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ABSTRACT

Knowing the worst case execution times (WCETs) for
programs are crucial for the design and veri�cation of
real-time systems. Modern hardware architectures uti-
lize pipelined execution and cache memory for improved
performance. We extend an existing execution time
analysis technique, the Implicit Path Enumeration Tech-
nique (IPET), to consider these and other modern hard-
ware architecture features.

We extend IPET in two stages. First, we annotate the
control ow graph of the program with variables repre-
senting the history of execution, thus allowing the state
of architectural entities, such as cache and pipeline, to
be determined before each basic block. Secondly, we
model the architectural entities with constraints. The
result is an equation which contains a complete model
of how the program will execute on the modeled archi-
tecture.

This novel idea provides a straightforward and exi-
ble way of incorporating the behavior of various modern
hardware architecture features into WCET analysis.

1 Introduction

One of the key questions when designing a real-time sys-
tem is resource allocation. In solving this problem it is
vital to have a good estimation of the resource require-
ments of the di�erent components in the system. For
software components, execution time is the most impor-
tant resource. Determining the Worst Case Execution
Time (WCET) for software components is a prerequisite
for most real-time analysis, e.g. schedulability analysis.
Background: Traditionally, cache behavior has

been deemed too complex to analyze for real-time
systems. But recently several methods for schedula-
bility analysis of cached architectures have emerged,
e.g. [BN94, BMSO+96, LHS+96]. Similarly, much
of previous work on WCET estimation, e.g. [PK89,

PS91, Gus94, CBW94, PS95, LM95], has not considered
cached architectures. Recently researchers have pro-
posed methods which allow tighter estimation of WCET
in cached systems, e.g. [AMWH94, LL94, LBJ+95,
KMH96, LMW96]. Arnold et.al. [AMWH94] consider
only instruction caches which partly limit the appli-
cability of their analysis. Lim et.al. [LBJ+95] extend
the original timing schemas, proposed by Puschner and
Koza [PK89], to handle pipelined and cached architec-
tures. Kim, Min and Ha [KMH96] further re�ne this
method with a better model for data caches. The result
is that the actual execution of the object code is mod-
eled very well. However, the timing schema approach
lacks the possibility to capture semantical dependencies
in the code. For instance, it is very hard to express that
the number of iterations in an inner loop is dependent
on the loop-index of an outer loop, or that two sub-paths
at di�erent locations in the code are mutually exclusive.
The method in [LL94] su�ers from similar problems.

In recent work Li, Malik and Wolfe [LMW96] revise
the work in [LM95] and the Implicit Path Enumera-
tion Technique (IPET) is extended to allow pipeline ex-
ecution and cache memory to be modeled with linear
constraints. In IPET [LM95, PS95] all the possible ex-
ecution paths of a program is described by placing con-
straints on, and relations between, the number of exe-
cutions of di�erent parts of the program. An execution
time expression is formulated by multiplying the time
to execute each part of the program with the number
of times the part is executed. The WCET is found by
maximizing this expression under the constraints, using
linear programming (see e.g. [NRT89]).

IPET allows semantical dependencies to be expressed
as constraints on the control ow graph of the program.
This possibility is important to avoid execution time
for infeasible paths to be part of the WCET estimation.
Thus, IPET is very suitable to combine with advanced
semantical analysis at the source code level (since the
information derived in the semantical analysis can be



expressed as constraints in the ow graph).

Our Contribution: We present a method for es-
timating the WCET for programs running at mod-
ern hardware architectures. Our method is based on
IPET, but our approach is quite di�erent from the work
in [LMW96]. Li, Malik andWolfe [LMW96] use a frame-
work specialized for cache modeling, while we present a
general framework for representing the history of the ex-
ecution and micro-architectural modeling. This allows
us to express pipeline and cache e�ects in the same gen-
eral framework. It is also possible for us to express
other micro-architectural aspects, such as instruction
level parallelism or EDO-RAM (EDO-RAM speed up
accesses to consecutive memory addresses), within the
same framework.
We extend IPET in two stages. First, we annotate the

control ow graph of the program with variables repre-
senting the history of execution, thus allowing the state
of architectural entities, such as cache and pipeline, to
be determined before each basic block. Secondly, we
model the architectural entities with constraints. The
result is an equation which contains a complete model
of how the program will execute on the modeled ar-
chitecture. Optimizing this equation with respect to
execution time, using constraint satisfaction methods,
yields the WCET of the program.

