program points. Two methods of para-
metric calculation have been investigated within this framework: Parametric
Integer Programming (PIP) [Fea88] and the Minimum Propagation Algorithm
(MPA) [BEL09]. These methods are discussed in detail in Chapter 6 and 7.

Computing ECFP

TheECFP function is computed in a very similar fashion as the loop bounds.
By performing abstract interpretation to obtain super setsof the collecting se-
mantics of a program, and then counting the number of elements in the abstract
state an upper bound of the execution count of the program point has been com-
puted. However, the bounds computed should be in terms of theinput parame-
ters of the program. This can be achieved by using a relational abstract domain.
In a relational abstract domain information about the relationship between vari-
ables are preserved and can be used to compute tighter bounds. Consider the
following loop

for i = 1 to ndo
for j = 1 to 4do

statement
end for
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Figure 3.9: A part of an abstract environment associated with the loop body of
a simple nested loop

end for
where the initial value ofn is an input parameter. Figure 3.9 shows a part of

an abstract environment associated withstatement computed using abstract
interpretation with the polyhedral domain. As seen, the execution count of
statement depends on the variablen.





Chapter 4

Finding Loop Bounds

4.1 Introduction

This chapter outlines a methodology for finding loop bounds based on counting
elements in abstract states. This methodology was first introduced in [ESG+07],
and is shown here to illustrate the principles of counting elements in abstract
states and to further motivate the developments of the congruence domain as
shown in Section 5.3. A similar method has later been presented in [LCFM09].

The loop bound analysis relies on the principles outlined inChapter 3. The
method is presented using non-relational abstract interpretation since it in gen-
eral is more efficient that relational ditto. Since the number of elements in
an abstract state is an upper bound of the number of times a certain program
point can be visited, a loop can easily be bounded by countingthe elements
of an abstract state corresponding to a program point which is visited inev-
ery loop iteration. However, some additional techniques are needed to obtain
tight and finite loop bounds, namelyslicing and invariant analysis. Invariant
analysis [Muc97, ESG+07] is a technique to find variables which areinvariant
in a loop, that is, variables which do not change in the loop body. Finding
these variables are essential for two reasons: 1) they may beused to prevent
the widening operation to severely over-estimate the result (or even make them
unbounded) and 2) they may be used to substantially reduce the size of the re-
sulting abstract states. How this is done is explained in thefollowing sections.

53
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Figure 4.1: Workflow for the loop bound analysis

4.2 Slicing on Loops

To find out the bound of an individual loop, slicing can be applied with respect
to the exit conditions of the loop, to obtain a program slice where most state-
ments and variables that do not affect the number of loop iterations have been
removed. As an example, consider the following nested loop:

for i = 1 to 10 do
{LoopL1}
for j = 1 to i do
{LoopL2}
statement1

end for
statement2

end for

Assume thatstatement1 andstatement2 do not affecti or j directly or
indirectly. A slicing onL1 would result in the following loop:

for i = 1 to 10 do
{LoopL1}

end for

since neitherL2, statement1 nor statement2 affect the number of iter-
ations ofL1.
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4.3 Loop Invariant Variables

As mentioned in previous section, it is an important step of this loop bound
analysis to find loop invariant variables for the analysed loops. Each loopL
has a set of loop invariant variablesIL defined as the set of variables of a
programVP minus the set of variables which are updated in the loopL.

A simple approach to find loop invariant variables is presented in [ESG+07];
it simply searches for variables which are used in a (sliced)loop body but which
are not updated. In addition, the result from abstract interpretation may dis-
cover variables which are guaranteed to have only one value (e.g., the interval
[1, 1]). Such variables must trivially be loop invariant as well.

4.4 Restricted Widening

The widening operation can sometimes yield imprecise results since it may
not correspond to the least fixed point. Consequently, the loop bound analysis
may not be able to bind some loops. When the widening is placedjust before
a conditional, as the case is in our flow charts, the widening may prevent the
conditional from properly prune the abstract states after the conditional. Fig-
ure 4.2 illustrates this problem. In the left part of the figure, a first abstract
interpretation iteration with the interval domain has beenperformed. The sec-
ond incoming arc to the merge node, is in the first iteration the bottom value.
The right part of the figure shows the second iteration where the second in-
coming arc to the merge node mapsi andj to [1, 9]. Since9 ≥ 1 the widening
maps (see Section 3.9.1) this to[1,∞]. This causes the true-arc of the condi-
tional to mapj to [1,∞] where[1, 9] would have been more precise, yet still
correct. We will solve this problem by using a restricted form of widening.
This widening was used in the evaluation of[ESG+07] but was not explained
or proved to be correct.

We define therestricted widening operator∇C : (VP → A)→ (VP → A)
in terms of a widening operator∇ : (VP → A)→ (VP → A) as:

X∇CY = λv.

{
Y (v) if v ∈ C
X∇Y (v) otherwise

whereC ⊆ VP . To demonstrate the usage of the restricted widening, as-
sume thatq is a loop merge arc for a loopL, and thatIL is the set of loop
invariant variables forL. Let p, r be incoming arcs to the merge node, then the
corresponding data-flow equation for this node is:
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Figure 4.2: A widening is made just after the merge node. Thiscauses the
abstract values after the conditional to be grossly over-estimated.

τ̂ L(S)(q) = S(q)∇IL
(S(p) t S(r))

This means that, in a non-relational domain, the widening isperformed
only over the variables which are possibly changed in the loop.

The reason that this is a valid approach is as follows. Let(σ(v))n∈N be
an infinite strictly increasing chain. This means that either the variablev is
updated inside a loop, orv directly or indirectly depends on a variable which is
updated inside a loop (sincev must be updated an infinite number of times in
order to cause an infinite strictly increasing chain). Consequently, ifv is a loop
invariant variable for a loopL and (σ(v))n∈N is associated with a program
point insideL, thenv must be either be updated insideanother loop L′ or
be dependent (directly or indirectly) on a variablev′ which is updated in said
loop. This means that the(σ(v))n∈N is an infinite strictly increasing chain
because it depends on another infinite strictly increasing chain (σ′(v′))n∈N

associated with the loopL′. Here, eitherv′ = v or v depends directly or
indirectly onv′. However, sincev′ cannot be a loop invariant ofL′, applying
the restricted widening∇I

L′
to (σ′(v′))n∈N results in a ascending chain which

eventually stabilises, sincev′ /∈ IL′ . Applying∇I
L′

to (σ(v))n∈N in addition,
would make also this chain to eventually stabilise, even thoughv ∈ IL since
the reason that(σ(v))n∈N were strictly increasing was the dependency on the
strictly increasing chain(σ′(v′))n∈N.
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4.5 Abstract Interpretation in Loop Bound Anal-
ysis

Abstract interpretation is used in the loop bound analysis to find an over-
approximation of the set of states reachable inside a loop. We will illustrate the
loop bound analysis by using an example programTP , shown in Figure 4.3.
This program is not doing anything useful; it is designed to illustrate the tech-
niques. It is assumed to already have been sliced, thus, a slicing would not be
able to remove any statements or variables ofTP . The program consists of a
nested triangular loop, and the developments of this chapter will be devoted on
finding the number of iterations of the loop bodies. The two loops ofTP are
L1 = {q2, q3, q4, q5, q8, q9} andL2 = {q5, q6, q7}. However, slicing onL1

would remove{q4, q5, q6, q7, q8} from it, leavingL1 = {q2, q3, q9}. Slicing
onL2 would not remove any program points.

An invariant analysis may detect the set of loop invariant variables asIL1
=

{j} andIL2
= {i}.

As seen in Figure 4.1, the next step is the abstract interpretation. We per-
form the abstract interpretation using three non-relational abstract domains to
demonstrate that the achieved precision varies by using different domains. The
domains used in this section are the interval domain, the congruence domain
and the reduced product of these two. The definition of the abstract semantic
function for non-relational domains is defined as follows for TP :
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Figure 4.3: Triangular loop program,TP
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τ̂ (S)(q0) = >

τ̂ (S)(q1) = S(q0)[i 7→ α({1})]

τ̂ (S)(q2) = S(q2)∇(S(q1) t S(q9))

τ̂ (S)(q3) =
⊔{

σ̂ v S(q2) | σ̂ (i) ≤̂ α({100}) v true

}

τ̂ (S)(q4) = S(q3)[j 7→ α({1})]

τ̂ (S)(q5) = S(q5)∇{i}(S(q4) t S(q7))

τ̂ (S)(q6) =
⊔{

σ̂ v S(q5) | σ̂ (j) ≤̂ σ̂ (i) v true

}

τ̂ (S)(q7) = S(q6)[j 7→ S(q6)(j) +̂ α({1})]

τ̂ (S)(q8) =
⊔{

σ̂ v S(q5) | σ̂ (j) ≤̂ σ̂ (i) v false

}

τ̂ (S)(q9) = S(q8)[i 7→ S(q8)(i) +̂ α({2})]

τ̂ (S)(q10) =
⊔{

σ̂ v S(q2) | σ̂ (i) ≤̂ α({100}) v false

}

Note that the definition of̂τ (S)(q5) uses restricted widening in the loop
invarianti. Using Jacobi-iteration over the interval domain results in Table 4.1.
The third iteration is a narrowing pass on the final result (i.e., replacing all
widenings with narrowings). As can be seen, the use of restricted widening is
crucial to find correct finite bounds on both loop counters. Ifordinary widening
was used in the definition of̂τ (S)(q5), the widening would have resulted in
i 7→ [1,∞] in the second iteration of row 5. This in turn would have prevented
the pruning of the conditional in̂τ (S)(q6), which would have yielded the
abstract statei 7→ [1,∞], j 7→ [1,∞] instead ofi 7→ [1, 100], j 7→ [1, 100].
This illustrates the usefulness of the restricted widening.

Table 4.2 displays the result of performing abstract interpretation using the
congruence domain, and finally, in table 4.3, the reduced product of these two
domains is displayed. Note the synergy of the two domains makes the intervals
tighter in Table 4.3 compared to using the interval domain inisolation as in
Table 4.1.
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∇ iteration 1 iteration 2
τ̂ 1,2(⊥)(0) i 7→ [−∞,∞], j 7→ [−∞,∞] i 7→ [−∞,∞], j 7→ [−∞,∞]
τ̂ 1,2(⊥)(1) i 7→ [1, 1], j 7→ [−∞,∞] i 7→ [1, 1], j 7→ [−∞,∞]
τ̂ 1,2(⊥)(2) i 7→ [1, 1], j 7→ [−∞,∞] i 7→ [1,∞], j 7→ [−∞,∞]
τ̂ 1,2(⊥)(3) i 7→ [1, 1], j 7→ [−∞,∞] i 7→ [1, 100], j 7→ [−∞,∞]
τ̂ 1,2(⊥)(4) i 7→ [1, 1], j 7→ [1, 1] i 7→ [1, 100], j 7→ [1, 1]
τ̂ 1,2(⊥)(5) i 7→ [1, 1], j 7→ [1, 1] i 7→ [1, 100], j 7→ [1,∞]
τ̂ 1,2(⊥)(6) i 7→ [1, 1], j 7→ [1, 1] i 7→ [1, 100], j 7→ [1, 100]
τ̂ 1,2(⊥)(7) i 7→ [1, 1], j 7→ [2, 2] i 7→ [1, 100], j 7→ [2, 101]
τ̂ 1,2(⊥)(8) i 7→ [1, 1], j 7→ [2, 2] i 7→ [1, 100], j 7→ [2,∞]
τ̂ 1,2(⊥)(9) i 7→ [3, 3], j 7→ [2, 2] i 7→ [3, 102], j 7→ [2,∞]

τ̂ 1,2(⊥)(10) i 7→ ⊥, j 7→ ⊥ i 7→ [101,∞], j 7→ [−∞,∞]

∆ iteration 3
τ̂ 3(⊥)(0) i 7→ [−∞,∞], j 7→ [−∞,∞]
τ̂ 3(⊥)(1) i 7→ [1, 1], j 7→ [−∞,∞]
τ̂ 3(⊥)(2) i 7→ [1, 102], j 7→ [−∞,∞]
τ̂ 3(⊥)(3) i 7→ [1, 100], j 7→ [−∞,∞]
τ̂ 3(⊥)(4) i 7→ [1, 100], j 7→ [1, 1]
τ̂ 3(⊥)(5) i 7→ [1, 100], j 7→ [1, 101]
τ̂ 3(⊥)(6) i 7→ [1, 100], j 7→ [1, 100]
τ̂ 3(⊥)(7) i 7→ [1, 100], j 7→ [2, 101]
τ̂ 3(⊥)(8) i 7→ [1, 100], j 7→ [2, 101]
τ̂ 3(⊥)(9) i 7→ [3, 102], j 7→ [2, 101]

τ̂ 3(⊥)(10) i 7→ [101, 102], j 7→ [−∞,∞]

Table 4.1: Jacobi-iteration using the interval domain

iteration 1 iteration 2
τ̂ 1,2(⊥)(0) i 7→ 0 + 1Z, j 7→ 0 + 1Z i 7→ 0 + 1Z, j 7→ 0 + 1Z
τ̂ 1,2(⊥)(1) i 7→ 1 + 0Z, j 7→ 0 + 1Z i 7→ 1 + 0Z, j 7→ 0 + 1Z
τ̂ 1,2(⊥)(2) i 7→ 1 + 0Z, j 7→ 0 + 1Z i 7→ 1 + 2Z, j 7→ 0 + 1Z
τ̂ 1,2(⊥)(3) i 7→ 1 + 0Z, j 7→ 0 + 1Z i 7→ 1 + 2Z, j 7→ 0 + 1Z
τ̂ 1,2(⊥)(4) i 7→ 1 + 0Z, j 7→ 1 + 0Z i 7→ 1 + 2Z, j 7→ 1 + 0Z
τ̂ 1,2(⊥)(5) i 7→ 1 + 0Z, j 7→ 1 + 0Z i 7→ 1 + 2Z, j 7→ 0 + 1Z
τ̂ 1,2(⊥)(6) i 7→ 1 + 0Z, j 7→ 1 + 0Z i 7→ 1 + 2Z, j 7→ 0 + 1Z
τ̂ 1,2(⊥)(7) i 7→ 1 + 0Z, j 7→ 2 + 0Z i 7→ 1 + 2Z, j 7→ 0 + 1Z
τ̂ 1,2(⊥)(8) i 7→ 1 + 0Z, j 7→ 2 + 0Z i 7→ 1 + 2Z, j 7→ 0 + 1Z
τ̂ 1,2(⊥)(9) i 7→ 3 + 0Z, j 7→ 2 + 0Z i 7→ 1 + 2Z, j 7→ 0 + 1Z

τ̂ 1,2(⊥)(10) i 7→ ⊥, j 7→ ⊥ i 7→ 1 + 2Z, j 7→ 0 + 1Z

Table 4.2: Abstract interpretation with the congruence domain
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∇ iteration 1
τ̂ 1(⊥)(0) i 7→ 〈[−∞,∞], 0 + Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉
τ̂ 1(⊥)(1) i 7→ 〈[1, 1], 1 + 0Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉
τ̂ 1(⊥)(2) i 7→ 〈[1, 1], 1 + 0Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉
τ̂ 1(⊥)(3) i 7→ 〈[1, 1], 1 + 0Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉
τ̂ 1(⊥)(4) i 7→ 〈[1, 1], 1 + 0Z〉 , j 7→ 〈[1, 1], 1 + 0Z〉
τ̂ 1(⊥)(5) i 7→ 〈[1, 1], 1 + 0Z〉 , j 7→ 〈[1, 1], 1 + 0Z〉
τ̂ 1(⊥)(6) i 7→ 〈[1, 1], 1 + 0Z〉 , j 7→ 〈[1, 1], 1 + 0Z〉
τ̂ 1(⊥)(7) i 7→ 〈[1, 1], 1 + 0Z〉 , j 7→ 〈[2, 2], 2 + 0Z〉
τ̂ 1(⊥)(8) i 7→ 〈[1, 1], 1 + 0Z〉 , j 7→ 〈[2, 2], 2 + 0Z〉
τ̂ 1(⊥)(9) i 7→ 〈[3, 3], 3 + 0Z〉 , j 7→ 〈[2, 2], 2 + 0Z〉

τ̂ 1(⊥)(10) i 7→ ⊥, j 7→ ⊥
∇ iteration 2

τ̂ 2(⊥)(0) i 7→ 〈[−∞,∞], 0 + Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉
τ̂ 2(⊥)(1) i 7→ 〈[1, 1], 1 + 0Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉
τ̂ 2(⊥)(2) i 7→ 〈[1,∞], 1 + 2Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉
τ̂ 2(⊥)(3) i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉
τ̂ 2(⊥)(4) i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[1, 1], 1 + 0Z〉
τ̂ 2(⊥)(5) i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[1,∞], 0 + 1Z〉
τ̂ 2(⊥)(6) i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[1, 99], 0 + 1Z〉
τ̂ 2(⊥)(7) i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[2, 100], 0 + 1Z〉
τ̂ 2(⊥)(8) i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[2,∞], 0 + 1Z〉
τ̂ 2(⊥)(9) i 7→ 〈[3, 101], 1 + 2Z〉 , j 7→ 〈[2,∞], 0 + 1Z〉

τ̂ 2(⊥)(10) i 7→ 〈[101,∞], 1 + 2Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉
∆ iteration 3

τ̂ 3(⊥)(0) i 7→ 〈[−∞,∞], 0 + Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉
τ̂ 3(⊥)(1) i 7→ 〈[1, 1], 1 + 0Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉
τ̂ 3(⊥)(2) i 7→ 〈[1, 101], 1 + 2Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉
τ̂ 3(⊥)(3) i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉
τ̂ 3(⊥)(4) i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[1, 1], 1 + 0Z〉
τ̂ 3(⊥)(5) i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[1, 100], 0 + 1Z〉
τ̂ 3(⊥)(6) i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[1, 99], 0 + 1Z〉
τ̂ 3(⊥)(7) i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[2, 100], 0 + 1Z〉
τ̂ 3(⊥)(8) i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[2, 100], 0 + 1Z〉
τ̂ 3(⊥)(9) i 7→ 〈[3, 101], 1 + 2Z〉 , j 7→ 〈[2, 100], 0 + 1Z〉

τ̂ 3(⊥)(10) i 7→ 〈[101, 101], 101 + 0Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉

Table 4.3: The reduced product of the interval and congruence domain
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4.6 Counting Elements in Abstract Environments

Having obtained an abstract environment for each program point in the pro-
gram, we are now ready to extract loop bounds using this information. A safe
upper bound of the number of times a loop can iterate can be extracted from
an abstract state corresponding to a program point which is visited in each
iteration. Since an abstract state safely approximates theset of possible con-
crete states at that program point, the ”size” of that abstract environment is an
upper bound of the number of loop iterations. Let〈L, α, γ, M〉 be a Galois-
connection, then we define thesizeof an abstract valuea ∈ L as follows:

|a| = |γ(a)| (4.1)

The size of an abstract value in the interval domain is therefore

|⊥| = |γ(⊥)| = |∅| = 0

|[a, b]| = |γ([a, b])| = |{n ∈ Z | a ≤ n ≤ b}| = b− a + 1

|>| = |γ(>)| = |Z| =∞

for the congruence domain the sizes are

|⊥| = |∅| = 0

|m + kZ| =

{
|{m}| = 1 if k = 0
|{m + kn | n ∈ Z}| =∞ otherwise

Finally, the size of a value in the reduced product of the interval and congruence
domain is

|⊥| = |∅| = 0

|〈[a, b], m + kZ〉| = |{m + kn | n ∈ Z ∧ a ≤ m + kn ≤ b}|

=

⌈
b− a + 1

k

⌉

|>| = |Z| =∞

The size of an abstract environment is an upper bound of the execution
count of its associated program point and thus a loop bound. The size of an
environment can be derived by the following formula:

| σ̂ | =
∏

v∈V

| σ̂ (v)| .



4.6 Counting Elements in Abstract Environments 63

This corresponds to the actual number of possible environments associated
with a program point. To bind a loop, we look at the element count of a loop
representative, i.e., a program point which is guaranteed to execute exactly
once in every loop iteration. To avoid over-estimations, the minimum count of
all possible loop representatives should be chosen1.

4.6.1 Example of Loop Bounding with Intervals

We illustrate the loop bounding process by consideringL1 andL2 from TP .
The set of possible representatives ofL1 is {q3}, note thatq2 shouldnot be
included in this set sinceq2 may also execute outside the loop. The set of
representatives forL2 is {q6, q7}, and by similar reasoning,q5 should not be
included in this set. First we compute the upper bound ofL1 using the interval
domain.

q3 = |[i 7→ [1, 100], j 7→ [−∞,∞]]|

= |γ([1, 100])| (sincej is disregarded)

= |{x | 1 ≤ x ≤ 100}| = 100

By slicing ofL1 and also by invariant analysis,j can be completely disre-
garded from the loop bound analysis here, resulting in a loopbound of100.

To compute the bound forL2 we proceed in a similar fashion, sinceIL2
=

{i}, we can disregardi completely for the purposes of element counting. This
is becausei remains the same during the execution ofL2. Thus, we have

q6 = |[i 7→ [1, 100], j 7→ [1, 100]]|

= |γ([1, 100])| (sincei is disregarded)

= 100

q7 = |[i 7→ [1, 100], j 7→ [2, 101]]|

= |γ([1, 100])|

= 100

The minimum of these are100, which is the derived loop bound forL2.

1In [ESG+07] it is suggested to simply choose one representative, which is clearly possible but
might lead to over-approximations.
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4.6.2 Example of Loop Bounding with Intervals and Con-
gruences

To illustrate the differences between abstract domains, wewill also calculate
the loop bounds using other abstract domains. The congruence abstract domain
is not useful in itself for computing loop bounds, since abstract values in most
cases correspond to infinite concrete sets. However, by using it in conjunction
with the interval domain via the reduced product, tighter loop bounds can be
found. To illustrate this, we make the following computations based on the
results of Table 4.3.

q3 = |[i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[−∞,∞], 0 + 1Z〉]|

= |γ([1, 99], 1 + 2Z)| = 50

Thus, we can safely boundL1 to 50, which in this case is an exact bound.
Also L2 can be bound tighter, as suggested by the following:

q6 = |[i 7→ 〈[1, 99], 1 + 2Z〉 , j 7→ 〈[1, 99], 0 + 1Z〉]|

= |γ(〈[1, 99], 0 + 1Z〉)| (sincei is disregarded)

= 99

q7 = |[i 7→ 〈[3, 101], 1 + 2Z〉 , j 7→ 〈[2, 100], 0 + 1Z〉]|

= |γ(〈[2, 100], 0 + 1Z〉)|

= 99

So,L2 can get a slightly more precise upper bound of99.

4.6.3 Limitation of Non-Relational Domains

The loop bounds derived using the technology outlined in previous sections
derives local loop bounds by the use of loop invariant variables. However,
an abstract state derived for a program point can also be usedto determine
an upper bound of the total number of times that that program point can be
visited. As an example, counting the number of elements for program pointq5
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gives, when using the reduced product, an upper bound of49 · 100 = 4900.
While this is a safe upper bound, it is not very precise. This is because the
abstract interpretation does not take the fact that the loopbound ofL2 changes
depending on the value ofi at that point. In other words, the loop counterj
of L2 is dependent on the value ofi. A non-relational abstract domain fails to
take advantage of this fact, which leads to an unavoidable over-approximation.
The solution to this is to use a relational abstract domain which tracks some
of the relations between variables, and thus can be able to detect these kind
of dependencies. A relational abstract domain is more expensive to use in
analysis but can capture some of these essential dependencies. The loop bound
analysis in [LCFM09] uses the polyhedral abstract domain for this. The use of
relational abstract domains will be more thoroughly examined in Chapter 6.

4.7 Evaluation

An evaluation of the method outlined in this chapter was madein [ESG+07]. In
this publication, 28 benchmarks from the Mälardalen WCET benchmark suite
(see [MDH09]) where analysed. The method was evaluated using the interval
domain and the reduced product as described above. The analysis binds 63% of
the loops in the benchmarks and 51% of them are bound exactly.For six of the
loops, a tighter bound was found by using the reduced productof the interval
and congruence domains compared to when using only the interval domain.
Table 4.4, taken from [ESG+07], shows the results from the evaluation. Here
#LC is the lines of code,#L is the number of loops,#B is the number of
loops bound by the analysis%B is the percentage of loops bound,#E is the
number of loops bound exactly,%E is the percentage of loops bound exactly
and finally,Time is the execution time of the analyis (implemented in SWEET
[WCE09]) running on a 3 GHz PC running Linux.



Program #LC #L #B %B #E %E Time

adpcm 879 27 18 67% 8 30% 48.6
bs 114 1 0 0% 0 0% 0.81
cnt 267 4 4 100% 4 100% 0.24
cover 640 3 3 100% 3 100% 0.32
crc 128 6 6 100% 6 100% 0.11
duff 86 2 1 50% 1 50% 0.04
edn 285 12 12 100% 9 75% 0.71
expint 157 3 3 100% 3 100% 0.04
fac 21 1 1 100% 1 100% 0.01
fdct 239 2 2 100% 2 100% 0.05
fft1 219 30 7 23% 3 10% 5.39
fibcall 72 1 1 100% 1 100% 0.01
fir 276 2 2 100% 1 50% 0.38
inssort 92 2 1 50% 1 50% 0.54
jcomplex 64 2 0 0% 0 0% 0.04
jfdctint 375 3 3 100% 3 100% 0.06
lcdnum 64 1 1 100% 1 100% 0.01
ludcmp 147 11 6 55% 5 45% 247.6
matmult 163 7 7 100% 7 100% 0.51
ndes 231 12 12 100% 12 100% 3.11
ns 535 4 1 25% 1 25% 91.9
nsichneu 4253 1 1 100% 1 100% 1.11
prime 535 2 0 0% 0 0% 0.05
qsort-exam 121 6 0 0% 0 0% 76.4
qurt 166 3 1 33% 1 33% 0.09
select 114 4 0 0% 0 0% 19.6
statemate 1276 1 0 0% 0 0% 1.00
ud 161 11 11 100% 10 91% 0.53

Total - 164 104 63% 84 51% -

Table 4.4: Benchmark programs and result of loop bound analysis (taken from
[ESG+07])



Chapter 5

The Congruence Domain

5.1 Background

This chapter investigates the congruence domain invented by P. Granger, pre-
sented in [Gra89]. The congruence domain was implemented into the static
WCET analysis tool SWEET [WCE09] to produce tighter loop bounds (see
[ESG+07]) and as a complement to abstract execution [GESL07]. That ver-
sion of SWEET operated on an intermediate level language called NIC (New
Intermediate Code). SWEET uses an internal compiler developed by a research
group at Uppsala University which compiles C code into NIC. In the compila-
tion some type information is lost, such as if an integer is signed or unsigned. In
addition, the intermediate format commonly uses lower level operations such
as bit-shifting and logical bit-operations. This chapter presents necessary de-
velopments of the congruence domain in order to able to perform a tight and
safe analysis on intermediate or low-level code.

5.2 Analysis on Low-Level and Intermediate-Level
Code

The theory of abstract interpretation is, usually in the literature, formulated
over abstract representation of programs (like in this thesis), and the abstract
domains are based on this abstract model of programs. To avoid special cases
and language dependencies, the domains, including their abstract operations
are usually given over basic mathematical sets of numbers, like Z, N, Q or R.

67



68 Chapter 5. The Congruence Domain

While maintaining clarity and language independence, the link to actual pro-
gram code is getting lost. When analysing real code on an intermediate or ob-
ject code level, the structures looks highly different. First of all, numbers can
not be arbitrary large as they are usually represented as bitstrings. In addition,
the operations performed on program variables are not restricted to common
arithmetical operations; bit-string operations such as shifting and logical oper-
ations are often applied. Abstract domains as found in literature usually do not
take these things into consideration. This requires extra research to make the
domains practically usable when analysis is performed overlow or intermedi-
ate level code.

In this chapter, we shall focus on developments of the congruence domain
(see Chapter 3). Related work to this section is the work of M¨uller and Olm
[MOS07, MOS05] which investigates the congruence domain over a more re-
alistic concrete domain. Another related work with the usage of the reduced
product of the congruence domain and the interval domain combined is pre-
sented in [RBL06], where the developments requires the two domains in con-
junction, while our work is provided for the congruence domain in isolation.

5.2.1 Assumptions

To motivate the developments of this chapter, we shall make afew assumptions
about the system for which we want to apply the analysis. These assumptions
are safe for most modern systems, independent of source language or platform.

• Integers are represented by a fixed number of bitsn (usually16, 32 or
64). When an operation results in a larger or smaller number than can
which be represented byn bits, either a run-time error is caused or the
number is wrapped-around1.

• An integer represented by a string ofn bits can be interpreted assigned
(in the range[−2n−1, 2n−1 − 1]) or unsigned(in the range[0, 2n − 1])

• Integers may be computed as a result from and/or as argumentsto func-
tions over bit-strings such as shifting or bitwise logical operations

These assumptions have an impact on the formulation of analyses in order
for them to be correct and precise. The following sections develop the congru-
ence domain using the above assumptions as basis.

1That is, considered modulus2n.
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5.2.2 Two’s Complement

The most common way to represent negative numbers in binary format is the
so-calledtwo’s complement. The two’s complement of a binary numberB is
obtained by first reversing all bits (i.e., performing a logical NOT) and then
adding 1. For example, the two’s complement of the binary number0101 is
1011. Negative numbers can then be recognised by the most significant bit;
a zero as least significant bit means a positive number, and a one implies a
negative number. Thus,0101 would be interpreted as5 and1011 would be
interpreted as the negation of the two’s complement, that is, −0110 = −5. If
the two’s complement is used to represent negative numbers,then an integer
is calledsigned, and if it is not (i.e., if1011 would be interpreted normally, as
11), then the integer is calledunsigned.

5.3 The Congruence Domain

The abstract domain of arithmetical congruences was proposed by Philippe
Granger in [Gra89]. The domain approximates a set of integers as a residue
class, i.e., as a class of integers which are equal ton modulusm. This do-
main was used in the developments of Chapter 4 to obtain tighter loop bounds.
The domain as proposed in [Gra89] has several problems with the assumptions
outlined in Section 5.2.1:

• The domain is presented as an abstraction ofP(Z), while we consider
integer valued variables which are represented by a fixed number of bits.

• The domain does not take ambiguous interpretation of integers into con-
sideration (such as signed/unsigned).

• In the original presentation, abstract operations were limited to common
arithmetic operations such as addition, subtraction, multiplication, divi-
sion and modulus. In lower level code there are more operations that
need to be taken into consideration such as bitwise logical operators,
bit-shifting etc.

In this chapter we will enhance the congruence domain by adding sup-
port to use it in intermediate or low-level code. This will bedone by adopt-
ing an abstraction of the latticeP({0, 1}n) rather thanP(Z), and develop-
ing lower-level abstract operations for the congruence domain. The definition
of the congruence domain and its lattice operations are shown on page 45 in
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Chapter 3. The lattice of arithmetical congruences is referred to asC(Z) in the
following. For completeness, we here present the definitionof some arithmetic
abstract operations as presented in [Gra89]. We will use theconvention that
gcd(0, m) = m, lcm(0, m) = 0, lcm(1, m) = 1, gcd(m, n) = gcd(|m|, |n|)
andlcm(m, n) = lcm(|m|, |n|). Let m0 + k0Z andm1 + k1Z be two non-
bottom abstract values of the congruence domain, then

(m0 + k0Z) ±̂ (m1 + k1Z)
def
= m0 ±m1 + gcd(k0, k1)Z

(m0 + k0Z) ∗̂ (m1 + k1Z)
def
= m0m1 + gcd{m0k1, m1k0, k0k1}Z

(m0 + k0Z)∗ m̂od (m1 + k1Z)+
def
= m0 + gcd{k0, m1, k1}Z

(m0 + k0Z)∗ d̂iv (m1 + k1Z)+
def
= 0 + 1Z

wheremod is the modulus operator,div is integer division andS∗
def
= S∩N and

S+
def
= S ∩ Z+ for all S ⊆ Z. The operation±̂ denotes the abstract versions

of the operations+ and−. Sometimes, when one operand is a singleton set, it
is possible to give a more precise result.