Paper Outline: Section 2 recapitulates the founda-
tions of IPET as published before and describes our ex-
tensions to the method. Sections 3 and 4 describe how
the pipeline and cache e�ects are modeled. Section 5
introduces Constraint Satisfaction techniques which are
used to �nd the WCET. In section 6 we give an exam-
ple of how our method can predict the worst case cache
behavior and we conclude our paper in section 7.

2 Calculating the WCET

We begin our description by recapitulating the work
described in [PS95] (section 2.1). We then describe our
extension to that method (section 2.2), which allows us
to consider cache and pipeline e�ects.

2.1 The Basic Method

A program is described by its control ow graph G.
This is a directed graph where each basic block is rep-
resented by an edge ei. Figure 1(a) shows an example
of a program and 1(b) its corresponding control graph1.
Each edge, ei, is associated with (1) a worst case exe-
cution time, ci, computed from the object code of the
basic block, and (2) the maximum number of executions
of edge ei in any execution of the program, denoted

1The edge e0 is a purely conceptual construct introduced for

the convenience of presentation of the equations below. We de�ne

c0 = 0.

�i. �i can be determined from the maximum number
of iteration in loops, either by semantic analysis (e.g.
[CBW94]) or by source code annotations (e.g. [PK89]).
In �gure 1(c) the maximum number of executions of
each edge for our sample program is shown.
For an execution path P (i.e. P represents one speci�c

execution) each basic block ei is executed a number of
times, denoted by xPi . The total time spent in edge ei
is expressed by tPi = xPi � ci. Thus, the total execution
time of the program (ETP ) is the sum of the times spent
in each edge on path P , i.e.

ETP =
X

i2edges(G)

tPi =
X

i2edges(G)

xPi � ci (1)

To �nd the Worst Case Execution Time it is necessary
to �nd the maximum value of ETP of any execution of
the program. Let �G denote the set of possible execu-
tions of control graph G, then

WCET = max
P2�G

ETP = max
P2�G

X
i2edges(G)

xPi � ci
(2)

For notational convenience we ignore the super-
script P for xPi for the rest of this paper, when un-
ambiguous.
Clearly, the xis cannot be assigned arbitrary values.

For instance, they are all non-negative integers, and
they are bounded by their respective �i. Formally

xi 2 N0 , and xi � �i (3)

However, these restrictions on the xis are not enough
to characterize the possible executions of the program.
In [LM95, PS95], it is described how constraints are
placed on the xis so that they can only take values that
represent valid executions. These constraints are all lin-
ear relations between the di�erent xis.
The most fundamental constraints express the preser-

vation of ow. That is, for each node n 2 G, it must
hold that the sum of the incoming xis is equal to the
sum of the outgoing xjs. Formally2X

i2in(n)

xi =
X

j2out(n)

xj (8n 2 nodes(G)) (4)

where in(n) and out(n) represents the set of incoming
and outgoing edges of node n.
For natural loops [ASU86, sec. 10.4] (i.e. loops with

a single loop entry node n and no jumps into the loop
body) a loop entry condition expresses that a loop can-
not be executed if none of its preceding edges are exe-
cuted. In general,

X
i2in(n)�back(n)

xi �1 �
X

b2back(n)

xb (5)

2We de�ne x0 = 1 to represent that the program is run once.



a:=0

for i:=1 to 10 do

if V[i]<0 then

tmp := -V[i]

else

tmp := V[i]

fi

for j:=i to 10 do

a := a+tmp*V[j]

end

end

print a
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Figure 1: An example program

where back(n)�in(n) represents the incoming edges to
n which are backward edges.
In addition to the (mandatory) constraints derived

from the structure of the code (equations 3, 4 and 5),
any number of (optional) constraints reecting code de-
pendencies can be added. These additional constraints
can be the result of source code analysis or annotations.
For instance, consider two consecutive if-statements
where the then-statements are mutually exclusive and
the two edges e1 and e2 correspond to the respective
then-statements. The mutual exclusion of these two
edges is expressed by the constraint x1 + x2 � 1.
To �nd the WCET of the program we need to �nd

the maximum value of equation 1 under the constraints
we de�ned in equations 3, 4 and 5, plus any optional
constraints. This composes a set of linear equations.
The presented scheme is based on the assumption that

the execution time for each basic block can be deter-
mined in isolation. There are no means to consider tim-
ing variations resulting from pipelined execution and
cache memory, since these costs represent inter-block
dependencies. In the next section, we describe an ex-
tension to this scheme which allows us to take such vari-
ations into account.

2.2 Representing the Execution History

To be able to model the e�ect of architectural compo-
nents such as pipelines and caches, we need to know the
state of those components when we enter a basic block.
If the state is known we are able to estimate the gains
made from using the component. In sections 3 and 4 we
will describe how to determine the state of the pipeline
and the cache respectively, and how the execution time
for a basic block can be decreased accordingly. In this
section we show how history dependent execution times
are taken into account in the de�nition of the execution
time ETP (equation 1).
If we know that the predecessor of edge ej is ei (in

the execution P ) and we know the state of the cache
and/or the pipeline after edge ei then we can calculate
the execution time for edge ej using that state informa-
tion or, equivalently, we can calculate the gain of exe-
cuting edge ei before edge ej , denoted by gPi!j . Using
the cache/pipeline modeling, it is also possible to calcu-
late their states after the execution of edge ej , allowing
calculation of the gain gPj!k for successors ek to ej .
In an execution P , consider a node n. Let ci be an

incoming edge to n, and cj an outgoing edge. Then,
we de�ne xi!j to be the number of times edge ei is
executed before ej .
The execution time for edge tj can now be formulated

as

tj = xj � cj �
X

i2in(n)

xi!j � gi!j (8j 2 out(n))
(6)

Equation 6 is similar to the de�nition used in equa-
tion 1, with the di�erence that here we remove the
gained time from the total execution time. (Naturally
we require, as for xi, that xi!j 2 N0 .)
The xi!j s can in turn be related to the xis as followsX

i2in(n)

xi!j = xj (8j 2 out(n)) (7)

X
j2out(n)

xi!j = xi (8i 2 in(n)) (8)

The meaning of equations 7 and 8 is perhaps best un-
derstood by an example. Figure 2(a) shows a node with
multiple incoming and multiple outgoing edges. The
summation of the xi!j s is depicted in �gure 2(b). Con-
sider the leftmost row of the equations in �gure 2(b).
It is clear that x1 must be equal to the sum of the ex-
ecutions passing through e1, i.e. x1 = x1!3 + x1!4.
Similarly for the other column and rows.
Note that if the gi!js are known a priori we still

have a system of linear constraints and thus the WCET
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Figure 2: A node with multiple inputs and outputs

(equation 2) can be determined with linear program-
ming.
However, if the gi!js in turn are dependent on the

xis (or the xi!j s) the equation system is not necessarily
linear and other methods for optimization must be used
to solve equation 2, see section 5.

3 Pipeline Modeling

In processors with pipelines, instructions are split into
multiple execution stages and each stage is executed in
sequence. However, di�erent stages from two or more
instructions are often executed simultaneously. This
pipeline-overlap is often quite easily determined for a ba-
sic block, using for instance reservation tables [Kog81].
Figure 3 shows an example of a reservation table for a
three instruction basic block, executing on a (�ctitious)
four stage pipelined processor. The vertical dimension
represents the di�erent stages in the pipeline, and the
time (in clock cycles) evolves from left to right. We as-
sume that the pipeline-overlap inside each basic block
is considered when determining the execution time for
each basic block (ci).