Let m + kZ be an abstract value,a + 0Z be a singleton abstract value, and
let N = k((a−m) div k)) + m. Then,

(m + kZ)∗ d̂iv a + 0Z

def
=

{
m div a + (k div a)Z if a|k
0 + 1Z otherwise

a + 0Z d̂iv (m + kZ)+

def
=

{
0 + (a div N)Z if N > 0
0 + 0Z otherwise

(m + kZ) m̂od a + 0Z

def
=

{
m mod a + 0Z if a|k
m + gcd(k, a)Z otherwise

a + 0Z m̂od (m + kZ)+

def
=





a + 0Z if N ≤ 0
a + gcd(m, k)Z if a div N = 1
a + N(a div N)Z if a div N ≥ 2
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5.4 Integer Representation

As mentioned in Section 5.2.1, the concrete domainP(Z) is not correct with
respect to the outlined assumptions, since integers are limited by the reserved
memory to represent them and the fact that ”overflows” resultin errors or wrap-
around effects. Müller and Olm [MOS07, MOS05] have suggested to use an
abstraction of the domainP(Z/nZ) to remedy the situation. The setZ/2nZ
contains all co-sets of the Abelian groupZ. That is, all integers are considered
modulo2n. If n is the number of bits used in the system, the elements ofZ/nZ
has the nice property of simulating wrap-around effects. For instance, in a 32-
bit system, elements would represent equivalence classes such as5 + 232Z,
meaning that any operation on this set would still be correcteven if out-of-
bounds. The drawback of this approach is that the class of congruences de-
tected are limited to a power of two. The reason for this is that most lattice
computations involve a computation of the greatest common divisor, and since
all classes are powers of two, the domain can only preserve the greatest com-
mon divisor when it is a power of two.

Before analysing congruence invariants on low-level code we have to make
a decision. We may:

1. Use the less precise analysis over the abstract domainC(Z/2nZ). This
amounts to deriving invariants of the typex ∈ b + 2kZ, which is the
same as knowing thek least significant bits of a variable.

2. Rely on the assumption that no overflows (or underflows) mayoccur.
While this in theory could yield unsound results, it is a reasonable as-
sumption to do if the user of the analysis by other means can besure that
no overflow (underflow) can occur in the program to be analysed.

3. We could use the analysis in conjunction with another one to see where
possible overflow/underflows can occur. For instance, the reduced prod-
uct of the congruence domain and an interval domain designedfor finite
domains can find program points in which overflows/underflowsare im-
possible and for other program points consider the abstractvalues mod-
ulo 2n.

We will in this thesis use the second item approach, since it gives the
most precise result. From now on we will assume that no overflows or un-
derflows are present in the program we wish to analyse. Our suggestion is to
useBn = P({0, 1}

n
) as concrete domain, and abstract the congruence domain

via functions which interpret bit-strings as integers. Note that this approach is
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Figure 5.1: Relation between bit-representations and integers.

actually general and could potentially be applied to other abstract domains to
solve similar problems.

5.4.1 Signed and Unsigned Integers

In this section we introduce three Galois connections, all using the set of bit-
stringsBn as basis and the lattice of arithmetical congruencesC(Z) as abstract
domain. The first Galois connectionCU = 〈P(Bn), αU, γU, C(Z)〉 is used for
unsigned integers, the second Galois connectionCS = 〈P(Bn), αS, γS, C(Z)〉
is used for signed integers, and finallyC∗ = 〈P(Bn), α∗, γ∗, C(Z)〉, is a
Galois-connection which is safe to use independently of theinterpretation of
the bit-strings. The definitions of these abstractions are all based on the origi-
nal domainCZ = 〈P(Z), αZ, γZ, C(Z)〉 presented in [Gra89]. To define these
properly, we need to specify formally how to interpret bit-strings.

Definition 19. LetBn be the set of all bit-strings of lengthn. Then we define
two interpretation functionsθn

S : Bn → Zn
S and θn

U : Bn → Zn
U where

Zn
S = {x ∈ Z| −2n−1 ≤ x ≤ 2n−1−1} andZn

U = {x ∈ Z| 0 ≤ x ≤ 2n−1}.
The functionθn

S is the signed interpretation of a bit-string andθn
U is the regular

(unsigned) interpretation. Also we define the functionsφn
S , φn

U : Z → Bn

which map integers (modulus2n) to their respective signed and unsigned bit-
string representations.

Figure 5.1 shows how the interpretation functions and the representations
are related in a diagram. To get a set of integers that is safe no matter how we
interpret the strings we introduce the functionθ : P(Bn)→ P(Z) as

θn
∗ = λB.θn

S (B) ∪ θn
U(B).
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Suppose that we represent integers by4 bits and that we want to find an ab-
stract value corresponding to the set{1110, 0110}. This set can be interpreted
as{−2, 6} or {6, 16} depending on if we use signed or unsigned integers (i.e.,
depending on which version ofθ we use). Therefore we define the abstraction
functions as follows

αn
S = αZ ◦ θn

S

αn
U = αZ ◦ θn

U

αn
∗ = αZ ◦ θn

∗

The last functionαn
∗ is used as a safe approximation no matter how we interpret

the bit-strings, i.e., it is safe to use for both signed and unsigned integers. The
concretisation functions are defined as:

γn
S = φn

S ◦ γZ

γn
U = φn

U ◦ γZ

γn
∗ = φn

∗ ◦ γZ

An example of the usage of the functions is given below:

α4
S({1110, 0110}) = αZ ◦ θ4

S({1110, 0110})

= αZ({−2, 6})

= −2 + 0Z t 6 + 0Z

= 6 + 8Z

α4
U ({1110, 0110}) = αZ ◦ θ4

U ({1110, 0110})

= αZ({16, 6})

= 16 + 0Z t 6 + 0Z

= 6 + 10Z

As can be seen, different abstract values are obtained depending on the
interpretation of the bit strings. Usingα4

∗ will obtain an abstract value which
is valid for both interpretations.
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Figure 5.2: Relation between bit-representation and the abstract domain.

α4
∗({1110, 0110}) = αZ ◦ θ4

∗({1110, 0110})

= αZ(θ4
S({1110, 0110}) ∪ θ4

U({1110, 0110}))

= αZ({−2, 6} ∪ {14, 6})

= αZ({−2, 6, 14})

= −2 + 0Z t 6 + 0Z t 14 + 0Z

= 6 + 8Z t 14 + 0Z

= 6 + 8Z

The relation between the different abstractions are depicted in Figure 5.2.
To summarise, we replace the concrete domainP(Z) by P(Bn). This makes
analysis on intermediate or low-level possible because:

1. The analysis is safe for both signed and unsigned integers, it is also pos-
sible to make analysis safe when the interpretation is unknown2.

2. The analysis can handle overflows since theφn interpretation of an ab-
stract value only consider then least significant bits of any integer.

3. The analysis does not assume that the number of integers isinfinite.

2Using only this abstraction will lead to similar problems asin [MOS07, MOS05], since only
modulus which are a power of two can be detected.
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5.5 Abstract Bit-Operations

In [Gra89] abstract operations for addition, subtraction,multiplication, divi-
sion and modulus is presented. This section will in additionprovide abstract
definitions of the bitwise operations AND, OR and XOR, as wellas abstract
versions of bit-shifting (left and right). Bit operations are used even in high-
level languages as C, whereas bit-shifting operations and truncation are usually
found in intermediate representations or object code. Since we are dealing with
three different Galois connectionsCU, CS andC∗, we have to provide differ-
ent abstract functions for them. For an abstract functionf̂ we shall use the
notations f̂U , f̂S and f̂∗ respectively.

5.5.1 BitwiseNOT

The bitwiseNOT operation takes a set of bit-strings and returns a set of bit-
strings where all zeroes are replaced by ones, and vice versa. As example
NOT({0110, 1101}) = {1001, 0010}. If the bit-strings are interpreted as in-
tegers, we see that

θS ◦NOT(B) = {−b− 1 | b ∈ θS(B)} (5.1)

θU ◦NOT(B) = {2n − b− 1 | b ∈ θU(B)} (5.2)

Equation (5.1) follows directly from the definition of two’scomplement,−b−
1 = (NOT(b) + 1) − 1 = NOT b. Bitwise NOT for unsigned integers
is simply taking a string ofn ones (a string ofn ones is represented by the
decimal number2n − 1) and subtracting it with the original string, obtaining
(5.2). These facts can be used as basis for the definition of the abstract version
of bitwiseNOT:

Definition 20. Letm + kZ be a non-bottom abstract value, then we define

N̂OT
n

U (m + kZ)
def
= 2n −m− 1 + kZ

N̂OT
n

S (m + kZ)
def
= −m− 1 + kZ

N̂OT
n

∗ (m + kZ)
def
= N̂OT

n

U(m + kZ) t N̂OT
n

S(m + kZ)
= −m− 1 + gcd{k, 2n}Z.

Proposition 5. The abstract operations in Definition 20 are correct approxi-
mations of abstractNOTS, NOTU andNOT∗.

The proof is trivial, it follows directly from (5.1) and (5.2).
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5.5.2 Bitwise Binary Logical Operators

The most common binary bitwise logical operators areAND, OR andXOR.
These operations all take two bit-strings as arguments, performs the logical
connectives bitwise on the two strings, and returns the result. While most
such behaviour destroys congruence relations, there are still some cases where
a modulus which is a power of two can be preserved. This section defines
an abstract version ofAND, from which the other two logical operations can
be derived by identities (such as De Morgan’s laws). The definition of the
abstractAND requires some preliminaries. In the following, we shall useφn

to denote eitherφn
S or φn

U when the result applies for both. Furthermore, if
x andy are integers, we shall use the notationxANDφ y for the expression
φn(x)AND φn(y).

Lemma 4. Let2nZ = {2nk | k ∈ Z} and letφn(2nZ) = {φn(k) | k ∈ 2nZ}.
Then any for any bit-stringb ∈ φn(2nZ), then least significant bits ofb are
zeroes.

Proof. Take any elementk ∈ 2nZ, thenk can be re-written ask = 2nk′ for
some numberk′. Multiplying a bit-string by two corresponds to shifting it
left one step (both for signed and unsigned integers). Left shifting a bit-string
introduces a zero as least significant bit, and sincek = 2nk′ the interpreted
stringφn(2nk′) corresponds to left shiftingk′, n steps, thusφn(2nk′) = φn(k)
has at leastn zeroes as least significant bits.

Definition 21. Let A be a bit-string. Then we defineL(A) as the position of
the least significant (rightmost) ”one” ofA, andM(A) as the most significant
(leftmost) ”one” ofA. The least significant bit of a string is considered to be
position0.

As an example of this, consider the bit-string1001. ThenL(1001) = 0
since the least significant ”one” is on position0. Also, M(1001) = 3 since
the most significant ”one” is on position three. Furthermore, we have that
L(0110) = 1 andM(0110) = 2.

Lemma 5. Take the sets2kZ and2k′

Z such thatk ≥ k′, then

θ(2kZ ANDφ 2k′

Z) = 2kZ.

Proof. According to Lemma 4, the setφn(2kZ) contains only bit-strings that
have theirk least significant bits as zeroes. The result of ”AND”-ing a zero
with anything results again with a zero, so the number of trailing zeroes ofk
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will be in the result. Note thatθ is not subscripted since the result holds for
both signed and unsigned integers, in other words,θ can be replace with any
of θS, θU or θ∗.

Proposition 6. LetaZ, bZ be sets such thata andb are odd. Then

αn(aZ ANDφ bZ) = 0 + 1Z

The functionαn represents all of the functionsαn
S , αn

U andαn
∗ .

We will prove the proposition using the following lemma.

Lemma 6. LetaZ, bZ be sets such thata andb are odd. Then

αn(aZ ANDφ bZ) w 2kZ

for some non-negative integerk.

Proof. Consider the elementa ∈ aZ. Let L(φn(a)) = k and consider the
element2kb ∈ bZ and note that if2kb > 2n thenφn(2kb) = φn(2kb mod 2n)
which significantly means that then least significant bits of2kb are remains
the same. Now,a ANDφ 2kb = φn(2k) since positionk will be the only
position where bothφn(a) andφn(2kb) has a one. This can be generalised
to φn(2k+m) = 2ma ANDφ 2k+mb for all non-negative integersm. Conse-
quently,φn(2m+k) ∈ aZ ANDφ bZ for all integersm. Now,

α(φn(
{
2m+k | m ∈ N

}
)) = 0 + 2kZ,

which implies thatα(φn(2kZ)) v aZ ANDφ bZ.

Using the result of Lemma 6, the proof of Proposition 6 can be given.

Proof. (of Proposition 6)
Let c = a ANDφ b, thenαn(aZ ANDφ bZ) w c+0Z, sincec ∈ aZ ANDφ bZ.
Now, αn(aZ ANDφ bZ) must be equal to or larger than the supremum of
the two elementsc + 0Z and0 + 2mZ since they are included (the latter by
Lemma 6). But,c + 0Zt 0 + 2mZ = 0 + gcd(0, 2m, 2m− c)Z. Sincea andb
are odd,c must also be odd, thus, the greatest common divisor of these is one,
implying thatαn(φn(aZ) AND φn(bZ)) w 0 + 1Z.

Proposition 6 states that theAND operation for abstract values which have
a moduli which is odd results in the top value. This justifies the following
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abstraction, we introduce aweakening operatoronC(Z). The weakening op-
eratorξ is defined as followed:

ξ(m + kZ) = (m mod gcd(2n, k)) + gcd(2n, k)Z

Note thatm + kZ v ξ(m + kZ), which follows directly from the definition
of v given in Section 5.3. For any abstract valuec, ξ(c) will have a moduli of
the form2k for somek ∈ N. Having a moduli as a power of two is beneficial
since it means that the set2kZ has itsk least significant digits as zeroes.

Lemma 7. If A andB are bit strings such thatAAND B = 0. Then, for any
bit stringC:

(A + B)AND C = AAND C + B AND C

Furthermore,(AAND C)AND(B AND C) = 0.

Proof. SinceA andB contains no common ones, a plus between two bits with
at least one zero is exactly the same as theOR operation. Thus:

(A + B)AND C = (AORB)AND C

BitwiseOR is distributive over bitwiseAND, so

(AOR B)AND C = (AAND C)OR(B AND C)

Note that sinceAAND B = 0, then for any stringC, it holds that

(AAND C)AND(B AND C)

asC can only ”remove” ones fromA andB. As a consequence,

(AAND C)OR(B AND C) = (AAND C) + (B AND C)

sinceOR between two bits, where at least one is zero, equals the plus opera-
tion.

Note that ifM(A) < L(A) implies thatAANDB = 0. Now we present
the definition of the abstractAND operation.

Proposition 7. Let m + 2kZ andm′ + 2k′

Z be non-bottom abstract values
such thatk′ ≤ k. Then,

m + 2kZ ÂND m′ + 2k′

Z =

{
m ANDφ m′ + 2k′

Z if M(m′) < k′

m ANDφ m′ + 2kZ otherwise

is a correct abstraction ofAND.



5.5 Abstract Bit-Operations 79

Proof. Takem + 2kn ∈ m + 2kZ andm′ + 2k′

n′ ∈ m′ + 2k′

n′Z such that
k′ ≤ k arbitrarily. Note thatk′ ≤ k is not a restriction since the abstract
values could just be reversed. Since we assume thatm andm′ are minimal
representatives for the abstract values respectively it follows that

m ANDφ 2kn = 0, m′ ANDφ 2k′

n′ = 0

Thus,

m+2kn ANDφ m′+2k′

n′ = (m+2kn ANDφ m′)+(m+2kn ANDφ 2k′

n′)

by Lemma 7. Furthermore,

(m + 2kn ANDφ m′) + (m + 2kn ANDφ 2k′

n′) = (5.3)

((m ANDφ m′) (5.4)

+(2kn ANDφ m′)) (5.5)

+((m ANDφ 2k′

n′) (5.6)

+(2kn ANDφ 2k′

n′)) (5.7)

Now, term 5.5 is equal to zero, since2k′

z ANDφ m′ = 0 for anyz ∈ N. In
particular, it holds forz0 = 2k−k′

n (this is an integer sincek ≥ k′), since
2k′

z0 = 2k′

2k−k′

n = 2k′+k−k′

n = 2kn.
Term 5.6 has two cases: ifM(m) < L(2k′

n′) then it is equal to zero
sincem and2k′

n′ would have no common ones. But ifM(m) ≥ L(2k′

n′)
then the term may result in a non-zero, where the possible ones are in the
position-interval[L(2k′

n′), M(m)]. Thus it is safe to represent this term by
the expression2k′

z for somez ∈ N.
Term 5.7 has itsk least significant digits as zeroes, sincek ≥ k′, thus

(2kn ANDφ 2k′

n′) can be written as2kp for somep ∈ N.
Thus, term 5.4 ism ANDφ m′, term 5.5 is zero, term 5.6 is zero ifM(m) <

L(2k′

n′) and can be written as2k′

z for somez otherwise. Term 5.7 can be
rewritten as2kp for somep. Thus we can rewrite (5.3) as

m ANDφ m′ + 2kp

if M(m) < L(2k′

n′), and

m ANDφ m′ + 2k′

z + 2kp
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otherwise. Since the elements were taken arbitrary it meansthatall elements
can be written on this form, with variations onz andp. Thus, it is safe to say

m ANDφ m′ + 2kp ∈ m ANDφ m′ + 2kZ

m ANDφ m′ + 2k′

z + 2kp ∈ m ANDφ m′ + 2k′

Z

The latter can be deduced from the fact thatk′ < k.

Note that Proposition 7 defineŝAND only for abstract values on the form
m + 2kZ. Any abstract value can be converted to this form via the weakening
operator however, making a safe abstraction of the value in question. A defini-
tion on the regular formm + kZ is not useful since by Proposition 6 any odd
moduli will result in the top value. Now, when we have the bitwiseÂND and
bitwise N̂OT we can easily construct the bitwisêOR andX̂OR using identi-
ties such as De Morgan’s Law. To show that these identities hold for abstract
functions we show the following.

Proposition 8. Let f, g : Z → Z be functions, and letf∗, g∗ : P(Z)→ P(Z)
be the lifted functions defined as

f∗(A) = {f(a) | a ∈ A}

g∗(B) = {g(b) | b ∈ B}

Note thatf∗ and g∗ are monotone w.r.t.⊆. Now let f̂ , ĝ be functions
abstractingf∗ andg∗ respectively, i.e.,

f∗ ⊆ γ ◦ f̂ ◦ α

g∗ ⊆ γ ◦ ĝ ◦ α

Then, it holds that
f∗ ◦ g∗ ⊆ γ ◦ ( f̂ ◦ ĝ ) ◦ α.

That is, function abstraction is closed under functional composition.

Proof. First,
f∗ ◦ g∗ ⊆ f∗ ◦ (γ ◦ ĝ ◦ α)

sincef∗ is monotone andg∗ ⊆ γ ◦ ĝ ◦ α by definition of ĝ . Furthermore,
since f̂ is abstractingf∗ we have:

f∗ ◦ (γ ◦ ĝ ◦ α) ⊆ (γ ◦ f̂ ◦ α) ◦ (γ ◦ ĝ ◦ α) ⊆ γ ◦ ( f̂ ◦ ĝ ) ◦ α
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where the last inequality is the implication ofλl.l v α ◦ γ by definition of a
Galois-connection.

Thus, the following identities can be used to derive the abstract operations
ÔR and X̂OR :

(m + kZ) ÔR (m + kZ) =

N̂OT((N̂OT (m + kZ)) ÂND (N̂OT (m′ + k′Z))

and

(m + kZ) X̂OR (m + kZ)

= (m + kZ ÂND N̂OT (m′ + k′Z))

ÔR ( N̂OT (m + kZ) ÂND m′ + k′Z).

5.5.3 Shifting

Shifting bit-strings is a common low-level operation. Leftshifting one step is
the process of moving all bits to the left and inserting a zeroat the least signif-
icant position. A right shift inserts zero from the right instead. An arithmetic
right shift inserts a copy of the most significant bit insteadof a zero. Shifting
left one step is equal to multiplying by two (holds both for signed and unsigned
integers) and shifting right one step corresponds to (integer) division by two.
We use the notationa LSH b to denote thata should be left shiftedb steps to
the left. We assume that the right argument is always positive.

Definition 22. Let m + kZ anda + 0Z be non-bottom abstract values such
thata is non-negative. Then,

(m + kZ) L̂SH (a + 0Z)
def
= 2am + 2akZ

is a correct abstraction for left shifting with a singleton abstract valuea + 0Z.

Proof. Take an arbitrary elementm+ kn ∈ m+ kZ. Left shiftinga+0Z = a
steps corresponds to multiplyingm + kn by 2a. Thus,

2a(m + kn) = 2am + 2akn ∈ 2am + 2akZ
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Proposition 9. Letm+kZ andm′+k′Z be non-bottom abstract values. Then
the definition of the abstract left shift operator̂LSH :

(m + kZ) L̂SH (m′ + k′Z)
def
= 2m′

m + 2m′

gcd(k, m(2k′

− 1))Z

is correctly abstractingLSH.

Proof. Naturally, the best correct approximation of this operation is
⊔
{2am + 2akZ | a ∈ m′ + k′n′ ∧ n′ ∈ Z}

since the supremum of all constant right shifts should equalit. First we com-
pute ⊔

{2am + 2akZ | a ∈ m′ + k′n′ ∧ n′ ∈ {0, 1}}

In the case wheren′ = 0 thena = m′, whenn′ = 1, thena = m′ + k′. Thus,
we compute

2m′

m + 2m′

kZ t 2m′+k′

m + 2m′+k′

kZ

= 2m′

m + gcd
{

2m′

k, 2m′+k′

k, |2m′+k′

m− 2m′

m|
}

Z

= 2m′

m + gcd
{
2m′

k, |2m′

2k′

m− 2m′

m|
}

Z

= 2m′

m + gcd(2m′

k, 2m′

m|2k′

− 1|)Z

= 2m′

m + 2m′

gcd(k, m(2k′

− 1))Z

To conclude the proof, letn′ be any integer greater than one, and we take

2m′

m + 2m′

gcd(k, m(2k′

− 1))Z t 2m′+n′k′

m + 2m′+n′k′

kZ

= 2m′

m + gcd
{

2m′

gcd(k, m(2k′

− 1)), 2m′+n′k′

k, |2m′+n′k′

m− 2m′

m|
}

Z

= 2m′

m + gcd
{
2m′

k, 2m′

(2k′

− 1)m, 2m′

2n′k′

k, |2m′

2n′k′

m− 2m′

m|
}

Z

= 2m′

m + 2m′

gcd
{
k, m(2k′

− 1), 2n′k′

k, m(2n′k′

− 1)
}

Z

Now sincek divides2n′k′

k for anyn′ andm(2k′

− 1) dividesm(2n′k′

− 1)
for anyn′, we conclude that

2m′

m + 2m′

gcd
{
k, m(2k′

− 1), 2n′k′

k, m(2n′k′

− 1)
}

Z

v 2m′

m + 2m′

gcd(k, m(2k′

− 1))Z.



5.5 Abstract Bit-Operations 83

Sincen′ > 1 was chosen arbitrarily and merged withn′ = 0 andn′ = 1 the
result holds by merging any othern′ as well, so this is a safe approximation.

The right-shift operation behaves less well. Right shifting is equivalent
to (integer) division by two. As seen in section 5.3 divisiondestroys most
congruence relations.

Proposition 10. Let a be any positive integer andm + kZ be a non-bottom
abstract value, then the definition

(m + kZ) R̂SH a

def
=

{
m RSH a + 2t−aZ if k = 2t anda < t
0 + 1Z otherwise

(5.8)

(m + kZ) R̂SH (m′ + k′Z)
def
= 0 + 1Z (5.9)

is a correct definition of the abstract right shift.

This proposition is stated without proof since (5.8) is justa re-writing of
the definition of the abstract integer-division and (5.9) istrivial. Note that we
do not claim that (5.9) is thebestdefinition, but certainly a correct one. How-
ever, it seems unlikely that it is possible to define agenerallybetter abstract
operation.





Chapter 6

Parametric WCET Analysis

6.1 Introduction

In Chapter 4, we showed how to count elements in abstract environments to
calculate bounds for loops. This was done with non-relational abstract inter-
pretation. However, a relational domain can provide more information and
can preserve some relations between variables. In this chapter we will show
how a relational abstract interpretation and some other techniques can achieve
a parametric WCET analysis. A brief overview of this framework was given
in Chapter 2, while this chapter presents the details. The general methodology
presented in this chapter was first proposed in [Lis03a] and further explained
in [Lis03b]. An overview of the parametric framework is shown in Figure 6.1.

6.2 Relational Abstract Interpretation and Input
Parameters

As explained in Section 3.10.3 and as seen in Figure 6.1, abstract interpretation
and element counting is used to obtain the execution count functionECF. The
purpose of the execution count function is to compute an upper bound of the
number of times that a program point can be visited, given a set of initial values
for the input parameters. Thus, the relation between the possible environments
associated with a program point and the values of the input parameters has to
be analysed. This is done via abstract interpretation, using arelationaldomain,
such as the polyhedral or octagon domain.

85
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Since the input parameters has to be related to the variablesin the program,
they have to be present in the abstract interpretation. Thiscan be done by
adding a set of artificial constants to the program corresponding to the input
parameters. Consider the following program:

while i > 0 do
i← i− 1

end while
In this program, the initial valuei0 of i would be considered an input param-
eter. To model this, the artificial constanti0 has to be added to the abstract
interpretation and the artificial statementi = i0 is added to the beginning of
the program. Note that these artificial constants and statements don’t need to
be added manually, it is a straightforward transformation which can be done
automatically given a set of input parameters. Indeed this doesn’t even have
to be applied to the actual code, since it is just a matter of modeling the ab-
stract interpretation. However, in many cases the input parameters correspond
to constant variables in the program. In those cases no artificial constants have
to be introduced. As an example, inL (see Section 3.1), the input parametern0

does not have to be explicitly modelled sincen = n0 through the execution.
Consider a programT with VT = {i} andIT = {n}. Figure 6.2 shows

an abstract state which has been derived forq ∈ QT , using the polyhedral
domain. Note here thatn is not a program variable but an artificial constant
corresponding to an input parameter. As can be seen,i has the maximal number
of elements whenn is 1, namely 7. However, sincen corresponds to an input
parameter, it should be known before execution. Thus, the bound should be
expressed in terms ofn. In this case the functionf(n) = max(0, 9 − 2n)
would be a precise upper bound whenn is known. Note that, if a non-relational
domain was used, the number of possible values fori would be independent
of n so such a function would not be meaningful. The idea of the relational
abstract interpretation is thus

to derive relational abstract states in a program in order toexpress
their execution counts in terms of input parameters.

6.3 Counting Elements in a Relational Abstract
Environment

In Section 4.6, some examples of how to count elements in abstract environ-
ments are shown. In this case it was fairly simple since the domains were
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Figure 6.2: A triangular abstract environment

non-relational. In the non-relational case it is sufficientto count the states of
an abstraction ofP(Z) individually, and then to multiply the individual counts
for each variable with each other. In the relational case, itbecomes more com-
plex since we need to count abstractions of environments. The definition of
thesizeof an abstract environment for a relational domain is the same as (4.1)
given in Section 4.6, i.e.,

| σ̂ | = |γ(σ)|

This calculation however, is for most relational domains non-trivial. As an
example, the abstract environment depicted in Figure 6.2 isrepresented the
following system of linear inequalities:

σ̂ q =




1 −2 1
−1 0 7
0 1 −1







i
n
1


 ≥




0
0
0




The functionγ of this abstract environment maps to the set

γ( σ̂ q) = {[i 7→ i′][n 7→ n′] | n′ ≥ 1 ∧ i′ ≤ 7 ∧ i′ ≥ 2n′ − 1 ∧ i′, n′ ∈ Z}

To compute the size of this set is non-trivial and is equal to computing the
number of integer solutions to a system of linear inequalities. There are known
methods of doing this, which is shown in the following sections. However, as
shown earlier, in this case the variablen should be disregarded, so we want
to compute the number of elements in this setsymbolically, i.e., in terms of
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the value of variablen. This makes the computation even more complex. The
following subsections reviews some methodologies to compute sizes of this
kind of sets.

6.3.1 Ehrhart Polynomials

In [Cla96], a method of symbolically counting the number of integer points
inside the union of rational convex polytopes (i.e., bounded polyhedra) is pre-
sented. The method uses Ehrhart’s theory to find quasi-polynomials (polyno-
mials which has periodic functions as coefficient, which simply can be seen as
a finite set of polynomials) which corresponds to the number of integer points
in polytopes.

6.3.2 Barvinok’s Rational Functions

In [VSB+07], a parametric version of Barvinok’s rational functions[BBP99]
is presented, using a similar method of [Cla96] to find quasi-polynomials that
represent the number of integer points inside polyhedra. The method can be
extended to handle general Presburger formulae, but it requires potentially very
costly preprocessing using parametric integer programming [Fea88].

6.3.3 Successive Projection

The successive projection method was suggested in [Pug94].The method is
used to count the number of solutions to a Presburger formula, which is more
general than unions of polytopes. The method is presented asa set of rules to
successively transform a symbolic summation to a formula. Since the method
is not an algorithm, but a set of rules, some additional work has to be done to
make it computable. This method has been implemented in a prototype tool
for the parametric framework presented in this chapter [BL08]. Since Pugh’s
method has been investigated and implemented, this is the method we make
use of to count integer points in polyhedra in this thesis. For this reason, we
explain the method more thoroughly.

The method computes the result of generalised sums(ΣV : P : x) where
V is a set of variables to sum over,P is a Presburger formula (the guard) and
x is any formula. The result of such a sum is the sum for all variablesv ∈ V
which satisfyP of x. As a simple example, the sum

∑u
v=l v is represented by

the general summation(Σ{v} : l ≤ v ≤ u : v) and the sum
∑n

i=0

∑m
j=i 1

would be represented by(Σ{i, j} : 0 ≤ i ≤ n ∧ i ≤ j ≤ m : 1). The result
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is then computed by choosing an appropriate projection ruleto simplify the
formula. The most important rule to reduce a generalised sum(ΣV : P : x) is
to choose a variablev ∈ V and compute the general sum

(ΣV \ {v} : P ′ : (Σ{v} : l ≤ v ≤ u : x))

whereP ′ is P where all information aboutv is removed. Since(Σ{v} : l ≤
v ≤ u : x) is equivalent to

∑u
v=l x, known formulae of summations over the

form of x can be used to simplify it. IfV \ {v} is non-empty another variable
is chosen and the procedure is repeated untilV = ∅, and the result is a sum
of generalised sums(Σ : G : x′) which should be read as ”x′ if G holds, else
0”. This result is symbolic in the variables occurring free inx or P but not in
V . To exemplify, take the sum(Σ{i, j} : 0 ≤ i ≤ n ∧ i ≤ j ≤ m : 1) again.
Applying the rule, projecting the variablei, above would yield

(Σ{i, j} : 0 ≤ i ≤ n ∧ i ≤ j ≤ m : 1)

= (Σ {j} : i ≤ j ≤ m : (Σ {i} : 0 ≤ i ≤ n : 1))

Now, naturally(Σ {i} : 0 ≤ i ≤ n : 1) = n+1 (this is a ”known formula”),
so we can conclude

(Σ {j} : i ≤ j ≤ m : (Σ {i} : 0 ≤ i ≤ n : 1)) = (Σ {j} : i ≤ j ≤ m : n + 1)

and continue applying rules until we cannot apply more rules. The situation
is however not always this easy; variables can have several lower/upper bounds
or be unbounded and bounds can be negative and/or rational. All these cases
are handled in [Pug94].