Pipeline Time in clock cycles �!
Stage 0 1 2 3 4 5 6 7 8

Instr. fetch 1 1 2 2 3 3
ALU 1 2 2 2 3
FPU 1 1 1
Mem. store 1 2 3

Figure 3: Reservation table for a basic block

For each pair of consecutive basic blocks it is also pos-
sible to calculate the pipeline-overlap, using the same
reservation tables. However, it is su�cient to con-
sider only the �rst and last few columns of each basic
block [LBJ+95]. (The number of columns which need to
be considered is not greater than the maximum number
of cycles a single instruction can reside in the pipeline.)
Figure 4 shows how the reservation tables are used to

determine the overlap between two blocks i and j. In the
reservation tables only the last (or �rst, respectively)
use of a stage is marked. Intuitively, the pipeline-overlap

is the distance we can \push" the two reservation tables
together without the instructions interfering with each
other. The formulas in �gure 4 show how the overlap is
calculated (where n is the number of columns in basic
block i); In this example the overlap is 1 clock cycle.
Let oi!j denote the pipeline-overlap of basic blocks i

and j. Then gPi!j = oi!j (for each execution P ). The
calculation of the pipeline-overlap can be done a priori
and thus the gPi!j are all constants and equation 2 is
still composed of a set of linear equations.
In this section we have assumed that the pipeline-

overlap never reduces the execution time of a basic block
below zero. However, it is possible (for instance in a
deeply pipelined processor) that gi!j > cj if the basic
block j does not use all the stages of the pipeline. There
are two ways of resolving such situations.

� Prevent the situation from arising. This is done
by ensuring that each basic block allocates each
pipeline stage at least once, i.e. insert a dummy
'�' in the reservation table.

� Use a more sophisticated model of the state of the
pipeline when exiting a basic block. For instance, a
method similar to the cache modeling in section 4
could be employed.

4 Cache Modeling

A cache complicates the task of estimating the execution
time for a sequence of instructions, due to the fact the
execution time of a single instruction is dependent on
the current content (state) of the cache. To make a
safe estimation of WCET we have to treat each memory
access as a cache miss unless we can be sure that the
referenced block resides in the cache. When calculating
ci there is no knowledge of the state of the cache, and
each memory access must be treated as a cache miss.

To remedy this, we will model the cache and the gains
from using the cache. As in the case with pipelined
execution, our framework calls for an estimation of gi!j ,
i.e., the gain of using the cache in edge ej , provided that
edge ei is the immediately preceding edge. Thus,

gi!j = hi!j � CMP

where hi!j is the number of cache hits when executing
edge j coming from edge i, and CMP is the Cache Miss
Penalty, de�ned as

CMP = memory access time� cache access time

The following two sections will describe how to model
references to the cache in order to determine the number
of hits and how to \propagate" cache states between
basic blocks in the control graph.
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The modeling technique presented in the following
section is suitable for systems where the CMP is equiv-
alent for read and write accesses. (In the general case
with di�erent CMP for read and write, each memory
reference has to be marked with its type and both types
have to be handled di�erently.)

4.1 Memory References and Cache Hits

In this section we describe how a memory cache is mod-
eled. As an example we consider a 2-way set-associative
cache with Least Recently Used (LRU) discard policy.
A two-way set-associative cache maps each (�xed size)
memory block to one cache set. Each set is capable of
storing two memory blocks. The LRU discard policy
means that the memory block least recently used in a
cache set is the block discarded when a new block is
loaded to the set.
The technique we use here is applicable to n-way set-

associative caches, including n = 1 (i.e. direct mapped
caches) and n equal to the size of the cache (i.e. fully
associative caches).
We annotate each edge ei in the graph G with a list

of memory references Ri = r1; : : : ; rm made in that ba-
sic block. We also assign to the end of each edge ei a
cache Ci. Then we calculate the cache hits hi!j for each
pair of successive edges by simulating the references of
edge ej in the cache Ci.
First, consider a single reference to a memory block

r, which is mapped to cache set s in cache C. The cache
C contains the sets C(1) : : : C(p). Each set stores two
memory blocks, such that C(i) = [b1; b2] where memory
block b2 is the least recently used. Each resulting cache
set C 0(i) is described by

i = s)C 0(i) =

(
[r; b2] if r = b1

[r; b1] otherwise

i 6= s)C 0(i) = C(i)

(9)

i.e. all cache sets are copied from C to C 0 except s which
is updated with the contents of memory block r.
Let h(C; r) indicate whether a reference r to a cache

C is a hit or miss. Formally,

h(C; r) =

(
1 if r 2 C(s)

0 otherwise
(10)

Multiple references Rj = [r1; : : : ; rm] are modeled in

sequence, C0
i!j

r1
y C1

i!j

r2
y : : :

rm
y Cm

i!j (where C
0
i!j =

Ci), and the number of cache hits in such a sequence is
the sum of the hits, i.e.

hi!j =
X

0�k�m�1

h(Ck
i!j ; rk) (11)

Note that equations 9 and 10 are purely declarative
statements and knowledge about the actual values of rk
is not required. When rk is an instruction reference its
value can be statically determined but when rk is a data
reference its value may be unknown or partially known.
Unknown or partially known references are not a

problem when using this technique. However, the tight-
ness of the estimated WCET is dependent on the infor-
mation known about the references. Partial information
about references can be ranges or sets of possible values
for the reference or dependencies between di�erent refer-
ences. For instance, if references r1 and r2 are unknown
but it is known that they reference the same memory
block, i.e. r1 = r2, then the reference simulation will
report one cache miss (for the unknown reference r1)
followed by one cache hit (for r2, which is known to be
in the cache).

4.2 Cache Propagation

Besides modeling the cache references, we also need to
de�ne the state of the propagated cache Cj , i.e. the state
of the cache assigned to the end of edge ej . This is done
by selecting as Cj one of the updated caches from an
incoming edge with positive ow xi. Formally

Cj 2 fC
m
i!j ji 2 in(n) ^ xi 6= 0g (12)

If there is no incoming ow, that is, all xi are zero,
then xj is also 0 and Cj is unde�ned.
The maximization in equation 2 will force Cj to take

the value which causes the largest total execution time.
For the �rst edge of a loop ej , the worst value of the
Cj is probably one of the Cm

i!j corresponding to an
edge ei that is not a backward edge in the loop. This
will cause the successors of ej in the loop to use a cold
cache each iteration, which leads to pessimistic WCET
estimation. To enable the subsequent iterations in the
loop to bene�t from the memory blocks loaded into the



cache during the �rst iteration it is necessary to unroll
the loop one round when producing the graph G.

4.3 Optimizing over Cache Models

In contrast to the pipeline-overlap calculation illus-
trated in section 3, the calculation of the number of
cache hits and the states of the caches cannot be done
for each basic block a priori. The reason for this is that
the state of a cache depends not on the current basic
block but rather on the execution history.

The formulas 9, 10, 11 and 12 expressing cache refer-
ences, cache hits and cache propagation will be part of
the expression for ET . This calls for other maximization
methods than linear programming. For instance, con-
straint satisfaction over �nite domains (see section 5)
can now be used to optimize equation 2.

Section 6 will show, for an example program, the re-
sults obtained for the cache modeling.

5 Constraint Satisfaction

We will here give a short and very introductory guide to
the technique called constraint satisfaction. For a more
complete description, see [Tsa93, Kum92].

A large variety of problems can be viewed as con-
straint satisfaction problems (CSP), e.g. scheduling,
planning and allocation. A CSP is formulated as a
set of variables and a set of constraints; solving a CSP
amounts to �nding values for the variables such that
all constraints are satis�ed. A number of di�erent ap-
proaches for solving these problems have been devel-
oped, most of them being a combination of backtracking
search and constraint propagation.

Search involves the systematic and exhaustive trying
of values for variables. Constraint propagation involves
removing infeasible values from variable domains, mak-
ing active use of the constraints. As these two tech-
niques are combined, the constraint propagation prunes
the search tree in an a priori way.

Support for constraint satisfaction has been added to
most major programming languages, including impera-
tive and object-oriented, functional and logic-based.

Constraint Satisfaction is related to Linear Program-
ming in the sense that they sometimes attack the same
problems, but the techniques as such are quite di�er-
ent. Linear Programming is based on a deterministic
manipulation of equations, while constraint satisfaction
is based on constrained search. Despite the fact that the
complexity of constrained search is exponential in worst
case, many useful problems have proved to be solvable
with good performance.