In the special case where the integer points are counted inside a convex
polyhedron, the problem becomes a bit easier. In the following, we will as-
sume that it is integer points inside convex polyhedra whichare to be counted1.
We assume two restrictions of the generalised sums; first, rather than having
the guard as a Presburger formula, the guard is considered tobe a system of
linear inequalities in the variables ofVP (since this is exactly what the poly-
hedral abstract interpretation will give). The other restriction is that we model
the formulae to sum over as polynomials, simplifying both representation and
computation. Polynomials can easily be modelled as a sum of terms, where a
term is a vector representing an integer coefficient and variable powers. As an

1Note that this also is applicable for the octagon domain, since its abstract environments are
also abstract environments of the polyhedral domain.
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example we can model the polynomial3a2b3 + 5a4 (assumingVP = {a, b})
as the sum of the terms(3 2 3) and (5 4 0). This also makes arithmetical
operations on these vectors straightforward to implement.Furthermore, since
the guards are polyhedra, the lower and upper bound of any variable will be
sets of linear expressions. Summing a linear expression over a polynomial is
again a polynomial, so this model is closed under summations. However, these
restrictions sometimes require the result to be slightly over-approximated. The
constraint3a− b ≤ 0 gives an upper bound fora asa ≤ b b

3c, sincea andb are
integers. As seen, the upper bound is not a polynomial and therefore problem-
atic in our model. Sinceb3 is a safe upper bound forb b

3c and on polynomial
form we can use it as approximation. Lower bounds are handledin a similar
fashion.

6.4 Obtaining ECFP

In this section we will give an example on how to obtain theECFP function
using relational abstract interpretation and counting of elements. The exam-
ple is performed on the programL in Figure 3.2 on page 18. This example
uses abstract interpretation with the polyhedral domain [CH78] and counting
of integer points by successive projection [Pug94].

6.4.1 Polyhedral Abstract Interpretation

Abstract interpretation using the polyhedral domain results in the following
abstract states ofL (presented in a more human readable format than matrices).

Ŝ 0 = > Ŝ 3 = {i ≥ 0, i ≥ n + 1}

Ŝ 1 = {i = 0} Ŝ 4 = {0 ≤ i ≤ n}

Ŝ 2 = {i ≥ 0} Ŝ 5 = {1 ≤ i ≤ n + 1}

(6.1)

6.4.2 Counting Integer Points

TheECFL function is computed by calculating the size of the abstractstates
in (6.1). We are interested in computing the sizessymbolicallyin terms of the
input parametersof L. In practice, using Pugh’s method this consists of sum-
ming over all non-constant program variables, but not the symbolic constants
corresponding to input parameters. ForL this means, we sum over{i}. The
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guard in the general sums will correspond to the inequalities given for a convex
polyhedron. The result of computing the sizes is shown below:

| Ŝ 0| = (Σi : ∅ : 1) =∞ (unbounded sum)

| Ŝ 1| = (Σi : i = 0 : 1) = 1

| Ŝ 2| = (Σi : i ≥ 0 : 1) =∞

| Ŝ 3| = (Σi : i ≥ 0 ∧ i ≥ n + 1 : 1) =∞

| Ŝ 4| = (Σi : 0 ≤ i ≤ n : 1) = (Σ : n ≥ 0 : n + 1)

| Ŝ 5| = (Σi : 1 ≤ i ≤ n + 1 : 1) = (Σ : n ≥ 0 : n + 1)

(6.2)

Note that we have used the short handΣi for Σ {i}. By this, theECFL

function has been computed. The function takes an instance of the input pa-
rametern and returns a vector of upper execution bounds for each program
point. Componentj of the result will then be interpreted as the upper exe-
cution count bound for program pointqj . The formal definition ofECFL is
thus,

ECFL = λn. 〈∞, 1,∞,∞, (n ≥ 0 ? n + 1 : 0), (n ≥ 0 ? n + 1 : 0)〉

where(n ≥ 0 ? n + 1 : 0) is a compressed if-statement borrowed from
C, it should be understood as ”ifn ≥ 0 thenn + 1 else0”. However, our
assumption about programs suggests that the single entry and exit points of a
program will be taken exactly once. Thus, a better definitionof ECFL is to
ignore the counting for these program points and define the upper bound for
the initial program pointq0 and the final program pointq3 as one, giving

ECFL = λn. 〈1, 1,∞, 1, (n ≥ 0 ? n + 1 : 0), (n ≥ 0 ? n + 1 : 0)〉

Note that no finite bound could be found forq2. This is because the widen-
ing in the abstract interpretation yielded an unbounded polyhedron for Ŝ2 .
However, it is not necessary to have bounds on all program points in order to
obtain a WCET bound or loop bound, since it is in general the minimum of the
bounds that are interesting (see Chapter 4).

As an example, the upper execution bounds for the six programpoints in
QL for the input parameter instantiated asn0 = 2 equals

ECFL(2) = 〈1, 1,∞, 1, 3, 3〉 .
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6.5 Obtaining PCFP

As seen in Chapter 1, the calculation phase of WCET analysis combines the
results from low-level analysis and high-level flow analysis to compute a con-
crete worst-case execution time. If the calculation phase is altered, it can be
used to compute a parametric worst-case execution time. In this section we
will look at some techniques for computing a WCET which is parametric in
the number of times that the program points can be maximally visited. In other
words, the WCET is computed in terms of parametric capacities of the flow
chart. In this framework, as seen in Figure 6.1 and in Section3.10.3, paramet-
ric calculation is used to obtain the functionPCFP of a programP .

6.5.1 Parametric Calculation

Parametric Calculation can be stated as the general problemof maximising the
objective function ∑

q∈QP

cqxq

subject to constraints on the program flow

Ax + b ≥ 0

as well as thesymbolic constraints

xq ≤ pq

wherec is a vector of atomic WCETs obtained from low-level analysis, x is
the solution vector corresponding to execution counts for each program point in
the program andp is a vector of symbolic execution bounds for each program
point. The solution of a parametric calculation is a formulaexpressing the
vectorx in terms of the symbols inp.

Two approaches to solve this has been proposed, one based on parametric
integer programming [Lis03a, BL08] and one based on propagation of flow
constraints [BEL09]. In this chapter we will focus on the first method while
the second is handled in Chapter 7.

6.5.2 Parametric Integer Programming

P. Feautrier suggested in [Fea88] an algorithm for parametric integer program-
ming (PIP). Parametric integer programming gives the lexicographical mini-
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mum of the set

F (z) = {Ay + Bz + c ≥ 0 ∧ y ∈ Zn}

in terms of the vectorz. In the following, we cally the solution vectorand
z the parameter vector. The matricesA andB correspond to constraints on
the variables and the parameters, respectively. There exists a tool called Piplib,
which is an open source implementation of the algorithm [Pip09]. The result
of a parametric integer problem is a binary tree where the leaves correspond to
linear solutions and the other nodes correspond to linear conditionals. The tree
is expressed as a nestedif -statement (an example of a solution can be seen in
Figure 6.3 on page 96).

6.5.3 PIP as Parametric Calculation

Parametric calculation with PIP can be formulated by havingthe execution
count vectorx as solution vectory in the PIP problem. The matrixA and the
vectorc will correspond to program flow constraints, and the vector of sym-
bolic upper boundsp will be the parameter vectorz in PIP. However, using PIP
with this set-up will result in the lexicographical minimumof x. What is de-
sired is to obtain the maximum of an objective function. The solution (which
can be found in the Piplib manual [Pip09]) is to introduce a new variabley
which represents the objective function. Sincey should be maximised rather
than minimised, an artificial ”big” parameterB is introduced. The parameter
B is considered to be arbitrarily large, and therefore a maximisation problem
is achieved by minimisingB − y. In addition, to actually connecty to the ob-
jective function

∑
q∈QP

cqxq, an additional constraintB − y ≤
∑

q∈QP
cqxq

has to be added. Now, the new variabley has to be added to the solution vector
x, as thefirst componentof the solution vector. In this sense,y is guaranteed
to have the highest priority in the lexicographical ordering. Thus, PIP will at-
tempt to minimiseB − y which by the constraint is guaranteed to be less than
the objective function.

The functionPCFP is obtained by parametric calculation. The function
calculates the worst-case execution times of a programP given a vector of
upper bounds for each program point. We illustrate by an example of the pro-
gramL in Figure 3.2 on page 18. The objective function in this case is obtained
by the cost vector presented in (3.1) on page 22. The functionPCFL is then
obtained by maximising:

x0 + 3x1 + x2 + 2x3 + 2x4 + 8x5 (6.3)
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subject to some constraints. To get a bounded problem it is enough to provide
structural constraints of a program together with the symbolic constraints. This
is because the solution will be expressed in terms of the symbolic execution
bounds.

The structural constraints are obtained by adding constraints for each pro-
gram pointq. The exact form of constraint is determined by the type of pro-
gram point. The initial program pointq0 and the final program pointqf will be
taken exactly once, so for these the constraints

x0 = 1

xf = 1

are added. For any program pointq succeeding a merge node, the sum of the
two incoming edgesq′ andp′ of the merge node will equal the execution count
of q. Thus,

xq = xq′ + xp′

can be added. For a program pointq succeeding an assignment node, the exe-
cution count simply equals the execution count of the incoming program point
to that assigment nodeq′, so

xq = xq′

can be added. Finally, for any program pointproceedinga conditional, the
execution count is equal to the sum of the two outgoing program points of the
conditionalqtrue andqfalse. Thus,

xq = xtrue + xfalse

can be added as constraints.
This process is what is referred to asstructural analysisin Figure 6.1. The

structural constraints ofL are:

x0 = 1 initial node

x1 = x0 proceeding assignment

x2 = x1 + x5 proceeding merge node (6.4)

x2 = x3 + x4 preceeding conditional

x5 = x4 proceeding assignment

x3 = 1 final program point

Finally, the symbolic constraintsxq ≤ pq for all q ∈ QL have to be added.
Maximising (6.3) subject to these constraints with Piplib yields the result shown
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PCFL = λp0, p1, p2, p3, p4, p5.
if p2 ≥ 1 then

if p0 ≥ 1 then
if p1 ≥ 1 then

if p3 ≥ 1 then
if p2 ≤ p4 + 1 then

if p2 ≤ p5 + 1 then
11p2 − 4

else
11p5 + 7

end if
else

if p4 ≤ p5 then
11p4 + 7

else
11p5 + 7

end if
end if

end if
end if

end if
else

0
end if

Figure 6.3: Result ofPCFL function from Piplib

in Figure 6.3. As can be seen in the figure, this result is the definition of PCFL.
As an example, suppose thatp0, ..., p5 are instantiated as〈1, 1,∞, 1, 3, 3〉.
Then,

PCFL(1, 1,∞, 1, 3, 3) = 11 · 3 + 7 = 40

which should be easy to see by studying Figure 6.3.

6.6 Obtaining PWCETP

The final and most interesting function isPWCETP which computes a WCET
bound given an instantiation of all input parameters of a program. The function
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is obtained by the composition ofECFP andPCFP .

PWCETP = PCFP ◦ ECFP

Functional composition is simple in terms of computation, since it consti-
tutes of substituting the result ofECFP for the arguments inPCFP . Figure 6.4
shows the composition ofECFL andPCFL which were derived in Section 6.4
and 6.5 respectively. As an example, we computePWCETL with the argu-
mentn = 2.

PWCETL(2) = PCFL ◦ ECFL(2)

= PCFL(〈1, 1,∞, 3, 3〉)

= 40

Note that this result is also obtained by substituting2 for n in Figure 6.4. Com-
pare this result to the trace computation in Figure 3.1 on page 23. The worst-
case trace was computed as40 which correspond exactly to the result in this
case. So in this case the exact result was obtained from the method.

6.7 Simplifying PWCETP

The final formula forPWCETL shown in Figure 6.4 contains a lot of redun-
dancy and is unnecessarily complex for this small example. Of course, this
complexity is much worse in realistic examples. Thus, thereis a need for sim-
plification. During the composition phase, a lot of redundancy is introduced
in the formula, which could easily be removed. Examples of trivial simplifica-
tions that can be done:

• All then branches can be cut from conditionals on the form∞ ≤ x.

• All else branches can be cut from conditionals on the form∞ ≥ x.

• All else branches can be cut from conditionals on the formx ≤ x.

• If x, y are constants such thatx ≤ y, then allelse branches can be cut
from conditionals on the formx ≤ y.

Applying these trivial simplifications toPWCETL reduces the formula to:

PWCETL = λn.11(n ≥ 0 ? n+1 : 0)+7 = λn.

{
11n + 18 if n ≥ 0
7 otherwise.
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PWCETL = λn.
if ∞ ≥ 1 then

if 1 ≥ 1 then
if 1 ≥ 1 then

if 1 ≥ 1 then
if ∞ ≤ (n ≥ 0 ? n + 1 : 0)) + 1 then

if ∞ ≤ (n ≥ 0 ? n + 1 : 0) + 1 then
11 · ∞ − 4

else
11(n ≥ 0 ? n + 1 : 0) + 7

end if
else

if (n ≥ 0 ? n + 1 : 0) ≤ (n ≥ 0 ? n + 1 : 0) then
11(n ≥ 0 ? n + 1 : 0) + 7

else
11(n ≥ 0 ? n + 1 : 0) + 7

end if
end if

end if
end if

end if
else

0
end if

Figure 6.4: The resultingWCETL function
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6.8 Reducing the Number of Variables

PIP has exponential complexity in the number of variables inthe worst-case,
making scalability problematic. However, the structural constraints of a pro-
gram produces an under-determined system of equations. In such a system
with n variables, the solution space is the span of a set ofn− r vectors (where
r is the rank of the constraint matrix). Thus, thesen−r vectors form a basis for
the solution space. The variables can be expressed as linearcombinations of
this basis, meaning that the problem can be computed using only the basis. Let
Ax = b be a system of structural and possible other linear equations obtained
from flow analyses andy = cTx be the cost function. The constraints together
with the cost function is

(
1 −c

0 A

) (
y
x

)
=

(
0
b

)
(6.5)

If we perform Gauss-Jordan elimination on the above (including the right-
hand side by augmenting the constraint matrix by(0 b)T) and re-arrange the
columns ofA and the components ofx such that all pivot columns are to the
left, andx is re-arranged accordingly, we get

(
1 0 −c′

0 Ir A′

) 


y
xBV

xFV


 =

(
z
b′

)
(6.6)

whereIr is ther × r identity matrix andr is the rank ofA. Furthermore,z
is the last column of the solution of the augmented matrix after elimination.
The vectorx has now been partitioned into two vectors, one partition is the
vector ofbasic variablesxBV with r components, and the other beingn −
r free variablesxFV (wheren is the number of columns ofA). Note that
this transformation also removes any redundant constraints from the system.
From this we can derive two important equations. One is the objective function
expressed in terms of the free variables

y = z + c′xFV (6.7)

and a way to express the basic variables in terms of the free ones

xBV = b′ −A′xFV (6.8)
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As we model the parametric upper bounds as the constraintsx ≤ p, we can
now simply model our IPET problem as




z + c′xFV

b′ −A′xFV

xFV


 ≤




y
pBV

pFV


 (6.9)

where we have partitioned and re-arrangedp exactly as forx. Now it suffices to
solve the IPET with these constraints, thus reducing the number of unknowns
by the rank ofA. This method of eliminating variables is not restricted to
the parametric case, but can be used to reduce the dimensionality of any IPET
problem.