6 Implementation and Evaluation

The technique presented in sections 2 through 4 has
been implemented using the �nite domain extension of
SICStus Prolog [C+95]. All variables of the equations
representing the control graph from section 2 have been
represented as �nite domain variables, along with all
variables modeling the cache from section 4 (we ignore
pipelines for this example). The equations themselves
have been expressed as �nite domain constraints, us-
ing the arithmetical and logical formulas from section 2
and 4. Using the constraint solving engine in SICStus,
we optimize for the maximum value of the expression
ETP (equation 2).

In this example we emphasize the modeling of the
cache, and we therefore de�ne ci = 0 and CMP = 1.
Thus, worst case execution path will be the path with
fewest cache hits.

Consider the example program from �gure 1. In
this experiment we need, besides the control graph,
the memory references made in each edge. These are
obtained from the (pseudo assembler) instructions in
�gure 5(a) using the memory allocation shown in �g-
ure 5(b). The assembler code in �gure 5(a) is generated
by straightforward, and naive, manual compilation of
the code in �gure 1(a).

The address of all memory references are known (and
shown in �gure 5(a)) except the array references V[i]
and V[j] (r1, r2, r3 and r4) which are unknown due
to the index which varies. But, we do know that for
all executions and every traversal of edge e2 that V[i]
is the same reference as V[i] in edges e3 and e4 (i.e.
r1 = r2 = r3). This information can, using our method,
be taken into account, and our results show that the
information leads to more predicted cache hits (i.e. a
closer estimation).

Figure 6 illustrates the number of cache hits in the
worst case execution in three di�erent situations. First
we have column Naive which is used as a lower refer-
ence mark, where we have not used the cache propaga-
tion from section 4.2. Instead, cold caches are used for
basic blocks with multiple incoming edges, and only in
the trivial case when a basic block has a single prede-
cessor are caches propagated. The second column, Un-
known, shows the e�ects with fully propagating caches
(i.e. equation 12 is used for selecting a cache to propa-
gate), and �nally, column Same shows the result when
the knowledge that r1 = r2 = r3 is utilized.

The cache used is a cache with 8 cache sets, and the
cache is used for both instruction and data references,
i.e. , it is a uni�ed 2-way set-associative cache. For sim-
plicity we use the same size for memory blocks, machine
instructions and integers.

The accumulated cache hits shown in the last row of
�gure 6 show clearly that cache propagation between
all basic blocks is essential to get a good cache hit es-



Pseudo Assembler Ref. Address
e1 store1 a store2 i 1 45 2 46
e2 load3 i load4 V[i] cmp5 goto6 3 46 4 r1 5 6
e3 load7 i load8 V[i] neg9 store10 tmp goto11 7 46 8 r2 9 10 48 11
e4 load12 i load13 V[i] store14 tmp 12 46 13 r3 14 48
e5 load15 i store16 j 15 46 16 47
e6 load17 j load18 V[j] load19 tmp mult20 load21 a

add22 store23 a load24 j add25 store26 j cmp27

17 47 18 r4 19 48 20 21
45 22 23 45 24 47 25 26
47 27

e7 goto28 28
e8 load29 i add30 store31 i cmp32 29 46 30 31 46 32
e9 goto33 33
e10 load34 a print35 34 45 35

Code 1
...

...
35

a 45
i 46
j 47

tmp 48
V[1] 49
...

...
V[10] 59

(a) Memory references (b) Memory allocation

Figure 5: Memory references for the example program

Flow Naive Unknown Same
i! j xi!j hi!j xi!j hi!j xi!j hi!j

0! 1 1 0 1 0 1 0
1! 2 1 1 1 1 1 1
2! 3 11 0 0 0 11 0
2! 4 0 0 11 0 0 0
3! 5 11 0 0 1 11 0
4! 5 0 0 11 0 0 0
5! 6 11 2 11 4 11 5
6! 7 55 0 55 0 55 0
6! 8 11 1 11 2 11 2
7! 6 55 2 55 12 55 12
8! 9 10 0 10 0 10 0
8! 10 1 0 1 1 1 1
9! 2 10 1 10 2 10 2

Hits: 154 Hits: 748 Hits: 759

Figure 6: Flow and cache hits in worst case execution

timation. Propagating within basic blocks and between
consecutive basic blocks only, as in Naive, is not su�-
cient.

We can also conclude from comparing the last two
columns that a closer cache hit estimation can be
achieved by utilizing available information about ref-
erences, even if they are partially unknown.

Unknown or partially unknown references are compu-
tationally expensive. Calculating WCET for this exam-
ple is done in a few seconds if all references are known.
Having partially known references like in Same, the cal-
culation takes a couple of minutes while fully unknown
references (as in Unknown) extends the analysis time
to several hours. This is partly due to the fact that
only little work has been spent improving the perfor-
mance, but also due to the complexity of the problem
as such. Unknown references cannot be mapped to a

speci�c cache set. This severely inhibits the propaga-
tion of cache states during optimization, since no cache
set in an edge with an unknown reference can be deter-
mined without search.

7 Conclusion and Future Work

We have presented a method which allows the behavior
of modern hardware architecture to be considered when
determining the Worst Case Execution Time (WCET)
of a program. Our method is based on the implicit path
enumeration technique (IPET) [LM95, PS95], which we
have extended so that history dependent execution times
can be considered. This allows us to calculate close
WCET estimations on cached and pipelined architec-
tures.

We have shown how a uni�ed 2-way set associative
cache can be modeled with our technique, extending
the now well understood problem of modeling direct
mapped instruction caches. Our technique allows us
to model n-way set-associative caches and references to
memory where the exact address is unknown, or par-
tially known. This makes a uni�ed analysis of instruc-
tion and data cache references possible.

Although the presented method uses detailed knowl-
edge about the history of execution, tighter WCET esti-
mations could probably be made if even more informa-
tion of the execution path were explicitly represented.
By de�ning xi!j for not only successive edges but for
all pair of edges where there exists a path through both
edges ei and ej we could avoid the need for unrolling
of the �rst loop round to get a tight WCET estima-
tion. Also, by explicitly representing how the cache
state changes during execution of a loop it should be
possible to obtain even better precision for the data
cache modeling.

Our technique is most closely related to the recent



work of Li, Malik and Wolfe [LMW96]. Their ap-
proach is based on breaking down the cache modeling
to a set of cache conict graphs (one for each cache
set), transforming the problem to a linear network ow
problem which can be solved using Integer Linear Pro-
gramming (ILP) [NRT89]. The experiments with in-
struction caching in [LMW96] show promising results in
terms of accuracy of the WCET prediction and in most
cases the analysis time is negligible. Though for some
of their test-cases the analysis time is several hours.
Their method is applicable for data caching, however,
no performance results for data caching is reported.
In [LMW96] data caching of references with unknown
(or partially known) addresses result in cache conict
graphs with a high degree of connectivity and loose lin-
ear constraints, which might increase analysis time and
introduce performance problems.

In contrast to linear constraints and cache conict
graphs, we model the cache (as well as other micro-
architectural properties) straight-forwardly making use
of the non-linear arithmetic and logic formulas made
available by the constraint satisfaction approach of a
�nite domain constraint solver [C+95]. When only con-
sidering references to known memory addresses (e.g. in-
struction caching) we experience (for our limited test-
cases) good performance, both in terms of WCET tight-
ness and analysis time. Also, when knowledge of the ac-
tual addresses of the references is limited (which is often
the case for data caches) our method make use of the
available information to tighten the WCET. However,
limited information severely a�ects the analysis time of
the tool, and when addresses are totally unknown the
execution time might be in the order of hours even for
small programs.

Our presented technique is not yet mature enough
to be used in practice. It su�ers from performance
problems when attacking large programs or loosely con-
strained references (such as many data references where
the actual memory address is unknown). Its virtue, on
the other hand, is that it is simple and has powerful
expressiveness. It handles instruction and data cache
references uniformly, and it is straight-forward to ex-
tend to handle other micro-architectural entities than
pipeline and cache. While we haven't done a real ef-
fort in enhancing the performance, such a task is the
obvious choice for future work aiming at validating the
usefulness of this technique.
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