6.8.1 Concrete Example of Variable Reduction

As an example on how the variable reduction can be applied we shall perform
variable reduction on the programL. First we assemble a matrix like (6.5)
by assembling the cost function (6.3) ofL and the structural constraints (6.4).
Thus, we have

c =
(
1 3 1 2 2 8

)

and

b =




1
0
0
0
0
1




and

A =




1 0 0 0 0 0
−1 1 0 0 0 0
0 1 −1 0 0 −1
0 0 −1 1 1 0
0 0 0 0 −1 0
0 0 0 1 0 0




and finally,

x =
(
x0 x1 x2 x3 x4 x5

)
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The resulting constraint matrix as in (6.5) is:



1 −1 −3 −1 −2 −2 −8
0 1 0 0 0 0 0
0 −1 1 0 0 0 0
0 0 1 −1 0 0 −1
0 0 0 −1 1 1 0
0 0 0 0 0 −1 0
0 0 0 0 1 0 0







y
x0

x1

x2

x3

x4

x5




=




0
1
0
0
0
0
1




Now we perform Gauss-Jordan elimination of the above to obtain a matrix as
in (6.6). The result is:




1 0 0 0 0 0 −11
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 −1
0 0 0 0 1 0 0
0 0 0 0 0 1 −1







y
x0

x1

x2

x3

x4

x5




=




7
1
1
1
1
0




This means that forL we have:

c′ =
(
11

)
, A′ =

(
0 0 0 −1 0 −1

)T

xBV =
(
x0 x1 x2 x3 x4

)T
,xFV =

(
x5

)

b′ =
(
1 1 1 1 0

)T
, z = 7

Thus, we can conclude (6.7) and (6.8) as

y = 7 + 11x5

and
x0 = 1, x1 = 1, x2 = x5 + 1, x3 = 1, x4 = x5

We can model the IPET problem by (6.9), which gives the following concrete
constraints:

7 + 11x5 ≤ y

1 + x5 ≤ p2

1 ≤ p0, p1, p3

x5 ≤ p4

x5 ≤ p5
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thus, we have reduced the problem to one unknown variable (x5) from the
original six. Solving this system with Piplib results in thefollowing, which
can be inspected to realise that it is the same as the solutionshown in Fig-
ure 6.3:

λp2, p4, p5.
if p2 ≥ 1 then

if p4 + 1 ≥ p2 then
if p5 + 1 ≥ p2 then

y = 11p2 − 4
else

y = 11p5 + 7
end if

else
if p4 ≤ p5 then

y = 11p4 + 7
else

y = 11p5 + 7
end if

end if
else

0
end if

6.9 Prototype Implementation of the Parametric
Framework

A prototype of the parametric framework has been implemented in order to
evaluate the approach.

6.9.1 Input Language

The input language for the prototype is a very simple language which translates
into flow charts as defined in Chapter 3. The language has the following BNF
grammar:
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Stmt→ Var := Expr

| If Expr then Stmt else Stmt

|While BExpr do Stmt

| Skip

| Stmt ; Stmt

Expr→ Num ∗ Var

| Num ∗ Var + Expr′

|NL

BExpr→ Expr >= 0 | Expr == 0

whereNum andVar are the syntactic categories for integers and variables re-
spectively. The non-terminalExpr′ denotesExpr without theNL rule. Some
syntactic sugar is layered on top of this, but the BNF grammarabove illustrates
the expressiveness of the input language. This structure isthen translated into
a flow chart data structure. Thus, the prototype does not consider pointers, ar-
rays, structs or any other types than integers or Booleans. Function calls are
supported but are analysed by inlining each function beforetranslating into the
BNF above. This means that recursion is not supported. Sincethe prototype is
implemented for relational domains, which in most cases canonly handle lin-
ear assignments and conditionals, the language in the prototype is restricted to
linear conditionals and assignments only. That is all, arithmetic expressions in
the language either have the form

∑n−1
i=0 aivi or the special valueNL denoting

a non-linear expression. Any non-linear value is mapped to the top value of the
abstract domain.

6.9.2 Implemented Analyses

Since the computational tasks in Figure 6.1 (that is, the boxes) are quite modu-
lar, every green box is implemented as an independent program communicating
the data (i.e., the ovals) through files. The prototype is using abstract interpre-
tation with the polyhedral domain, using the Parma Polyhedra library [Par09].
The abstract interpretation was implemented in C++. Symbolic counting was
implemented using the method outlined in [Pug94] adopted for convex polyhe-
dra as described in Section 6.3.3. The symbolic counting wasimplemented in
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Haskell. The prototype does not implement any low-level analysis, instead, it
assumes that all program points has a worst case cost of ten clock cycles. The
reason for this is that our focus has not been on low-level analysis, however, to
use the framework in a realistic setting, a proper low-levelanalysis would be
needed. Two different parametric calculations have been implemented, one of
them is PIP (using the Piplib library [Pip09]). The other oneis the Minimum
Propagation Algorithm which is explained in Chapter 7. The prototype imple-
ments the SIMPLESLICE algorithm, which is a quick flow-insensitive slicing
algorithm presented in [SEGL06].

6.9.3 Conclusion and Experiences

The prototype has provided experience with the parametric framework. Run-
ning the prototype on toy-examples and translated versionsof some of the
benchmarks in [MDH09] has provided the following observations:

• The method suggested in [Lis03a] can be implemented, mostlyusing
existing code libraries to apply parametric WCET estimateson simple
programs.

• The bottle-neck of the method is clearly the parametric calculation. This
is because the parametric calculation essentially solves aset of concrete
calculation problems. As an example: IPET is in general NP-complete,
thus, a method such as PIP generalising it is naturally even more com-
plex.

• PIP gives very large solutions, even for small programs (as indicated by
Figure 6.3. Simplification is clearly needed. The composition part of the
framework introduces, in general, a lot of redundancy. Thus, for practi-
cal use, simplification is needed both before parametric calculation and
after. For this reason, we propose an alternative parametric calculation
outlined in Chapter 7.

• PIP fails to produce solutions for larger programs, probably due to high
complexity.

• The number of variables of the parametric calculation usingPIP can be
reduced by the technique outlined in Section 6.8. However, the num-
ber of symbolic parameters can not be reduced in the same way since
they correspond to upper bounds. What can be done is to introduce one
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parameter for each basic block2 and assign it to the minimum of all pa-
rameters in that basic block, and use it in the calculation. As an example,
let B = {q0, q1, q2} be a basic block. Then we can use the parameter
pB = min {p0, p1, p2} as substitute forp0, p1 andp2. This has been im-
plemented into the prototype, but it does not seem to have anysignificant
impact on the complexity of the method.

2that is, a series of consecutive program points with a singleentry and a single exit point, which
is not containing any branches.





Chapter 7

The Minimum Propagation
Algorithm

7.1 Introduction

Chapter 6 introduced a framework for parametric WCET analysis by comput-
ing two functionsECFP andPCFP independently of each other. The function
PCFP is obtained by parametric calculation. In Chapter 6 this wasexempli-
fied using parametric integer programming. Unfortunately,the complexity of
parametric integer programming is very large and this turnsout to be the bottle-
neck in the framework for the purposes of parametric calculation. Not only the
computational complexity is a problem with PIP; the solutions obtained from
PIP tends to grow exponentially in size and for large programs Piplib fails to
deliver a solution. This chapter evaluates PIP and introduces an alternative al-
gorithm for parametric calculation calledthe minimum propagation algorithm
(MPA) introduced in [BEL09]. MPA scales much better than PIPin both com-
putation time and solution size, as seen in Section 7.4.

7.2 The Minimum Propagation Algorithm

The Minimum Propagation Algorithm computes the functionPCFP of a pro-
gramP given its flow chart and results from low-level analysis. Thus, it may
operate as theparametric calculationphase as seen in Figure 6.1 in Chapter 6.

107
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Being a parametric calculation, MPA computes the maximum of

∑

q∈QP

cqxq

given the flow constraints and the symbolic upper bounds

∀q ∈ QP : xq ≤ pq (7.1)

The idea of the algorithm is to use the naı̈ve, but correct upper bound

PCFP =
∑

q∈QP

cqpq (7.2)

as basis, and then gradually improve the bound by propagating the flow con-
straints through the program. When flow chart edges are used as program
points (as in our case), the following facts hold

• A program point can never be visited more times than the sum ofits
predecessors

• A program point can never be visited more times than the sum ofits
successors

or formally,

xq ≤
∑

q′∈pred(q)

xq′ (7.3)

xq ≤
∑

q′∈succ(q)

xq′ (7.4)

Note here that these areinequalities, since an incoming edge to a successor of
a programming point may cause the successor to be visited more times than the
program point (see Figure 7.1). Now, the execution countxq for each program
point have three upper bounds: (7.1), (7.3) and (7.4). Obviously the smallest
one of these is the tightest and most desirable one. The idea of MPA is to use
(7.2) as basis, but to substitutetq for pq wheretq is a upper bound computed
from (7.1), (7.3) and (7.4). The upper boundtq is computed by propagating
the upper bounds through the graph and construct a tree whichrepresents the
upper bound.
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q2

q33

q1

Figure 7.1: The program pointq3 can be visited more times thanq1 even though
q3 is the only successor ofq1

7.2.1 The Min-Tree

The upper bound for a program point needs to be valid for all possible combi-
nations of symbolic execution countspq∈Q. An upper boundtq will be repre-
sented as a tree with three types of nodes: minimum nodes, plus nodes and leaf
nodes. Minimum nodes (denoted♦) express the minimum of all its children.
Plus nodes (denoted⊕) express the sum of all its children. Leaf nodes (de-
notedpq) express the value ofpq. Such a tree will be referred to as aMin-Tree.
Figure 7.2 depicts an example of a Min-Tree. This tree is in fact representing
the upper bound ofx0 in L (see Figure 3.2, on page 18).

7.2.2 The Algorithm

MPA is shown in Algorithm 1. It is a recursive procedure whichtakes as
argument a program point, a context and a set of constraints and returns a Min-
Tree as described in previous section. The context is a set ofvisited program
points for internal book keeping. The algorithm is always called with the empty
set as context when used. The set of constraints correspondsto that of (7.3) and
(7.4) and is obtained directly from the graph structure. Theconstraint (7.1) is
implicit and is not needed in the constraint argument of the algorithm. MPA
searches the given constraints and recursively builds a Min-Tree by adding
visited nodes as children to a minimum node. It searches all simple paths first,
leaving the branches for later. The branches are then recursively computed as
children for plus nodes.

The root of the Min-Tree will always be a minimum node, and itschildren
will be all maximum bounds found for the program point under analysis. MPA
maintains a worklist and a branch set; the worklist keeps track of visited pro-
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Algorithm 1 MPA(qi, context, constraints)

1: node← mkMinNode()
2: worklist← push(NIL, i)
3: branch← ∅
4: while worklist 6= NIL do
5: k ← peek(worklist)
6: worklist← pop(worklist)
7: if k /∈ context then
8: context← context ∪ {k}
9: node← addLeaf(node, pk)

10: for all [xk ≤ xj ] ∈ constraints do
11: if j /∈ context then
12: worklist← push(worklist, j)
13: end if
14: end for
15: for all [xk ≤

∑
n∈N xn] ∈ constraints such that|N | ≥ 2 do

16: if N ∩ context = ∅ then
17: branch← branch ∪ {N}
18: end if
19: end for
20: end if
21: end while
22: for all N ∈ branch do
23: plusNode← mkPlusNode()
24: for all n ∈ N do
25: child← MPA(n, context, constraints)
26: plusNode← addChild(plusNode, child)
27: end for
28: node← addChild(node, plusNode)
29: end for
30: return node
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p0 p1 p2

p3 p4 p5

Figure 7.2: A Min-Tree representing the formulamin(p0, p1, p3 +
min(p4, p5), p2).

gram points and the branch set keeps track of pending plus nodes. Whenever
a program point has single predecessors and successors, theneighbouring ca-
pacities alone constitute as upper bounds for the program point and is therefore
put in the worklist for continued processing. In the case of branching program
points, the program points are put in the pending branch set for recursive pro-
cessing as children of a plus node. The reason for this can be read directly from
(7.3) and (7.4), where it is obvious that it is thesumof the upper bounds of the
other program points that needs to be computed.

Detailed Explanation of the Algorithm

Row 1 creates the root of the tree which is always a minimum node, the prim-
itive mkMinNode returns a minimum node without children. The Rows 2-3
initialise the worklist and the branch set. The worklist is implemented as a
stack and using the stack primitivespush , pop andpeek (peek returns the
top element of the stack,pop returns the stack with the top element removed)
to manipulate it. The loop in rows 4-21 builds the leaves of the minimum node
and puts the pending plus nodes in the branch set. Row 7 ensures that nodes
which have already been considered (and thus don’t contribute to any tighter
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result) are skipped. Row 9 adds leaves to the minimum node by using the
primitive addLeaf which takes a node and a leaf and returns the node with
the leaf added. Then, in rows 10-14, all single entry/exit constraints are added
to the worklist for further processing. Rows 15-19 add the multiple entry/exit
constraints to the pending branch set.

When no more program points are present in the worklist, the algorithm has
added all leaves to the current min node, and enters the part of the algorithm
which builds the plus nodes (row 22). By now,nodeis a minimum node, pos-
sibly with a couple of leaves, which are all maximum bounds onthe program
pointi. In other words, the constraints from (7.1) have been added.Left to add
are the plus nodes, which correspond to (7.3) and (7.4). Thisis done in rows
16-23. Each constraint which is corresponding to a branch inthe program (i.e.,
a constraint which is a sum of program points) will produce a plus node (row
23), this is done by the primitivemkPlusNode which simply returns a plus
node without children. The children of the plus node are thenrecursively com-
puted from each term in the constraint (row 25), and then added as children to
the plus node via the primitiveaddChild (row 26). Finally, each plus node
is added as a child of the minimum node (row 28) and the root node is returned
(row 30).

7.2.3 Example of MPA

Consider the example programL in Figure 3.2. We will show how to compute
a Min-Tree forq0. The set of constraints obtained from (7.1), (7.3) and (7.4)
are the following

∀q ∈ QL : xq ≤ pq

x0 ≤ x1

x1 ≤ x2, x0

x2 ≤ x1 + x5, x3 + x4

x3 ≤ x2

x4 ≤ x2, x5

x5 ≤ x4, x2.

We start by callingMPA(q0, ∅, constraints). Processing in row 4-21 will
generate the following intermediate results:



7.2 The Minimum Propagation Algorithm 113

analysis(q0, ∅, constraints)
node worklist branch context
min() [0] ∅ ∅
min(p0) [1] ∅ {0}
min(p0,p1) [2] ∅ {0, 1}
min(p0,p1,p2) [] {{3, 4}} {0, 1, 2}

After the worklist has become empty and the main loop has finished, the
algorithm is in row 22 and the plus nodes will be evaluated. Wehave thatN =
{3, 4} and so this leads to two recursive calls:MPA(q3, {0, 1, 2}, constraints)
andMPA(q3, {0, 1, 2}, constraints). The following tables show the interme-
diate results for these calls.

MPA(q3, {0, 1, 2}, constraints)
node worklist branch context
min() [0] ∅ {0, 1, 2}
min(p3) [] ∅ {0, 1, 2, 3}

MPA(q4, {0, 1, 2}, MPA)
node worklist branch context
min() [4] ∅ {0, 1, 2}
min(p4) [5] ∅ {0, 1, 2, 4}
min(p4,p5) [] ∅ {0, 1, 2, 4, 5}

The result of these two calls will both be children to a plus node, which in
turn will be child to the minimum node that will be returned from the original
call. This plus node is then added as child to the previous minimum node. The
final Min-Tree forq0 expresses:

min(p0, p1, p2, min(p3) + min(p4, p5))).
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Computing the Min-Treetq for all program pointsq ∈ QL results in

t0 = min(p0, p1, p3 + min(p4, p5), p2)

t1 = min(p0, p1, p3 + min(p4, p5), p2)

t2 = min(p2, min(p0, p1) + min(p4, p5), p3 + min(p4, p5))

t3 = min(p2, p3, min(p0, p1) + min(p4, p5))

t4 = min(p2, p4, p5)

t5 = min(p2, p4, p5).

The functionPCFL is then computed by taking

PCFL =
∑

q∈QL

cqtq,

where the atomic WCETsc are taken from (3.1) on page 22.

PCFL = λp0, p1, p2, p3, p4, p5.

min(p0, p1, p3 + min(p4, p5), p2)

+3(min(p0, p1, p3 + min(p4, p5), p2))

+min(p2, min(p0, p1) + min(p4, p5), p3 + min(p4, p5)) (7.5)

+2(min(p2, p3, min(p0, p1) + min(p4, p5))

+2(min(p2, p4, p5))

+8(min(p2, p4, p5)).

ComputingPCFL ◦ ECFL (by substituting execution counts for symbolic
parameters) will result in
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PWCETL = λn.

min(1, 1 + (n ≥ 0 ? n + 1 : 0),∞)

+3(min(1, 1 + (n ≥ 0 ? n + 1 : 0),∞))

+min(∞, 1 + (n ≥ 0 ? n + 1 : 0))

+2(min(∞, 1, 1 + (n ≥ 0 ? n + 1 : 0)))

+2(min(∞, (n ≥ 0 ? n + 1 : 0)))

+8(min(∞, (n ≥ 0 ? n + 1 : 0)))

= λn.

4(min(1, 1 + (n ≥ 0 ? n + 1 : 0)))

+1 + (n ≥ 0 ? n + 1 : 0)

+2 + 10(n ≥ 0 ? n + 1 : 0)

= λn.7 + 11(n ≥ 0 ? n + 1 : 0)

= λn.

{
18 + 11n if n ≥ 0
7 otherwise.

which equalsPWCETL obtained by PIP.

7.3 Properties of MPA

This section investigates different properties of MPA. In particular, the algo-
rithm is proven to terminate and to be correct. A bound on the complex-
ity of the algorithm is also given. MPA contains five loops referred to as
L4, L10, L15, L22 andL24, where the subscript is the row number of the loop
header in Algorithm 1.

7.3.1 Termination

In order to prove that MPA terminates, we show that the recursion and all five
loops of MPA terminate. First, we see that the loopsL10 andL15 terminate
because they iterate over stable and finite sets. For the samereason, the loops
L22 andL24 terminateprovidedthat the recursive calls to MPA all terminate.
The fact thatbranchis a finite set is a consequence of thatL4 terminates, which
is shown below. This means thatL4 executes a finite number of times and thus
adding a finite number of elements tobranch.
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In each iteration ofL4 exactly one of the following holds:

1. The setcontextwill contain one more element than in the previous iter-
ation.

2. The listworklist will contain one less element than in the previous itera-
tion.

Row 7 will execute in every iteration ofL4. If the conditional evaluates to
true, thenk was not part ofcontextand will on row 8 be added. Thus,context
contains one more element than the previous iteration. No more elements are
added tocontextin the loop. If the conditional in row 7 evaluates tofalse, no
elements will be added toworklist (row 12 can not execute). Since row 6 will
be executed in any case, the listworklist will contain one element less.

By definition,context⊆ QP , and if contexti = QP , thenL4 would ter-
minate immediately. This is because the conditional on row 7will evaluate
to false and continue to loopL22. Now, branch = ∅, since row 3 was the
last assignment ofbranch. Thus,L22 will terminate immediately andL24

will never execute. Now, assume for contradiction that there exists an in-
put I = (qi, contexti, constraintsi) such thatL4 does not terminate. Thus,
contexti ⊂ QP . Statement 1 in the list above may only occur a finite num-
ber of times sinceQP is a finite set. This means that there exists an infinite
sequence of iterations such that statement 2 occur. However, worklist is a fi-
nite set (since a finite number of elements can be added to it a finite number
of times), meaning thatworklist in this infinite sequence of iterations will be-
come empty, but the conditional on row 4 terminatesL4 asworklist is empty.
This contradicts that there exists an input such thatL4 never terminates.

Left to prove is that the recursive calls to MPA eventually terminate. If
MPA is called withcontexti ⊂ QP as input, then MPA may recursively call
MPA a finite number of times withcontextj as input. We want to show that
for every recursive callcontexti ⊂ contextj (i.e., the recursive calls to MPA
are called with a context with at least one more element than the current call),
which would imply that in a finite number of steps MPA will either have ter-
minated or will be called withcontextj = QP , which also means that MPA
will terminate. First, note that row 25 is executed only ifN is non-empty. The
setN is non-empty only ifbranch is non-empty. Finally, branch is non-empty
only if row 17 executes, when the conditional on row 7 evaluates to true, in
which case row 8 executes, meaning thatcontext has at least one more ele-
ment than before the call (sincek was not previously a member). This proves
that Algorithm 1 terminates.
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7.3.2 Complexity

The complexity of MPA involves a lot of factors. In fact the complexity de-
pends more on the structure of the input program than on the actual size of the
program (i.e., the number of program points). While it is possible to derive a
worst-case complexity of MPA in terms of the number of program points of
a program, it would not be a very useful one. To investigate the complexity
of MPA we take an informal alternative approach in which we investigate the
behaviour of MPA rather than the algorithm itself. All primitives used in MPA
can be implemented so that they take constant time. The first thing that needs to
be said about the complexity of MPA is thatL10 andL15 actually do not need to
be implemented as loops. This is because there are maximum two constraints
associated with a single program point (incoming and outgoing edges). Thus,
the constraints can be stored in such a way that each program point can access
two constraints, meaning that it is not necessary to loop through all constraints
in L10 andL15. Consequently, we considerL10 andL15 to beO(1)1.

Now, the loopL4 iterates through all program points found in any non-
branching path in both directions (row 10-12). All branching paths are put
into branch , which then recursively call MPA for every branching path (row
25), in a recursive call a previously explored path will not be explored again,
since previously explored edges will be stored incontext . However, an edge
may be explored several times in different recursive calls of MPA. In summary,
this means that MPA will explore every non-cyclic path of theCFG. Thus, the
complexity of MPA is directly proportional to the number of non-cyclic paths
in the analysed program.

7.3.3 Correctness of MPA

In this section we will prove that MPA is correct. By correct we mean that edge
q is guaranteed to be visited less than or equal to the expression represented by
the Min-Tree returned byMPA(q, ∅, constraints). This will be proven by
induction over the depth of the MPA tree.

Proposition 11. Let q be a program pointq ∈ QP and let t be a Min-Tree
produced by calling Algorithm 1 for program pointq with an empty context.
Assume thatt consists only of a set of leaf nodesLt and no plus nodes. Thent
is a correct upper bound of the number of timesq is visited.

1although the arrangement of constraints would requireO(n) of memory, wheren is the size
of QP
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The first level of the Min-Tree is the tree produced before anyrecursive
calls to MPA is performed. Thus, a one-level Min-Tree consists only in a Min-
Node and a set of leaf nodes.

Proof. All leaf nodes are added by row 9 of Algorithm 1. The first node added
is the constraintxq ≤ pq which is directly taken from (7.1). Then, the con-
straintsxq ≤ pr wherer is any program point which may be in the worklist.
The program points that may be in the worklist are the neighbours toq (includ-
ing q itself) whichmustbe or myst have been visited whenq is visited (see row
10). All nodes in this set of program points must be visited the same number of
times, saym. Since all nodes in this set must be visited every timeq is visited,
the least capacity of these nodes constitutes maximum boundonm.

This means that it is safe to terminate the algorithm before any recursive
calls. However, to reach a potentially tighter result, the recursive calls may
contribute to a tighter, yet still correct bound.

Proposition 12. Let q be a program pointq ∈ QP and lett be the Min-Tree
produced by calling Algorithm 1 for program pointq with an empty context.
Assume thatt consists of a (possibly empty) set of leaf nodesLt, and a set of
plus nodesPt, where each plus nodep ∈ Pt has a set ofn-level Min-Trees.
Then, if alln-level Min-Trees are correct (that is, they constitute correct upper
bounds of the program points they represent), thent is ann+1-level Min-Tree
representing a correct upper bound of the number of timesq is visited.

Proof. First of all, the minimum of the set of leaf nodesLt is a correct upper
bound forq as stated by Proposition 11. Now, every set of program pointsN
in the branch set (see row 17) represents a selection of edgesin the CFG, that
is, exactly one of the program points inN will be taken for every time program
pointq is visited. This means that the sum of all upper bounds of the program
points inN is an upper bound also on the number of timesq can be visited.
Assuming that alln-level Min-Trees produced by MPA are correct, this also
corresponds to a correct upper bound of the number of timesq is visited. The
proposition holds since the minimum of a set of correct upperbounds (i.e., the
bound derived by the leaf nodes and the bound derived by the plus nodes) are
again a correct upper bound.

Proposition 11 and Proposition 12 together proves that MPA produces cor-
rect bounds.
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7.3.4 Upper Bounds on Tree Depth

An important consequence of the arguments in Section 7.3.3 is that every level
of the Min-Tree is asafeupper bound of the execution time of a program point.
This means that it is safe to skip the computation of any subtree in the Min-
Tree, although it may result in a less precise sub tree. Thus,it is possible
to set an upper bound on the depth of the produced Min-Trees toensure a
faster termination of the MPA algorithm, to the cost of possible precision loss.
However, the deeper a node is in a Min-Tree, the less likely itis to actually
contribute to a tighter upper bound. This is because subtrees are children to
plus nodes, which in turn probably will give a larger bound than the children
of Min-nodes, and since the root node is always a Min-node, the larger nodes
will not contribute to the final solution.

To summarise: the first levels in the Min-Tree are the nodes most likely
to contribute to the final results. Thus, computing very deepsub trees will in
many cases be a waste of computation time. In Section 7.4.3, we will show
setting an upper bound of the depth of Min-Trees affects computation time and
precision.

7.4 Evaluation

In this section we evaluate MPA in two ways. First, executiontime and solu-
tion size is compared to that of PIP. This is done by running the two approaches
on the prototype described in Chapter 6. Since the input language to this proto-
type is somewhat limited (requiring source code to be translated by hand), the
scalability of MPA is also evaluated by running it in isolation on a larger set
of benchmarks. This is possible since parametric calculation can be performed
over the structure (control flow graph) and does not need the actual code.

7.4.1 Comparison with PIP

Experiment Set-up

The experiments are run under Windows XP Professional SP3 onan Intel core
duo 2.4 GHz with 2.39GB RAM and a 6MB L2-cache. Both Piplib anda C++
implementation of MPA were compiled with GCC 3.4.4 under Cygwin. Since
the prototype tool lacks a proper low-level analysis, all program points are as-
sumed to have a constant WCET of 10 clock cycles in this evaluation. The
experiments have been performed by analysing some benchmarks using both
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Benchmark #Pps PIP MPA
Time Size Time Size

edn/fir 11 0.1s 3 0.1s 1
edn/latsynth 7 0.1s 1 0.1s 1
edn/latsynth x2 12 0.1s 2 0.1s 1
edn/latsynth x4 25 0.1s 10 0.1s 3
cnt/initialize 12 0.1s 3 0.1s 1
cnt/initialize x2 23 0.2s 83 0.1s 3
cnt/initialize x3 34 2.6s 1782 0.1s 6
cnt/sum 16 0.3s 80 0.1s 2
cnt/sum x2 31 - - 0.1s 5
jcomplex 23 - - 0.1s 7
matmult/Initialize 12 0.1s 3 0.1s 1
matmult/Initialize x2 23 0.3s 83 0.1s 3

Table 7.1: Test results

PIP and MPA. These benchmarks have been manually translatedto the simpli-
fied analysed language. After analysis, some sample points in the parameters
have been chosen and instantiated. Table 7.1 shows the evaluation, and the
columns are explained below.

Benchmark

The benchmarks are taken from the Mälardalen benchmarks [MDH09]. These
benchmarks are standard WCET benchmarks and are common to use in the
field of WCET analysis. We have chosen benchmarks that conform to the limi-
tation of the prototype and which have a timing behaviour which is parametric
in some variables or constant macros. One function at a time has been analysed
and the name of the function is given as second name in the benchmark col-
umn. When a benchmark is marked with x2, x3 etc, it means that the particular
function has been called repeatedly and is thus inlined multiple times. This is
just to see how the PIP and MPA scale with the number of programpoints.

Program points

Labelled as#Ppsin the table. This is the number of arcs in the flow chart.
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Execution time

The execution time of the running algorithms. The cases where the time is not
given means that Piplib failed to solve the problem due to a too high complexity
of the solution. All times have been obtained by the UNIX commandtime .

Size

The size of the solution, given in KB. The measurements comesfrom the file
sizes of the solutions textual representations. Note that Piplib does not scale
well, especially not in solution size.

7.4.2 Evaluation of Precision

The precision of MPA compared to PIP is hard to measure since the solu-
tions of MPA and PIP looks so different. The precision has been compared
by evaluatingPCFP for some chosen values for some chosen input parame-
ters. As an example,jcomplex has been evaluated by choosing instances
of the input parametersa and b, and compute a vector of upper bounds by
ECFjcomplex(a, b). The resulting vector of upper bounds has been used as ar-
guments toPCFjcomplex to derive a concrete WCET. Table 7.2 shows the es-
timated WCETs of instantiated variables from the two parametric calculation
methods. The input parameters have been chosen so they have aparametric be-
haviour and are instantiated with values somewhat close to their original values
in the benchmark programs. The last two columns shows how much the MPA
solution differs from the PIP solution in that particular instantiation. As can be
seen, MPA gives slightly less precise result compared to PIP. An imprecision
of up to32.3% has been observed (on cnt/sum), but in most cases it is less than
one percent.

7.4.3 Evaluation of Upper Bounds on Min-Tree Depth

As mentioned in Section 7.3.4, the first levels of a Min-Tree are the ones most
likely to contribute to the final solution. This can be demonstrated by running
MPA with different max-depths of the Min-Trees. Interestingly enough, for
most of the evaluated programs, it is sufficient to have a maximum depth of
one to achieve the precision presented in Table 7.2. To be precise, the following
programs gives the same precision as in Table 7.2 when the maximum depth is
set to one: edn/fir, edn/latsynth, edn/latsynth x2, edn/latsynth x4, cnt/initialize,
cnt/sum and matmult/initialize.
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Benchmark Parameters PIP result MPA result Diff Percent
edn/fir N = 100, ORDER = 25 60790 60810 20 0.03%

N = 100, ORDER = 50 78040 78060 20 0.03%
N = 100, ORDER = 75 57790 57810 20 0.03%
N = 200, ORDER = 25 141790 141810 20 0.01%
N = 200, ORDER = 50 234040 234060 20 <0.01%
N = 200, ORDER = 75 288790 288810 20 <0.01%
N = 300, ORDER = 25 222790 222810 20 <0.01%
N = 300, ORDER = 50 390040 390060 20 <0.01%
N = 300, ORDER = 75 519790 519810 20 <0.01%

edn/latsynth n = 50 1520 1520 0 0%
n =100 3020 3020 0 0%
n =200 6020 6020 0 0%

edn x2 n = 50 3030 3060 30 0.99%
n = 100 6030 6060 30 0.5%
n = 200 12030 12060 30 0.25%

edn x4 n = 50 6050 6160 110 1.82%
n =100 12050 12160 110 0.91%
n =200 24050 24160 110 0.46%

cnt/initialize MAXSIZE=10 4640 4660 20 0.4%
MAXSIZE=20 17240 17260 20 0.1%
MAXSIZE=30 37840 37860 20 0.05%

cnt x2 MAXSIZE=10 9270 9810 540 5.83%
MAXSIZE=20 34470 35510 1040 3.02%
MAXSIZE=30 75670 77210 1540 2.04%

cnt x3 MAXSIZE=10 13900 15460 1560 11.22%
MAXSIZE=20 51700 54760 3060 5.92 %
MAXSIZE=30 113500 118060 4560 4.02%

cnt/sum MAXSIZE=10 6640 8660 2020 30.4%
MAXSIZE=20 25240 33260 8020 31.8%
MAXSIZE=30 55840 73860 18020 32.3%

cnt x2 MAXSIZE=10 - 17810 - -
MAXSIZE=20 - 67510 - -
MAXSIZE=30 - 149210 - -

jcomplex a = 1, b = 1 - 80 - -
a = 1, b = 15 - 120 - -
a = 1, b = 30 - 110 - -
a = 15, b = 1 - 80 - -
a = 15, b = 15 - 80 - -
a = 15, b = 30 - 30 - -
a = 30, b = 1 - 80 - -
a = 30, b = 15 - 80 - -
a = 30, b = 30 - 30 - -

matmult/Initialize UPPERLIMIT = 100 406040 406060 20 <0.01%
UPPERLIMIT = 150 909040 909060 20 <0.01%
UPPERLIMIT = 200 1612040 1612060 20 <0.01%

matmult x2 UPPERLIMIT = 100 812070 817110 5040 0.62%
UPPERLIMIT = 150 1818070 1825610 7540 0.41%
UPPERLIMIT = 200 3224070 3234110 10040 0.31%

Table 7.2: Precision Comparison
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Benchmark Parameters Result with max-depth
1 2 3 4

cnt/initialize x2 MAXSIZE = 10 ∞ 9810 9810 9810
cnt/initialize x3 MAXSIZE = 10 ∞ 17840 15460 15460
cnt/sum x2 MAXSIZE = 10 ∞ 17810 17810 17810
jcomplex a=30,b=30 90 80 70 30
matmult/initialize x2 UPPERLIMIT=100 ∞ 817110 817110 817110

Table 7.3: Comparison of precision with different max-depths

The rest of the benchmarks lost precision when the depth was set to one.
Table 7.3 shows how the precision changes when changing the max depth. As
can be seen, in all tested programs, the best possible precision can be achieved
with the maximum depth set to4, but in most cases it is sufficient to set it even
lower. Note that in these small examples, the execution timeof MPA is still
neglectable, so there are no obvious benefits on setting a maximum depth for
them. However, in larger programs, as will be seen in Section7.4, the benefits
are obvious.

7.4.4 Scaling Properties

Since the translated benchmarks used in previous section are small, they don’t
show the scaling properties of MPA properly. In order to investigate how MPA
scales in more realistic cases, we have run the algorithm in isolation (inde-
pendent of the parametric framework and the prototype) on the full bench-
mark suite of [MDH09]. We have used the WCET analysis research prototype
SWEET [EG97, WCE09] to obtain control flow graphs for the benchmarks. A
control flow graph (CFG) is a graph where each node is a basic block2. Note
that the MPA is equally valid on control flow graph as on a flow chart, since
the premises of the constraints are the same. The CFGs obtained from SWEET
are on thefull programs, that is, it includes all functions and all function calls.
In contrast to the evaluation in Section 7.4, the CFGs obtained from SWEET
are not inlined; each function call is an edge from the callerto the callee, and
each return is an edge from the exit of a function, back to the caller. Since the
algorithm in this experiment is not run on the full parametric framework, we
cannot examine the precision of MPA in this test, just how resource consuming
it is.

2that is, a sequence of consecutive instructions ending in a jump
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Benchmark #Pps MD Iterations Calls Time Size
adpcm 884 4 - - - -
bs 39 2 249 1538 0.04s 6633
bsort 66 2 1750 9610 0.14s 44152
cnt 93 2 1537 11547 0.16s 48022
cover 1593 121 - - - -
compress 380 5 - - - -
crc 127 2 10543 69017 0.85s 316212
duff 390 9 5937 121369 1.22s 475556
edn 342 2 7202 95585 1.04s 421438
expint 88 2 1028 7983 0.11s 32407
fac 36 2 260 1298 0.08s 5959
fdct 147 2 973 21565 0.22s 79457
fft1 266 4 72572 482486 6.18s 2390541
fibcall 29 2 75 702 0.03s 2567
fir 77 2 779 6828 0.10s 27315
insertsort 39 2 175 1313 0.03s 5310
jcomplex 48 2 792 3289 0.06s 16763
jfdctint 122 2 1038 14726 0.16s 55563
lcdnum 158 17 4042 40164 0.46s 168927
lms 262 4 90864 586176 7.44s 2959463
ludcmp 181 3 5583 35101 0.47s 169103
matmult 97 2 1351 9441 0.13s 40263
minmax 109 3 1926 18881 0.23s 74619
ndes 445 9 1235359 11593218 2m19s 54938649
ns 46 2 562 2838 0.06s 13245
nsichneu 3313 5 - - - -
prime 114 3 11425 79060 0.95s 356992
qsort-exam 153 2 15861 104870 1.30s 501762
qurt 135 4 27658 178578 2.17s 821808
select 136 2 32418 165320 2.25s 842275
sqrt 49 3 896 4717 0.08s 21758
statemate 1287 47 - - - -
ud 150 2 2770 15938 0.23s 78277

Table 7.4: Scalability Properties of MPA
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Benchmark Execution Time of MPA with Min-Tree max-depth
2 3 4 5 6

adpcm 3s 17s 30s 53s -
compress 0.8s 1.6s 3s 4s 7s
cover 1m9s 1m18s - - -
statemate 11s 36s 1m11s 1m16s -
nsichneu - - - - -

Table 7.5: scaling properties with max-depth

Table 7.4 shows the result of the tests. The first column is thebenchmark
name, second column (#Pps) is the number of program points. The third col-
umn (MD) is the maximum degree of a node, i.e. the maximum number of
outgoing or incoming edges from a node. As seen in Table 7.4 this property
strongly affects the time consumed by MPA. The fourth column(iterations) is
the global number of iterations of MPAs main loop (rows 4-21 in Algorithm 1).
The fifth column (Calls) is the global number of calls (including recursive calls)
to Algorithm 1. The sixth column (Time) is the real time of thealgorithm run-
ning, obtained by the UNIX commandtime. Finally, the seventh column (Size)
is the size of the solution file in bytes.

Note that MPA runs without imposing a limit on the Min-Tree depth. This
caused five of the programs to fail the analysis. The reason seems to be the
combination of many program points and a high vertex degree on the nodes,
resulting in a high number of recursive branches. However, by imposing an
upper bound on the depth of the produced Min-Trees, most of these programs
can be analysed. Since we do not run the whole framework in these tests, we
are not able to see how much precision is lost from doing so, but the tests
in the previous section indicated that a maximum depth of four was enough
for small benchmarks. For the five programs that failed the unbounded Min-
Tree depth we have analysed them with different upper boundsto see how
they would scale. The result is shown in Table 7.5. The program ”nsichneu”
fails to be analysed even for maximum depth 2 and is the only benchmark
which completely fails to be analysed. As seen, the other benchmarks can be
analysed, but may or may not be over-approximated.
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7.5 The Reason for Over-Estimation

As seen in Table 7.2, MPA often over-estimates the results compared to Pip.
This occurs in the cases where MPA fails to derive the tightest possible bounds
for a Min-Tree. There are cases where the bounds (7.3), (7.4)and (7.1) are not
sufficient to express the tightest possible bound. ConsiderFigure 7.3 which
depicts a nested loop (note that MPA is not concerned with thesemantics of
the program, so the boxes are intentionally left empty). TheMin-Tree ofq7 and
q8 (they are equal) is shown in Figure 7.4. By inspection of Figure 7.3 we can
see that the execution ofq3 implies execution ofq7 andq8, thusp3 is an upper
bound ofq7 (since, by (7.1),q3 can not execute more thanp3 times, which
implies that neither canq7). As seen in Figure 7.4, MPA does not derivep3 as
an upper bound, instead, the boundsp3 +MIN(p5, p6) andp3 +p2 are derived.
This is becauseq3 is one out of two outgoing edges fromq2 as well as one out
of two incoming edges forq4, giving rise to the constraintsx4 ≤ x3 + x6 (by
(7.3)) andx1 ≤ x2 + x3 (by (7.4)). In summary, the upper boundp3 cannot be
determined forq7 only by the constraints (7.3),(7.4) and (7.1) only, and hence
MPA fails to find it.

As an example, we will show that for a certain instantiation of the symbolic
boundsp0, ..., p8, that none of the bounds (i.e., branches) in Figure 7.4 are
sufficiently tight. Assume that the symbolic bounds are instantiated as follows:

p0, ..., p8 = [1,∞, 1, 1,∞, 3, 3,∞,∞].

Again, by inspection of Figure 7.3 we can conclude thatq7 can maximally be
executed once, sincev3 ≤ 1. But the bounds derived from Figure 7.4 are (from
left to right): p3 + MIN(p5, p6) = 1 + MIN(3, 3) = 4, p1 = ∞, p4 = ∞,
p7 = ∞, p8 = ∞ andp3 + p2 = 1 + 1 = 2. Thus, the tightest bound
(the minimum of the above) given from the Min-Tree is2, which clearly is an
over-approximation.
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Figure 7.3: A program causing over-estimation in MPA
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Figure 7.4: The Min-Tree for the program pointsq7 andq8.





Chapter 8

Summary, Conclusions and
Future Work

8.1 Summary

In this thesis we have suggested a modular framework for static WCET anal-
ysis. The framework is based on the idea of counting semanticstates of a
program to be able to estimate a tight and correct upper boundof the WCET
of a program. Two possible applications of this framework has been presented;
one is to quickly and efficiently calculating loop bounds, and the perhaps most
useful application: a method of deriving a parametric WCET estimate. The
framework presented is based on results presented in previous publications by
other authors, but this thesis contributes with important research on how to
make the methods practically useful.

8.1.1 Contributions

As summary of the thesis, the individual contributions of this thesis are listed
in detail. The following sections correspond to the list of contributions given
in Chapter 1 on page 5.

Formalised Framework

The framework of the parametric WCET analysis proposed in [Lis03a, Lis03b]
has been investigated, refined and formalised, though thereare still some as-
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pects presented in [Lis03b], which has not been investigated (such as using
the method to find infeasible paths). The method inspired thepublication
[ESG+07] which is based on similar techniques, and hence incorporated as
a framework for finding loop bounds.

Research Prototype

The research presented in this thesis has been based on a prototype tool imple-
menting the parametric framework. The tool has provided practical experience
with the parametric framework and has helped to discover thepotentials and
bottle-necks of the framework, as well as made it possible toevaluate the ap-
proach.

Simplification of the Parametric Framework

In addition to the prototype, some research results considering practical issues
such as how to implement Pugh’s method for element counting and a method
for reducing the number of variables in a IPET problem have been presented.

The Congruence Domain

The congruence abstract domain which is an integral part of the loop bound
analysis has been modified to be able to perform analysis on realistic low-level
or intermediate level code. This by introducing abstractions over bit strings
and introducing abstract low-level operations.

The Minimum Propagation Algorithm

Perhaps the most important contribution of the thesis is theMinimum Propaga-
tion Algorithm which is intended to replace Parametric Integer Programming
as parametric calculation. The evaluation of the algorithmindicates that the al-
gorithm can be practically used for larger programs compared to PIP, and thus
be more useful for realistic analysis.

Evaluation of Algorithms

The general framework have been evaluated through the research prototype.
This shows that the framework is possible to use and that it can analyse pro-
grams correctly. Furthermore, the PIP and MPA algorithms have been evalu-
ated on a larger set of benchmarks.
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8.2 Future Work

8.2.1 Full Evaluation

Future work includes a full evaluation of the parametric framework on more re-
alistic benchmark programs. A final evaluation on real industrial code should
be able to give strong indications of the usefulness of the proposed approach.
The evaluation is planned to be done by implementing the framework into
the research prototype SWEET [GESL07, WCE09], which can analyse C pro-
grams which has been compiled to an intermediate format.

8.2.2 The Minimum Propagation Algorithm

While the minimum propagation algorithm works quite well inpractice, there
are still things that can be done to improve it. For instance,more (memory)
efficient data types could possibly be invented. In addition, we plan to inves-
tigate the possibility of adding additional constraints (such as infeasible path
information) to MPA. Finally, future work is to see if the over-estimation can
be reduced.

8.2.3 Abstract Domains

While the congruence domain has been investigated, other domains, and in
particular relational domains, are presented on the same assumptions as the
congruence domain in literature. For relational domains, the issues as those
presented in Chapter 5 will have to be solved, such as handling of finite value
domains, signed and unsigned integers, as well as abstract bit-operations. But
another problem arises in relational domains, namely, whatshould be treated
as variables (dimensions)? On low-level code, the memory model may not be
divided clearly into ”variables”, but as registers, memorypositions etc. Further
research is needed to practically be able to use relational abstract interpretation
on low-level code.

8.2.4 Modifications to the Parametric Framework

The resulting functionPWCETP of a program is meant to be stored as a final
result, and should ideally be instantiated at run-time whenvalues of input vari-
ables are known. However, to avoid the bottle-neck of the framework, which
seems to be the parametric calculation, an alternative approach would be to
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not computePCFP , but to use the result fromECFP to generate a regular
ILP-problem for every instance. The result fromECFP is a concrete vector
p (instead of a symbolic one), which can be used to generate an ILP-problem
based on the structural constraints and the concrete valuesin p. In this way,
the computation ofPCFP can be skipped. Thus, the functionPWCETP will
not be computed, but an ILP-problem can be obtained for any instantiation of
the input variables. This means that the ILP problem has to besolved to get a
concrete WCET estimation, but due to fast solvers this should be fairly efficient
(if not efficient enough to instantiate at run-time). This approach would then
make the time for instantiation longer, while reducing the time for analysis.
Future work is to evaluate this approach and compare it to theoutlined one.

8.3 Conclusions

This section will summarise and conclude the experience andimpact of the
research results found in this thesis.

8.3.1 Parametric WCET Analysis is Possible

The prototype tool presented in Chapter 6 implements the framework for-
malised in the thesis and most of the methods suggested in [Lis03a] and [Lis03b].
Its main drawback is currently its input language which prevents analysis on
large programs. However, the implementation shows that theapproach is fea-
sible and that it indeed can produce correct parametric WCETestimates of
programs in reasonable time. With the MPA algorithm we believe that para-
metric WCET analysis is possible to perform on smaller program parts (such
as ”disable interrupt”-sections or small embedded system components). We
have discovered that the two functions used to compute a parametric WCET
estimate,PCFP andECFP are independent of each other and can be used in
isolation if needed.

One of the most powerful properties of the proposed framework is that
it is general; it is based on the language-independent and program structure-
independent abstract interpretation. Furthermore, the proposed framework has
a modular work flow which means that most of the individual analyses can be
replaced and customised. For instance, the framework is notrestricted to a
certain abstract domain, calculation method or low-level analysis.
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8.3.2 Parametric Calculation is Complex

The most complex and time consuming part of the framework seems to be
the parametric calculation. This is because a parametric calculation essentially
tries to solve multiple concrete calculation problems. Since the most popular
regular calculation methods proposed already have a high complexity, this is
not surprising. Thus, the most important results in this thesis is the suggestions
to make the parametric calculation more efficient. The following three points
apply to parametric calculation in general and can be used for PIP as well as
MPA:

• Reduce the number of parameters in the parametric calculation

This was briefly mentioned in Section 6.9.3. The parameters of a para-
metric calculation problem can be classified into equivalence classes so that
a single parameter per basic block can model the set of parameters in the ba-
sic block. This typically reduces the number of parameters approximately one
third.

• Exploit the results fromECFP in the parametric calculation

As said in Section 8.2, in the final WCET formula, the bounds computed by
ECFP is substituted for the symbolic bounds ofPCFP (that is, the arguments
of PCFP ) after it has been computed. However, some of the substituted pa-
rameters may be constant values or unbounded, some of them may also be
equal to each other. This can be used to reduce the number of parameters and
constraints of the resulting parametric calculation problem. While the benefit
of this has not been investigated, it could in combination with the other ap-
proaches further simplify the parametric calculation.

• Skip the parametric calculation

Also mentioned in Section 8.2 was that the step of computingPCFP can
be skipped in favour of producing concrete IPET problems as output rather
than a parametric formula. However, this may make it impossible to instantiate
formulae at run-time and no concrete formula estimating theWCET will be
produced.

The last point on how to simplify parametric calculation only applies to
PIP:

• Reduce the number of variables in the PIP problem
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As shown in Section 6.8, the number of variables of the problem can be
reduced significantly. While this simplifies the problem, itdoes not actually
reduce the asymptotic behaviour of the method.

8.3.3 The Minimum Propagation Algorithm Scales

As seen in Section 7.4, PIP does not seem to scale well, even though some of
the simplifications in the previous sections have been applied. In the compari-
son to PIP, the MPA algorithm scales much better. In addition, MPA provides
a trade-off in that it can provide correct but possibly less precise results by
imposing an upper bound on the depths of the produced Min-Trees. With this
possibility MPA is able to analyse all benchmarks from [MDH09] but one.
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